Kontakt

Leitung

Prof. Dr. Andrea Hildebrandt

 +49 (0)441 798-4629

 A07 0-062

Sekretariat

Sandra Marienberg

+49 (0)441 798-5523

(Termine: 9:00-12:30 Uhr)
 

Lea Hinrichs

+49 (0)441 798-5525

(Termine: täglich am Nachmittag)
 

 A07 0-035

Anschrift

Carl von Ossietzky Universität Oldenburg
Fakultät VI - Medizin und Gesundheitswissenschaften
Abt. Psychologische Methodenlehre und Statistik
Dep. für Psychologie
Gebäude A7
Ammerländer Heerstr. 114-118
26129 Oldenburg

Anfahrt und Lageplan

 Anfahrt zur Universität und Campusplan

Dr. Sana Hassan Imam

Research Interests

  • Large Language Models (LLMs) for systematic reviews and meta-analyses
  • Generative AI, including LLMs in online collaboration
  • Machine learning and explainable AI (XAI) and applications to imaging neuroscience
  • Human-Computer Interaction and creativity support systems
  • User engagement and personalization in online collaborative communities

 

Academic positions 

Since June 2025Postdoctoral Researcher, Carl von Ossietzky Universität Oldenburg, Germany

01/2023 – 08/2025

Research Associate, Diginomics Research Group, University of Bremen, Germany

01/2021 – 12/2024

PhD Researcher, University of Bremen, Germany

11/2013 – 12/2021

Assistant Professor, NUCES-FAST (National University of Computer and Emerging Sciences), Pakistan

12/2012 – 10/2013

Lecturer, NUCES-FAST, Pakistan

02/2009 – 08/2012

Lab Engineer, NUCES-FAST, Pakistan

Education


01/2021 – 12/2024

PhD-Ing in Informatics, University of Bremen, Germany

2011 – 2013

Master of Engineering in Electrical Engineering, NUCES-FAST, Islamabad, Pakistan

2007 – 2011

Bachelor of Engineering in Electrical (Telecom), NUCES-FAST, Islamabad, Pakistan


Publications

Imam, S. H. (2025). Enhancing User Engagement in Online Collaborative Communities using AI. DOI: 10.26092/ELIB/4063 (PhD Thesis)

Imam, S. H., Metz, C. A., Hornuf, L., & Drechsler, R. (2024). Determining the Effect of Feedback Quality on User Engagement on Online Idea Crowdsourcing Platforms Using an AI Model. Proceedings of the ACM on Human-Computer Interaction 8 (CSCW2), Article 376. DOI: 10.1145/3686915

Imam, S. H., Metz, C. A., & Drechsler, R. (2024). How Can Generative AI Curate the User Creativity on an Idea Crowdsourcing Platform? ACM CHI 2024

Imam, S. H. (2024). Let’s Brainstorm: Personalized Chatbot Prototype as Creativity Partner in Idea Crowdsourcing Platforms. Diginomics Conference 2024

Imam, S. H., Metz, C. A., Hornuf, L., & Drechsler, R. (2023). Classifying Crowdsourcing Platform Users' Engagement Behaviour using Machine Learning and XAI. Mensch und Computer 2023 - Workshopband. DOI: 10.18420/muc2023-mci-ws16-385

Imam, S. H., Huhn, S., Hornuf, L., & Drechsler, R. (2023). A Novel Default Risk Prediction and Feature Importance Analysis Technique for Marketplace Lending using Machine Learning. Credit and Capital Markets–Kredit und Kapital, 27–62. DOI: 10.3790/ccm.56.1.27

Imam, S. H., Huhn, S., & Hornuf, L. (2022). Feature Importance and Extensibility for Predicting Loan Defaults in Marketplace Lending using BiLSTM. Frontiers of Factor Investing Conference (FoFi)

Priberny, C., Imam, S. H., Huhn, S., Hornuf, L., Drechsler, R., et al. (Year TBD). Scientific Papers. (Further details available on Google Scholar)

Webmaster (Stand: 02.09.2025)  Kurz-URL:Shortlink: https://uole.de/p114751
Zum Seitananfang scrollen Scroll to the top of the page