Vortragsankündigung
Im Rahmen des Oberseminars Analysis/Numerik spricht
Herr Prof. Dr. Mikko Salo (University of Jyväskylä)
über
Title: Rigidity in the Lorentzian Calderon problem
Abstract: The inverse problem of Calderon, in its geometric formulation, asks if a Riemannian metric in a domain is determined up to isometry by boundary measurements of harmonic functions. Physically this corresponds to determining a matrix electrical conductivity function from voltage and current measurements on the boundary. This problem is open in general.
In this talk we will discuss the hyperbolic analogue of the Calderon problem for the (Lorentzian) wave equation. We will show a rigidity result stating that any globally hyperbolic Lorentzian metric can be distinguished from the Minkowski metric. The result is valid for formally determined data and the method is based on distorted plane waves and geometric, topological and unique continuation arguments. This is joint work with L. Oksanen (Helsinki) and Rakesh (Delaware).
Der Vortrag findet statt am
Donnerstag, den 20.02.2025 um 14.15 Uhr – 15.15 Uhr im Raum W01 0-006
Interessierte sind herzlich eingeladen.
Fakultät V
Mathematik und Naturwissenschaften