Kontakt

Direktor

Prof. Dr. Andreas Stein

+49 (0)441 798-3232

W1 2-216

Geschäftsstelle

Sekretariat

+49 (0)441 798-3004

Antje Hagen

+49 (0)441 798-3247

W1 1-115

Frauke Wehber

+49 (0)441 798-3247

W1 1-115

Desislava Deutsch

+49 (0)441 798-3241

W1 1-120

Gleichstellungsbeauftragte

Carolin Lena Danzer

+49 (0)441 798-3227

W1 1-104

Dr. Birte Julia Specht

+49 (0)441 798-3607

W1 1-110

Dr. Sandra Stein

+49 (0)441 798-3237

W1 2-214

Ombudsperson für Fragen der
Diskriminierung und der sexuellen Belästigung

Antje Hagen

+49 (0)441 798-3247

W1 1-115

EDV-Beauftragte

Veronika Viets

+49 (0) 441 798-3236

W1 1-116

Anschrift

Carl von Ossietzky Universität Oldenburg
Institut für Mathematik
Campus Wechloy
Carl-von-Ossietzky-Str. 9-11
26129 Oldenburg

Anreise


Abschlussseminare

Bifurcation analysis for geometric PDE’s

Vortragsankündigung

 Im Rahmen des Oberseminars Analysis/Numerik 

spricht

 Herr Alexander Meiners (Universität Oldenburg) 

über 

Bifurcation analysis for geometric PDE’s 

F. Al Saadi, E. Knobloch, A. Meiners, H. Uecker

This talk will broadly cover bifurcation problems within partial differential equations. As an introductory example, we explore bifurcations and stability in a semiconductor model, while reviewing essential concepts in dynamical systems analysis. In particular, we focus on Turing– Hopf mixed modes in the vicinity of codimension-two bifurcation points. The main tool is numerical continuation in pde2path of steady-state and periodic solutions. From that, we consider geometric partial differential equations. Within this broad field, we examine a model for the shape of bilayer membranes—the Helfrich equation. We investigate destabilizing bifurcations from spherical and cylindrical topologies. The spherical case serves as a model for the shape of red blood cells, while the cylindrical case reveals interesting bifurcations into non-axisymmetric solutions. We apply numerical continuation with the Xcont extension of pde2path to both cases to study stability and secondary branches. In the cylindrical case in particular, we also derive amplitude equations to further analyze axisymmetric, nonaxisymmetric and mixed-mode solutions. 

Der Vortrag findet statt am Donnerstag, den 08.05.2025 

um 14.45 – 15.30 Uhr im Raum W01 006 

Interessierte sind herzlich eingeladen. 

Fakultät V Mathematik und Naturwissenschaften

08.05.2025 14:45 – 15:30

(Stand: 04.05.2025)  Kurz-URL:Shortlink: https://uole.de/p105418c135225
Zum Seitananfang scrollen Scroll to the top of the page