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Background Motivation

Acoustic Source Localization & Tracking

Goal

Locate/track a sound source
given measurements of the sound
field

Direct Path 

Reflective Paths 
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Goal

Locate/track a sound source
given measurements of the sound
field

Direct Path 

Reflective Paths 

Applications

1 An essential component in
speech enhancement
algorithms

2 Camera steering

3 Teleconferencing

4 Robot audition

5 Surveillance

6 Smart home/clinic/car
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Background Room Acoustics and Speech Processing

Room Acoustics Essentials

Acoustic propagation models

When sound propagates in an enclosure
it undergoes reflections from the room
surfaces

Reflections can be modeled as images
beyond room walls and hence impinging
the microphones from many
directions [Allen and Berkley, 1979, Peterson, 1986]

Statistical models for late
reflections [Polack, 1993, Schroeder, 1996, Jot et al., 1997]

Late reflections tend to be diffused,
hence do not exhibit
directionality [Dal-Degan and Prati, 1988,

Habets and Gannot, 2007]

Direct Path 

Reflective Paths 
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Background Room Acoustics and Speech Processing

Speech Processing in Acoustic Environments

Classical multi-microphone speech processing algorithms use time
difference of arrival (TDOA)-only model

Viable speech processing solutions can only be accomplished by an
accurate source propagation description, captured by the acoustic
impulse response (AIR)

Describing the wave propagation of any audio source in an arbitrary
acoustic environment is, however, a cumbersome task, since:

No simple mathematical models exist
The estimation of the vast number of parameters used to describe the
wave propagation suffers from large errors

Data-driven approach

To alleviate these limitations and to infer a mathematical model that is
accurate, simple to describe and simple to implement, we propose a

data-driven approach
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Background Room Acoustics and Speech Processing

How to Model the Acoustic Environment?

How to 
model the
acoustic 

path?

TDOA-only

Simple to 
describe and 
to implement

Too simplified

Classical speech 
processing
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Background Talk Outline

Main Claims

The acoustic response can serve as a fingerprint for source localization

The intrinsic degrees of freedom in acoustic responses have a limited
number

The variability of the acoustic response in specific enclosures depends
only on a small number of parameters

⇒ manifold learning approaches may improve localization ability

 room dimensions

 reverberation time

 microphone position

 source position

 …

Controlling ParametersRT60
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Background Talk Outline

Outline

1 Data model and Acoustic Features

2 The Acoustic Manifold

3 Data-Driven Source Localization: Microphone Pair

4 Data-Driven Source Localization: Ad Hoc Array

5 Speaker Tracking on Manifolds
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Data model and Acoustic Features

Data Model: The Two Microphone Case

Microphone signals:

The measured signals in the two microphones:

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source
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Microphone signals:

The measured signals in the two microphones:

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source

Find a feature vector representing the characteristics of the acoustic path
(a fingerprint) and independent of the source signal!
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Data model and Acoustic Features The relative transfer function (RTF)

Relative Transfer Function (RTF) [Gannot et al., 2001]

RTF:

Defined as the ratio between the transfer functions relating the source
and the two mics:

H12(k) =
A2(k)

A1(k)
In the time domain: the relative impulse response (RIR) satisfies:

a2(n) = h12(n) ∗ a1(n)
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Data model and Acoustic Features The RTF

Relative Transfer Function (RTF) [Gannot et al., 2001]

 room dimensions 

 reverberation time 

 microphone position 

 source position 

 … 

 

RTF:

Represents the acoustic paths and is independent of the source signal

Generalizes the TDOA

Depends on a small set of parameters related to the physical
characteristics of the environment

In a static environment the source position is the only varying degree
of freedom

S. Gannot (BIU) Speaker Localization on Manifolds ITG, Oldenburg 10.10.2018 10 / 58



Data model and Acoustic Features The RTF

Relative Transfer Function (RTF) [Gannot et al., 2001]

 room dimensions 

 reverberation time 

 microphone position 

 source position 

 … 

 

RTF:

Represents the acoustic paths and is independent of the source signal

Generalizes the TDOA

Depends on a small set of parameters related to the physical
characteristics of the environment

In a static environment the source position is the only varying degree
of freedom

S. Gannot (BIU) Speaker Localization on Manifolds ITG, Oldenburg 10.10.2018 10 / 58



Data model and Acoustic Features The RTF

Relative Transfer Function (RTF)

RTF-based feature vector:

Estimated based on PSD and
cross-PSD
(alternatively [Markovich-Golan and Gannot, 2015,

Koldovsky et al., 2014]):

Ĥ12(k) =
Ŝy2y1(k)

Ŝy1y1(k)
' A2(k)

A1(k)

Define the feature vector:

h =
[
Ĥ12(k1), . . . , Ĥ12(kD)

]T
D ∝ length of the relative
impulse response (time domain)

High dimensional 
representation -  

due to reverberation 

Controlled by one 
dominant factor -
source position 

RTF – based 
 feature vector 
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The Acoustic Manifold

Outline

1 Data model and Acoustic Features

2 The Acoustic Manifold

3 Data-Driven Source Localization: Microphone Pair

4 Data-Driven Source Localization: Ad Hoc Array

5 Speaker Tracking on Manifolds
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The Acoustic Manifold

How to Measure the Affinity between
RTFs? [Laufer-Goldshtein et al., 2015, Laufer-Goldshtein et al., 2016b]

The RTFs are represented as points in a high dimensional space

Small Euclidean distance of high dimensional vectors implies proximity

Large Euclidean distance of high dimensional vectors is meaningless
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples Feature extraction 

Each distance measure relies on a different hidden assumption about the
underlying structure of the RTF samples
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The Acoustic Manifold Affinity measures

Euclidean Distance

The Euclidean distance between
RTFs

DEuc(hi ,hj) = ‖hi − hj‖

Compares two RTFs in their
original space

Does not assume an existence of
a manifold

Respects flat manifolds

A good affinity measure only when the RTFs are uniformly scattered all
over the space, or when they lie on a flat manifold

S. Gannot (BIU) Speaker Localization on Manifolds ITG, Oldenburg 10.10.2018 15 / 58



The Acoustic Manifold Affinity measures

PCA-Based Distance

PCA algorithm

The principal components - the d dominant eigenvectors {vi}di=1 of
the covariance matrix of the data
The RTFs are linearly projected onto the principal components:

ν (hi ) = [v1, . . . vd ]T (hi − µ)

PCA-based distance between RTFs

DPCA(hi ,hj) = ‖ν(hi )− ν(hj)‖

A global approach - extracts
principal directions of the entire
set

Linear projections - the manifold
is assumed to be linear/flat
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The Acoustic Manifold Affinity measures

Diffusion Maps

Discretization of the manifold

The manifold can be empirically represented by a graph:

The RTF samples are the graph nodes
The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp

{
−‖hi − hj‖2

ε

}

Define a Markov process on the graph by the transition matrix:

p(hi ,hj) = Pij = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold

i

jijK
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The Acoustic Manifold Affinity measures

Diffusion Maps

Diffusion mapping [Coifman and Lafon, 2006]

Apply eigenvalue decomposition (EVD) to the matrix P and obtain
the eigenvalues {λj} and right eigenvectors {ϕj}.
A nonlinear mapping into a new low-dimensional Euclidean space:

Φd : hi 7→
[
λ1ϕ

(i)
1 , . . . , λdϕ

(i)
d

]T
1 

9 

5 

2 

10 

6 

3 

11 

7 

4 

12 

8 

The mapping provides a parametrization of the manifold and represents
the latent variables - here, the position of the source
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The Acoustic Manifold Affinity measures

Diffusion Distance

Diffusion distance between RTFs

The distance along the manifold is approximated by the diffusion distance:

D2
Diff(hi ,hj) =

N∑
r=1

(p (hi ,hr )− p (hj ,hr ))2 /φ
(r)
0

Two points are close if they are highly connected in the graph

The diffusion distance can be well approximated by the Euclidian
distance in the embedded domain:

DDiff(hi ,hj) ∼= ‖Φd(hi )−Φd(hj)‖

i 

j 

r 
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The Acoustic Manifold Affinity measures

Diffusion Distance
Illustration
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

RTF samples  

Uniform 
Scattering 

No 
processing 
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples  

Nonlinear 
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Which of the distance measures is proper?
What is the true underlying structure of the RTFs?
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The Acoustic Manifold Verification

Simulation Results

Room setup

Simulate a reverberant room using the
image method [Allen and Berkley, 1979]:

Room dimension 6× 6.2× 3m

Microphones at: [3, 3, 1] and [3.2, 3, 1]

The source is positioned at 2m from the
mics, the azimuth angle in 10◦ ÷ 60◦.

T60 = 150/300/500 ms

SNR= 20 dB

0.2m 

2m 

6m 

6
.2
m

 

10◦ 

60◦ 

Test

Measure the distance between each of the RTFs and the RTF
corresponding to 10◦:

If monotonic with respect to the angle - proper distance

If not monotonic with respect to the angle - improper distance
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The Acoustic Manifold Verification

Euclidean Distance & PCA-based Distance [Laufer-Goldshtein et al., 2015]

(a) Euclidean Distance (b) PCA-based Distance

For both distance measures:

Monotonic with respect to the angle only in a limited region

This region becomes smaller as the reverberation time increases

They are inappropriate for measuring angles’ proximity
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The Acoustic Manifold Verification

Diffusion Maps

(c) Diffusion Distance (d) Diffusion Mapping

The diffusion distance:

Monotonic with respect to the angle for almost the entire range

It is an appropriate distance measure in terms of the source DOA

Mapping corresponds well with angles - recovers the latent parameter
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Data-Driven Source Localization: Microphone Pair

Outline

1 Data model and Acoustic Features

2 The Acoustic Manifold

3 Data-Driven Source Localization: Microphone Pair

4 Data-Driven Source Localization: Ad Hoc Array

5 Speaker Tracking on Manifolds
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Data-Driven Source Localization: Microphone Pair

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning
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Data-Driven Source Localization: Microphone Pair

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning

Why using unlabeled data?

1 Localization - training should fit the specific environment of interest

Cannot generate a general database for all possible acoustic scenarios
Generating a large amount of labelled data is cumbersome/impractical
Unlabelled data is freely available - whenever someone is speaking

2 Unlabelled data can be utilized to recover the manifold structure

3 Semi-supervised learning is the natural setting for human learning

1 
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Data-Driven Source Localization: Microphone Pair

Semi-Supervised Learning

Unlabelled Samples

Recover the Manifold 
Structure

Labelled Samples

Anchor Points – Translate 
RTFs to Positions
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Data-Driven Source Localization: Microphone Pair

Semi-Supervised Learning

Training Set Test Set 

Data:
HL = {hi}

nL
i=1 - nL labelled samples

PL = {p̄i}
nL
i=1 - labels/positions

HU = {hi}
nD
i=nL+1 - nU unlabelled samples

HD = HL ∪ HU - entire training set

HT = {hi}ni=nD+1 - nT test samples
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Data-Driven Source Localization: Microphone Pair

Semi-Supervised Learning

Training Set Test Set 

Data:
HL = {hi}

nL
i=1 - nL labelled samples

PL = {p̄i}
nL
i=1 - labels/positions

HU = {hi}
nD
i=nL+1 - nU unlabelled samples

HD = HL ∪ HU - entire training set

HT = {hi}ni=nD+1 - nT test samples

Goal: Recover a (component-wise) function p = f (h) which transforms an
RTF to position
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization

Discretization of the manifold

The manifold is empirically represented by a graph G with weights:

Wij =

{
exp

{
−‖hi−hj‖2

εw

}
if hj ∈ Ni or hi ∈ Nj

0 otherwise

where Nj is a set consisting of the d nearest-neighbours of hj

The graph Laplacian of G : M = S−W, with Sii =
∑nD

j=1 Wij

Regularization: ‖f ‖2
M = fTD MfD = 1

2

∑nD
i ,j=1 Wij (f (hi )− f (hj))2

with fTD = [f1, f2, . . . , fnD ] Proof
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD MfD
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Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD MfD

The representer theorem:

The minimizer over Hk of the regularized optimization is represented by:

f (h) =

nD∑
i=1

aik(hi ,h)

where k :M×M→ R is the reproducing kernel of Hk

with Kij = k(hi ,hj) = exp
{
−‖hi−hj‖2

ε

}
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD MfD

The representer theorem:

The minimizer over Hk of the regularized optimization is represented by:

f (h) =

nD∑
i=1

aik(hi ,h) ⇒ closed-form solution for a∗

where k :M×M→ R is the reproducing kernel of Hk

Mapping 
from h 
 to p 

Search in 
RKHS 

Add 
Regularizations 

to Control 
Smoothness 

Optimization 
over a finite 

set of 
parameters 
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Data-Driven Source Localization: Microphone Pair Block Diagram

Manifold Regularization for Localization (MRL)
[Laufer-Goldshtein et al., 2016c]
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Data-Driven Source Localization: Microphone Pair Bayesian Perspective

Bayesian Inference on Manifold [Laufer-Goldshtein et al., 2016a][Sindhwani et al., 2007]
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Data-Driven Source Localization: Microphone Pair Bayesian Perspective

Bayesian Inference on Manifold [Laufer-Goldshtein et al., 2016a][Sindhwani et al., 2007]

Cost Function Manifold 
Regularization 

Search in RKHS defined 
by the kernel  

norm 
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Data-Driven Source Localization: Microphone Pair Bayesian Perspective

Bayesian Inference on Manifold [Laufer-Goldshtein et al., 2016a][Sindhwani et al., 2007]

Cost Function Manifold 
Regularization 

Manifold-Based Prior 

Search in RKHS defined 
by the kernel  

f  is a Gaussian Process 
with Covariance   

Cost Function Search in RKHS defined 
by the kernel  

norm 

norm 

Posterior Likelihood Function 

S. Gannot (BIU) Speaker Localization on Manifolds ITG, Oldenburg 10.10.2018 33 / 58



Data-Driven Source Localization: Microphone Pair Bayesian Perspective

Localization

MAP/MMSE estimator of f (ht), s.t. ht ∈M:

p̄L = [p̄1, . . . , p̄nL ]T - measured positions of the labelled set

p̄i = pi + ηi - noisy versions of the actual position pi

ηi - independent Gaussian noise with variance σ2

p̄L and f (ht) are jointly Gaussian (Σ̃HH ⇔ k̃(hi ,hj)):[
p̄L

f (ht)

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃LL + σ2InL Σ̃Lt

Σ̃T
Lt Σ̃tt

])
The posterior p(f (ht)|PL,HL,HU) is a multivariate Gaussian with:

µcond = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1
p̄L ⇒ MAP: f̂ (ht)

σ2
cond = Σ̃tt − Σ̃T

Lt

(
Σ̃LL + σ2InL

)−1
Σ̃Lt ⇒ respective reliebility
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Data-Driven Source Localization: Ad Hoc Array

Outline

1 Data model and Acoustic Features

2 The Acoustic Manifold

3 Data-Driven Source Localization: Microphone Pair

4 Data-Driven Source Localization: Ad Hoc Array

5 Speaker Tracking on Manifolds
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2016d]

Each node:

Represents a different view points of the same acoustic event

Induces relations between RTFs w.r.t. the associated manifold
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2016d]

How to fuse the different views in a unified mapping f : ∪Mm=1Mm 7→ R ?
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Multiple Manifold Gaussian Process (MMGP)

Define the average process f = 1
M (f 1 + f 2 + . . .+ f M) ∼ GP(0, k̃)

+ 

+ 

+ 
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M (f 1 + f 2 + . . .+ f M) ∼ GP(0, k̃)

+ 

+ 

+ 

The covariance between pr = f (hr ) and pl = f (hl)

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl) = 1
M2

∑M
q,w=1

∑nD
i=1 kq(hq

r ,h
q
i )kw (hw

l ,h
w
i )
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Localization

MAP/MMSE estimator:

Goal: estimate the function value at some test sample ht ∈M
The training positions p̄L = vec{PL} and f (ht) are jointly Gaussian
(Σ̃HH ⇔ k̃(hi ,hj)):[

p̄L

f (ht)

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃LL + σ2InL Σ̃Lt

Σ̃T
Lt Σ̃tt

])
The posterior p(f (ht)|PL,HL,HU) is a multivariate Gaussian with:

µcond = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1
p̄L

σ2
cond = Σ̃tt − Σ̃T

Lt

(
Σ̃LL + σ2InL

)−1
Σ̃Lt

The MAP/MMSE estimator of f (ht) is given by:

f̂ (ht) = µcond = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1
p̄L
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Recordings Setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: Source position is confined to a 2.8× 2.1m area

3 microphone pairs with inter-distance of 0.2m (position unknown)

Microphones 

Loudspeaker 

Air-conditioner 

Andiamo.mc 

Room panels 
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Experimental Results [Laufer-Goldshtein et al., 2016d]

Setup:

Training: 20 labelled samples (0.7m resolution), 50 unlabelled samples

Test: 25 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Concatenated
independent
measurements
(Kernel-mult)

Average of single-node
estimates (Mean)

Beamformer scanning
(SRP-
PHAT [DiBiase et al., 2001])

5 10 15 20 25
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 [m
]

SRP−PHAT (aircond.)
SRP−PHAT (babble)
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Mean (babble)
Kernel−mult (aircond.)
Kernel−mult (babble)
MMGP (aircond.)
MMGP (babble)
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Speaker Tracking on Manifolds

Outline

1 Data model and Acoustic Features

2 The Acoustic Manifold

3 Data-Driven Source Localization: Microphone Pair

4 Data-Driven Source Localization: Ad Hoc Array

5 Speaker Tracking on Manifolds
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Speaker Tracking on Manifolds Problem Formulation

Dynamic Scenario

Received Signals

ymi (n) =
∑
k

ami
n (k)s(n − k) + umi (n); m = 1, . . . ,M, i = 1, 2

ami
n - a time-varying AIR at node m, microphone i in time n

hm(t) - the RTF vector at node m in the STFT frame t

h(t) =
[
[h1(t)]T , . . . , [hM(t)]T

]T
- a concatenation of the RTF

vectors from all nodes

pc(t) = f (h(t)), c ∈ {x , y , z} - mapping of the concatenated RTF
vector to position (for brevity pc(t) ≡ p(t))

Reminder: The covariance between pr = f (hr ) and pl = f (hl)

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl) = 1
M2

∑M
q,w=1

∑nD
i=1 kq(hq

r ,h
q
i )kw (hw

l ,h
w
i )
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Speaker Tracking on Manifolds Problem Formulation

Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t) = bt(p(t − 1)) + ξt

qt = ct(p(t)) + ζt
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Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t)= bt(p(t − 1)) + ξt

qt = ct(p(t)) + ζt

Propagation Model

Relate current and previous
positions arbitrarily using
random walk or Langevin

Independent of measurements

Noise statistics is unknown
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Speaker Tracking on Manifolds Problem Formulation

Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t) = bt(p(t − 1)) + ξt

qt= ct(p(t)) + ζt

Propagation Model

Relate current and previous
positions arbitrarily using
random walk or Langevin

Independent of measurements

Noise statistics is unknown

Observation Model

Relate current position to
measurements

Examples: TDOA or steered
response power readings

Noise statistics is unknown
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Speaker Tracking on Manifolds State-Space Representation

Tracking on the Manifold [Laufer-Goldshtein et al., 2017]

Propagation Model - Local

Transform nonlinear regression of
high-dimensional RTFs to linear
transition of source positions
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Speaker Tracking on Manifolds State-Space Representation

Tracking on the Manifold [Laufer-Goldshtein et al., 2017]

Propagation Model - Local

Transforms nonlinear regression of
high-dimensional RTFs to linear
transition of source positions

Observation model - Global

Formed by a regression of training
positions according to relations on
the manifold
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (1)

Probabilistic Motion Model:

Current and previous positions, p(t) = f (h(t)) and
p(t − 1) = f (h(t − 1)), are jointly GP:[

p(t)
p(t − 1)

]
∼ N

(
0,

[
Σ̃t,t Σ̃t,t−1

Σ̃t,t−1 Σ̃t−1,t−1

])
Their conditional probability is given by:

p(t)|p(t − 1) ∼ N

(
Σ̃t,t−1

Σ̃t−1,t−1

p(t − 1), Σ̃t,t −
Σ̃2
t,t−1

Σ̃t−1,t−1

)

where Σ̃t,τ ≡ k̃ (h(t),h(τ))
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (2)

Propagation Model:

Can be transformed into a linear propagation
equation with an additive Gaussian noise ξt :

p(t) = bt · p(t − 1) + ξt

with

bt =
Σ̃t,t−1

Σ̃t−1,t−1
- The Wiener filter

ξt ∼ N
(

0, σ2
ξ

)
with σ2

ξ = Σ̃t,t −
Σ̃2

t,t−1

Σ̃t−1,t−1
, the

corresponding variance
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (3)

Probabilistic Observation Model:

p̄L = [p̄1, . . . , p̄nL ]T - measured positions of the labelled set

p̄i = pi + ηi - noisy versions of the actual position pi

ηi - independent Gaussian noise with variance σ2

p(t) = f (h(t)) and p̄L are jointly GP:[
p(t)
p̄L

]
∼ N

(
0,

[
Σ̃t,t Σ̃Lt

Σ̃Lt Σ̃LL + σ2InL

])
Their conditional probability is given by:

p(t)|p̄L ∼

N
(

Σ̃H
Lt

(
Σ̃L + σ2InL

)−1
p̄L, Σ̃t,t − Σ̃H

Lt

(
Σ̃L + σ2InL

)−1
Σ̃Lt

)
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Speaker Tracking on Manifolds State-Space Representation

State-Space Representation (4)

Observation model:

Can be transformed into a noisy
artificial observation qt that
represents a linear regression on the
training set:

qt = Qt p̄L

where Qt = Σ̃H
Lt

(
Σ̃LL + σ2InL

)−1

The corresponding observation model:

qt = p(t) + ζt

where ζt ∼ N
(

0, σ2
ζ

)
with σ2

ζ = Σ̃t,t − Σ̃H
Lt

(
Σ̃LL + InL

)−1
Σ̃Lt .
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Speaker Tracking on Manifolds State-Space Representation

Tracking Algorithm

Space-State Representation:

The proposed state-space model is given by:
p(t) = bt · p(t − 1) + ξt

qt = p(t) + ζt

Time Propagation

• Predicted Position: 

• Predicted Covariance: 

Measurement Update

• Kalman Gain:

• Updated position estimate:

• Updated Covariance:

Kalman Filter

ˆ ˆ( | 1) ( 1| 1)tp t t b p t t− = ⋅ − −

2 2( | 1) ( 1| 1)tt t g t t ξγ γ σ− = − − +

2

( | 1)( )
( | 1)

t tt
t t ζ

γκ
γ σ

−
=

− +

( )ˆ ˆ ˆ( | ) ( | 1) ( ) ( | 1)tp t t p t t t q p t tκ= − + − −

( )( | ) 1 ( ) ( | 1)t t t t tγ κ γ= − −
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Speaker Tracking on Manifolds Experimental Results

Experimental Results

Setup:

A 5.2× 6.2× 3m room with T60 = 300ms

M = 4 nodes with 0.2m distance between microphones

Region of interest: a 2× 2m square region

Training: 36 samples (0.4m resolution)

0.2m 

Training 

samples 

Mics 

0.4m 

5
.2

m
 

6.2m 
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Speaker Tracking on Manifolds Experimental Results

Results

Test:

Trajectories: straight line (for 3s) and sinusoidal movement (for 5s).

Velocity: approximately 1m/s
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True Trajectory
Tracking Results
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True Trajectory
Tracking Results

RMSE: 13cm for straight line and 17cm for sinusoidal movement.
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Conclusions

Challenges and Perspectives

Manifold learning approach for source localization

Data-driven manifold inference with a few labeled anchor positions
and unknown microphone positions.

Location is shown to be the controlling variable of the RTF manifold

It’s practical!

Active research field [Deleforge et al., 2015][Yu et al., 2016][Xiao et al., 2015]

Improved speaker tracking ⇒ Hybrid approach [Laufer-Goldshtein et al., 2018]

Challenges

Robustness to changes in array constellation and acoustic scenario

Application to multiple concurrent speakers

Beamforming - more complicated as it targets enhanced speech rather
than its location

A first attempt using projections to the inferred manifold
[Talmon and Gannot, 2013]
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Details

Manifold Regularization
Measuring smoothness over M:

The gradient 5Mf (h) represents variations around h

A natural choice for intrinsic regularization:

‖f ‖2
M =

∫
M
‖ 5M f (h)‖2dp(h)

which is a global measure of smoothness for f

Stokes’ theorem links gradient and Laplacian:∫
M
‖ 5M f (h)‖2dp(h) =

∫
M

f (h)4M f (h)dp(h) = 〈f (h),4Mf (h)〉

where 4M is the Laplace-Beltrami operator

How to reconstruct the Laplace-Beltrami operator on M, given the
training samples from the manifold?
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Details

Manifold Regularization

Graph Laplacian:

The manifold is empirically represented by a graph G , with weights:

Wij =

{
exp

{
−‖hi−hj‖2

εw

}
if hj ∈ Ni or hi ∈ Nj

0 otherwise

where Nj is a set consisting of the d nearest-neighbours of hj .

The graph Laplacian of G : M = S−W, with Sii =
∑nD

j=1 Wij .

Smoothness functional of G :

〈fD ,MfD〉 = fTD MfD

where fD = [f (h1), ..., f (hnD )]

It can be shown: Back

fTD MfD =
1

2

nD∑
i ,j=1

Wij (f (hi )− f (hj))2
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