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Abstract

Recent work shows that models based on functional connectivity in large-scale brain networks can 

predict individuals’ attentional abilities. Some of the first generalizable neuromarkers of cognitive 

function, these models also inform our basic understanding of attention, providing empirical 

evidence that (1) attention is a network property of brain computation, (2) the functional 

architecture that underlies attention can be measured while people are not engaged in any explicit 

task, and (3) this architecture supports a general attentional ability common to several lab-based 

tasks and impaired in attention deficit hyperactivity disorder. Looking ahead, connectivity-based 

predictive models of attention and other cognitive abilities and behaviors may potentially improve 

the assessment, diagnosis, and treatment of clinical dysfunction.
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What is attention, and how do we measure it?

Perhaps no cognitive capacity is more crucial to navigating daily life than the ability to pay 

attention. Although we all know what it feels like to pay attention, the concept is notoriously 

difficult to define. More than a century ago in what has perhaps become one of the most oft-

quoted lines in psychology, William James explained attention as “the taking possession by 

the mind, in clear and vivid form, of one out of what seem several simultaneously possible 

objects or trains of thought” [1]. Seventy years later Anne Treisman questioned the utility of 

such folk-psychological definitions, arguing that conceptualizations of attention as “‘the 

focalization of consciousness’ or ‘the increased clearness of a particular idea’.... [had] 

proved sterile for empirical research and ended in a series of inconclusive controversies.” 

She instead suggested that studying attention as information processing could “open the way 
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to a more exact linking of behavioural concepts with underlying physiological mechanisms” 

[2].

Treisman’s words proved prescient: Psychological research on attention, guided by this 

approach, has boomed in the last half-century. However, despite the resulting advances in 

our understanding of attentional processes and neural mechanisms, we still don’t have a 

clear understanding of what kind of process attention is in the mind and brain, or whether it 

is one single process at all [3]. One reason for this lack of clarity, Chun and colleagues 

recently observed, is that “Attention has become a catch-all term for how the brain controls 

its own information processing” [3]. To advance understanding, they argue, researchers 

should work to understand the common and distinct mechanisms that support different forms 

of attention [3].

While the broad scope of what researchers mean when they say “attention” has made the 

topic unwieldy to study [3], the absence of a standardized way to measure attention may 

have further hindered basic research and translational applications. Unlike for other abilities, 

such as memory and intelligence, researchers and clinicians lack a straightforward way to 

summarize a person’s overall attentional function. Although complex processes often can’t 

be reduced to a single number, summary indices like capacity for working memory and gF 
for fluid intelligence are useful for quantifying individual differences and changes in 

abilities over time. A comparable measure of attention — an objective, standardized 

summary score — would benefit both research and clinical practice by facilitating 

comparisons across and within individuals, evaluations of treatments and interventions, and 

predictions of real-world behavior and clinical symptoms.

Here we propose that attention can be understood as an emergent property of large-scale 

brain networks, based on a novel framework for measuring attentional abilities with 

functional magnetic resonance imaging (fMRI). We review empirical work showing that, 

although the functional organization of the brain is generally consistent across individuals, 

every person has a unique pattern of functional connectivity (see Glossary) that lies atop a 

common blueprint and distinguishes them from the group. These distinct connectivity 

patterns can be used to predict how well individual people pay attention. Predictions can be 

made from connectivity patterns observed as people perform attention tasks, but also from 

patterns observed as they are not engaged in any explicit task at all. In other words, we can 

measure attention using resting-state fMRI data alone, meaning that the neural architecture 

that supports attention function is reflected in the brain’s intrinsic functional organization. 

Viewing attention as a network property of brain activity, not unlike how one might 

characterize the efficiency of a computer or air traffic network, reveals insights about the 

nature and underlying structure of attention. Looking beyond attention, models that make 

individualized predictions from brain networks may have clinical benefits in translational 

settings and offer a new kind of solution to challenges in cognitive, clinical, and 

developmental neuroscience.
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From brain areas to brain networks: What have we learned about attention 

from cognitive neuroscience?

It’s hard to imagine meeting the demands of daily life without the ability to focus. In fact, 

impairments in attention, which are common to clinical populations as diverse as attention 

deficit hyperactivity disorder [4], depression [5], schizophrenia [6], bipolar disorder [7], 

post-traumatic stress disorder [8], and traumatic brain injury [9], predict a wide range of 

negative outcomes, from poorer educational achievement to worse employment and job 

performance, peer acceptance, and family relationships [10].

Although the ability to attend varies widely even in the healthy population [11], until 

recently cognitive neuroscience studies of attention devoted little focus to individual 

differences. That is, since the early 1990s, fMRI studies of human attention have focused on 

identifying regions of the brain where activity and/or functional connectivity is, on average, 

modulated by specific attentional demands. This work has been vital in identifying the basic 

neural architecture of attention, and, from a cognitive psychological standpoint, clarifying 

subcomponents of attention by demonstrating that distinct processes are related to distinct 

patterns of brain activity. Some findings support distinctions posited by cognitive 

psychology, such as that between goal-directed and stimulus-driven attention [12], whereas 

others highlight the importance of dimensions that had been, by comparison, relatively 

unexplored, such as internal versus external attentional focus [13]. Despite the success of 

cognitive neuroscience in describing the brain bases of different forms of attention, the focus 

on group-level rather than single-subject level analyses has resulted in neuroanatomical 

models that, on the whole, do not account for the individual differences in attention that 

permeate our everyday experience.

One of the earliest and most influential models of attention divided attention into three 

subsystems based on behavioral and neural evidence: (1) alerting, or preparing and 

maintaining alertness and vigilance; (2) orienting, or directing overt or covert attention to a 

stimulus; and (3) target detection/executive control, or noticing and selecting stimuli for 

conscious processing [14,15]. One line of behavioral evidence that alerting, orienting, and 

executive control are independent components of attention comes from the Attention 

Network Task (ANT), which shows that these abilities are largely independent within 

subjects ([16,17]; but see [18]). At the group level, these components are related to activity 

in distinct groups of brain regions [14,15,17]. At the individual subject level, they are related 

to integrity in distinct white matter tracts [19,20], cortical thickness [21], white matter 

asymmetry [22], and functional connectivity in the dorsal attention and default mode 

networks [23,24]. However, precluding the use of these markers as generalizable measures 

of attention function, so far these studies have been correlational rather than predictive in 

nature.

A similarly influential model of attention, the dual network approach, describes two neural 

systems for orienting attention in a goal-directed (top-down) or stimulus-driven (bottom-up) 

fashion [12]. Functional connectivity studies show that even while people are resting in the 

fMRI scanner — that is, when they are not performing an explicit task — these two systems 

are reflected in the functional organization of the brain [25]. In concert with a wide body of 
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behavioral evidence (e.g., [26–28]) this result suggests that a fundamental organizing 

principle of what we call “attention” is whether it is “pushed” towards a goal-relevant 

stimulus or “pulled” towards a stimulus with low-level salience. Studies have related 

attentional orienting to cerebellar volume in children with autism [29], and performance on a 

perceptual task requiring orienting to functional connectivity between visual and prefrontal 

areas [30], but so far these relationships have not been leveraged to predict behavior in novel 

individuals.

Recently attention researchers have described another pair of large-scale brain networks that 

reveal an important dimension along which attention can vary: the so-called “task-negative” 

and “task-positive” networks [31]. The default mode, or task-negative, network refers to a 

set of regions more active during rest than task performance [32,33], and is thought to be 

related to internally focused attentional processes [13,34] such as mind wandering, off-task 

performance [35,36], and self-referential thought [13]. “Task-negative” may be a misleading 

moniker, however, as the network also plays a role in external environment monitoring 

[13,37,38] and successful sustained attention [39]. Activity in these networks is 

anticorrelated during task engagement and rest [31], and the degree of this anticorrelation 

during task is related to individual differences in performance variability [40]. Thus, 

attention can be subdivided into separate but complementary processes for internal and 

external focus.

Compared with other attention networks, individual differences in task-negative and task-

positive network activity and connectivity have been relatively well explored. For example, 

many studies have observed aberrant default mode network activity and functional 

connectivity in psychiatric disorders such as Alzheimer’s disease [13], schizophrenia [41], 

depression [42], autism [43], and ADHD [44,45] (for reviews see [46,47]). Correlational 

studies of individual differences in the healthy population report less default network 

suppression in people who mind-wander [35] and engage in divergent thinking [48]; a 

pattern of either stronger or weaker default network connectivity in individuals who mind 

wander [34,49]; and stronger default network connectivity in individuals with high trait 

mindfulness [50], neuroticism [51], and openness to experience [51,52]. The diversity of 

these findings and lack of generalizable models, however, so far precludes the use of the 

task-positive and task-negative networks as generalizable neuromarkers of the ability to 

focus.

Overall, existing models of attention successfully describe brain activity and functional 

organization at the group level, making important contributions to knowledge about distinct 

attentional processes in the mind. They do not, however, predict an individual person’s 

ability to pay attention, and are limited by their reliance on task-based fMRI data and a 

circumscribed set of regions or functional connections. Models that account for individual 

differences using resting-state data offer additional practical and clinical benefits and reveal 

complementary insights about the nature of attention.
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New insights from network neuroscience and predictive modeling

A central question of cognitive neuroscience is how the brain gives rise to the mind and 

behavior. Some of the earliest evidence in humans came from neuropsychological studies of 

patients with brain damage, which found that certain lesions were associated with 

stereotyped deficits, such as spatial neglect [53]. Neuroimaging and electrophysiological 

studies have also identified process-specific brain regions such as the frontal eye fields, 

which are responsible for covert and overt shifts of attention [54,55]. Researchers recognize, 

however, that many processes cannot be localized to a single brain region, and that most of 

our sophisticated cognitive abilities, such as attention, working memory, and decision-

making, rely on the orchestrated activity of a distributed array of structures, as suggested by 

several meta-analyses [56,57]. Accordingly, the best characterization of individual cognitive 

ability may lie not in the magnitude of activity in single regions, but rather the degree to 

which activity is coordinated across large-scale networks [12,14,17,30,31,58,59]. In other 

words, as the emerging field of network neuroscience suggests, processes like attention and 

cognition may emerge from dynamic interactions between diverse sets of brain areas [60–

63].

That attention is a network property is not a new idea. As early as 1906 psychologists 

thought that the focus of attention was determined, in part, by, “the play of excitement 

among the organised systems of neural elements of which the higher levels of the brain are 

composed” [64], and existing models of attention emphasize the importance of large-scale 

networks such as the dorsal and ventral attention and default mode networks in attentional 

performance. However, only recently have methods emerged for predicting individual 

differences in attention from features of complex brain networks. These methods 

complement previous work to provide novel evidence that attentional processes arise from 

interactions between distinct anatomical regions.

Predictive network models

So far, the most well-validated connectivity model of individual differences in attention is 

the sustained attention connectome-based predictive model (CPM) [65]. The sustained 

attention CPM was defined using a novel technique, connectome-based predictive modeling 

[66,67], to predict how well individuals perform on the gradual-onset continuous 

performance task (gradCPT), a challenging test of attention [39,68]. Briefly, the CPM 

method identifies functional connections from the set of all possible connections in the brain 

related to a behavioral measure of interest, and uses the strength of those connections to 

predict behavior in novel individuals (Figure 1). CPM does not generate cognitive models of 

representation or computation, but is an approach to develop statistical models of functional 

connectivity with impressive predictive power for behavior and traits.

To define the sustained attention CPM, we first collected fMRI data from a group of healthy 

participants as they performed the gradCPT and rested. GradCPT performance, assessed 

with sensitivity (d′), served as a proxy for a person’s overall ability to sustain attention. For 

each participant, task-based and resting-state connectivity matrices were computed using 

data from the gradCPT and resting-state runs, respectively. That is, a task-based connectivity 

matrix was computed by correlating the BOLD signal timecourses of every pair of regions 
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of a 268-node brain atlas [69], and a resting-state connectivity matrix was computed 

analogously using data collected during rest. In a leave-one-subject-out cross-validation 

procedure, connections whose strength during gradCPT performance correlated with d′ 
were identified. Connections that were stronger in participants with higher d′ scores formed 

the high-attention network, whereas connections that were stronger in participants with low 

d′ scores formed the low-attention network. Next, models were built relating connectivity in 

the high- and low-attention networks to d′ across subjects. Finally, the left-out subject’s 

connectivity strength was input into the model to generate a personalized d′ prediction. 

Demonstrating that models generalized to previously unseen individuals, predicted and 

observed d′ values were significantly correlated when models were tested using connection 

strength calculated during either task or rest [65]. In other words, based on the strength of 

hundreds of connections across an individual’s brain measured even while they were simply 

resting, models could predict how well they performed an attention task.

This result was internally valid for the initial group of participants. To be theoretically and 

practically useful as a measure of attention, however, a predictive model should be 

externally valid — that is, it should predict attention in completely independent groups of 

individuals. To test whether the sustained attention CPM generalized to predict a real-world 

measure of attention, the model was applied, without alteration, to resting-state connectivity 

data from children and adolescents, some of whom had diagnoses of attention deficit 

hyperactivity disorder (ADHD) [65]. These data, part of a publicly available repository, had 

been collected at Peking University in Beijing and included, for both patients and typically 

developing controls, a clinician-rated measure of ADHD symptom severity [70]. As 

expected, predictions of the sustained attention CPM were inversely correlated with ADHD 

symptom scores. In other words, the model predicted that children with few ADHD 

symptoms would have high d′ scores if they were to perform the gradCPT, and that children 

with frequent and/or severe ADHD symptoms would have low d′ scores if they were to 

perform the task [65]. Thus, the sustained attention CPM generalizes across participant 

population (healthy adults vs. children and adolescents with and without ADHD diagnoses), 

scan site (Yale University vs. Peking University), imaging parameters, and measures of 

sustained attention (d′ vs. ADHD symptom scores). Informing models of attention 

dysfunction, this result also shows that the same functional networks that predict individual 

differences in the healthy range are compromised in ADHD.

The sustained attention CPM also generalizes to predict pharmacologically induced changes 

in attention function [71]. Specifically, high- and low-attention network strength were 

examined in a new group of healthy adults who had been administered a single dose of 

methylphenidate (trade name: Ritalin), a drug used to treat ADHD symptoms [72], and a 

group of unmedicated control participants (dataset from [73,74]). As predicted a priori, 
individuals given methylphenidate showed connectivity signatures of strong attentional 

abilities: they had stronger high-attention networks and weaker low-attention networks than 

unmedicated controls as they rested and performed a stop-signal task [71]. In addition, the 

sustained attention CPM predicted go response rate on the stop-signal task from both task-

based and resting-state data [71]. These results demonstrate that the sustained attention CPM 
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predicts attention dynamics, and provide further evidence that the model is a robust and 

generalizable neuromarker of sustained attention.

Interestingly, the sustained attention CPM does not rely on canonical brain networks to 

predict attention function. Rather, the high- and low-attention networks comprise hundreds 

of connections between cortical, subcortical, and cerebellar regions, and their functional 

anatomy is rich and extensive in a way that encompasses other attention networks described 

in the literature (Figure 2). Broadly speaking, connections between motor cortex, occipital 

lobes, and the cerebellum predict better sustained attention, whereas connections between 

temporal and parietal regions, as well as connections within the temporal lobe and within the 

cerebellum, predict worse sustained attention. Computationally “lesioning” the high- and 

low-attention networks by selectively removing connections from canonical brain networks 

revealed non-significant trends suggesting that the frontoparietal network and the default 

network are more relevant than other networks. Overall, however, the sustained attention 

CPM remained robust and resilient to such subnetwork lesions [65], suggesting that the 

functional anatomy of networks supporting attention is broadly distributed.

That the sustained attention CPM does not neatly overlap with existing neuroanatomical 

models of attention does not appear to be a fluke of the CPM method, or of the particular 

attention task used to define the model. One potential explanation for its distributed anatomy 

is that the high- and low-attention networks involve brain areas with related levels of activity 

in certain neurotransmitter systems. Preliminary evidence for this hypothesis is found in the 

significant overlap between the high-attention network and the network stronger in 

individuals given methylphenidate (known to improve attention function), and the low-

attention network shows significant overlap with a network of connections stronger in 

controls not given methylphenidate. More broadly, the high-attention and methylphenidate 

networks, and the low-attention and unmedicated control networks, show remarkably similar 

patterns of connectivity [71]. The sustained attention CPM, therefore, may be related to the 

expression of dopamine and norepinephrine, neurotransmitters whose extracellular 

concentration is modulated by methylphenidate [75–77].

In considering the anatomy of the sustained attention CPM, it is worth noting that it does not 

necessarily represent a dual-systems model of attention. Rather, because the CPM approach 

retains connections that are both positively and negatively correlated with behavior for 

model building purposes, the two-network model was inevitable. Predictive power of models 

based on high-attention and low-attention network strength alone tends to be highly similar, 

suggesting that there is some degree of redundant information in the two networks. 

Furthermore, models that make predictions based on strength in both networks generally do 

not outperform the single-network models [65]. Although a large literature suggests that 

attention is controlled by two anti-correlated brain networks with distinct functions (i.e., the 

task-positive and task-negative networks) [31], the predictive power of the sustained 

attention CPM is not explained by connectivity in these networks alone, and does not, in and 

of itself, provide evidence for a dual-systems model of attention.

Furthermore, the broadly distributed nature of the sustained attention CPM does not imply 

that canonical brain networks cannot also predict individual differences in attention function. 
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One study, for example, found that resting-state connectivity between the dorsal and ventral 

attention and default networks predicted the ability to suppress irrelevant visual distractors 

measured several months later [78]. Greater connectivity between default mode regions 

predicted better distractor suppression, supporting evidence of compromised default network 

function in a variety of clinical disorders [47,78]. Greater connectivity between the default 

mode and the dorsal and ventral attention networks, on the other hand, predicted worse 

distractor suppression, reinforcing previous findings that diminished anticorrelation between 

the task-positive and task-negative networks is related to impaired attention [40,78]. These 

support vector regression models were internally validated with a leave-one-subject-out 

approach; however, they were not tested for external validity beyond the study sample.

Another recent study used growth charts based on connectivity networks to predict attention 

function in children [79]. The authors first computed each child’s full resting-state 

connectivity matrix by correlating activity timecourses between 1068 regions in the brain, 

and performed dimensionality reduction using independent components analysis (ICA). A 

normative growth chart was defined for each component by plotting component expression 

against biological age. For every individual, a maturation score was calculated by measuring 

the distance between their actual component expression and the normative component 

expression for their age. Models based on maturation scores, trained and tested with a split-

half cross-validation approach, predicted performance on a sustained attention task and 

ADHD diagnoses. Although models relied on ICA components defined using whole-brain 

connectivity data, trends were observed in the relationship between canonical attention 

networks and age. Similar to the distractibility findings [78], within-default connectivity 

increased and connectivity between the default and dorsal and ventral attention networks 

decreased with age [79]. Although it is yet untested whether growth curve models based on 

connectivity in these networks alone would generate similarly accurate attention predictions, 

future work should explore the relationship between canonical attention networks and 

individual differences in attention.

Implications for cognitive psychology and clinical practice

By directly linking brain variables to behavioral ones, models that make individualized 

attention predictions inform our basic understanding of how the brain gives rise to attention 

and provide empirical evidence that attention is a network property of the brain. In addition, 

they make significant contributions to our understanding of the nature of attention, and are 

potentially applicable in clinical or translational settings.

First, predicting attention from intrinsic brain connectivity represents a new way of 

measuring not only attention, but potentially any cognitive ability or mental processes. (See 

Outstanding Questions.) Consider how we currently measure cognitive functions. When we 

want to know how a person’s memory capacity, we ask them to remember stimuli and count 

how many they can recall. When we want to know a person’s capacity for self-control, we 

ask them to override some prepotent behavioral response. When we want to know how well 

a person can pay attention, however, we do not need to have them perform any attention task 

at all. Instead, we can apply existing models to fMRI data collected as they simply rested in 

the scanner, meaning that predictive network models are a way to measure attention without 
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having people actively pay attention. Practically, this means models can be applied 

retroactively to preexisting fMRI data, and that model predictions are immune to confounds 

such as motor control that may influence attention task performance in some individuals. In 

addition, it means that an infinite number of predictive models can be applied to the same 

resting-state functional connectivity profile to predict a suite of cognitive abilities and 

behaviors. For example, distinct connectivity-based models already exist to predict fluid 

intelligence [67] and response to math tutoring [80] (although these have not yet been tested 

for external validity), and future work could pursue neuromarkers of abilities such as 

memory, spatial cognition, theory of mind, and emotional regulation; characteristics such as 

personality or cognitive style; and clinical disorders such as depression, anxiety, autism, and 

schizophrenia (Figure 3). Theoretically, the success of predictive models shows, for the first 

time, that the functional infrastructure underlying a person’s ability to attend is reflected in 

the brain even when they are not engaged in an attention-demanding task.

Outstanding questions

• What attention factors comprise a person’s overall attention profile? What 

tasks or assessments best capture these factors? Can we develop new 

behavioral tasks that efficiently test the overall attention profile?

• Are connectivity signatures of attention malleable within subjects? In addition 

to pharmacological intervention, does behavioral training or conscious control 

affect network connectivity? Can real-time neurofeedback based on attention 

network connectivity be used to effect lasting improvements in sustained 

attention?

• What else can connectivity-based predictive modeling predict? How 

effectively can this approach predict clinical symptoms or developmental 

trajectories? Does predictive power extend to real-world behaviors, such as 

education success? How are predictions affected by variability due to an fMRI 

participant’s sleepiness or caffeine intake, for example?

Second, predictive models help elucidate the unique and common processes that underlie a 

person’s ability to pay attention in a variety of contexts. The sustained attention CPM, for 

example, predicts adults’ performance on two separate tests of attention (the gradCPT and 

stop-signal task) and children’s ADHD symptom scores, and is flexible in response to an 

attention-enhancing drug [65,71]. In concert with findings of behavioral individual 

differences studies [81], these results also suggest a common “attention factor”, analogous to 

g in intelligence research, and underscore the utility of attention as a psychological 

construct. Notably, this “attention factor” is distinct from g: The sustained attention CPM 

predicts ADHD symptoms when controlling for children’s age and IQ, but does not predict 

IQ when controlling for ADHD symptoms and age [65]. Looking ahead, defining a suite of 

models that predict different proposed types of attention (such as alerting, orienting, and 

executive control [14,15]) and evaluating how well they predict attention on variety of tasks 

can help identify both general and specialized factors of attention (Box 1).
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Box 1

A profile of attention function

Predictive network models show promise for quantifying attentional abilities, particularly 

sustained attention [65,71,79]. A comprehensive measure of attention function, however, 

should reflect the fact that there are multiple dimensions along which people’s abilities 

may vary. For example, one person may struggle to pay attention for long periods of time 

but have no difficulty switching between tasks, whereas another may have no trouble 

maintaining uninterrupted focus but lack the ability to multitask.

Although an extensive task battery could provide a behavioral measure of overall 

attention function, administering a multitude of tests is impractical given that there are 

dozens of candidates. Instead, a profile of attention could feature a suite of models that 

predict multiple attention factors from one fMRI scan, analogous to how several blood 

tests can be performed on a single sample. Although building such a suite would require 

fMRI and behavioral data from many individuals, the endeavor could be facilitated via 

large-scale collaborations [88,89]. Once validated, the final set of models could be 

applied to predict an individual’s “attention profile”. This profile, or set of predictions, 

would facilitate objective comparisons across individuals, improve longitudinal tracking, 

and help predict other behaviors or clinical symptoms.

What components of attention constitute the hypothetical attention profile? (See 

Outstanding Questions.) Behavioral evidence suggests that there are both general and 

highly specific factors: When individuals were tested on up to seventeen attention tasks, 

cross-correlations suggested that performance is explained by a general factor that 

explains performance in variety of tasks such as search, tracking, and visual short-term 

memory, as well as several specific factors related to spatial orienting, attentional capture, 

and inhibition of return [81].

To build models that capture general and specific attention factors, a large sample of 

participants should be administered an assay of behavioral tasks that test the components 

described above, either during fMRI scanning or after a resting-state scan. The task 

battery may also include the attention network task (ANT), which measures alerting, 

exogenous orienting, and executive control [16,17]. Aspects of executive control could be 

tested with change detection [90–92] or n-back tasks [93,94]. Divided attention to 

multiple stimuli could be measured with multiple object tracking or dual-tasks [95–97].

Using brain connectivity and behavioral data, separate predictive models can be 

developed to predict performance on each test. To test the relationship between various 

tasks, each model can be applied to predict other behavioral measures; patterns of 

specificity will help identify separable factors. For example, work in our lab has found 

that the sustained attention model does not predict fluid intelligence, and the fluid 

intelligence model does not predict sustained attention, suggesting independence between 

the two models and, therefore, constructs. Thus, the pattern of cross-correlations across 

tasks form a prediction matrix, from which factor analysis can extract both general 
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factors of attention and specialized factors of attention that will ultimately constitute an 

overall profile of attention function.

Finally, because network models offer objective measures of attention, they may be useful in 

clinical contexts [82,83]. They could, for example, be used to identify children at risk of 

developing attention problems for early intervention, match individuals to the most 

appropriate attention training or treatment, and track changes in attentional state or attention-

related symptoms over time (Box 2). Functional networks that predict attention are also 

potentially effective targets for pharmacological or behavioral interventions to improve 

focus. For example, with real-time neurofeedback [84,85], it may be possible to train 

individuals to express patterns of connectivity associated with strong attentional abilities to 

improve performance (see Outstanding Questions).

Box 2

Intraindividual attention fluctuations

The ability to pay attention not only differs across individuals, but also changes over time 

within a single person. Attention can vary on the order of seconds, fluctuating from one 

trial to the next of a cognitive task [68]; minutes, declining over the course of a taxing or 

monotonous task [98]; and hours, varying throughout the day with the circadian rhythm 

and drugs like caffeine. Attention function also changes over the lifespan, improving with 

development and declining with healthy aging [11], injury, and disease.

Brain activity in canonical networks is related to fluctuations that occur on relatively 

short time scales. Default mode network activity, for example, distinguishes periods of 

mind wandering from periods of focus within-subjects [35,36], characterizes attentional 

lapses [99], and, along with activity in the dorsal attention network, predicts periods of 

better and worse sustained attention [39,100–102]. Activity and connectivity in a these 

networks also differs between populations whose attentional abilities differ, such as 

ADHD patients and healthy controls [103].

Recent work using dynamic connectivity approaches has examined how changes in 

functional connectivity over time relate to fluctuations in attention. Although some work 

suggests that patterns of brain connectivity do fluctuate with attention within a single 

individual [104], and that networks that predict attention function are perturbed by 

pharmacological attention intervention [71], the extent of change within individuals and 

over time is still unknown. Thus, it will be useful to apply predictive models to 

connectivity data collected at multiple time points (for example, during several blocks of 

a task in a single fMRI session, longitudinally over the course of days or years, or pre- 

and post-attention training) and compare predictions to repeated measures of attention 

Complementary work can address whether the strength of attention-related networks 

varies with changes in attention related to development, aging, and treatment or disease 

progression, and whether network models predict future improvements or declines in 

attentional abilities.

Thus, although attention waxes and wanes within individuals, mean attention function — 

that is, a person’s overall attentional abilities — appears stable enough from day to day to 
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reveal substantial differences across individuals. One advantage of predictive modeling 

for measuring attention longitudinally over short and long time intervals is to avoid 

practice effects that come with repeatedly performing the same task.

Concluding remarks

Models that predict attention from patterns of functional brain connectivity, some of the first 

generalizable neuromarkers of cognitive function, represent a significant contribution to the 

fast-growing field of individual differences in fMRI [86,87]. In doing so, they provide 

empirical support for a central prediction of network neuroscience: that attention and 

cognition arise from the dynamic interactions of many distinct regions of the brain [60–62]. 

Further, successful predictions from resting-state data reveal that the infrastructure 

supporting attentional abilities is reflected in the brain’s intrinsic functional organization. In 

the future, models that predict individual differences in other abilities and behaviors may 

help improve clinical diagnosis and treatment and provide a new kind of insight about the 

nature of other processes in the mind.

Glossary

Correlational vs. predictive studies
FMRI studies of individual differences often claim that a brain-based measure “predicts” a 

behavioral measure when the two are simply correlated across individuals. Following 

Gabrieli et al., we reserve the term “prediction” for cross-validated models, that is, models 

that generalize to novel individuals [86]. Although beyond the scope of this article, another 

sense in which models can be predictive is that they use baseline data from an individual to 

predict his or her future behavior [86], for example, using functional connectivity to predict 

performance on perceptual tasks [30].

External validity
A model is externally valid when it generalizes to novel datasets, that is, when predictions 

are robust to the specific group of participants or data collection site. For models of traits, 

behavior, or symptoms to be clinically useful, they must demonstrate external validity.

Functional brain connectivity
Functional connectivity is measured by correlating the blood oxygenation level–dependent 

(BOLD) signal timecourse, measured with fMRI, in two spatially distinct regions of the 

brain. Activity in regions that are strongly functionally connected fluctuates in synchrony, 

whereas activity in regions that are weakly functionally connected changes out of sync. 

Functional connectivity does not necessarily imply structural connectivity; rather, functional 

connections are thought to reflect regions engaged in common or related processing during 

task performance or rest.

Functional connectivity matrix
An m x m matrix, where m is the number of nodes (brain regions) in the network. Cells 

represent functional connections. Cell (i,j) of the matrix represents the temporal correlation 

between the activity in brain region i and the activity in brain region j. Non-directional 
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connectivity matrices are symmetrical about the diagonal. The diagonal, the correlation of a 

region with itself, is equal to 1.

Internal validity
A model is internally valid when it generalizes to novel individuals within a single dataset. 

Although leave-one-subject-out cross-validation (i.e., k-fold cross-validation with k = 

number of subjects) tests internal validity, the strictest and least biased method is split-half 

validation (k = 2).

Resting-state fMRI
Resting-state fMRI data are collected as participants simply lie in an MRI scanner without 

engaging in an explicit task. Participants in resting-state scans may be asked to keep their 

eyes closed or open and focused on a central fixation point. Although functional 

connectivity can be acquired from resting-state data, overall activity cannot because there is 

no measure of absolute activity during rest. Compared with task-based data, resting-state 

data is often easier to collect and share across sites.
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Trends

• Valuable research has described the attention system of the human brain using 

mostly group-level analyses of neuroimaging data.

• FMRI research is moving towards single-subject level analyses, which afford 

significant scientific and practical benefits such as personalized assessment, 

diagnosis, or prediction.

• Recent work shows that models based on functional brain networks can 

predict how well individual people pay attention.

• Predictive models provide empirical evidence that attention is a network 

property of the brain, and that the functional architecture that underlies 

attention can be measured while people are not engaged in any explicit task.

• Looking ahead, connectivity-based predictive models of attention and other 

cognitive abilities may improve the assessment, diagnosis, and treatment of 

clinical dysfunction.
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Figure 1. Connectome-based predictive modeling
The connectome-based predictive modeling (CPM) approach identifies functional 

connectivity networks that are related to behavior, and measures strength in these networks 

within previously unseen individuals to make predictions about their behavior [65–67]. First, 

every participant’s whole-brain connectivity pattern is calculated by correlating the fMRI 

activity timecourses of every pair of regions, or nodes, in a brain atlas. Next, behaviorally 

relevant connections are identified by correlating every connection in the brain with behavior 

across subjects. Connections that are most strongly related to behavior in the positive and 

negative directions are retained for model building. A linear model relates each individual’s 

positive network strength (i.e., the sum of the connections in their positive network) and 

negative network strength (i.e., the sum of the connections in their negative network) to their 

behavioral score. The model is then applied to a novel individual’s connectivity data to 

generate a behavioral prediction. Predictive power is assessed by correlating predicted and 

observed behavioral scores across the group.
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Figure 2. Canonical attention networks and networks used to build the sustained attention CPM
Nodes of canonical networks were defined using MNI coordinates or Talairach coordinates 

converted to MNI space from representative articles. For each x, y, z coordinate, the closest 

node of the Shen et al. (2013) atlas [69] was identified using the knnsearch function in 

Matlab. Nodes and fully connected networks were then visualized using BioImage Suite 

[105]. As such, these figures are meant to be illustrative summaries rather than quantitative 

analyses of well-studied canonical networks. Nodes of the alerting, orienting, and executive 

control network were defined using Tables 3–5 in Ref. [17]. Six left-hemisphere nodes of the 

dorsal and ventral attention networks [12] were defined using Table 5 in Ref. [106]; 

Rosenberg et al. Page 20

Trends Cogn Sci. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



symmetrical right-hemisphere nodes were also included for visualization. Nodes of the task-

positive and task-negative networks were defined using Table 1 in Ref. [31]. The high-

attention network (orange) and low-attention network (turquoise) were defined in Ref. [65]. 

Nodes of these networks are sized according to their total number of connections.
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Figure 3. A suite of predictive models to predict behavior
One benefit of using fMRI data to predict an individual’s behavior and clinical symptoms is 

that multiple predictive models can be applied to a single fMRI dataset. For example, the 

sustained attention CPM can be applied to predict sustained attention [65]. At the same time, 

separate models may be applied to predict fluid intelligence [67], and, hypothetically, a 

number of behaviors, traits, and symptoms, such as working memory, emotion regulation, 

personality traits, and symptoms of autism.
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