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Target speaker identification is essential for speech enhancement algorithms in assistive

devices aimed toward helping the hearing impaired. Several recent studies have reported

that target speaker identification is possible through electroencephalography (EEG)

recordings. If the EEG system could be reduced to acceptable size while retaining

the signal quality, hearing aids could benefit from the integration with concealed

EEG. To compare the performance of a multichannel around-the-ear EEG system

with high-density cap EEG recordings an envelope tracking algorithm was applied

in a competitive speaker paradigm. The data from 20 normal hearing listeners were

concurrently collected from the traditional state-of-the-art laboratory wired EEG system

and a wireless mobile EEG system with two bilaterally-placed around-the-ear electrode

arrays (cEEGrids). The results show that the cEEGrid ear-EEG technology captured

neural signals that allowed the identification of the attended speaker above chance-level,

with 69.3% accuracy, while cap-EEG signals resulted in the accuracy of 84.8%. Further

analyses investigated the influence of ear-EEG signal quality and revealed that the

envelope tracking procedure was unaffected by variability in channel impedances. We

conclude that the quality of concealed ear-EEG recordings as acquired with the cEEGrid

array has potential to be used in the brain-computer interface steering of hearing aids.

Keywords: EEG, cEEGrid, around-the-ear EEG, mobile EEG, selective attention, speech decoding, cocktail party,

attended speaker

INTRODUCTION

Complex every-day acoustic scenes such as the cocktail party (Cherry, 1953) are challenging
listening situations, due to continuous masking of the target speech stream. In the presence of
multiple sound streams, attending to the target speech stream is a demanding task, even for
normal hearing individuals. Nevertheless, most individuals are capable of continuously perceiving
auditory cues, such as pitch and timbre, from the target stream in the presence of masker
streams. Consequently, more complex auditory objects are formed, and further utilized for selective
attention to the target stream (Best et al., 2008; Moore and Gockel, 2012). On the other hand, it is
known that hearing-impaired listeners have difficulties segregating acoustic streams in a complex
auditory scene, which may be due to failure to receive the necessary acoustic cues or to deteriorated
auditory object formation (Shinn-Cunningham and Best, 2008).

The preservation of acoustic cues is crucial for speech understanding in noise, with binaural
cues being among the most imperative of these (Colburn et al., 2006). Nowadays, the preservation
of binaural cues is implemented in hearing aids, providing an opportunity for directional hearing to
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the hearing impaired (Greenberg and Zurek, 1992; Marquardt
et al., 2012; Thiemann et al., 2016). So far, however, these
algorithms are beneficial only under the assumption that the
desired speaker can be localized, which, in multi-speaker scenes,
implies that the target speaker is either already known to the
device or always found in a particular location.

It has been shown that the attended speaker can be identified
from cortical recordings in complex auditory scenes. This
has been shown with several recording technologies such as
electrocorticography (Nourski et al., 2009; Zion Golumbic et al.,
2013), magnetoencephalograpy (Ding and Simon, 2012; Akram
et al., 2016), and EEG (O’Sullivan et al., 2014; Mirkovic et al.,
2015). The procedure of choice for detecting the target speaker
has been the envelope tracking algorithm (Pasley et al., 2012;
O’Sullivan et al., 2014; Crosse et al., 2015; Mirkovic et al.,
2015) which relates the envelope of speech to the neural signal.
While the neural mechanisms underlying envelope tracking are a
matter of debate, one hypothesis is that the activity of neuronal
populations is synchronized to the acoustic features they are able
to encode, resulting in temporal, as well as frequency coupling, of
the neural networks with the temporal envelope of the acoustic
stream (Shamma et al., 2011; Giraud and Poeppel, 2012; Ding and
Simon, 2014; Vander Ghinst et al., 2016).

With this in mind, hearing aid users could benefit from
a brain-computer interface (BCI)-guided selection of a to-be-
attended speaker, which would in turn result in amplified
processing of this stream, and hence facilitate listening. Next
generation EEG technology, comprised of non-invasive surface
sensors and miniature amplifier system, would be needed
to acquire EEG signals in a concealed manner, with little
hassle and high user comfort. At present, wireless mobile EEG
systems are not small enough to fit behind the ear, but the
quality of mobile EEG recordings acquired with head-mounted
wireless EEG amplifiers can rival bulky, stationary lab systems
(Debener et al., 2012; De Vos et al., 2014a,b; Zich et al.,
2014), opening the possibility for combining BCIs and assistive
technology. Recently, further progress has also been made with
sensor technology. We developed flex-printed miniaturized EEG
sensors, the cEEGrid sensor array, which positions ten electrodes
in a C-shape around the ear and enables long-term EEG
acquisition with little hassle or user discomfort (Debener et al.,
2015). Currently, cEEGrids can be used in combination with a
wireless, head-mounted mobile amplifier. Due to their size and
position they can potentially be inconspicuously integrated with
hearing aids, providing the potential for recording brain-states
that could be used for natural, effortless steering of the hearing-
aid. While we have previously shown that the acoustic envelope
tracking method is robust even for the small number of optimally
placed electrodes (Mirkovic et al., 2015), the question remains
whether the cEEGrid locations around the ear allow for reliable
data collection for this purpose.

In the present study, we asked whether concealed EEG
acquisition with the cEEGrid sensor array enables identification
of the attended speaker in a two-speaker scenario. To quantify
performance of such a system, mobile wireless around-the-
ear EEG (further referred to as ear-EEG) data were recorded
concurrently with high-density state-of-the-art laboratory EEG

(further referred to as cap-EEG) signals. This approach
allowed us to replicate previous high-density cap-EEG envelope-
tracking results, identify the possible loss in decoding accuracy
that may be present in concealed ear-EEG recordings, and
examine the impact of ear-EEG characteristics on target speaker
identification.

MATERIALS AND METHODS

Participants
Twenty healthy, normal hearing, native German participants
took part in this study (mean age 24.8 years, 8 male, 1 left-
handed). Participants reported no past or present psychological
conditions. One participant was excluded from the analysis due
to technical problems and another was excluded due to poor
performance in the attention task, as revealed by questionnaire
results. All participants signed informed consent and were paid
for their participation. The study was approved by the University
of Oldenburg ethics committee.

Paradigm
To investigate if the speech envelope tracking method, which is
explained below, could be successfully applied to ear-EEG data
we implemented a competitive speaker paradigm. This paradigm
was the second of three tasks participants performed; results for
the other two paradigms will be reported elsewhere.

The task was similar to the competitive speaker paradigm as
used previously (O’Sullivan et al., 2014; Mirkovic et al., 2015).
Stimulus presentation consisted of five blocks lasting 10min
each, with short breaks in between. Participants were instructed
to attend to one of two simultaneously-presented speech streams,
as indicated by the experimenter. Participants attended the same
stream throughout the entire experiment, but were given a fresh
instruction prior to each block. Participants were further required
to keep their eyes open throughout the experiment. During the
block, while the stimuli were being presented, a black fixation
cross on light gray background was shown on the screen and
participants were told to focus their gaze on it. During the
breaks, participants were required to fill out a multiple choice
questionnaire containing 10 questions pertaining to each speech
stream. They were told to answer as many questions as they could
but were further encouraged to continue attending only to one
stream.

Stimuli
Each of the two speech streams consisted of lesser-known
fairy tales narrated in German language by one of two male
professional speakers. Audio books featuring one of the speakers
were retrieved from the German audio book website (Ohrka,
2012), while the material for the other speaker was obtained
from the selection of audio books from Hering (2011). Prior
to the experiment, the participants reported no, or very little,
knowledge of these fairy tales.

For each audio track silent gaps longer than 500ms were
reduced to this length. Due to enunciation it occasionally
happened that one speaker was perceived louder than the other,
which led to differences in intelligibility between the two streams.
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To prevent the participants from involuntarily switching their
attention during these periods, the stream with lower intensity
was amplified using a weighting signal procedure. When the
intensity difference between the two streams was high enough
to cause a distraction, the amplitude of the weighting signal
was calculated as the quotient of root mean square values for
both streams within a 2 s long non-overlapping moving window.
Otherwise, the amplitude of the weighting signal equaled 1.
A first order low-pass Butterworth filter with 0.5Hz cut-off
frequency was applied to the weighting signal before it was used
to modulate the audio stream, resulting in a similar intensity
of both streams. As a result, both streams followed the rules
of the natural conversation where one speaker would increase
the intensity of their voice in the presence of other occluding
sounds. A head-related transfer function (HRTF) from the corpus
of Oldenburg University (Kayser et al., 2009) was applied to
the streams to spatially distribute them. Impulse responses were
recorded with the front hearing aid microphone in an anechoic
environment at 0 degree elevation, −45 and 45 degree azimuth
angle, and at a distance of 0.8m from the speaker. Following
our previous study (Mirkovic et al., 2015), the attended speaker
location was kept constant within participants. Stimuli were
processed with RMEHDSP 9632 PCI Audio Interface and output
presented to the participants using Tucker Davis Technologies
programmable attenuators (PA5), via earphones (E-A-RTONE
3A) that participants were required to keep plugged in at
all times during the entire experiment, except for the breaks.
Visual instructions were presented on a screen located 1.3m
in front of the participant. Auditory stimuli and instructions
were synchronized and presented to the participant using the
Psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007) for Matlab, which also generated the marker stream with
onset triggers.

EEG Recordings
During the experiment, participants were seated in a dimly-
lit sound-attenuated room in a comfortable chair. EEG was

recorded with two electrode layouts simultaneously (Figure 1C).
The ear-EEG consisted of two cEEGrids (Figures 1A,B)
positioned around each ear of the participant. The cEEGrid is an
array of ten flex-printed Ag/AgCl electrodes (cf. Debener et al.,
2015). After skin preparation with an abrasive gel and alcohol a
small amount of electrolyte gel (Abralyt HiCl, Easycap GmbH,
Germany) was applied to the electrodes and the cEEGrids were
placed with a double-sided adhesive around the ear. The two
cEEGrids were connected to a wireless mobile 24-channel DC
EEG amplifier (SMARTING, mBrainTrain, Belgrade, Serbia)
positioned at the back of the head. Ear-EEG data were recorded
with 24 bit resolution and 500Hz sampling rate; positions R4a
and R4b served as ground and reference, respectively. Signals
were wirelessly transmitted to a recording computer through
Bluetooth connection.

The second electrode setup consisted of 84 channels from an
equidistant 96-channel EEG cap, provided from Easycap GmbH,
Germany. Twelve electrodes around the ears could not be used
due to the positioning of the cEEGrids. The high-density EEG cap
was connected to 16-bit BrainAmp amplifiers (Brain Products,
Gilching, Germany). The data were referenced to the nose tip
and collected with a sampling rate of 5000Hz, with an analog
filter setting of 0.0153–250Hz. After placing the high-density
EEG cap the SMARTING mobile EEG amplifier was attached to
the back of the participant’s head with a rubber band over the cap,
keeping participants’ comfort in mind. Additionally, before and
after the experiment the impedance on all cap-EEG and ear-EEG
electrodes was recorded.

The ear-EEG and cap-EEG signals as well as themarker stream
sent from the Psychophysics toolbox were integrated using
the Lab Recorder software (Figure 2) from the Lab Streaming
Layer (LSL) package, a system for unified, time synchronized
measuring. For this purpose a BrainAmp LSL driver, with
a redesigned resampling filter performing the downsampling
from 5000 to 500Hz, was used for recording, as well as the
Smarting Streamer software, which features a built-in LSL
driver.

FIGURE 1 | (A) cEEGrid placement. A C-shaped electrode array is fixated around the ear with a double-sided adhesive. (B) cEEGrid electrode layout. Each cEEGrid

consists of 10 electrodes. Electrodes L1–L4 and L5–L8 around the left ear and R1–R4 and R5–R8 around the right ear measure the voltage between the respective

electrode and the reference electrode R4b, while electrode R4a is the ground. L4b electrode was used in the offline analysis for rereferencing the data. To keep the

layout symmetric, L4a electrode was excluded from analysis, leaving 16 channels in total, 8 around each ear. (C) Illustration of 84-channel cap-EEG and 16-channel

ear-EEG 3D locations relative to each other, on a template brain. The left cEEGrid channels are hidden from view.
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FIGURE 2 | Synchronized streaming of two separate EEG systems. For

stimulus presentation the Psychophysics toolbox was used to present the

sound to the participant and send the event markers to Lab recorder. EEG

was recorded with one cEEGrid located around each ear (head, pink) and

high-density cap with 84 effective channels (head, cyan). Using the

SMARTING mobile amplifier the ear-EEG signal was wirelessly sent to the

recording computer, while the cap-EEG signals were recorded using the Brain

Amp amplifiers with a physical connection to the computer. Through Lab

recorder, a marker stream and both EEG streams were joined into one output

file in extensible data format (.xdf).

Latency Shift
Due to the hardware characteristics of both amplifiers and
software filtering within the Brain Amp LSL driver, a latency shift
between the two EEG systems could be expected. In order to
verify good temporal precision of the set-up, sinusoidal signals
were added to the beginning and end of 10-min long audio
signals. The stimuli were presented via Psychophysics toolbox
and the output of one eartone transducer was acquired with
SMARTING and BrainAmp amplifiers and the signal from both
combined into one output file by Lab recorder. This procedure
revealed a constant latency shift of 50ms between the two EEG
streams, which was compensated for off-line.

EEG and Speech Envelope Preprocessing
EEG data were analyzed off-line using EEGLAB version 13.4.4b
(Delorme and Makeig, 2004). Following the base-line correction,
the cap-EEG data were re-referenced to the common average
and filtered between 2 and 8Hz using the Hann windowed FIR
filter (low-pass filter of order 100, high-pass filter of order 500).
Afterwards the continuous data were downsampled to 64Hz
and epoched in consecutive 60 s intervals, resulting in Nt = 50

trials per subject. Likewise, ear-EEG data were baseline corrected
and re-referenced to algebraically linked mastoids (i.e., L4b
and R4b). In order to keep the cEEGrid layout symmetrical,
L4a electrode was removed from further analysis. As with the
cap-EEG recordings ear-EEG data were then filtered from
2 to 8Hz, downsampled to 64Hz and divided into fifty 60 s
non-overlapping trials. The envelopes of both audio streams
were computed as the absolute value of the Hilbert transform,
low-pass filtered below 8Hz and downsampled to 64Hz (cf.
Mirkovic et al., 2015).

Envelope Tracking
Attended speaker in the competitive speaker paradigm can be
identified using the envelope tracking method, a speech decoding
algorithm (O’Sullivan et al., 2014). Provided that both envelopes
of the presented speech streams are available, amultivariate linear
regression model can be trained to associate the attended stream
with corresponding EEG recordings. Once trained, the model is
used to estimate the envelope of the attended speech stream from
the EEG recordings without the prior knowledge on the stream
itself.

As previously mentioned, the model is trained on EEG
recordings and the envelope of attended speech using a
multivariate linear regression. The lag between the EEG signal
and the auditory stream has to be accounted for in the model
in order to temporally align them. A time lag between the
stimulus presentation and the corresponding neural processing
is taken into account by time shifting EEG recordings relative
to the stimulus S(1xt). Time shifts of different durations were
simultaneously introduced through zero-padding of the EEG
data matrix, resulting in several time-shifted EEGmatrices which
were subsequently concatenated into a data matrixR. The model,
represented by the decoder g, which would associate matrix R to
stimulus S, was trained for each 60 s trial usingmultivariate linear
regression. Furthermore, the decoder was trained separately for
cap-EEG and ear-EEG data.

gl =
(

Rl
TRl + λlM

)−1
Rl

TSl, l ∈
{

cap, ear
}

.

The regularization matrix M used here is similar to that used
in Mirkovic et al. (2015). Due to the differences in channel
number and spatial distribution between cap- and ear-EEG, the
regularization parameter λl differed for the two systems (λcap =

1000, λear = 1). For the ear-EEG data, where the number of
channels is lower, the risk of overfitting is also low, resulting in
a smaller value for the regularization parameter. λcap and λear
were estimated, separately, by grid search, resulting in maximal
decoding accuracy for cap-EEG and ear-EEG, respectively. This
resulted in a total of Nt = 50 decoders for each EEG setup which
could be assessed using the leave-one-out validation procedure.
For this purpose we averaged Nt-1 decoders and estimated the
performance of the averaged decoder by applying it to the time-
shifted EEG recordings (R) of the remaining trial, separately
for both systems. In this way, for each trial k we obtained
two estimated attended speech envelopes (further referred to as
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EASE), one resulting from cap-EEG and the other from ear-EEG.

EASE
(k)
l

=

(

1

Nt−1

∑

i = 1,Nt;i 6= k
g
(i)
l

)T

R
(k)
l

,

k = 1,Nt, l ∈
{

cap, ear
}

Note that the EASE is not a close replica of the envelope of the
original audio stream. Nonetheless, it is expected to correlate
more closely with the envelope of the supposed to be attended
stream (producing Nt correlation coefficients ra) than with the
envelope of the supposed to be unattended stream (ru). By
comparing the coefficients ra and ru an informed decision can
be made on which stream the participant was attending. Hence,
we classified EASE for each of the Nt trials as attended or
unattended, based on the higher of the two correlation values for
corresponding trial. The decoding accuracy was calculated as the
percentage of accurately classified trials, resulting in two values
for each participant, DAcap and DAear.

Optimal Time Lag
To find the time-lag interval resulting in optimal decoding
accuracy we analyzed the pattern of correlation values for a
variety of time-lag intervals. To this end we used a 45ms moving
time lag window with 30ms overlap in a −115 to 620ms time-
lag range, and calculated EASE for each window. We determined
the correlation of EASE with original envelopes and averaged the
Fisher’s z-scores of resulting r-values over trials and participants.
The average z-scores were then back-transformed into r-values.
This analysis was performed for both cap-EEG and ear-EEG data
separately. A common optimal time-lag interval for both layouts
was determined as the interval in which the difference between
r-values for the attended and unattended streams was greatest.

Scalp Data Verification
Prior to proceeding to the analysis of ear-EEG data we verified the
measurement and analysis procedure by comparing the decoding
accuracy achieved with cap-EEG (DAcap) with the accuracy
achieved by reanalyzing our already published data (Mirkovic
et al., 2015). To this end, the regularization parameter for both
datasets was kept constant at λcap and the time-lag interval
was determined by the optimal time lags for the current data.
The number of channels in the data from the previous study
was reduced to 84 by selecting the corresponding channels. To
analyze the influence of channel reduction, decoding accuracy
was recalculated on the data from the previous study using the
same parameters and the full 96-channel layout.

Overall Performance
Decoding accuracy is an informative but sparse measure of
performance. Keeping in mind that it is a classification based
on the correlation of EASE and original sound envelopes, a
complementary measure of participants’ performance may be
related to the r-values themselves. For each 60 s trial we therefore
calculated the difference between z-transformed r-values for
attended and unattended streams and averaged them for each

participant. Therefore, the performance score P was given as:

P = Z
−1

{

1

Nt

Nt
∑

i=1

(

Z

{

ra(i)
}

− Z

{

ru(i)
})

}

where Z stands for the z-transform operator, Nt the number of
trials and ra/ru are vectors comprised of Nt = 50 correlation
coefficients between the EASE and attended (a)/unattended (u)
speech envelope.

The differences in r-values reflect both the enhancement of the
attended stream and/or the suppression of the unattended stream
and are consequently convenient estimates of participants’
performance. This procedure provided two performance scores
for each participant, one for the ear-EEG data (Pear) and one
for the cap-EEG data (Pcap). Providing that the information
necessary for speech decoding is indeed present in ear-EEG data,
the ear-EEG performance scores should correlate with cap-EEG
derived performance scores. To investigate this relationship, we
calculated the corresponding Spearman rank correlation.

Influence of Electrode Position on Speech
Decoding
To investigate the influence of electrode placement we defined
six electrode clusters from cap-EEG data keeping the cluster size
identical to the number of ear-EEG channels (16). The electrode
clusters were defined as: (1) a frontal scalp area symmetric about
the sagittal plane, (2) a posterior scalp area symmetric about the
sagittal plane, (3) a central clustering around the Cz electrode, (4)
left and right temporal areas in close proximity to cEEGrids, (5)
a frontal and posterior area symmetric about the sagittal plane,
and (6) wide scalp coverage. Furthermore, we looked into the
possibility of speech decoding with the right cEEGrid only, in
which case the data were not re-referenced.

Influence of Ear-EEG Properties on Speech
Decoding
To investigate the significance of electrode impedance on the
ear-EEG recordings and correspondingly on overall performance
(Pear), we made a performance-based median split of participants
and performed an independent samples t-test for each cEEGrid
electrode impedance between the bad and good performers.
Hereby, the impedance measurements were performed for 17
out of 18 previously analyzed participants. Impedance values for
the remaining participant were absent due to technical reasons.
The impedance values were calculated for each electrode as
the mean of the impedances measured before and after the
experiment. Furthermore, in order to investigate the difference in
adherence of upper cEEGrid electrodes, whichmay be reflected in
impedance values on cEEGrid electrodes located above the ears
(R2–R3, L2–L3), we performed a paired sample t-test between
these and the bottom cEEGrid electrodes (R6–R7, L6–L7), where
the cEEGrid could be more firmly attached. Keeping the median
split we also analyzed EEG frequency band activity for each
ear-EEG channel. For this purpose we defined the following
frequency bands: 1–3, 4–7, 8–12, 13–30, 31–80, 81–150, 151–
200, and 201–250Hz. The corresponding band power values were
submitted to independent samples t-tests.
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We further analyzed the influence of the angle at which
the cEEGrid was placed on a participant’s head. After EEG
acquisition an infrared 3D digitizer was used to record the
position of all cap and cEEGrid electrodes (Xensor electrode
digitizer, version 5.0.0, ANT Neuro, The Netherlands) as well
as individual head shape coordinates. We used the digitized
electrode positions to project the four cap electrodes positioned
in line with Cz (following the frontal plane) onto the sagittal
plane. The least square regression line of these projections was
defined as the “head axis.” Next, the upper two electrodes of
the left and right cEEGrids (L2–L3 and R2–R3) were projected
onto the same plane. Themean positions between the projections
of upper left/upper right cEEGrid electrodes were calculated
(resulting in positions L23 and R23). The same was done for
the bottom electrodes, resulting in two more positions on the
sagittal plane (L67 and R67). The axes of cEEGrids were defined by
positions L23 and L67 for the left cEEGrid and R23 and R67 for the
right cEEGrid. Statistical analysis was performed on cEEGrid axis
deviation from head axis using the independent samples t-test
between good and bad performers.

RESULTS

Questionnaire Analysis
One participant with a questionnaire score lower than the
designated threshold of 50% of correctly answered questions
pertaining to the attended story was excluded from further
analysis. The remaining participants answered on average 86.1%
of the questions referring to the attended story correctly (ranging
from 68 to 100%), while they could not answer questions to the
unattended story (<0.1% correct answers on average).

Optimal Time Lag
The time-lag analysis of r-values revealed the optimal lag
intervals for speech decoding to be between approximately 140
and 200ms (Figure 3). Furthermore, at all time lags the mean
correlation of EASE with the attended stream was higher than
the mean correlation of EASE with the unattended stream.
This was the case for both cap-EEG and ear-EEG recordings.
As hypothesized, a similar lag pattern was noticeable for the
correlations of speech envelopes with EASEcap and EASEear.
The Pearson’s correlation of lag patterns resulting from the
comparison of attended speech envelope with EASEcap/EASEear
was strong (r = 0.98, p < 0.001), and the same applied for
lag patterns resulting from comparison of unattended speech
envelope with EASEcap/EASEear (r = 0.88, p < 0.001).
However, EASEear was not as strongly correlated with the
envelopes of audio streams as EASEcap, reflected in noticeably
lower correlation values as confirmed by paired-samples t-test
[t(46) = 13.32, p < 0.001, d = 1.427].

Scalp Data Verification
The 84 available scalp channels produced a decoding accuracy
of 84.78% when the optimal time lags were used. By reanalyzing
the data from our previous study (Mirkovic et al., 2015) with
the same 84 channels an average decoding accuracy of 88.02%
was found. An independent-samples two-tailed t-test comparing

FIGURE 3 | Correlation of EASE and envelopes of audio streams using

45ms overlapping time lag windows. Correlation of the audio stream

envelopes with EASEcap is illustrated in cyan and with EASEear in pink

(attended stream in a solid line, and unattended stream in a dotted line). The

cyan/pink shaded areas represent the standard error of the mean for cap-EEG

and ear-EEG recordings respectively.

decoding accuracy resulting from both datasets did not reveal a
significant difference [t(28) = 0.73, p = 0.473, Figure 4).

In both cases all participants performed above chance level.
Maximum decoding accuracy was reached by one participant in
the previous study (Mirkovic et al., 2015) and four participants
in the current study. Using the same decoding parameters
and all 96 channels from the previous study revealed a mean
decoding accuracy of 89.23%. A paired-samples t-test revealed
no significant difference between this result and the decoding
accuracy achieved with the same participants and the 84 channel
layout [t(11) = −1.13, p = 0.281].

Overall Performance
The performance scores for ear- and cap-EEG data can be seen
in Figure 5. A positive correlation between the performance
scores obtained by ear-EEG and cap-EEG data was evident (r =
0.57, p = 0.012). Subsequent paired-samples t-test showed that
the performance score was significantly lower for ear-EEG as
compared to cap-EEG data [t(17) = 7.07, p < 0.001, d = 1.77,
Figure 5].

Influence of Electrode Position on Speech
Decoding
We explored the role of different electrode positions and spatial
distributions for decoding accuracy. When information from
only one cEEGrid was used, decoding performance reached
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FIGURE 4 | Scalp data verification. The data from our previous study was

reanalyzed, keeping only 84 channels that were currently available. Results

from data collected from 12 participants in the previous study are illustrated in

black, while the results from 18 participants in the current study are illustrated

in cyan. The gray shaded area represents chance level and the error bars

signify the standard deviation for both datasets.

FIGURE 5 | Correlation between performance scores achieved with

cap-EEG and ear-EEG recordings. Performance is measured for each

participant as the average difference between the correlation of EASE with the

attended (ra) and unattended stream (ru) envelopes. Gray dots represent

participants. The least squares regression line is shown in black.

64.88% with five participants performing at or below chance
level (Figure 6, cEEGrid 8 channels). Data collected from two
cEEGrids, one placed around each ear, resulted in decoding
accuracy of 69.33% (Figure 6, cEEGrid 16 channels). Two of the
18 participants performed below chance level. By reanalyzing
our previously published cap-EEG data using around-the-ear
channels only, with reference at the nose tip, we achieved a
decoding accuracy of 76.22%. This was not significantly different

than decoding with two cEEGrids [independent samples t-
test, t(28) = −1.564, p = 0.129]. Further, six different
clusters of 16 cap channels were considered. A cluster with 16
channels covering only posterior scalp sites resulted in lowest
performance, which was 63.78% (Figure 6, Scalp posterior).
Compared to layouts covering frontal and/or posterior sites,
clusters that included central coverage, where auditory brain-
electrical activity is usually most pronounced, resulted in higher
decoding accuracies. Here, the information from the widespread
electrode distribution (Figure 6, Scalp wide) resulted in the
best decoding accuracy of 85.67%, which was not significantly
worse than decoding for all 84 channels, as reported by a
paired-samples t-test [t(17) = 0.22, p = 0.825]. A paired-
samples t-test showed that performance was significantly better
for the wide coverage than for a focal central coverage [t(17) =

4.85, p < 0.001, d = 0.457], which resulted in the mean
of 79.78%. In both cases only one participant performed
below chance and for the wide central coverage, maximum
decoding accuracy was achieved for two participants. Data
collected from the 16 cap channels closest to the cEEGrids
(Figure 6, Scalp temporal) resulted in decoding accuracy of
82.78%.

Influence of cEEGrid Properties on Speech
Decoding

The measured impedances on cEEGrid electrodes ranged from
0.6 to 83.6 kOhm with a median value of 13.5 kOhm. For each
cEEGrid electrode we calculated the median impedance over
participants. Based on the median ear-EEG performance (Pear)
we split the participants into good and bad and compared the
impedance on each electrode for these two groups. According to
independent samples t-tests there was no significant difference
(p > 0.1) between good and bad performers (Figure 7A).
Furthermore, paired sample t-tests between the upper and
lower channels (R2–R3 vs. R6–R7 on the right cEEGrid;
L2–L3 vs. L6–L7 on the left cEEGrid) did not reveal any
significant difference (p > 0.05), even though the electrode-to-
skin adherence conditions on upper and lower sites may have
differed.

Furthermore, the frequency band analysis showed that in
both good and bad performers the spectrum resembled typical
EEG characteristics with low energy in high-frequency bands
(Figure 7B). Again, systematic differences between good and
bad performer groups were not detected (independent samples
t-tests, p > 0.05), either from a particular channel or for
a particular frequency band, which suggests that ear-EEG
signal quality differences between individuals did not contribute
significantly to decoding performance.

Finally, we analyzed the angle of the cEEGrid placement,
which was individually adjusted to fit each participant’s ear
anatomy. The mean angle for both groups, and the mean
angle difference between groups, is illustrated in Figure 7C. The
cEEGrids were placed parallel to each other (SD = 6.6◦) and
parallel to the head axes (right cEEGrid SD = 7.8◦ and left
cEEGrid SD= 7.2◦) in all participants.
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FIGURE 6 | Influence of sensor position on decoding. The decoding accuracy achieved with various electrode layouts (illustrated on the right) is shown on the

left. Markers on each layout on the right indicate the channels used in the decoding algorithm. The marker shape on each layout on the right corresponds to the

respective decoding accuracy result shown on the left. Pink markers signify cEEGrid channels and cyan markers cap channels. The error bars represent the standard

deviation across participants. The gray shaded area represents chance level.

DISCUSSION

Aiming toward our ultimate goal of inconspicuous and hassle-
free long-term EEG acquisition, we investigated the potential
of ear-EEG for decoding the attended speaker in a competitive
speaker paradigm. While participants were presented with two
concurrent speech streams, two separate EEG recording systems
were used for signal acquisition, a high-density cap-EEG system
and a wireless head-mounted EEG system, the latter of which
was combined with the cEEGrid sensor technology. Based on
previous ear-EEG work in our lab (Bleichner et al., 2015;
Debener et al., 2015) we hypothesized that the cEEGrid ear-EEG
system would capture brain activity relevant for attended speaker
decoding.

Cap-EEG Performance
We first validated the cap-EEG signal quality by comparing the
decoding accuracy of the present study with our previous work
(Mirkovic et al., 2015). Unlike in our previous experiment, which
used one male and one female speaker, in the current experiment
the audiobook stories were narrated by two male speakers, which
resulted in a more demanding task for the participant. Another
difference was the use of a HRTF to implement spatial cues,
whereas only interaural level differences were used before. HRTF
supports a spatial release frommasking, which is an essential part
of real-life multi-speaker scenarios and is beneficial for separating
the target speaker from other speech streams (Arbogast et al.,
2005; Colburn et al., 2006). A more subtle difference between
studies was the use of the cEEGrids, which limited cap-EEG
recordings to 84 channels. In order to address this latter
discrepancy we removed the around-the-ear cap channels from

our previous dataset and performed the same speech decoding
analysis for both studies. The resulting decoding accuracy was
very similar and significant differences could not be observed
between studies. Accordingly, we conclude that identification
of the attended speaker in a competitive speaker scenario from
multi-channel EEG is a robust observation, even if the audio
streams used and the spatial features implemented differ. The
speech decoding method applied appears to be very robust and
largely unaffected by characteristics of individual speakers. The
comparison between the previous and the current cap-EEG
results also suggests that the presence of a head-mounted wireless
EEG system, and use of two cEEGrids, did not interfere with the
signal quality obtained from cap-EEG recordings.

Ear-EEG Performance
While the first cEEGrid validation study (Debener et al., 2015)
demonstrated that this type of ear-EEG setup captures various
brain signals, such as auditory evoked potentials, P300 event-
related potentials to target events, and resting EEG alpha activity,
we show here that more complex processes, such as connected
speech perception in a challenging listening situation, leave their
traces in cEEGrid EEG recordings. Across subjects, ear-EEG and
cap-EEG decoding performance was correlated, which favors
the claim that cEEGrids capture at least a reasonable part of
the cortical activity that enables attended speaker decoding. The
same conclusion can be drawn from the time-lag analysis. A
very similar time-lag pattern for the EASE correlation with both
streams was present for cap-EEG and ear-EEG, which supports
the claim that both results are driven by the same process.
Evidence in favor of an attention-related cortical signature is
further provided by the fact that the maximum performance
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FIGURE 7 | Influence of cEEGrid properties on participants’

performance. In the left and middle plots the mean across good and bad

performers, respectively, is shown for each analysis. (A) Mean cEEGrid

electrode impedances across participants. The right plot shows the absolute

difference between the two group means. (B) Frequency band analysis for all

cEEGrid electrodes. On the right is the difference between the group means.

(C) The cEEGrid placement angle with standard deviation (left cEEGrid is

shown in gray, right cEEGrid in green). On the first two plots the head axis is

considered to be at 90◦. On the third plot, the difference between the group

means is measured from 0◦.

occurred around 170ms after the stimulus onset. This further
corresponds to previous findings that specify the latency for
continuous auditory stream processing to be between 120 and
220ms (Aiken and Picton, 2008; Mesgarani and Chang, 2012;
Power et al., 2012; Choi et al., 2014). Considering how these
latencies correspond to the latency of N1-P2 auditory evoked
potential component, it is possible that, in addition to the
activation of attention networks, attended auditory sensory
processing largely contributes to successful envelope tracking.
This further goes in favor of the hypothesis that sharp auditory
events evoking an N1 response, like sentence onsets, drive
cortical oscillations to track the continuous speech and thereby
facilitate understanding (Doelling et al., 2014).

The EASE from cap-EEG recordings was more closely related
to the original attended stream than the EASE from ear-EEG
recordings, resulting in lower performance of the cEEGrid. It is
unlikely that differences in EEG amplifier technology contributed
to this result (De Vos et al., 2014b). Instead, the performance
drop could be due to three different factors, whichwe investigated
in this study: the different number of channels, the different
sensor locations, and the stronger presence of noise in one of the
two systems. These issues will be discussed below.

In a previous study (Mirkovic et al., 2015) we showed that with
as few as five EEG sensors, if optimally placed on scalp, decoding
accuracy is reliably above chance level. A systematic analysis of
single channel contributions to decoding performance revealed
that bilateral temporal locations contributed most consistently.
Furthermore, several studies revealed that oscillations in the
left superior temporal gyrus are coupled to the temporal
envelope of attended auditory stream (Kubanek et al., 2013;
Vander Ghinst et al., 2016), while functional neuroimaging
revealed bilateral anterior superior temporal lobe contributions
to sentence comprehension (Humphries et al., 2001). To what
extent these processes contribute to adjacent cap-EEG signals
is unclear, but the overall pattern of bilateral temporal areas
picking-up sentence comprehension related processing seems
plausible. Unfortunately, inconspicuous EEG acquisition from
multiple sites is not easily possible at the more hairy head
locations (Nikulin et al., 2010). However, despite the fact that the
spatial coverage of the cEEGrid is not optimal, the captured brain
activity is sufficient for successful decoding.

Anticipating that non-optimal channel placement may be
more detrimental to decoding performance than the number of
channels itself, we used different 16 cap-channel sub-samples
to investigate the role of spatial sampling further. With the
same number of channels, different layouts resulted in different
decoding performance. The best results were achieved when
temporal and fronto-central areas were covered, in which
case performance did not differ significantly from the high-
density configuration. While this analysis also indicated that the
cEEGrids were not optimally placed for the task at hand, the ear-
EEG signals performed better than cap electrode layouts covering
the posterior and/or frontal scalp areas. This indicates that sensor
technology differences, such as size and make of electrodes, did
not contribute systematically to differences between cap-EEG
and ear-EEG. We believe that the spatial location matters for
attended speaker decoding more than electrode size or channel
number.

We reasoned that one type of artifact in cEEGrid
measurements may originate from poor skin-to-sensor
adherence in the hair-covered area. Note that, in most
individuals, the two top-most cEEGrid channels are located
at hairy scalp sites, whereas the other channels are placed at
hair-free locations. Despite the tendency to place the cEEGrids
identically in each subject, the true positioning and adherence
is dependent on the individual differences in skin and hair
condition of the participants. For the same reason there is a
possibility that the impedance of cEEGrid electrodes located
above the ears, where the skin may be obscured by hair and
therefore the conductive surface may not be close to the skin,
is higher than the impedance on other electrodes. This would
generally be reflected in the increase of impedance measured on
the respective electrodes compared to other electrodes, and in
higher-frequency broadband power, due to noise contributions.
However, our analysis did not show any systematic influence
of skin-sensor impedance on speech decoding performance,
possibly because a high input impedance amplifier was used.
Careful skin preparation and appliance of electrolyte gel reduced
the electrode impedances well enough.
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Due to the cEEGrid placement around the ear, prominent
physiological artifacts would be expected to be eye blinks,
lateral eye movements and electromyographic activity caused
by jaw and head movements. Even though participants were
instructed to keep still, there is a chance that these artifacts
were more present in ear-EEG signals compared to scalp-EEG
signals, and this in turn may have contributed to differences
in decoding performance. However, we found no difference in
high-frequency power between good and poor performers of the
attention task, which renders this interpretation unlikely. Finally,
the speech decoding performance was not biased by systematic
differences in cEEGrid placement around the ear; individual
differences in cEEGrid placement, which could not be avoided
due to individual differences in ear size, shape and location,
were not related to decoding performance. Hence, the only
aspect explaining the lower decoding performance with cEEGrids
compared to cap EEG signals appears to be the difference in
electrode placement and possibly electrode distance. Aiming for
unobtrusive, inconspicuous long-term EEG acquisition (Debener
et al., 2015), the cEEGrid is not positioned at optimal scalp
sites for attended speaker decoding. Nevertheless, this drawback
still allowed above chance-level performance in nearly all
participants. Future work aiming at cEEGrid-dedicated signal
processing might help to close this gap in performance.

A next generation brain-computer interface designed for the
goal of steering hearing devices could benefit from cEEGrid
devices, which may be reduced to typical behind-the-ear hearing
aid locations in the future. From the user perspective, cEEGrids
are more comfortable to wear than EEG caps. Our participants
did not report any discomfort when cEEGrids were adequately
fitted, which requires keeping a minimum distance between
device and the back of the concha. The possibility of long-term
measurements in real-life settings (Debener et al., 2015) requires
that participants can learn to disregard the presence of EEG
technology after a short adaptation period, and the cEEGrids
provide this potential. Nevertheless, several obstacles need to be
overcome in attended speaker decoding before an integration
of state-of-the-art EEG into hearing aid technology could take
place. One drawback of current speech decoding is the large

amount of data (∼30–60 s) needed before a reliable decision can
be made. This results in low information transfer rates and a
sluggish capturing of attention switches. Faster algorithms based
on the state dynamics have recently been developed (Akram
et al., 2016) and may alleviate this problem. Finally, progress in
decoding-algorithm development appears necessary to facilitate
a transition to real-time speech attention decoding.

CONCLUSION

In this study we used concurrent ear-EEG and cap-EEG
recordings to evaluate the possibility of identifying the attended
speaker with flex-printed electrodes placed around the ear
(cEEGrid). Our study provides evidence that unobtrusive
miniaturized electrodes placed around the ear are sufficient
to successfully decode the attended speaker in two-speaker
scenarios. The main factor contributing to lower performance

of ear-EEG compared to cap-EEG was the spatial location of
electrodes placement. More advanced decoding algorithms may
allow to combine cognitive state decoding with hearing devices,
which would enable these devices to flexibly adjust to a user’s
listening demands.
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