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Abstract: Steady-state visual evoked potentials (SSVEP) are a popular method to control brain–computer interfaces
(BCI). Here, we present a BCI for selection of virtual reality (VR) objects by decoding the steady-state vi-
sual evoked fields (SSVEF), the magnetic analogue to the SSVEP in the magnetoencephalogram (MEG). In a
conventional approach, we performed online prediction by Fourier transform (FT) in combination with a mul-
tivariate classifier. As a comparative study, we report our approach to increase the BCI-system performance in
an offline evaluation. Therefore, we transfered the canonical correlation analysis (CCA), originally employed
to recognize relatively low dimensional SSVEPs in the electroencephalogram (EEG), to SSVEF recognition
in higher dimensional MEG recordings. We directly compare the performance of both approaches and con-
clude that CCA can greatly improve system performance in our MEG-based BCI-system. Moreover, we find
that application of CCA to large multi-sensor MEG could provide an effective feature extraction method that
automatically determines the sensors that are informative for the recognition of SSVEFs.

1 INTRODUCTION

Brain–computer interfaces (BCI) are intended to as-
sist patients who suffered a severe loss of motor
control. One of the most robust physiological sig-
nals used to control a BCI are the steady-state vi-
sual evoked potentials (SSVEP) (Vialatte et al., 2010).
This signal is a stimulus driven neuronal oscillation
that can be measured over the visual cortex and re-
flects the fundamental frequency of a flickering stimu-
lus a person focuses on. In BCI-applications multiple
stimuli with different frequencies are simultaneously
presented and the task is to decide from the SSVEP
which flicker frequency the subject is focussing.

Most studies measure SSVEPs noninvasively with
the electroencephalogram (EEG) (Bin et al., 2009;
Friman et al., 2007; Horki et al., 2011; Lin et al.,
2007; Müller-Putz et al., 2005; Volosyak, 2011). In
this study we investigate the discrimination of steady

state visual evoked fields (SSVEF) from the magne-
toencephalogram (MEG). Recently, it was shown that
classification of event related magnetic fields can pro-
vide higher accuracies than classification of simul-
taneously recorded event related potentials (Quandt
et al., 2012). To date only a few studies investigated
SSVEFs (Müller et al., 1997; Thorpe et al., 2007) and
we are not aware of any study that tested the success
of SSVEFs to provide neuro-feedback in a BCI set-
ting. In our paradigm we present virtual reality ob-
jects with relatively small stimulation surfaces. The
scenario simulates a real world setting in which pa-
tients could select objects for grasping with a robotic
gripper (Reichert et al., 2013).

Our aim was to compare the performance of
the Fourier feature based classification approach of
SSVEFs, which is standard in the EEG, to a canonical
correlation based approach and to improve decoding
of SSVEFs in MEG. We first performed online decod-
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ing with Fourier features without feature selection. In
order to improve the decoding performance we did
an additional offline analysis with canonical correla-
tion analysis (CCA). This method was successfully
applied to EEG based SSVEPs (Bin et al., 2009; Lin
et al., 2007; Horki et al., 2011) and provided excellent
decoding performance. The concept of CCA is to find
an optimal channel weighting to detect the SSVEP.
However, in the aforementioned EEG studies at most
nine channels are included in the weighting. In the
MEG, however, reliable weights must be found for a
much higher number of channels. Thus, the relative
performance of a BCI based on MEG derived Fourier
features or CCA is currently unclear.

In addition, we aimed to test potential perfor-
mance gains that may be obtained by inclusion of
stimulation frequency harmonics (Müller-Putz et al.,
2005) or variations of length of analyzed signal in-
terval. The latter is of particular importance for high
throughput BCIs and their usability.

2 METHODS

In total, 22 subjects participated in the experiment.
The MEG was recorded with a BTi system, equipped
with 248 magnetometers, at a sampling rate of
678.17 Hz and processed in real-time.

2.1 Stimulation and Task

A VR scenario consisting of four different objects
(mobile phone, banana, pear, cup) placed in a square
configuration on a table was projected on a screen 1 m
in front of the subject. The edges of the square formed
by the objects were 8.5◦ visual angle long. A circu-
lar region of the table surface under each object was
used to provide flicker stimulation and feedback. On
each trial, objects were placed in random order but
the stimulation frequencies were held fixed for each
position (upper left: 6.67 Hz, lower right: 8.57 Hz,
lower left: 10.0 Hz, upper right: 15.0 Hz). The sub-
jects were instructed to direct their gaze to a prede-
fined target object. Flicker duration was 5 s, followed
by the appearance of a green circular shape around the
decoded object.

The online decoding experiment consisted of
training runs and test runs, each run consisted of 32
trials. While in training runs random feedback was
provided, in test runs the trained learning algorithm
was used to decode the object selected by the subject.
Subjects performed six to nine runs. Three subjects
only completed training runs (excluded from online

results); three subjects completed four, 16 subjects
two training runs.

2.2 Online Processing

The online decoding of SSVEFs was performed con-
ventionally by extracting amplitude information via a
Fourier transform (FT) for each channel c and stim-
ulation frequency f . In order to reduce the number
of channels to process and to primarily capture vi-
sual potentials, we preselected 59 occipital sensors as-
sumed to assess activity from visual areas. We used
a 4.5 s data segment starting at stimulation onset to
determine the spectral feature

F( f ,c) = ∥ 1
N

N

∑
n=1

xn,c · e−2πi f tn∥ (1)

where xn,c is the magnetic flux at sample point n in
channel c and tn denotes the time of the nth sample.
A regularized logistic regression (rLR) classifier was
trained on the spectral brain patterns. The classifier
was trained using the trials from training runs and up-
dated after each test trial by adding the recently ac-
quired data. This was possible because the target ob-
jects were instructed by the experimenter.

2.3 Offline Analysis

We did offline classification via rLR in a leave-one-
run-out cross validation (CV) as well as in simulated
online validation (SOV). While CV involves all avail-
able runs except the current test run, SOV involves
only preceding trials in the classifier training. Thus,
SOV mimics the process in a real BCI experiment.
Classification based on CCA was carried out indepen-
dent of training data. Therefore, here the determina-
tion of overall decoding accuracies is unaffected by
the validation scheme.

2.3.1 Feature extraction

The decoding method described in section 2.2
(FT/rLR) was applied both online and offline. In ad-
dition, we employed the CCA which finds the weights
Wx, f and Wy, f that maximize the correlation ρCCA( f )
between the optimal linear combination x f = XTWx, f
of the brain signals X and the linear combination
y f = Y T

f Wy, f of a reference signal Yf . For each fre-
quency f the signal Yf is modeled as

Yf =

(
sin2π f t
cos2π f t

)
(2)

where t denotes time and Yf can be extended by ap-
pending the sine and cosine of multiples of f to enable
the involvement of harmonics.



2.3.2 Prediction of Selections

The multivariate rLR classifier was applied on FT
features. In CCA, each stimulation frequency pro-
vides one reference signal and the reference signal
that provide maximum canonical correlation ρCCA( f )
with brain activity indicates the classes. Serving
as a training-independent classifier, we determined
the frequency that revealed the maximum correlation
(MC) between x f and y f :

fmax = argmax(ρCCA( f )) (3)

for each trial separately. We compared the fea-
ture/classifier combinations FT/rLR and CCA/MC by
investigating the impact of the analysis window width
and the involvement of harmonics. The identical pre-
selected sensors were used as described in section 2.2.

3 RESULTS

Subjects correctly selected the target object in 74.4 %
of trials on average (25 % chance performance), when
performing the experiment online.

Figure 1 shows the comparison of correct dis-
crimination rates obtained with offline FT/rLR and
CCA/MC with different window widths. Averages
and standard errors were calculated over subjects.
Here, FT features were derived without harmonics
and CCA features were obtained involving two har-
monics. Obviously, CCA/MC considerably enhances
the decoding accuracies. For example, with 4.5 s win-
dow width CCA/MC achieved on average 93.8 % cor-
rect classifications compared to 77.9 % using FT fea-
tures. The highest accuracies were always found at
the maximum window width. However, for CCA a
steeper and faster increase of correct decoding rates
with increasing window width is obvious. This sug-
gests that CCA features might provide good perfor-
mance with shorter stimulation intervals than FT fea-
tures. This is also indicated by the observation that
the optimal information transfer rate (Wolpaw et al.,
2000) is obtained with 3.0 s window widths (corre-
sponding to 13.6 bit/min) for FT/rLR but with 1.5 s
window widths (corresponding to 36.7 bit/min) for
CCA/MC. When we tested the influence of harmon-
ics with time windows 4.5 s wide, we found that accu-
racy obtained with FT-features considerably increased
to 81.2 % (p¡0.015, paired Wilcoxon sign-rank test)
when two harmonics were added. However, accu-
racy obtained with CCA fell only slightly (to 92.3 %)
but consistently (p¡0.001, paired Wilcoxon sign-rank
test) when the two harmonics were deleted and only
the fundamental frequency was used. This indicates

that the superiority of CCA over FT features does not
depend on a higher dimensional dependent variable
space spanned by the reference functions.

Figure 1: Dependence of decoding accuracy on signal inter-
val length (windows of 0.5–4.5 ms width) and feature space.
Average CV performance over subjects is shown. Squares
represent accuracies obtained with CCA/MC classification
and circles depict accuracies obtained with FT feature/rLR
classification. Error bars show the standard error of the
mean.

In order to verify BCI applicability, we performed
an SOV. The group results of the SOV deviate slightly
from the online results since here all subjects were in-
volved in the analysis, regardless of the number of
test runs they performed, and a constant number of
two training runs were assumed. We depict the sin-
gle subject results in Figure 2. There, subjects are
sorted by performance obtained by the FT decoding
method. It is important to note that the CCA/MC
method involves all performed trials for validation
and single trials are validated independent of oth-
ers. In contrast, the rLR requires training data and
was re-trained with each successive trial starting from
the third run. The average decoding accuracy was
76.6 % with the FT/rLR method and much higher at
93.7 % with the CCA/MC method. Fourteen out of
22 subjects obtained accuracies above 95 % with the
CCA/MC method.

Computation time for the FT algorithm using
equation 1 as well as for CCA has linear complex-
ity with regard to the signal length. A single thread
on a 2.8 GHz AMD Opteron 8220 SE processor takes
1.3 ms for the FT but 19.9 ms for the CCA with a 1 s
long segment, 59 channels, 678.17 Hz sampling rate
and four frequencies without harmonics. Although
FT provides an advantage in terms of processing time,
CCA processing time is still short enough for applica-
tion in real-time experiments.



Figure 2: Single subject performance obtained in an SOV.
Each of the 22 subjects shows improvement of decoding
accuracy with the CCA method (light gray bars) compared
to classification of FT features (dark gray bars, sorted in
descending order).

4 DISCUSSION

We compared FT as a conventional spectral feature
extraction method combined with multivariate classi-
fication to CCA/MC regarding their performance in
MEG based BCIs. With the CCA approach, decod-
ing accuracy was considerably improved compared
to FT. This held already for at analysis windows as
short as one second. The higher accuracy of CCA
even with short data windows considerably increased
the information transfer rates as compared to FT. This
result suggests that CCA/MC is an efficient method
for high throughput SSVEF-BCIs. A further advan-
tage of CCA/MC over FT/rLR in the context of BCI
is that CCA/MC, as opposed to FT/rLR does not re-
quire training blocks. Thus, lengthy initial phases for
acquisition of training data can be avoided. In BCI-
practice, the model estimation for each single trial in
CCA can lead to improved robustness against sensor
replacement, sensor malfunction and non-static brain
patterns. This renders the CCA method as a flexi-
ble and reliable feature extraction method for multi-
channel BCIs controlled by shifting attention to oscil-
lating visual stimuli.

We confirmed in our study the finding that in-
clusion of harmonics significantly increases classifi-
cation accuracy in SSVEP BCIs (Müller-Putz et al.,
2005). The performance increase was small for CCA
but statistically significant. However, other authors
did not find such a benefit (Bin et al., 2009). Im-
portantly, the better performance of CCA/MC than
FT/rLR was independent of whether harmonics were
included or not.

In this study we demonstrate for the first time that
magnetic SSVEFs are suitable to control a BCI. In
particular, SSVEFs were decoded for selection of ob-
jects, presented in a VR scenario. Furthermore, we
showed that the CCA is a powerful method to rapidly

detect target frequencies in the MEG. The method in-
troduced in this work is capable of decomposing fre-
quency components of sources that are spatially dis-
tributed over dense sensor arrays. Importantly, the
proposed algorithm can be executed in several mil-
liseconds and, consequently, it is suited for BCI im-
plementation and can be applied online.

Even though MEG is not suited for home use, this
modality is suited for BCI development Despite re-
ports of higher ITRs in some EEG based SSVEP stud-
ies (Bin et al., 2009) we believe that the BCI accuracy
strongly depends on the visual stimulation. There-
fore, comparison of bitrates should be treated with
caution. Furthermore, an MEG system could serve
as a training device to familiarize patients with BCI
paradigms.
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