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Abstract

A classic definition of multisensory integration (MI) has been proposed as “the presence of

a (statistically) significant change in the response to a crossmodal stimulus complex

compared to unimodal stimuli”. However, this general definition did not result in a broad

consensus on how to quantify the amount of MI in the context of reaction time (RT). In

this brief note, we argue that numeric measures of reaction times that only involve mean or

median RTs do not uncover the information required to fully assess the effect of

multisensory integration. We suggest instead novel measures that include the entire RT

distributions functions. The central role is played by relative entropy (aka Kullback-Leibler

divergence), a statistical concept in information theory, statistics, and machine learning to

measure the (non-symmetric) distance between probability distributions. We provide a

number of theoretical examples, but empirical applications and statistical testing are

postponed to later study.
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Measuring Multisensory Integration in Reaction Time:

Relative Entropy Approach

1. Introduction

The study of how information from different sensory modalities is merged to produce

a unified percept is an important topic in many research fields including the behavioral

sciences. A pragmatic definition of multisensory integration (MI) as “the presence of a

(statistically) significant change in the response to a crossmodal stimulus complex compared

to unimodal stimuli” has been proposed in Stein et al. (2009). In the realm of reaction time

(RT) measures for MI, this amounts to comparing the average time, e.g., to detect a

visual-auditory stimulus to the average time to detect a unisensory, visual or auditory,

stimulus. The study of crossmodal interaction effects in RTs goes back more than 100 years

(Todd, 1912), and has generated a huge number of studies (see reviews Hershenson (1962);

Welch and Warren (1986); Rach et al. (2011)).

In this theoretical note, we argue that current MI measures for reaction time based

solely on parameters of central tendency, like means or medians, do not fully reveal the

information available to assess effects of integration across the senses. We suggest a novel

approach to quantifying MI that involves the entire RT distributions but without

underlying parametric assumptions. The basic idea is to measure, in a sense to be specified

below, how “far away” the crossmodal RT distribution is from the unimodal RT

distributions. A central role is played by the concept of relative entropy (aka

Kullback-Leibler divergence), a statistical concept in information theory, statistics, and

machine learning to measure the (oriented, i.e. non-symmetric) distance between

probability distributions (Cover and Thomas, 1991). The new measure is illustrated by

some theoretical examples. Empirical applications including simulation and testing are

postponed to a future study.

We introduce the traditional measure of multisensory integration for RTs and point

out its shortcomings due to being based on means or medians only. After presenting the
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notion of relative entropy and some of its properties, we give a general definition of

crossmodal response enhancement (CRE) based on relative entropy. Subsequently, we

discuss two different areas of application. In the first, measures of CRE are derived for

different statistical distributions (exponential, normal, and lognormal) yielding an

alternative to classic ones based on means (expected values) only. In the second, we use

relative entropy to quantify by how much the prediction of an (arbitrary) model deviates

from observed data, followed by the analysis of the new measure to two specific MI models,

the race model and a mixture model. We conclude with some remarks concerning potential

application of our approach to neurosensory data.

1.1 Response Enhancement in Redundant Signals Paradigm: Traditional

Measure

In the redundant signals paradigm, also known as divided attention paradigm, a

participant is instructed to respond as soon as a uni- or crossmodal signal occurs. A

traditional measure of crossmodal response enhancement in RTs is defined as (e.g., Rach

et al., 2011)

CRERT = min{ERTV ,ERTA} − ERTV A
min{ERTV ,ERTA}

× 100. (1)

Here, E stands for expected (mean) value, but the median is often used instead as well.

The numerator compares the faster of the unisensory RTs (here, visual or auditory) to the

crossmodal (visual-auditory) RT, and the denominator and multiplication factor simply

serve to standardize the measure. Thus, CRERT expresses multisensory enhancement or

inhibition as a proportion of the faster unisensory response. For example, CRERT = 10

means that mean RT to the visual-auditory stimulus is 10% faster than the faster of the

expected RTs to the unimodal visual or auditory stimuli. For simplicity, we neglect

occurrence of erroneous responses, like failure to detect a stimulus.

Measure CRERT is a simple way of quantifying MI that is amenable to standard

statistical testing. However, it does not take into account that integrating information from
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different modalities may also affect other, more fine-grained aspects of the associated RT

distributions. For example, one possible result of integrating information might be that

short RTs become more frequent while long RTs tend to be even longer, leaving the

difference between uni- and crossmodal mean RTs more or less invariant. Because stimulus

detection is conceived of as a stochastic event generating some random variability in

information accumulation, the way this variability is modified under crossmodal stimulation

may yield important insights into the integration process itself (Otto et al., 2013).

2. Multisensory Integration Measures Based on Relative Entropy

All available information about the MI process is contained in how the multisensory

RT distribution differs from the unimodal RT distributions. Thus, an MI measure should

be some function of this difference. We identify two issues: first, how should this difference

be formally defined? Second, how should the two unisensory RT distributions be combined

to enter into that expression?

Recall that a metric d on a set S is defined as a function d : S × S → R (R the set of

real numbers) such that, for all x, y, z ∈ S, (i) d(x, y) ≥ 0 (non-negativity); (ii) d(x, y) = 0

if and only if x = y; (iii) d(x, y) = d(y, x) (symmetry); and (iv) d(x, y) ≤ d(x, z) + d(z, y)

(triangle inequality).

There is a huge number ways to define a metric on a set of probabilities (Deza and

Deza, 2009). However, it turns out that not all properties of a metric are actually needed

for our approach. We want a measure that quantifies how the unimodal distributions have

to be “modified” in order to attain the crossmodal distribution; thus, neither symmetry nor

the triangle inequality are required. This suggests using the following concept:

Definition 1 The relative entropy (RE) between two probability mass functions p(x) and
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q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log p(x)
q(x) (2)

= Ep log p(X)
q(X) . (3)

Here, X is a discrete real-valued random variable and Equation (3) means that D(p||q)

equals the expected value of random variable log p(X)
q(X) with respect to probability mass

function p(x). We use the convention that 0 log 0
q

= 0 and p log p
0 = 0. Relative entropy is

also known as Kullback-Leibler Divergence (KLD). Relative entropy for continuous random

variables with probability density functions (pdf) f and g is defined as

D(f ||g) =
∫
f log f

g
.

D(p||q) can be interpreted as measuring how well the “target” distribution p(x) is

approximated by q(x); it plays an important role in several fields including information

theory, statistical physics, neural networks, and Bayesian statistics (Kullback and Leibler,

1951; Cover and Thomas, 1991; MacKay, 2003). Relevant properties for our purposes are:

1. D(p||q) = 0 if and only if p = q (self-identification)

2. D(p||q) ≥ 0 for all p, q (non-negativity)

Non-negativity, also known as Gibb’s inequality or information inequality, follows from

Jensen’s inequality (for proofs, see the above references).

2.1 Defining a Measure of MI Based on Relative Entropy

In order to define a measure of crossmodal response enhancement based on relative

entropy, we take the crossmodal pdf, fV A(t), as “target” function p(x), or f , and unimodal

pdfs fV , fA as q(x), or g (indexes V A, V , and A here stand again for visual-auditory

crossmodal and unimodal conditions). Without adding any modeling assumption, we take

the smaller of the Kullback-Leibler divergences (note that we are using the shorthand KLD

from now on) with respect to the unisensory distributions to define :
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Definition 2

CREKLD = min{D(fV A||fV ), D(fV A||fA)}. (4)

This is analogous to the traditional measure CRERT of Equation (1). It equals zero if and

only if fV A = fV or fV A = fA. Note that KLD values can take large values going towards

infinity. In order to make CREKLD values from different data sets comparable, a

standardization like in Equation (1) would be desirable, but it seems not obvious how to do

this.

2.2 Measures of MI for Some Specific Distributions

The first two examples (exponential and normal distributions) are only for

illustration of the measure defined in Equation (4). The third (lognormal distributions) is a

plausible RT distribution. In particular, an example demonstrates how a measure based on

relative entropy is more informative than the traditional measure: the latter does not

detect any MI effect whereas the former clearly does.

Example 1 (Exponential) We assume that fV A, fV , fA are exponential distributions with

parameters λV A, λV , λA, respectively, and let λV A > λA > λV > 0. Then

D(fV A||fV ) =
∫ ∞

0
λV A exp(−λV A t) log

[
λV A exp(−λV A t)
λV exp(−λV t)

]
dt

= log λV A
λV

+ λV
λV A

− 1,

so that we obtain the same as above, due to assuming λA > λV :

CREKLD = min{D(fV A||fV ), D(fV A||fA)}

= min{log λV A
λV

+ λV
λV A

− 1, log λV A
λA

+ λA
λV A

− 1}

= log λV A
λV

+ λV
λV A

− 1.

With (λV A/λV )→∞, that is, if the effect of MI increases without bound, then

CREKLD →∞ as well. Note that the exponential is not a plausible RT distribution and is

presented here for illustration only.
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Example 2 (Normal) The density of the normal distribution of a real-valued random

variable X is

f(x;µx, σx) = 1
σ
√

2π
exp

(
−(x− µx)2

2σ2
x

)

with µx ∈ (−∞,+∞) and σx > 0, abbreviated as X ∼ N (µx, σ2
x). The KLD for two random

variables X and Y with Y ∼ N (µy, σ2
y) with densities fx, fy, respectively, is known to equal

D(fx||fy) = 1
2

[
(µx − µy)2

σ2
y

+ σ2
x

σ2
y

− log σ
2
x

σ2
y

− 1
]
. (5)

We have a unisensory (visual) distribution N (µV , σ2
V ), a unisensory (auditory) distribution

N (µA, σ2
A), and a bisensory distribution N (µV A, σ2

V A); then

D(fV A||fV ) = 1
2

[
(µV A − µV )2

σ2
V

+ σ2
V A

σ2
V

− log σ
2
V A

σ2
V

− 1
]
.

Because EX = µ and VarX = σ2 are functionally independent, that is, their values can

vary separately, the KLD depends on both the means and variances of the distributions, and

so does CREKLD = min{D(fV A||fV ), D(fV A||fA)}. Importantly, even under equality of the

means, CRE remains non-zero. In particular, if the bisensory distribution has a larger or a

smaller variance compared to the unisensory distributions, this is taken into account in the

KLD-based measure of MI.

Because of the symmetry of the normal distribution, this example is again not a realistic

one for empirical RT data. The following example, however, is often considered to be of a

plausible shape for RTs.

Example 3 (Log-Normal) The density of the log-normal distribution of a non-negative

random variable X is

f(x;µ, σ) = 1
xσ
√

2π
exp

(
−(log(x)− µ)2

2σ2

)
,

with µ ∈ (−∞,+∞) and σ > 0, abbreviated as X ∼ LN (µx, σ2
x). Moreover,

EX = exp
(
µ+ σ2

2

)
and VarX = [exp(σ2)− 1] exp(2µ+ σ2).
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For random variables X ∼ LN (µx, σ2
x) and Y ∼ LN (µy, σ2

y) with pdfs fx, fy, respectively,

the KLD can be shown Dittrich (2013) to be

D(fx||fy) = log σy
σx

+ 1
2σ2

y

[(µx − µy)2 + σ2
x − σ2

y.] (6)

Assume fV A, fV , fA are all log-normal distributions, thus LN (µV A, σ2
V A), LN (µV , σ2

V ), and

LN (µA, σ2
A), respectively. Then,

D(fV A||fV ) = log σV
σV A

+ 1
2σ2

V

[(µV A − µV )2 + σ2
V A − σ2

V ]

and

D(fV A||fA) = log σA
σV A

+ 1
2σ2

A

[(µV A − µA)2 + σ2
V A − σ2

A].

Both mean and variance of log-normal random variables are functions of both parameters

(µ and σ), so they cannot vary independently. Still,

CREKLD = min{D(fV A||fV ), D(fV A||fA)}

depends on both moments.

Two special cases are of interest as well:

1. σV A = σV = σA = σ:

CREKLD = min{(µV A − µV )2), (µV A − µA)2}
σ2 ;

2. σV A = σV = σA = σ and µV = µA = µ:

CREKLD = (µV A − µ)2

σ2

Even in these restricted cases, the MI measure depends on parameter σ2 modulating both

mean and variance.

The last example serves to illustrates that measure CREKLD is more informative

than the traditional one. Indeed, assume that ERTV A = ERTA; for convenience, we also
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assume µA = µV and σA = σV implying fV = fA and ERTV = ERTA. Then CRERT = 0

indicates a null effect of multisensory integration. On the other hand, it also means that

exp
[
µV A + σ2

V A

2

]
= exp

[
µA + σ2

A

2

]
or,

µV A + σ2
V A

2 = µA + σ2
A

2 , (7)

which does not imply fV A = fA except if µV A = µA and σV A = σA. For example, let

µV A = 3, σV A = 2 and µ(1)
A = −7.5 and σ(1)

A = 5. While both pdfs, fV A and f (1)
A , have the

same mean (148), their shape is very different: f (1)
A has much more probability mass on

short values than fV A (see Figure1).

(FIGURE 1 ABOUT HERE)

Moreover, by simple calculation

CREKLD = D(fV A||f (1)
A ) = 2.70129, (8)

For another pdf, f (2)
A , with µ(2)

A = −13 and σ(2)
A = 6, again with the same mean, we get

CREKLD = D(fV A||f (2)
A ) = 4.20972, (9)

representing an even larger effect of multisensory integration.

Very similar treatments can be performed with other 2-parameter distributions, e.g.,

the gamma. Obviously, measure CREKLD can also be defined when fV A, fV , fA all belong

to different distributional families, e.g., log-normal unisensory distributions together with a

bisensory Weibull.

3. MI measures based on model predictions

Besides calculating empirical measures of MI like CRERT , measures based on models

of the integration process are in use as well. Specifically, given a model predicting
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performance in the crossmodal condition from the unimodal conditions, a KLD-based

measure quantifies how “far away” the prediction is from the observed data. This is

analogous to the role of relative entropy in statistical testing, namely to quantify how much

an empirical data set deviates from a hypothesized distribution or model.

Let f̃V A, θ(t) denote the bisensory density predicted by some model with parameter

space θ ⊂ Rd. The less the observed MI distribution is predictable from the model, the

larger the CRE measure should be. The KLD-based MI measure then is defined by

CREKLD = min
θ⊂Rd

D(fV A||f̃V A, θ). (10)

Of course, minimization over the parameter space will be void when a model is

parameter-free.

3.1 The race model: traditional vs. KLD-based MI measures. One of the

earliest multisensory models is the (horse) race model, that is, a visual-auditory stimulus

complex is supposed to trigger random visual and auditory processes such that the

observed RT equals the minimum time of the two, i.e., the ’winner of the race’ Raab

(1962). Thus, combination of the unisensory distributions is here simply defined by

probability summation. Under stochastic independence, the bisensory distribution function

of the race model is obtained as

F̃V A(t) = FV (t) + FA(t)− FV (t)FA(t),

with corresponding density

f̃V A(t) = fV (t)(1− FA(t)) + fA(t)(1− FV (t)), t ≥ 0. (11)

A violation of the race model occurs if the observed distribution FV A(t) is larger than

F̃V A(t) for some t. The most traditional MI measure quantifies the amount of violation by

defining

RIND
V A =

∫ ∞
0

[FV A(t)− (FV (t) + FA(t)− FV (t)FA(t))]+ dt. (12)
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Thus, it simply takes the area between the observed bisensory distribution function and

the one predicted via the race model (Colonius and Diederich, 2020). Without assuming

stochastic independence, the measure RIND
V A can be replaced by the, generally smaller,

measure

RMND
V A =

∫ ∞
0

[FV A(t)−min{FV (t) + FA(t), 1}]+ dt,

corresponding to maximally negative dependence between the ‘racers‘ (Colonius and

Diederich, 2006). It has been shown that areas RIND
V A and RMND

V A are simply equal to the

difference between the observed mean (expected value) of the bisensory distribution and

the mean predicted by a race model under stochastic independence and maximal negative

dependence, respectively (Colonius and Diederich, 2006).

3.2 KLD-based MI measures for race models. Under the independent race

model (IND), inserting the bisensory density into the KLD measure yields

D(fV A||f̃V A)

=
∫ ∞

0
fV A(t) log fV A(t)

f̃V A(t)
dt

=
∫ ∞

0
fV A(t) log fV A(t)

fV (t)(1− FA(t)) + fA(t)(1− FV (t)) dt (13)

In this parameter-free form, the integral (13) can be taken as CREKLD. If some specific

distributions for the IND model are assumed, minimization of D(fV A||f̃V A) over the

parameter space would be required.

Comparing the KLD-based measure with traditional one, RIND
V A , suggests that the

former one should be more sensitive with respect to the distributional shapes. The reason

is that in the traditional measures, integration is over distributions functions, whereas

integration is over densities in KLD measures (13). Moreover, instead of race models, any

other model type (e.g., diffusion co-activation models) predicting f̃V A(t) can be inserted in

CREKLD.
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3.3 KLD measures based on mixtures. Consider a mixture of the unisensory

distributions,

f̃V A,α(t) = αfV (t) + (1− α)fA(t),

with 0 ≤ α ≤ 1. This model holds that the bisensory response is determined by just one

modality while ignoring the other, with probability α by the visual and 1− α the auditory

modality. For a given set of RT distributions, a value of α can be determined that gives the

smallest KLD value of D(fV A||αfV + (1− α)fA), that is:

α∗ = arg min
α∈[0,1]

D(fV A||αfV + (1− α)fA). (14)

We then have

CREKLD = D(fV A||f̃V A,α∗). (15)

The cases of α = 1 or 0 would yield the components of CREKLD again. This example is

special because the model does not predict response enhancement but inhibition of the

bisensory RT (for examples, see Welch and Warren (1986)). The value of α∗ may be of

interest when interpreted as the relative weight given to the visual component in

approximating the bisensory distribution.

4. Dicussion

Relative entropy (aka Kullback-Leibler divergence, KLD) is an oriented (i.e.,

non-symmetric) measure of “distance” between probability distributions. Here we

demonstrate that it can be used to define measures of crossmodal response enhancement

that more fully uncover the information about the integration process than classic

measures based solely on means or medians of RT data. These novel measures are defined

by the relative entropy between some combination of the unimodal RT distributions and

the (observed) crossmodal RT distribution, thus gauging the “distance” between the former

and the latter. We present examples where the classic measures are (close to) zero, because

the difference between uni-and crossmodal means is (close to) zero whereas the KLD based
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measure is sensitive to changes in the shape of the RT distributions. We limit our

presentation to theoretical examples, but an extension of the approach to empirical data is

straightforward drawing upon the ubiquitous applications of relative entropy in various

areas of statistics and machine learning.

While our focus here was on measuring multisensory effects on reaction time, the

relative entropy approach could easily be extended to the realm of neuronal data. Note

that the most widely used descriptive measure of the magnitude of multisensory

integration, measured by absolute spike frequency, is defined as

CRE = CM− SMmax

SMmax
× 100, (16)

where, at the sample level, CM is the mean absolute number of spikes in response to the

crossmodal stimulus and SMmax is the mean absolute number of spikes to the most effective

modality-specific component stimulus (Meredith and Stein, 1983; Stein and Meredith,

1993). We have previously suggested to replace (16) by a measure taking into account

possible stochastic dependency between the sensory channels under crossmodal stimulation

(Colonius and Diederich, 2017). Using KLD measures on the (theoretical or empirical)

spike count frequency distributions, in analogy to the one suggested for RTs here, would go

one step further in maximizing the amount of information uncovered by numerical

measures of MI.

It had been acknowledged early on that measures based solely on mean numbers of

impulses have limitations (Rowland and Stein, 2007). In particular, it is not sensitive to

the temporal variation of the rate of information across the stimulus processing (“initial

response enhancement”). The suggested replacement of the mean spike counts in (16) by

the KLD measure would not resolve that problem, however. On the other hand, Miller

et al. (2017) developed a continuous-time multisensory model that postulates a

moment-by-moment operation transforming unisensory inputs into a multisensory output

(“multisensory transform”). It would be interesting to investigate whether it is possible to

define KLD measures on the unisensory-multisensory transforms, after appropriate
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standardization into probability distributions, to extract additional information from the

data.
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Figure 1 . Two lognormal probability distribution functions with the same mean (E = 148)

but different parameters: (µ1 = 3, σ1 = 2) vs. (µ2 = −7.5, σ2 = 5).


