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Abstract—Enhancing the user’s own-voice for head-worn microphone
arrays is an important task in noisy environments to allow for easier
speech communication and user-device interaction. However, a rarely
addressed challenge is the change of the microphones’ transfer functions
when one or more of the microphones gets occluded by skin, clothes or
hair. The underlying problem for beamforming-based speech enhancement
is the (potentially rapidly) changing transfer functions of both the
own-voice and the noise component that have to be accounted for to
achieve optimal performance. In this paper, we address the problem of an
occluded microphone in a head-worn microphone array. We investigate
three alternative mitigation approaches by means of (i) conventional
adaptive beamforming, (ii) switching between a-priori estimates of the
beamformer coefficients for the occluded and unoccluded state, and (iii) a
hybrid approach using a switching-adaptive beamformer. In an evaluation
with real-world recordings and simulated occlusion, we demonstrate
the advantages of the different approaches in terms of noise reduction,
own-voice distortion and robustness against voice activity detection errors.

1. INTRODUCTION

Head-worn microphone arrays like hearing aids, most modern
headphones, and smart or virtual reality glasses can be effective
at capturing the user’s own-voice due to the vicinity to the source.
This is beneficial for speech communication, e.g., for telephony or
human-machine interaction using voice commands [1]–[3]. Despite
the fact that even in noisy environments the user’s own-voice might
already be captured at a relatively high signal-to-noise ratio (SNR),
noise reduction algorithms, such as beamformers steering towards the
user’s mouth, can further help to improve speech intelligibility [1]–[6].

A common problem for body-worn microphone arrays is suscep-
tibility to user movement, i.e., inducing changes in the microphones’
relative transfer functions due to deformation of the array [7] or
quick movements relative to the acoustic scene [8]. Especially fixed
spatial filters, typically relying on known microphone array geometries
and microphone transfer functions, can experience a degradation of
performance due to changes in the array characteristics [9]–[12], e.g.,
due to deformation. A re-calibration procedure for changing transfer
functions used in a generalized sidelobe canceler was proposed in
[13]. Another problem of body- or head-worn microphone arrays,
also causing potentially rapid changes in the transfer functions, is the
risk of certain microphones being occluded by skin, hair or clothing,
often resulting in a muffled, i.e., low-pass filtered, sound, which can
affect the performance of speech enhancement system. The problem
of occluded microphones for array processing was considered in [14]
where a deformable array with partial occlusion was addressed. In the
context of dereverberation, the problem of rapidly changing transfer
functions/filter vectors was considered in [15], where a switching ver-
sion of the adaptive weighted prediction error algorithms was proposed.
Switching beamformers with adaptive noise covariance matrices per
filter were proposed in [16] to address the problem of interferer re-
duction in underdetermined situations. Examples for dictionary-based
approaches for rapid dynamics are e.g. wind noise suppression [17]
or automatic speech recognition with varying source directions [18].
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In this paper, we investigate the problem of own-voice enhancement
for a head-worn microphone array, where a particular microphone is
prone to being sporadically and dynamically occluded. As we regard
the detection of the occlusion as a separate problem [19], [20], we
base our work on the assumption that a reliable occlusion detector is
available. We propose the following processing strategies to mitigate
the effect of the occlusion: (i) a standard implementation of an
adaptive beamformer, (ii) a switching mechanism between a-priori
estimates of the filter vectors for the occluded and unoccluded
state, i.e., similar to a dictionary-based approach, and (iii) a hybrid
switching-adaptive beamformer which adapts two sets of covariance
matrices depending on the occlusion state.

The proposed algorithms are evaluated using real-world recordings
of own-voice in noise with dynamically changing occlusions. The
evaluation is performed on multiple speech and noise samples with
different dynamics in the occlusion pattern and multiple SNRs. We
demonstrate the advantages of the different processing strategies in
terms of noise reduction, own-voice distortion and robustness against
a non-optimal voice activity detection (VAD). The results show the
potential of the proposed switching-adaptive beamformer, which
exhibits lower own-voice distortions for highly dynamic changes in
the occlusion state than a conventional adaptive beamformer, while
clearly outperforming the purely switching beamformer in terms of
SNR improvement if a good VAD is available.

2. SIGNAL MODEL AND PROBLEM FORMULATION
We consider a microphone configuration of a head-worn microphone
array with M microphones, which capture the user’s own-voice
(considered as the target signal) and farfield noise. The noisy
microphone signal in the m-th microphone in the discrete Fourier
transform (DFT) domain can be written as

Ym(k,t)=Xm(k,t)+Nm(k,t), m∈{1,...,M}, (1)

where k and t denote the frequency bin and time frame index
respectively, and Xm(k,t) and Nm(k,t) are the speech and farfield
noise captured by the m-th microphone, respectively. As all frequency
bins and time frames are assumed to be independent and are processed
as such, we will neglect k and t in the remainder of the paper
wherever possible. The signal model in (1) can be written in terms of
the M -dimensional signal vector y=[Y1,Y2,...,YM ]T containing all
microphone signals, where {·}T denotes the transpose operator, i.e.,

y=x+n, (2)

where the speech and noise vector x and n are defined similarly to
y. For the speech component, a multiplicative transfer function is
assumed [21], allowing to write the speech vector as

x=hXref , (3)

where Xref denotes the speech component in the reference
microphone, and the RTF vector h contains the ratios of acoustic
transfer functions (ATFs) to all microphones (A1,...,AM ) relative



to a reference microphone, such that the entry of the reference
microphone is 1 by definition, i.e.,

h=[A1/Aref ,A2/Aref ,...,1,...,AM/Aref ]
T . (4)

Assuming statistical independence of the speech and noise
component, the noisy covariance matrix can be written as

Ry=E{yyH}=Rx+Rn, (5)

where E{·} denotes the expectation operator, {·}H denotes the
Hermitian transpose operator, and Rx and Rn are the speech and
noise covariance matrix, respectively. Using (3), Rx can be written
as a rank-1 matrix spanned by the RTF vector i.e.,

Rx=ϕxhh
H , (6)

which is scaled by the speech power spectral density in the reference
microphone ϕx=E{|Xref |2}. For the noise component, we assume
the covariance matrix Rn to be full-rank.

To include the potential occlusion of a certain microphone into
the signal model, we define the first microphone to be the potentially
occluded one, without loss of generality. Furthermore, we define the
two ATFs A1 =Aø for the unoccluded default state in (4) and Ao

for the occluded state (and similar for the unoccluded and occluded
RTFs Hø and Ho), respectively. The relation between these two
states of the first microphone can be defined as

X1,o=BoX1,ø, N1,o=GoN1,ø, (7)

where X1,o, X1,ø, N1,o and N1,ø are the occluded and unoccluded
speech and noise component in the first microphone, respectively. Bo

and Go are the occlusion transfer functions, i.e., the RTFs between
the occluded and unoccluded state of the first microphone, where
the occlusion transfer function for the speech component can be
written as Bo=Ao/Aø =Ho/Hø, for which it should be noted that
the definition in terms of the RTFs Ho and Hø only holds if the first
microphone is not selected as the reference microphone. Also note
that even though we cannot write the noise component n in terms of
ATFs (or an RTF vector), we can still define the transfer function Go

between the unoccluded and occluded state of the first microphone.
Using (7), the occluded RTF vector ho can be written as

ho=Bhø, (8)

where hø is the unoccluded RTF vector and the transformation matrix
B is defined as

B=diag([Bo,1
T
M−1]) , (9)

where diag(·) creates a diagonal matrix out of a vector and 1M−1

is the (M−1)-dimensional vector of ones. Using (9), the occluded
speech covariance matrix is given by

Rx,o=BRx,øB
H =ϕxBhøh

H
ø BH . (10)

The transformation matrix G and the occluded noise covariance
matrix Rn,o are defined similarly to (9) and (10). Generally, the
two occlusion transfer functions Bo and Go for the speech and noise
component do not have to be the same. Figure 1 depicts the power
of the occluded speech and noise transfer function respectively for
our specific case1, clearly showing different transfer characteristics

1The RTFs Bo and Go between the occluded and unoccluded state were
obtained from recordings of clean speech and noise on multiple users (data
from 16 users contributed to the extraction of the transfer functions). For the
speech component, the occluded RTF was obtained from the occluded and
unoccluded RTF vector, while for the noise component, only a relative gain
was extracted from the occluded and unoccluded noise covariance matrix.

Fig. 1: Nearfield (own-voice) and farfield (noise) transfer function between
occluded and unoccluded state averaged over multiple users and sound fields
(solid lines) and their standard deviations (shaded areas).

for the speech and the noise component. Such differences in the
effect of occlusion on different signal components can, for example,
be caused by the directionality of the occluded microphone.

The output signal of the multi-channel filter is defined as Z=wHy
with the M -dimensional filter vector w for which we will use the
minimum-variance distortionless response (MVDR) beamformer [5],
[6], [9], i.e.,

wν =
R̂−1

n,ν ĥν

ĥH
ν R̂−1

n,ν ĥν

, ν∈{ø,o}, (11)

where a hat denotes an estimate of a quantity and the beamformer
depends on the occlusion state ν.

3. OCCLUSION MITIGATING PROCESSING
In this section, we discuss possible approaches on how to mitigate the
influence of the occlusion on an MVDR beamformer. In Section 3.1,
we present the state-of-the-art processing for dynamic acoustic sce-
narios, i.e., adaptive covariance matrix and RTF vector estimation. In
Section 3.2, we introduce a switching mechanism for the occluded and
unoccluded state, making use of a-priori known transfer functions. In
Section 3.3, we propose a combination that adapts different sets of co-
variance matrices for the occluded and unoccluded state, respectively.

3.1. Adaptive Beamforming
In many speech enhancement algorithms for dynamic scenes, the
noisy and noise covariance matrix are estimated by means of
recursive smoothing [22]–[25], i.e.,

R̂y(t)=

{
αyR̂y(t−1)+(1−αy)y(t)y(t)

H , if VAD(t) = 1
R̂y(t−1), if VAD(t) = 0,

(12)

R̂n(t)=

{
αnR̂n(t−1)+(1−αn)y(t)y(t)

H , if VAD(t) = 0
R̂n(t−1), if VAD(t) = 1,

(13)
with the smoothing constants αy and αn, where the updates depend
on the (binary) voice activity detection (VAD).

For the adaptive estimation of the RTF vector ĥ, a power method
implementation [26] of the generalized eigenvalue decomposition
(GEVD)-based RTF estimation [27]–[30] is employed. The RTF
vector is estimated as the (normalized and de-whitened) principal
eigenvector of the matrix pencil (R̂n,R̂y).

Assuming that a fast adaptation is sufficient to capture the potentially
highly time-varying dynamics of occlusion, the adaptive beamforming
techniques described above should be able to account for occlusion
effects after a short adaptation period. However, it should also be noted
that only the noisy or the noise covariance matrix can be updated at a



time, meaning that if occlusion occurs e.g. while speech is active, the
noise covariance matrix cannot adapt to the occlusion. This further
implies that frequent and rapid changes might not fully be captured
and hence the beamformer might be suboptimal in a sense that the esti-
mated covariance matrices do not reflect the true signal characteristics.
Furthermore, note that adaptive processing as described above relies
on a (good) VAD, while not depending on an occlusion detection.

3.2. Switching Beamforming

Another approach to handling occlusion makes use of the a-priori
knowledge of both occluded and unoccluded RTF vectors and occluded
and unoccluded noise covariance matrices, which are switched, as
indicated in (11), depending on the detected occlusion state.

Hence, we assume that the occluded and unoccluded relative
transfer functions, i.e., an a-priori estimate, denoted by a tilde, of
the (unoccluded) RTF vector h̃ø (cf. (3)) and the occluded transfer
functions for speech and noise B̃o and G̃o in (7), respectively, are
available. Furthermore, the unoccluded noise covariance matrix
is modeled as diffuse as the a-priori estimate R̃n,ø. Using the
transformation in (10) allows for computing the occluded RTF vector
and noise covariance matrix. These assumptions are realistic to make
for a known, fixed array where the user’s own-voice is the signal of
interest, which comes from an well known position and where prior
measurements of transfer functions can be performed. Effectively,
the used beamformer w is either of the two fixed filter vectors w̃ø or
w̃o (cf. (11), computed based on the a-priori estimates), depending
on the binary occlusion detection (OD), i.e.,

w(t)=

{
w̃ø, if OD(t) = 0
w̃o, if OD(t) = 1.

(14)

As this processing entirely relies on a-priori knowledge and does not
adapt to the acoustic scenario (only to occlusion), the used estimates
might not fit the data ideally, and might hence not lead to optimal
performance. This means that e.g. user variability, model mismatches
or changes in the acoustic scene cannot be accounted for. However,
this processing also comes with a certain robustness against VAD
errors, as it does not rely on a VAD.

3.3. Hybrid Switching-Adaptive Beamforming

To overcome the limitations of the two approaches in Section 3.1 and
Section 3.2, we propose a combination, depending on both the VAD
and the OD. Instead of adapting the covariance matrices independent
of the occlusion state as in (12) and (13), we propose to adapt two
different sets of covariance matrices depending on the occlusion state.
The update rule in (12) for the noisy covariance matrix can hence
be formulated as

R̂y,ν(t)=

{
αyR̂y,ν(tν)+(1−αy)y(t)y(t)

H , if VAD(t) = 1
R̂y,ν(tν), if VAD(t) = 0,

(15)
where ν corresponds to the currently detected occlusion state and tν
is the frame where the respective occlusion state was detected last. A
similar update rule can be formulated for the noise covariance matrix
R̂n,ν(t) as in (13). The processing is summarized in Algorithm 1.

It should be noted that a practical occlusion detection and the second
set of covariance matrices increase the computational complexity and
memory consumption compared to the adaptive beamformer which
is a caveat for resource-constrained on-device applications.

Algorithm 1 Switching-adaptive covariance estimation
Inputs:

h̃ø, R̃n,ø, B̃, G̃
Initialize:

tø←0, to←0

R̂y,ø(0)← h̃øh̃
H
ø , R̂y,o(0)←B̃R̂y,ø(0)B̃

H

R̂n,ø(0)←R̃n,ø, R̂n,o(0)←G̃R̂n,ø(0)G̃
H

for t=1 to T do

ν←

{
ø, if OD(t) = 0
o, if OD(t) = 1

R̂y,ν(t)←

{
αyR̂y,ν(tν)+(1−αy)y(t)y(t)

H , if VAD(t) = 1
R̂y,ν(tν), if VAD(t) = 0

R̂n,ν(t)←

{
αyR̂n,ν(tν)+(1−αy)y(t)y(t)

H , if VAD(t) = 0
R̂n,ν(tν), if VAD(t) = 1

ĥν←P{R̂n,ν(t)
−1R̂y,ν(t)} ▷ GEVD-based RTF est.

w(t)← R̂n,ν(t)−1ĥν

ĥH
ν R̂n,ν(t)−1ĥν

tν← t
end for

4. EVALUATION
4.1. Simulation Framework and Conditions
The evaluation of the proposed algorithms was conducted using
real-world recordings of speech and diffuse-like noise, recorded
separately in an acoustically treated room at a sampling rate of 16 kHz.
A total of six noisy signals were used for the evaluation, consisting
of three different speech signals and two different noise signals, each
with a duration of about 13 s. A five-channel head-mounted array in
the form factor of glasses was used, with one microphone on the nose
pad affected by occlusion. Speech and noise were mixed at input
SNRs of 0, 5, and 10 dB in the reference microphones close to the
user’s ears. To simulate authentic occlusion patterns, the occlusion
transfer functions (see Fig. 1) were imposed on the unoccluded
microphone signals before mixing. Random occlusion patterns with
varying numbers of switches (2, 8, 24, and 48) per utterance were
generated to investigate the effect of different dynamics of occlusion.

The processing was performed in the DFT domain using a weighted
overlap add framework with an effective frame length of 16 ms and
an overlap of 75%, analysis and synthesis used custom windows to
reduce leakage effects. The smoothing constants αy and αn for the
noisy and noise covariance matrix corresponded to forgetting times
of 0.3 s and 0.5 s, respectively. An oracle occlusion detection (as the
detection of occlusion is beyond the scope of this paper) and VAD
were used, with the latter also tested with 5% artificially induced
false negatives to evaluate robustness against VAD errors.

The performance of the algorithms was evaluated in terms of
binaural SNR improvement and own-voice distortion (OVD) relative
to the reference channels. For the OVD, we employ the negative
scale-invariant signal-to-distortion ratio [31], i.e.,

OVD=−20log10
(

||cxref ||2
||cxref−xout||2

)
, (16)

with c=xT
outxref/||xref ||22 and the time domain sequences xref and

xout as the reference input signal and the filtered output signal. Both
objective measures are computed on the time domain signals during
speech activity, and are averaged over the left and right side.

4.2. Results
The evaluation results are shown in Fig. 2, where the panels on the
left depict the SNR improvement (where higher is better), and the



Fig. 2: Results for evaluation with two different VADs (oracle and with 5% false negatives) for different input SNRs and numbers of switches in the occlusion
state per utterance. Left panels: SNR improvement with occluded microphone as reference line. Right panels: own-voice distortions.

panels on the right depict the OVDs (where lower is better). The
performance is plotted over the numbers of switches in the occlusion
state per utterance. The different bars show the mean results over
all utterances for the different algorithms (adaptive, switching and
switching-adaptive), where the solid colors represent the results for
an oracle VAD, while the lighter colors represent the VAD with 5%
false negatives. As the switching processing does not depend on
the VAD, it is only shown for one case. The error bars represent the
standard deviation over all utterances. For the SNR improvement,
the gray line and shaded area depict the mean SNR improvement
of the nose pad microphone relative to the reference microphone and
its standard deviation, since it has the highest input SNR.

The results for the SNR improvement on the left side of Fig. 2 show
that all beamformers yield an improvement compared to the nose pad
microphone, where the adaptive and switching-adaptive beamformer
perform similarly with an improvement of more than 10 dB compared
to the best microphone for the oracle VAD, while the purely switching
beamformer only yields an improvement of about 4-5 dB. In terms of
SNR improvement, the performance of all algorithms is rather constant
over the number of switches in the occlusion state and input SNR.
For a VAD with 5% false negatives, the performance of the adaptive
and switching-adaptive beamformer clearly decrease compared to the
oracle VAD. While at a low input SNR of 0 dB the two adaptive
beamformers still outperform the purely switching beamformer, at
high SNRs the performance drop due to an erroneous VAD is more
severe and the performance of the adaptive and switching-adaptive
beamformer decreases to the input SNR in the best microphone. As
already discussed in Section 3, the results show the robustness of
the purely switching beamformer against VAD errors, while also
indicating the potential of adaptation when a good VAD is available.

In terms of own-voice distortions, it can be observed that the purely
switching beamformer yields rather constant low distortions (around
-10 dB) for all input SNRs and numbers of switches. The switching-
adaptive beamformer with an oracle VAD (solid pink) constantly leads
to even slightly lower distortions. The adaptive beamformer (blue)
performs similarly to the switching-adaptive beamformer in terms of

OVD for a low number of switches, while inducing more distortions if
the occlusion state switches often (24 and 48 switches per utterance).
Overall, the distortions for the two adaptive beamformers are slightly
lower at a higher input SNR. This result can be interpreted such
that the purely adaptive beamformer is not capable of tracking the
switches in the occlusion state, which is particularly noticeable if
many switches occur at a high rate. There it seems beneficial to adapt
two different sets of covariance matrices for the respective occlusion
state to account for the fast dynamics in the occlusion pattern.

For an erroneous VAD, the observation for the OVD is similar
to the SNR improvement: Overall, the performance decreases for the
two adaptive beamformers, i.e., larger distortions are induced, where
again this effect becomes more pronounced for high input SNRs.
The above described trend of the switching-adaptive beamformer
leading to lower distortions than the purely adaptive beamformer
for highly dynamic occlusion patterns can also be observed here.
The results for the OVDs further underline the robustness of the
switching beamformer against VAD errors and the potential benefit
of the adaptive beamformers if a good VAD is available.

5. CONCLUSIONS
In this paper, we investigated the influence of microphone occlusion
and proposed different methods based on adaptive and switching beam-
formers, and a hybrid switching-adaptive beamformer. The proposed
methods depend on an occlusion detection and/or a voice activity
detection. The evaluation showed the advantages in terms of robustness
for the purely switching beamformer, while also showing the potential
benefits in terms of SNR improvement and own-voice distortions of
adaptive beamforming if a good VAD is available. The advantage of the
hybrid switching-adaptive beamformer could be demonstrated for fast
dynamics in the occlusion pattern where less distortions were observed
than for the adaptive beamformer, while performing similarly for
relatively static occlusion patterns. Since the switching-adaptive beam-
former comes at the cost of higher computational complexity and mem-
ory consumption, in practical use cases, this trade-off should further be
considered along with the occurring dynamics in the occlusion pattern.
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