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Abstract

In this thesis, the problem of noise and interfering speech decreasing the intelligibility

of a target speaker in hearing aid applications is addressed. Considering state-of-the-

art beamformers like the minimum variance distortionless response (MVDR) beamformer

or the minimum power distortionless response (MPDR) beamformer, an estimate of the

target relative transfer function (RTF) vector is required to steer the beamformer. In

this thesis, it is shown that in the presence of an interferer, blind RTF vector estimation

using the covariance whitening method yields a biased estimate of the target RTF vector,

whose accuracy depends on the signal-to-interferer ratio (SIR). Hence, at low SIRs, the

stated goal of joint noise and interferer reduction cannot be achieved by means of blind

beamforming approaches. Assuming that the the target RTF vector of the hearing aid

microphones is known, a local GSC (L-GSC) steering towards the target speaker can

be used. Since the performance of the hearing aid microphones is limited, additional

external microphones (eMics) are considered, for which, however, the target RTF vector

is unknown. For the incorporation of the eMics, four different extended GSC structures

are presented, in which the external target RTF vector is estimated on the pre-filtered

local microphone signals. In an experimental evaluation with real-world recordings it is

shown that only one structure performs well in adverse scenarios with a low input SIR,

namely the GSC with external speech references (GSC-ESR), which exploits the noise-

and-interferer references of the hearing aid microphone signals to pre-process the eMic

signals. This pre-processing aims at minimizing the correlated parts between the noise-

and-interferer references and the eMic signals, which ideally leads to an increased SIR

in the eMic signals, allowing for a better RTF vector estimation. The evaluation also

shows the downside of all filters being implemented such that they aim at minimizing the

total output power: If the RTF vector for the L-GSC is subject to a mismatch with the

true target RTF vector, all considered structures, but especially the GSC-ESR suffer from

target speech cancellation. This occurs particularly at high SIRs, while the performance

at low SIR, i.e., in adverse conditions where a reliable processing is most valuable, still is

the best among all considered algorithms.
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Zusammenfassung

In dieser Arbeit wird das Problem des Rauschens und der störenden Sprache, die die

Verständlichkeit des Zielsprechers in Hörgeräteanwendungen verringern, behandelt. Bei

gängigen Beamformern wie dem Minimum-Varianz-Distortionless-Response- (MVDR) Be-

amformer oder dem Minimum-Power-Distortionless-Response- (MPDR) Beamformer wird

eine Schätzung der relativen Übertragungsfunktion (RTF) des Zielsprechers benötigt, um

den Beamformer zu steuern. In dieser Arbeit wird gezeigt, dass blinde RTF-Schätzung

mit dem Covariance-Whitenign-Verfahren in Anwesenheit eines Störsprechers eine ver-

zerrte Schätzung des Ziel-RTF-Vektors ergeben, deren Genauigkeit vom Signal-zu-Störer-

Abstands (SIR) abhängt. Daher kann bei niedrigen SIRs das erklärte Ziel der gemeinsa-

men Rausch- und Störer-Reduzierung nicht durch blinde Beamforming-Ansätze erreicht

werden. Unter der Annahme, dass der Ziel-RTF-Vektor der Hörgerätemikrofone bekannt

ist, kann ein lokaler Generalized Sidelobe Canceller (L-GSC) verwendet werden, der auf

den Zielsprecher ausgerichtet ist. Da die Leistungsfähigkeit der Hörgerätemikrofone be-

grenzt ist, werden zusätzlich externe Mikrofone (eMics) berücksichtigt, für die jedoch der

Ziel-RTF-Vektor unbekannt ist. Für die Einbindung der eMics werden vier verschiedene

erweiterte GSC-Strukturen vorgestellt, bei denen der externe Ziel-RTF-Vektor auf den vor-

gefilterten lokalen Mikrofonsignalen geschätzt wird. In einer experimentellen Auswertung

mit realen Aufnahmen wird gezeigt, dass nur eine Struktur in schwierigen Szenarien mit

einem niedrigen Eingangs-SIR gut abschneidet, nämlich der Generalized Sidelobe Cancel-

ler mit externen Sprachreferenzen (GSC-ESR), der die Rausch- und Störerreferenzen der

Hörgerätemikrofonsignale zur Vorverarbeitung der eMic-Signale nutzt. Diese Vorverarbei-

tung zielt darauf ab, die korrelierten Anteile zwischen den Rausch- und-Störerreferenzen

und den eMic-Signalen zu minimieren, was im Idealfall zu einem erhöhten SIR in den

eMic-Signalen führt und eine bessere RTF-Vektorschätzung ermöglicht. Die Auswertung

zeigt aber auch die Nachteile aller Filter, die so implementiert sind, dass sie auf eine Mini-

mierung der Gesamtausgangsleistung abzielen: Wenn der RTF-Vektor für den L-GSC einer

Diskrepanz zum wahren Ziel-RTF-Vektor unterliegt, leiden alle betrachteten Strukturen,

insbesondere aber der GSC-ESR, unter Auslöschung des Zielsprechers. Dies tritt vor al-

lem bei hohen SIRs auf, während die Leistung bei niedrigen SIRs, also unter schwierigen

Bedingungen, bei denen eine zuverlässige Verarbeitung am wertvollsten ist, immer noch

die beste unter allen betrachteten Algorithmen ist.
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1 Introduction

In assistive listening devices like hearing aids or cochlear implants, speech enhance-

ment is an important task to increase speech intelligibility. Besides suppressing

background noise, also the reduction of undesired, interfering speakers is essen-

tial [1–3], since the presence of multiple speech sources leads to a lower intelligibility

of the target speaker [4].

To achieve noise and interferer reduction, many algorithms based on the minimum

variance distortionless response (MVDR) beamformer and the minimum power dis-

tortionless response (MPDR) beamformer [5,6] or respectively the generalized side-

lobe canceller (GSC) structure exist [7,8]. One well studied beamforming algorithm

which allows to treat different speakers differently, e.g., preserve one and suppress an-

other one, is the linearly constraint minimum variance (LCMV) beamformer [5,6,9].

However, in practice, the LCMV beamformer is rarely used since it requires the

relative transfer function (RTF) vectors of all present speakers to treat them ac-

cordingly. This assumption is rather unrealistic and impractical, as it is considered

cumbersome or even impossible to estimate the RTF vectors of two speakers simul-

taneously. In fact, not only estimating two RTF vectors at once, but even estimating

one, i.e., the RTF vector of the target speaker, is an unsolved problem. Most RTF

vector estimation methods proposed in literature [10–13] are not designed for the

case of a second speaker being present in the acoustic scenario or if designed for

this case, it is assumed that either all speakers or the dominant one are desired [11].

In [14], the spatial coherence (SC) estimator was investigated for the case of two

coherent speakers, where it was shown that the presence of the interferer leads to a

bias of the estimated RTF vector. A similar analysis is performed in this thesis for

the covariance whitening (CW) estimator [10]. The results show that the estimated

RTF vector is a weighted linear combination of the target and the interferer RTF

vector, which depends on the multi-channel signal-to-interferer ratio (SIR). The

consequence is that the dominant speaker is mostly preserved, while the other is

suppressed. When both speakers are approximately equally loud, both speakers are

cancelled equally much, which does not allow to actively suppress one speaker while

preserving the other when considering a blind RTF vector estimation. This problem

mostly arises from the inseparability of the activity of both speakers by means of

a classical voice activity detection (VAD) as it is usually required for RTF vector

estimation.

These findings motivate a major assumption made in this thesis: In hearing aid

applications, it is often assumed that the direction of arrival (DoA) of the target

is known (e.g., to the front) and hence, also an approximate (often anechoic) RTF
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vector is known [15, 16]. In this thesis, this assumption is taken further and it is

assumed that the target RTF vector for the hearing aid microphones (here referred

to as the local microphone array (LMA)) is known, similarly to [17].

It has been shown in literature that incorporating external microphones (eMics)

into the processing of an LMA can significantly improve the performance of speech

enhancement algorithms [13, 16–20]. However, since the target RTF vector corre-

sponding to the eMics cannot be assumed to be known as the eMics might be placed

anywhere in the acoustic scene and their relative position is therefore unknown, their

respective RTFs must be estimated. In [17], two different structures were proposed,

which exploit the intermediate signal stages of a GSC applied to the LMA, referred

to as the local GSC (L-GSC), steered by the known local target RTF vector. In this

thesis, these structures are adopted and changed in their formulation such that not

only noise but also the interferer is cancelled. Furthermore, alternative structures

are proposed which allow for a detailed investigation of benefits or downsides com-

ing with certain pre-processing operations. The four investigated structures are the

GSC with external noise references type 1 (GSC-ENR-1), the GSC with external

noise references type 2 (GSC-ENR-2), the GSC with external references (GSC-ER)

and the GSC with external speech references (GSC-ESR). The first two structures

use the estimated external RTF vector to complete a blocking matrix which allows

for creating additional external noise-and-interferer references. The two structures

differ in terms of the signals used for the RTF vector estimation and the filter opti-

mization, which is done either jointly with the the local filter or cascaded. Another

structure is the GSC-ER, which uses the output signal of the L-GSC to improve

the RTF vector estimation and subsequently uses the output signal of the L-GSC

together with the eMic signals in a joint MPDR beamformer. The GSC-ER can be

regarded as a simplified version of the GSC-ESR. The difference of the GSC-ESR to

the GSC-ER is that the GSC-ESR (proposed in [17]) pre-processes the eMic signals

by means of the local noise-and-interferer references, aiming at minimizing corre-

lated components between these signals. This ideally leads to an improved SIR in

the pre-processed eMic signals, allowing for a better RTF vector estimation and a

decoupling of noise and interferer reduction.

In the experimental evaluation of the considered algorithms, their performance in

terms of noise and interferer reduction is evaluated using real-world recordings. It

is shown that the GSC-ENR-1 and the GSC-ENR-2 are not suitable for joint noise

and interferer reduction, as they strongly suffer from speech leakage and hence tar-

2 Wiebke Middelberg Master Thesis
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get speech cancellation due to imperfect RTF vector estimation. Also the GSC-ER

does not perform well, especially in terms of interferer reduction, at low input SIRs,

but allows for a clear investigation of the pre-processing of the eMic signals in the

GSC-ESR. Especially in adverse conditions with a low input SIR, the GSC-ESR

performs well and seems suitable for joint noise and interferer reduction. In case of

a mismatch between the given RTF vector of the LMA and the true target RTF vec-

tor for the LMA, the GSC-ESR performs poorly at high SIRs, since speech leakage

leads to speech cancellation in the pre-processed eMic signals. This can be deduced

from the fact that the GSC-ER performs reasonably well in these conditions, i.e., is

not affected that strongly by target speech cancellation effects. However, in condi-

tions where noise - and particularly interferer - reduction is crucial, i.e., when the

interferer is the dominant speech source, the pre-processing of the eMic signals is

advantageous over the un-processed eMic signals and leads to good results in terms

of noise and interferer reduction.

This thesis is structured as follows: In Section 2, the signal model and notation

used throughout the thesis are introduced. In Section 3, the MVDR and the MPDR

beamformer are introduced. In Section 4, firstly, the VAD and its consequences for

the parameter estimation are discussed, secondly, the CW algorithm is presented

in detail (Section 4.2) and a bias analysis is performed for the case of two coherent

speakers (Section 4.3). The GSC structure is introduced in Section 5 and subse-

quently extended to incorporate the eMics in Section 6. In Section 7, the experi-

mental evaluation is presented.To visualize the structure of this thesis, an overview

scheme is shown in Fig. 1.1 (to be read from the center ”Objective” following the

arrows clockwise).

Master Thesis Wiebke Middelberg 3
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Fig. 1.1: Overview of contents and their connections. To be read from center fol-
lowing the arrows clockwise.

4 Wiebke Middelberg Master Thesis



2 Signal Model and Notation

In this section, the signal model and the used notation are introduced. A config-

uration with Ma hearing aid microphones, i.e., the LMA, and Me eMics, giving a

total of M = Ma + Me microphones, is considered. The noisy input signal of the

m-th microphone in the time-domain is denoted by ym(t) (with m ∈ {1, 2, . . . ,M}),
where t is the discrete sample index. The frequency-domain representation of the

complex-valued noisy input signal Ym(k, l) is obtained by applying the short-time

Fourier transform (STFT) to ym(t), i.e.,

Ym(k, l) =

Td−1∑
td=0

ym(lTs + td)w(td) exp

(
−j2πktd

Td

)
, (2.1)

with w(td) a window function of length Td which is the STFT length in samples.

Ts denotes the frame shift in samples, td the sample index of the l-th frame and j

the imaginary unit (i.e., j2 = −1). In the following, all frequency bins are processed

separately, as they are assumed to be independent of each other. For conciseness,

the frequency-bin index k and the frame index l are omitted in the remainder of this

thesis, wherever possible.

All microphones are stacked in the M -dimensional noisy input signal vector y, where

the first Ma entries correspond to the LMA, denoted as ya, and the last Me entries

correspond to the eMics, denoted as ye, respectively, i.e.,

y = [Y1 , Y2 , . . . , YM ]T

= [Ya,1 , Ya,2 , . . . , Ya,Ma , Ye,1 , . . . , Ye,Me ]T

= [ yT
a , yT

e ]T

(2.2)

where {·}T denotes the transpose operator. In the considered acoustic scenario,

where a target speaker, an interferer and noise are present, the noisy input signal in

the m-th microphone can be decomposed into its components, assuming an additive

signal model, i.e.,

Ym = Xm + Im +Nm , (2.3)

whereXm denotes the target speech component, Im denotes the interferer component

and Nm denotes the noise component in the m-th microphone. Hence, for the noisy

signal vector, it follows that

y = x + i + n︸ ︷︷ ︸
v

, (2.4)
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where x is the target speech vector, i is the interferer vector and n is the noise vector,

defined similarly to y. The vector v denotes the total undesired signal component.

Similarly to (2.2), the signal vectors x, i, n and v can be separated into their local

and external parts.

For coherent sources as the target or the interferer, the signal components can be

written in terms of their RTF vectors h and b, respectively. The RTF vector re-

lates the source’s acoustic transfer function (ATF) of all microphones to a reference

microphone. Here, the reference microphone is chosen to be the first of the LMA,

without loss of generality, such that the target speech component vector x and in-

terferer component vectors i can be written in terms of the target speech component

X1 and the interferer component I1 in the first microphone, i.e.,

x = hX1 (2.5)

and

i = bI1 . (2.6)

The target RTF vector h can furthermore be decomposed into the local RTF vector

ha (the first Ma entries) and he containing the external RTFs (the last Me entries),

i.e.,

h = [ hT
a , hT

e ]T

= [ 1 , Ha,2 , . . . , Ha,Ma , He,1 , . . . , He,Me ]T ,
(2.7)

and similarly for the interferer RTF vector b. Since the noise is not assumed to be

a coherent source, it cannot be written in terms of an RTF vector.

At this point, a distinction can be made about the accessibility of a-priori knowl-

edge about the RTF vector components. In hearing aid applications it is often

assumed that the target DoA is known (e.g., the target speaker is located in the

frontal direction of the hearing aid user) [15,16]. Since the geometry of the hearing

aids and hence the positioning of the microphones is usually known, the target RTF

vector can be approximated by a steering vector for the target DoA. Taking this

assumption even further, it is assumed that the target RTF vector for the LMA is

known, i.e., the a-priori RTF vector for the LMA h̃a is assumed to be given. For the

interferer, no such assumption is made, since its DoA is not as simple to anticipate

as the target DoA. Also for the target RTFs corresponding to the eMics, no a-priori

knowledge is given, since the eMics could be placed anywhere in the acoustic scene.
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The M ×M -dimensional noisy covariance matrix is defined as

Ry = E{yyH} , (2.8)

where E{·} denotes the expectation value operator and {·}H is the Hermitian trans-

pose operator. Assuming that all signal components are uncorrelated with each

other, the noisy covariance matrix can be written as

Ry = Rx + Rn + Ri︸ ︷︷ ︸
Rv

, (2.9)

where the rank-1 target speech covariance matrix Rx, the rank-1 interferer covari-

ance matrix Ri, the noise covariance matrix Rn, and the undesired covariance matrix

Rv are defined similarly to Ry, i.e.,

Rx = E{xxH}

= φxhhH ,
(2.10)

Ri = E{iiH}

= φibbH ,
(2.11)

and
Rn = E{nnH}

= φnΓ ,
(2.12)

where the target, interferer and noise power spectral densities (PSDs) in the first

microphone are defined as φx = E{|X1|2}, φi = E{|I1|2} and φn = E{|N1|2}, respec-

tively and Γ is the normalized noise covariance matrix, characterizing the spatial

properties of the noise field, for which no further explicit assumptions are made here.

In the following, it is assumed that the target speech and interferer PSDs φx and φi

are strongly time varying, i.e., these sources are considered to be spectro-temporally

non-stationary, while the noise PSD φn is assumed to be relatively constant over

time. These properties are important for a detection of speech sources via a VAD

algorithm discussed further in Section 4.1.

When only the signal vector of the LMA ya is considered, the Ma×Ma-dimensional

covariance matrix Ry,a is obtained similarly to (2.8) and can be written as

Ry,a = EaRyE
T
a (2.13)

where

Master Thesis Wiebke Middelberg 7
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Ea = [IMa×Ma , 0Ma×Me ] (2.14)

is a selection matrix for the LMA signals only. Rx,a, Ri,a and Rn,a are defined

similarly to (2.13).

All filtering operations in this thesis are linear and can be defined by means of a

complex-valued filter vector flin, which is applied to the input signal vector y, i.e.,

Z = fHliny . (2.15)

To define the objective performance measures in Section 2.1, which are used to

investigate the influence of a filtering operation as defined in (2.15) on the separate

signal components, oracle knowledge about the input signal component vectors x,

i and n is required. For the so-called shadow filtered signals, the outputs Xout,

Iout and Nout are given by applying the same linear filter flin to the separate input

component vectors, i.e.,

Xout = fHlinx , (2.16)

Iout = fHlini , (2.17)

and

Nout = fHlinn , (2.18)

respectively.

2.1 Objective Performance Measures

In this thesis, purely technical objective performance measures (in contrast to psycho-

acoustically motivated objective measures) are used to quantify the performance of

the considered algorithms. The measures of interest are the noise and interferer

reduction, the amount of distortions introduced by a filtering operation and the

accuracy of the RTF vector estimation. Firstly, the narrow-band measures, i.e., per

frequency-bin, are introduced, which only occur in theoretical derivations and which

are therefore defined on a linear scale. The frequency-bin index k is included here to

stress the difference between narrow- and broad-band measures. The narrow-band

signal-to-noise ratio (SNR) at the input, i.e., in the reference microphone, is given

by

SNR(k) =
φx(k)

φn(k)
, (2.19)

8 Wiebke Middelberg Master Thesis
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the narrow-band SIR at the input is given by

SIR(k) =
φx(k)

φi(k)
, (2.20)

and the narrow-band signal-to-interferer-and-noise ratio (SINR) at the input is given

by

SINR(k) =
φx(k)

φi(k) + φn(k)
. (2.21)

Precisely speaking, the narrow-band measures defined here do not quantify the per-

formance of a filtering operation since (2.19) - (2.21) are merely defined using the

input parameters. These metrics rather characterize the input signals and occur

in theoretical derivations in this thesis. In principle, however, they could also be

defined on the shadow filtered signals to characterize the output of a filter.

In the following, the broad-band measures are introduced, which are used for the

evaluation of the performance of different processing structures in Section 7. In

contrast to the narrow-band measures, broad-band measures, do not include a fre-

quency bin index and are directly defined on a logarithmic scale and are therefore

given in dB.

To compute the broad-band measures, the shadow filtered time-domain signals are

used, meaning that an inverse short-time Fourier transform (ISTFT) is applied to

the shadow filtered signals in (2.16) - (2.18) to obtain the shadow filtered time-

domain signals xout(t), iout(t) and nout(t), respectively. The input SNR, SIR and

SINR are defined by the time-domain input signals in the first microphone, i.e.,

SNRin = 20 log10

(
rms(x1(t))

rms(n1(t))

)
, (2.22)

SIRin = 20 log10

(
rms(x1(t))

rms(i1(t))

)
, (2.23)

and

SINRin = 20 log10

(
rms(x1(t))

rms(i1(t) + n1(t))

)
, (2.24)

where rms(s(t)) denoted the root-mean-square value of a time sequence s(t) of sam-

ples, i.e.

rms(s(t)) =

√√√√ 1

L

L∑
t=1

s(t)2 , (2.25)

Master Thesis Wiebke Middelberg 9



2 Signal Model and Notation

with L the number of samples over which the root-mean-square value is calculated.

The output SNR, SIR and SINR are defined via the shadow filtered signals, i.e.,

SNRout = 20 log10

(
rms(xout(t))

rms(nout(t))

)
, (2.26)

SIRout = 20 log10

(
rms(xout(t))

rms(iout(t))

)
, (2.27)

and

SINRout = 20 log10

(
rms(xout(t))

rms(iout(t) + nout(t))

)
. (2.28)

To assess the performance of an algorithm, the difference of in- and output is taken

into account, leading to the definition of the SNR improvement ∆SNR, the SIR

improvement ∆SIR and the SINR improvement ∆SINR, i.e.,

∆SNR = SNRout − SNRin , (2.29)

∆SIR = SIRout − SIRin , (2.30)

and

∆SINR = SINRout − SINRin , (2.31)

respectively. Since these measures only assess how much interferer/noise is sup-

pressed by a filtering operation relative to the effect which the same filtering opera-

tion has on the target speech, one important factor is neglected when only regarding

these metrics: speech distortion (SD) is another energy based measure which allows

to quantify the distortions applied to the target speech. The broad-band SD is

defined as

SD = 20 log10

(
rms(xout(t))

rms(x1(t))

)
. (2.32)

An SD value of 0 dB indicates perfect target speech preservation by a filtering

operation, negative values indicate cancellation of target speech and positive values

indicate a gain applied to the target speech. A similar measure is defined using the

interferer or the noise component. In the latter case, it is referred to as the amount

of noise reduction (NR), given by
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NR = 20 log10

(
rms(nout(t))

rms(n1(t))

)
. (2.33)

Another measure considered in this thesis is the Hermitian angle, which is considered

to access the quality of an RTF vector estimate [21], since it represents the similarity

of two complex valued vectors (e.g., of an estimated RTF vector and the true RTF

vector). The narrow-band Hermitian angle Θp,q(k) between two complex-valued

vectors p and q is defined as

Θp,q(k) = arcos

(
|pHq|
‖p‖2 ‖q‖2

)
, (2.34)

where ‖p‖2 =
√

pHp is the 2-norm of p. Note that usually the Hermitian angle is

computed in every frequency-bin and subsequently averaged over all frequency to

condense the measure into a scalar value.

Master Thesis Wiebke Middelberg 11
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In this section, the so-called minimum variance distortionless response (MVDR) and

minimum power distortionless response (MPDR) beamformer are introduced. Both

structures are closely related and only differ in their objective function [6, 22, 23].

While the MVDR beamformer aims at minimizing the noise power at the output,

the MPDR beamformer aims at minimizing the total power at the output Z, which

is defined similarly to the linear filtering operation in (2.15), i.e.,

Z = wHy . (3.1)

Besides aiming at minimizing the objective function, both beamformers aim at pre-

serving all sounds associated with the RTF vector estimate ĥ, where {̂·} denotes

an estimate of a quantity. The complex-valued M -dimensional filter vector w is

obtained by solving the constrained optimization problem, here formulated for the

MVDR beamformer, i.e.,

min
w

wHR̂nw , s.t. wHĥ = 1 , (3.2)

where the optimization problem of the MPDR beamformer uses an estimate of the

noisy covariance matrix Ry instead of an estimate of the noise covariance matrix

Rn. The closed form solution to (3.2) is given by

wMVDR =
R̂−1

n ĥ

ĥHR̂−1
n ĥ

, (3.3)

for the MVDR beamformer and respectively

wMPDR =
R̂−1

y ĥ

ĥHR̂−1
y ĥ

, (3.4)

for the MPDR beamformer. The filter vectors of the MVDR and MPDR only rely on

an estimate of the noise covariance matrix Rn or respectively the noisy covariance

matrix Ry and an estimate of the target RTF vector h. Typical estimators for

these quantities, their limitations in the case of two coherent speech sources and the

consequences for blind beamforming algorithms are discussed in Section 4. For the

case of the CW method used for RTF vector estimation, it can be shown that the

MVDR and the MPDR beamformer are identical (see Appendix A).

The processing scheme of the beamformer w, which can either be implemented as

an MVDR or MPDR beamformer, respectively, is shown in Fig. 3.1. The RTF

estimation block represents a blind, data driven RTF vector estimation using all
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available signals.

Fig. 3.1: Schematic of blind MVDR/MPDR beamforming using all local and exter-
nal microphone signals, including an RTF estimation block.

In the remainder of this thesis, only the MPDR is considered, since (as mentioned

above) both beamformers are identical if the CW method is used for the RTF vector

estimation. Furthermore, the MPDR beamformer as depicted in Fig. 3.1 is always

treated as a blind algorithm, using an estimate of the RTF vector, estimated on all

available signals. This property is stressed here to distinguish between blind and

informed beamformers (using the a-priori RTF vector h̃a), like the L-GSC, which is

introduced in Section 5.
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In this section, limitations of state-of-the-art algorithms for the detection of different

signal components, the so-called voice activity detection (VAD), and RTF vector

estimators are discussed. These algorithms are required to estimate the quantities

needed for many beamformers, like the MPDR beamformer discussed in Section 3.

A VAD algorithm is often used to estimate the noisy and noise covariance matrices,

which are used to estimate the target RTF vector. However, most state-of-the-art

VAD algorithms are not designed for the case of two coherent speakers. Hence,

their applicability in the considered acoustic scenario with a target and an interferer

is limited. In the following, the limitations and consequences of VAD algorithms

(Section 4.1) and blind RTF vector estimation using the CW method (Sections 4.2

- 4.5) are presented.

4.1 Voice Activity Detection and Covariance Matrix Esti-

mation

State-of-the-art voice activity detection (VAD) algorithms like the speech presence

probability (SPP) estimator in [24] are designed to detect the presence of all speech

sources in a noisy background. These algorithms are usually either energy based

(like the SPP) or they exploit speech properties like periodicity [25]. Most classical

VAD algorithms cannot distinguish between different speakers. Hence, if at least

one speaker is active, a binary VAD will detect speech, as depicted in Fig. 4.1.
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Fig. 4.1: Effects of two speakers on an energy based VAD algorithm. Upper panel:
Corresponding binary VAD (red). Lower panel: Two speech sources, target
(green) and interferer (blue) with background noise (gray).
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The problem arising from the detection of both speech sources becomes clear, when

the recursive, VAD-based estimation of the covariance matrices is considered. Where

the estimated covariance matrices R̂y and R̂n are given by

R̂y(k, l) =

αyR̂y(k, l − 1) + (1− αy)y(k, l)y(k, l)H , in speech plus noise frames

R̂y(k, l − 1) , in noise only frames

(4.1)

and

R̂n(k, l) =

αnR̂n(k, l − 1) + (1− αn)n(k, l)n(k, l)H , in noise only frames

R̂n(k, l − 1) , in speech plus noise frames ,

(4.2)

where αy and αn are smoothing constants, corresponding to the time constants τy

and τn, for which the relations

αy = e
−Td−Ts

fsτy (4.3)

and

αn = e−
Td−Ts
fsτn (4.4)

hold, where fs denotes the sampling frequency. Note that the estimate R̂y of Ry

might not satisfy all assumptions made for the signal model in (2.9), while Ry fulfills

all stated properties by definition.

From the update rules in (4.1) and (4.2), it becomes clear that the estimated noise

covariance matrix R̂n only contains information about the noise and that the es-

timate of the noisy covariance matrix R̂y contains all acoustic sources, i.e. target,

noise and interferer. The undesired covariance matrix Rv cannot be accessed us-

ing VAD-driven update rules, since the VAD cannot distinguish between the target

speaker and the interferer.

Note that the VAD-based estimation method for R̂y and R̂n, are often used in

practice, but not in this thesis. The focus here is the investigation of the potential

of different processing strategies and not the entire system including a blind VAD

algorithm and covariance matrix estimation. Hence, in the evaluation, no VAD algo-

rithm is included and the covariance matrices are obtained using oracle knowledge,

since blind estimation might introduce estimation errors that make the results more

difficult to interpret. This can be justified by the fact that most VAD algorithms

are prone to errors at low SNRs and their performance also strongly depends on

the SIR. To eliminate these factors of misestimation and to make the results as
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comparable as possible, a different implementation without a VAD is chosen here

(see Section 7).

4.2 RTF Vector Estimation Using Covariance Whitening

In this section, one RTF estimator, namely the covariance whitening (CW) method

from [10], is investigated, which has been thoroughly analyzed in [26] and has been

used in various applications [11, 27, 28]. Firstly, the general steps of this method

are shown. Subsequently, the CW method is investigated for the ideal case of only

one speaker and no estimation errors. Lastly, a bias analysis is performed for the

case of two (for a VAD algorithm) indistinguishable coherent speakers (Sections 4.3

- 4.5). As discussed above, it is assumed that noisy covariance matrix Ry and the

noise covariance matrix Rn are accessible (by means of a VAD), while the undesired

covariance matrix Rv is not.

For the whitening operation, which aims at reducing the influence of the noise

component on the estimated noisy covariance matrix, the matrix R̂n is written in

terms of the lower triangular matrix R̂
1/2
n using a square-root decomposition (e.g.,

Cholesky decomposition), i.e.,

R̂n = R̂1/2
n R̂H/2

n , (4.5)

such that R̂
−1/2
n R̂nR̂

−H/2
n = IM×M . The whitening operation is then applied to the

noisy covariance matrix R̂y, which yields the whitened covariance matrix R̂w
y , i.e.,

R̂w
y = R̂−1/2

n R̂yR̂
−H/2
n . (4.6)

To estimate the whitened RTF vector, a rank-1 approximation is done by performing

an eigenvalue decomposition (EVD) on R̂w
y and taking the principal eigenvector, i.e.,

the eigenvector corresponding to the largest eigenvalue, that is

vmax = P{R̂w
y } , (4.7)

where P{·} denotes the principal eigenvector operator. To obtain the RTF vector

estimate ĥ, vmax in (4.7) is de-whitened and normalized to the entry corresponding

to the first microphone (selected by means of the selection vector e1, containing only

zeros, except for the entry corresponding to the first microphone), i.e.,

ĥCW =
R̂

1/2
n vmax

eT
1 R̂

1/2
n vmax

. (4.8)
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Up to this point, a very general formulation of the CW method was used, which

relies on the estimates R̂y and R̂n. So far, the signal model was not explicitly

used to motivate the steps done in CW. However, in terms of the model parameters

defined in Section 2, it can be distinguished between the case of one coherent speaker

(which is the underlying assumption of the CW method) or the case of two coherent

speakers (see Section 4.3).

When now considering the case that only one coherent speaker is present (i.e., φi =

0), which is the case for which the CW estimator was proposed, the signal model in

(2.9) reads

Ry = Rx + Rn , (4.9)

where Rx is assumed to be a rank-1 matrix as defined in (2.10). The whitened noisy

covariance matrix in (4.6) can be written in terms of the model parameters, that is

Rw
y = R−1/2

n (Rx + Rn)R−H/2
n

= R−1/2
n RxR

−H/2
n + IM×M

= φx R−1/2
n h︸ ︷︷ ︸
vmax

hHR−H/2
n︸ ︷︷ ︸

vHmax

+IM×M .
(4.10)

It should be noted that the addition of an identity matrix does not affect the eigen-

vectors of Rw
y , but increases all eigenvalues by 1. Therefore, as indicated in (4.10),

the principal eigenvector vmax is a scaled version of R
−1/2
n h. Hence, in the case of

only one coherent speech source, the estimated RTF vector equals the true target

RTF vector (when using model parameters instead of estimated quantities), i.e.,

ĥCW becomes R
1/2
n R

−1/2
n h = h.

Note that this is the case for which the CW method is designed. Inherently, it is

assumed that the covariance matrices of all undesired sources can be estimated, i.e.,

that even in the case of multiple speakers, the undesired covariance matrix Rv can

be estimated, as in [26].

In the following section, a derivation is presented which shows the influence of an

interfering speaker, i.e., where Rv is not available, on the RTF vector estimation

using the CW method.
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4.3 Bias Analysis of Covariance Whitening for Two Coher-

ent Speakers

As discussed in Section 4.1, it is considered impossible to separate two speakers using

a VAD. The consequences of a second speaker being present and indistinguishable

for a VAD, to the best of the author’s knowledge, have not been analyzed in theory

so far. In this section, the influence of a second coherent speaker on the RTF esti-

mation using CW is investigated theoretically. Furthermore, the theoretical findings

are supported by simulations using artificial data in Section 4.5.

For this bias analysis, the interferer is included in the signal model, i.e., as defined in

(2.9). If it is now assumed that the whitening is still done with Rn, but Ry includes

the interferer covariance matrix, the matrix Rw
y becomes

Rw
y = R−1/2

n (Rx + Ri + Rn)R−H/2
n

= R−1/2
n (Rx + Ri)R

−H/2
n + IM×M

= R−1/2
n (φxhhH + φibbH)R−H/2

n + IM×M .

(4.11)

Applying an EVD to (4.11), the identity matrix IM×M can be neglected and therefore

be cancelled out by subtraction. Hence, the eigenvectors of the rank-2 matrix

R = Rw
y − IM×M

= φxR
−1/2
n hhHR−H/2

n + φiR
−1/2
n bbHR−H/2

n

= φxhh
H

+ φibb
H

(4.12)

can be considered instead of Rw
y , where the normalized whitened RTF vectors h and

b are defined as

h =
R

−1/2
n h∥∥∥R−1/2
n h

∥∥∥
2

, (4.13)

and

b =
R

−1/2
n b∥∥∥R−1/2
n b

∥∥∥
2

, (4.14)

respectively, such that they have a norm of 1 by definition, i.e.,
∥∥h∥∥

2
=
∥∥b∥∥

2
= 1,

and the target and interferer PSDs φx and φi include the normalization factors from

(4.13) and (4.14), i.e.,
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φx = φx

∥∥R−1/2
n h

∥∥2

2
, (4.15)

and

φi = φi

∥∥R−1/2
n b

∥∥2

2
. (4.16)

The PSDs φx and φi can be interpreted as multi-channel PSDs in the whitened

domain.

From the structure of the matrix R in (4.12) it can be seen that the principal

eigenvector of R is a linear combination of the vectors h and b, weighted with the

complex-valued factors αx and αi, respectively, as in

vmax = αxh + αib . (4.17)

In [11], the weighting factors αx and αi were written in terms of the inner product of

the principal eigenvector vmax and the whitened RTFs vectors h and b, respectively.

In the following, a formulation is found which does not explicitly depend on vmax,

which allows for a better interpretability, since it directly depends on the input

characteristics of the two speech sources.

For the principal eigenvector of R, it holds that

Rvmax = λ1vmax , (4.18)

where λ1 is the principal, i.e., the largest, eigenvalue of R. Using the definition of

R in (4.12) and the definition of vmax in (4.17) in the eigenvalue equation in (4.18),

it yields

αxφx(h
H

h)h+αxφi(b
H

h)b+αiφx(h
H

b)h+αiφi(b
H

b)b = λ1αxh+λ1αib . (4.19)

Explicitly assuming linear independence of h and b, meaning that these two vectors

form a basis of a complex-valued two dimensional subspace, (4.19) can be separated

into two equations, since all terms in h and b can be separated. Therefore the two

relations

αxφx(h
H

h) + αiφx(h
H

b) = λ1αx (4.20)

and

αxφi(b
H

h) + αiφi(b
H

b) = λ1αi (4.21)
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are obtained, where (h
H

h) = (b
H

b) = 1. Reformulating (4.20) and (4.21) in terms

of λ1 and setting them equal gives

φx

(
1 + h

H
b
αi

αx

)
= φi

(
1 + b

H
h
αx

αi

)
. (4.22)

Defining the weighting ratio r as

r =
αx

αi

, (4.23)

and rearranging (4.22) to 0, the quadratic equation

r2 + r
φx − φi

φib
H

h
− φxh

H
b

φib
H

h
= 0 (4.24)

is obtained, which can be solved for r, that is

r =
φx − φi

2φib
H

h
±

√√√√( φx − φi

2φib
H

h

)2

+
φxh

H
b

φib
H

h
. (4.25)

By splitting up the inner products h
H

b and b
H

h into their magnitude and phase,

respectively, i.e.,

h
H

b = |hH
b|ej∠h

H
b , (4.26)

where ∠ denotes the phase angle of a complex number, the ratio r in (4.25) can be

rewritten as

r = ej∠h
H
b φx − φx

2φi|b
H

h|
± ej∠h

H
b

√√√√( φx − φi

2φi|b
H

h|

)2

+
φx

φi

. (4.27)

Furthermore, the definition of the SIR in (2.20) can be considered and transferred

to the whitened domain, which reads

SIR =
φx

φi

. (4.28)

Note that in (4.28), it is not only the SIR in the whitened domain, but rather an

SIR value averaged over channels, since φx and φi contain the norms of the whitened

RTF vectors.

The Hermitian angle defined in (2.34) is considered, such that the absolute value of

the inner product |bH
h| can be replaced by it, i.e.,
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|bH
h| =

∥∥b∥∥
2

∥∥h∥∥
2

cos Θb,h , (4.29)

where by definition
∥∥h∥∥

2
=
∥∥b∥∥

2
= 1. Using (4.28) and (4.29), the ratio r in (4.27)

becomes

r = ej∠h
H
b SIR− 1

2 cos Θb,h

± ej∠h
H
b

√√√√( SIR− 1

2 cos Θb,h

)2

+ SIR . (4.30)

The weighting ratio r, offers two solutions to the weighting in (4.17), which result

from the fact that so far all steps are valid for both non-zero eigenvalues, and not

just, as in the discussed case, for the principal eigenvalue. The property of the

eigenvalue in (4.18) and (4.19) to correspond to the largest eigenvalue, has not been

used explicitly in this derivation. Therefore, the solution for r contains the weighting

for both, eigenvector vectors spanning the matrix R.

For a unique solution, determining the weighting of the principal eigenvector, and

thus the whitened RTF vectors in (4.17), the ambiguity evoked by the plus-minus-

sign can be lifted by discussing one extreme case: Considering the case where SIR→
0, i.e, no target is speaker present, the weighting for the target RTF vector αx should

go towards 0, while the weighting for the interferer RTF vector αi should go towards

1 and therefore r should go towards 0. If the solution in (4.30) with the minus-sign is

now considered - note that the phase information is neglected and that cos Θb,h > 0

- the solution for r would become negative, which does not match the outcome

discussed above. If, however, the solution with the plus-sign is used, the terms in

front of the plus sign tend to equal the negative of the square-root term so they

cancel, and hence also r goes to 0, as expected. From this, it finally follows that the

ratio r for the weighting of the two whitened RTF vectors is given by

r = ej∠h
H
b SIR− 1

2 cos Θb,h

+ ej∠h
H
b

√√√√( SIR− 1

2 cos Θb,h

)2

+ SIR . (4.31)

Together with a normalization of αx and αi, that is

αx + αi = 1 , (4.32)

the ratio r in (4.31) fully defines the weighting of the two whitened RTF vectors h

and b in (4.17). Note that in general also a different normalization of αx and αi

than in (4.32) is possible, since the EVD problem in (4.18) is invariant to scaling of

vmax. However, the normalization of αx and αi is chosen as such due to the direct
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interpretability as a weighing of the vectors h and b.

4.4 Visualization of Bias Analysis

To visualize the weighting of the target RTF vector when using the CW method in

the presence of an interferer, a simulation of one frequency bin is performed. Two

generic RTF vectors (in the whitened domain) are created, i.e., h = 1/
√

3[1, 1, 1]T

and b = 1/
√

3[1, e−j∆p , e−j2∆p ]T , which can be interpreted as the RTF vectors

resulting from two sources impinging on a uniform linear array (ULA) with three

microphones. One source is impinging from broadside (target) and the other from

an arbitrary direction (interferer), which creates a phase shift of ∆p and respectively

2∆p. The phase shift ∆p is varied, such that different Hermitian angles Θb,h between

h and b ranging from 5° to 90° are created, which allows for investigating its influence

on the weighting. The Hermitian angle Θb,h can - to some extent - be interpreted

as the ”spatial” similarity of the two sources. For the investigation of the SIR in the

whitened domain, SIR is varied from -20 dB to 20 dB. For visualization purposes,

in Fig. 4.2, the real-valued weighting γx is considered, where the normalization is

performed as |αx|+ |αi| = 1, and thus

γx = |αx|

=
1

1 + 1/|r|
.

(4.33)

The real-valued weighting factor γx is plotted over SIR in the upper panel. Note that

normalizing αx and αi using the absolute value is not identical with the normalization

in (4.32), since the complex phase information is neglected here. However, it allows

for a simpler visualization and intuitive understanding of the underlying processes

since a complex-valued weighting would be more difficult to interpret. The weighting

of h and b is obtained by orthogonally projecting vmax (obtained from the EVD of

the matrix R) onto the subspace spanned by h and b, that is

c =
(
AHA

)−1
AHvmax , (4.34)

where the vector c contains the complex-valued weighting of h and b, which are

stacked in the matrix A = [h,b]. The vector c is subsequently normalized (i.e., by

taking the absolute value of its entries and normalizing them to add up to 1) to

obtain γx. It should be noted that the results shown here are obtained from the

simulation as described above, where the weighting is computed after performing an

EVD on the whitened rank-2 covariance matrix spanned by the artificially created
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vectors h and b and not directly from the formula shown in (4.31). However, iden-

tical curves are obtained by simulating the theoretical results.

The upper panel of Fig. 4.2 shows the real-valued weighting γx of h in dependence

on SIR, i.e., the (multi-channel) input SIR in the whitened domain. The lower panel

in Fig. 4.2 shows the resulting Hermitian angle Θvmax,h
(i.e., the actual estimation

accuracy) between the estimated and the target RTF vector.
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Fig. 4.2: Weighting γx of the target RTF vector and Hermitian angle between the
estimated RTF vector and the target RTF vector for different input SIRs
in the whitened domain and different Hermitian angles between target and
interferer RTF vector.

The results show that, generally, a larger SIR leads to a stronger weighting of the

target RTF vector, which can directly be deduced from the strictly positive influence

of SIR on r in (4.31) (when neglecting the phase information). A larger Hermitian

angle Θb,h between h and b (see legend in Fig. 4.2) leads to a steeper curve. This

can also be explained by taking an extreme cases into account, again neglecting the

phase information: A Hermitian angle between h and b going towards 90° will lead

to a cosine term, for which cos Θb,h → 0 and thus 1/ cos Θb,h → ∞. Hence, for

SIR > 1 (or respectively SIR > 0 dB), the total expression for r goes to ∞, which,

when normalized as in (4.33), leads to a real-valued weighting of the target RTF

vector γx = 1, i.e., the estimated RTF vector corresponds to the target RTF vector.
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In the case of SIR < 1 (i.e., SIR < 0 dB), the term in front of the square-root in

(4.31) goes to −∞, while the first term inside the square-root goes to∞ (due to the

square). The second term inside the square-root becomes negligible. Then, both

terms, in front of and inside the square-root, become identical but with opposite

signs and thus r → 0. In this extreme case, a toggling behavior between positive

and negative SIRs can be seen in Fig. 4.2. This can also be explained by the fact

that the matrix R is a Hermitian matrix, which means that its eigenvectors are

orthogonal to each other. In case of Θb,h = 90°, the vectors h and b are already

orthogonal and are therefore the eigenvectors of R. Thus, the EVD of R ”picks”

the vector of the two which corresponds to the largest eigenvalue. For Hermitian

angles Θb,h < 90°, this toggling behavior becomes more gradual and therefore yields

a smoother weighting between low and high SIRs.

For very low SIRs, where the weighting of the target goes to zero, and as such the

estimated RTF vector almost perfectly corresponds to the interferer RTF vector,

the Hermitian angle Θvmax,h
between estimated and target RTF vector converges

towards the Hermitian angle between interferer and target RTF vector. Therefore,

the Hermitian angle between interferer and target RTF vector limits the ”missteer-

ing” of a beamformer which uses this RTF vector estimate. At high SIRs, where

vmax mostly corresponds to the target RTF vector, the Hermitian angle Θvmax,h
goes

towards 0.

4.5 Validation of Bias Analysis

In this section, it is investigated what influences the biased RTF vector estimation

discussed in Section 4.3 has on the output of a beamformer. To this end, simulations

with artificial data are conducted.

4.5.1 Configuration and Conditions

The configuration of microphones, target speaker, and interferer is depicted in Fig.

4.3. The room and the respective room impulse responses (RIRs) are simulated using

the RIR generator by Habets et al. [29]. The parameters for this simulation are set

accordingly: The room has dimensions of (5× 5× 3) m, the speed of sound is set to

340 m/s and the sampling frequency is set to 16 kHz. To achieve a scenario that is

as controlled as possible, the reverberation time is set to 0 ms, i.e., the walls, floor,

and ceiling of the simulated room do not produce any reflections. As a target and

interferer signal, two uncorrelated white noise signals are generated and convolved

with their respective RIR. The noise signals are generated using the method in [30].
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Spatially, the noise can be regarded as diffuse, while spectro-temporally it is a white

noise signal. The LMA is a ULA with Ma = 4 microphones, with a spacing of 2

cm. An eMic is placed 1.8 m away from the LMA in endfire direction. The target

speaker is placed in endfire direction, 2 m away from the LMA. The interferer is

placed in broadside direction, also at a distance of 2 m from the LMA.
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Fig. 4.3: Configuration of artificial scene for validation of CW bias analysis using a
ULA as the LMA with a target placed in endfire direction and an interferer
in broadside direction. An additional eMic is placed close to the target.

In this validation, the following input parameters are chosen: The input SNR in

the reference microphone (here the first of the ULA) is set to a constant value of

0 dB. The input SIR in the reference microphone is varied from -20 dB to 20 dB.

This also means that the input interferer-to-noise ratio (INR) is not constant over

all conditions and it takes values between 20 dB and -20 dB.

Furthermore, three conditions with different microphone configurations are investi-

gated:

Condition 1: Only the LMA is used for both, RTF vector estimation and fil-

tering, i.e., the eMic is ignored in this condition (Fig. 4.4 - 4.6).

Condition 2: The eMic, in addition to the LMA, is used for both, the RTF vector

estimation and the filtering (Fig. 4.7 - 4.9).

Condition 3: The eMic is only used for the RTF vector estimation, but its signal

is not filtered. Which can be understood as the eMic ”guiding” the RTF vector
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estimation of the LMA (Fig. 4.7 - 4.9).

The three conditions allow to investigate the influence of the multi-channel SIR on

the RTF vector estimation using CW.

4.5.2 Implementation and Parameters

For the filter, steered by the estimated RTF vector, an MPDR beamformer, defined

in (3.4), is used. The parameters of the implementation and the STFT framework

are set as follows: A frame length of 1024 samples is used with an overlap of 50%,

corresponding to a frame shift of 512 samples. The frames are windowed with a

square-root-Hann window for analysis and synthesis. The covariance matrices Ry

and Rn are estimated batch (i.e., averaged over the complete signal with a length

of 10 s) with oracle knowledge about the noise component.

One performance measure is the weighting of the two oracle RTF vectors h and b,

where a weighting going towards 1 indicates that the respective source dominates

the RTF vector estimation, while a weighting going towards 0 indicates that the

respective source barely influences the RTF vector estimation. In contrast to the

weighting discussed in Section 4.3, the weighting here is computed in the de-whitened

domain. To this end, the least-squares solution, similar to (4.34), is computed on

the de-whitened RTF vectors, i.e., using the estimated RTF vector ĥCW as in (4.8)

(and not the principal eigenvector vmax in the whitened domain) and the RTF

vectors h and b. The weighting factors obtained per frequency-bin are averaged

subsequently. Another evaluated measure is the Hermitian angle between the target

RTF vector (and respectively the interferer RTF vector) and the estimated RTF

vector, which is computed per frequency bin as defined in (2.34) and subsequently

averaged over all frequency bins. Furthermore, the SD as in (2.32) for both speech

sources , i.e., the target and the interferer, is investigated as well as the resulting SIR

improvement ∆SIR, as in (2.30). Similarly, the NR as in (2.33) and the resulting

SNR improvement ∆SNR, as in (2.29), are considered. All metrics are computed

broad-band via the root-mean-square value of the time-domain signals as defined in

Section 2.1.

26 Wiebke Middelberg Master Thesis



4 Standard Estimators for Model Parameters

4.5.3 Results

In Fig. 4.4, the upper panel shows the weighting γ of the target and the interferer

RTF vector, and the lower panel shows the resulting Hermitian angle between the

estimated RTF vector and the target and interferer RTF vector, respectively, fir the

first considered condition. Note that on the x-axis, the input SIR in the reference

microphone (i.e., the first of the LMA) is depicted and not the multi-channel SIR

which is the determining factor of the weighting ratio in (4.31).
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Fig. 4.4: Weighting and Hermitian angle for condition 1 (see Section 4.5.1) of CW
bias analysis. Upper panel: Weighting of target and interferer RTF vector
for the blindly estimated RTF vector using CW. Lower panel: Hermitian
angle between target/interferer RTF vector and estimated RTF vector.

The two curves for γ in the upper panel of Fig. 4.4 clearly show a strong strong

weighting of the target RTF vector (green curve) at positive input SIRs, going

towards 1, and a low weighting at negative SIRs, going towards 0, as expected from

the results shown in Section 4.4 and vice versa for the weighting of the interferer

RTF vector (red curve). It should be noted that the weighting of 0.5 is not obtained

at exactly 0 dB input SIR, as it would be expected from theory. This might be

caused by the a-symmetry of the acoustic scenario and possible effects caused by

the whitening operation. The resulting Hermitian angle is depicted in the lower

panel, where an accordance with the findings in Section 4.4 can be seen: At high

input SIRs, where the target RTF vector h is weighted more strongly, the Hermitian

angle between h and the estimate obtained using CW ĥCW goes towards 0, indicating

a very precise estimate, while at low input SIRs, this angle increases up to 62° (gray

dashed line), which is the Hermitian angle between the target and the interferer RTF

vector. The Hermitian angle between the interferer RTF vector b and ĥCW behaves
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similarly, i.e., a small Hermitian angle for the interferer is obtained at low input

SIRs, meaning that ĥCW almost perfectly corresponds to b, while a large Hermitian

angle is found at high input SIRs.

So far, the results from Section 4.4 were confirmed. Now, the consequences of

this RTF vector estimation on a beamformer, namely the MPDR beamformer, are

investigated, i.e., the influence on the separate processing of the target speaker, the

interferer and the noise is analyzed experimentally. Fig. 4.5 shows the SD scores

for both speech sources, i.e., green for the target and red for the interferer, and the

resulting SIR improvement ∆SIR (blue).

-20 -15 -10 -5 0 5 10 15 20

SIR
in

 [dB]

-30

-20

-10

0

10

20

30

M
ag

n
it

u
d

e 
[d

B
]

Target SD Interferer SD SIR

Fig. 4.5: Target and interferer SD and ∆SIR for condition 1 (see Section 4.5.1) of
CW bias analysis.

It can be seen that for high input SIRs, the SD score for the target goes towards

0, which indicates a perfect preservation of the target speech, while low input SIRs

lead to target speech distortions of about -10 dB, indicating a cancellation of target

speech. Vice versa, the SD scores for the interferer go towards 0 at low input SIRs

and decrease towards higher input SIRs down to about -15 dB. The blue curve in

Fig. 4.5 depicts the SIR improvement, which is the difference between the target

SD and the interferer SD scores, which is used more often than separate SD scores

to characterize the interferer reduction performance, as it quantifies the interferer

reduction relative to the distortions of the target speech. It can be seen that the

SIR improvement shows good (i.e., positive) results up to about 15 dB at high input

SIRs, which indicates that a blind RTF estimation using CW works in the case of a

low interferer level, where the interferer is even cancelled leading to an even higher

SIR at the output. However, at low input SIRs, i.e., in scenarios where interferer

reduction is essential to gain intelligibility of the target, blind RTF vector estimation
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leads to negative ∆SIR scores, down to about -10 dB, and thus an enhancement of

the interferer (compared to the target).

Since the objective of the algorithms in this thesis is both, interferer and noise reduc-

tion, the influence of the beamformer on the present noise field is now investigated.

Fig. 4.6 shows the NR scores (purple), the SD scores for the target (green), and the

SNR improvement (blue).
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Fig. 4.6: Target SD, NR and ∆SNR for condition 1 (see Section 4.5.1) of CW bias
analysis.

As the NR scores are rather constant (between -5.7 dB at low input SIRs and -7.4

dB at high input SIRs), the SIR improvement yields a similar curve as the SD scores,

but shifted up by the amount of NR performed by the beamformer. Similarly to

the ∆SIR curve in Fig. 4.5, it can be seen that for low input SIRs, the ∆SNR score

becomes negative, meaning that the target is cancelled more than the noise and at

high input SIRs, the ∆SNR scores take positive values, indicating that the target

speech is enhanced compared to the noise.

The conclusion that can be drawn from this first condition is that blind RTF vector

estimation using CW and the subsequent use of this RTF vector estimate in a

state-of-the-art beamforming algorithm is not suitable for joint noise and interferer

reduction in scenarios with low input SIRs, where is it a fundamental task to reduce

the interferer to achieve intelligibility of the target speaker. It is shown here that

always the dominant speaker is preserved (as also expected from the theoretical

derivation in Section 4.3), which is not the stated goal of this thesis.

Though this näıve approach can be discarded to achieve the stated goal of joint

noise and interferer reduction, two further conditions are evaluated to investigate
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the influence of the multi-channel SIR on the RTF vector estimated using CW by

incorporating an eMic placed close to the target speaker. The second condition

investigated here is where the eMic is included in the estimation of the RTF vector

and also in the MPDR beamformer. The results are shown in Fig. 4.7 - 4.9. Similarly

to Fig. 4.4, Fig. 4.7 shows the weighting of the target and the interferer RTF vector

in the upper panel and the Hermitian angle between the estimated RTF vector and

the target and interferer RTF vector, respectively, in the lower panel.
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Fig. 4.7: Weighting and Hermitian angle for condition 2 (see Section 4.5.1) of CW
bias analysis. Upper panel: Weighting of target and interferer RTF vector
for the blindly estimated RTF vector using CW. Lower panel: Hermitian
angle between target/interferer RTF vector and estimated RTF vector.

Generally, similar trends as before are observed: For high input SIR the target RTF

vector is weighted more strongly and for low input SIRs the interferer RTF vector

is weighted more strongly. However, a clear shift of the two curves towards lower

input SIRs can be observed, as a weighting of 0.5 for the two RTF vectors is found

at an input SIR of about -10 dB. Accordingly, also the curves for the Hermitian

angle between the target RTF vector h or respectively the interferer RTF vector b

and the estimated RTF vector ĥCW shift towards lower input SIRs. Note that in

contrast to the first condition, the RTF vector now includes the eMic and therefore

has an additional entry, which changes the Hermitian angle between h and b from

62° to 70°, which now limits the ”missteering” of the beamformer. However, in the

shown range from -20 dB to 20 dB input SIR, the Hermitian angle between ĥCW

and h does not reach a value of 70°, while the Hermitian angle between ĥCW and b

reaches the 70° at an input SIR of about 0 dB.

The consequences of this shift of the weighting curves and the resulting RTF vector

30 Wiebke Middelberg Master Thesis



4 Standard Estimators for Model Parameters

on the beamformer’s output are shown in Fig. 4.8 and Fig. 4.9. Similarly to Fig.

4.5, Fig. 4.8 shows the effect of the beamformer on the target and the interferer.
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Fig. 4.8: Target and interferer SD and ∆SIR for condition 2 (see Section 4.5.1) of
CW bias analysis.

For the interferer SD, it can be observed that much lower values of about -22 dB are

obtained (at mid and high input SIRs), and that even for low input SIRs, negative

SD scores are obtained, which converge towards 0 dB for very low input SIRs. The

SD scores for the target are constantly at 0 dB for input SIRs between -5 dB to 20

dB, only for lower input SIRs, target SD scores unequal to zero are obtained, which,

however, are positive (up to almost 10 dB), indicating a gain applied to the target

speech by the beamformer. Following from the SD scores for target and interferer,

the resulting SIR improvement ∆SIR is constantly positive, taking values of about

10 dB to up to 22 dB. These results can partially be explained when considering

the fact that the eMic is placed so close to the target and therefore has an input

SIR that is about 22 dB larger than the reference microphone (for which the input

SIR is shown on the x-axis of the graphs). For a more detailed explanation, further

investigations of the beamformer would be required which exceed the scope of this

validation.

The results for the beamformer’s influence on the noise are shown in Fig. 4.9, where

the overall trend of an improvement compared the the configuration without the

eMic, shown in Fig. 4.6, can be observed.

The NR scores in Fig. 4.9 go down to about -20 dB at high input SIRs and gradually

increase, i.e., get less negative up to -8 dB, towards low input SIRs. Considering the

high input SNR in the eMic of about 20 dB more compared to the reference micro-

phone can explain these results. Following from the NR scores and the SD scores for
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Fig. 4.9: Target SD, NR and ∆SNR for condition 2 (see Section 4.5.1) of CW bias
analysis.

target, the resulting SNR improvement ∆SNR is constantly positive, taking values

of about 15 dB to 20 dB.

From this second conditions, two major conclusions can be drawn: 1) The RTF

vector estimation indeed depends on the multi-channel input SIR, meaning that one

microphone with a particularly high SIR leads to an RTF vector estimate that favors

the target over the interferer. And 2) a very well placed eMic in conjunction with

an LMA (e.g., hearing aids) actually allows for joint noise and interferer reduction,

even without any sophisticated processing schemes. This would for example be the

case for a lapel microphone attached to the target speaker. However, if the eMic is

not placed close to the target speaker, e.g., a table microphone in a restaurant that

captures all speech signals or even being close to the interferer, the performance

of a blind beamformer would strongly suffer and joint noise and interferer reduc-

tion would not be possible, perhaps even leading to an enhanced interferer signal.

Though the assumption that the eMic is placed well, i.e., close to the target speaker,

is often made in practice, it might not always hold and the systems based on this

assumption strongly suffer. Thus, this assumption is not made in this thesis and

the general case of arbitrarily placed eMics is considered.

In the last condition investigated here, the eMic is only used for the RTF vector

estimation, but not in the beamformer, meaning that the entry of the RTF vector

corresponding to the eMic is discarded after the estimation. This allows for the

investigation of the multi-channel SIR on the entire RTF vector, to ensure that the
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results found in the condition before were not purely caused by the entry of the

estimated RTF vector corresponding to the eMic, but by the entire estimated RTF

vector favoring the target over the interferer. Furthermore, this allows to investigate

if (or how much of) the benefit coming with including the eMic is caused by a

better RTF vector estimation or respectively by the incorporation of a very good

microphone into the beamformer. The results for this third condition are shown in

Fig. 4.10 - 4.12. The weighting in the upper panel of Fig. 4.10 and the Hermitian

angle in the lower panel are now again only computed on the entries of the RTF

vector used in the beamformer, i.e., the ones corresponding to the LMA, giving a

maximal Hermitian angle of 62° as in the first condition (see Fig. 4.4).
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Fig. 4.10: Weighting and Hermitian angle for condition 3 (see Section 4.5.1) of CW
bias analysis. Upper panel: Weighting of target and interferer RTF vector
for the blindly estimated RTF vector using CW. Lower panel: Hermitian
angle between target/interferer RTF vector and estimated RTF vector.

The weighting curves of the target RTF vector h and the interferer RTF vector

b, identical curves as in Fig. 4.7 are obtained, even when neglecting the entry

corresponding to the eMic. This indicates that the entire RTF vector estimate is

affected when including one microphone with a high input SIR and not only that

particular entry. For the Hermitian angles between the estimated RTF vector ĥCW

and h and b, respectively, slightly different curves than in Fig. 4.4 are obtained,

since they, as already mentioned, converge to a different upper bound (namely 62°)
and are also shifted slightly towards higher input SIR. However, the overall trend

of an accurate RTF vector estimate which has a small Hermitian angle to the target

RTF vector even at negative SIR is still present.

The effect of the estimated (and cropped) RTF vector on the target and the interferer
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can be seen in Fig. 4.11.
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Fig. 4.11: Target and interferer SD and ∆SIR for condition 3 (see Section 4.5.1) of
CW bias analysis.

Similarly to the results in Fig. 4.8, the SD score for the target is larger or equal to

0 dB for all input SIRs, although the maximal value is only slightly lower (a gain

of about 7 dB). The SD scores for the interferer also resemble the results from Fig.

4.8, even though the eMic is not included in the beamformer. The SD scores for

the interferer go down to about -20 dB at an input SIR of 0 dB, but go towards

less negative values (to about -15 dB) for higher input SIRs. The resulting SIR

improvement is therefore always positive and takes values of 6 dB to 20 dB. These

results indicate that using a well placed eMic, or generally a signal with a high

SIR, to ”guide” the RTF vector estimation yields good results in terms of interferer

reduction.

Similar to the interferer reduction, the results for the noise reduction, depicted in

Fig. 4.12, indicate a clear benefit from using the eMic in the RTF vector estimation.

The ∆SNR scores are positive for all input SIRs and have an almost constant value

of 6 dB to 7 dB. The tendencies are the same as in the second condition where

the eMic was also filtered (see Fig. 4.9), but the absolute values are quite different:

When the eMic is included in the filtering, NR scores of down to -20 dB are obtained,

while when only included in the RTF vector estimation, the NR scores only go down

to about -7 dB. Nevertheless, since the resulting ∆SNR scores are positive for all

input SIRs, good results are achieved when the RTF vector estimation is ”guided”

by a microphone with a very high SIR.
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Fig. 4.12: Target SD, NR and ∆SNR for condition 3 (see Section 4.5.1) of CW bias
analysis.

The main conclusion that can be drawn from the third considered condition, where

the eMic is only used to estimate the RTF vector but is not included in the beam-

former, is that the entire RTF vector is affected by the one particularly good chan-

nel and not just the entry corresponding to it. Similarly, the noise and interferer

reduction scores obtained when using this estimated RTF vector leads to clear im-

provements compared to the first condition where the RTF vector was estimated

only using the microphones of the LMA.

To summarize the performed validation of the bias analysis for the CW method, the

main conclusions are recapitulated here:

In the first condition, i.e., where only the LMA was considered for both, the RTF

vector estimation and the beamformer, it could clearly be seen that the dominant

speaker was preserved while the other was suppressed. In this case, joint noise and

interferer reduction is therefore not possible, since in case of a low input SIR, where

interferer reduction is most important, the interferer is not reduced, but rather the

target.

In the second condition, i.e., where additionally to the LMA an eMic placed close

to the target was used for both, the RTF vector estimation and the beamformer, it

could be seen that even for low input SIRs at the LMA, the estimated RTF vector

corresponded rather to the target RTF vector than to the interferer RTF vector.

This finding supports the theoretical results in Section 4.3 that the factor determin-

ing the weighing of the two RTF vectors in the CW method is the multi-channel

SIR. The beamformer using this RTF vector is suitable for joint noise and interferer
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reduction, since for a large range of input SIRs, no target SDs were introduced and

the ∆SIR and ∆SNR scores were constantly positive. However, this finding also

implies that an eMic that is placed close to the interferer leads to a beamformer

which enhances the interferer and hence suppresses the target. For the general case

of an eMic for which it is not explicitly assumed to be close to the target, including

an eMic using a blind RTF estimation and beamforming approach is therefore also

not suitable for joint noise and interferer reduction.

In the third condition, i.e., where the eMic was used only for the RTF vector es-

timation, but not in the beamformer, it could be seen that despite discarding the

entry corresponding to the eMic, the accuracy of the estimated RTF vector was very

high, indicated by a low Hermitian angle between the estimated RTF vector and the

target RTF vector. This finding implies that using a particularly good channel for

”guiding” the RTF vector estimation leads to an overall more precise RTF vector

estimate. The resulting beamformer therefore also favors the target over the inter-

ferer, similarly to the second condition.

Generally, from this validation the conclusions can be drawn that 1) the theoretical

findings in Section 4.3 appear to hold and 2) that in the general case of an un-

known (possibly unfortunate) position of one or multiple eMics, a blind RTF vector

estimation and beamforming approach is not suitable for joint noise and interferer

reduction.
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In this section, the generalized sidelobe canceller (GSC) structure is introduced. The

GSC is often regarded as an adaptive implementation of the MVDR or respectively

MPDR beamformer [6–8]. In its closed form implementation, the GSC is - in fact

- identical to the MVDR/MPDR beamformer. In this thesis, the GSC is therefore

not considered for being an adaptive implementation of the MPDR beamformer, but

rather for its larger flexibility and intermediate signal stages. Furthermore, intro-

ducing the GSC allows for a distinction of informed and un-informed beamforming

structures. As discussed in Section 3, the MPDR is considered to be a un-informed

beamformer, where the entire RTF vector blindly. As shown in Sections 4.3 and 4.5,

blind beamforming approaches are not suitable in acoustic scenarios with interfering

speakers. Therefore, the a-priori RTF vector h̃a, which is assumed to be given for

the hearing aid microphones (i.e., the LMA) can exploited. The resulting informed

beamformer, namely the local GSC (L-GSC), is only applied to the LMA signals

ya and exploits the a-priori RTF vector h̃a. Using the GSC structure instead of a

closed form MPDR for the local beamformer allows to later exploit the intermediate

signal stages for the incorporation of the eMics (see Section 6).

The block diagram of the L-GSC is shown in Fig. 5.1. The filter blocks that are not

data driven, but which exploit the a-priori RTF vector are the blocking matrix Ca

and the fixed beamformer fa.

Fig. 5.1: Block diagram of the L-GSC, applied to the local microphones, where the
fixed beamformer fa and the blocking matrix Ca exploit the a-priori RTF
vector h̃a.

The upper branch of the L-GSC is meant to fulfill the distortionless constraint of

the MPDR and is given by a fixed beamformer fa (here a matched filter), relying on

the a-priori RTF vector h̃a, that is

fa =
h̃a

||h̃a||22
, (5.1)
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such that fHa h̃a = 1. The speech reference Yf is obtained by applying fa to the local

noisy input signals ya, i.e.,

Yf = fHa ya . (5.2)

The lower branch of the structure in Fig. 5.1 aims at minimizing the total power at

the output (similarly to the minimization problem in (3.2)). This is done by means

of the Ma × (Ma-1)-dimensional blocking matrix Ca, which is orthogonal to the a-

priori RTF vector, that is CH
a h̃a = 0(Ma−1)×1. In the case of the first microphone

being the reference microphone, Ca can be constructed as in [8], i.e.,

Ca =

[
−H̃∗

a,2 ,−H̃∗
a,3 , ... ,−H̃∗

a,Ma

IMa−1

]
, (5.3)

where H̃a,ma is the ma-th entry of the a-priori RTF vector h̃a. By applying Ca to

the local input signals ya, Ma-1 so-called noise-and-interferer references, stacked in

the vector ua, are obtained, i.e.

ua = CH
a ya . (5.4)

In case of an ideal a-priori RTF vector, ua only contains noise and interferer com-

ponents, but no target speech component. However, if h̃a is not identical to the

true target RTF vector, speech leakage into ua will occur. The noise-and-interferer

references are subsequently filtered by the filter vector va, giving the output signal

Za = Yf − vH
a ua . (5.5)

To minimize the output power by means of the filter vector va, the following uncon-

strained optimization problem is considered

min
va

E{|fHa ya − vH
a CH

a ya|2} . (5.6)

In contrast to [17], where an MVDR implementation was chosen, i.e., aiming at only

minimizing the noise component, in this thesis, an MPDR implementation of the

GSC is chosen, since it can also suppress the interferer and not only the noise. The

equivalence of MVDR and MPDR discussed in Section 3 (shown in Appendix A))

does not hold here, since the respective RTF vector is not blindly estimated using

CW. The closed form of va, i.e.. Wiener filter solution to the optimization problem

in (5.6), is given by
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va = (CH
a R̂y,aCa)−1CH

a R̂y,afa . (5.7)

Using an MPDR implementation for va ,on the one hand, allows to actively suppress

the interferer, which would not be possible with an MVDR implementation, where

only the noise is reduced actively. On the other hand, it comes with the risk of target

speech cancellation if there is speech leakage into the noise-and-interferer references

ua. Note that often adaptive implementation are used for va, e.g. by using an

adaptive algorithm such as normalized least-mean squares (NLMS) [31]. However,

throughout this thesis, the closed form of va in (5.7) is used due to its equivalence

to the closed form MPDR beamformer in (3.4).

As already mentioned, the advantage of the GSC structure over the closed form

MVDR beamformer in (3.3) is its larger flexibility: The structure allows to design the

separate blocks, i.e., fa, Ca and va, independently. And even more importantly here,

it has intermediate signal stages, that is, the spatially pre-filtered speech reference

Yf and the noise-and-interferer references ua. These signals can be exploited for the

RTF vector estimation of the eMics (see Section 6).
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In this section, four different extended GSC structures are considered. All four

structures exploit the pre-filtered local signals (i.e., obtained from the L-GSC) for

an improved RTF vector estimation of the eMics. The obtained RTF vector estimate

is then used in one of two ways:

1. An external blocking matrix is completed with the estimated external RTF

vector, yielding additional external noise-and-interferer references. The ex-

ternal noise-and-interferer references are then used to minimize the noise and

interferer components at the structures’ output by either joint filter optimiza-

tion with the local filters or by cascaded minimization of the residual noise and

interferer components at the output of the L-GSC. The two structures using

external noise-and-interferer references are called GSC with external noise ref-

erences type 1 (GSC-ENR-1) and GSC with external noise references type

2 (GSC-ENR-2), respectively, and are both presented in Section 6.1.

2. The external RTF vector is used to steer a joint MPDR beamformer of the

L-GSC output and the (pre-processed) eMic signals. The two structures

which do so differ in one major point: In the GSC with external references

(GSC-ER) (Section 6.2), no pre-processing of the eMic signals is done before

the joint MPDR beamformer, while in the GSC with external speech refer-

ences (GSC-ESR) (Section 6.3), the eMic signals are pre-processed by means

of the filtered local noise-and-interferer references, which aims at interferer

reduction in the eMic signals.

6.1 GSC with External Noise References

The two extended GSC structures with external noise-and-interferer references are

introduced in this section. First, the GSC-ENR-1 is presented and subsequently the

GSC-ENR-2 is presented. Both structures exploit the pre-filtered, local signals for

a better RTF vector estimate compared to a completely blind estimation, which is

used to complete a blocking matrix yielding additional external noise-and-interferer

references.

6.1.1 GSC with External Noise References Type 1

The GSC-ENR-1 was proposed in [17], where it was used to incorporate eMics to

achieve noise reduction in a scenario with several stationary, coherent noise sources.

The formulation of this structure is changed here from an MVDR implementation
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to an MPDR implementation, such that not only noise but also the interferer can

be cancelled. The structure in itself, however, is the same as in [17] and is shown in

Fig. 6.1.

Fig. 6.1: Block diagram of the GSC-ENR-1, incorporating the eMics by creating
external noise-and-interferer references. The RTF vector estimation is per-
formed on Yf and ye using CW.

In the GSC-ENR-1, the objective of incorporating the eMics is to create additional

noise-and-interferer references from the eMic signals. This can be achieved by means

of the blocking matrix Ce, which is defined as

Ce =

[
−ĥH

e

I(Ma−1)×(Ma−1)

]
, (6.1)

which requires an estimate of the vector ĥe, containing the external RTFs. Applying

Ce to the signal of the first microphone of the LMA Y1 and the eMic signals gives

the Me external noise-and-interferer references stacked in the vector ue, i.e.,

ue = CH
e

[
Y1

ye

]
. (6.2)

Since Ce relies on the external RTF vector he, it has to be estimated. As discussed

earlier, a blind RTF vector estimation using the CW method will lead to a biased

RTF vector estimate due to the presence of the interferer, as shown for CW in Section

4.3. It has also been shown in Section 4.5 that a single enhanced channel (i.e.,

with a higher input SIR) can lead to a better RTF vector estimate by guiding the

estimation. Therefore, a pre-filtered signal of the L-GSC can be exploited to obtain
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a better estimate of he, where in principle, there are two available signals which can

be used for an improved RTF vector estimation, namely the speech reference Yf or

the output signal Za of the L-GSC. In the GSC-ENR-1, a joint optimization of the

filters ga and ge is considered, meaning that the signal Za will not be available. Note

that the filter va is renamed since it is not equivalent with the filter in the L-GSC.

The joint optimization is depicted in Fig. 6.1, as well as the RTF vector estimation

using the speech reference Yf , i.e., using the (Me + 1) × (Me + 1)-dimensional pre-

processed noisy covariance matrices

Ry,z = E{[Yf , yT
e ]T [Y ∗

f , yH
e ]} , (6.3)

and the pre-processed noise covariance matrix Rn,z (defined similarly to (6.3)). For

the matrices Ry,z and Rn,z, the estimated quantities R̂y,z and R̂n,z are assumed to

be available, as discussed in Section 4.1. The vector ĥe is estimated by applying

CW to the matrices R̂y,z and R̂n,z, giving the (Me + 1)-dimensional RTF vector ĥz,

which consists of a first entry equal to 1, corresponding to the speech reference Yf

or respectively the first channel of the LMA, respectively, and the vector ĥe, i.e.,

ĥz =

[
1

ĥe

]
. (6.4)

Estimating the vector ĥe by exploiting the pre-filtered local speech reference Yf can

directly be related to the third condition shown in the validation of the bias analysis

(Section 4.5), where a particularly good channel (here Yf as it is an enhanced version

of Y1) is used to estimate the RTF vector but is discarded afterwards.

It should be noted that in the case of a fixed beamformer fa, when not designed to

be distortionless as in (5.1), a compensation for the introduced distortion must be

applied to (6.4), as done in [17]. When designing the fixed beamformer to introduce

a known distortion, i.e., not distortionless, the target speech component in Yf would

not be the same as in the input signal Y1. This would lead to an RTF vector estimate

ĥz that does not match the speech component at the input, which, as described,

requires for a compensation of this distortion. Here, however, fa is a matched filter

and thus distortionless.

For the joint filter optimization of ga and ge, the stacked filter vector

g =

[
ga

ge

]
(6.5)

is considered. The respective optimization problem, aiming at minimizing the resid-

ual noise and interferer in the speech reference Yf , reads
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min
g
E{|fHy − gHCHy|2} , (6.6)

with the M × (M − 1)-dimensional blocking matrix C, defined as

C =

 Ca

−ĥH
e

0(Ma−1)×Me

0Me×(Ma−1) IMe×Me

 . (6.7)

The operation fHy yields the speech reference Yf as in the L-GSC, for which the

joint filter vector is defined as

f =

[
fa

0Me×1

]
. (6.8)

The solution of (6.6) for the joint filter vector g is given by

g =
(
CHRyC

)−1
CHRyf (6.9)

For the filtering, ga and ge are separated again as using (6.5), such that the output

Z of the GSC-ENR-1 is given by

Z = Yf − gH
a ua − gH

e ue . (6.10)

Note that, as for the L-GSC, the MPDR implementation of the GSC-ENR-1 can lead

to target cancellation if there is speech leakage in the noise-and-interferer references

ua and ue, unlike an MVDR implementation which, however, would not allow to

actively suppress the interferer.

6.1.2 GSC with External Noise References Type 2

A second structure which aims at creating external noise-and-interferer references, is

the GSC-ENR-2. In contrast to the GSC-ENR-1, the output signal Za of the L-GSC

is used for the RTF vector estimation of the eMics instead of the speech reference Yf .

Especially if there is no speech leakage into the local noise-and-interferer references

ua, the SIR in Za is expected to be higher than in Yf , which allows for an even

better RTF vector estimation. The processing scheme of the GSC-ENR-2 is shown

in Fig. 6.2, where it can also be seen that RTF vector estimation using Za has the

consequence that the filters va and ve are optimized separately.

Similarly to the GSC-ENR-1, the blocking matrix Ce is completed by means of the

external RTFs as in (6.1). The vector ĥe can be obtained by applying CW to the
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Fig. 6.2: Block diagram of the GSC-ENR-2, incorporating the eMics by creating
external noise-and-interferer references. The RTF vector estimation is per-
formed on Za and ye using CW.

estimates R̂y,z and R̂n,z of the pre-processed noisy covariance matrix

Ry,z = E{[Za, yT
e ]T [Z∗

a , yH
e ]} (6.11)

and the pre-processed noise covariance matrix Rn,z (defined similarly to (6.11)).

The obtained estimated RTF vector ĥz can be decomposed into the reference en-

try and the vector ĥe as in (6.4). Since the fixed beamformer fa is designed to be

distortionless, also the target speech component in the signal Za is assumed to be

distortionless, which means that, as for the GSC-ENR-1, no distortions must be

compensated.

The external noise-and-interferer references ue are obtained as in (6.2). ue is sub-

sequently used to minimize the remaining noise and interferer in the output signal

Za of the L-GSC. Hence, the filter ve is optimized by minimizing the cost function

min
ve

E{|Za − vH
e ue|2} . (6.12)

The solution to (6.12) is given by

ve = R̂−1
ua

R̂ua,Za , (6.13)

where R̂ua,Za is an estimate of the cross-correlation between the external noise-and-

interferer references ue and the L-GSC output Za, defined as
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Rua,Za = E{ueZ
∗
a} . (6.14)

The matrix R̂ua is an estimate of the covariance matrix of ue, defined as

Rua = E{ueu
H
e }

= CH
e ET

1,eRyE1,eCe ,
(6.15)

with E1,e the M × (Me + 1) dimensional selection matrix for the first microphone

and the eMics, defined as

E1,e =

 1

0(Ma−1)×1

0Ma×Me

0Me×1 IMe×Me

 . (6.16)

The output signal Z of the GSC-ENR-2 is given by

Z = Za − vH
e ue . (6.17)

As also mentioned for the GSC-ENR-1, an MPDR is required to suppress the inter-

ferer, but it comes with the risk of speech cancellation if there is speech leakage in

the noise-and-interferer reference ua and ue.

6.2 GSC with External References

The idea of the GSC-ER is to incorporate the eMics by means of a joint MPDR

beamformer of the eMic signals ye and the L-GSC output signal Za. The respective

processing scheme is shown in Fig. 6.3. When comparing the GSC-ER with the

blind MPDR in Section 3, the incorporation of the L-GSC can be seen as a local

pre-filtering operation giving one signal (namely Za) with a particularly high SIR

(compared to the input signals ya) which, as shown in Section 4.3, leads to an RTF

vector estimate that might favor the target speaker over the interferer. Technically,

the L-GSC in the GSC-ER could also be implemented as a closed form MPDR

beamformer using the a-priori RTF vector h̃a, since only its output signal Za, not its

intermediate signal stages, is exploited. However, for a better (visual) comparability

to the other extended GSC structures, the L-GSC is kept instead of condensing it

into an MPDR block for the LMA.
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Fig. 6.3: Block diagram of the GSC-ER, incorporating the eMic in a joint beam-
former w with Za. The RTF vector estimation is performed on Za and ye

using CW.

The joint MPDR beamformer on output signal Za of the L-GSC and eMic signals

ye can be written as

w =
R̂−1

y,zĥz

ĥH
z R̂−1

y,zĥz

, (6.18)

where R̂y,z is an estimate of the pre-processed noisy covariance matrix Ry,z, defined

as

Ry,z = E{[Za, yT
e ]T [Z∗

a , yH
e ]} (6.19)

and the pre-processed noise covariance matrix Rn,z is defined similarly. As in the

GSC-ENR-2, the RTF vector ĥz is estimated using the matrices R̂y,z and R̂n,z using

the CW method. However, here, the entire vector ĥz is used and not only the

entries corresponding to the eMics. Therefore, the same external RTFs as in the

GSC-ENR-2 structure are obtained, but they are used in a joint beamformer instead

of completing a blocking matrix. Note that, as discussed in Section 3, for the joint

beamformer w, it does not matter if it is implemented as an MVDR beamformer or

as an MPDR beamformer, since CW is used for the RTF vector estimation. Only

for consistency with the other filters, an MPDR beamformer is chosen in (6.18).

The output signal Z of the GSC-ER is given by
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Z = wH

[
Za

ye

]
. (6.20)

Even though it does not matter for the joint beamformer w whether an MVDR or

an MPDR beamformer is chosen, the L-GSC’s performance might suffer due to an

RTF vector mismatch of the a-priori RTF vector h̃a and the true target RTF vector

of the LMA, which subsequently also influences the RTF vector estimation for the

joint beamformer. Therefore, it is expected that an RTF vector mismatch of the

a-priori RTF vector also affects the performance of the GSC-ER.

6.3 GSC with External Speech References

Like the GSC-ENR-1, the GSC-ESR was proposed in [17], there referred to as the

generalized eigenvalue decomposition (GEVD)-based method. The mathematical

formulation of this structure is changed here from an MVDR implementation (as

in [17]) to an MPDR implementation, such that not only noise but also interferer

can potentially be suppressed. The structure in itself, shown in Fig. 6.4, however,

is the same as in [17].

Fig. 6.4: Block diagram of the GSC-ESR, incorporating the eMics in a joint beam-
former w with Za after pre-filtering with the local noise-and-interferer ref-
erences. The RTF vector estimation is performed on Za and ze using CW.

In the processing scheme in Fig. 6.4, a clear similarity with the GSC-ER can be

observed: The L-GSC can here also be seen as a pre-filtering of the local input signal

vector ya which is used in a joint MPDR beamformer in conjunction with the - now
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pre-processed - eMic signals, in contrast to the GSC-ER where the un-processed

eMic signals are used.

The basic idea is to pre-process the noisy external microphone signals ye by means

of the filters ve,me , me ∈ {1, . . . ,Me}, which aim at cancelling correlated components

between the local noise-and-interferer ua and the eMic signals in ye. The respective

optimization problem to obtain the filters ve,me reads

min
ve,me

E{|Ye,me − vH
e,me

ua|2} . (6.21)

The solution of (6.21) is given as

ve,me =
(
CH

a R̂y,aCa

)−1

CH
a EaR̂yee,me , (6.22)

where ee,me is a selection vector for the me-th eMic and Ea is the selection matrix

for the LMA defined in (2.14). The pre-processed eMic signals

Ze,me = Ye,me − vH
e,me

ua , (6.23)

are the elements of the vector ze. When now assuming an ideal a-priori RTF vector,

i.e., there is no speech leakage into the local noise-and-interferer references ua, only

the undesired components are reduced in the eMic signals, leading to a higher SIR

in the pre-processed eMic signals ze than in the un-processed eMic signals ye. The

exact amount of interferer or noise that is cancelled by the pre-filtering operation de-

pends on the correlation properties of the noise between the local noise-and-interferer

references and the eMic signals and the INR in the noise-and-interferer references.

However, generally, the interferer is partially suppressed in ze allowing for an im-

proved RTF vector estimation in comparison to the GSC-ER. The downside of the

pre-processing operation is the risk of target cancellation if there is speech leakage

into the local noise-and-interferer references ua. In that case, the GSC-ER might

be favorable over the GSC-ESR, since the target cannot be cancelled in the eMic

signals by the filters ve,me .

The pre-processed eMic signals ze are then used in a joint MPDR beamformer with

the L-GSC output signal Za, i.e.,

w =
R̂−1

y,zĥz

ĥH
z R̂−1

y,zĥz

, (6.24)

where R̂y,z is an estimate of the pre-processed noisy covariance matrix Ry,z, defined

as
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Ry,z = E{[Za, zT
e ]T [Z∗

a , zH
e ]} . (6.25)

The pre-processed noise covariance matrix Rn,z is defined similarly to (6.25). The

(Me + 1)-dimensional RTF vector estimate ĥz is obtained by applying CW to the

estimates of the pre-processed covariance matrices R̂y,z and R̂n,z.

The output of the GSC-ESR is given by

Z = wH

[
Za

ze

]
. (6.26)

6.4 Summary of Extended GSC Structures

To summarize and compare the considered extended GSC structures and state-of-

the-art beamforming structures from Section 3 and Section 5, a general overview of

the blind MPDR beamformer, L-GSC, GSC-ENR-1 and GSC-ENR-2, GSC-ER and

GSC-ESR structures is given in this section.

The blind MPDR beamformer (completely blind algorithm)

• does not exploit the a-priori RTF vector h̃a.

• includes an RTF vector estimation for all microphones using CW on the un-

processed noisy input signals.

• performs poorly in terms of interferer reduction if the interferer is the dominant

speaker (shown in Section 4.3).

• performs well in terms of noise and interferer reduction if the target speaker

is the dominant speaker (shown in Section 4.3).

The L-GSC (completely informed algorithm)

• exploits the a-priori RTF vector h̃a and may therefore suffer if h̃a does not

correspond to the true target RTF vector.

• does not incorporate the eMics, which limits the spatial sampling of the sound

field.

• does not incorporate any RTF vector estimation and is therefore not prone to

an estimation bias at low input SIRs.

The GSC-ENR-1 and GSC-ENR-2 (semi-informed algorithms)

• exploit h̃a for pre-filtering local input signals.
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• exploit enhanced local signals to guide the RTF vector estimation for eMics.

• create external noise references ue by complete an external blocking matrix

Ce using the estimated external RTF vector.

• differ in terms of their RTF vector estimation: GSC-ENR-1 uses the speech

reference Yf and the GSC-ENR-2 uses the output of the L-GSC Za to guide

the RTF vector estimation for the eMics.

• differ in terms of filter optimization: Joint optimization of local and external

filters in the GSC-ENR-1 and separate, cascaded optimization of filters in the

GSC-ENR-2.

• might lead to strong speech distortions, since both structures 1) might suffer

from a mismatch between h̃a and the true target RTF vector and 2) might

misestimate the external RTF vector.

• make it difficult to predict which structure will perform better due to a complex

interplay of different RTF vector estimation and different filter optimization.

The GSC-ER (semi-informed algorithm)

• exploits h̃a for pre-filtering local input signals.

• exploits output signal Za of the L-GSC for the RTF vector estimation of the

eMics.

• uses Za and the eMic signals ye in a joint MPDR beamformer.

• is expected to obtain a better RTF vector estimate than the blind MPDR due

to an improved SIR in one channel (i.e., using Za instead of the noisy input

ya).

• might not perform well at low SIRs since the interferer might be the dominant

source in the eMics.

The GSC-ESR (semi-informed algorithm)

• exploits h̃a for pre-filtering local input signals.

• enhances eMic signals by pre-filtering the local noise-and-interferer reference,

which improves the SIR in the pre-processed signals ze compared to the input

signals ye.

• exploits enhanced local signal Za and pre-processed eMic signals ze for the

RTF vector estimation of the eMics.

• uses the output signal of the L-GSC and the pre-processed eMic signals in a

joint MPDR beamformer.
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• is expected to obtain a better RTF vector estimate than the GSC-ER due to

an improved SIR in eMic signals.

• might suffer strongly from RTF mismatch between h̃a and the true target RTF

vector due to pre-processing of eMic signals which might cancel the target

speech in ze.
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In this section, the considered extended GSC structures are evaluated in terms of

noise and interferer reduction and target speech distortion using real-world record-

ings. Due to the large number of requirements to the audio material for this evalua-

tion, i.e., the microphone configuration with an LMA and eMics, two distinct talkers

from different directions, stationary background noise, knowledge about the LMA’s

exact geometry to generate artificial steering vectors or RTF vectors with a certain

(controllable) mismatch and oracle knowledge about all signal components, typical

data sets that are often used for extensive evaluations are not suitable here. The

evaluation is therefore only performed on one particular internal database (also used

in [32]) where all these conditions are fulfilled. The obtained results are therefore

not quite generalizable, since they only reflect the performance in one particular

acoustic scenario but give an overall impression of the potential of the different al-

gorithms.

In Section 7.1, the used audio material and the acoustic scenario are described. In

Section 7.2, the implementation and framework parameters are described. In Sec-

tion 7.3, the evaluation results are presented, where first, the case of an ideal a-priori

RTF vector and second, the case of an anechoic a-priori RTF vector is considered.

7.1 Recording Setup and Conditions

The signals used in the evaluation were recorded in the Variable Acoustics Laboratory

at the University of Oldenburg. The laboratory has a size of (7× 6× 2.7) m and a

changeable reverberation time, here set to approximately 350 ms. The microphone

configuration is shown in Fig. 7.1. All sources and microphones were spatially

stationary during the entire recording. The LMA consisted of binaural hearing aids

with two microphones per ear, mounted on a KEMAR head-and-torso simulator

(HATS). In addition to the Ma = 4 LMA microphones, two eMics were placed

approximately 1.5 m away from the HATS, as depicted in Fig. 7.1. The front

microphone on the left side on the HATS was chosen as the reference channel.

The target speaker was a male English speaker, played back via a loudspeaker. The

target speaker was placed approximately 2 m away from the HATS at an angle of

about 35° to the right of the HATS with a distance of about 0.5 m to one of the

eMics. The interferer was a female English speaker, played back via a loudspeaker.

The interferer was placed approximately 2 m away from the HATS at an angle of

about 35° to the left of the HATS with a distance of about 0.5 m to the other eMic.

The noise was generated by four loudspeakers facing the corners of the room, playing
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TargetInterferer

Noise

LMA

eMics

Fig. 7.1: Acoustic scenario and configuration for evaluation the evaluation of the
considered algorithms. As the LMA binaural hearing aids on a HATS are
used and two eMics in front of the target speaker and the interferer are
included.

back different versions of multi-talker babble noise. The resulting noise field had

the property to be quasi-diffuse and was therefore almost completely uncorrelated

between the LMA microphones and the eMics. The magnitude-squared coherence

(MSC) of the noise field for two microphone pairs is depicted in Fig. 7.2: Once

between the front microphone on the left hearing aid and the rear microphone on

the left hearing aid (Ch. 1 and Ch. 2) and once between the front microphone on

the left hearing aid and the eMic on the right side (Ch. 1 and Ch. 5). In Fig.

7.2 the MSC for the two microphone pairs is plotted over frequency f , including

a moving average over 10 frequency bins for a smoother representation. It can

clearly be seen for the case of two nearby microphones that the MSC is rather high

(almost 1) for low frequencies and then drops for higher frequencies. For the second

microphone pair, which is much further apart, the MSC is constantly low meaning

that it can be assumed that the noise between the LMA microphones and the eMics

is almost completely uncorrelated for all frequencies. The observed curves match

the expectation for a diffuse sound field, since small distances (Ch. 1 and Ch. 2)

lead to highly correlated signals in the low frequency range, while large distances

(Ch. 1 and Ch. 5) lead to almost completely uncorrelated signals.

The recordings were performed at a sampling frequency of 48 kHz and down-sampled

to 16 kHz for the processing and evaluation. All signal components, i.e., target

speech, interferer and noise, were recorded separately and mixed subsequently at
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Fig. 7.2: MSC between first and second channel and first and fifth channel respec-
tively with moving average of the MSC for two microphone pairs: The
front microphone on the left hearing aid and the rear microphone on the
left hearing aid (Ch. 1 and Ch. 2) and the front microphone on the left
hearing aid and the eMic on the right side (Ch. 1 and Ch. 5).

different input SIRs (SIRin = [-10, 0, 10] dB) and different input SNRs (SNRin =

[-10, 0, 10] dB).

Two different a-priori RTF vectors h̃a are used in these simulations: One is an ideal

RTF vector obtained from the measured RIR of the target speaker, which is used

in all considered structures. The other a-priori RTF vector is obtained from an

anechoic RIR database [33] which was recorded using the same devices as in the

simulations. The anechoic a-priori RTF vector for and azimuth of 35° and elevation

of 0° is used to simulate a realistic RTF vector mismatch.

The algorithms that are evaluated are the two baseline systems and the four extended

GSC structures presented Section 6. The baseline systems are the L-GSC using

the respective a-priori RTF vector and a blind MPDR beamformer which uses all

microphones and the entire RTF vector is estimated blindly using CW. The external

RTF vectors in the extended GSC structures are also estimated using CW on the

pre-processed signals, while the a-priori RTF vector is used for the LMA.

7.2 Implementation and Parameters

For the evaluation of the considered algorithms, all filtering operations are done in

the STFT domain. The settings of the STFT framework are a frame length of 1024

samples, corresponding to 64 ms, an overlap of 50%, i.e., 512 samples, and a square-

root-Hann window for analysis and synthesis are chosen. All filters are implemented

closed form (i.e., using the Wiener filter solution).
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A batch implementation is chosen, where the covariance matrices are estimated as an

average over the entire signal. From this, it follows that the entire signal is processed

using the same filter vectors, which do not adapt over time. Furthermore, as already

mentioned in Section 4.1, no VAD algorithm is included, since its performance would

be strongly affected by different SNRs and SIRs. Estimation errors of covariance

matrices might yield results that are difficult to interpret and from which no clear

conclusions about the algorithms’ performance could be drawn. Therefore, oracle

knowledge about the noise is assumed, meaning that good estimates of Ry and Rn

are available, which are used for the RTF estimation and filter optimization.

The blindly optimized filters are applied to all signal components separately to access

the respective algorithm’s performance (see shadow filtering in (2.16) - (2.18)).

The evaluation of the objective measures is done in the time domain, where broad-

band measures are obtained, as described in Section 2.1. All measures are computed

in sequences where the target speaker and the interferer were active simultaneously.

Lastly, it should be mentioned that, even though the STFT framework described

above leads to perfect reconstruction of the input signal, the clean input signal

components are processed with the framework, to compensate for windowing effects

in the beginning or the end of the processed signals. Put differently, the input

signal components are once transformed to the STFT domain and then directly

back transformed to the time domain without any other processing steps. The

metrics like SD or SNR improvement, etc., are then computed using these forth and

back transformed input signal components to assess the input powers of the different

signal components.

7.3 Results

In this section, the results of the described simulations are presented. First, the

ideal case is investigated where the a-priori RTF vector is obtained from the RIR of

the target speaker. These results are shown for all considered algorithms. Second,

the influence of an RTF vector mismatch is investigated, i.e., where the anechoic

RTF vector is used in the L-GSC and the extended GSC structures. In this case,

extended structures, which already perform worse than the baseline in the first, ideal

condition, are not regarded anymore.

7.3.1 Using an Oracle A-Priori RTF Vector

In this first section of results, the case of an ideal a-priori RTF vector is considered.

Fig. 7.3 - 7.5 show the simulation results for the three different input SIRs. The
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first three panels shows the SIR improvement, the SNR improvement, and the SINR

improvement, respectively. The last panel shows the SD of the target speech. On

the x-axis in all panels, the input SNR can be found.
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Fig. 7.3: Evaluation results for an ideal a-priori RTF vector obtained from the target
RIR and an input SIR of -10 dB. The performance measures ∆SIR, ∆SNR,
∆SINR and SD are shows per panel, each for the two baseline systems
(L-GSC and blind MPDR) and the four extended GSC structures.

At the input SIR of -10 dB, i.e., in Fig. 7.3, it can be seen that the blind MPDR

performs the worst in terms of SIR improvement (about -3 dB), while performing

well in terms of SNR improvement (about 10 dB) for all input SNRs. The overall

SINR improvement, however, has partly negative scores of 0 dB to -3 dB. For all

input SNRs, the SD score is at about -5 dB. The results go along with the theoret-

ical analysis in Section 4.2, where it was shown that the dominant source (here the

interferer) is preserved better, which in this case leads to a negative ∆SIR score.

The ∆SIR scores of the L-GSC range from 12 dB (at SNRin = -10 dB) to 17 dB

(at SNRin = 10 dB) and the ∆SNR scores range from 8 dB to 4 dB, respectively.

The SD score for the L-GSC is the best among all considered algorithms with an

almost constant value of -2 dB. Note that despite using the ideal RTF vector (ob-

tained from the target RIR) as the a-priori RTF vector h̃a, speech distortions can

be observed. This is caused by the SD score being a measure based on the power

of in- and output signal, where also reverberation is included. Since the frames of

the STFT framework are shorter than the RIR, to some extent dereverberation is

performed by the beamformer, which induces speech distortions. When taking the

theoretical results from [34,35] into account, the L-GSC performs as expected: Since

the noise field is diffuse and therefore contains uncorrelated parts, the correlation

between the local interferer-and-noise references ua and the speech reference Yf is

largest at high input SNR where only little noise is present. In literature, it has been

shown that for a higher correlation of the undesired component, the performance of
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the filter va is larger and more undesired components can be cancelled. Vice versa,

a low correlation between ua and Yf (here in the presence of much noise) means that

less undesired components can be cancelled.

Both the extended GSC structures, which create external noise references by means

of completing a blocking matrix, i.e., the GSC-ENR-1 and the GSC-ENR-2, score

lower values in all metrics in comparison to the L-GSC. The SD scores range from

-5 dB to -8 dB for the GSC-ENR-2 and from -10 dB to -14 dB for the GSC-ENR-1.

For both structures, the ∆SIR scores are almost constant at around 10 dB and the

∆SNR scores range from 6 dB down to negative values of -1 dB or respectively -3 dB

at an input SNR of 10 dB. The resulting ∆SINR scores are also lower than for the

L-GSC. These results already indicate that the GSC-ENR-1 and the GSC-ENR-2

are not suitable for joint noise and interferer reduction, since they appear con-

stantly perform worse than the baseline system in adverse conditions. A possible

explanation (which holds for both structures) is that the estimation of the external

RTF vector is strongly biased due to the interferer being the dominant source at

an SIR of -10 dB. This leads to a significant amount of target speech leakage into

the external noise-and-interferer references ue, which then causes target speech can-

cellation. However, note that in [17], the GSC-ENR-1 was proposed only for noise

reduction and hence, an MVDR implementation was used. Though the GSC-ENR-1

and GSC-ENR-2 might not be suitable for joint noise and interferer reduction, they

might yet lead to improvements in different acoustic scenarios where only noise is

present.

Also the GSC-ER performs worse than the baseline system in terms of SIR improve-

ment and SINR improvement, which can be related to the very low scores in terms

of SD, where values of -15 dB to -18 dB are obtained. The SNR improvement is

rather good, ranging between 10 dB and 12 dB. However, the GSC-ER does not

seem to be suitable for joint noise and interferer reduction at low input SIRs, which

can be explained by a strongly biased estimation of the external RTF vector due to

the low SIR in the unprocessed eMic signals.

The GSC-ESR performs best in almost all conditions: The SD score is at -4 dB to

-5 dB for all input SNRs and thus the best for all extended structures. In terms of

∆SIR and ∆SNR it outperforms the L-GSC by 4 dB and 5 dB, respectively, which

leads to the overall best performance in terms of ∆SINR. These results already

indicate a benefit of the pre-filtering operation of the GSC-ESR compared to the

GSC-ER. Particularly at high input SNRs, the interferer can be cancelled well by

the filters ve,me . The explanation can be found when considering that the noise filed

is diffuse and therefore uncorrelated between the local noise-and-interferer references
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ua and the eMic signals ye due to the large distance between the LMA and the eMics

(as shown in Fig. 7.2). A lower input SNR therefore leads to a lower correlation

between these signals which prevents the filters ve,me from cancelling the interferer

in the eMic signals. Generally, the results for this adverse scenario already indicate

that the GSC-ESR is the only extended GSC structure that has the potential to

increase the performance of the L-GSC.

In Fig. 7.4, the results for an input SIR of 0 dB are shown. The first overall

trend that can be observed is that the differences in the performance among the

different algorithms become smaller: While the ∆SINR scores at an input SIR of

-10 dB ranged from -3 dB (for the blind MPDR beamformer) to 19 dB (for the

GSC-ESR), at an input SIR of 0 dB, the range goes from 1 dB (for the blind MPDR

beamformer) to 15 dB (for the GSC-ESR). Similarly, the maximal speech distortion

is now obtained by the GSC-ENR-1 (-8 dB) instead of the GSC-ER (-18 dB) at an

input SIR of -10 dB.

-10 0 10
-10

-5

0

5

10

15

20

S
IR

 [
d
B

]

-10 0 10

SNR
in

 [dB]

-10

-5

0

5

10

15

20

S
N

R
 [

d
B

]

-10 0 10
-10

-5

0

5

10

15

20

S
IN

R
 [

d
B

]

-10 0 10
-30

-25

-20

-15

-10

-5

0

S
D

 [
d
B

]

L-GSC blind MPDR GSC-ENR-1 GSC-ENR-2 GSC-ER GSC-ESR

Fig. 7.4: Evaluation results for an ideal a-priori RTF vector obtained from the target
RIR and an input SIR of 0 dB. The performance measures ∆SIR, ∆SNR,
∆SINR and SD are shows per panel, each for the two baseline systems
(L-GSC and blind MPDR) and the four extended GSC structures.

Again, looking at the baseline systems first, it can be seen that the blind MPDR

performs better than at a lower SIR. The SD score improves from -5 dB to about

-3 dB. The ∆SIR score is relatively constant between 0 dB and 1 dB for all input

SNRs. The results are in line with the theoretical findings in Section 4.3 that at an

input SIR of 0 dB both speech sources, i.e., target speaker and interferer, influence

the RTF vector estimation equally much and are therefore also cancelled equally

much, leading to a ∆SIR score of 0 dB. The ∆SNR scores are constantly at about

14 dB for the blind MPDR beamformer, which is among the best of all algorithms

for all input SNRs. The ∆SINR scores, however, are still lower than for all other

considered algorithms.
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For the L-GSC, the results are similar as for an input SIR of -10 dB, though the

∆SIR scores are generally lower (by 3 dB to 5 dB), but the overall tendencies of

the curves for the different input SNRs remain the same. The SD scores are, as

before, at about -2 dB for all input SNRs. The decreased in the SIR improvement

(compared to an input SIR of -10 dB) can be explained by a lower INR in the local

noise-and-interferer references ua, which leads to a lower correlation between ua and

the speech reference Yf .

The GSC-ENR-1 and the GSC-ENR-2 perform better at an input SIR of 0 dB than

at an input SIR of -10 dB. However, their performance in terms of ∆SIR and ∆SNR

is still below the performance of the L-GSC for all input SNRs except for -10 dB,

where the GSC-ENR-1 outperforms the L-GSC in terms of ∆SNR, while having

the same ∆SIR score of almost 8 dB. In terms of SD, the GSC-ENR-1 and the

GSC-ENR-2 introduce larger distortions than the L-GSC.

The GSC-ER, which performed rather poorly in terms of SIR improvement and SD

for an input SIR of -10 dB, still scores rather low values in these metrics relative to

other algorithms, but yet shows a much better performance than before. For ∆SIR,

values of 6 dB to 8 dB are obtained and the SD scores lie between -4 dB and -6 dB.

The overall performance in terms of ∆SINR is around 12 dB (at SNRin = -10 dB)

to 8 dB (at SNRin = 10 dB), which is partly better than the L-GSC, which is caused

by the good performance in terms of ∆SNR, where values of 12 dB to 13 dB are

obtained. At an input SIR of 0 dB, it can therefore be concluded that the GSC-ER

performs well in terms of noise reduction, but not in terms of interferer reduction.

The results obtained for the GSC-ESR show that this structure outperforms all

other algorithms in terms of ∆SIR, even though the score drops by about 3 dB in

comparison to the condition with an input SIR of -10 dB. In terms of ∆SNR, the

GSC-ESR performs similarly to the blind MPDR beamformer and the GSC-ER.

The ∆SNR scores are about 1 dB higher than at an input SIR of -10 dB. The

SD score improves by about 1 dB in comparison to the lower input SIR, which

is therefore the best among all structures which use the eMics. The results can

be explained as follows: The 3 dB decrease in terms of SIR improvement can be

explained similarly as for the L-GSC. The local noise-and-interferer references ua

are less correlated with the eMic signals ye than at an input SIR of -10 dB, meaning

that less interferer can be cancelled by the filters ve,me , which leads to a lower SIR

improvement in the pre-processed eMic signals ze. The generally higher input SIR

yet allows for a better RTF vector estimation of ĥz, which subsequently leads to

better SD scores that at an input SIR of -10 dB.
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The results for an input SIR of 10 dB are shown in Fig. 7.5. The overall tendency

of all algorithms to perform more similarly at higher input SIRs continues at the

input SIR of 10 dB. The extended GSC structures all outperform the L-GSC in

terms of ∆SIR and ∆SNR in almost all conditions. Only in terms of SD, the L-GSC

still performs best, though the performance of all algorithms is very similar for this

metric (ranging from -2 dB to -4 dB).
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Fig. 7.5: Evaluation results for an ideal a-priori RTF vector obtained from the target
RIR and an input SIR of 10 dB. The performance measures ∆SIR, ∆SNR,
∆SINR and SD are shows per panel, each for the two baseline systems
(L-GSC and blind MPDR) and the four extended GSC structures.

The best performing algorithms are the blind MPDR in terms of ∆SNR and the

GSC-ESR in term of ∆SIR and ∆SINR. It can also be seen that the GSC-ER per-

forms more similarly to the GSC-ESR at high input SIRs. This can be explained by

the decreasing INR in the local noise-and-interferer references ua for higher input

SIRs, which leads to a lower correlation between ua and the eMic signals ye, such

that their interferer reduction performance by the filters ve,me is very limited.

Summarizing the first part of the evaluation, the simulation results for an ideal

a-priori RTF vector h̃a showed that the GSC-ENR-1 and the GSC-ENR-2 are not

suitable for joint noise and interferer reduction, as they perform worse than the

L-GSC, which acts as the baseline system. These two algorithms are therefore not

taken into consideration in the following part, where an RTF vector mismatch for the

L-GSC is investigated. Also the GSC-ER does not perform well at low input SIRs,

but performs well at high input SIRs, where the performance becomes similar to the

performance of the GSC-ESR. The GSC-ESR is found to be the best performing

among the extended GSC structures, as it outperforms the L-GSC in all conditions in

terms of noise and interferer reduction. The GSC-ESR is therefore the only structure
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which incorporates the eMics that seems promising for joint noise and interferer

reduction. Though not performing well at low input SIRs, the GSC-ER is considered

in the next part of the evaluation since it allows for a more detailed investigation of

the pre-filtering operation of the GSC-ESR. This becomes particularly interesting

as speech leakage into the local noise-and-interferer references ua might occur due

to an RTF vector mismatch of the true target RTF vector and the anechoic a-priori

RTF vector, considered in the next part of the evaluation. Furthermore, the blind

MPDR beamformer is considered in the nect part of the evaluation, as it does not

rely on the a-priori RTF vector and can therefore show limitations or disadvantages

of the extended GSC structures.

7.3.2 Using an Anechoic A-Priori RTF Vector

In the second part of the evaluation, the case of an approximate, anechoic a-priori

RTF vector h̃a is considered, which is more realistic since an a-priori RTF obtained

from the RIR of the target speaker is not available in practice. As mentioned above,

only the blind MPDR beamformer, the L-GSC, the GSC-ESR and the GSC-ER are

considered. Although the results for the blind MPDR beamformer do not change

between the first and the second part of the evaluation, the results are taken into

account to stress the consequences of an RTF vector mismatch at high input SIRs.

The results are structured as before, where each figure of Fig. 7.6 - 7.8 show the

results for a different input SIR.

In Fig. 7.6, the results for an input SIR of -10 dB are shown. It can be seen that

the performance of all algorithms using the anechoic a-priori RTF vector achieve a

lower performance in terms of SIR and SNR improvement, which is caused by the

larger amount of SD (2 dB worse for the L-GSC, 4 dB worse for the GSC-ESR and

5 dB to 10 dB worse for the GSC-ER) in comparison to the condition where an ideal

a-priori RTF vector was used (see Fig. 7.3).

Similarly to the SD scores, the ∆SIR, ∆SNR and ∆SIR scores for the three struc-

tures exploiting the a-priori RTF vector decrease compared to the condition where

an ideal a-priori RTF vector was used. As before, the blind MPDR beamformer and

the GSC-ER perform worse than the L-GSC at an input SIR of -10 dB in terms

of interferer reduction, while performing similarly or even better in terms of noise

reduction. The overall SINR improvement for the blind MPDR beamformer and the

GSC-ER is still at least 5 dB lower than for the L-GSC. The tendencies of more

interferer being cancelled at high input SNRs, which was found for the case of an

ideal a-priori RTF vector, can also be seen here for the L-GSC and the GSC-ESR.
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Fig. 7.6: Evaluation results for an approximate, anechoic a-priori RTF vector ob-
tained from a database and an input SIR of -10 dB. The performance
measures ∆SIR, ∆SNR, ∆SINR and SD are shows per panel, each for the
two baseline systems (L-GSC and blind MPDR), the GSC-ER and the
GSC-ESR.

Despite the decrease in performance, the GSC-ESR is still found to be the best per-

forming algorithm in terms of ∆SIR (about 1 dB better than the L-GSC) and for

most input SNRs also in terms of ∆SNR, except for an input SNR of 10 dB, where

the blind MPDR beamformer is better by 2 dB. Therefore, even with an RTF vector

mismatch, the L-GSC and the GSC-ESR perform well in adverse conditions. The

incorporation of the eMics in the GSC-ESR leads to SNR improvements compared

to the L-GSC.

The results for an input SIR of 0 dB and 10 dB are shown in Fig. 7.7 and Fig.

7.8, respectively. In contrast to the results for an ideal a-priori RTF vector in Fig.

7.4 and Fig. 7.5, the different algorithms do not perform more similarly to each

other at higher input SIR, but rather more differently: While the GSC-ER and the

blind MPDR improve their performance in terms of all metrics, the L-GSC and the

GSC-ESR perform worse than (or maximally equally as) at an input SIR of -10 dB

in terms of all metrics.

It can also be observed that at an input SIR of 0 dB (see Fig. 7.7), the SIR

improvement stays almost constant for the L-GSC and the GSC-ESR over all input

SNRs. At an input SIR of 10 dB, it even strongly decreases towards higher input

SNRs. Similar observations can be made for the SD scores. This larger amount of

SD which occurs at high input SNRs can be explained by speech leakage into the

local noise-and-interferer references ua. At high input SIRs, this has the consequence

that the target is the most coherent source between ua and the speech reference Yf

or the eMic signals ye, respectively. As the cancellation of coherent sources depends
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Fig. 7.7: Evaluation results for an approximate, anechoic a-priori RTF vector ob-
tained from a database and an input SIR of 0 dB. The performance mea-
sures ∆SIR, ∆SNR, ∆SINR and SD are shows per panel, each for the
two baseline systems (L-GSC and blind MPDR), the GSC-ER and the
GSC-ESR.

on the overall correlation between ua and Yf or ye, respectively, which decreases at

lower input SNRs, the target is cancelled the most if only little noise is present,

i.e., at high input SNRs. This effect becomes particularly pronounced at an input

SIR of 10 dB and an input SNR of 10 dB, where negative scores are obtained for

∆SIR by the L-GSC and the GSC-ESR. At high input SIRs, it seems beneficial to

blindly estimate the entire RTF vector, i.e., as for the blind MPDR beamformer,

which yields the best SD score and also outperforms all other algorithms in terms

of SIR and SNR improvement at an input SIR of 10 dB.
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Fig. 7.8: Evaluation results for an approximate, anechoic a-priori RTF vector ob-
tained from a database and an input SIR of 10 dB. The performance mea-
sures ∆SIR, ∆SNR, ∆SINR and SD are shows per panel, each for the
two baseline systems (L-GSC and blind MPDR), the GSC-ER and the
GSC-ESR.
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Generally speaking, the L-GSC suffers from a mismatch of the a-priori RTF vector

h̃a and the true target RTF vector, especially at high input SIRs due to speech

leakage into the noise-and-interferer references ua. At high input SIRs, the target

is therefore the most coherent source between ua and the speech reference Yf and

is cancelled. Similarly, the GSC-ESR is affected by the pre-filtering operation using

the pre-filters ve,me applied to ua, which cancels the target speech in the eMic

signals ye, such that the SIR in the pre-processed eMic signals ze is lower than in

ye. This explanation is supported by the fact that the GSC-ER performs better

at high input SIRs than the L-GSC and the GSC-ESR since it can exploit a high

input SIR in the external microphones which are not pre-processed in the GSC-ER.

In the condition of a high input SIR, it therefore seems beneficial to apply fewer

pre-processing steps, since the blind MPDR beamformer performs even better than

the GSC-ER. However, at low input SIR, the pre-processing of the eMic signals

seems beneficial, despite the RTF vector mismatch. While the blind MPDR and the

GSC-ER perform poorly at an input SIR of -10 dB, the L-GSC leads to good SIR

and SNR improvements which are even outperformed by the GSC-ESR.
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In this thesis, an acoustic scenario with one target speaker, an interfering speaker

and background noise was considered, where the goal was to perform joint noise and

interferer reduction. To this end, hearing aids in conjunction with external micro-

phones (eMics) were used. To show the influence of the interferer on the estimation

of the target relative transfer function (RTF) vector, a theoretical bias analysis of

a state-of-the-art RTF vector estimator, namely the covariance whitening (CW)

method, was performed. It was shown that the estimated RTF vector is a linear

combination of the target RTF vector and the interferer RTF vector, where the

weighting of the two RTF vectors depends on the multi-channel signal-to-interferer

ratio (SIR). A closed form expression was found for the ratio of the scaling factors

for the target and the interferer RTF vector. In a validation of this theoretical bias

analysis artificial data was used to investigate the influence of this biased RTF vec-

tor estimation on an minimum power distortionless response (MPDR) beamformer.

In agreement with the theoretical findings, using the biased RTF vector estimate in

an MPDR beamformer led to a low performance in term of noise and interferer re-

duction and introduced strong target speech distortions at low input SIRs. At high

input SIRs using the blindly estimated RTF vector in an MPDR beamformer led

to a good results for all metrics. These results strongly indicate that a blind target

RTF vector estimation in the presence of an interferer is not suitable, when aiming

at joint noise and interferer reduction. Motivated by this finding, it was assumed

that the target RTF vector of the hearing aid microphones - or in practice rather

an approximate of it - is known. Using this so-called a-priori RTF vector, a local

generalized sidelobe canceller (L-GSC) was considered for joint noise and interferer

reduction.

To improve the performance of the L-GSC, eMics were included in the processing.

To this end, four different extended GSC structures were presented. All extended

structures include an RTF vector estimation for the target RTFs corresponding to

the eMics, for which the spatially pre-filtered signals of the L-GSC are exploited. In

an experimental evaluation using real-world recordings, it was found that two of the

considered structures which create external noise-and-interferer references from the

eMic signals, namely the GSC with external noise references type 1 (GSC-ENR-1)

and the GSC with external noise references type 2 (GSC-ENR-2) did not perform

well, even in conditions where an ideal a-priori RTF vector for the L-GSC was con-

sidered. The GSC with external references (GSC-ER) which processes the eMic

signals together with the L-GSC output in a joint MPDR beamformer also did not

perform well in adverse conditions with a low input SIR. Since these three structures
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did not lead to SIR and signal-to-noise ratio (SNR) improvements compared to the

L-GSC in scenarios with a low input SIR, they are not suitable for joint noise and

interferer reduction. The last extended GSC structure considered in this thesis was

the GSC with external speech references (GSC-ESR), which was adopted from [17].

The major adjustment for this structure made in this thesis was to change its for-

mulation such that not only noise but also interferer could be suppressed. This

structure aims at an improved RTF vector estimation by pre-processing the eMic

signals using the local noise-and-interferer references. In the evaluation, this struc-

ture outperformed the L-GSC and the other extended GSC structures in terms of

SIR and SNR improvement, especially in adverse conditions with a low input SIR.

Though not performing well if there was a mismatch of the a-priori RTF vector and

the true target RTF vector, the GSC-ESR could still outperform the L-GSC in ad-

verse conditions. At high input SIRs the L-GSC and the GSC-ESR both performed

poorly due to speech target leakage into the local noise-and-interferer references.

In these conditions the L-GSC and the GSC-ESR were outperformed by the blind

MPDR beamformer and the GSC-ER. However, in conditions, where joint noise

and interferer reduction is required the most, i.e., at low input SIRs, the GSC-ESR

seemed to perform reliably and has great potential for being further developed for

larger robustness against RTF vector mismatches.

To give an outlook about future work, the weakness of the GSC-ESR to introduce

target speech cancellation caused by RTF vector mismatches at high input SIRs is

addressed, which gives rise to several possible approaches:

1) A very general next step is a theoretical performance analysis of the GSC-ESR

to gain understanding about the exact processes and limitations of this structure in

different acoustic scenarios. Such an analysis subsequently allows to tackle different

problems that might occur in this structure, such as target speech cancellation, and

therefore helps designing even more sophisticated structures based on the GSC-ESR.

The points below and their consequences or benefits could then directly be analyzed

in theory.

2) Instead of a classical voice activity detection (VAD) algorithm, a neural network

based approach can be considered to detect the activity of the target speaker. This

would allow for accessing the covariance matrix of all undesired sources (i.e., the

matrix Rv), which does not contain the target speaker, preventing it from being

cancelled by the filters va and ve,me at high input SIRs.

3) A detection of the dominant speaker, i.e., distinguishing whether the target

speaker or the interferer is the dominant source, could allow for adapting the pro-
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cessing strategy depending on the acoustic scenario. This could, for example, mean

that if the interferer is found to be the dominant source, the GSC-ESR is used for

the processing, while in scenarios where the target is the dominant source, i.e., the

interferer does not lead to a strong bias in the blind RTF vector estimation, the

blind MPDR beamformer is used for the processing. A gradual transition between

processing strategies could also be considered when both sources have approximately

equal powers. However, an adaptation of the processing strategy depending on the

dominant source would require an algorithm that identifies the dominant speech

source.
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Appendix A -

Equivalence of MVDR and MPDR Beamformer

As motioned in Section 3, the MVDR and the MPDR beamformer can be dis-

tinguished by means of their objective function. In literature [6, 36], it has been

discussed that the two beamformers are identical in the case of no estimation errors

of the noisy covariance matrix Ry or the noise covariance matrix Rn and if the ideal

RTF vector is known. In practice, however, this is usually not the case and often

the MVDR is chosen, since it is considered to be more robust towards RTF vector

mismatches [37].

In the following, a different, more practical, analysis is performed. Here, no ideally

estimated covariance matrices or perfect RTF vectors are assumed, meaning that

only the properties of R̂y and R̂n to be Hermitian and positive definite must be

fulfilled. This also implies that the following analysis holds for any quasi signal

model (regardless the number or characteristics of present sources). With these as-

sumptions, the equivalence of the MVDR and the MPDR is now analyzed for the

case that CW (see Section 4.2) is used to obtain an RTF vector estimate to steer

the beamformers. The matrices used to estimate the RTF vector and those used in

the beamformer are completely identical (as also in practice, unless regularization

is performed only in the beamformer).

In the following, a different formulation of the CW method than in Section 4.2 is cho-

sen, namely, where the principal eigenvector vmax is obtained as vmax = P{R̂−1
n R̂y}.

This means that the whitening operation applied to R̂y is not performed via the

square-root decomposition of R̂n, but by directly whitening with the entire matrix

R̂n, as in [11]. This means for the estimated RTF vector that

ĥCW =
1

Nrtf

R̂nvmax , (A.1)

where the de-whitening of vmax is performed with R̂n and Nrtf = eT
1 R̂nvmax is the

normalization factor for the RTF vector, where e1 is a selection vector for the first

channel. The associated generalized eigenvalue problem for vmax reads

R̂yvmax = λ1R̂nvmax , (A.2)

where λ1 is the largest eigenvalue of the matrix R̂−1
n R̂y, which has the properties to

be real-valued and larger than 0, which results from the properties of R̂n and R̂y to

be Hermitian and positive definite. To obtain vmax, (A.2) can be rearranged as
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vmax =
1

λ1

R̂−1
n R̂yvmax . (A.3)

Using ĥCW from (A.1) in the MPDR beamformer in (3.4) and in the MVDR beam-

former in (3.3) yields

wMPDR = N∗
rtf

R̂−1
y R̂nvmax

vH
maxR̂nR̂−1

y R̂nvmax

, (A.4)

and

wMVDR = N∗
rtf

R̂−1
n R̂nvmax

vH
maxR̂nR̂−1

n R̂nvmax

= N∗
rtf

vmax

vH
maxR̂nvmax

,

(A.5)

where in (A.5), the products R̂−1
n R̂n = IM×M cancel out. Now using (A.3) to

substitute vmax in (A.4) yields

wMPDR = N∗
rtfλ1

R̂−1
y R̂nR̂

−1
n R̂yvmax

vH
maxR̂yR̂−1

n R̂nR̂−1
y R̂nR̂−1

n R̂yvmax

= N∗
rtfλ1

vmax

vH
maxR̂yvmax

.

(A.6)

Considering the MVDR in (A.5) and using the definition of vmax in (A.3) to substi-

tute only the one vmax in the denominator yields

wMPDR = N∗
rtfλ1

vmax

vH
maxR̂nR̂−1

n R̂yvmax

= N∗
rtfλ1

vmax

vH
maxR̂yvmax

.
(A.7)

Finally, it can be stated that the MVDR and the MPDR beamformer are identical

if CW is used for the RTF vector estimation, i.e.

wMPDR = N∗
rtfλ1

vmax

vH
maxR̂yvmax

= wMVDR . (A.8)

From this it can be seen that the MVDR and the MPDR beamformer are identical

in the case that the RTF vector is estimated using CW. However, for any other

RTF vector (e.g., the a-priori RTF vector of the LMA), this equivalence does not

hold.
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