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Signal Processing Group

• Research, development and implementation of signal 
processing algorithms for acoustical and biomedical systems

• Speech acquisition in adverse acoustic environments
– Signal enhancement

• noise reduction, dereverberation, blind source separation
– Microphone array processing

• adaptive beamforming, source localization
– Computational auditory scene analysis, sound classification
– Acoustic echo cancellation and acoustic feedback cancellation
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Signal Processing Group

• Sound reproduction
– Loudspeaker array processing
– Active noise reduction

• Applications: hearing aids, cochlear implants, 
headsets, speech communication systems 
(mobile phone, voice-controlled systems)

• Research, development and implementation of signal 
processing algorithms for acoustical and biomedical systems

• Speech acquisition in adverse acoustic environments
– Signal enhancement

• noise reduction, dereverberation, blind source separation
– Microphone array processing

• adaptive beamforming, source localization
– Computational auditory scene analysis, sound classification
– Acoustic echo cancellation and acoustic feedback cancellation
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Current research topics

• Speech enhancement for ear-mounted communication de vices

– Binaural noise reduction , aiming to preserve spatial impression 
of acoustic scene (binaural cues)

– Open-fitting hearing devices: feedback cancellation and 
active noise control (acoustically transparent earpiece)

– EEG-based auditory attention decoding for steering beamformers

• MIMO acoustics

– Beamformer design (e.g., virtual artificial head)

– Dereverberation and noise reduction (spectral enhancement, 
multi-channel equalization, blind probabilistic model-based)

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA)



Binaural noise reduction
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• Problem
− Hearing impaired suffer from loss of speech

understanding in noisy environments
− Improvement of speech intelligibility by noise 

reduction algorithms

• Objectives
− Develop binaural noise reduction algorithms, 

avoiding signal distortions and preserving 
spatial awareness

• Approaches
− Novel binaural algorithms, merging 

advantages of spectral post-filtering
(preservation of cues) and spatial 
processing (no artefacts)

− Incorporate psychoacoustic properties of the
human auditory system in binaural noise
reduction algorithms

− Integration with CASA (scene analysis)

Binaural noise reduction

Daniel Marquardt Dörte Fischer



� Interaural Time/Phase Difference (ITD/IPD)
Interaural Level Difference (ILD)
Interaural Coherence (IC)

� ITD: f < 1500 Hz, ILD: f > 2000 Hz
� IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, 

and determines when ITD/ILD cues are reliable

� Binaural cues, in addition to spectro-temporal cues, play an important role 
in auditory scene analysis (source segregation) and speech intelligibility

8

Binaural auditory cues

IPD/ITD

ILD



[Bronkhorst and Plomp, 1988] [Beutelmann and Brand, 2006]

Binaural auditory cues

� Spatial release from masking (BMLD):

� Localized noise source : large effect for NH listeners (especially in free-field)

� Diffuse noise : about 2-3 dB

9
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Monaural/Bilateral system

Independent left/right processing:
- No cooperation (e.g. different 
environment classification)

- preservation of binaural cues ?

Binaural system

Exchange of:
- parameters (volume, environment) 
- signals (cooperative processing 
for noise reduction, feedback, ...) 

Need for wireless binaural link

Binaural noise reduction: Configuration

10
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� Binaural hearing aid configuration:

� Two hearing aids with in total M
microphones

� All microphone signals Y are 
assumed to be available at both 
hearing aids (perfect wireless link)

� Apply a filter W0 and W1 at the left and 
the right hearing aid, generating 
binaural output signals Z0 and Z1

0 0 1 1( ) = ( ) ( ), ( ) = ( ) ( )H HZ Zω ω ω ω ω ωW Y W Y

Binaural noise reduction: Configuration



� The microphone signals Y are composed of 

� (desired) speech component 

� (undesired) directional interference component  

� (undesired) background noise component N

� Correlation matrices: 

� All binaural cues can be written 
in terms of these matrices 

12

Binaural noise reduction: Acoustic scenario

Acoustic Transfer Functions (ATFs)



Spectral post-filtering (based on 
multi-microphone noise reduction)
[Doerbecker 1996, Wittkop 2003, Lotter 2006, 
Rohdenburg 2007, Grimm 2009, Reindl 2012]
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Binaural multi-microphone noise 
reduction techniques 
[Welker 1997, Doclo 2010, Cornelis 2012, 
Hadad 2014-2016, Marquardt 2014-2016]

Binaural noise reduction: Two main paradigms

Binaural cue preservation

Possible single-channel artifacts

Larger noise reduction performance

Binaural cue preservation not guaranteed

Merge spatial and spectral post-filtering



Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in 
reference microphone signals + trade off 
noise reduction and speech distortion

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without 
distorting speech component in reference 
microphone signals 

Binaural MVDR and MWF

speech distortion noise 
reduction

distortionless 
constraint

noise 
reduction

14



Requires estimate of speech and noise 
covariance matrices, e.g. based on VAD

Can be decomposed as binaural MVDR 
beamformer and spectral postfilter

Requires estimate/model of noise 
coherence matrix (e.g. diffuse) and 
estimate/model of relative transfer 
function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in 
reference microphone signals + trade off 
noise reduction and speech distortion

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without 
distorting speech component in reference 
microphone signals 

Binaural MVDR and MWF

speech distortion noise 
reduction

distortionless 
constraint

noise 
reduction

Good noise reduction performance, what about binaural cues ?

15
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Binaural MVDR/MWF: binaural cues

Note: MSC = Magnitude Squared Coherence
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Binaural cues for residual 
noise/interference in 
binaural MVDR/MWF 

not preserved

Binaural MVDR/MWF: binaural cues



Binaural MWF: Extensions for diffuse noise

Binaural MWF Binaural cues of speech source

Binaural cues of noise

Closed-form solution (mixing with
reference microphone signals)

Partial noise estimation 
(MWF-N)

=
Trade-off between SNR improvement and binaural 
cue preservation, depending on parameters (η and λ) 

Interaural coherence 
preservation (MWF-IC)

No closed-form solution, iterative 
optimization procedures required

SNR improvement

[Doclo 2010, Cornelis 2010/2012][Marquardt 2013/2014/2015, Braun 2014] 18
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� IC discrimination ability depends on 
magnitude of reference IC

� Boundaries on Magnitude 
Squared Coherence (MSC=|IC|2) : 

� For f < 500 Hz (“large” IC): 
frequency-dependent MSC 
boundaries (blue)

� For f > 500 Hz (“small” IC): 
fixed MSC boundary, e.g. 
0.36 (red) or 0.04 (green)

� Determine (frequency-dependent) trade-off parameters 
based on psycho-acoustic criteria

� Amount of IC preservation based on subjective listening experiments 
evaluating the IC discrimination abilities of the human auditory system

[Marquardt 2014/2015]

Binaural MWF: Extensions for diffuse noise
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� Instrumental evaluation / sound samples

Input MVDR MWF MVDR-N MWF-N MVDR-NP

Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid)
MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

[Marquardt 2016 - unpublished]

Binaural MWF: Extensions for diffuse noise

Does binaural unmasking compensate for SNR decrease ?
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� Evaluate spatial difference 
between reference and 
output signal 

� MWF-IC and MVDR-N 
outperform MVDR

� MVDR-N shows better 
results than MWF-IC

� Decreasing the MSC 
threshold slightly 
improves spatial quality 

Evaluation: Spatial quality (MUSHRA)

Binaural cue preservation for diffuse 
noise improves spatial quality
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� All algorithms show a 
highly significant SRT 
improvement

� The SRT results mainly 
reflect the SNR 
differences between 
algorithms: MWF-IC 
outperforms MVDR-N

� No significant SRT 
difference between 
MVDR and MWF-IC

Evaluation: Speech intelligibility (SRT)

Binaural cue preservation for diffuse noise 
does not/hardly affect speech intelligibility



Binaural MVDR: Extensions for interfering source

Binaural MVDR Binaural cues of speech source

Binaural cues of interferer

SNR improvement

Relative transfer function
(BMVDR-RTF)

Interference rejection
(BMVDR-IR)

[Hadad 2014/2015/2016, Marquardt 2014/2015]

Binaural cues of speech source and interfering source preserved

Also binaural MWF-based versions (incl. spectral filtering) can be derived 

Background noise: MSC not exactly preserved, possible noise amplification

23



24

� Instrumental evaluation / sound samples

Input BMVDR BMVDR-RTF BMVDR-IR
(η = 0.1)

Cafeteria with recorded ambient noise, speaker at 0°, Interference at -45°, 0 dB input SIR and SNR (left hearing aid)
RTF calculated from correlation matrix (Rx and Ru), 3 microphones (2 left, 1 right)

Binaural MVDR: Extensions for interfering source

[Hadad 2014/2015/2016, Marquardt 2014/2015]



• Binaural noise reduction algorithms for interfering sources 
(BMVDR-IR, BMVDR-RTF):

– Subjective evaluation (incl. binaural cue preservation) for HA/CI users

– Robustness against RTF estimation errors 

• Mixed noise fields and 
time-varying scenarios: 
incorporate computational 
acoustic scene analysis (CASA) 
into developed algorithms

• Extend algorithms to include 
external microphones 
(acoustic sensor networks)

Current/Future work
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• Problem
− Multi-microphone noise reduction in complex acoustic

scenarios with interfering speaker(s)

− Many algorithms rely on pre-defined assumptions
about target speaker (e.g. direction / energy)

• Objectives
− Use brain computer interface to control multi-

microphone noise reduction techniques , to 
enhance target speaker to which user is attending

• Approach
− Control of binaural noise reduction techniques

through BCI (e.g. correlation of EEG and acoustical
signals / features)

− Investigate feedback/reinforcement mechanism by
presenting enhanced source

Auditory attention decoding

Ali Aroudi
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Joint dereverberation and
noise reduction



• Problem
− Noise and reverberation jointly present in 

typical acoustic environments
− Speech quality and intelligibility degradation
− Performance degradation of ASR systems

• Objectives
− Develop single- and multi-channel joint 

dereverberation and noise reduction 
algorithms

− Exploit knowledge or statistical models of 
room acoustics

• Approaches
1. Single-microphone spectral enhancement

(estimation of LRSV, inverse filtering)
2. Robust multi-channel equalization
3. Probabilistic estimation using statistical

models of desired signal and reverberation

Dereverberation and noise reduction

Ina Kodrasi Ante Jukić Benjamin Cauchi

29



• Scenario: speech source in noisy and reverberant environment, M microphones

• Time-domain model: “perfect” model

hm(n) = room impulse response (RIR), typically long and difficult to blindly estimate 

• STFT-domain model: approximation of time-domain model

hm(k,l) = convolutive transfer function (CTF) in frequency bin k and time frame l

Signal model 

30



• MVDR beamformer:

– Anechoic steering vector based 
on DOA estimate (MUSIC): 

– Coherence matrix adaptively estimated based on VAD (or assuming diffuse noise 
and reverberation):  

1. Beamforming + spectral post-filtering

31[Cauchi 2015]



1. Beamforming + spectral post-filtering

• Spectral post-filter:

1. Noise PSD : minimum statistics approach (longer window as usual)

2. Reverberant speech PSD : ML estimate + cepstro-temporal smoothing

3. Late reverberant PSD : assuming exponential 
decay (requiring T60 estimate)

4. Clean speech PSD : ML estimate + cepstro-temporal smoothing

32[Cauchi 2015]



1. Beamforming + spectral post-filtering

• Subjective evaluation (evaluation set of REVERB cha llenge)

Circular array (M=8, d = 20 cm), fs = 16 kHz, SNR = 20 dB; S2: T60 = 500 ms (0.5m, 2m), R1: T60 = 700 ms (1m, 2.5m) 
STFT: 32 ms, 50% overlap, Hann; MVDR: WNGmax = -10 dB; Postfilter: β=0.5, µ=0.5, Gmin = -10dB, Td = 80 ms, MS window = 3s

33[Cauchi 2015]



• Subjective evaluation (evaluation set of REVERB cha llenge)

1. Beamforming + spectral post-filtering

34[Cauchi 2015]



• Time-domain approach (although frequency-domain versions possible)
• Indirect approach : 

1. estimate/measure RIRs
2. Estimate the clean speech signal by 

inverting/equalizing the acoustic system 
+ suppressing noise 

2. Acoustic multi-channel equalization

35



• Time-domain approach (although frequency-domain versions possible)
• Indirect approach : 

1. estimate/measure RIRs
2. Estimate the clean speech signal by 

inverting/equalizing the acoustic system 
+ suppressing noise 

• If RIRs do not share common zeros and length of equalization filter is well 
chosen: perfect dereverberation possible (MINT theorem)

c t = user-defined dereverberated target response (delayed impulse, early reflections, …)

• In practice: large distortions due to RIR perturbations (estimation errors, 
spatial errors, …)

2. Acoustic multi-channel equalization

36



• Framework for least-squares dereverberation

− Perceptually motivated target response c t (P-MINT):  suppress only late reflections 
while constraining early reflections

• Increase robustness by:
1. Decreasing filter length

2. Signal-independent regularization: control distortion energy due to RIR perturbations 

• Closed-form solution

• Automatic procedure for selecting the 
regularization parameter δ (based on 
L-curve), yielding both low dereverberation 
error energy and distortion energy

2. Robust acoustic multi-channel equalization

37[Kodrasi 2013]



• Framework for least-squares dereverberation

− Perceptually motivated target response c t (P-MINT):  suppress only late reflections 
while constraining early reflections

• Increase robustness by:
1. Decreasing filter length

2. Signal-independent regularization: control distortion energy due to RIR perturbations

3. Signal-dependent regularization: enforce output signal to exhibit characteristics of 
clean signal, e.g. promote sparsity of STFT coefficients (weighted l1-norm) 

2. Robust acoustic multi-channel equalization

38[Kodrasi 2016]



(S1-NPM1)

(S1-NPM2)

• Subjective listening test• Instrumental validation

s(n) x 1(n) PMINT L-PMINT
(intrusive)

R-PMINT
(intrusive)

R-PMINT 
(auto)

S-PMINT
(intrusive)

M = 4, S1: T60 = 450 msec, DRR = 0 dB, S2: T60 = 610 msec, DRR = -2 dB, fs = 8 kHz; RIR estimation errors: NPM1 = -33 dB, NPM2 = -15 dB, 
L-RMCLS/L-PMINT: intrusively chosen filter length, R-RMCLS/R-PMINT: intrusively regularized, S-RMCLS/S-PMINT: intrusively regularized, τ = 90, Ld = 10msec

2. Robust acoustic multi-channel equalization

39



• Equalization techniques for dereverberation lead to noise amplification
• Cost functions for joint dereverberation and noise reduction:

1. Incorporate noise statistics into regularized P-MINT (RPM-DNR)

2. Incorporate speech statistics → Multi-channel Wiener Filter, using dereverberated 
output signal of regularized P-MINT as reference signal (MWF-DNR)

• Automatic selection of trade-off parameter(s)

y1(n) PMINT R-PMINT RPM-
DNR

MWF-
DNR

M=4, T60=610 msec, DRR=-2 dB, fs=8 kHz, NPM=-33 dB, SIR=0 dB, SNR=10 dB (diffuse noise), no estimation errors in correlation matrices

2. Robust acoustic multi-channel equalization

40[Kodrasi 2016]



• STFT-domain approach (although time-domain versions possible)
– Low computational complexity (independent frequency bin processing)
– Speech properties (e.g. sparsity) can be modelled more naturally in STFT-domain

• Direct approach: directly estimate clean speech STFT 
coefficients s(k,n) from reverberant (and noisy) STFT 
coefficients ym(k,n)

1. Directly using CTF model → sparse Bayesian deconvolution based on 
variational Bayesian inference

2. Transform to equivalent AR model → sparse multi-channel linear prediction (MCLP)

3. Blind probabilistic model-based approach

clean signal 
(incl. early reflections)

delay
(early reflections)

prediction 
filters

41



• AR model of reverberant speech 

3. Multi-channel linear prediction 

How to select suitable cost function for prediction  filters ? 

predicted 
reverberation

42



• Model clean speech STFT coefficients using circular sparse prior 

– Time-varying variance λ(n)
– Hyper-prior on variance determined by scaling function ψ(.)

• Maximum -Likelihood Estimation 

• Alternating optimization procedure
1. Estimate prediction vector (assuming fixed variances)

2. Estimate variances (assuming fixed prediction vector)

3. Multi-channel linear prediction 

43[Jukic 2015]



• Example: complex generalized Gaussian (CGG) prior with shape parameter p

• Remarks:
– Conventional method (TVG): p = 0

– ML estimation using CGG prior is equivalent to lp-norm minimization
→	iterative reweighted least-squares (IRLS) procedure

– Incorporate additional knowledge of speech signal, 
e.g. low-rank structure (NMF)

– Group sparsity for MIMO speech dereverberation
→	mixed norms

3. Multi-channel linear prediction 

44[Jukic 2015]



• Instrumental validation (noiseless, batch)

– MCLP exploits sparsity

– NMF introduces speech structure 
(unsupervised vs. supervised NMF)

T60 ~ 700ms, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=8, τ=2, p=0

Clean Microphone MCLP MCLP+NMF

2

2,2

2,4

2,6

2,8

3

3,2

10 20 30 40 60 80

P
E

S
Q

rank (NMF)

Microphone MCLP
MCLP+NMF MCLP+NMF+dict

45[Jukic 2015]

3. Multi-channel linear prediction 



T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings
STFT: 64ms (overlap 16ms); MCLP: Lg=30, τ=2, p=0, recursive version (λ=0.96)

Microphone 1ch SE [REVERB] Adaptive MCLP Adaptive MCLP + SE

d ~ 2m

• Instrumental validation (high reverberation + noisy , recursive)

46

3. Multi-channel linear prediction 



• Blind probabilistic model-based approach

– Comparison of CTF model vs. AR model

– Recursive/adaptive versions of MCLP

• Distributed MCLP for acoustic sensor 
networks

• Instrumental measures : prediction of 
perceived level of reverberation, by 
optimizing/redesigning SRMR measure 
(joint project with Tiago Falk)

• Inaugurate new varechoic lab

Current / future work

47
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Acoustic Sensor Networks
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• Problem
− Traditional microphone arrays located at 

fixed and distant position

− Poor performance of signal enhancement 
algorithms due to low SNR and/or low DRR

• Objectives
− Develop centralized and distributed noise 

reduction and dereverberation algorithms

− Optimise positions of distributed microphones

− Impact of wireless link capacity, sampling rate 
offset estimation and compensation 

• Approaches
− Using statistical room acoustics model, compute 

spatially averaged performance → selection of 
optimal microphone configuration

− Exploit diversity of room impulse responses →
generalized/alternative versions of MWF

Acoustic Sensor Networks

Toby Lawin-Ore Nico Gößling
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Spatially averaged performance of MWF

51

• Goal : using statistical room acoustic (Schroeder's model ), compute the average output 
SNR of the multichannel Wiener filter → comparison of different microphone configurations

− Specific microphone array position    
− Average over all source positions

Efficient way to compare the performance of different microphone 
configurations without measurements or numerical simulations

[Lawin-Ore 2015]
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Generalized multi-channel Wiener filter

• Multichannel Wiener filter (MWF) in acoustic sensor n etworks
– Objective: estimate filtered version of speech signal + trade-off noise reduction 

and speech distortion

– “Standard” MWF (S-MWF): speech component 
in reference microphone signal m0

– For spatially distributed microphones, 
selection of reference microphone can have 
a major impact on output SNR (estimation 
errors depend on input SNR)

Desired overall transfer function

→
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Generalized multi-channel Wiener filter

• Multichannel Wiener filter (MWF) in acoustic sensor n etworks

– Generalized MWF: define desired overall 
transfer function using envelope of ATFs

– Note: phase of reference microphone                         does not have influence on 
narrowband/broadband output SNR 

→

[Lawin-Ore 2014]
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Generalized multi-channel Wiener filter

• Multichannel Wiener filter (MWF) in acoustic sensor n etworks

[Lawin-Ore 2014]



• Combination of acoustic sensor networks 
and (binaural) hearing aids 

• Distributed algorithms for 
dereverberation (e.g. MCLP)

Current/Future work
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Current research topics

• Speech enhancement for ear-mounted communication de vices

– Binaural noise reduction , aiming to preserve spatial impression 
of acoustic scene (binaural cues)

– Open-fitting hearing aids: feedback cancellation and active 
noise control (acoustically transparent earpiece)

– EEG-based auditory attention decoding for steering beamformers

• MIMO acoustics

– Beamformer design (e.g., virtual artificial head)

– Dereverberation and noise reduction (spectral enhancement, 
multi-channel equalization, blind probabilistic model)

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA)
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