

Overview of acoustic signal processing research

Prof. Dr. Simon Doclo University of Oldenburg

Dept. of Medical Physics and Acoustics, Cluster of Excellence Hearing4All

http://www.sigproc.uni-oldenburg.de/

Hearing research in Oldenburg

since 1993

Research Groups Medical Physics, Acoustics. Signal Processing, **Machine Learning**

- Basic research
- Education

8 Professors 20+ Postdocs 50+ PhD students Hörzentrum

since 1996

GmbH

Market and

trend research Audiological

consulting

 Evaluation studies

Institute of Hearing technology and Audiology

since 2000

Education

• Applicationoriented research

Centre of Compentence Hörtech gGmbH

since 2001

• Product development

Application-• oriented research (hearing devices)

since 2008

Project group Hearing, Speech and Audio Technology

Application-• oriented research (consumer electronics)

In total about 250 researchers in these institutes

2

Signal Processing Group

- Research, development and implementation of signal processing **algorithms** for acoustical and biomedical systems
- Speech acquisition in adverse acoustic environments
 - Signal enhancement
 - noise reduction, dereverberation, blind source separation
 - Microphone array processing
 - adaptive beamforming, source localization
 - Computational auditory scene analysis, sound classification
 - Acoustic echo cancellation and acoustic feedback cancellation

Signal Processing Group

- Research, development and implementation of signal processing algorithms for acoustical and biomedical systems
- Speech acquisition in adverse acoustic environments
 - Signal enhancement
 - noise reduction, dereverberation, blind source separation
 - Microphone array processing
 - adaptive beamforming, source localization
 - Computational auditory scene analysis, sound classification
 - Acoustic echo cancellation and acoustic feedback cancellation

• Sound reproduction

- Loudspeaker array processing
- Active noise reduction
- **Applications:** hearing aids, cochlear implants, headsets, speech communication systems (mobile phone, voice-controlled systems)

Current research topics

- Speech enhancement for ear-mounted communication devices
 - Binaural noise reduction, aiming to preserve spatial impression of acoustic scene (binaural cues)
 - Open-fitting hearing devices: feedback cancellation and active noise control (acoustically transparent earpiece)
 - EEG-based auditory attention decoding for steering beamformers

• MIMO acoustics

- Beamformer design (e.g., virtual artificial head)
- Dereverberation and noise reduction (spectral enhancement, multi-channel equalization, blind probabilistic model-based)
- Acoustic sensor networks (spatially distributed microphones, sampling rate offset estimation, distributed processing)
- Computational acoustic scene analysis (CASA)

Binaural noise reduction

Binaural noise reduction

• Problem

- Hearing impaired suffer from loss of speech understanding in noisy environments
- Improvement of speech intelligibility by noise reduction algorithms

Objectives

 Develop binaural noise reduction algorithms, avoiding signal distortions and preserving spatial awareness

• Approaches

- Novel binaural algorithms, merging advantages of spectral post-filtering (preservation of cues) and spatial processing (no artefacts)
- Incorporate psychoacoustic properties of the human auditory system in binaural noise reduction algorithms
- Integration with CASA (scene analysis)

Daniel Marquardt

Dörte Fischer

Binaural auditory cues

Interaural Time/Phase Difference (ITD/IPD) Interaural Level Difference (ILD) Interaural Coherence (IC)

□ ITD: f < 1500 Hz, ILD: f > 2000 Hz

□ IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, and determines when ITD/ILD cues are *reliable*

Binaural cues, in addition to spectro-temporal cues, play an important role in auditory scene analysis (source segregation) and speech intelligibility

Binaural auditory cues

□ Spatial release from masking (BMLD):

- Localized noise source : large effect for NH listeners (especially in free-field)
- Diffuse noise : about 2-3 dB

FIG. 5. Mean speech reception thresholds obtained in experiment I for three different noise types : FF (free field), dL (headshadow only), and dT (ITD only). The closed data points represent results of Plomp and Mimpen (1981) obtained in a free field.

[Bronkhorst and Plomp, 1988]

[Beutelmann and Brand, 2006]

Binaural noise reduction: Configuration

Monaural/Bilateral system

Independent left/right processing:

- No cooperation (e.g. different environment classification)
- preservation of binaural cues ?

Binaural system

Exchange of:

- parameters (volume, environment)
- **signals** (cooperative processing for noise reduction, feedback, ...)
- Need for wireless binaural link

Binaural noise reduction: Configuration

□ Binaural hearing aid configuration:

- □ Two hearing aids with in total *M* microphones
- All microphone signals Y are assumed to be available at both hearing aids (perfect wireless link)
- □ Apply a filter **W**₀ and **W**₁ at the left and the right hearing aid, generating binaural output signals Z₀ and Z₁

$$Z_0(\boldsymbol{\omega}) = \mathbf{W}_0^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega}), \quad Z_1(\boldsymbol{\omega}) = \mathbf{W}_1^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega})$$

Binaural noise reduction: Acoustic scenario

Acoustic Transfer Functions (ATFs) The microphone signals **Y** are composed of \Box (desired) speech component $\mathbf{X} = S_{\mathbf{d}}(\mathbf{A}) \boldsymbol{\leftarrow}$ \Box (undesired) directional interference component $\mathbf{U} = S_{\mathbf{u}} \mathbf{B}_{\mathbf{u}}$ □ (undesired) background noise component N Correlation matrices: N $\mathbf{R}_y = \mathbf{R}_x + \underbrace{\mathbf{R}_u + \mathbf{R}_n}_{\mathbf{R}_v}$ $\mathbf{X} = S_d \mathbf{A}$ $\mathbf{R}_x = \mathcal{E}\left\{\mathbf{X}\mathbf{X}^H\right\} = P_s\mathbf{A}\mathbf{A}^H$ $\mathbf{Y} = \mathbf{X} + \mathbf{U} + \mathbf{N}$ $\mathbf{R}_{u} = \mathcal{E}\left\{\mathbf{U}\mathbf{U}^{H}\right\} = P_{u}\mathbf{B}\mathbf{B}^{H}$ $\mathbf{U} = S_u \mathbf{B}$ $\mathbf{R}_n = \mathcal{E}\left\{\mathbf{N}\mathbf{N}^H\right\},\,$ All **binaural cues** can be written in terms of these matrices

Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on multi-microphone noise reduction)

[Doerbecker 1996, Wittkop 2003, Lotter 2006, Rohdenburg 2007, Grimm 2009, Reindl 2012]

Binaural cue preservation
 Possible single-channel artifacts

Binaural multi-microphone noise reduction techniques

[Welker 1997, Doclo 2010, Cornelis 2012, Hadad 2014-2016, Marquardt 2014-2016]

Larger noise reduction performance
 Merge spatial and spectral post-filtering
 Binaural cue preservation not guaranteed

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

 $\min_{\mathbf{W}_{0}} \mathbf{W}_{0}^{H} \mathbf{R}_{v} \mathbf{W}_{0} \text{ subject to } \mathbf{W}_{0}^{H} \mathbf{A} = A_{0}$ $\min_{\mathbf{W}_{1}} \mathbf{W}_{1}^{H} \mathbf{R}_{v} \mathbf{W}_{1} \text{ subject to } \mathbf{W}_{1}^{H} \mathbf{A} = A_{1}$ $\mathbf{M}_{1} \mathbf{M}_{1} \mathbf{M}_{v} \mathbf{W}_{1} \text{ subject to } \mathbf{W}_{1}^{H} \mathbf{A} = A_{1}$ $\mathbf{M}_{1} \mathbf{M}_{1} \mathbf{M}_{v} \mathbf{M}_{1} \text{ subject to } \mathbf{M}_{1}^{H} \mathbf{A} = A_{1}$ $\mathbf{M}_{1} \mathbf{M}_{1} \mathbf{M}_{v} \mathbf{M}_{1} \text{ subject to } \mathbf{M}_{1}^{H} \mathbf{A} = A_{1}$ $\mathbf{M}_{1} \mathbf{M}_{1} \mathbf{M}_{v} \mathbf{M}_{1} \text{ subject to } \mathbf{M}_{1}^{H} \mathbf{A} = A_{1}$ $\mathbf{M}_{1} \mathbf{M}_{v} \mathbf{M}_$

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

speech distortion noise
reduction

$$\mathbf{W}_{\text{MWF},0} = (\mathbf{R}_x + \mu \mathbf{R}_v)^{-1} \mathbf{r}_{\text{x},0}$$
$$\mathbf{W}_{\text{MWF},1} = (\mathbf{R}_x + \mu \mathbf{R}_v)^{-1} \mathbf{r}_{\text{x},1}$$

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

reduction	a	constraint				
noiso	di	stortionloss				
$\min_{\mathbf{W}_1} \mathbf{W}_1^H \mathbf{R}_{\mathbf{v}} \mathbf{W}_1$	subject to	$\mathbf{W}_1^H \mathbf{A} = A_1$				
$\min_{\mathbf{W}_0} \mathbf{W}_0^H \mathbf{R}_{\mathrm{v}} \mathbf{W}_0$	subject to	$\mathbf{W}_0^H \mathbf{A} = A_0$				

Requires estimate/model of noise coherence matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

speech distortion noise
reduction

Requires estimate of speech and noise covariance matrices, e.g. based on VAD

Can be decomposed as binaural MVDR beamformer and spectral postfilter

Good noise reduction performance, what about binaural cues ?

Binaural MVDR/MWF: binaural cues

Note: MSC = Magnitude Squared Coherence

Binaural MVDR/MWF: binaural cues

Binaural cues for residual noise/interference in binaural MVDR/MWF not preserved

Binaural MWF: Extensions for diffuse noise

Binaural MWF: Extensions for diffuse noise

Determine (frequency-dependent) trade-off parameters based on psycho-acoustic criteria

 Amount of IC preservation based on subjective listening experiments evaluating the IC discrimination abilities of the human auditory system

- IC discrimination ability depends on magnitude of reference IC
- Boundaries on Magnitude
 Squared Coherence (MSC=|IC|²) :
 - For f < 500 Hz ("large" IC): frequency-dependent MSC boundaries (blue)
 - For f > 500 Hz ("small" IC): fixed MSC boundary, e.g.
 0.36 (red) or 0.04 (green)

[[]Marquardt 2014/2015]

Binaural MWF: Extensions for diffuse noise

□ Instrumental evaluation / sound samples

Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid) MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

Does binaural unmasking compensate for SNR decrease ?

[Marquardt 2016 - unpublished]

Evaluation: Spatial quality (MUSHRA)

- Evaluate spatial difference between reference and output signal
- MWF-IC and MVDR-N outperform MVDR
 - MVDR-N shows better results than MWF-IC
 - Decreasing the MSC threshold slightly improves spatial quality

MUSHRA Results (Cafeteria)

Binaural cue preservation for diffuse noise improves spatial quality

SCORE

Evaluation: Speech intelligibility (SRT)

SRT

- All algorithms show a highly significant SRT improvement
- The SRT results mainly reflect the SNR differences between algorithms: MWF-IC outperforms MVDR-N
- No significant SRT difference between MVDR and MWF-IC

 $\frac{-6}{-8} + \frac{-1}{-14} + \frac{-1$

Binaural cue preservation for diffuse noise does not/hardly affect speech intelligibility

SRT Results (Cafeteria)

Binaural MVDR: Extensions for interfering source

Background noise: MSC not exactly preserved, possible noise amplification

Binaural MVDR: Extensions for interfering source

Instrumental evaluation / sound samples

Cafeteria with recorded ambient noise, speaker at 0°, Interference at -45°, 0 dB input SIR and SNR (left hearing aid) RTF calculated from correlation matrix (Rx and Ru), 3 microphones (2 left, 1 right)

[[]Hadad 2014/2015/2016, Marquardt 2014/2015]

Current/Future work

- Binaural noise reduction algorithms for **interfering sources** (BMVDR-IR, BMVDR-RTF):
 - Subjective evaluation (incl. binaural cue preservation) for HA/CI users
 - Robustness against RTF estimation errors
- Mixed noise fields and time-varying scenarios: incorporate computational acoustic scene analysis (CASA) into developed algorithms
- Extend algorithms to include external microphones (acoustic sensor networks)

Auditory attention decoding

• Problem

- Multi-microphone noise reduction in complex acoustic scenarios with interfering speaker(s)
- Many algorithms rely on pre-defined assumptions about target speaker (e.g. direction / energy)

Objectives

 Use brain computer interface to control multimicrophone noise reduction techniques, to enhance target speaker to which user is attending

Approach

- Control of binaural noise reduction techniques through BCI (e.g. correlation of EEG and acoustical signals / features)
- Investigate feedback/reinforcement mechanism by presenting enhanced source

Niedersächsisches Ministerium für Wissenschaft und Kultur

Ali Aroudi

Recent publications

- D. Marquardt, V. Hohmann, S. Doclo, <u>Interaural Coherence Preservation in Multi-channel Wiener Filtering</u> <u>Based Noise Reduction for Binaural Hearing Aids</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2162-2176, Dec. 2015.
- J. Thiemann, M. Müller, D. Marquardt, S. Doclo, S. van de Par, <u>Speech Enhancement for Multimicrophone</u> <u>Binaural Hearing Aids Aiming to Preserve the Spatial Auditory Scene</u>, EURASIP Journal on Advances in Signal Processing, 2016:12, pp. 1-11.
- E. Hadad, S. Doclo, S. Gannot, *<u>The Binaural LCMV Beamformer and its Performance Analysis</u>, <i>IEEE/ACM Trans. Audio, Speech and Language Processing*, vol. 24, no. 3, pp. 543-558, Mar. 2016.
- E. Hadad, D. Marquardt, S. Doclo, S. Gannot, <u>Theoretical Analysis of Binaural Transfer Function MVDR</u> <u>Beamformers with Interference Cue Preservation Constraints</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2449-2464, Dec. 2015.
- D. Marquardt, E. Hadad, S. Gannot, S. Doclo, <u>Theoretical Analysis of Linearly Constrained Multi-channel</u> <u>Wiener Filtering Algorithms for Combined Noise Reduction and Binaural Cue Preservation in Binaural Hearing</u> <u>Aids</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2384-2397, Dec. 2015.
- R. Baumgärtel, M. Krawczyk-Becker, D. Marquardt, C. Völker, H. Hu, T. Herzke, G. Coleman, K. Adiloglu, S. Ernst, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz, <u>*Comparing binaural pre-processing</u>* <u>strategies I: Instrumental evaluation</u>, Trends in Hearing, vol. 19, pp. 1-16, 2015.
 </u>
- R. Baumgärtel, H. Hu, M. Krawczyk-Becker, D. Marquardt, T. Herzke, G. Coleman, K. Adiloglu, K. Bomke, K. Plotz, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz, <u>Comparing binaural pre-processing</u> <u>strategies II: Speech intelligibility of bilateral cochlear implant users</u>, Trends in Hearing, vol. 19, pp. 1-18, 2015.

http://www.sigproc.uni-oldenburg.de -> Publications

Joint dereverberation and noise reduction

Dereverberation and noise reduction

• Problem

- Noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation
- Performance degradation of ASR systems

Objectives

- Develop single- and multi-channel joint dereverberation and noise reduction algorithms
- Exploit knowledge or statistical models of room acoustics

• Approaches

- 1. Single-microphone spectral enhancement (estimation of LRSV, inverse filtering)
- 2. Robust multi-channel equalization
- 3. Probabilistic estimation using statistical models of desired signal and reverberation

Ina Kodrasi

Benjamin Cauchi

Signal model

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- Time-domain model: "perfect" model

$$y_m(n) = x_m(n) + v_m(n) = s(n) * h_m(n) + v_m(n)$$

 $h_m(n)$ = room impulse response (RIR), typically long and difficult to blindly estimate

• **STFT-domain model:** approximation of time-domain model

$$y_m(k,\ell) = \underbrace{h_m(k,\ell) * s(k,\ell)}_{x_m(k,\ell)} + v_m(k,\ell)$$

 $h_m(k,l)$ = convolutive transfer function (CTF) in frequency bin k and time frame l

- Anechoic **steering vector** based on DOA estimate (MUSIC): $\mathbf{d}_{\theta}(k) = \left[e^{-j2\pi f_k \tau_1(\theta)} e^{-j2\pi f_k \tau_2(\theta)} \cdots e^{-j2\pi f_k \tau_M(\theta)}\right]$
- **Coherence matrix** adaptively estimated based on VAD (or assuming diffuse noise and reverberation): $\hat{\Gamma}(k) = \frac{1}{\overline{\mathbb{L}}_{\nu}} \sum_{\ell \in \mathbb{T}_{\nu}} \mathbf{V}(k,\ell) \mathbf{V}^{H}(k,\ell) \qquad \overline{\Gamma}_{i,i'}(k) = \frac{\sin\left(2\pi f_{k}l_{i,i'}/c\right)}{2\pi f_{k}l_{i,i'}/c}$

universität oldenburg

- Spectral post-filter: $\hat{S}(k,\ell) = G(k,\ell)\tilde{X}(k,\ell)$, $\xi(k,\ell) = \frac{\sigma_s^2(k,\ell)}{\sigma_r^2(k,\ell) + \sigma_{\tilde{v}}^2(k,\ell)}$
 - 1. Noise PSD: minimum statistics approach (longer window as usual)
 - 2. Reverberant speech PSD: ML estimate + cepstro-temporal smoothing
 - **3.** Late reverberant PSD: assuming exponential decay (requiring T60 estimate) $\hat{\sigma}_r^2(k,\ell) = e^{-2\Delta T_d f_s} \hat{\sigma}_z^2(k,\ell T_d/T_s)$
 - 4. Clean speech PSD: ML estimate + cepstro-temporal smoothing

• Subjective evaluation (evaluation set of REVERB challenge)

Circular array (M=8, d = 20 cm), fs = 16 kHz, SNR = 20 dB; S2: T60 = 500 ms (0.5m, 2m), R1: T60 = 700 ms (1m, 2.5m) STFT: 32 ms, 50% overlap, Hann; MVDR: WNGmax = -10 dB; Postfilter: β =0.5, μ =0.5, Gmin = -10dB, Td = 80 ms, MS window = 3s

[Cauchi 2015]

• Subjective evaluation (evaluation set of REVERB challenge)

2. Acoustic multi-channel equalization

- **Time-domain approach** (although frequency-domain versions possible)
- Indirect approach:
 - 1. estimate/measure RIRs
 - Estimate the clean speech signal by inverting/equalizing the acoustic system + suppressing noise

$$z(n) = \underbrace{\mathbf{w}^{\mathsf{T}} \mathbf{H}^{\mathsf{T}}}_{\mathbf{c}^{\mathsf{T}}} \mathbf{s}(n) + \mathbf{w}^{\mathsf{T}} \mathbf{v}(n)$$

Speech enhancement objectives

- Dereverberation: Optimize c
- Noise reduction: Minimize the noise output power while controlling the speech distortion
- Joint dereverberation and noise reduction: Optimize **c** and minimize the noise output power

2. Acoustic multi-channel equalization

- **Time-domain approach** (although frequency-domain versions possible)
- Indirect approach:
 - 1. estimate/measure RIRs
 - Estimate the clean speech signal by inverting/equalizing the acoustic system + suppressing noise

$$z(n) = \underbrace{\mathbf{w}^{\mathsf{T}} \mathbf{H}^{\mathsf{T}}}_{\mathbf{c}^{\mathsf{T}}} \mathbf{s}(n)$$

• If RIRs do not share common zeros and length of equalization filter is well chosen: **perfect dereverberation possible** (MINT theorem)

$$\mathbf{H}\mathbf{w} = \mathbf{c}_t$$

 \mathbf{c}_t = user-defined dereverberated target response (delayed impulse, early reflections, ...)

In practice: large distortions due to RIR perturbations (estimation errors, spatial errors, ...)

$$\hat{\mathbf{H}}\mathbf{w} = \mathbf{c}_t$$

2. Robust acoustic multi-channel equalization

• Framework for least-squares dereverberation

$$\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2$$
 $\mathbf{w} = (\mathbf{W}\hat{\mathbf{H}})^+ (\mathbf{W}\mathbf{c}_t)^2$

- Perceptually motivated target response c_t (**P-MINT**): suppress only late reflections while constraining early reflections

• Increase robustness by:

- 1. Decreasing filter length
- 2. Signal-independent regularization: control distortion energy due to RIR perturbations

$$J = \underbrace{\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2}_{\epsilon_c} + \delta \underbrace{\mathbf{w}^T \mathbf{R}_e \mathbf{w}}_{\epsilon_e}$$

- Closed-form solution
- Automatic procedure for selecting the regularization parameter δ (based on L-curve), yielding both low dereverberation error energy and distortion energy

2. Robust acoustic multi-channel equalization

• Framework for least-squares dereverberation

 $\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 \qquad \mathbf{w} = (\mathbf{W}\hat{\mathbf{H}})^+ (\mathbf{W}\mathbf{c}_t)$

- Perceptually motivated target response c_t (**P-MINT**): suppress only late reflections while constraining early reflections

• Increase robustness by:

- 1. Decreasing filter length
- 2. Signal-independent regularization: control distortion energy due to RIR perturbations
- 3. Signal-dependent regularization: enforce output signal to exhibit characteristics of clean signal, e.g. promote sparsity of STFT coefficients (weighted I₁-norm)

$$\min_{\mathbf{w}} \left[\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 + \eta f_{\rm sp}(\mathbf{z}(n)) \right]$$

Subjective listening test

2. Robust acoustic multi-channel equalization

Instrumental validation

M = 4, S_1 : T60 = 450 msec, DRR = 0 dB, S_2 : T60 = 610 msec, DRR = -2 dB, fs = 8 kHz; RIR estimation errors: NPM₁ = -33 dB, NPM₂ = -15 dB, L-RMCLS/L-PMINT: intrusively chosen filter length, R-RMCLS/R-PMINT: intrusively regularized, S-RMCLS/S-PMINT: intrusively regularized, $\tau = 90$, $L_d = 10$ msec

2. Robust acoustic multi-channel equalization

- Equalization techniques for dereverberation lead to **noise amplification**
- Cost functions for joint dereverberation and noise reduction:
 - 1. Incorporate **noise statistics** into regularized P-MINT (RPM-DNR)

$$J = \underbrace{\|\hat{\mathbf{H}}\mathbf{w} - \hat{\mathbf{h}}_{1}^{d}\|_{2}^{2}}_{\epsilon_{c}} + \delta \underbrace{\mathbf{w}^{T} \mathbf{R}_{e} \mathbf{w}}_{\epsilon_{e}} + \mu \underbrace{\mathbf{w}^{T} \mathbf{R}_{v} \mathbf{w}}_{\epsilon_{v}}$$

 Incorporate speech statistics → Multi-channel Wiener Filter, using dereverberated output signal of regularized P-MINT as reference signal (MWF-DNR)

$$J = \mathcal{E}\{(\mathbf{w}^{\mathsf{T}}\mathbf{x}(n) - \mathbf{w}_{\mathsf{RP}}^{\mathsf{T}}\mathbf{x}(n))^{2}\} + \mu \mathcal{E}\{(\mathbf{w}^{\mathsf{T}}\mathbf{v}(n))^{2}\}$$

• Automatic selection of trade-off parameter(s)

					Measure	PMINT	RPMINT	RPM-DNR	MWF-DNR
y ₁ (n)	PMINT	R-PMINT	RPM-	MWF-	ΔDRR [dB]	-3.3	9.9	9.8	9.1
		DIII	DAK	ΔPESQ	-0.4	0.7	0.7	0.6	
					$\psi_{_{\rm NR}}$ [dB]	-26.8	1.9	3.2	13.0
~ 5		~~		~ 6	∆fwSSNR [dB]	-3.0	0.9	1.1	3.2

M=4, T60=610 msec, DRR=-2 dB, fs=8 kHz, NPM=-33 dB, SIR=0 dB, SNR=10 dB (diffuse noise), no estimation errors in correlation matrices

3. Blind probabilistic model-based approach

- **STFT-domain approach** (although time-domain versions possible)
 - Low computational complexity (independent frequency bin processing)
 - Speech properties (e.g. sparsity) can be modelled more naturally in STFT-domain
- Direct approach: directly estimate clean speech STFT coefficients s(k,n) from reverberant (and noisy) STFT coefficients y_m(k,n)

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

- Directly using CTF model → sparse Bayesian deconvolution based on variational Bayesian inference
- 2. Transform to equivalent AR model \rightarrow sparse multi-channel linear prediction (MCLP)

$$x_{1}(k,n) = d(k,n) + \sum_{m=1}^{M} \sum_{l=0}^{L_{g}-1} g_{m}(k,l) x_{m}(k,n-\tau-l)$$

$$\uparrow$$
clean signal prediction delay
(incl. early reflections) filters (early reflections)

• AR model of reverberant speech

How to select suitable cost function for prediction filters ?

• Model clean speech STFT coefficients using circular sparse prior

 $\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n))\psi(\lambda(n))$

- Time-varying variance $\lambda(n)$
- Hyper-prior on variance determined by scaling function $\psi(.)$
- Maximum-Likelihood Estimation

$$\mathcal{L}\left(\mathbf{g}\right) = \prod_{n=1}^{N} \rho\left(d(n)\right) \qquad \qquad \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

• Alternating optimization procedure

1. Estimate prediction vector (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{x}_{ au}$$

2. Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = rgmin_{\lambda(n)>0} rac{|\hat{d}^{(i+1)}(n)|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))$$

• **Example:** complex generalized Gaussian (CGG) prior with shape parameter *p*

$$\rho(z) = \frac{p}{2\pi\gamma\Gamma(2/p)} e^{-\frac{|z|^p}{\gamma^{p/2}}}$$

$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$

- Remarks:
 - Conventional method (TVG): p = 0
 - − ML estimation using CGG prior is equivalent to I_p -norm minimization → iterative reweighted least-squares (IRLS) procedure
 - Incorporate additional knowledge of speech signal, e.g. **low-rank structure** (NMF)
 - Group sparsity for MIMO speech dereverberation
 → mixed norms

$$\begin{array}{cc} \mathsf{n} & \min_{\mathbf{g}} \|\mathbf{d}\|_p^p \end{array}$$

$$\mathbf{D}|^2 pprox \mathbf{W} = \mathbf{H}$$

spectral dictionary

$$\|\mathbf{D}\|_{\Phi;2,p} = \left(\sum_{n=1}^{N} \|\mathbf{d}_{n,:}\|_{\Phi;2}^{p}\right)^{1/p}$$

• Instrumental validation (noiseless, batch)

- MCLP exploits sparsity
- NMF introduces speech structure (unsupervised vs. supervised NMF)

 T_{60} ~ 700ms, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=8, τ =2, p=0

[Jukic 2015]

• Instrumental validation (high reverberation + noisy, recursive)

T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings STFT: 64ms (overlap 16ms); MCLP: L_q =30, τ =2, p=0, recursive version (λ =0.96)

Current / future work

- Blind probabilistic model-based approach
 - Comparison of CTF model vs. AR model
 - Recursive/adaptive versions of MCLP
- Distributed MCLP for acoustic sensor networks
- Instrumental measures: prediction of perceived level of reverberation, by optimizing/redesigning SRMR measure (joint project with Tiago Falk)
- Inaugurate new varechoic lab

Abbildung 1: In Raum E10 in den in Tabelle 1 angegebenen Raumzuständen gemessenen Nachhallzeiten in Terzbändern im Vergleich

Recent publications

- B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Jukić, T. Gerkmann, S. Doclo, S. Goetze, <u>Combination of MVDR</u> <u>beamforming and single-channel spectral processing for enhancing noisy and reverberant speech</u>, EURASIP Journal on Advances in Signal Processing, 2015:61, pp. 1-12.
- I. Kodrasi, S. Doclo, *Joint Dereverberation and Noise Reduction Based on Acoustic Multichannel Equalization*, *IEEE/ACM Trans. Audio, Speech and Language Processing*, vol. 24, no. 4, pp. 680-693, Apr. 2016.
- I. Kodrasi, A. Jukic, S. Doclo, *Robust sparsity-promoting acoustic multi-channel equalization for speech dereverberation*, in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Shanghai, China, Mar. 2016.
- I. Kodrasi, S. Goetze, S. Doclo, <u>*Regularization for Partial Multichannel Equalization for Speech Dereverberation*</u>, *IEEE Trans. Audio, Speech and Language Processing*, vol. 21, no. 9, pp. 1879-1890, Sep. 2013.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Multi-channel linear prediction-based speech</u> <u>dereverberation with sparse priors</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 9, pp. 1509-1520, Sep. 2015.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Group sparsity for MIMO speech dereverberation</u>, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, Oct. 2015, pp. 1-5.
- A. Jukić, N. Mohammadiha, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Multi-channel linear prediction-based</u> <u>speech dereverberation with low-rank power spectrogram approximation</u>, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 96-100.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Speech Dereverberation with Convolutive Transfer</u> <u>Function Approximation Using MAP and Variational Deconvolution Approaches</u>, in Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), Juan les Pins, France, Sep. 2014, pp. 51-55.
- N. Mohammadiha, S. Doclo, <u>Speech Dereverberation Using Non-negative Convolutive Transfer Function and</u> <u>Spectro-temporal Modeling</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 2, pp. 276-289, Feb. 2016.

http://www.sigproc.uni-oldenburg.de -> Publications

Acoustic Sensor Networks

Acoustic Sensor Networks

DFG

• Problem

universität oldenburg

- Traditional microphone arrays located at fixed and distant position
- Poor performance of signal enhancement algorithms due to low SNR and/or low DRR

• Objectives

- Develop centralized and distributed noise reduction and dereverberation algorithms
- Optimise positions of distributed microphones
- Impact of wireless link capacity, sampling rate offset estimation and compensation

Approaches

- Using statistical room acoustics model, compute spatially averaged performance → selection of optimal microphone configuration
- Exploit diversity of room impulse responses \rightarrow generalized/alternative versions of MWF

Subset of sensors closer to target signal

Subset of sensors closer to undesired sources

Nico Gößling

 $SNR_{out}(\mathbf{P}_{mic}^{j}) = \mathcal{E}_{\mathbf{d}}\{\mathcal{E}_{\mathbf{P}|\mathbf{d}}\{SNR_{out}(\mathbf{P})\}\}, \forall j$

Spatially averaged performance of MWF

- Goal : using statistical room acoustic (Schroeder's model), compute the average output SNR of the multichannel Wiener filter → comparison of different microphone configurations
 - Specific microphone array position
 - Average over all source positions

$$\widetilde{\mathrm{SNR}}_{\mathrm{out}}(\mathbf{d}^{i}) = \mathcal{E}_{\mathbf{P}|\mathbf{d}^{i}}\{\mathrm{SNR}_{\mathrm{out}}(\mathbf{P})\} = \frac{\phi_{s}}{\phi_{v}} \sum_{m=1}^{M} \sum_{n=1}^{M} \breve{\gamma}_{mn} \Big(\frac{e^{j\frac{\omega}{c}(d_{n}^{i}-d_{m}^{i})}}{(4\pi)^{2}d_{m}^{i}d_{n}^{i}} + \frac{1-\bar{\alpha}}{\pi\bar{\alpha}A} \frac{\sin\left(\frac{\omega}{c}r_{mn}\right)}{\frac{\omega}{c}r_{mn}}\Big)$$

[Lawin-Ore 2015]

Generalized multi-channel Wiener filter

- Multichannel Wiener filter (MWF) in acoustic sensor networks
 - Objective: estimate filtered version of speech signal + trade-off noise reduction and speech distortion

$$\xi(\mathbf{W}) = \mathscr{E}\{ | \mathbf{A}_d S - \mathbf{W}^H \mathbf{X} |^2 \} + \mu \mathscr{E}\{ | \mathbf{W}^H \mathbf{V} |^2 \}$$

Desired overall transfer function

 "Standard" MWF (S-MWF): speech component in reference microphone signal m₀

$$A_d = A_{m_0} \rightarrow \mathbf{W}_{\mathrm{S-MWF}} = (\Phi_x + \mu \Phi_v)^{-1} \Phi_x \mathbf{e}_{m_0}$$

 For spatially distributed microphones, selection of reference microphone can have a major impact on output SNR (estimation errors depend on input SNR)

Generalized multi-channel Wiener filter

• Multichannel Wiener filter (MWF) in acoustic sensor networks

- Note: phase of reference microphone $\psi_{m_0} = \arg(A_{m_0})$ does not have influence on narrowband/broadband output SNR

Generalized multi-channel Wiener filter

• Multichannel Wiener filter (MWF) in acoustic sensor networks

Figure 3: Position-dependent broadband output SNR of the different MWF filters: (a) S-MWF with $A_d = A_1$, (b) G-MWF with $A_d = ||\mathbf{A}||e^{j\psi_1}$.

S-MWF					G-MWF							
$A_d = A_{m_0}$					$A_d = A_{m_0}$					$A_d = \mathbf{A} e^{j\psi_{m_0}}$		
$m_0=1$	$m_0 = 2$	$m_0=3$	$m_0=4$	$m_0=5$	$m_0=6$	$m_0 = 1$	$m_0=2$	$m_0=3$	$m_0=4$	$m_0=5$	$m_0=6$	$m_0 = 1 \dots 6$
14.18	13.73	13.42	13.75	14.14	13.55	16.08	15.68	15.62	15.70	15.87	15.71	15.90

Table 1: Output SNR (oSNR_{avg} [dB]) of the S-MWF and G-MWF filters, averaged over all considered source positions.

Current/Future work

- Combination of acoustic sensor networks and (binaural) hearing aids
- Distributed algorithms for **dereverberation** (e.g. MCLP)

Recent publications

- T. C. Lawin-Ore, S. Doclo, <u>Analysis of the average performance of the multichannel Wiener filter based</u> <u>noise reduction using statistical room acoustics</u>, Signal Processing, special issue on on wireless acoustic sensor networks and ad hoc microphone arrays, vol. 107, pp. 96-108, Feb. 2015.
- S. Stenzel, T. C. Lawin-Ore, J. Freudenberger, S. Doclo, <u>A Multichannel Wiener Filter with Partial</u> <u>Equalization for Distributed Microphones</u>, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz NY, USA, Oct. 2013.
- T. C. Lawin-Ore, S. Stenzel, J. Freudenberger, S. Doclo, <u>Generalized Multichannel Wiener Filter for</u> <u>Spatially Distributed Microphones</u>, in *Proc. ITG Conference on Speech Communication*, Erlangen, Germany, Sep. 2014.
- T. C. Lawin-Ore, S. Stenzel, J. Freudenberger, S. Doclo, <u>Alternative Formulation and Robustness Analysis</u> of the <u>Multichannel Wiener Filter for Spatially Distributed Microphones</u>, in *Proc. International Workshop* on Acoustic Signal Enhancement (IWAENC), Juan les Pins, France, Sep. 2014, pp. 208-212.
- L. Wang, S. Doclo, <u>Correlation Maximization Based Sampling Rate Offset Estimation for Distributed</u> <u>Microphone Arrays</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 3, pp. 571-582, Mar. 2016.

<u>http://www.sigproc.uni-oldenburg.de</u> -> Publications

Current research topics

- Speech enhancement for ear-mounted communication devices
 - Binaural noise reduction, aiming to preserve spatial impression of acoustic scene (binaural cues)
 - Open-fitting hearing aids: feedback cancellation and active noise control (acoustically transparent earpiece)
 - EEG-based auditory attention decoding for steering beamformers

• MIMO acoustics

- Beamformer design (e.g., virtual artificial head)
- Dereverberation and noise reduction (spectral enhancement, multi-channel equalization, blind probabilistic model)
- Acoustic sensor networks (spatially distributed microphones, sampling rate offset estimation, distributed processing)
- Computational acoustic scene analysis (CASA)

House of Hearing, Oldenburg

Questions ?