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Signal Processing Group

 Research, development and implementation of signal
processing algorithms for acoustical and biomedical systems

e Speech acquisition in adverse acoustic environments

— Signal enhancement
* noise reduction, dereverberation, blind source separation
— Microphone array processing
» adaptive beamforming, source localization
— Computational auditory scene analysis, sound classification
— Acoustic echo cancellation and acoustic feedback cancellation
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Signal Processing Group

 Research, development and implementation of signal
processing algorithms for acoustical and biomedical systems

 Speech acquisition in adverse acoustic environments

— Signal enhancement
* noise reduction, dereverberation, blind source separation
— Microphone array processing
» adaptive beamforming, source localization
— Computational auditory scene analysis, sound classification
— Acoustic echo cancellation and acoustic feedback cancellation

e Sound reproduction
— Loudspeaker array processing
— Active noise reduction

 Applications: hearing aids, cochlear implants,
headsets, speech communication systems
(mobile phone, voice-controlled systems)
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Current research topics

 Speech enhancement for ear-mounted communication de vices

— Binaural noise reduction , aiming to preserve spatial impression
of acoustic scene (binaural cues)

— Open-fitting hearing devices: feedback cancellation and
active noise control (acoustically transparent earpiece)

— EEG-based auditory attention decoding for steering beamformers

« MIMO acoustics

— Beamformer design (e.g., virtual artificial head)

— Dereverberation and noise reduction  (spectral enhancement,
multi-channel equalization, blind probabilistic model-based) N

— Acoustic sensor networks  (spatially distributed microphones,
sampling rate offset estimation, distributed processing)

— Computational acoustic scene analysis  (CASA)
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Binaural noise reduction
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Binaural noise reduction

e Problem

— Hearing impaired suffer from loss of speech
understanding in noisy environments

— Improvement of speech intelligibility by noise
reduction algorithms

e Objectives Yoa(w) - Yoan-1(«) Via(w)-Yian-a(w)

— Develop binaural noise reduction algorithms,
avoiding signal distortions and preserving
spatial awareness

 Approaches

— Novel binaural algorithms, merging
advantages of spectral post-filtering
(preservation of cues) and spatial
processing (no artefacts)

— Incorporate psychoacoustic properties of the
human auditory system in binaural noise
reduction algorithms

— Integration with CASA (scene analysis) Daniel Marquardt  Dorte Fischer
=
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Binaural auditory cues

d Interaural Time/Phase Difference (ITD/IPD)
Interaural Level Difference (ILD)
Interaural Coherence (IC)

Q ITD: f < 1500 Hz, ILD: f > 2000 Hz
A IC: describes spatial characteristics, e.g. perceived width, of diffuse noise,
and determines when ITD/ILD cues are refiable

A Binaural cues, in addition to spectro-temporal cues, play an important role
in auditory scene analysis (source segregation) and speech intelligibility

A\ v

IPD/ITD
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Binaural auditory cues

O Spatial release from masking (BMLD):

Q Localized noise source : large effect for NH listeners (especially in free-field)
Q Diffuse noise : about 2-3 dB
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FIG. 5. Mean speech reception thresholds obtained in experiment 1 for
three different noise types : FF (free field ), dL (headshadow only), and T

(ITD only). The closed data points represent results of Plomp and Mimpen -180 -90 0 90 180
(1981) obtained in a free field. noise azimuth {speech 0°)
[Bronkhorst and Plomp, 1988] [Beutelmann and Brand, 2006]
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Binaural noise reduction: Configuration

Monaural/Bilateral system Binaural system

. . i Hearing aid user
Hearing aid user =

. : . Yoolw) - Yoam-1lw) Yiglw) - Y (w)
Yoglw) - Yaan 1(w) Violw) - Yian 1ilw) 0.0y Lol L. 1!
|
' }
7 r Wolw) Wiw)
Wiiw) Wiw)
l i Zy(w) Zh(w)
Zylw) Zy(w)

@ Exchange of:
- parameters (volume, environment)
- signals (cooperative processing
for noise reduction, feedback, ...)

@ Independent left/right processing:
- No cooperation (e.g. different
environment classification)
- preservation of binaural cues ?
@ Need for wireless binaural link

10 10
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Binaural noise reduction: Configuration

A Binaural hearing aid configuration:

O Two hearing aids with in total M
microphones

Q All microphone signals Y are
assumed to be available at both
hearing aids (perfect wireless link)

Yoo(w) - Yous-1(w) Vot Yanater QO Apply a filter W, and W, at the left and
the right hearing aid, generating
binaural output signals Z, and Z,

[ j [ ] Z,(@) =W (@Y(@),  Z(@) =W (@)Y ()

Zp(w) Zl (w)

11



CAS DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS
OSSIETZKY SIGNAL PROCESSING GROUP

universitét|OLDENBURG

Binaural noise reduction: Acoustic scenario

@ The microphone signals Y are composed of Acoustic Transfer Functions (ATFs)

O (desired) speech component X = S{@<—
Q (undesired) directional interference component U = 51

O (undesired) background noise component N

[ Correlation matrices: 7 N " A
Ry — Rﬂ: + R‘UL + Rn E SR -

A
I G % B ﬂ > X = 8;A
R.U ) ‘I \ A %
il A - |

R, = E{XX"} = P, AA"Y

A
R, =& {UU"} = P,BB" , 7 ¥eX+uaw
% ,”’ U=5,B

R, = & {NN"}, N

 All binaural cues can be written
in terms of these matrices

12
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Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on
multi-microphone noise reduction)

[Doerbecker 1996, Wittkop 2003, Lotter 2006,
Rohdenburg 2007, Grimm 2009, Reindl 2012]

/\
\/

atlal
iiter

J

gain

¥ ?

® Binaural cue preservation
© Possible single-channel artifacts

Binaural multi-microphone noise
reduction techniques

[Welker 1997, Doclo 2010, Cornelis 2012,
Hadad 2014-2016, Marquardt 2014-2016]

' / A‘\').

‘ >
IR AN | L £ LA,

spatial spatial
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(® Larger noise reduction performance

@ Merge spatial and spectral post-filtering
© Binaural cue preservation not guaranteed

13
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Binaural MVDR and MWF

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without
distorting speech component in reference
microphone signals

_‘%}HW R, W, subject to WEA — Ap
o
I&;n W‘lquwl subject to W{‘TA — A,
1 f
noise distortionless
reduction constraint
W R,'A .
MVDR.0 = y
YT ARRIIATY
R'A
Wnvpr1 = - AT
APRIIAT

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in
reference microphone signals + trade off
noise reduction and speech distortion

(Il m} RO

speech dlstortion

Jvawr (W

2}
noise
reduction

Wiarwr.o = (Re + uRy) " ryo
Wuawr: = (Re + puRy) e

14
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Binaural MVDR and MWF

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without
distorting speech component in reference
microphone signals
_‘%}HW R, W, subject to WHA — Ap

]
1&;11 W‘lquwl subject to W{‘TA — A,

noise distortionless
reduction constraint

Requires estimate/model of noise
coherence matrix (e.g. diffuse) and
estimate/model of relative transfer
function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in
reference microphone signals + trade off
noise reduction and speech distortion

~WEX wiv]|’
e (W WH X wWHv
speech dlstortion noise
reduction

Requires estimate of speech and noise
covariance matrices, e.g. based on VAD

Can be decomposed as binaural MVDR
beamformer and spectral postfilter

Good noise reduction performance, what about binaural cues ?

15
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Binaural MVDR/MWF: binaural cues

Interaural Level Difference
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Note: MSC = Magnitude Squared Coherence

16
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Binaural MVDR/MWF: binaural cues

Interaural Level Difference

.

\-__.// _10_ _lN _
“_,. _15_ - =

ILD [dB]

=

0 2000 4000 6000 8000
Frequency [Hz]

Magnitude Squared Coherence (Diffuse Noise)

1 - ; - -
_/ o.a‘
0.6} — 1
Binaural cues for residual  2_| —our) |
noise/interference in 551 ,, |
blnaural MVDR/MWF DO 2000 4000 6000 8000

Frequency [Hz]

not preserved
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Binaural MWF: Extensions for diffuse noise

@ SNR improvement

Binaural MWF @ Binaural cues of speech source
@ Binaural cues of noise

Interaural coherence Partial noise estimation

preservation (MWEF-IC) (MWE-N)
wiv
‘ wiv

e No closed-form solution, iterative @ Closed-form solution (mixing with
optimization procedures required reference microphone signals)

WIR, W,

— 1C%
IR, W WIR, W,

Jvwr—1c(W) = Jywr(W)

- WX
Jawr - _wix

|

Trade-off between SNR improvement and binaural
cue preservation, depending on parameters (n and A)

[Marquardt 2013/2014/2015, Braun 2014] [Doclo 2010, Cornelis 2010/2012] 18
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d Determine (frequency-dependent) trade-off parameters
based on psycho-acoustic criteria

=  Amount of IC preservation based on subjective listening experiments
evaluating the IC discrimination abilities of the human auditory system

1 = IC discrimination ability depends on

magnitude of reference IC

B MSC area; f<500 Hz| . Boundaries on Magnitude
06 I Thr 0.36; f > 500 Hz Squared Coherence (MSC=|IC|?) :

B Thr 0.04; f> 500 Hz = For f < 500 Hz (“large” IC):

frequency-dependent MSC
boundaries (blue)

= For f > 500 Hz ("small” IC):
fixed MSC boundary, e.q.
0.36 (red) or 0.04 (green)

0.8

—MSC®

MSC Threshold

0 2000 4000 6000 8000
Frequency [Hz]

[Marquardt 2014/2015] 19
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Binaural MWF: Extensions for diffuse noise

d Instrumental evaluation / sound samples
I IMVDR B MWF [ IMVDR-N[  |MWF-N [l MVDR-NP

iSNR [dB]

-5 T T T T T
0 90 135 -90 -45 0 90 135
ker Position Spdaker Position
] out
(b) iSNRpY

(a) AMSCy

| nput MVDR MWF MVDR-N MWF-N MVDR-NP

| \ iﬂ % \\"J \ J Q\ \VJ \ \Q

Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid)
MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

Does binaural unmasking compensate for SNR decrease ?

20

[Marquardt 2016 - unpublished]
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Evaluation: Spatial quality (MUSHRA)

MUSHRA Results (Cafeteria)

= Evaluate spatial difference
between reference and g = - T
output signal o | o i . T
= MWF-ICand MVDR-N . _ T
outperform MVDR 9 A L
%) 40 — T
= MVDR-N shows better o N < !
results than MWF-IC . &2 ’
» Decreasing the MSC S — = | [
threshold slightly ¢ ¢ & ¢ g & &
improves spatial quality : Z L : L :

Binaural cue preservation for diffuse
noise improves spatial quality

21
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Evaluation: Speech intelligibility (SRT)

= Al algorithms show a SRT Results (Cafeteria)

highly significant SRT s T
improvement

= The SRT results mainly T H i
reflect the SNR o 1N IR I o -
differences between 12 - - 5 ' i ' *
algorithms: MWF-IC e — ' -
outperforms MVDR-N T :

= No significant SRT é é ; . 5 . .
difference between t = ¢ ¢ o F
MVDR and MWF-IC ” = & f 9z

Binaural cue preservation for diffuse noise
does not/hardly affect speech intelligibility

22
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Binaural MVDR: Extensions for interfering source

@ SNR improvement

Binaural MVDR @ Binaural cues of speech source
@ Binaural cues of interferer

Relative transfer function Interference rejection
(BMVDR-RTF) (BMVDR-IR)

minw, { WI'R, Wy} s.t. WJ'A = AffW{'B = B,
minw, {W{'R,W;} s.t. W{’A = ANW'B =B

@ Binaural cues of speech source and interfering source preserved

minw, w, { W)'R, W + W R W
WHB B
WHB  B;

s.t. WA = A, WHA = A,

@ Also binaural MWF-based versions (incl. spectral filtering) can be derived
@ Background noise: MSC not exactly preserved, possible noise amplification

[Hadad 2014/2015/2016, Marquardt 2014/2015] 23
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Binaural MVDR: Extensions for interfering source

d Instrumental evaluation / sound samples

lGIobaI output SINR gainl ) Global output SNR gain ) Global output SIR gain )

5 20
I BMVDR
7 oMvDR I B\1VDR-RTF -
! Ell BVMVDR-RTF | [ C prememr=o [ BMVDR -
[ |BLCMVIL=01) 4 - I B\\V/DR-RTF

6 1 ~ 15 - [ IBLCMV[;= §.1]
) — — —
S5 2, ol ]
£ £ =
S 4 © g 10

X o | v

Z 3 =
% 5 Z

2 1 5 -

1 -
1 d H
2SINRy ¢SINR; ¢SNR eSNR; oSNR__ gSIRo gSTR; SR
| nput BMVDR BMVDR-RTF BMVDR-IR
(n=0.1)
4\ RS S\ ¥\

Cafeteria with recorded ambient noise, speaker at 0°, Interference at -45°, 0 dB input SIR and SNR (left hearing aid)
RTF calculated from correlation matrix (Rx and Ru), 3 microphones (2 left, 1 right)

[Hadad 2014/2015/2016, Marquardt 2014/2015] 24
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Current/Future work

Binaural noise reduction algorithms for interfering sources
(BMVDR-IR, BMVDR-RTF):

— Subjective evaluation (incl. binaural cue preservation) for HA/CI users
— Robustness against RTF estimation errors

Mixed noise fields and

time-varying scenarios: & ‘ - a

incorporate computational | i N EEE [,
acoustic scene analysis (CASA) :
into developed algorithms

Extend algorithms to include |
external microphones &
(acoustic sensor networks)

| " | | | i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)

25
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Auditory attention decoding

* Problem
— Multi-microphone noise reduction in complex acoustic
scenarios with interfering speaker(s) .
— Many algorithms rely on pre-defined assumptions G
about target speaker (e.g. direction / energy) &
 Objectives == - il —
— Use brain computer interface to control multi- ol SV usi)-._
microphone noise reduction techniques , to x | s 2B =e =
enhance target speaker to which user is attending LA S

e Approach

— Control of binaural noise reduction techniques
through BCI (e.g. correlation of EEG and acoustical
signals / features)

— Investigate feedback/reinforcement mechanism by
presenting enhanced source

Ali Aroudi

26
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Recent publications

D. Marquardt, V. Hohmann, S. Doclo, /nteraural Coherence Preservation in Multi-channel Wiener Filtering
Based Noise Reduction for Binaural Hearing Aids, IEEE/ACM Trans. Audio, Speech and Language Processing,
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strategies I+ Instrumental evaluation, Trends in Hear/ng, vol. 19, pp. 1-16, 2015.
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http://www.sigproc.uni-oldenburg.de -> Publications
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Joint dereverberation and
noise reduction
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Dereverberation and noise reduction = B%

* Problem /[
. on o . 4 A DREAMS

— Noise and reverberation jointly present in ] | i st == .
typical acoustic environments

— Speech quality and intelligibility degradation
— Performance degradation of ASR systems

* Objectives

— Develop single- and multi-channel joint
dereverberation and noise reduction
algorithms

— Exploit knowledge or statistical models of
room acoustics

 Approaches

1. Single-microphone spectral enhancement
(estimation of LRSV, inverse filtering)

2. Robust multi-channel equalization

3. Probabilistic estimation using statistical
models of desired signal and reverberation

Ina Kodrasi Ante Jukié Benjamin Cauchi

29



CARL DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS

umé‘éi;ﬂ‘;ﬁ OLDENBURG SIGNAL PROCESSING GROUP

Signal model

e Scenario: speech source in noisy and reverberant environment, M microphones
 Time-domain model: “perfect” model

Ym(n) = xm(n) + vm(n) = s(n)  hym(n) + vin(n)
h.,(n) = room impulse response (RIR), typically long and difficult to blindly estimate

« STFT-domain model: approximation of time-domain model
VYm(k,€) = hpm(k,€)x s(k,€)+vpy(k, )

Xm(k, 1)

h.(k,I) = convolutive transfer function (CTF) in frequency bin k and time frame |

vl(n) —— Direct path—— Early reflections —— Late reflections‘
- 0 4 I I I |
" \\ﬂ\ V2 % 0.2 |
z(n) iﬁ—m E\ z(n) é 0
: / < 9o |
s(n) (;’) VM( ) e
P —0.4 | | | |
— Ym(n) 0 100 200 300 400

Time [ms]
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1. Beamforming + spectral post-filtering

| VAD [18] I

:  —
coherence

—— cstimation
N ——

ey
DOA [19]

estimation

e L 1
o
p—

Y1 'f‘”«} :
ya2(n) | l

-
]
1

x(n)

(ef. Fig. 2)

yar(n)

A
MVDR [29]
beamlormer

y

single-channel

enhancement

|

=Yk)dg (k)
di (l)T=1(k)dg (k)

e MVDR beamformer. Wy(k) =

— Anechoic steering vector based

on DOA estimate (MUSIC): dy (k) = [6_”'2”)'7"”{93' o 2hTa @) .e—fhﬁ-w(m]

— Coherence matrix adaptively estimated based on VAD (or assuming diffuse noise

and reverberation): P = 1 SV, OV £ T ) = sin (27 filii /c)
Ev tel, ot N Zﬂfk"{f,f’ /(:

[Cauchi 2015] 31




VN DEPARTMENT OF MEDICAL PHYSICS AND ACOUSTICS

OSSIETZKY

universitét|OLDENBURG SIGNAL PROCESSING GROUP

1. Beamforming + spectral post-filtering

52 (k) i) + 62 (k)
_/ 1

=1 (750 B0Jes
B imator
L timato

speech PSD | 52y | reverberant

estimation fmmp| PSD esti- estimation
24,25 ation [15] P
[24,25] mation [13)] 124,25)

T I

speech
PSD re-

noise PSD
estima-
tion [13]

G (k)

spectral gain

¥(n) WOLA N S® | wora [ $0)
STFT / ISTFT
_ . - | o2(k,0)
 Spectral post-filter:  S(k, ¢) = G(k, )X (k, £). §(k,b) =

o2k, ) + U{?(f{, 0)

1. Noise PSD : minimum statistics approach (longer window as usual)
Reverberant speech PSD : ML estimate + cepstro-temporal smoothing

Late reverberant PSD : assuming exponential COAT A2
decay (requiring T60 estimate) o, (kt) =e o (k0 =Ty/Ts)

4. Clean speech PSD : ML estimate + cepstro-temporal smoothing

[Cauchi 2015] 32
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1. Beamforming + spectral post-filtering

e Subjective evaluation (evaluation set of REVERB cha llenge)

Anchor %Unpmc&ss&d -SE; -MW’DR -M'UDR+SE_1

100 ______I_________OFI-’EI‘E!]]_QLIEEH}}__ 3] 1 1 ET—— _ Amount of reverheration . . ]

80 |-

60 - -

40 -

MUSHRA Score

S2. near S2, far RI1. near R1, far S2. near S2, far R1. near R1, far

Circular array (M=8, d = 20 cm), fs = 16 kHz, SNR = 20 dB; S2: T60 = 500 ms (0.5m, 2m), R1: T60 = 700 ms (1m, 2.5m)
STFT: 32 ms, 50% overlap, Hann; MVDR: WNGmax = -10 dB; Postfilter: $=0.5, up=0.5, Gmin = -10dB, Td = 80 ms, MS window = 3s

[Cauchi 2015] 33
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1. Beamforming + spectral post-filtering

e Subjective evaluation (evaluation set of REVERB cha llenge)

I Resujt in SimDgta room2 near I Result in SimData room?2 far I Result in RealData near Result in RealData far

Very small
Small 8°

60
Mid. so

30
Large 3]

Perceived amount of reverb.

1
Very large ©

Excellent 100
90

= 80 |— |
= Good g | _

<
= 60 |— —
= Fair so |- —
S as | .
= Poor Z [T —
10 — —
Bad o ]

N

[Cauchi 2015] 34
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2. Acoustic multi-channel equalization

 Time-domain approach (although frequency-domain versions possible)

* Indirect approach
1. estimate/measure RIRS

2. Estimate the clean speech signal by
inverting/equalizing the acoustic system

_ > z(n)
+ suppressing noise o wa(n) A

(1) w:) -
+ n
z(n) = w H” s(n) + w’ v(n) o) vty

cl

wi(n)

Speech enhancement objectives

@ Dereverberation: Optimize c

@ Noise reduction: Minimize the noise output power while
controlling the speech distortion

@ Joint dereverberation and noise reduction: Optimize ¢ and
minimize the noise output power
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2. Acoustic multi-channel equalization

 Time-domain approach (although frequency-domain versions possible)
* Indirect approach
1. estimate/measure RIRsS + yi(n)
_ _ ® ——— wi(n
2. Estimate the clean speech signal by m@ w(n)
inverting/equalizing the acoustic system 5(n)
+ suppressing noise

() g2l s 2(n)

z(n) =wTH s(n) &) [

 |f RIRs do not share common zeros and length of equalization filter is well
chosen: perfect dereverberation possible  (MINT theorem)

Hw = c;
c, = user-defined dereverberated target response (delayed impulse, early reflections, ...)

* |In practice: large distortions due to RIR perturbations (estimation errors,

spatial errors, ...) 0
W = CI
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2. Robust acoustic multi-channel equalization

 Framework for least-squares dereverberation
[IW(HW —c.)|3 w = (WH)™(Wc,)

— Perceptually motivated target response c, (P-MINT): suppress only late reflections
while constraining early reflections
e Increase robustness by:
1. Decreasing filter length
2. Signal-independent regularization: control distortion energy due to RIR perturbations

(=}

J =||W(Hw — ¢;)||? +d w' R.w

@ 1077 | | @ Maximum curvature ||

c ce 5 4l -

. v e
* Closed-form solution = 3o 1;{; 8 -
- . £ 21010 -
« Automatic procedure for selecting the 5 : ST o | ]
regularization parameter o (based on A oL e R S T

L-curve), yielding both low dereverberation 0 0005 001 0015 0.02
error energy and dIStOrtIOn energy DEI‘E‘\-"EI‘E)E'IEI.EIDI'[ EITOT ENETEY £

[Kodrasi 2013] 37
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2. Robust acoustic multi-channel equalization

 Framework for least-squares dereverberation
[IW(HW —c.)|3 w = (WH)™(Wc,)

— Perceptually motivated target response c, (P-MINT): suppress only late reflections
while constraining early reflections

e Increase robustness by:
1. Decreasing filter length

2. Signal-independent regularization: control distortion energy due to RIR perturbations

3. Signal-dependent regularization: enforce output signal to exhibit characteristics of
clean signal, e.g. promote sparsity of STFT coefficients  (weighted |;-norm)

min [[[W(Hw — ¢.)|[2 + 7 (z(n))]

—40 —40
™ N
T —60 = —60
9 —80 9 —80
@ i3]
= =
2 ~100 = ~100
L L

—120 —120

[Kodrasi 2016]  Time [s 38
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2. Robust acoustic multi-channel equalization

e [nstrumental validation * Subjective listening test
e L-RMCLS mmm R-RMCLS mmm S-RMCLS 100 [~ T =]
— 1 L-PMINT mmm R-PMINT  1S-PMINT 80 |- + | I I Q_
17.5 | | ] o 60| | ' — -
15 i S ol LT ' — El : (S1-NPM,)
M 125 s 20 | E . ! R
; 10 N o—é L I
P75 - s = a3 32 2 ¢
3 s ERE RN R
i < ¥ 2 F A & A
2.5 e = -2
0
Sa-NPM,; 5,-NPMs S;-NPM- 100 - -
Scenario 0 | 1 | T
RIENIEN BIEE FH SR
& 40 — = -
s(n)  xy(n)  PMINT  L-PMINT R-PMINT R-PMINT S-PMINT 20 = ; I
(intrusive) (intrusive) (auto) (intrusive) 9 é T | A ¥ i
= S m B = H
Y\ LEN LN Y NN\ s Yy '_; = Ej E ﬂ E E E
< 2 E E & E B
Ao o A o th

M =4, S,: T60 = 450 msec, DRR = 0 dB, S,: T60 = 610 msec, DRR = -2 dB, fs = 8 kHz; RIR estimation errors: NPM; = -33 dB, NPM, = -15 dB,
L-RMCLS/L-PMINT: intrusively chosen filter length, R-RMCLS/R-PMINT: intrusively regularized, S-RMCLS/S-PMINT: intrusively regularized, T = 90, Ly = 10msec
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2. Robust acoustic multi-channel equalization

» Equalization techniques for dereverberation lead to noise amplification

» Cost functions for joint dereverberation and noise reduction:
1. Incorporate noise statistics into regularized P-MINT (RPM-DNR)

J=|Hw — h{||3 +sw Row+,w'R,w
N—— N — N —

€c €e €y
2. Incorporate speech statistics — Multi-channel Wiener Filter, using dereverberated
output signal of regularized P-MINT as reference signal (MWF-DNR)

J = E{(wx(n) —w]x(n))*} + pE{(wv(n))*}
« Automatic selection of trade-off parameter(s)

Measure PMINT RPMINT RPM-DNR MWEF-DNR

yi) PMINT RPMINT RPM- WWE- ADRR[dB]  -33 9.0 0.8 0.1
APESQ —0.4 0.7 0.7 0.6

.. [dB] —26.8 1.9 3.2 13.0

AfwSSNR [dB]  —3.0 0.9 ] 3.2

M=4, T60=610 msec, DRR=-2 dB, fs=8 kHz, NPM=-33 dB, SIR=0 dB, SNR=10 dB (diffuse noise), no estimation errors in correlation matrices

[Kodrasi 2016] 40
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3. Blind probabilistic model-based approach

« STFT-domain approach (although time-domain versions possible)
— Low computational complexity (independent frequency bin processing)
— Speech properties (e.g. sparsity) can be modelled more naturally in STFT-domain

« Direct approach: directly estimate clean speech STFT "’1““1”) wikon)
coefficients s(k,n) from reverberant (and noisy) STFT e (k )-‘ "
.. A L
coefficients y,,(k,n) ---_—?,’z"(k:n) o o

il ) = ) sk m) (ko) o oy
XFﬂi\;(—gn) " _M

1. Directly using CTF model — sparse Bayesian deconvolution based on
variational Bayesian inference

2. Transform to equivalent AR model — sparse multi-channel linear prediction (MCLP)

z1(k,n) = d(k,n) Z gm(k Degm(k,n— 7 1)

T mli[}T T

clean signal prediction delay
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3. Multi-channel linear prediction

AR model of reverberant speech

x1 (k) = d(k) + X-(k)g(k) d(k) = xi(k) — X-(k)g(k)
2tk ~ 9dkn) prediI:tegI

N reverberation
delay 1 [—®| filter g, 41{k)
uq(k.n)
- delay 1 [—] filter gio(k)

,_\ thk n

——| delay 1 —] filter gy m(k)

l

How to select suitable cost function for prediction filters ?
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3. Multi-channel linear prediction

 Model clean speech STFT coefficients using circular sparse prior

pld(n)) = max Ng(d(n);0,A(n))yY(A(n))

Aln) =0

— Time-varying variance A(n)
— Hyper-prior on variance determined by scaling function ¢.)

e Maximum -Likelihood Estimation
N d(n)|2
L(g)= H p(d(n)) min El (% + logwA(n) — log t,-h[)u(nj))

o Alternating optimization procedure
1. Estimate prediction vector (assuming fixed variances)

—1
sli+1) Hy—1 Hmy—1
glitl) — (XT ’Dim){,,) Xr DX

2. Estimate variances (assuming fixed prediction vector)

. ji+1) ()2
}tfz | lj(ﬂ) — arg min |d (T!.-]
Aln)=0 }1(?'1)

[Jukic 2015] 43
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3. Multi-channel linear prediction

« Example: complex generalized Gaussian (CGG) prior with shape parameter p

p :li 5 ..........
e P/
P2 = gt @) o =
e v,
3 (i 1}(?“1) dli+1) (n) E—P’ 2 LopeT L :ggg IP;% NG
15 CGG, p=05| . .
. CGG, p=0.1 - .
e Remarks: 4 3 2 4 0 1 2 3 4
" Z
— Conventional method (TVG): p=0
— ML estimation using CGG prior is equivalent to | ,-norm minimization . p
- = . p min ||d||
— iterative reweighted least-squares (IRLS) procedure p

— Incorporate additional knowledge of speech signal,

D|? ~ W H
e.g. low-rank structure  (NMF) D

~—

spectral dictionary

— mixed norms Z

n=1

— Group sparsity for MIMO speech dereverberation N ) e
||D||*P;2,P — Hdm:H@»Q

[Jukic 2015] 44



SIGNAL PROCESSING GROUP

OSSIETZRY
universitdt |[OLDENBURG

3. Multi-channel linear prediction

« Instrumental validation (noiseless, batch) T N NS P e NME+dict

— MCLP exploits sparsity

— NMF introduces speech structure
(unsupervised vs. supervised NMF)

10 20 30 40 60 80

rank (NMF)
0 o A :
-20 -20 »
-30 30 -30 3
-40 w B = it
e 50 3 s 8 } s
-60 6 9 60 % § ~
-70 - i R W N £ | y
ot -80 -80 ; i £ 4 ’;'
o0 -90 -90 =1 Uﬁiﬁé& L t Y 9
3 0 1 2 3 4 6 0 1 2 3 4 5 6
Time (s) Time (s) Time (s)
AN 1 N AN
4 A\ . 4 A\ \ 1 AN
Clean C 12)) Microphone C 12)) MCLP+NMF C9))
IR NIEY/ NI,

Teo ~ 700ms, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L =8, 1=2, p=0

[Jukic 2015] 45
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3. Multi-channel linear prediction

* Instrumental validation (high reverberation + noisy , recursive)

110

0 E 2 3

4
Time (s)

Microphone 1)) 1ch SE [REVERB]

T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings
STFT: 64ms (overlap 16ms); MCLP: L =30, 1=2, p=0, recursive version (A=0.96)

4
Time (s)

Adaptive MCLP + SE | 9
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Current / future work

« Blind probabilistic model-based approach

— Comparison of CTF model vs. AR model =~ = =miniia™
— Recursive/adaptive versions of MCLP r e
% 5 / =~
5 10 | LAY \
e Distributed MCLP for acoustic sensor (Y e v v —
networks oo | SRR,
* Instrumental measures : prediction of par

—e— Wand/Decke/Kantenabsorber
Wand/Decke/Kante/Vorhang/Teppich

perceived level of reverberation, by
optimizing/redesigning SRMR measure
(joint project with Tiago Falk)

e |naugurate new varechoic lab
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Recent publications

e B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Juki¢, T. Gerkmann, S. Doclo, S. Goetze, Combination of MVDR
beamfiforming and single-channel spectral processing for enhancing noisy and reverberant speech, EURASIP
Journal on Advances in Signal Processing, 2015:61, pp. 1-12.

e I. Kodrasi, S. Doclo, Joint Dereverberation and Noise Reduction Based on Acoustic Multichannel Equalization,
IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 4, pp. 680-693, Apr. 2016.

e I. Kodrasi, A. Jukic, S. Doclo, Robust sparsity-promoting acoustic multi-channel equalization for speech
dereverberation, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, Mar. 2016.

e 1. Kodrasi, S. Goetze, S. Doclo, Regularization for Partial Multichannel Equalization for Speech Dereverberation,
IEEE Trans. Audio, Speech and Language Processing, vol. 21, no. 9, pp. 1879-1890, Sep. 2013.

e A. Juki¢, T. van Waterschoot, T. Gerkmann, S. Doclo, Multi-channel linear prediction-based speech
dereverberation with sparse priors, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 9,
pp. 1509-1520, Sep. 2015.

e A. Juki¢, T. van Waterschoot, T. Gerkmann, S. Doclo, Group sparsity for MIMO speech dereverberation, in
groc.z{)L-;L'-'sE Wori(sgop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA,
ct. , pp. 1-5.

e A. Juki¢, N. Mohammadiha, T. van Waterschoot, T. Gerkmann, S. Doclo, Mu/ti-channel linear prediction-based
speech dereverberation with low-rank power spectrogram approximation, in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 96-100.

e A. Juki¢, T. van Waterschoot, T. Gerkmann, S. Doclo, Speech Dereverberation with Convolutive Transfer
Function Approximation Using MAP and Variational Deconvolution Approaches, in Proc. International Workshop
on Acoustic Signal Enhancement (IWAENC), Juan les Pins, France, Sep. 2014, pp. 51-55.

¢ N. Mohammadiha, S. Doclo, Speech Dereverberation Using Non-negative Convolutive Transfer Function and
fggcz;:rot-)te%[i%ra/ Modeling, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 2, pp. 276-
, Feb. .

http://www.sigproc.uni-oldenburg.de -> Publications
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Acoustic Sensor Networks
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e Problem

— Traditional microphone arrays located at Subset of sensors closer to target signal
fixed and distant position

— Poor performance of signal enhancement
algorithms due to low SNR and/or low DRR g
)
reduction and dereverberation algorithms = ) &
— Optimise positions of distributed microphones - 1] 8 “
— Impact of wireless link capacity, sampling rate ,/ - _
offset estimation and compensation Subset of sensors closer to undesired sources

Acoustic Sensor Networks

-)
-)

* Objectives
— Develop centralized and distributed noise

 Approaches

— Using statistical room acoustics model, compute
spatially averaged performance - selection of
optimal microphone configuration

— Exploit diversity of room impulse responses - - \ 4
generalized/alternative versions of MWF Toby Lawin-Ore Nico G6Rling
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Spatially averaged performance of MWF

e Goal : using statistical room acoustic (Schroeder's model ), compute the average output
SNR of the multichannel Wiener filter -~ comparison of different microphone configurations

— Specific microphone array position
— Average over all source positions

:> SNRout(Pgnzc) gd{gP|d{SNRout (P)}}? V]

__ . e 2 (d},—d;,) L l-a sin (27, )
T\ __ . C
SNRout (A7) = Epqi {SNRout (P Z van( FESTr i Ay )
m=1n=1 c
16 : Efficient way to compare the performance of different microphone |
I conflguratlons W|thout measurements or numerlcal S|mulat|ons
= 12 5 g 120 ' '
E 10 & 101
< 8 + 8
5 gl 5 gl L oo
g : : E -¢-M =4, SNRDUL( mzc)
%.O A s e - 4’ SNRout, f— 1890 Hz |~ %ﬂ 4+ — N = 4 SNROUL(PHHC‘)
2 5 : ' g . |=o=M = 8, SNRouwt (Prmic)
< s --------------------- vefe= M = 8, SNRout, f=1890 Hz |7 < 2r v N = 8, SNB‘QW( Tngc) N
() |enamisnmansnans _____________________ ——M = 12, SNR,,,,, f = 1890 Hz |- 0_ :::%% i }g %ﬁi:{gg:zz) o
_20 ZIO 4|0 GI(} BIG 100 0 IOIOO ZOIOO SOIOO 40|00 5OI00 60I00 70I00

Realization of P, Frequency (Hz)

[Lawin-Ore 2015] 51
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Generalized multi-channel Wiener filter

« Multichannel Wiener filter (MWF) in acoustic sensorn  etworks

— Objective: estimate filtered version of speech signal + trade-off noise reduction
and speech distortion

E(W) = éf’{l@— WHXF} + pn&{WHV|)?}

Desired overall transfer function

— “Standard” MWF (S-MWF): speech component | | | 2
in reference microphone signal m, 4

44-:'-!’ = film.:. - 1i"];"’TS—]f'w-fl"'r‘lr’l:" — [{I):r +H"I}L':]_l q’:{'erng —3 18

— For spatially distributed microphones, é , 10

selection of reference microphone can have <

a major impact on output SNR (estimation -
errors depend on input SNR) 1

® 1 2z 3 4 0
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Generalized multi-channel Wiener filter

« Multichannel Wiener filter (MWF) in acoustic sensorn  etworks

10 ! T ! ! !

— Generalized MWF: define desired overall

transfer function using envelope of ATFs _ °[[5 AN =N AAM N 7
8 _ ‘,:: Bt “. 2t 8 "*:f:,a;'\.; e v
g : |J|J: "vH '-v‘-_, o n: o ‘-r;l_- },_.,: -_‘:‘_[h:'ill \’.I
2 F fage ooy P YL G e R
§ -20 r.. \r‘;: | f - |H1{f)|2 Ilf
M = T 0
. . 3 j-gl;'_:-m 5 {] ENEERIN  CIRUND e o om— |H_;(f)|2 A
Aa= Z_ Q| A |7 7m0 | — )P
m=1 i : ; ; i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000
i Frequency [HZ])
W _ (D + D )_]ﬂ} B \/'ﬁI* (1, m) \/Eam (m,m) P, (m,mp)
G-MWF = [P + 1P, =8 Grm (D, ) B, (2,120

— Note: phase of reference microphone v,,, = arg(A,,,) does not have influence on
narrowband/broadband output SNR

[Lawin-Ore 2014] 53
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Generalized multi-channel Wiener filter

« Multichannel Wiener filter (MWF) in acoustic sensorn  etworks

4 1 !
=3 =3 =3 -
% o - ) f o
0 w g o
‘g o g o ‘g
59 \ 5 9 \ < 2 \
= I | = =

1y y 1 1f 1 1

/ oo oo / oo
0 0 0 : 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
x-axis [m] x-axis [m] x-axis [m]
(a) (b) (c)

Figure 3: Position-dependent broadband output SNR of the different MWEF filters: (a) S-MWEF with A; = Ay, (b) G-MWF
with A; = A, (c) G-MWF with A; = [|A]|e/¥1.

S-MWF G-MWF

Ad:A-mg Ad:Amg A ’E! ‘ A!!ijmo
mo=1 (|mo=2 | mo=3 | mo=4 | mo=5 | mo=6 || mo=I ‘I mo=2 | mo=3 | mo=4 | mo=5 | mo=06 mo=1...6
14.18 || 13.73 13.42 | 13.75 | 14.14 | 13.55 16.08 \| 15.68 | 15.62 | 15.70 | 15.87 | 15.71 15.90

Table 1: Output SNR (0SNR,y, [dB]) of the S-MWF and G-MWF filters, averaged over all considered source positions.

[Lawin-Ore 2014] 54
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Current/Future work

e Combination of acoustic sensor networks
and (binaural) hearing aids

e Distributed algorithms for
dereverberation (e.g. MCLP)
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Recent publications

e T.C. Lawin-Ore, S. Doclo, Analysis of the average performance of the multichannel Wiener filter based
noise reduction using statistical room acoustics, Signal Processing, special issue on on wireless acoustic
sensor networks and ad hoc microphone arrays, vol. 107, pp. 96-108, Feb. 2015.

e S, Stenzel, T. C. Lawin-Ore, J. Freudenberger, S. Doclo, A Multichannel Wiener Filter with Partial
Equalization for Distributed Microphones, in Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), New Paltz NY, USA, Oct. 2013.

e T.C. Lawin-Ore, S. Stenzel, J. Freudenberger, S. Doclo, Generalized Multichannel Wiener Filter for
Spatially Distributed Microphones, in Proc. ITG Conference on Speech Communication, Erlangen,
Germany, Sep. 2014.

e T.C. Lawin-Ore, S. Stenzel, J. Freudenberger, S. Doclo, Alternative Formulation and Robustness Analysis
of the Multichannel Wiener Filter for Spatially Distributed Microphones, in Proc. International Workshop
on Acoustic Signal Enhancement (IWAENC), Juan les Pins, France, Sep. 2014, pp. 208-212.

e L.Wang, S. Doclo, Correlation Maximization Based Sampling Rate Offset Estimation for Distributed
Microphone Arrays, IEEE/ACM Trans. Audio, Speech and Language Processing,vol. 24, no. 3, pp. 571-
582, Mar. 2016.

http://www.sigproc.uni-oldenburg.de -> Publications
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Current research topics

 Speech enhancement for ear-mounted communication de vices

— Binaural noise reduction , aiming to preserve spatial impression
of acoustic scene (binaural cues)

— Open-fitting hearing aids: feedback cancellation and active
noise control (acoustically transparent earpiece)

— EEG-based auditory attention decoding for steering beamformers

« MIMO acoustics

— Beamformer design (e.g., virtual artificial head)

— Dereverberation and noise reduction  (spectral enhancement,
multi-channel equalization, blind probabilistic model) \ e

— Acoustic sensor networks  (spatially distributed microphones,
sampling rate offset estimation, distributed processing)

— Computational acoustic scene analysis  (CASA)
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Questions ?

House of Hearing, Oldenburg
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