

Blind multi-microphone noise reduction and dereverberation algorithms for speech communication applications

Prof. Dr. Simon Doclo

University of Oldenburg, Germany

Dept. of Medical Physics and Acoustics, Cluster of Excellence Hearing4all

http://www.sigproc.uni-oldenburg.de/

SANE Workshop, 24.10.2019

Introduction

• Problem

- Ambient noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation for speech communication applications
- Performance degradation of voice-controlled systems

Introduction

Objectives

- Single- and multi-microphone joint noise
 reduction and dereverberation algorithms
- Speech communication applications: blind and on-line processing for time-varying dynamic acoustic scenarios
- Exploit knowledge or (statistical) models of speech signals and room acoustics

This presentation

- 1. Joint estimation of (time-varying) spatial and spectral variables for multi-microphone speech enhancement
- 2. Binaural hearing devices: combination of speech enhancement and preservation of auditory scene
- **3. Extension to acoustic sensor networks** with spatially distributed microphones

1. Joint dereverberation and noise reduction

Signal model

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- Model in Short-Time Fourier Transform (STFT) domain:

$$y_m(k,l) = h_m(k,l) \star s(k,l) + v_m(k,l)$$

= $a_m(k,l)x_1(k,l) + x_{r,m}(k,l) + v_m(k,l)$
 \uparrow \uparrow \uparrow \uparrow
direct and early late ambient
reverberation reverberation noise
$$\mathbf{y}(k,l) = \mathbf{a}(k,l)x_1(k,l) + \mathbf{x}_r(k,l) + \mathbf{v}(k,l)$$

a(*k*,*l*) = vector of **relative early transfer functions (RETFs)** of target source

Multi-microphone dereverberation and noise reduction

- 1. Beamforming + spectral postfilter: VAD [18] *multiply* each time-frequency bin $\hat{\mathbf{\Gamma}}(k)$ coherence stimation with real-valued gain DOA [19] estimation MVDR [29] beamformer $y_2(n)$ $\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$ $\tilde{x}(n)$ $\hat{s}(n)$ $y_M(n)$ $\mathbf{w}_{MWF} = \frac{(\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a}}{\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a})^{-1}}$
- 2. Reverberation and noise suppression: subtract complex-valued estimate of late reverberant and noise component

$$y_m(l) = h_m(l) \star s(l) + v_m(l)$$

$$\hat{x}_{e,1}(l) = y_1(l) - \mathbf{Y}_{\tau}(l)\mathbf{g}(l)$$

Beamforming + spectral postfilter

• Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$

[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, Mar. 2015] [Gannot, Vincent, Markovich-Golan, Ozerov, IEEE/ACM Trans. Audio, Speech and Language Processing, Apr. 2017]

Beamforming + spectral postfilter

- Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a} x_1 + \mathbf{n}$
- "Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (*noise and/or reverberation*) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H \mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H \mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1} \mathbf{\Phi}_x \mathbf{e}_{WF}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

$$\mathbf{w}_{MWF} = \underbrace{\frac{\mathbf{\Phi}_n^{-1}\mathbf{a}}{\mathbf{a}^H \mathbf{\Phi}_n^{-1}\mathbf{a}}}_{\mathbf{\Phi}_n^{-1}\mathbf{a}} \underbrace{\frac{\phi_{x_1}}{\phi_{x_1} + \mu(\mathbf{a}^H \mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}}$$

Requires estimate/model of interference covariance matrix Φ_n , estimate/model of relative (early) transfer function vector **a** of desired source, and **PSDs** of speech and interference components at MVDR output

[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, Mar. 2015] [Gannot, Vincent, Markovich-Golan, Ozerov, IEEE/ACM Trans. Audio, Speech and Language Processing, Apr. 2017]

Beamforming + spectral postfilter

• Signal model

 $\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$

 $\mathbf{\Phi}_{y}(l) = \phi_{x_{1}}(l)\mathbf{a}(l)\mathbf{a}^{H}(l) + \mathbf{\Phi}_{x_{r}}(l) + \mathbf{\Phi}_{v}(l)$

Late reverberation: model as diffuse sound field $\Phi_{x_r}(l) = \phi_d(l)\Gamma$

with $\phi_d(l)$ time-varying diffuse PSD and Γ time-invariant coherence matrix (also incorporating diffuse noise !)

$$\mathbf{w}_{MWF} = \frac{(\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a}}{\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi}_{\mathbf{v}})^{-1} \mathbf{a})^{-1}}$$

• Key estimation tasks:

- **RETF vector a**(*I*): *anechoic* (based on DOA estimate) or *reverberant*
- **Diffuse/late reverberant PSD** $\phi_d(l)$: using single-channel *temporal model* (exponential decay) or based on multi-channel *diffuse sound field model*
- Noise covariance matrix $\Phi_v(l)$: estimate (based on SPP) or model (e.g., spatially white noise)

Estimation of PSDs

Requiring estimate of RETF vector and noise covariance matrix

$$\hat{\boldsymbol{\Phi}}_{x}(l) = \hat{\boldsymbol{\Phi}}_{y}(l) - \hat{\boldsymbol{\Phi}}_{v}(l) = \phi_{x_{1}}(l)\mathbf{a}(l)\mathbf{a}^{H}(l) + \phi_{d}(l)\boldsymbol{\Gamma}$$

- Maximum-likelihood estimators, requiring iterative optimisation procedure
- Closed-form least-squares estimators, based on Frobenius norm

$$\min_{\phi_{x_1}(l),\phi_d(l)} || \hat{\Phi}_x(l) - \phi_{x_1}(l) \mathbf{a}(l) \mathbf{a}^H(l) - \phi_d(l) \Gamma |$$

Similar performance for most methods...

 $|^2_F$

Fig. 9. Speech distortion vs. interference reduction for RSNR = 15 dB.

[Braun, Kuklasinski, Schwartz, Thiergart, Habets, Gannot, Doclo, Jensen, *IEEE/ACM Trans. Audio, Speech and* 10 *Language Processing*, June 2018.]

Joint Estimation of RETF vector and PSDs

- 1. Covariance whitening (CW) method:
 - Requires estimate of noise covariance matrix

$$\hat{\Phi}_x(l) = \hat{\Phi}_y(l) - \hat{\Phi}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

• **Eigenvalue decomposition** of prewhitened signal correlation matrix

$$\hat{\boldsymbol{\Phi}}_{x}^{w}(l) = \boldsymbol{\Gamma}^{-1/2} \hat{\boldsymbol{\Phi}}_{x}(l) \boldsymbol{\Gamma}^{-H/2} = \phi_{x_{1}}(l) \mathbf{b}(l) \mathbf{b}^{H}(l) + \phi_{d}(l) \mathbf{I}$$

Principal eigenvector u(l): estimate of RETF vector

$$\hat{\mathbf{a}}(l) = rac{\mathbf{\Gamma}^{1/2}\mathbf{u}(l)}{\mathbf{e}^T\mathbf{\Gamma}^{1/2}\mathbf{u}(l)}$$

Eigenvalues: estimate of PSDs

$$\hat{\phi}_{d}(l) = \lambda_{2} \{ \hat{\Phi}_{x}^{w}(l) \} \qquad \hat{\phi}_{d,\mu}(l) = \frac{1}{M-1} (\operatorname{tr} \{ \hat{\Phi}_{x}^{w}(l) \} - \lambda_{1} \{ \hat{\Phi}_{x}^{w}(l) \})$$
$$\hat{\phi}_{x_{1}}(l) = \lambda_{1} \{ \hat{\Phi}_{x}^{w}(l) \} / || \hat{\mathbf{b}} ||_{2}^{2}$$

[Markovich-Golan, Gannot, *ICASSP 2015*] [Kodrasi, Doclo, *HSCMA 2017*] [Kodrasi, Doclo, *IEEE/ACM Trans. Audio, Speech and Language Processing*, June 2018] 11

Joint Estimation of RETF vector and PSDs

- 2. Alternating least squares (ALS) method, minimizing Frobenius norm
 - Model noise covariance matrix + estimate noise PSD

 $\min_{\phi_{x_1}(l),\phi_d(l),\phi_v(l),\mathbf{a}(l)} ||\hat{\Phi}_y(l) - \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) - \phi_d(l)\mathbf{\Gamma} - \phi_v(l)\Psi||_F^2$

 No closed-form solution → two-step alternating procedure (least-squares problem for PSDs, eigenvalue problem for RETF vector)


```
Algorithm 1: ALS method to jointly estimate the RETF vector
and PSDs.
    Input: \Gamma(k), \Psi(k), \hat{\Phi}_{\mathbf{y}}(k,l), iterations N, init. \hat{\mathbf{a}}^{(0)}(k,1)
    Output: \hat{\mathbf{a}}_{ALS}(k,l), \hat{\phi}_{ALS}(k,l)
    for all (k,l) do
             for i=1:N do
                     compute \mathbf{A}^{(i-1)}(k,l) using (16) and \mathbf{b}^{(i-1)}(k,l) using (17)
                      \hat{\phi}_{ALS}^{(i)}(k,l) = \left(\mathbf{A}^{(i-1)}(k,l)\right)^{-1} \mathbf{b}^{(i-1)}(k,l) (15)
                     constrain \hat{\phi}^{(i)}_{ALS}(k,l) using (25)
                      \hat{\Phi}_{\mathbf{x}}^{(i)}(k,l) =
                        \hat{\hat{\Phi}}_{\mathbf{y}}(k,l) - (\hat{\phi}_{d,\mathrm{ALS}}^{(i)}(k,l) \Gamma(k) + \hat{\phi}_{v,\mathrm{ALS}}^{(i)}(k,l) \Psi(k))
                     \hat{\Phi}_{\mathbf{x}}^{(i)}(k,l) = \hat{\mathbf{N}}^{(i)}(k,l)\hat{\mathbf{\Lambda}}^{(i)}(k,l)\hat{\mathbf{N}}^{(i),H}(k,l) (EVD)
                     \hat{\mathbf{a}}_{\text{ALS}}^{(i)}(k,l) = \sqrt{\hat{\lambda}_{1}^{(i)}(k,l)/\hat{\phi}_{s,\text{ALS}}^{(i)}(k,l)}\hat{\nu}_{1}^{(i)}(k,l) (20)
             end
             \hat{\mathbf{a}}_{ALS}^{(1)}(k,l+1) = \hat{\mathbf{a}}_{ALS}^{(N)}(k,l) / (\mathbf{e}^T \hat{\mathbf{a}}_{ALS}^{(N)}(k,l)) (for next frame)
    end
```


Simulation results

1. Simulated stationary source (ACE)

- Linear microphone array (M=6, d=6cm)
- Target source at 15° (measured room impulse responses, T₆₀ ≈ 1.25 s)
- Simulated diffuse babble noise (SDR=10 dB)

2. Recorded moving source (varechoic lab)

- Linear microphone array (M=6, d=1cm)
- Moving target source ($T_{60} \approx 0.35$ s)
- Recorded pseudo-diffuse babble noise (SDR=10 dB)

Simulation parameters:

- $f_s = 16$ kHz, STFT: 64 ms, 75% overlap, Hamming window
- Γ : spherically diffuse; smoothing: 40 ms; speech PSD estimated using decision-directed approach, $G_{min} = -10 \text{ dB}$
- CW: noise covariance matrix estimated during first second; ALS: 5 iterations

Simulation results (PESQ improvement)

1. Simulated stationary source

Linear array (M=6, d=6cm), fs=16kHz, stationary source at θ =15°, perfectly diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

2. Recorded moving source

Linear array (M=6, d=1cm), fs=16kHz, moving source θ =0° to θ =90° pseudo-diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

Multi-microphone dereverberation and noise reduction

- 1. Beamforming + spectral postfilter: VAD [18] multiply each time-frequency bin $\hat{\mathbf{\Gamma}}(k)$ coherence estimation with real-valued gain DOA [19] estimation $y_1(n)$ MVDR [29] beamformer ≻channe ncement Fig. 2) $\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$ $y_2(n)$ $\tilde{x}(n)$ $\hat{s}(n)$ $y_M(n)$
- 2. Reverberation and noise suppression: subtract complex-valued estimate of late reverberant and noise component

$$y_m(l) = h_m(l) \star s(l) + v_m(l)$$

$$\hat{x}_{e,1}(l) = y_1(l) - \mathbf{Y}_{\tau}(l)\mathbf{g}(l)$$

Reverberation suppression

• **Goal**: estimate clean speech STFT coefficients s(k, l) from reverberant (and noisy) STFT coefficients $y_m(k, l)$ by subtracting late reverberant component

$$y_m(k,l) = \underbrace{h_m(k,l) \star s(k,l)}_{x_m(k,l)} + v_m(k,l)$$

- Probabilistic estimation using (statistical) models of desired speech signal and reverberation
- Exploit sparsity properties of speech in STFT-domain

• AR model of reverberant speech

How to select suitable cost function for prediction filters ?

• Approach:

- STFT coefficients of desired signal are modelled using circular sparse/super-Gaussian prior with time-varying variance $\lambda(n)$

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \psi(\lambda(n))$$

Scaling function $\psi(.)$ can be interpreted as hyper-prior on variance

- Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}\left(\mathbf{g}\right) = \prod_{n=1}^{N} \rho\left(d(n)\right) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^{2}}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

- Alternating optimization procedure
 - 1. Estimate prediction vector (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{x}_{ au}$$

2. Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = \operatorname*{arg\,min}_{\lambda(n)>0} \frac{\left|\hat{d}^{(i+1)}(n)\right|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))$$

[Nakatani, Yoshioka, Kinoshita, Miyoshi, Juang, *IEEE/ACM Trans. Audio Speech Language Proc.*, Sep. 2010.] 18 [Jukić, van Waterschoot, Gerkmann, Doclo, *IEEE/ACM Trans. Audio Speech Language Proc.*, Sep. 2015.]

• **Example:** complex generalized Gaussian (CGG) prior with shape parameter *p*

$$\rho(z) = \frac{p}{2\pi\gamma\Gamma(2/p)} e^{-\frac{|z|^p}{\gamma^{p/2}}}$$

$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$

M

• Remarks:

- 1. ML estimation using CGG prior is equivalent to I_p -norm minimization \rightarrow promotes sparsity of TF-coefficients across time (for p < 2)
- 2. Incorporate additional knowledge of speech signal, e.g. **low-rank structure** (NMF)
- Group sparsity for MIMO speech dereverberation
 → mixed norms
- 4. Recursive version by constraining MCLP-based estimate of undesired component

 $\min \|\mathbf{d}\|_p^p,$

 \mathbf{g}

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015.] [Jukić, van Waterschoot, Doclo, IEEE Signal Processing Letters, Jan. 2017.]

- Instrumental validation (noiseless, batch)
 - MCLP exploits sparsity
 - NMF introduces speech structure (unsupervised vs. supervised NMF)

 $T_{60} \sim 700$ ms, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=8, τ =2, p=0

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015.]

Current/future work

- Estimation of RETF vectors and PSDs for **multi-speaker scenarios** (e.g. based on Procrustes problem)
- Joint noise reduction and dereverberation: integration of multi-channel linear prediction and generalized sidelobe canceller

Fig. 1. The integrated sidelobe cancellation and linear prediction (ISCLP) architecture.

[Dietzen, Doclo, Moonen, van Waterschoot, IEEE/ACM Trans. Audio Speech Language Proc., in review.] [Dietzen, Doclo, Moonen, van Waterschoot, IWAENC 2018.]

2. Acoustic signal processing for binaural hearing devices

Hearing devices / hearables

Hearing devices generally have multiple microphones available and allow for advanced acoustical signal pre-processing

Main objectives of binaural speech enhancement algorithms: improve speech intelligibility + preserve spatial awareness (binaural cues)

[S. Doclo, W. Kellermann, S. Makino, S. Nordholm, *Multichannel signal enhancement algorithms for assisted listening devices*, *IEEE Signal Processing Magazine*, Mar. 2015.]

Binaural auditory cues

Interaural Time/Phase Difference (ITD/IPD) Interaural Level Difference (ILD) Interaural Coherence (IC)

□ ITD: f < 1500 Hz, ILD: f > 2000 Hz

□ IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, and determines when ITD/ILD cues are *reliable*

Binaural cues, in addition to spectro-temporal cues, play an important role in auditory scene analysis (source segregation) and speech intelligibility

Binaural noise reduction: Configuration

□ Binaural hearing aid configuration:

- □ Two hearing aids with in total *M* microphones
- All microphone signals Y are assumed to be available at both hearing aids (perfect wireless link)
- □ Apply a filter **W**₀ and **W**₁ at the left and the right hearing aid, generating binaural output signals Z₀ and Z₁

$$Z_0(\boldsymbol{\omega}) = \mathbf{W}_0^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega}), \quad Z_1(\boldsymbol{\omega}) = \mathbf{W}_1^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega})$$

[S. Doclo, W. Kellermann, S. Makino, S. Nordholm, *Multichannel signal enhancement algorithms for assisted listening devices, IEEE Signal Processing Magazine*, Mar. 2015.]

Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on multi-microphone noise reduction)

[Wittkop 2003, Lotter 2006, Rohdenburg 2008, Grimm 2009, Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015, Enzner 2016]

Binaural cue preservation
Describle cingle channel artifact

Possible single-channel artifacts

Binaural spatial filtering techniques

[Welker 1997, Aichner 2007, Doclo 2010, Cornelis 2012, Hadad 2015-2016, Marquardt 2015-2018, Koutrouvelis 2017-2019]

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

reduction	constraint	
\mathbf{W}_1	,	
$\min \mathbf{W}_1^H \mathbf{R}_{\mathrm{v}} \mathbf{W}_1$	subject to	$\mathbf{W}_1^H \mathbf{A} = A_1$
$\min_{\mathbf{W}_0} \mathbf{W}_0^H \mathbf{R}_{\mathrm{v}} \mathbf{W}_0$	subject to	$\mathbf{W}_0^H \mathbf{A} = A_0$

Requires estimate/model of noise coherence matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

speech distortion noise
reduction

Requires estimate of speech and noise covariance matrices, e.g. based on SPP

Can be decomposed as binaural MVDR beamformer and spectral postfilter

Good noise reduction performance, what about binaural cues ?

Binaural MVDR/MWF: binaural cues

Note: MSC = Magnitude Squared Coherence

Binaural MVDR/MWF: binaural cues

Binaural cues for residual noise/interference in binaural MVDR/MWF not preserved

Binaural MWF: Extensions for diffuse noise

[Marquardt, Hohmann, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Dec. 2015.] [Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]

Binaural MWF: Extensions for diffuse noise

[Marquardt, Hohmann, Doclo, *IEEE/ACM Trans. Audio, Speech and Language Processing*, Dec. 2015.] [Marquardt, Doclo, *IEEE/ACM Trans. Audio, Speech and Language Processing*, Jul. 2018.]

Trade-off parameters for binaural MVDR/MWF

- **Fixed broadband values** ($\eta = 0.1 \dots 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system

- IC discrimination ability depends on magnitude of reference IC
- Boundaries on Magnitude
 Squared Coherence (MSC=|IC|²) :
 - For f < 500 Hz ("large" IC): frequency-dependent MSC boundaries (blue)
 - For f > 500 Hz ("small" IC): fixed MSC boundary, e.g.
 0.36 (red) or 0.04 (green)

Trade-off parameters for binaural MVDR/MWF

- **Fixed broadband values** ($\eta = 0.1 \dots 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system
- Frequency-dependent function of MSC between noisy reference microphone signals and output signals of BMVDR beamformer

[Marquardt, Doclo, *IEEE/ACM Trans. Audio, Speech and Language Processing*, Jul. 2018.] [Klug, Marquardt, Gößling, Doclo, *ITG Conference Speech Communication*, Oct. 2018.]

Evaluation: Test setup

- Binaural hearing aid recordings (M=4 mics) in cafeteria (T₆₀≈1250 ms)
 - Target speaker at -35°
 - Realistic cafeteria ambient noise
- Algorithms: binaural MVDR and binaural MVDR-N with different trade-off parameters:
 - MVDR-IC
 - MVDR-MSC1: $\eta_{max}=0.7$, MSC_{min}=0
 - MVDR-MSC2: η_{max}=1.0, MSC_{min}=0.1
- Subjective listening experiments:
 - 11 normal-hearing subjects
 - SRT using Oldenburg Sentence Test (OLSA)
 - Spatial quality (diffuseness) using MUSHRA

Does binaural unmasking compensate for SNR decrease of cue preservation algorithms (MVDR-N) ?

[Klug, Marquardt, Gößling, Doclo, *ITG Conference Speech Communication*, Oct. 2018.] [Gößling, Marquardt, Doclo, *Trends in Hearing, in revision*.]

Evaluation: Spatial quality (MUSHRA)

- Evaluate spatial difference between reference microphone signals and binaural output signals
- MVDR-N outperforms BMVDR
 - Trade-off parameters: MSC-based better than IC-based
 - Using MSC2 hardly any difference to input !

Binaural cue preservation for diffuse noise significantly improves spatial quality

[Klug, Marquardt, Gößling, Doclo, *ITG Conference Speech Communication*, Oct. 2018.] [Gößling, Marquardt, Doclo, *Trends in Hearing, in revision*.]

Evaluation: Speech intelligibility (SRT)

- All algorithms show a highly significant speech reception threshold (SRT) improvement
- No significant SRT difference between BMVDR and MVDR-N

Binaural cue preservation for diffuse noise does not affect speech intelligibility

[Klug, Marquardt, Gößling, Doclo, *ITG Conference Speech Communication*, Oct. 2018.] [Gößling, Marquardt, Doclo, *Trends in Hearing, in revision*.]

Binaural MVDR/MWF: Sound samples

Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid) MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]

3. Acoustic sensor networks

External microphones

 Exploit the availability of one or more external microphones (acoustic sensor network) with hearing aids

[Bertrand 2009, Szurley 2016, Yee 2018, Farmani 2018, Kates 2018, Ali 2019, Gößling 2019]

- Integrating external microphone(s) with hearing aid microphones may lead to:
 - Low-complexity method to estimate relative transfer function (RTF) vector of target speaker
 - Improved noise reduction and binaural cue preservation performance

$$\mathbf{w}_L = \frac{\mathbf{R}_v^{-1} \mathbf{a}_L}{\mathbf{a}_L^H \mathbf{R}_v^{-1} \mathbf{a}_L}, \quad \mathbf{w}_R = \frac{\mathbf{R}_v^{-1} \mathbf{a}_R}{\mathbf{a}_R^H \mathbf{R}_v^{-1} \mathbf{a}_R}$$

One external microphone: RTF estimation

- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- **Spatial coherence (SC) method:** assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field
 - \rightarrow correlate HA microphone signals with external microphone signals and normalize by reference element
- Low computational complexity with similar (even better in practice) performance than state-of-the-art covariance whitening (CW) approach

One external microphone: Simulation results

 $\begin{array}{c|c} \mathbf{B} \\ \mathbf{D} \\$

- Time [s]
- MVDR with external microphone (SCE) leads to **better SNR** compared to MVDR using only HA microphones (SC,FIX) and external microphone (EM)
- MVDR using estimated RTFs (SCE, SC) preserves binaural cues of target speaker compared to fixed MVDR (FIX) and external microphone (EM)

Oldenburg Varechoic Lab ($T_{60} \approx 350$ ms), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019]

One external microphone: Simulation results

Oldenburg Varechoic Lab ($T_{60} \approx 350$ ms), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019]

Multiple external microphones

- Each external microphone yields (different) RTF estimate
- Linear combination/selection of RTF estimates (per frequency)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

1. Input SNR-based selection

$$oldsymbol{c}^{ ext{iSNR}} = oldsymbol{e}_{ ext{E},\hat{i}}\,, \quad \hat{i} = rg\max_{i}\; rac{oldsymbol{e}_{ ext{E},i}^Toldsymbol{R}_{ ext{y}}oldsymbol{e}_{ ext{E},i}}{oldsymbol{e}_{ ext{E},i}^Toldsymbol{R}_{ ext{n}}oldsymbol{e}_{ ext{E},i}}$$

2. Simple averaging

$$oldsymbol{c}^{\mathrm{AV}} = \left[rac{1}{M_{\mathrm{E}}}, \dots, rac{1}{M_{\mathrm{E}}}
ight]^T$$

3. Output SNR-maximizing combination

 $oldsymbol{c}^{ ext{mSNR}} = rg\max_{oldsymbol{c}} \ ext{SNR}^{ ext{out}}_{ ext{BMVDR,L}} = \mathcal{P}\{oldsymbol{\Lambda}_2^{-1}oldsymbol{\Lambda}_1\}$

Audio Demo

- Real-world recordings ($T_{60} \approx 300 \text{ ms}$), **moving speaker**
- KEMAR with **two BTE hearing aids** (2 mics each) and **one external mic**
- Pseudo-diffuse babble noise

Audio Demo

Binaural MVDR-N beamformer

- Including external microphone in **binaural MVDR-N beamformer** leads to:
 - Larger output SNR for same trade-off parameter η
 - Same output SNR with larger trade-off parameter $\eta \rightarrow$ **better cue preservation**

Starkey database with real-world recordings ($T_{60} \approx 620$ ms), M=4, target speaker S₁, multi-talker babble noise, 0 dB input iSNR (right hearing aid) MVDR: perfectly estimated noise correlation matrix, RTF of target speaker estimated using covariance whitening method

[Gößling, Doclo, Proc. HSCMA 2017] [Gößling, Doclo, submitted to IEEE/ACM TASLP]

Current/future work

• **Performance analysis** for different acoustic scenarios (interfering speakers)

universität oldenburg

- Synchronization/latency issues
- Complex and time-varying scenarios: incorporate computational acoustic scene analysis (CASA) into control path of developed algorithms
- Subjective evaluation of binaural speech enhancement algorithms with HA/CI users ongoing

Conclusions

- **Speech communication applications:** on-line speech enhancement algorithms for dynamic acoustic scenarios required
- Joint noise reduction and dereverberation using multiple microphones:
 - MVDR beamformer + spectral postfiltering: estimates of time-varying spatial and spectral variables (RETF vector, PSDs)
 - Reverberation suppression: multi-channel linear prediction
- **Binaural hearing devices** with binaural output signals:
 - Extensions of binaural MVDR/MWF enable to improve speech intelligibility while preserving spatial awareness (binaural cues)
 - Improved performance when integrating external microphones (acoustic sensor networks)

Acknowledgments

Jonas

Klug

Dr. Ina Kodrasi Dr. Daniel Marquardt Marvin Tammen Nico Gößling

Wiebke Middelberg

Prof. Timo Gerkmann

Prof. Sharon Gannot

Gamma Funding:

Dr. Ante

Jukić

- □ Cluster of Excellence Hearing4all (DFG), Research Unit Individualized Hearing Acoustics (DFG)
- Marie-Curie Initial Training Network "Dereverberation and Reverberation of Audio, Music, and Speech" (EU)
- Joint Lower-Saxony Israel Project "Acoustic scene aware speech enhancement for binaural hearing aids" (Partner: Bar-Ilan University, Israel)
- German-Israeli Foundation Project "Signal Dereverberation Algorithms for Next-Generation Binaural Hearing Aids" (Partners: International Audiolabs Erlangen; Bar-Ilan University, Israel)

German-Israeli Foundation for Scientific Research and Development

House of Hearing, Oldenburg

<u>http://www.sigproc.uni-oldenburg.de</u> → Publications

Questions?