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• Problem
− Ambient noise and reverberation jointly

present in typical acoustic environments

− Speech quality and intelligibility degradation 
for speech communication applications

− Performance degradation of voice-controlled
systems

Introduction
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• Objectives
− Single- and multi-microphone joint noise 

reduction and  dereverberation algorithms

− Speech communication applications: blind 
and on-line processing for time-varying
dynamic acoustic scenarios

− Exploit knowledge or (statistical) models of 
speech signals and room acoustics 

• This presentation 
1. Joint estimation of (time-varying) spatial and spectr al variables

for multi-microphone speech enhancement

2. Binaural hearing devices: combination of speech enhancement and
preservation of auditory scene

3. Extension to acoustic sensor networks with spatially distributed
microphones

Introduction
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1. Joint dereverberation and
noise reduction



• Scenario: speech source in noisy and reverberant environment, M microphones

• Model in Short-Time Fourier Transform (STFT) domain :

Signal model 
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late 
reverberation

direct and early 
reverberation

a(k,l) = vector of relative early transfer functions (RETFs) of target source
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ambient
noise



1. Beamforming + spectral postfilter: 
multiply each time-frequency bin
with real-valued gain

2. Reverberation and noise suppression: subtract complex-valued estimate
of late reverberant and noise component

Multi-microphone dereverberation and noise reduction
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• Filter-and-sum structure :

7

Beamforming + spectral postfilter

[Gannot, Vincent, Markovich-Golan, Ozerov, IEEE/ACM Trans. Audio, Speech and Language Processing, Apr. 2017]
[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, Mar. 2015]



• Filter-and-sum structure :

• “Workhorse algorithm”: parametric Multi-channel Wie ner filter (MWF) 
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Goal: estimate desired speech component in reference microphone + trade off 
interference (noise and/or reverberation) reduction and speech distortion

Requires estimate of covariance matrices, e.g., based on speech presence 
probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

Requires estimate/model of interference covariance matrix      , 
estimate/model of relative (early) transfer function vector a of desired 
source, and PSDs of speech and interference components at MVDR output

Beamforming + spectral postfilter

[Gannot, Vincent, Markovich-Golan, Ozerov, IEEE/ACM Trans. Audio, Speech and Language Processing, Apr. 2017]
[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, Mar. 2015]



• Signal model

Late reverberation: model as diffuse sound field

with �� � 	time-varying diffuse PSD and �	time-invariant coherence matrix
(also incorporating diffuse noise !) 

• Key estimation tasks: 

• RETF vector a (l): anechoic (based on DOA estimate) or reverberant

• Diffuse/late reverberant PSD �� � : using single-channel temporal model
(exponential decay) or based on multi-channel diffuse sound field model

• Noise covariance matrix �� � : estimate (based on SPP) or model (e.g., 
spatially white noise)

Beamforming + spectral postfilter
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[Braun, Kuklasinski, Schwartz, Thiergart, Habets, Gannot, Doclo, Jensen, IEEE/ACM Trans. Audio, Speech and 
Language Processing, June 2018.]

� Requiring estimate of RETF vector and noise covaria nce matrix

– Maximum-likelihood estimators, requiring iterative optimisation procedure
– Closed-form least-squares estimators, based on Frobenius norm 

Estimation of PSDs

10

Similar performance for
most methods…



1. Covariance whitening (CW) method:

• Requires estimate of noise covariance matrix

• Eigenvalue decomposition of prewhitened signal correlation matrix

– Principal eigenvector u � : estimate of RETF vector  

– Eigenvalues: estimate of PSDs

11[Kodrasi, Doclo, HSCMA 2017]

Joint Estimation of RETF vector and PSDs 

[Markovich-Golan, Gannot, ICASSP 2015]
[Kodrasi, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, June 2018]



2. Alternating least squares (ALS) method, minimizing Frobenius norm

• Model noise covariance matrix + estimate noise PSD

• No closed-form solution → two-step alternating procedure 
(least-squares problem for PSDs, eigenvalue problem for RETF vector)

12[Tammen, Kodrasi, Doclo, ICASSP 2019]

Joint Estimation of RETF vector and PSDs 
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Simulation results 

1. Simulated stationary source (ACE)
• Linear microphone array (M=6, d=6cm)

• Target source at 15o (measured room
impulse responses, T60 ≈ 1.25 s)

• Simulated diffuse babble noise (SDR=10 dB)

2. Recorded moving source (varechoic lab)
• Linear microphone array (M=6, d=1cm)

• Moving target source (T60 ≈ 0.35 s)

• Recorded pseudo-diffuse babble noise (SDR=10 dB)

Simulation parameters:
• fs = 16 kHz, STFT: 64 ms, 75% overlap, Hamming window

• Γ: spherically diffuse; smoothing: 40 ms; speech PSD 
estimated using decision-directed approach, Gmin = -10 dB 

• CW: noise covariance matrix estimated during first
second; ALS: 5 iterations



1. Simulated stationary source

2. Recorded moving source

Input
MWF
CW

MWF
ALS

14[Kodrasi, Doclo, HSCMA 2017] [Tammen, Kodrasi, Doclo, ICASSP 2019]

Linear array (M=6, d=6cm), fs=16kHz, stationary source at θ=15o, 
perfectly diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

Linear array (M=6, d=1cm), fs=16kHz, moving source θ=0o to θ=90o

pseudo-diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

Input MWF
CW

MWF
ALS

Simulation results (PESQ improvement) 



1. Beamforming + spectral postfilter: 
multiply each time-frequency bin
with real-valued gain

2. Reverberation and noise suppression: subtract complex-valued estimate
of late reverberant and noise component

Multi-microphone dereverberation and noise reduction
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• Goal : estimate clean speech STFT coefficients � 	, � from reverberant (and 
noisy) STFT coefficients �� 	, � by subtracting late reverberant component

• Probabilistic estimation using (statistical) models of desired speech signal
and reverberation

• Exploit sparsity properties of speech in STFT-domain 

• Approach : transform to equivalent AR model → sparse multi-channel linear 
prediction (MCLP)

Reverberation suppression

clean signal 
(incl. early reflections)

delay
(early reflections)

prediction 
filters
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Clean Reverberant



• AR model of reverberant speech 

Multi-channel linear prediction 

How to select suitable cost function for prediction  filters ? 

predicted 
reverberation

17



• Approach:
– STFT coefficients of desired signal are modelled using circular sparse/super-

Gaussian prior with time-varying variance λ(n)

Scaling function ψ(.) can be interpreted as hyper-prior on variance 

– Maximum-Likelihood Estimation (batch, per frequency bin)

– Alternating optimization procedure
1. Estimate prediction vector (assuming fixed variances)

2. Estimate variances (assuming fixed prediction vector)

18

Multi-channel linear prediction 

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015.]
[Nakatani, Yoshioka, Kinoshita, Miyoshi, Juang, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2010.]



• Example: complex generalized Gaussian (CGG) prior with shape parameter p

• Remarks:

1. ML estimation using CGG prior is equivalent to lp-norm minimization 
→ promotes sparsity of TF-coefficients across time (for p < 2)

2. Incorporate additional knowledge of speech signal, 
e.g. low-rank structure (NMF)

3. Group sparsity for MIMO speech dereverberation
→	mixed norms

4. Recursive version by constraining MCLP-based 
estimate of undesired component 

19

Multi-channel linear prediction 

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015.]
[Jukić, van Waterschoot, Doclo, IEEE Signal Processing Letters, Jan. 2017.]



• Instrumental validation (noiseless, batch)

– MCLP exploits sparsity

– NMF introduces speech structure 
(unsupervised vs. supervised NMF)

T60 ~ 700ms, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=8, τ=2, p=0

Clean Microphone MCLP MCLP+NMF
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Multi-channel linear prediction 

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015.]



• Estimation of RETF vectors and PSDs
for multi-speaker scenarios
(e.g. based on Procrustes problem)

• Joint noise reduction and 
dereverberation: integration of 
multi-channel linear prediction and 
generalized sidelobe canceller

Current/future work

21[Dietzen, Doclo, Moonen, van Waterschoot, IEEE/ACM Trans. Audio Speech Language Proc., in review.]
[Dietzen, Doclo, Moonen, van Waterschoot, IWAENC 2018.]



2. Acoustic signal processing for
binaural hearing devices



Hearing devices / hearables

� Hearing devices generally have multiple microphones available and 
allow for advanced acoustical signal pre-processing

� Main objectives of binaural speech enhancement algorithms: improve 
speech intelligibility + preserve spatial awareness (binaural cues)

23

Monaural (2-3) Binaural External microphones
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[S. Doclo, W. Kellermann, S. Makino, S. Nordholm, Multichannel signal enhancement algorithms for assisted 
listening devices, IEEE Signal Processing Magazine, Mar. 2015.]



� Interaural Time/Phase Difference (ITD/IPD)
Interaural Level Difference (ILD)
Interaural Coherence (IC)

� ITD: f < 1500 Hz, ILD: f > 2000 Hz
� IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, 

and determines when ITD/ILD cues are reliable

� Binaural cues, in addition to spectro-temporal cues, play an important role 
in auditory scene analysis (source segregation) and speech intelligibility

24

Binaural auditory cues

IPD/ITD

ILD
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� Binaural hearing aid configuration:

� Two hearing aids with in total M
microphones

� All microphone signals Y are 
assumed to be available at both 
hearing aids (perfect wireless link)

� Apply a filter W0 and W1 at the left and 
the right hearing aid, generating 
binaural output signals Z0 and Z1

0 0 1 1( ) = ( ) ( ), ( ) = ( ) ( )H HZ Zω ω ω ω ω ωW Y W Y

Binaural noise reduction: Configuration

[S. Doclo, W. Kellermann, S. Makino, S. Nordholm, Multichannel signal enhancement algorithms for assisted 
listening devices, IEEE Signal Processing Magazine, Mar. 2015.]



26

Binaural noise reduction: Two main paradigms

Binaural cue preservation

Possible single-channel artifacts

Spectral post-filtering (based on 
multi-microphone noise reduction)
[Wittkop 2003, Lotter 2006, Rohdenburg 2008, Grimm 2009, 
Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015, Enzner 2016]

Larger noise reduction performance

Binaural cue preservation not guaranteed

Merge spatial and spectral post-filtering

Binaural spatial filtering techniques 

[Welker 1997, Aichner 2007, Doclo 2010, Cornelis 2012, 
Hadad 2015-2016, Marquardt 2015-2018,
Koutrouvelis 2017-2019]



Requires estimate of speech and noise 
covariance matrices, e.g. based on SPP

Can be decomposed as binaural MVDR 
beamformer and spectral postfilter

Requires estimate/model of noise 
coherence matrix (e.g. diffuse) and 
estimate/model of relative transfer 
function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in 
reference microphone signals + trade off 
noise reduction and speech distortion

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without 
distorting speech component in reference 
microphone signals 

Binaural MVDR and MWF

speech distortion noise 
reduction

distortionless 
constraint

noise 
reduction

Good noise reduction performance, what about binaural cues ?

27
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Binaural MVDR/MWF: binaural cues

Note: MSC = Magnitude Squared Coherence
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Binaural cues for residual 
noise/interference in 
binaural MVDR/MWF 

not preserved

Binaural MVDR/MWF: binaural cues



Binaural MWF: Extensions for diffuse noise

Binaural MWF Binaural cues of speech source

Binaural cues of noise

Closed-form solution (mixing with
reference microphone signals)

Partial noise estimation 
(MWF-N)

=
Trade-off between SNR improvement and binaural 
cue preservation, depending on parameters (η and λ) 

Interaural coherence 
preservation (MWF-IC)

No closed-form solution, iterative 
optimization procedures required

SNR improvement

30[Marquardt, Hohmann, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Dec. 2015.]
[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]



Binaural MWF: Extensions for diffuse noise

Binaural MWF Binaural cues of speech source

Binaural cues of noise

Closed-form solution (mixing with
reference microphone signals)

Partial noise estimation 
(MWF-N)

=
Trade-off between SNR improvement and binaural 
cue preservation, depending on parameters (η and λ) 

Interaural coherence 
preservation (MWF-IC)

No closed-form solution, iterative 
optimization procedures required

SNR improvement

31[Marquardt, Hohmann, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Dec. 2015.]
[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]
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� Fixed broadband values (η = 0.1 … 0.3)

� Frequency-dependent values based on IC discrimination ability 
of human auditory system

Trade-off parameters for binaural MVDR/MWF 

[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]

� IC discrimination ability depends on 
magnitude of reference IC

� Boundaries on Magnitude 
Squared Coherence (MSC=|IC|2) : 

� For f < 500 Hz (“large” IC): 
frequency-dependent MSC 
boundaries (blue)

� For f > 500 Hz (“small” IC): 
fixed MSC boundary, e.g. 
0.36 (red) or 0.04 (green)
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� Fixed broadband values (η = 0.1 … 0.3)

� Frequency-dependent values based on IC discrimination ability 
of human auditory system

� Frequency-dependent function of MSC between noisy reference 
microphone signals and output signals of BMVDR beamformer 

Trade-off parameters for binaural MVDR/MWF 

[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]
[Klug, Marquardt, Gößling, Doclo, ITG Conference Speech Communication, Oct. 2018.]

High MSC/SNR: more 
important to keep 
maximum noise 
reduction (BMVDR)

Low MSC/SNR: more 
important to preserve 
binaural cues (scaled 
input signals)



� Binaural hearing aid recordings (M=4 mics)
in cafeteria (T60≈1250 ms)

� Target speaker at -35o

� Realistic cafeteria ambient noise

� Algorithms: binaural MVDR and binaural 
MVDR-N with different trade-off parameters:

� MVDR-IC

� MVDR-MSC1: ηmax=0.7, MSCmin=0

� MVDR-MSC2: ηmax=1.0, MSCmin=0.1

� Subjective listening experiments:

� 11 normal-hearing subjects

� SRT using Oldenburg Sentence Test (OLSA) 

� Spatial quality (diffuseness) using MUSHRA

Does binaural unmasking compensate for SNR decrease 
of cue preservation algorithms (MVDR-N) ?

Evaluation: Test setup

34[Klug, Marquardt, Gößling, Doclo, ITG Conference Speech Communication, Oct. 2018.]
[Gößling, Marquardt, Doclo, Trends in Hearing, in revision.]
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� Evaluate spatial difference 
between reference 
microphone signals and 
binaural output signals 

� MVDR-N outperforms 
BMVDR

� Trade-off parameters: 
MSC-based better than 
IC-based

� Using MSC2 hardly any 
difference to input !

Evaluation: Spatial quality (MUSHRA)

Binaural cue preservation for diffuse noise 
significantly improves spatial quality

[Klug, Marquardt, Gößling, Doclo, ITG Conference Speech Communication, Oct. 2018.]
[Gößling, Marquardt, Doclo, Trends in Hearing, in revision.]
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� All algorithms show a 
highly significant speech 
reception threshold (SRT) 
improvement

� No significant SRT 
difference between 
BMVDR and MVDR-N

Evaluation: Speech intelligibility (SRT)

Binaural cue preservation for diffuse noise 
does not affect speech intelligibility

[Klug, Marquardt, Gößling, Doclo, ITG Conference Speech Communication, Oct. 2018.]
[Gößling, Marquardt, Doclo, Trends in Hearing, in revision.]
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Input MVDR MWF MVDR-N MWF-N MVDR-NP

Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid)
MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

Binaural MVDR/MWF: Sound samples

[Marquardt, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, Jul. 2018.]
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3. Acoustic sensor networks



• Exploit the availability of one or more external 
microphones (acoustic sensor network)
with hearing aids
a

[Bertrand 2009, Szurley 2016, Yee 2018, Farmani 2018, 
Kates 2018, Ali 2019, Gößling 2019]

• Integrating external microphone(s) with 
hearing aid microphones may lead to:

– Low-complexity method to estimate 
relative transfer function (RTF) 
vector of target speaker

– Improved noise reduction and binaural 
cue preservation performance

External microphones
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• Estimate RTF vector of target speaker to steer binaural MVDR beamformer

• Spatial coherence (SC) method: assume that noise components in external
microphone and HA microphones are uncorrelated, e.g., when external microphone
is spatially separated from HA microphones + diffuse noise field

→	correlate HA microphone signals with external microphone signals and 
normalize by reference element

• Low computational complexity with similar (even better in practice) 
performance than state-of-the-art covariance whitening (CW) approach

One external microphone: RTF estimation 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ]

real-valued bias 
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One external microphone: Simulation results

Oldenburg Varechoic Lab (T60 ≈ 350ms), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) 
STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

• MVDR with external microphone (SCE) leads to 
better SNR compared to MVDR using only HA 
microphones (SC,FIX) and external microphone (EM)

• MVDR using estimated RTFs (SCE, SC) preserves
binaural cues of target speaker compared to 
fixed MVDR (FIX) and external microphone (EM) 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] 41



One external microphone: Simulation results

Oldenburg Varechoic Lab (T60 ≈ 350ms), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) 
STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

• MVDR with external microphone (SCE) leads to 
better SNR compared to MVDR using only HA 
microphones (SC,FIX) and external microphone (EM)

• MVDR using estimated RTFs (SCE, SC) preserves
binaural cues of target speaker compared to 
fixed MVDR (FIX) and external microphone (EM) 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] 42



Multiple external microphones

[Gößling, Middelberg, Doclo, Proc. WASPAA 2019 ]

• Each external microphone yields (different) RTF estimate

• Linear combination/selection of RTF estimates
(per frequency)

1. Input SNR-based selection

2. Simple averaging

3. Output SNR-maximizing combination
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Audio Demo

� Real-world recordings (��� � 300	ms), moving speaker

� KEMAR with two BTE hearing aids (2 mics each) and one external mic

� Pseudo-diffuse babble noise
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Audio Demo

� Real-world recordings (��� � 300	ms), moving speaker

� KEMAR with two BTE hearing aids (2 mics each) and one external mic

� Pseudo-diffuse babble noise
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• Including external microphone in binaural MVDR-N beamformer leads to:

– Larger output SNR for same trade-off parameter η
– Same output SNR with larger trade-off parameter η → better cue preservation

Binaural MVDR-N beamformer

MVDR MVDR-N External eMVDR eMVDR-N
(HA)             (HA)                          (HA+ext)    (HA+ext)

[Gößling, Doclo, Proc. HSCMA 2017] [Gößling, Doclo, submitted to IEEE/ACM TASLP ]

Starkey database with real-world recordings (T60 ≈ 620ms), M=4, target speaker S1, multi-talker babble noise, 0 dB input iSNR (right hearing aid)
MVDR: perfectly estimated noise correlation matrix, RTF of target speaker estimated using covariance whitening method

better

better
46



• Performance analysis for
different acoustic scenarios
(interfering speakers)

• Synchronization/latency issues

• Complex and time-varying 
scenarios: incorporate  
computational acoustic scene 
analysis (CASA) into control path 
of developed algorithms

• Subjective evaluation of binaural 
speech enhancement algorithms 
with HA/CI users ongoing
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Current/future work
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• Speech communication applications: on-line speech enhancement 
algorithms for dynamic acoustic scenarios required 

• Joint noise reduction and dereverberation using multiple 
microphones:

– MVDR beamformer + spectral postfiltering: estimates of time-varying 
spatial and spectral variables (RETF vector, PSDs)

– Reverberation suppression: multi-channel linear prediction

• Binaural hearing devices with binaural output signals:

– Extensions of binaural MVDR/MWF enable to improve speech intelligibility 
while preserving spatial awareness (binaural cues)

– Improved performance when integrating external microphones (acoustic 
sensor networks)

Conclusions
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