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Outline

Use of multiple microphones in hearing devices
o Monaural - Binaural - external microphones

Binaural signal processing

o Objective: noise reduction and binaural cue preservation

o Algorithms: binaural beamforming, time-frequency masking,
Multi-channel Wiener filter

o Experimental results
o Bandwidth reduction: iterative distributed MWF

Wireless acoustic sensor networks
o Algorithms: extension of distributed MWF
o Effect of bitrate on performance

Conclusions and future work



= Introduction

Hearing aids

e Problems: background noise, directional hearing

o0 signal processing to selectively enhance useful speech signal
and improve speech intelligibility

o0 signal processing to preserve directional hearing (binaural
auditory cues) and spatial awareness

e Digital hearing instruments allow for advanced acoustical
signal pre-processing

o multiple microphones available - spectral + spatial processing

0 hoise reduction (beamforming), computational auditory scene
analysis (source localisation, environment classification, ...)
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= Introduction

Acoustic sensor networks

Signal acquisition in adverse acoustic environments:

o Microphones at large distance from speaker - background
noise and reverberation

Acoustic sensor networks:

o Network of a large number of spatially distributed nodes
(each with one or multiple microphones)

o0 Wireless data transmission

o More information about spatial noise field (microphones with
higher SNR, direct-to-reverberant ratio)

Objectives: Subset of sensors closer to target signal
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Acoustic sensor networks

- Introduction e Challenges:

o Dynamic array configuration: large number of microphones
at unknown positions, dynamic subset selection

o Distributed and collaborative algorithms: power and
complexity constraints, effect of limited bandwidth

o Calibration and synchronisation issues. same time basis

 Prototype applications:
o0 Hearing aids using extra microphones (room, other HA, ...)
o Video-conferencing using all microphones on laptops / room

o Surveillance
0
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Bilateral vs. Binaural

Bilateral system Binaural system

= Binaural processing

Hearing aid user

Yo W Voplw) - Yoan 1(w) Violw) - Yian1lw)
]
‘ Wilw) ‘ Wilw) ‘
Zolw) Zilw) Zy(w) Zy(w)

@ Independent left/right processing: @ More microphones:
Preservation of binaural cues - better performance ?
(ILD/ITD) for localisation ? - preservation of binaural cues ?

@ Need for wireless binaural link 7



Bilateral vs. Binaural

o Bilateral system

- Binaural processing o Independent processing of left and right hearing aid

0 Negative effect on localisation cues and intelligibility through
binaural hearing advantage [Van den Bogaert et al., 2006]

e Binaural system

o Cooperation between left and right hearing aid (e.g. wireless link)
— centralised vs. distributed processing

o Bandwidth constraint and latency of wireless link

Objectives/requirements for binaural algorithm:

1. SNR improvement: noise reduction, limit speech
distortion

2. Preservation of binaural cues (all sources) to exploit
binaural hearing advantage

3. No assumption about position of speech source
and microphones




= Binaural processing
-Algorithms

Binaural noise reduction techniques

Configuration: microphone array with M microphones at left and
right hearing aid, communication between hearing aids
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Binaural noise reduction techniques

Time-frequency post-processing/masking:

. . o Computation and application of real-valued binaural mask
= Binaural processing
-Algorithms

based on binaural and temporal/spectral cues

o Can be merged with MVDR-beamformer or ICA-based processing
(—D Good preservation of binaural cues for all sources

@ “single-microphone spectral enhancement” artefacts at low SNRs
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= Binaural processing
-Algorithms

[S. Doclo, S. Gannot, M.
Moonen, A. Spriet, Handbook
on Array Processing and Sensor
Networks, Wiley, 2010.]

[B. Cornelis, S. Doclo, T. Van
den Bogaert, J. Wouters, M.
Moonen, IEEE Trans. Audio,
Speech and Language
Processing, Feb. 2010.]

[S. Doclo, T.J. Klasen, M.
Moonen, T. Van den Bogaert, J.
Wouters, R.P. Derleth, S. Korl,
US2010002886.]

Binaural noise reduction techniques

Binaural multi-channel Wiener filter: estimate of speech
component in microphone signal at both ears (usually front mic)
+ trade-off between noise reduction and speech distortion
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o Estimate R, during speech-dominated time-frequency segments,

estimate R, during noise-dominated segments, requiring robust
voice activity detection (VAD) mechanism
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No assumptions about positions of microphones and sources

o Different implementations:

— Batch (off-line) vs. adaptive (update correlation matrices)
— Using spatial prediction (SP) between speech components [Chen 2008] T



= Binaural processing
-Algorithms

Binaural noise reduction techniques

Binaural multi-channel Wiener filter:

o Preservation of binaural cues (ITD-ILD)
— Speech cues are preserved, no a-priori assumptions
— Noise cues are distorted

o Extensions in order to preserve binaural cues of both speech and
noise sources, without substantially compromising noise reduction
— Partial noise estimation (MWFv)
— Extension with Interaural Transfer Function (MWF-ITF)
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Experimental results

e Acoustic environment

= Binaural processing
-Algorithms g bk o
-Experiments

-

 (Cafeteria with recorded
babble noise and simulated
speaker at position B

« Binaural hearing aid with 3
microphones
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= Binaural processing

-Algorithms
-Experiments

[D. Marquardt, V. Hohmann,

S. Doclo, DAGA 2011]
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Experimental results

Objective Evaluation

o Intelligibility weighted SNR improvement
o Perceptual Similarity Measure (PSM)

Intelligibility weighted SNR improvement
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= Binaural processing
-Algorithms
-Experiments

[D. Marquardt, V. Hohmann,
S. Doclo, DAGA 2011]

Experimental results

Subjective Evaluation

o Improvement of Speech Reception Threshold (SRT)
o Oldenburg Sentence Test (10 NH subjects)
o Binaural presentation using headphones

SRT improvement

SRT improvement [dB]

MWFbatch MWFadapt SPbatch SPadapt BPFopt BPFsim
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= Binaural processing
-Algorithms
-Experiments
-Distributed MWF

[S. Doclo, T. Van den
Bogaert, M. Moonen, J.
Wouters, IEEE Trans. Audio,
Speech and Language
Processing, Jan. 2009.]

Binaural MWF

Distributed MWF

o all microphone signals are transmitted over wireless link

Reduce bandwidth requirement of wireless link by transmitting

one signal from contralateral ear
o Raw microphone signal (e.g. front)
o Output of fixed (e.g. superdirective) beamformer
o MWF-estimate using only contralateral microphone signals
o Iterative distributed binaural MWF scheme (DB-MWF)
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L) =]
Distributed MWF
o [terative procedure
. Binaural processing o In e_ach iteration F,, is equal fco W_00 fro_m previous iteration, and
-Algorithms F,; is equal to W, from previous iteration
-Experiments
-Distributed MWF binaural link
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Distributed MWF

e Single speech source

. . o MWEF cost function decreases in each step of iteration
= Binaural processing

-Algorithms

-Experiments ( Wit ) ( W}, )

-Distributed MWF J _ <.J _
Wit Wi

o Remarkably: convergence to B-MWF solution (!)

oo 713 Foo T
m) | Wi = Wi Wi =W,

e General case where R, is not a rank-1 matrix

o MWEF cost function does not necessarily decrease in each iteration
o usually no convergence to optimal B-MWF solution
o Although Jo(W{) > Jo(Wi).  JL(W5°) > .11 (WT) , DB-MWF
procedure can be used in practice and approaches binaural
MWEF performance
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= Binaural processing
-Algorithms
-Experiments
-Distributed MWF

Al weighted SNR improvement (dB)
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Distributed MWF

Performance comparison (left, L=128, T60=500 ms)
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Real-world performance of db-MWF close to full binaural MWF ! L



mmmwm SIGNAL PROCESSING GROUP

Acoustic sensor networks



Acoustic sensor networks

e Now consider more than 2 sensor nodes...

e Recently has become quite a hot research topic

- Acoustic sensor o Distributed MWF: extension to multiple sensor arrays and multiple
IESRIEINE desired sources (DANSE) [Bertrand 2010]

o Distributed MVDR/LCMV-beamformer [Golan 2010, Bertrand 2011]

o Performance analysis of a randomly spaced wireless microphone
array [Golan 2011]

o Dynamic signal combining (no synchronisation required)
[Matheja 2011, Srinivasan 2011, Stenger 2011]
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= Acoustic sensor
networks
-Rate constraints

Rate constraints

Investigate effect of capacity of wireless link — encode
signal(s) at finite bit-rate R before transmission
y |
stimate ncode Estimate Encode Estimate
des]i'red signal J/ L aF; rath desirLd si;nal(j & atrate R [ desir::d si;nal
—o0 o— —0 o—
——o0 o) — o——
Output Left Right Output Left Right
Rate-distortion: R(L) = % /-x- - (D.log PSD of
1” - transmitted
D(A) = o[ min (As signal

Upper bound on achievable performance can be calculated
using forward channel representation
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= Acoustic sensor
networks
-Rate constraints

[T. C. Lawin-Ore, S. Doclo,
ICASSP 2011]

Rate constraints

Investigate effect of rate constraints on performance of
centralized MWF and distributed MWF (DANSE)

Setup and performance measures:

0 Acoustic scenario: 3 nodes, Desired Source Interferer source
2 microphones per node (d=1cm)

0 single speech source, single
interference, spatially uncorrelated
noise on each microphone

B, = DA AT L O A AT LD, Ty

— Involved PSDs are assumed to
be flat, SIR=0 dB, SNR=20 dB

— ATFs modelled using spherical head shadow model, no reverberation

o Performance measure: ratio between MSE at rate 0 and MSE
at rate R, /.e. effect of availability of wireless link

Node 1 Node 2 Node 3

. S0

J
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= Acoustic sensor
networks
-Rate constraints

[T. C. Lawin-Ore, S. Doclo,
ICASSP 2011]

Gain (dB)

Rate constraints

Effect on performance of distributed MWF (DANSE)

o Case 1: total capacity R evenly distributed between iterations

SNR = 20 dB, SIR= 0 dB, rate R/i

20_ ................ R SRR R SRR :

5 - = = DANSE atnode 1,i=1
. | = e =DANSE atnode 1,i=2
Centralized MWF at node 1

i 1 | |
600 800 1000 1200
Rate (kbps)

> For infinite rate, DANSE converges to centralized MWF

> At low rates highest performance gain is achieved by
transmitting just a single microphone signal (i = 1).

> More iterations only improve performance at high rates
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= Acoustic sensor
networks
-Rate constraints

[T. C. Lawin-Ore, S. Doclo,
ICASSP 2011]

Gain (dB)

Rate constraints

Effect on performance of distributed MWF (DANSE)
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o Case 2: spread iterations over subsequent frames (stationarity)

SNR = 20 dB, SIR= 0 dB, rate R

- = = DANSE atnode 1,i=1
- # = DANSE atnode 1,i=2
Centralized MWF at node1

1

L ! 1 L I 1 J
0 50 100 1580 200 250 300 350 400 450 500

Rate (kbps)

> DANSE scheme converges after i=2 iterations, moreover
achieving highest performance gain
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= Acoustic sensor
networks

-Rate constraints
-Future work

Acoustic sensor networks

Future work/challenges:

0 Speech enhancement algorithms:
— Dynamic subset selection for time-varying situations

— Theoretical performance analysis (statistical room acoustics)
— optimal microphone configuration

o Computational auditory scene analysis:

— E.g. multi-source localisation by merging energy- and correlation-
based techniques

o Calibration and synchronisation techniques:
— With and without reference signals
o0 (Perceptual) coding of transmitted signals
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= Conclusion

Conclusions

Speech enhancement algorithms in hearing instruments

o More and more microphones: monaural — binaural — acoustic
sensor networks

o Algorithms: beamforming, post-processing, MWF

Bandwidth reduction by transmitting filtered combination
of microphone signals

o D-MWEF: iterative procedure, converging to centralized MWF

Effect of bit-rate on performance using rate-distortion theory

o D-MWF achieves highest performance gain, when iterations
can be spread over subsequent frames

Remaining challenges in acoustic sensor networks:

o Algorithms: robustness, dynamic subset selection, distributed
algorithms, optimal microphone configuration

o (Perceptual) coding of transmitted signal
o Technical issues of wireless link: latency, synchronisation
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Questions ?

House of Hearing, Oldenbury
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