

Lecture 2:

Digital signal processing in hearing aids

Prof. Dr. Simon Doclo

University of Oldenburg - Institute of Physics Signal Processing Group simon.doclo@uni-oldenburg.de

Signal processing in hearing aids

- Possibilities with analog hearing aids = limited !
- **Developments** in HW and micro-electronics:
 - Digital signal processor (DSP)
 - Multiple microphones (2-3)

OLDENBURG

- Binaural wireless link between hearing aids
- Digital hearing instruments and cochlear implants allow for advanced acoustical signal (pre-)processing
- Important algorithmic **constraints**:
 - Input-output latency (< 10...15 ms)
 - Power constraints from small battery

Signal processing in hearing aids

• Signal processing block diagram

• Cochlear loss:

UNIVERSITÄT OLDENBURG

- Frequency-specific amplification
- Dynamic range compression
- Binaural and central loss:
 - Noise reduction
 - Binaural Algorithms
- "Technical" requirements
 - Feedback control (40-60 dB acoustic gain!)
 - Occlusion effect / 'own voice' detection
 - Classification of acoustic environment
 - (fully digital, 1V supply from very small battery, 5-6d battery time, wireless binaural link (new!))

- Basic processing: acoustic amplification and dynamic range compression (frequency-selective)
- Due to acoustic coupling between receiver and microphone (large amplification): acoustic feedback control
- Increase speech intelligibility in background noise: single- or multi-microphone noise reduction and dereverberation

Dynamic range compression

Recruitment phenomenon

Empirical finding:

Reduced dynamic range between threshold of hearing and uncomfortable level

Loud signals are too loud ...

... Soft signals are too soft

Multichannel dynamic range compression

OSSIETZKY

UNIVERSITÄT OLDENBURG

9

 Instantaneous compression including suppression model (instantaneous-frequency (IF) control)

UNIVERSITÄT OLDENBURG

- Gain and compression applied independently in frequency channels flattens spectro-temporal pattern
- Non-linear processing sharpens spectro-temporal pattern

Feedback cancellation

Acoustic feedback

- Amplification of recorded signal needed
- BUT: ringing/howling when amplification is increased above certain limit
- REASON: acoustic coupling between receiver and microphone

Acoustic Feedback

 Acoustic feedback limits maximum amplification in hearing aids (even more problematic in open-fitting hearing aids)

Acoustic Feedback: illustration

UNIVERSITÄT OLDENBURG

Acoustic feedback cancellation: approaches

Notch Filters: traditional solution

Suppress the narrow-band oscillations that originate from system instability (when such instability occurs)

- Self-adjusting notch filters
- Adaptive notch filters

Adaptive Feedback Cancellation:

Estimate and cancel feedback signal by recursively identifying and tracking the unknown feedback path transfer function F(z)

Notch filtering

Notch filtering: detect and attenuate frequencies where instability occurs

- Reactive approach \rightarrow always too late!
- Amplification is still limited
- Hearing aid response is compromised

Notch filtering

Adaptive Feedback cancellation

More promising solution? Adaptive Feedback cancellation

UNIVERSITÄT OLDENBURG

Model the leakage signal and subtract it from the microphone signal increases maximum amplification

Adaptive Feedback cancellation

Due to signal correlation, decorrelation is required, e,g, by

- ✓ injecting noise signal r(t), possibly psycho-acoustically masked
- \checkmark adding a <u>delay d</u> to the forward path:

 $\tilde{e}(t) = e(t-d)$

Note: if v(t)=white noise, then d=1 is sufficient !

- ✓ adding a <u>nonlinear operation</u> to the forward path:
 - frequency shift
 - phase modulation
 - half wave rectifier: $\tilde{e}(t) = e(t) + \alpha(e(t) + |e(t)|)$

Noise reduction

Speech intelligibility in background noise

CARL VON OSSIETZKY UNIVERSITÄTOLDENBURG

Background noise reduction

- Goal: increase signal-to-noise ratio (SNR)
- one microphone:

can only exploit temporal or spectral differences in speech and noise signal

• more than one microphone:

can also distinguish between signals coming from different positions in space (spatial processing)

Background noise reduction

• Single-microphone techniques:

UNIVERSITÄT OLDENBURG

- only temporal and spectral information \rightarrow limited performance
- spectral subtraction, Kalman filter, subspace-based

• Multi-microphone techniques:

- exploit spatial information
- Fixed beamforming: fixed directivity pattern
- Adaptive beamforming: adapt to different acoustic environments → improved performance

Single-microphone noise reduction

Single-Channel Noise Reduction

- The desired signal s[k] has to be calculated from the microphone signal y[k] which contains a mixture of desired signal and (ambient) noise n[k].
 - Problem: Desired signal and noise may overlap in time, frequency and/or space.

Single-Microphone Noise Reduction

VON

universität Oldenburg

OSSIETZKY

$$y[k] = s[k] + n[k]$$

Single-Microphone Noise Reduction

• STFT-based techniques (overlap-add)

Figure 11.5: DFT domain implementation of the noise reduction filter

Single-Microphone Noise Reduction

- Noisy microphone signal: Y[k,l] = S[k,l] + N[k,l]
- Average noise PSD (stationary noise assumption):

$$\sigma_n^2[l] = \frac{1}{M} \sum_{M \text{ noise frames}} |N[k, l]|^2$$

→ Estimate clean speech spectrum S[k,l] (for each frame), using noisy speech spectrum Y[k,l] (for each frame, i.e. short-time estimate) + estimated average noise PSD $\sigma_n^2[l]$:

based on real-valued gain function:

$$\hat{S}[k,l] = G[k,l] Y[k,l]$$

$$G[k,l] = f(Y[k,l], \sigma_n^2[l])$$

Spectral Enhancement: Gain Functions

- Example: Wiener Filter
 - Goal:

find filter *G[k,l]* such that MSE is minimized :

– Solution:

$$E\left\{\left|S[k,l]-G[k,l],Y[k,l]\right|^{2}\right\}$$

$$G[k,l] = \frac{E\{Y[k,l],S^*[k,l]\}}{E\{Y[k,l],Y^*[k,l]\}} = \frac{P_{sy}[k,l]}{P_{yy}[k,l]} < - \text{ cross-correlation in I-th frame} < - \text{ auto-correlation in I-th frame}$$

Assuming that speech *s*[*k*] and noise *n*[*k*] are uncorrelated, then...

$$G[k,l] = \frac{P_{ss}[k,l]}{P_{yy}[k,l]} = \frac{P_{yy}[k,l] - P_{nn}[k,l]}{P_{yy}[k,l]} = 1 - \frac{P_{nn}[k,l]}{P_{yy}[k,l]} = 1 - \frac{\sigma_n^2[l]}{|Y(k,l)|^2}$$

SNR high \rightarrow G[k,l] \approx 1
SNR low \rightarrow G[k,l] \approx 0

Spectral Enhancement: Gain Functions

• Example: Wiener Filter

Figure 11.6: Principle of DFT-based noise reduction

- a) Short-time spectrum of noisy signal and the estimated noise PSD
- b) Short-time spectrum of the enhanced signal and the estimated noise PSD

Spectral Enhancement: Musical Noise

• Audio demo: car noise

UNIVERSITÄT OLDENBURG

 $(k] \longrightarrow$ Wiener filter $\longrightarrow \hat{s}[k]$

- Artifact: musical noise
 - Estimation errors in the frequency-domain: usage (subtraction) of average noise PSD $\sigma_n^2[l]$ with short-time estimates Y[k,l]
 - \rightarrow randomly fluctuating noise floor
 - \rightarrow spurious peaks in spectral representation of the enhanced signal
 - → statistical analysis shows that broadband noise is transformed into signal composed of short-lived tones with randomly distributed frequencies (= musical noise)

Figure 11.8: Short-term magnitude spectra vs. time and frequency

- a) of a clean speech signal,
- b) of the clean signal with additive white noise and harmonic tones,
- c) of the enhanced signal using magnitude subtraction

Spectral Enhancement: Musical Noise

Counter-measures:

OLDENBURG

- <u>Half-wave rectification</u>: put negative values of G[k,I] to 0
- Better suppression rules: e.g. Ephraim-Malah suppression rule
- <u>Magnitude averaging</u>: replace Y[k, I] in calculation of G[k, I] by a local average over frames
- <u>Noise over-subtraction</u>: increase the estimated noise PSD in order to reduce the amplitude of the random spectral peaks

$$\sigma_n^2[l] \to O \sigma_n^2[l], \text{ with } O = 1...2$$

- <u>Spectral floor</u>: impose lower limit $\beta \sigma_n^2[l]$ on magnitude squared enhanced DFT coefficients (trade-off noise reduction vs. musical noise, $\beta = 0.1...0.4$)
- Cepstral smoothing

Noise PSD estimation

- Noise PSD is generally time-varying and not known a-priori
- Estimation of average noise PSD $\sigma_n^2[l]$:
 - Based on VAD (Voice Activity Detection):
 - Hard decision between speech and noise
 - sample noise in speech pause prior to speech and keep estimate fixed during speech activity
 - Works well for stationary noise at moderate to high SNRs (above 0 dB)

- Based on "Minimum Statistics":

- Soft-decision
- Relies on observation that power of noisy speech signal frequently decays to power level of disturbing noise (gaps/dips in speech PSD)
- Allows to update estimated noise PSD also during speech activity
- Works better for non-stationary noise

Background noise reduction

• Single-microphone techniques:

- only temporal and spectral information \rightarrow limited performance
- spectral subtraction, Kalman filter, subspace-based

• Multi-microphone techniques:

- exploit spatial information
- Fixed beamforming: fixed directivity pattern
- Adaptive beamforming: adapt to different acoustic environments → improved performance

Multi-microphone noise reduction

Introduction: directional microphone

- A (directional) microphone is characterized by a <u>directivity pattern</u>, which specifies the gain (+ phase shift) that the microphone gives to a signal coming from a certain <u>direction θ</u>
- Directivity pattern $\underline{H(\omega, \theta)}$ is also function of frequency (ω)
- Directivity pattern of directional microphone (e.g. cardioid, supercardioid) is fixed and defined by physical microphone design

Filter-and-sum beamforming

 By weighting or filtering (= frequency-dependent weighting) + summing the signals from microphones at different positions, the aim is to produce a (software-controlled) `virtual' directivity pattern' (= weighted sum of individual directivity patterns)

• This is referred to as `spatial filtering' and `spatial filter design', with correspondences to traditional (spectral) filter design

Fixed beamforming: delay-and-sum beamforming

• <u>Principle</u>: Microphone signals are delayed and then summed together

$$z[k] = \frac{1}{M} \cdot \sum_{m=1}^{M} y_m[k + \Delta_m]$$

$$F_m(\omega) = \frac{e^{-j\omega\Delta_m}}{M}$$

 Based on coherent / incoherent interference : e.g. for 2 microphones

OLDENBURG

$$Gain = 2\left(1 + \cos\left(\frac{\omega d\cos\theta}{c}\right)\right)$$

Fixed beamforming: delay-and-sum beamforming

Adaptive beamforming

• Adaptive filter-and-sum structure:

UNIVERSITÄT OLDENBURG

- Aim is to minimize noise output power, while maintaining a chosen frequency response in a given look direction (typically front direction in hearing aids)
- This is similar to a delay-and-sum beamformer (in white noise), but now the noise field is <u>unknown</u> and can change over time
- Implemented as **adaptive filter** (e.g. constrained LMS algorithm)

40

mic 3

Adaptive beamforming - GSC

Clinical trial

- Implementation on commercial Cochlear Nucleus Freedom device
- 5 CI users, 2 week field test, lab measurement
- Adaptive beamformer vs. fixed directional microphone
- SRT measurements (fixed procedure at SNR = -5dB / +5dB)
- Noise material: stationary speech-weighted (spw) and babble noise: S0N90, S0N90/180/270

Conclusions

• Single-channel noise reduction

- Only spectral filtering
- can only exploit differences in spectra between speech and noise:
 - noise reduction at expense of speech distortion
 - achievable noise reduction may be limited
 - musical noise
- Noise PSD estimation is difficult for non-stationary noise

• Multi-microphone noise reduction:

- In addition spatial filtering
- Can exploit position differences between speech and noise source (also for non-stationary noise)
- Fixed beamforming: fixed directivity pattern
- Adaptive beamforming: adapts to unknown noise fields

- Basic processing: acoustic amplification and dynamic range compression (frequency-selective)
- Due to acoustic coupling between receiver and microphone (large amplification): acoustic feedback control
- Increase speech intelligibility in background noise: single- or multi-microphone noise reduction and dereverberation

House of Hearing, Oldenburg

Questions ?