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= Deep multi-frame MVDR-based noise reduction

« combination of model-based and learning-based approach

* single-microphone processing + extension towards binaural processing
= Low-complexity single-channel noise reduction based on Skip-GRUs

= DNN-based own voice extraction using model-based data augmentation

Disclaimer: all presented algorithms are on-line but
complexity not always low enough for hearing devices
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Deep Multi-Frame MVDR-based
Noise Reduction
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Deep Multi-Frame Noise Reduction
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Multi-Frame Signal Model

frequency bins

= noisy multi-frame vector: y, =[Y; .. Yi_n41l7 = x; + n,

time frames

= multi-frame speech vector x, = [X; ... Xi—n+1l?

= x; can be decomposed into temporally correlated and uncorrelated
components w.r.t. X;:

, E{xeX{}
Xt =Vt Xt + Xy, YVt = EAD! e cV

— highly time-varying speech interframe correlation (IFC) vector v, ,

— depends on sound (e.g. voiced vs. unvoiced)
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Multi-Frame MVDR Filter

= minimize output noise PSD while preserving temporally correlated speech
component:

wlFMVDR — minwf @, . w, st.wlly,, = 1

w

= solved by multi-frame MVDR (MFMVDR) filter:

-1

wMFMVDR _ (Dn,t)’x,t

t T yH -1
Yx,t n,th,t

»requires estimate of inverse noise covariance matrix db,‘l,lt and speech IFC
vector y, ¢

»Deep MFMVDR filter: estimate quantities by integrating fully differentiable
MFMVDR filter into supervised learning framework, minimizing time-domain
loss function at output of MFMVDR filter

International Hearing Instrument Developer Forum
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Supervised Learning-Based Parameter Estimation

compute
filter

features

~

Features: concatenation of \
1. logarithm of noisy magnitude

2. cosine of noisy phase

3. sine of noisy phase

\_ /
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Supervised Learning-Based Parameter Estimation

compute
filter

Geep Filtering:
estimate filter coefficients directly

DNN1: W

v

features multi-frame filter
coefficients

\_ )
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Supervised Learning-Based Parameter Estimation

compute
filter

features

Geep Multi-Frame MVDR: \

DNN1:
noise covariance ®;,! w

MFMVDR

DNN2:
speech IFC vector ¥,
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Supervised Learning-Based Parameter Estimation

compute
filter

(Loss: Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

— &) — xx
L =101logyo (2055) @ = {5
[J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, in Proc. 2019 ICASSP]

» popular time-domain loss for speech enhancement and separation algorithms

\_ J
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Simulation Results

= Deep Noise Suppression (DNS) challenge datasets: diverse speech and noise sources

= DNN architecture: causal temporal convolutional network (TCN): 2 stacks of 4 layers
each, kernel size 3 — temporal receptive field of 61 frames (128 ms)

fs=16 kHz; STFT: 8ms (overlap 6ms);
sqrt-Hann window; N=5;
Gmin=-17 dB; p=0.001

= Performance benefit of
« complex-valued masking vs. real-valued masking
* MFMVDR structure vs. direct filtering
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Simulation Results

= Network size, complexity and real-time factor (RTF)
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Simulation Results - Audio examples

noisy

single-frame mask,
complex

multi-frame filter,
direct estimation

multi-frame filter,
MFMVDR structure
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Supervised Learning-Based Parameter Estimation

compute

features binaural
filters

(Loss: Combined Mean Absolute Spectral Error
1 ~ ~
=) Bl -+ - |ix -8

ve{l,r}

* more robust against reverberation than SI-SDR
k. [Z.-Q. Wang, P. Wang, and D. Wang, IEEE/ACM TASLP, 2020] j
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Simulation Results

= dataset based on Clarity Enhancement Challenge
« diverse localized speech and noise sources
» simulated binaural room impulse responses (RIRs), mild reverberation
= DNN architecture: causal temporal convolutional network (TCN)
= Small but consistent performance benefit of using MIFMVDR structure vs. direct filtering
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Simulation Results — Audio Examples

clean
noisy

binaural multi-
frame filter,
direct
estimation

binaural multi-
frame filter,
MFMVDR

structure
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Conclusions

Considerable monaural and binaural noise reduction performance using
supervised learning-based approaches

Consistent benefit by imposing multi-frame MVDR structure

Complexity of deep binaural MFMVDR filter can be reduced by
* assuming a quasi-stationary interaural transfer function

» preserving only temporal target correlations

Current/future research:

* Investigation of deep (multi-microphone) binaural MFMVDR filter for
dynamic acoustic scenarios

 Joint noise reduction and binaural cue preservation of complete acoustic
scene using deep learning-based approaches
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Conclusions

Considerable monaural and binaural noise reduction performance using
supervised learning-based approaches

Consistent benefit by imposing multi-frame MVDR structure

= C«
Deep Multi-Frame Filtering for Hearing Aids

Hendrik Schréter!, Tobias Rosenkranz?, Alberto N. Escalante-B.%, Andreas Maier!

Ct 1Friedrich-Alexander-Universitit Erlangen-Niirnberg, Pattern Recognition Lab
WS Audiology, Research and Development, Erlangen, Germany

hendrik.m.schroeter@fau.de

 Joint noise reduction and binaural cue preservation of complete acoustic
scene using deep learning-based approaches
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Low-complexity single-channel
noise reduction
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Low-complexity single-channel noise reduction

= Compact system which is resource-efficient during inference

= Skip-GRU architecture: smooth flow of information without increasing complexity
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Low-complexity single-channel noise reduction

= Evaluation on DNS challenge dataset

= Latency for all algorithms 32 ms (lower latency possible)

Proposed Skip-GRU system achieves similar performance as
best SOA system with about 4 times lower complexity
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Own voice extraction
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Own voice extraction

= Aim: enhance own voice of user wearing earpiece in
noisy acoustic environment (e.g. industrial workplace)

= Different characteristics for own voice and
external noise at in-ear and outer microphones

— in-ear microphone: bandlimited own voice, high SNR
(external noise), body noise

— outer microphone: full bandwidth, low SNR (external noise)

e Objectives of algorithm: estimate clean

. : vi[n]
speech signal at outer microphone from sl
— in-ear microphone: combined bandwidth fo\y ) Own voice
. . ° . - | 1
extension, equalization and noise reduction = 5] reconstruction f— 3,[n]
(body + external noise) F system
— in-ear and outer microphone

si[n]
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Own voice extraction

e Limited training data available for supervised learning-based algorithms:
— use acoustic models to generate simulated data (data augmentation):

e Fixed relative transfer function (sp.-indep.)

e Phoneme-dependent relative transfer
function (sp.dep.)

— domain transfer (train with simulated
data, fine-tune with real recordings)
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Current / future work: challenges and opportunities...

= Applications to (binaural) speech enhancement, own voice extraction, DOA estimation,
acoustic feedback control and active noise reduction

= Explore trade-off between latency/complexity and performance

= Best hybrid compromise between model-based and learning-based approaches

= Realistic dynamic acoustic scenes with moving speakers and (fast) head movements

= Integration with individual hearing loss compensation: 1-stage (individual) vs. 2-stage
= Explore advantages of unsupervised/semi-supervised algorithms
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Questions ?

http://www.sigproc.uni-oldenburg.de
Signal Processing Uni Oldenburg
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