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Introduction 

 Speech communication applications

 Acoustic environment : target speaker + 
ambient noise, competing speakers, reverberation

 Degradation of speech quality/intelligibility
and speech recognition performance
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Introduction 

 Speech enhancement algorithms: 
extract target speaker by performing

 Noise reduction

 Dereverberation

 Source separation 

 Requirements for speech communication 
applications:

 Low speech distortion 

 On-line processing (low-latency)

 Generalization / robustness to varying acoustic 
conditions (moving sources/microphones, SNRs, …)

 Computational complexity
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Introduction 

 Speech enhancement algorithms: 

 single microphone (spectro-temporal)  multiple microphones (spatial)

 model-based approaches (estimation of model parameters)

speech

enhancement

estimate

model 

parameters
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Introduction 

 Speech enhancement algorithms:

 single microphone (spectro-temporal)  multiple microphones (spatial)

 model-based approaches (estimation of model parameters)

 learning-based approaches (supervised learning using deep neural networks)

 hybrid approaches (combination of model-based and learning-based)

speech

enhancement

neural

network

loss

features

[Shlezinger, Whang, Eldar, Dimakis, Proc. IEEE 2023] 
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This presentation 

 Focus on binaural assistive listening devices

 On-line approaches (model-based, deep learning-based, hybrid) for 
multi-microphone noise reduction and source localization

 Exploit spatially distributed microphones in acoustic sensor networks



Multi-microphone 
speech enhancement
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Acoustic scenario

 Assistive listening device 
with M microphones

 Multiple speakers in noisy 
and reverberant environment

 External microphones (eMics)

Target speaker

Listener

Ambient
noise

Interfering
speaker

eMic



 Transform / encoder domain (e.g. short-time Fourier transform)

Signal model 

9

late 
reverb

direct and early 
reverberation

ambient
noise

interfering
source(s)

m : microphone index (1…M)
k : frequency index 
l : time / frame index

= vector of relative transfer 
functions (RTFs) of target speaker

= vector of undesired components



RTF vector encodes direction-of-arrival (DOA)    of source

Relative transfer functions

10
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Multi-microphone speech 
enhancement

 Objective: estimate clean speech component in reference microphone 
from noisy and reverberant microphone signals

1. Non-linear vs. linear filtering 
(with/without filter structure)

2. “Traditional” statistical estimation methods 
vs. supervised learning methods 

3. Single-frame vs. multi-frame input vector

[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Tesch, Gerkmann, IEEE/ACM TASLP, 2022] 



• Parametric multi-channel Wiener filter (MWF):
linear filtering based on filter-and-sum structure

Multi-microphone speech
enhancement

12[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Gannot et al., IEEE/ACM TASLP, 2017] 

Objective: estimate speech component + trade off 
speech distortion vs. reduction of undesired component

 requires estimate of covariance matrices (= model parameters)

Use signal model to decompose as minimum-variance-distortionless-response
(MVDR) beamformer and spectral postfilter

 requires estimate of undesired covariance matrix, relative transfer function 
(RTF) vector of target speaker, and power spectral densities (PSDs) of speech and 
undesired components (= model parameters)



• Multi-frame extension:

– Consider multiple frames: current and past frames (on-line processing)

– Multi-frame speech vector             can be decomposed into temporally 
correlated and uncorrelated components:

– Speech interframe correlation vector               depends on sound 
(e.g., voiced vs. unvoiced)  highly time-varying

Multi-microphone speech
enhancement

13[Benesty, Chen, Habets, 2011] [Huang, Benesty, IEEE TASLP, 2012] 



• Multi-frame extension:

– Consider multiple frames: current and past frames (on-line processing)

– Multi-frame speech vector             can be decomposed into temporally 
correlated and uncorrelated components:

– Speech interframe correlation vector               depends on sound 
(e.g., voiced vs. unvoiced)  highly time-varying

– Signal model:

Multi-microphone speech
enhancement

14[Benesty, Chen, Habets, 2011] [Huang, Benesty, IEEE TASLP, 2012] 

RTF vector of target speaker
(time-varying, acoustic environment)

Interframe correlation vector
(highly time-varying, speech)



• “Traditional” statistical estimation of parameters (requiring assumptions)

• Covariance matrices, power spectral densities, e.g., assuming that undesired 
component is more stationary than speech component, reverberation is diffuse

• Relative transfer function (RTF) vector of target speaker, e.g., assuming 
anechoic propagation, known source activity, spatially distributed microphones 
and uncorrelated undesired component

• Speech interframe correlation vector (IFC), e.g., using subspace-based estimators 
but difficult to accurately estimate since highly time-varying

Multi-microphone speech
enhancement

15[Gerkmann, Hendriks, IEEE TASLP, 2011] [Braun et al., IEEE/ACM TASLP, 2018] [Fischer, Doclo, ICASSP 2020] 

MWF / MVDR beamformer

estimate

model 

parameters



• Supervised learning by minimizing loss function (assumptions in training data)

• Directly estimate filter coefficients: single-frame/masking or multi-frame/deep filtering, 
e.g. [Mack 2019]

• Hybrid approach : impose filter structure and estimate parameters in 
end-to-end fashion, e.g. ADL-MVDR [Zhang 2021], mask-based neural beamforming 
[Ochiai 2023], deep MFMVDR [Tammen 2023], DeepFilterNet [Schröter 2023]

Multi-microphone speech
enhancement

16

neural

network

loss

features



• Supervised learning by minimizing loss function (assumptions in training data)

• Directly estimate filter coefficients: single-frame/masking or multi-frame/deep filtering, 
e.g. [Mack 2019]

• Hybrid approach : impose filter structure and estimate parameters in 
end-to-end fashion, e.g. ADL-MVDR [Zhang 2021], mask-based neural beamforming 
[Ochiai 2023], deep MFMVDR [Tammen 2023], DeepFilterNet [Schröter 2023]

• Neural network architectures: 

• Long short-term memory (LSTM), transformer, temporal convolutional networks (TCN)

• For computational complexity reasons often gated recurrent units (GRU) 

Multi-microphone speech
enhancement

17



• Supervised learning by minimizing loss function (assumptions in training data)

• Directly estimate filter coefficients: single-frame/masking or multi-frame/deep filtering, 
e.g. [Mack 2019]

• Hybrid approach : impose filter structure and estimate parameters in 
end-to-end fashion, e.g. ADL-MVDR [Zhang 2021], mask-based neural beamforming 
[Ochiai 2023], deep MFMVDR [Tammen 2023], DeepFilterNet [Schröter 2023]

• Neural network architectures: 

• Long short-term memory (LSTM), transformer, temporal convolutional networks (TCN)

• For computational complexity reasons often gated recurrent units (GRU) 

• Loss functions: 

• Mostly defined in time-domain after reconstruction (iSTFT) / decoding

• Mean-square error (MSE), scale-invariant signal-to-distortion ratio (SI-SDR), 
mean absolute spectral error, psycho-acoustically motivated loss function 

Multi-microphone speech
enhancement

18



Application to binaural hearing
devices

19

STFT

STFT

cat

compute 

binaural 

filters

ISTFT

ISTFT

lossfeatures

Features: multi-channel concatenation of

1. logarithm of noisy magnitude

2. cosine of noisy phase

3. sine of noisy phase

[Tammen & Doclo, Proc. IWAENC 2022, IEEE/ACM TASLP 2023]



Application to binaural hearing
devices

20

STFT

STFT

cat

compute 

binaural 

filters

ISTFT

ISTFT

lossfeatures

Baseline: Direct Estimation of Filter Coefficients (Deep Multi-Frame Filtering)

features
DNN1: 

multi-frame filter

coefficients

[Tammen & Doclo, Proc. IWAENC 2022, IEEE/ACM TASLP 2023]



Application to binaural hearing
devices
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STFT

STFT

cat

compute 

binaural 

filters

ISTFT

ISTFT

lossfeatures

Deep Binaural Multi-Frame MVDR beamformer:

features

DNN2: speech

correlation vector

DNN1: undesired

covariance matrix

[Tammen & Doclo, Proc. IWAENC 2022, IEEE/ACM TASLP 2023]



Application to binaural hearing
devices
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STFT

STFT

cat

compute 

binaural 

filters

ISTFT

ISTFT

lossfeatures

Loss: Combined Mean Absolute Spectral Error [Wang, 2020]

• STFT re-analysis after overlap-add

• emphasizes spectral magnitude (𝛽=0.4)

[Tammen & Doclo, Proc. IWAENC 2022, IEEE/ACM TASLP 2023]



Simulations

• Datasets and settings

 fs = 16 kHz, STFT: 8 ms frames, 2 ms shift  low-latency by design 

 N = 5 frames for mult-frame filter  16ms context

 DNNs: causal temporal convolutional networks

 Adam optimizer, learning rate: 0.0003, training for 150 epochs (early stopping) 

training testing

speech
DNS3 train set DNS1 test set

noise

Room impulse
responses

Clarity challenge
(simulated)

Kayser database
(measured)

Reverberation 
time (T60)

200 – 400 ms

SNRs 0 - 15 dB −5 − 20 dB

length 100 h 17 min

[Tammen & Doclo, Proc. IWAENC 2022, IEEE/ACM TASLP 2023] 23



• Objective performance metrics

24[Tammen & Doclo, Proc. IWAENC 2022]

 Benefit of multi-frame 

filtering vs. single-frame 

filtering

 Benefit of imposing multi-

frame MVDR filter 

structure

Simulations
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clean

noisy

binaural multi-
frame filter, direct
estimation

binaural multi-
frame filter, 
MVDR structure

[Tammen & Doclo, Proc. IWAENC 2022]

Audio demo



Audio Demo
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• Computational complexity

27

Simulations

[Tammen & Doclo, IEEE/ACM TASLP 2023]

single core of AMD EPYC 7443P CPU 
clocked at 3.8 GHz; 10 s-long signals

• Real-time capability of all algorithms

• Deep MFMVDR filter computationally more complex than direct multi-frame 

filter (DMFF), mainly due to additional linear algebra operations

 can be alleviated by assuming rank-1 (R1) structure



• “Traditional” statistical estimation of parameters (requiring assumptions)

• Covariance matrices, power spectral densities, e.g., assuming that undesired 
component is more stationary than speech component, reverberation is diffuse

• Relative transfer function (RTF) vector of target speaker, e.g., assuming anechoic 
propagation, known source activity, spatially distributed microphones and uncorrelated 
undesired component

• Speech interframe correlation vector (IFC), e.g., using subspace-based estimators 
but difficult to accurately estimate since highly time-varying

Multi-microphone speech
enhancement

28[Gerkmann, Hendriks, IEEE TASLP, 2011] [Braun et al., IEEE/ACM TASLP, 2018] [Fischer, Doclo, ICASSP 2020] 

MWF / MVDR beamformer

estimate

model 

parameters



 Exploit the availability of one or more external 
microphones (acoustic sensor network)
with hearing aids
a

[Bertrand 2009, Szurley 2016, Yee 2018, Farmani 2018, 
Kates 2018, Ali 2019, Corey 2021, Gößling 2021]

 Integrate external microphone(s) with 
hearing aid microphones for:

 Low-complexity method to estimate 
relative transfer function (RTF) 
vector of target speaker

 Improved noise reduction and binaural 
cue preservation performance

29

External microphones



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence method: assume that noise components in external
microphone and HA microphones are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

30

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence method: assume that noise components in external
microphone and HA microphones are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

→ correlate HA microphone signals with external microphone signals and 
normalize by reference element

 Low computational complexity with similar (even better in practice) 
performance than state-of-the-art covariance whitening approach

31

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 

Unbiased estimate of elements 

corresponding to HA microphones



Audio Demo

32



 Extensions for multiple external microphones, acoustic scenarios with multiple 
competing speakers and smart speaker scenario

33

MVDR beamformer exploiting 
external microphones

[Gößling et al., Proc. WASPAA 2019 ] [Gößling et al., Proc. IEEE/ACM TASLP, 2021] [Middelberg, Gode, Doclo, Proc. WASPAA 2023] 



 Extensions for multiple external microphones, acoustic scenarios with multiple 
competing speakers and smart speaker scenario

 Binaural cue preservation of complete acoustic scene by using partial
noise estimation

 Publicly available database with hearing aids and spatially distributed 
microphones (https://zenodo.org/record/7986447)

34

MVDR beamformer exploiting 
external microphones

[Gößling et al., Proc. WASPAA 2019 ] [Gößling et al., Proc. IEEE/ACM TASLP, 2021] [Middelberg, Gode, Doclo, Proc. WASPAA 2023] 



Sound source localization
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Sound source localization



1. Model-based approaches

• Computation of analytical function (spatial pseudo-spectrum), typically
based on prototype anechoic (relative) transfer functions

• Beamforming, e.g. steered response 
power [DiBiase 2000, Zouhourian 2018]

• Subspace-based, e.g. MUSIC 
[Schmidt 1986], [Dmochowski 2007]

• Relative transfer function matching
[Braun 2015, Fejgin 2022]

• Requires frequency integration/fusion mechanism

• Prototype (relative) transfer functions can be computed 
from microphone array geometry/characteristics 
 flexibility towards different array geometries

Sound source localization

37



 Simulation results with external mic for moving speaker 

38

T60 ≈ 400ms, M=4 (BRIR), recorded diffuse babble noise, SNR = 0 dB; fs = 16 kHz; STFT: 32ms (overlap 16ms); CW: y=150 ms, 
v=500 ms; SPP in head-mounted mics

External microphone allows to estimate DOA accurately at low 
computational complexity without need to estimate noise covariance matrix

[Fejgin & Doclo, Proc. EUSIPCO 2021] 

Model-based:
RTF-based DOA estimation



2. Learning-based approaches [Grumiaux et al., JASA 2022]

• Learn relationship between input features and DOAs (classification / regression)

• Input features: spectrogram, inter-channel features (e.g. relative transfer functions)

• Neural network architectures: convolutional (recurrent) neural networks, 
attention-based networks, …

Sound source localization

[Adavanne, Politis, Virtanen, EUSIPCO 2018] 39



2. Learning-based approaches [Grumiaux et al., JASA 2022]

• Learn relationship between input features and DOAs (classification / regression)

• Input features: spectrogram, inter-channel features (e.g. relative transfer functions)

• Neural network architectures: convolutional (recurrent) neural networks, 
attention-based networks, …

Sound source localization

[Varzandeh, Hohmann, Doclo, EUSIPCO 2023] 40



2. Learning-based approaches [Grumiaux et al., JASA 2022]

• Learn relationship between input features and DOAs (classification / regression)

• Input features: spectrogram, inter-channel features (e.g. relative transfer functions)

• Neural network architectures: convolutional (recurrent) neural networks, 
attention-based networks, …

• Training data implicitly based on underlying array geometry 
 geometry-aware DOA estimation

Sound source localization

41[Kowalk, Doclo, Bitzer, Proc. ICASSP 2023] 



3. Hybrid approaches 

• Combination of model-based and learning-based approaches
 merge interpretability of model-based approaches with ability to learn from 

real data
 more flexible at lower computational complexity

• Examples:

• End-to-end learning of masks for signal-aware DOA estimation using weighted steered 
response power method [Wechsler et al., 2022]

• Deep learning-aided subspace methods [Shmuel et al., 2023]

Sound source localization

42



 Model-based and learning-based approaches for 
multi-microphone speech enhancement and source localization 

 Hybrid approaches combining models with deep learning:

 Interpretability of model-based approaches 
without perfectly satisfying model assumptions

 Performance of learning-based approaches

 Generalizability to unseen situations (dynamic acoustic scenes)

 Especially useful for low-complexity applications 

 Challenges and opportunities:

 Optimal trade-off between latency, complexity and performance

 Best hybrid compromise between model-based and learning-based approaches

 Microphone geometry-independent/aware learning-based algorithms

 Explore advantages of unsupervised/semi-supervised algorithms

Summary

43
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Questions ?
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http://www.sigproc.uni-oldenburg.de

Signal Processing Uni Oldenburg

http://www.sigproc.uni-oldenburg.de/
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