

Recent advances in noise reduction and dereverberation algorithms for binaural hearing aids

Prof. Dr. Simon Doclo

University of Oldenburg, Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4All

Erlangen Kolloquium – February 10, 2017

- Hearing impaired suffer from a loss of speech understanding in adverse acoustic environments with competing speakers, background noise and reverberation
 - Apply **acoustic signal pre-processing techniques** in order to improve speech quality and intelligibility

□ Digital hearing aids allow for advanced acoustical signal pre-processing

- Multiple microphones available \rightarrow spatial + spectral processing
- Speech enhancement (noise reduction, beamforming, dereverberation), computational acoustic scene analysis (source localisation, environment classification)

Introduction

□ This presentation:

- Instrumental and subjective evaluation of recent binaural noise reduction algorithms based on MVDR/MWF
- Recent advances in blind multi-microphone dereverberation algorithms

□ Main objectives of algorithms:

- Improve speech intelligibility and avoid signal distortions
- Preserve spatial awareness and directional hearing (binaural cues)

I. Binaural noise reduction

Interaural Time/Phase Difference (ITD/IPD) Interaural Level Difference (ILD) Interaural Coherence (IC)

□ ITD: f < 1500 Hz, ILD: f > 2000 Hz

□ IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, and determines when ITD/ILD cues are *reliable*

Binaural cues, in addition to spectro-temporal cues, play an important role in auditory scene analysis (source segregation) and speech intelligibility

Binaural noise reduction: Configuration

- □ Binaural hearing aid configuration:
 - □ Two hearing aids with in total *M* microphones
 - All microphone signals Y are assumed to be available at both hearing aids (perfect wireless link)
- □ Apply a filter **W**₀ and **W**₁ at the left and the right hearing aid, generating binaural output signals Z₀ and Z₁

$$Z_0(\boldsymbol{\omega}) = \mathbf{W}_0^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega}), \quad Z_1(\boldsymbol{\omega}) = \mathbf{W}_1^H(\boldsymbol{\omega})\mathbf{Y}(\boldsymbol{\omega})$$

Binaural noise reduction: Acoustic scenario

Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on multi-microphone noise reduction)

[Dörbecker 1996, Wittkop 2003, Lotter 2006, Rohdenburg 2008, Grimm 2009, Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015]

Binaural cue preservation
 Possible single-channel artifacts

Binaural spatial filtering techniques

[Merks 1997, Welker 1997, Aichner 2007, Doclo 2010, Cornelis 2012, Hadad 2014-2016, Marquardt 2014-2016]

Larger noise reduction performance
 Merge spatial and spectral post-filtering
 Binaural cue preservation not guaranteed

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

Requires estimate/model of noise coherence matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E}\left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

speech distortion noise reduction

Requires estimate of speech and noise covariance matrices, e.g. based on VAD

Can be decomposed as binaural MVDR beamformer and spectral postfilter

Good noise reduction performance, what about binaural cues ?

Binaural MVDR and MWF Binaural cues (diffuse noise)

11

Binaural MVDR and MWF Binaural cues (diffuse noise)

Binaural cues for residual noise and interference in binaural MVDR/MWF are not preserved

Binaural noise reduction Extensions for diffuse noise

cue preservation, depending on **parameters** (η and λ)

[Marquardt 2013/2014/2015, Braun 2014]

[Doclo 2010, Cornelis 2010/2012]

Binaural MWF: Extensions for diffuse noise

Determine (frequency-dependent) trade-off parameters based on psycho-acoustic criteria

 Amount of IC preservation based on subjective listening experiments evaluating the IC discrimination abilities of the human auditory system

- IC discrimination ability depends on magnitude of reference IC
- Boundaries on Magnitude
 Squared Coherence (MSC=|IC|²) :
 - For f < 500 Hz ("large" IC): frequency-dependent MSC boundaries (blue)
 - For f > 500 Hz ("small" IC): fixed MSC boundary, e.g.
 0.36 (red) or 0.04 (green)

Input	MVDR	MWF	MVDR-N	MWF-N	MVDR-NP

Office ($T_{60} \approx 700$ ms), M=4 (BRIR), recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid) MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

[Marguardt 2016]

CARL VON

OSSIETZK

OLDENBURG

Subjective Evaluation: Test setup

- Binaural hearing aid recordings (M=4 mics) in cafeteria (T₆₀ ≈ 1250 ms) [Kayser 2009]
- **Noise:** realistic cafeteria ambient noise
- Algorithms: binaural MVDR + cue preservation extensions (MWF-IC, MVDR-N) with different MSC boundaries

Subjective listening experiments:

- 15 normal-hearing subjects
- **SRT** using Oldenburg Sentence Test (OLSA)
- Spatial quality (diffuseness) using MUSHRA

Does binaural unmasking compensate for SNR decrease of cue preservation algorithms (MWF-IC, MVDR-N)?

Subjective Evaluation: Spatial quality (MUSHRA)

SCORE

- Evaluate spatial difference between reference and output signal
- MWF-IC and MVDR-N outperform MVDR
 - MVDR-N shows better results than MWF-IC
 - Decreasing the MSC threshold slightly improves spatial quality

Binaural cue preservation for diffuse noise improves spatial quality

MUSHRA Results (Cafeteria)

Subjective Evaluation: Speech intelligibility (SRT)

SRT

- All algorithms show a highly significant SRT improvement
- The SRT results mainly reflect the SNR differences between algorithms: MWF-IC outperforms MVDR-N
- No significant SRT difference between MVDR and MWF-IC

 $\begin{array}{c} -6 \\ -8 \\ -10 \\ -12 \\ -14 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 \\ -16 \\ -17 \\ -16 \\ -17 \\ -16 \\ -17 \\ -$

Binaural cue preservation for diffuse noise does not/hardly affect speech intelligibility

SRT Results (Cafeteria)

Binaural noise reduction Extensions for interfering sources

Also binaural MWF-based versions (incl. spectral filtering) can be derived

Background noise: MSC not exactly preserved, possible noise amplification

Current research: Integration with CASA

- For all discussed binaural noise reduction and cue preservation algorithms several quantities need to be estimated:
 - Steering vector (RTF/DOA) of desired source (and interfering sources)
 - Correlation matrix of background noise
- Non-trivial task for complex and time-varying acoustic scenarios

 integration with computational acoustic scene analysis (CASA)
 in the control path of speech enhancement algorithms

Current research: External microphone(s)

- Exploit the availability of one or more external microphones (acoustic sensor network) with hearing aids [Bertrand 2009, Yee 2016]
- Objective: improve noise reduction and/or binaural cue preservation performance
- For binaural MVDR-N beamformer with external microphone: trade-off between noise reduction performance and binaural cue preservation for
 - Interfering source [Szurley, 2016]
 - Diffuse noise [Gößling, 2017]

Current research: External microphone(s)

- Using external microphone may lead to significant SNR improvement
- eMVDR-N is able to preserve binaural cues of both speech source + residual noise

[Gößling, HSCMA 2017]

□ **Binaural noise reduction algorithms**: 2 main paradigms

- □ Spectral post-filtering
- □ "True" binaural spatial filtering
- Extensions of binaural MVDR/MWF for diffuse noise and interfering speaker, preserving binaural cues of residual noise/interference

□ Evaluation of **binaural MVDR extensions for diffuse noise**

- Binaural cue preservation improves spatial quality
- Binaural cue preservation does not/hardly affect speech intelligibility
- MVDR-N : best spatial quality, MWF-IC : best SRT

□ Extensions with **external microphone** possible

II. Joint dereverberation and noise reduction

Dereverberation and noise reduction

Problem

- Noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation
- Performance degradation of ASR systems

Objectives

- Single- and multi-channel joint noise reduction and dereverberation algorithms
- Exploit knowledge / statistical models of room acoustics and speech signals

Approaches

- 1. Single- and multi-microphone **spectral** enhancement
- 2. Multi-channel linear prediction: probabilistic estimation using statistical model of desired signal

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- STFT-domain:
 - approximation of time-domain convolution using convolutive transfer function (CTF)

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- STFT-domain:
 - approximation of time-domain convolution using convolutive transfer function (CTF)

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

clean speech is more sparse than reverberant speech

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- STFT-domain:
 - approximation of time-domain convolution using convolutive transfer function (CTF)

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

- clean speech is more sparse than reverberant speech
- Dereverberation methods:

frequency

- Spatial filtering / beamforming
- Spectral enhancement: apply real-valued gain to each time-frequency bin
- Reverberation suppression: subtract (complex-valued) estimate of late reverberant component

- MVDR beamformer, requiring assumption about spatial coherence of late reverberation + direction-of-arrival (DOA) estimate of speech source
- Spectral post-filter: estimate of late reverberant PSD
 - Single-channel estimator, requiring estimate of reverberation time T₆₀
 - Multi-channel estimator, requiring assumption about spatial coherence of late reverberation (+ DOA estimate of speech source)

Spectral post-filter: single-channel estimator

- **1. Noise PSD**: minimum statistics approach (longer window as usual)
- 2. Reverberant speech PSD: ML estimate + cepstro-temporal smoothing
- **3. Late reverberant PSD**: assuming exponential decay (requiring T60 estimate) $\hat{\sigma}_r^2(k,\ell) = e^{-2\Delta T_d f_s} \hat{\sigma}_z^2(k,\ell T_d/T_s)$
- 4. Clean speech PSD: ML estimate + cepstro-temporal smoothing

Subjective evaluation (evaluation set of REVERB challenge)

Circular array (M=8, d = 20 cm), fs = 16 kHz, SNR = 20 dB; S2: T60 = 500 ms (0.5m, 2m), R1: T60 = 700 ms (1m, 2.5m) STFT: 32 ms, 50% overlap, Hann; MVDR: WNGmax = -10 dB; Postfilter: β =0.5, μ =0.5, Gmin = -10dB, Td = 80 ms, MS window = 3s

[Cauchi et al., JASP 2015] [Cauchi et al., REVERB 2015]

Spectral post-filter: multi-channel estimator

- Requires assumption about spatial coherence Γ of late reverberant sound field, e.g. spherically isotropic (diffuse)
- Different estimators have been recently proposed:
 - ML estimator, requiring DOA estimate of speech source [Braun 2013, Kuklasinksi 2016]
 - Estimator based on eigenvalue decomposition, **not** requiring DOA estimate of speech source

$$\hat{\Phi}_{\mathbf{r}}^{\text{evd}} = \lambda_2 \{ \boldsymbol{\Phi}_{\mathbf{x}} \boldsymbol{\Gamma}^{-1} \} = \dots = \lambda_M \{ \boldsymbol{\Phi}_{\mathbf{x}} \boldsymbol{\Gamma}^{-1} \} = \frac{1}{M-1} \left(\operatorname{tr} \left\{ \boldsymbol{\Phi}_{\mathbf{x}} \boldsymbol{\Gamma}^{-1} \right\} - \lambda_1 \left\{ \boldsymbol{\Phi}_{\mathbf{x}} \boldsymbol{\Gamma}^{-1} \right\} \right)$$

- Robustness against DOA estimation errors (M=4, T_{60} =610 ms, θ =45°)

2. Multi-channel linear prediction

Direct STFT-based approach:

- directly estimate clean speech STFT coefficients s(k,n) from reverberant (and noisy) STFT coefficients $y_m(k,n)$
- Speech properties (e.g., sparsity) can be modelled naturally in STFT-domain
- Low computational complexity

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

- 1. Using convolutive transfer function (CTF) model
- 2. Transform to equivalent AR model \rightarrow multi-channel linear prediction (MCLP)

$$x_1(k,n) = d(k,n) + \sum_{m=1}^{M} \sum_{l=0}^{L_g - 1} g_m(k,l) x_m(k,n-\tau-l)$$

 \uparrow \uparrow \uparrow
clean signal prediction delay
(incl. early reflections) filters (early reflections)

2. Multi-channel linear prediction

AR model of reverberant speech

How to select suitable cost function for prediction filters ?

2. Multi-channel linear prediction

- Generalization of original MCLP approach [Nakatani et al., 2010]
 - STFT coefficients of desired signal are assumed to be independent and modelled using circular sparse/super-Gaussian prior with time-varying variance λ(n)

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n))\psi(\lambda(n)).$$

Scaling function $\psi(.)$ can be interpreted as **hyper-prior on variance**

Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}\left(\mathbf{g}\right) = \prod_{n=1}^{N} \rho\left(d(n)\right) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^{2}}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

- Alternating optimization procedure
 - 1. Estimate **prediction vector** (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}_{ au}^{H} \mathcal{D}_{\hat{\boldsymbol{\lambda}}^{(i)}}^{-1} \mathbf{X}_{ au}
ight)^{-1} \mathbf{X}_{ au}^{H} \mathcal{D}_{\hat{\boldsymbol{\lambda}}^{(i)}}^{-1} \mathbf{x}_{1}$$

2. Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = rgmin_{\lambda(n)>0} rac{\left|\hat{d}^{(i+1)}(n)
ight|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))$$

[Jukić et al., IEEE TASLP, 2015]

• **Example:** complex generalized Gaussian (CGG) prior with shape parameter *p*

$$\rho(z) = \frac{p}{2\pi\gamma\Gamma(2/p)} e^{-\frac{|z|^p}{\gamma^{p/2}}}$$

$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$

$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$

Remarks:

1. ML estimation using CGG prior is equivalent to I_p -norm minimization \rightarrow promotes sparsity of TF-coefficients across time (for p < 2)

$$\min_{\mathbf{g}} \|\mathbf{d}\|_p^p,$$

- 2. Original approach [Nakatani et al. 2010] corresponds to **p=0**:
 - Strong sparse prior, strongly favoring values of desired signal close to zero

2. Multi-channel linear prediction: extensions

1. Group sparsity for MIMO dereverberation

- Maximize sparsity of TF-coefficients across time and simultaneously keep/discard TF-coefficients across microphones \rightarrow mixed $I_{2,p}$ -norm
- Multiple outputs \rightarrow possibility to apply spatial filtering

- $\|\mathbf{D}\|_{2,p} = \ell_p$ norm of the vector
- 2. Incorporate **low-rank structure** of speech spectrogram
 - Combination with learned/pre-trained spectral dictionaries (NMF)
- 3. Batch processing → **adaptive processing**
 - Incorporate exponential weighting in cost function
 - **Problem:** overestimation of late reverberation for small forgetting factors γ (dynamic scenarios) \rightarrow severe distortion in output signal
 - **Solution**: constrain MCLP-based estimate of late reverberation using PSD estimate

$$\check{\mathbf{G}}(n) = \arg\min_{\mathbf{G}(n)} \sum_{t=1}^{n} \gamma^{n-t} w(t) \|\mathbf{d}(t)\|_{2}^{2} \text{ subject to } |\mathbf{G}^{\mathsf{H}}(n) \tilde{\mathbf{x}}_{\tau}(n)|^{2} \leq \hat{\boldsymbol{\sigma}}_{u}^{2}(n)$$

[Jukić et al., ICASSP 2015] [Jukić et al., WASPAA 2015] [Jukić et al., SPL 2017]

Instrumental validation (binaural, noiseless, batch)

	PESQ	CD	FWSSNR	LLR	SRMR
Microphone	1.21	4.27	3.61	0.93	2.05
MCLP	2.40	3.15	7.92	0.60	3.83
MCLP+NMF	2.42	3.16	7.84	0.60	3.88

T₆₀ ≈ 700ms, M=2 (BRIR), distance 4m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=30, τ=2, p=0

[Jukić et al., ICASSP 2015]

Instrumental validation (binaural, noisy 15dB, batch)

 $T_{60} \approx$ 700ms, M=2 (BRIR), distance 4m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=30, τ =2, p=0

[Jukić et al., ICASSP 2015]

Instrumental validation (noiseless, adaptive)

Constrained MCLP much less sensitive to forgetting factor (especially for small values)

 $T_{60} \approx$ 700ms, M=2, distance 2m, source switching between +45 and -45, fs=16 kHz; STFT: 64ms (overlap 16ms); Lg=20, τ =2, p=0

Instrumental validation (high reverberation + noisy, adaptive)

T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings STFT: 64ms (overlap 16ms); MCLP: L_a =30, τ =2, p=0, adaptive (γ =0.96)

Current/future research

 Combined dereverberation and noise reduction

- Extension of multi-channel EVD-based
 PSD estimator and
- Extension of blind probabilistic model-based approach
- Instrumental measures: prediction of perceived level of reverberation, by optimizing/redesigning SRMR measure (joint project with Prof. Tiago Falk)
- Database in new **varechoic lab**

Abbildung 1: In Raum E10 in den in Tabelle 1 angegebenen Raumzuständen gemessenen Nachhallzeiten in Terzbändern im Vergleich

Blind methods for combined dereverberation and noise reduction

- □ Spectral enhancement by applying real-valued gain to each time-frequency bin (single- and multi-channel PSD estimators)
- Reverberation suppression by estimating late reverberant component using multi-channel linear prediction
- □ Good dereverberation performance possible, even for moving source and moderate noise
- □ Application to binaural hearing aids (combination with binaural noise reduction and cue preservation) to be further investigated

Acknowledgments

Dr. Daniel Marquardt

Dr. Ina Kodrasi

Ante Jukić

Nico Gößling

Benjamin

Cauchi

Gerkmann

Prof. Volker

Hohmann

Elior Hadad

Prof. Sharon Gannot

Funding:

- Cluster of Excellence Hearing4All (DFG)
- Marie-Curie Initial Training Network "Dereverberation and Reverberation of Audio, Music, and Speech" (EU)
- Joint Lower-Saxony Israel Project "Acoustic scene aware speech enhancement for binaural hearing aids" (Partner: Bar-Ilan University, Israel)
- German-Israeli Foundation Project "Signal Dereverberation Algorithms for Next-Generation Binaural Hearing Aids" (Partners: International Audiolabs Erlangen; Bar-Ilan University, Israel)

Questions ?

Recent publications

- D. Marquardt, V. Hohmann, S. Doclo, <u>Interaural Coherence Preservation in Multi-channel Wiener Filtering</u> <u>Based Noise Reduction for Binaural Hearing Aids</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2162-2176, Dec. 2015.
- J. Thiemann, M. Müller, D. Marquardt, S. Doclo, S. van de Par, <u>Speech Enhancement for Multimicrophone</u> <u>Binaural Hearing Aids Aiming to Preserve the Spatial Auditory Scene</u>, EURASIP Journal on Advances in Signal Processing, 2016:12, pp. 1-11.
- E. Hadad, S. Doclo, S. Gannot, <u>The Binaural LCMV Beamformer and its Performance Analysis</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 3, pp. 543-558, Mar. 2016.
- E. Hadad, D. Marquardt, S. Doclo, S. Gannot, <u>Theoretical Analysis of Binaural Transfer Function MVDR</u> <u>Beamformers with Interference Cue Preservation Constraints</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2449-2464, Dec. 2015.
- D. Marquardt, E. Hadad, S. Gannot, S. Doclo, <u>Theoretical Analysis of Linearly Constrained Multi-channel</u> <u>Wiener Filtering Algorithms for Combined Noise Reduction and Binaural Cue Preservation in Binaural</u> <u>Hearing Aids</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2384-2397, Dec. 2015.
- R. Baumgärtel, M. Krawczyk-Becker, D. Marquardt, C. Völker, H. Hu, T. Herzke, G. Coleman, K. Adiloglu, S. Ernst, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz, <u>Comparing binaural pre-processing</u> <u>strategies I: Instrumental evaluation</u>, Trends in Hearing, vol. 19, pp. 1-16, 2015.
- R. Baumgärtel, H. Hu, M. Krawczyk-Becker, D. Marquardt, T. Herzke, G. Coleman, K. Adiloglu, K. Bomke, K. Plotz, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz, <u>Comparing binaural pre-processing</u> <u>strategies II: Speech intelligibility of bilateral cochlear implant users</u>, Trends in Hearing, vol. 19, pp. 1-18, 2015.

http://www.sigproc.uni-oldenburg.de -> Publications

Recent publications

- I. Kodrasi, S. Doclo, *Late reverberant power spectral density estimation based on an eigenvalue decomposition*, in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, New Orleans, USA, Mar. 2017.
- A. Jukić, T. van Waterschoot, S. Doclo, <u>Adaptive speech dereverberation using constrained sparse multi-channel linear</u> <u>prediction</u>, IEEE Signal Processing Letters, vol. 24, no. 1, pp. 101-105, Jan. 2017.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>A general framework for incorporating time-frequency domain</u> <u>sparsity in multi-channel speech dereverberation</u>, Journal of the Audio Engineering Society, Jan-Feb 2017.
- I. Kodrasi, B. Cauchi, S. Goetze, S. Doclo, <u>Instrumental and perceptual evaluation of dereverberation techniques based on</u> <u>robust acoustic multi-channel equalization</u>, Journal of the Audio Engineering Society, Jan-Feb 2017.
- B. Cauchi, J. F. Santos, K. Siedenburg, T. H. Falk, P. A. Naylor, S. Doclo, S. Goetze, <u>Predicting the quality of processed</u> <u>speech by combining modulation based features and model-trees</u>, in *Proc. ITG Conference on Speech Communication*, Paderborn, Germany, Oct. 2016, pp. 180-184.
- A. Kuklasinski, S. Doclo, S. H. Jensen, J. Jensen, <u>Maximum Likelihood PSD Estimation for Speech Enhancement in</u> <u>Reverberation and Noise</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, pp. 1595-1608, Sep. 2016.
- I. Kodrasi, S. Doclo, <u>Joint Dereverberation and Noise Reduction Based on Acoustic Multichannel Equalization</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 4, pp. 680-693, Apr. 2016.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Group sparsity for MIMO speech dereverberation</u>, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, Oct. 2015, pp. 1-5.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, *Multi-channel linear prediction-based speech dereverberation with sparse priors*, *IEEE/ACM Trans. Audio, Speech and Language Processing*, vol. 23, no. 9, pp. 1509-1520, Sep. 2015.
- B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Jukić, T. Gerkmann, S. Doclo, S. Goetze, <u>Combination of MVDR beamforming</u> <u>and single-channel spectral processing for enhancing noisy and reverberant speech</u>, EURASIP Journal on Advances in Signal Processing, 2015:61, pp. 1-12.
- I. Kodrasi, S. Goetze, S. Doclo, <u>Regularization for Partial Multichannel Equalization for Speech Dereverberation</u>, IEEE Trans. Audio, Speech and Language Processing, vol. 21, no. 9, pp. 1879-1890, Sep. 2013.

http://www.sigproc.uni-oldenburg.de -> Publications