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� Hearing impaired suffer from a loss of speech understanding in adverse 
acoustic environments with competing speakers, background noise and 
reverberation

Apply acoustic signal pre-processing techniques in order to improve 
speech quality and intelligibility
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Introduction

� Digital hearing aids allow for advanced acoustical signal pre-processing

� Multiple microphones available → spatial + spectral processing

� Speech enhancement (noise reduction, beamforming, dereverberation), 
computational acoustic scene analysis (source localisation, environment 
classification)

Monaural (2-3) Binaural External microphones
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� This presentation:

� Instrumental and subjective evaluation of recent 
binaural noise reduction algorithms based on 
MVDR/MWF 

� Recent advances in blind multi-microphone 
dereverberation algorithms

� Main objectives of algorithms:

� Improve speech intelligibility and avoid signal 
distortions

� Preserve spatial awareness and directional hearing
(binaural cues)
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I. Binaural noise reduction 
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� Interaural Time/Phase Difference (ITD/IPD)
Interaural Level Difference (ILD)
Interaural Coherence (IC)

� ITD: f < 1500 Hz, ILD: f > 2000 Hz
� IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, 

and determines when ITD/ILD cues are reliable

� Binaural cues, in addition to spectro-temporal cues, play an important role 
in auditory scene analysis (source segregation) and speech intelligibility
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Binaural cues

IPD/ITD

ILD
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� Binaural hearing aid configuration:

� Two hearing aids with in total M
microphones

� All microphone signals Y are 
assumed to be available at both 
hearing aids (perfect wireless link)

� Apply a filter W0 and W1 at the left and 
the right hearing aid, generating 
binaural output signals Z0 and Z1

Binaural noise reduction:
Configuration

0 0 1 1( ) = ( ) ( ), ( ) = ( ) ( )H HZ Zω ω ω ω ω ωW Y W Y



� The microphone signals Y are composed of 

� (desired) speech component 

� (undesired) directional interference component  

� (undesired) background noise component N

� Correlation matrices: 

� All binaural cues can be written 
in terms of these matrices 
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Binaural noise reduction:
Acoustic scenario

Acoustic Transfer Functions (ATFs)



Spectral post-filtering (based on 
multi-microphone noise reduction)
[Dörbecker 1996, Wittkop 2003, Lotter 2006, Rohdenburg 2008, 
Grimm 2009, Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015]
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Binaural spatial filtering 
techniques 
[Merks 1997, Welker 1997, Aichner 2007, Doclo 2010, 
Cornelis 2012, Hadad 2014-2016, Marquardt 2014-2016]

Binaural noise reduction:
Two main paradigms

Binaural cue preservation

Possible single-channel artifacts

Larger noise reduction performance

Binaural cue preservation not guaranteed

Merge spatial and spectral post-filtering



Requires estimate/model of noise 
coherence matrix (e.g. diffuse) and 
estimate/model of relative transfer 
function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in 
reference microphone signals + trade off 
noise reduction and speech distortion

Requires estimate of speech and noise 
covariance matrices, e.g. based on VAD

Can be decomposed as binaural MVDR 
beamformer and spectral postfilter

Minimum-Variance-Distortionless-
Response (MVDR) beamformer

Goal: minimize output noise power without 
distorting speech component in reference 
microphone signals 

Binaural MVDR and MWF

speech distortion noise reduction
distortionless constraintnoise reduction
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Good noise reduction performance, what about binaural cues ?
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Binaural MVDR and MWF
Binaural cues (diffuse noise)

Note: MSC = Magnitude Squared Coherence
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Binaural cues for residual 
noise and interference in 

binaural MVDR/MWF 
are not preserved

Binaural MVDR and MWF
Binaural cues (diffuse noise)



Binaural noise reduction

Extensions for diffuse noise
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Binaural MWF:
Extensions for diffuse noise

Binaural MWF Binaural cues of speech source

Binaural cues of noise

Closed-form solution (mixing with
reference microphone signals)

Partial noise estimation 

(MWF-N)

=
Trade-off between SNR improvement and binaural 
cue preservation, depending on parameters (η and λ) 

Interaural coherence 

preservation (MWF-IC)

No closed-form solution, iterative 
optimization procedures required

SNR improvement

[Doclo 2010, Cornelis 2010/2012][Marquardt 2013/2014/2015, Braun 2014] 14
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� IC discrimination ability depends on 
magnitude of reference IC

� Boundaries on Magnitude 
Squared Coherence (MSC=|IC|2) : 

� For f < 500 Hz (“large” IC): 
frequency-dependent MSC 
boundaries (blue)

� For f > 500 Hz (“small” IC): 
fixed MSC boundary, e.g. 
0.36 (red) or 0.04 (green)

� Determine (frequency-dependent) trade-off parameters 
based on psycho-acoustic criteria

� Amount of IC preservation based on subjective listening experiments 
evaluating the IC discrimination abilities of the human auditory system

Binaural MWF:
Extensions for diffuse noise

[Marquardt 2014/2015]
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� Instrumental evaluation / sound samples

Binaural MWF:
Extensions for diffuse noise

Input MVDR MWF MVDR-N MWF-N MVDR-NP

Office (T60 ≈ 700ms), M=4 (BRIR), recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid)
MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

[Marquardt 2016]



� Binaural hearing aid recordings (M=4 mics)
in cafeteria (T60 ≈ 1250 ms)
[Kayser 2009]

� Noise: realistic cafeteria ambient noise

� Algorithms: binaural MVDR + cue 
preservation extensions (MWF-IC, MVDR-N) 
with different MSC boundaries 

� Subjective listening experiments:

� 15 normal-hearing subjects

� SRT using Oldenburg Sentence Test (OLSA) 

� Spatial quality (diffuseness) using 
MUSHRA
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Subjective Evaluation:
Test setup

Does binaural unmasking compensate for SNR decrease 
of cue preservation algorithms (MWF-IC, MVDR-N) ?
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� Evaluate spatial difference 
between reference and 
output signal 

� MWF-IC and MVDR-N 
outperform MVDR

� MVDR-N shows better 
results than MWF-IC

� Decreasing the MSC 
threshold slightly 
improves spatial quality 

Subjective Evaluation:
Spatial quality (MUSHRA)

Binaural cue preservation for diffuse noise 

improves spatial quality
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� All algorithms show a 
highly significant SRT 
improvement

� The SRT results mainly 
reflect the SNR 
differences between 
algorithms: MWF-IC 
outperforms MVDR-N

� No significant SRT 
difference between 
MVDR and MWF-IC

Subjective Evaluation:
Speech intelligibility (SRT)

Binaural cue preservation for diffuse noise 

does not/hardly affect speech intelligibility



Binaural noise reduction

Extensions for interfering
sources
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Binaural MVDR:
Extensions for interfering source

[Add references !!]

Binaural MVDR Binaural cues of speech source

Binaural cues of interferer

SNR improvement

Relative transfer function

(BMVDR-RTF)

Interference rejection

(BMVDR-IR)

21[Hadad 2014/2015/2016, Marquardt 2014/2015]

Binaural cues of speech source and interfering source preserved

Also binaural MWF-based versions (incl. spectral filtering) can be derived 

Background noise: MSC not exactly preserved, possible noise amplification



� For all discussed binaural noise reduction and cue preservation algorithms 
several quantities need to be estimated: 

� Steering vector (RTF/DOA) of desired source (and interfering sources)

� Correlation matrix of background noise

� Non-trivial task for complex and time-varying acoustic scenarios
→ integration with computational acoustic scene analysis (CASA) 

in the control path of speech enhancement algorithms

22

Current research:
Integration with CASA
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� Exploit the availability of one or more external 
microphones (acoustic sensor network) with
hearing aids [Bertrand 2009, Yee 2016]

� Objective: improve noise reduction
and/or binaural cue preservation performance

� For binaural MVDR-N beamformer with
external microphone: trade-off between
noise reduction performance and binaural
cue preservation for

� Interfering source [Szurley, 2016]

� Diffuse noise [Gößling, 2017]

23

Current research:
External microphone(s)
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Current research:
External microphone(s)

[Gößling, HSCMA 2017]

� Using external microphone may lead to significant SNR improvement

� eMVDR-N is able to preserve binaural cues of both speech source + residual noise



� Binaural noise reduction algorithms: 2 main paradigms

� Spectral post-filtering

� “True” binaural spatial filtering 

� Extensions of binaural MVDR/MWF for diffuse noise 
and interfering speaker, preserving binaural cues of residual 
noise/interference

� Evaluation of binaural MVDR extensions for diffuse noise

� Binaural cue preservation improves spatial quality

� Binaural cue preservation does not/hardly affect speech intelligibility

� MVDR-N : best spatial quality, MWF-IC : best SRT

� Extensions with external microphone possible

25

Summary 



II. Joint dereverberation 
and noise reduction
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� Problem

− Noise and reverberation jointly present 
in typical acoustic environments

− Speech quality and intelligibility degradation

− Performance degradation of ASR systems

� Objectives

− Single- and multi-channel joint noise 
reduction and dereverberation algorithms

− Exploit knowledge / statistical models 
of room acoustics and speech signals

� Approaches

1. Single- and multi-microphone spectral
enhancement

2. Multi-channel linear prediction: probabilistic
estimation using statistical model of desired signal

Dereverberation and 
noise reduction
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� Scenario: speech source in noisy and reverberant environment, M microphones

� STFT-domain:

� approximation of time-domain convolution using convolutive transfer function (CTF)

Dereverberation and 
noise reduction

28



� Scenario: speech source in noisy and reverberant environment, M microphones

� STFT-domain:

� approximation of time-domain convolution using convolutive transfer function (CTF)

� clean speech is more sparse than reverberant speech

Dereverberation and 
noise reduction

29

Clean Reverberant



� Scenario: speech source in noisy and reverberant environment, M microphones

� STFT-domain:

� approximation of time-domain convolution using convolutive transfer function (CTF)

� clean speech is more sparse than reverberant speech

� Dereverberation methods:

� Spatial filtering / beamforming

� Spectral enhancement: apply real-valued
gain to each time-frequency bin

� Reverberation suppression: subtract
(complex-valued) estimate of late reverberant
component

Dereverberation and 
noise reduction

30



� MVDR beamformer, requiring assumption about spatial coherence of late 
reverberation + direction-of-arrival (DOA) estimate of speech source 

� Spectral post-filter: estimate of late reverberant PSD

– Single-channel estimator, requiring estimate of reverberation time T60

– Multi-channel estimator, requiring assumption about spatial coherence of late 
reverberation (+ DOA estimate of speech source)  

1. Beamforming + spectral
post-filtering

[Cauchi et al., JASP 2015] 31



� Spectral post-filter: single-channel estimator 

1. Noise PSD: minimum statistics approach (longer window as usual)

2. Reverberant speech PSD: ML estimate + cepstro-temporal smoothing

3. Late reverberant PSD: assuming exponential 
decay (requiring T60 estimate)

4. Clean speech PSD: ML estimate + cepstro-temporal smoothing

32

1. Beamforming + spectral
post-filtering

[Cauchi et al., JASP 2015] 32



� Subjective evaluation (evaluation set of REVERB challenge)

Circular array (M=8, d = 20 cm), fs = 16 kHz, SNR = 20 dB; S2: T60 = 500 ms (0.5m, 2m), R1: T60 = 700 ms (1m, 2.5m) 
STFT: 32 ms, 50% overlap, Hann; MVDR: WNGmax = -10 dB; Postfilter: β=0.5, µ=0.5, Gmin = -10dB, Td = 80 ms, MS window = 3s

[Cauchi et al., JASP 2015] [Cauchi et al., REVERB 2015]

1. Beamforming + spectral
post-filtering
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� Spectral post-filter: multi-channel estimator

– Requires assumption about spatial coherence Γ of late reverberant sound field, 
e.g. spherically isotropic (diffuse)

– Different estimators have been recently proposed:

• ML estimator, requiring DOA estimate of speech source [Braun 2013, Kuklasinksi 2016]

• Estimator based on eigenvalue decomposition, not requiring DOA estimate of speech source 

– Robustness against DOA estimation errors (M=4, T60=610 ms, θ=45o)

34

1. Beamforming + spectral
post-filtering

[Kodrasi and Doclo, ICASSP 2017] 34



� Direct STFT-based approach: 

� directly estimate clean speech STFT coefficients s(k,n) from reverberant (and noisy) 
STFT coefficients ym(k,n)

� Speech properties (e.g., sparsity) can be modelled 
naturally in STFT-domain

� Low computational complexity

1. Using convolutive transfer function (CTF) model 

2. Transform to equivalent AR model → multi-channel linear prediction (MCLP)

clean signal 

(incl. early reflections)

delay

(early reflections)

prediction 

filters

2. Multi-channel linear 
prediction
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� AR model of reverberant speech 

How to select suitable cost function for prediction filters ? 

predicted reverberation

2. Multi-channel linear 
prediction

36



� Generalization of original MCLP approach [Nakatani et al., 2010]

� STFT coefficients of desired signal are assumed to be independent and modelled using 
circular sparse/super-Gaussian prior with time-varying variance λ(n)

Scaling function ψ(.) can be interpreted as hyper-prior on variance 

� Maximum-Likelihood Estimation (batch, per frequency bin)

� Alternating optimization procedure

1. Estimate prediction vector (assuming fixed variances)

2. Estimate variances (assuming fixed prediction vector)

[Jukić et al., IEEE TASLP, 2015]

2. Multi-channel linear 
prediction
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� Example: complex generalized Gaussian (CGG) prior with shape parameter p

� Remarks:

1. ML estimation using CGG prior is equivalent to lp-norm minimization 
→ promotes sparsity of TF-coefficients across time (for p < 2)

2. Original approach [Nakatani et al. 2010] corresponds to p=0:

� Strong sparse prior, strongly favoring values of desired signal close to zero

2. Multi-channel linear 
prediction

[Jukić et al., IEEE TASLP, 2015] 38



1. Group sparsity for MIMO dereverberation

� Maximize sparsity of TF-coefficients across time and 
simultaneously keep/discard TF-coefficients across microphones
→ mixed l2,p-norm 

� Multiple outputs → possibility to apply spatial filtering 

2. Incorporate low-rank structure of speech spectrogram 

� Combination with learned/pre-trained spectral dictionaries (NMF)

3. Batch processing →	adaptive processing

� Incorporate exponential weighting in cost function 

� Problem: overestimation of late reverberation for small forgetting factors γ
(dynamic scenarios) → severe distortion in output signal

� Solution: constrain MCLP-based estimate of late reverberation using PSD estimate

2. Multi-channel linear 
prediction: extensions

[Jukić et al., ICASSP 2015] [Jukić et al., WASPAA 2015] [Jukić et al., SPL 2017] 39



� Instrumental validation (binaural, noiseless, batch)

T60 ≈ 700ms, M=2 (BRIR), distance 4m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=30, τ=2, p=0

Clean Microphone MCLP MCLP+NMF

2. Multi-channel linear 
prediction: results

[Jukić et al., ICASSP 2015] 40

PESQ CD FWSSNR LLR SRMR

Microphone 1.21 4.27 3.61 0.93 2.05

MCLP 2.40 3.15 7.92 0.60 3.83

MCLP+NMF 2.42 3.16 7.84 0.60 3.88



� Instrumental validation (binaural, noisy 15dB, batch)

T60 ≈ 700ms, M=2 (BRIR), distance 4m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=30, τ=2, p=0

Clean Microphone MCLP MCLP+NMF

2. Multi-channel linear 
prediction: results

[Jukić et al., ICASSP 2015] 41



Constrained MCLP much less 

sensitive to forgetting factor 

(especially for small values)

ADA Constr.

+ADA

�=0.98

�=0.88

clean microphone

T60 ≈ 700ms, M=2, distance 2m, source switching between +45 and -45, fs=16 kHz; STFT: 64ms (overlap 16ms); Lg=20, τ=2, p=0

2. Multi-channel linear 
prediction: results

[Jukić et al., SPL 2017] 

� Instrumental validation (noiseless, adaptive)
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T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings
STFT: 64ms (overlap 16ms); MCLP: Lg=30, τ=2, p=0, adaptive (�=0.96)

Microphone 1ch SE [REVERB] Adaptive MCLP Adaptive MCLP + SE

d ~ 2m

� Instrumental validation (high reverberation + noisy, adaptive)

2. Multi-channel linear 
prediction: results

43



� Combined dereverberation and noise
reduction

� Extension of multi-channel EVD-based 
PSD estimator and 

� Extension of blind probabilistic model-based 
approach

� Instrumental measures: prediction of 
perceived level of reverberation, by 
optimizing/redesigning SRMR measure 
(joint project with Prof. Tiago Falk)

� Database in new varechoic lab

Current/future research

44



� Blind methods for combined dereverberation and 
noise reduction

� Spectral enhancement by applying real-valued gain to each 
time-frequency bin (single- and multi-channel PSD estimators)

� Reverberation suppression by estimating late reverberant 
component using multi-channel linear prediction

� Good dereverberation performance possible, even for 
moving source and moderate noise 

� Application to binaural hearing aids (combination with binaural 
noise reduction and cue preservation) to be further investigated
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Summary
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