

Acoustically Transparent Earpiece: Equalization, Feedback cancellation, Active noise control and Own voice pickup

Prof. Dr. Simon Doclo

Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg, Germany

Webinar Danish Sound Cluster, May 9 2023

Acoustically Transparent Earpiece

• Long-term objective:

- Acoustically transparent speech communication using earpiece with multiple microphones and receivers/loudspeakers
- Develop, implement, and evaluate individualized algorithms for
 - 1. sound pressure equalization (transparency)
 - 2. acoustic feedback cancellation
 - 3. active noise/occlusion control
 - 4. own voice extraction

Acoustically Transparent Earpiece (Hearpiece)

- One-size-fits-all design: fits about 90% of human ears
- Vent: 2 microphones, 2 receivers
- Concha: 2 microphones
- Two versions: vented + closed
- Available at Hörzentrum / InEar GmbH: https://www.hz-ol.de/en/hearpiece.html

[Denk et al., AES Conference Headphone Technology, 2019]

Acoustically Transparent Earpiece

1. Acoustically transparent sound presentation:

 Enable hearing comparable to open ear (equalization using single/multiple receivers)

2. Individualized Electro-Acoustic Model:

- Better understand acoustics
- Predict sound pressure and transfer functions (eardrum)

VON

OLDENBURG

universität

IAPAAL

JADEHOCHSCHULE

Fraunhofer

IDMT

3. Acoustic Feedback cancellation

- Exploit multiple microphones to steer null towards position of receiver
- Exploit multiple receivers

4. Hearing support:

- Amplification and dynamic range compression
- Active noise and occlusion control

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

1. Acoustically transparent sound presentation

Single/Multi-Loudspeaker Equalization

- Goal: Achieve sound pressure at aided ear that is (physically or perceptually) equivalent to sound pressure at open ear
- Design and apply equalization filter(s) A(q) to concha microphone signal, taking into account leakage and hearing device processing (forward path)

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

1. Acoustically transparent sound presentation

Single/Multi-Loudspeaker Equalization

JADEHOCHSCHULE

- Goal: Achieve sound pressure at aided ear that is (physically or perceptually) equivalent to sound pressure at open ear
- Design and apply equalization filter(s) A(q) to concha microphone signal, taking into account leakage and hearing device processing (forward path)
- Robust least-squares-based design procedure (with group delay compensation and frequency-dependent regularization)
- **Requires** (one or multiple) measurements of all transfer functions

Fraunhofer

DMT

1. Acoustically transparent sound presentation

• Single/Multi-Loudspeaker Equalization

JADEHOCHSCHULE

ossietzky universität

OLDENBURG

Fraunhofer

Robust equalization possible both using 1 and 2 loudspeakers

IDMT

 $\begin{aligned} f_s &= 16 \text{ kHz}, \ \tau = 6 \text{ ms}, \\ L_A &= 99, \ d_H = 32, \ \lambda = 0.1, \\ I &= 4, \ G_0 = [0, \ 10, \ 20] \ dB \end{aligned}$

[Schepker et al., EURASIP JASMP, 2022]

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

1. Acoustically transparent sound presentation

Single/Multi-Loudspeaker Equalization

 Individualized equalization filters (based on individualized electro-acoustic model) outperform equalization filters based on dummy-head measurements or based on in-ear microphone signal

 Feedback arises due to acoustic coupling between loudspeaker(s) and microphone(s)

- Feedback arises due to acoustic coupling between loudspeaker(s) and microphone(s)
- Feedback suppression approaches:
 - 1. Feedforward suppression \rightarrow distortion
 - 2. Adaptive feedback cancellation \rightarrow decorrelation between loudspeaker and incoming signal
 - 3. Spatial filtering \rightarrow requires multiple microphones

Adaptive feedback cancellation

- 1. Normalized least mean squares (NLMS): bias due to correlation, fast re-convergence from howling
- 2. Prediction error method (PEM-NLMS): pre-whitening based on auto-regressive model \rightarrow reduced bias, but slow re-convergence from howling

Adaptive feedback cancellation

- 1. Normalized least mean squares (NLMS): bias due to correlation, fast re-convergence from howling
- Prediction error method (PEM-NLMS): pre-whitening based on auto-regressive model → reduced bias, but slow re-convergence from howling
- **3.** Hybrid algorithm (H-NLMS): switched combination of NLMS and PEM-NLMS update, controlled by soft-clipping-based stability detector

Simulation results: added stable gain (ASG), misalignment (MIS)

H-NLMS algorithm converges much faster than PEM-NLMS while maintaining similar misalignment

IDMT

JADEHOCHSCHULE

VON

OLDENBURG

universität

IADAUL

Fraunhofer

[Nordholm et al., JASA, 2018]

- Spatial filtering: reduce acoustic feedback in the vent microphone by steering a (robust) spatial null towards the hearing aid receiver
- Perfect feedback cancellation:

Robust design procedures for fixed beamformer based on (multiple) measurements of acoustic feedback paths

IDMT

Robust reduction of acoustic feedback of up to 50dB while hardly distorting incoming signal

IDMT

Fraunhofer

JADEHOCHSCHULE

OSSIETZKY

OLDENBURG

universität

APQAR

[Schepker et al., IEEE/ACM TASLP, 2020]

Acoustically transparent sound presentation

• Acoustic transparency feature compared to six commercial hearables

[Schepker et al., JAES, 2020]

- Aim: play back anti-noise by one or more loudspeakers aiming at generating "zone of quiet" at certain position (e.g. ear drum)
- Approaches:
 - Feedforward ANC: filter reference microphone signal
 - Feedback ANC: filter error microphone signal

 Virtual sensing fixed feedback ANC exploiting multiple loudspeakers, aiming at minimizing sound pressure at ear drum

Minimize power spectral density of sound pressure at ear drum

$$\Phi_{ee}(f) = \left(1 - \frac{|\Phi_{dr}(f)|^2}{\Phi_{dd}(f)\Phi_{rr}(f)}\right) \Phi_{dd}(f) + \left|\frac{\Phi_{dr}(f)}{\Phi_{rr}(f)} - \frac{W^{\mathrm{T}}(f)S(f)}{1 + W^{\mathrm{T}}(f)\left(\hat{S}(f) + B_{r}(f) - \hat{B}_{r}(f)\right)}\right|^2 \Phi_{rr}(f)$$

$$Virtual \ microphone \ arrangement$$

$$\Phi_{ee}^{\mathrm{vma}}(f) = \left|\frac{1}{1 + W^{\mathrm{T}}(f)\hat{S}(f)}\right|^2 \Phi_{rr}(f)$$

$$\Phi_{ee}^{\mathrm{vma}}(f) = \left|\frac{1}{1 + W^{\mathrm{T}}(f)\hat{S}(f)}\right|^2 \Phi_{rr}(f)$$

$$\widehat{\Phi_{rr}(f)}$$

$$\widehat{\Phi_{ee}}^{\mathrm{vma}}(f) = \left|\frac{1}{1 + W^{\mathrm{T}}(f)\hat{S}(f)}\right|^2 \Phi_{rr}(f)$$
[Rivera Benois et al., *ICASSP*, 2022]

Turn non-convex optimization problem into convex optimization problem

subject to constraints (stability, amplification, gain)

$$\left| \varrho - \boldsymbol{W}^{\mathrm{T}}(\Omega_k) \hat{\boldsymbol{S}}(\Omega_k) \right| \leq \left| \varrho + \boldsymbol{W}^{\mathrm{T}}(\Omega_k) \hat{\boldsymbol{S}}(\Omega_k) \right| + 2\rho, \forall \Omega_k$$

$$1 \leq G_2(\Omega_k) |1 + \boldsymbol{W}^{\mathsf{T}}(\Omega_k) \hat{\boldsymbol{S}}(\Omega_k)|, \forall \Omega_k$$

 $W_l(\Omega_k) \le G_3(\Omega_k), \forall \Omega_k$

JADEHOCHSCHULE

Fraunhofer

IDMT

VON

OLDENBURG

universität

IADAHE

Multi-loudspeaker virtual sensing ANC approach improves attenuation magnitude and bandwidth

[Rivera Benois et al., *ICASSP*, 2022]

VON

OLDENBURG

universität

IPQHF

JADEHOCHSCHULE

4. Own voice extraction

- Aim: enhance own voice of user wearing earpiece in noisy acoustic environment (e.g. industrial workplace)
- Approach: exploit in-ear microphone, possibly in combination with outer microphone(s)

4. Own voice extraction

- **Different characteristics** for own voice and external noise at in-ear and outer microphones
 - Outer microphone: full bandwidth own voice, possibly low SNR (external noise)
 - In-ear microphone: bandlimited own voice (up to about 2 kHz), high SNR (external noise), body noise

• Relative transfer characteristics for own voice

- Time-varying (speech-dependent)
- User- and device-dependent

universitä

OLDENBURG

4. Own voice extraction

- **Objectives of algorithm:** estimate clean speech signal at outer microphone from
 - in-ear microphone: combined bandwidth extension, equalization and noise reduction (body + external noise)
 - in-ear and outer microphone
- Limited training data available:

JADEHOCHSCHULE

OSSIETZKY

universität

HPAH

- use models to generate simulated data (data augmentation):
 - Fixed relative transfer function (sp.-indep.)

Fraunhofer

IDMT

- Phoneme-dependent relative transfer function (sp.dep.)
- domain transfer (train with simulated data, fine-tune with real recordings)

[Ohlenbusch et al., Forum Acusticum, 2023]

4. Own voice extraction

• Results:

- Based on bandwidth extension system using U-Net architecture [Wang 2021]
- Only exploiting in-ear microphone signal, only body noise (no external noise)
- Different training procedures (real data, simulated data with one/multiple RTFs and one/multiple talkers, simulated data + fine-tuning with real data)

System	Data	RTFs used	LSD/dB	PESQ
unproc.	-	-	2.51	1.31
SDFCN	[R]	-	1.53	1.47
U-Net	[R]	-	1.48	1.64
U-Net	[S]	1T, s-RTF	1.35	1.18
U-Net	[S+]	1T, s-RTF	1.54	1.19
U-Net	[S+]	1T, m-RTF	1.51	1.26
U-Net	[S+]	14T, m-RTF	1.24	1.36
U-Net	[S+R]	14T, m-RTF	1.05	1.80

[Ohlenbusch et al., IWAENC, 2022]

Current / Future work

- Direction-selective acoustic transparency and active noise control, steered by CASA
- Deep learning-based active noise control
- Speech communication exploiting in-ear microphone (phoneme-dependent own voice models, DNN-based algorithms)
- Individualized and phoneme-dependent occlusion models and active occlusion reduction
- Implementation on **low-latency processor** (cooperation with Fraunhofer HSA)
- Integration with speech enhancement algorithms and self-adjusted hearing support

Acknowledgments / references

- S. Vogl and M. Blau, "Individualized prediction of the sound pressure at the eardrum for an earpiece with integrated receivers and microphones," *The Journal of the Acoustical Society of America*, vol. 145, no. 2, pp. 917-930, Feb. 2019.
- H. Schepker et al., "Null-steering beamformer-based feedback cancellation for multi-microphone hearing aids with incoming signal preservation," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 27, no. 4, pp. 679-691, Apr. 2019.
- F. Denk et al., "A one-size-fits-all earpiece with multiple microphones and drivers for hearing device research," in *Proc. AES Conference on Headphone Technology*, San Francisco, USA, Aug. 2019.
- H. Schepker, S. Nordholm, S. Doclo, "Acoustic feedback suppression for multi-microphone hearing devices using a soft-constrained nullsteeering beamformer," *IEEE/ACM Trans. Audio, Speech and Language Processing*, vol. 28, pp. 929-940, 2020.
- F. Denk, H. Schepker, S. Doclo, B. Kollmeier, "Acoustic Transparency in Hearables Technical Evaluation," *Journal of the Audio Engineering Society*, vol. 68, no. 7/8, pp. 508–521, Jul./Aug. 2020.
- H. Schepker, F. Denk, B. Kollmeier, S. Doclo, "Acoustic Transparency in Hearables Perceptual Sound Quality Evaluations," *Journal of the Audio Engineering Society*, vol. 68, no. 7/8, pp. 495–507, Jul./Aug. 2020.
- F. Denk and B. Kollmeier (2021). The Hearpiece database of individual transfer functions of an in-the-ear earpiece for hearing device research.
- H. Schepker, F. Denk, B. Kollmeier, S. Doclo, "Robust single- and multi-loudspeaker least-squares-based equalization for hearing devices," EURASIP Journal of Audio, Speech and Music Processing, 2022.
- P. Rivera Benois, R. Roden, M. Blau, S. Doclo, "Optimization of a Fixed Virtual Sensing Feedback ANC Controller for In-Ear Headphones with Multiple Loudspeakers," in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),* Singapore, May 2022.
- M. Ohlenbusch, C. Rollwage, S. Doclo, "Training Strategies for Own Voice Reconstruction in Hearing Protection Devices using an In-ear Microphone," in Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), Bamberg, Germany, Sep. 2022.
- M. Ohlenbusch, C. Rollwage, S. Doclo, "Speech-dependent Modeling of Own Voice Transfer Characteristics for In-ear Microphones in Hearables," in *Proc. Forum Acusticum*, Torino, Italy, Sep. 2023.

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Questions ?

http://www.sigproc.uni-oldenburg.de You Tube Signal Processing Uni Oldenburg

Acoustically Transparent Earpiece (v1)

- Custom in-the-ear earpiece with multiple integrated microphones and receivers and relatively open acoustics
 - Vent/core: 2 microphones and 2 receivers (woofer/tweeter)
 - Concha: **1 microphone**
- Insertion into individual silicone ear mould or generic earplugs

[Denk et al., International Journal of Audiology, 2018]

Electro-acoustic model

- Earpiece Model (Fixed)

Electro-acoustic model

Parameter optimization (4 radii, 1 length, 1 resistive load) by minimizing the difference between measured and modeled ear canal (Nelder-Mead simplex optimization procedure):

$$J(p) = \sum_{f_{\text{valid}}} (db(Z_{ec,\text{meas}}) - db(Z_{ec,\text{model}}(p)))^2 + 10 \cdot (arg(Z_{ec,\text{meas}}) - arg(Z_{ec,\text{model}}(p)))^2$$

$$\widehat{\text{POEP}} \underbrace{\text{Constrained}}_{\text{VALUE}} \underbrace{\text{POEPCHUE}}_{\text{VALUE}} \underbrace{\text{Fraunhofer}}_{\text{IDMT}}$$

Electro-acoustic model

- Evaluation (sound pressure at ear drum) for 12 subjects

accurate prediction of sound pressure at ear drum possible using individualized electro-acoustic model up to about 6 kHz

Evaluation of hear-through feature

7 commercial hearables

- 3 hearing support: **Devices A-C**
- 4 wireless earbuds: Devices D-G

2 research prototypes

- UOL Commodity: consumer hardware based hearing aid prototype [Schädler 2017, Buhl, Denk et al. 2019]
- UOL Acoustically Transparent Earpiece: Adaptation to individual ear acoustics [Denk et al. 2018, Schepker, Denk et al. 2019]

[Schepker et al., J. Audio Eng. Soc., 2020] 35

[Schepker et al., J. Audio Eng. Soc., 2020] 36