

PROBLEM STATEMENT

Objective of **binaural noise reduction algorithm**:

- suppress background noise without introducing signal distortions
- preserve spatial impression of acoustic scene (binaural cues)

This poster: Exploit additional external microphone that is spatially separated from the head-mounted local microphones to:

- 1. improve noise reduction and binaural cue preservation performance
- 2. estimate relative transfer functions of desired source

BLIND BINAURAL MVDR-BASED BEAMFORMING

Spatial filtering using **all microphones** (local + external), assuming perfect wireless link

Extended binaural MVDR beamformer

Aim: minimize noise PSD while preserving speech component in left and right reference microphone signals [1,2]

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H \mathbf{n}|^2\} \text{ subject to } \mathbf{w}^H \mathbf{h} = 1 \implies \mathbf{w}_{\text{MVD}}$$

Requires

- Noise covariance matrix R_n
- Relative transfer function (RTF) vector **h** of desired source

In contrast to external mic: preserves binaural cues of desired source

Extended binaural MVDR beamformer with partial noise estimation By using an external microphone, a **better binaural cue preservation of** the noise can be achieved using the same mixing parameter, i.e., a smaller mixing parameter achieves the same binaural cue preservation [3]

REFERENCES

[1] S. Doclo, W. Kellermann, S. Makino, S.E. Nordholm, "Multichannel Signal Enhancement Algorithms for Assisted Listening Devices: Exploiting spatial diversity using multiple microphones," *IEEE Signal Processing Magazine*, vol. 32, no. 2, pp. 18–30, Mar. 2015.

[2] D. Marquardt, S. Doclo, "Interaural Coherence Preservation for Binaural Noise Reduction Using Partial Noise Estimation and Spectral Postfiltering," IEEE/ACM Trans. on Audio, Speech and Language Processing, vol. 26, no. 7, pp. 1257–1270, Jul. 2018.

Comparison of binaural MVDR-based beamforming algorithms using an external microphone

Nico Gößling, Simon Doclo

Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg, Germany

RTF ESTIMATION

RTF vector consists of part related to local microphones and part related to external microphone

Local RTF vector \overline{h}

- Fixed (anechoic), based on a-priori assumption about desired source position (e.g., in front)
- Estimated using covariance whitening (CW) method [4], requiring estimate of \mathbf{R}_n , high computational complexity
- Estimated using **spatial coherence (SC)** method [5], assuming coherence between external and local microphones to be zero, low computational complexity

 $\widehat{\boldsymbol{h}}_{L/R} = \frac{\mathcal{E}\{\boldsymbol{y}\boldsymbol{Y}_{E}^{*}\}}{\mathcal{E}\{\boldsymbol{Y}_{L/R}\boldsymbol{Y}_{E}^{*}\}}$

External RTF h_E

Needs to be estimated, e.g., using CW method

EXPERIMENTAL SETUP

- Using real-world recordings ($T_{60} \approx 300$ ms) in an online implementation with changing speaker position (A, B)
- KEMAR with two BTE hearing aids (2 microphones each) and one external microphone
- German speaker (10 sec at position **A**, 10 sec at position **B**)
- Diffuse babble noise
- Intelligibility-weighted input SNR of 0 dB (left reference micropohone)

Algorithm implementation details

- STFT framework: $f_s = 16$ kHz, 32 ms frame length, 50% overlap
- SPP-based voice activity detection [6] (threshold 0.6 and 0.4)
- Recursive smoothing time constants: $\tau_v = 150$ ms, $\tau_n = 1.5$ s

Filter	RTF estimation	eMic	
MVDR-OPT	oracle	no	
MVDR-CW	covariance whitening	no	Pos.
MVDR-SC	spatial coherence	no	
MVDR-FIX	front (anechoic)	no	
eMVDR-OPT	oracle	yes	
eMVDR-CW	covariance whitening	yes	

[3] N. Gößling, D. Marquardt, S. Doclo, "Performance analysis of the extended binaural MVDR beamformer with partial noise estimation in a homogeneous noise field," in *Proc. Joint Workshop on Hands-free Speech Communication and Microphone Arrays*, San Francisco, USA, 2017.

[4] S. Markovich, S. Gannot, I. Cohen, "Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfering speech signals," IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, pp. 1071–1086, Aug. 2009.

 $\frac{R_n^{-1}h}{h^H R_n^{-1}h}$

$$oldsymbol{h} = \begin{bmatrix} oldsymbol{ar{h}} \\ h_E \end{bmatrix}$$

RESULTS

Intelligibility-weighted SNR improvement

- **fixed MVDR** (especially for position B)

Binaural cue distribution for desired source

OUTLOOK

[5] N. Gößling, S. Doclo, "Relative transfer function estimation exploiting spatially separated microphones in a diffuse noise field," in *Proc.* International Workshop on Acoustic Signal Enhancement, Tokyo, Japan, Sep. 2018. (Accepted for publication). [6] T. Gerkmann, R. C. Hendriks, "Unbiased MMSE-based noise power estimation with low complexity and low tracking delay," IEEE/ACM *Trans. on Audio, Speech and Language Processing*, vol. 20, no. 4, pp. 1383–1393, May 2012.

VON Ο S S I E T Z K Y universität OLDENBURG

MVDR with external microphone leads to better SNR compared to MVDR using only local microphones and external microphone alone MVDR using local microphones: similar SNR for SC method as for CW method at much lower computational complexity, better SNR than

External microphone leads to in-head localisation (no binaural cues) • **Fixed MVDR** does not preserve binaural cues (especially for position B) MVDR using estimated RTFs (with/without external microphone): similar binaural cues as in reference microphone signals

Partial noise estimation with external microphone Advanced RTF estimation using more than one external microphone