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• Problem
− Noise and reverberation jointly present in 

typical acoustic environments
− Speech quality and intelligibility degradation
− Performance degradation of ASR systems

• Objectives
− Develop single- and microphone joint 

dereverberation and noise reduction algorithms
− Exploit knowledge / statistical models of 

room acoustics and speech signals 

• This presentation: 
– Focus on multi-microphone dereverberation 
– Two classes of techniques:

• Acoustic multi-channel equalization (non-blind, time-domain)
• Multi-channel linear prediction (blind, frequency-domain)

– Incorporate sparsity of clean speech TF coefficients int o both techniques

Dereverberation and noise reduction
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• Scenario: speech source in noisy and reverberant environment, M microphones

• Time-domain model: “perfect” model

hm(n) = room impulse response (RIR), typically long and difficult to blindly estimate 

• STFT-domain model: approximation of time-domain model

hm(k,n) = convolutive transfer function (CTF) in frequency bin k and time frame n

Signal model 
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Acoustic multi-channel equalization



• Acoustic multi-channel equalization for speech dereverberation:

– State-of-the-art time-domain approaches (RMCLS, P-MINT)

– Very sensitive to RIR perturbations

• Increase robustness by:

1. Decreasing filter length

2. Signal-independent regularization

3. Signal-dependent regularization, enforcing sparsi ty of output signal

Outline
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• Time-domain approach (although frequency-domain versions possible)
• Indirect approach : 

1. estimate/measure RIRs
2. Estimate the clean speech signal by 

inverting/equalizing the acoustic system 
+ suppressing noise 

Acoustic multi-channel equalization
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• Disregard additive noise and aim only at dereverberation

• Assumptions:

– Measurements or estimates of RIRs H are given

– Reshaping filter length is 

– RIRs do not share any common zeros
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In theory perfect dereverberation performance

Optimize the true equalized impulse response

c t = user-defined dereverberated target response (delayed impulse, early reflections, …)

In practice large distortions due to RIR perturbati ons

Optimize the perturbed equalized impulse response

Acoustic multi-channel equalization
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State-of-the-art acoustic multi-channel equalizatio n

Optimize the equalized impulse response by minimizing

Multiple-input/output inverse theorem (MINT)

Aim: Suppress all reflections

• Analytical solution 

• Perceptual speech quality preservation

• Sensitivity to RIR perturbations

[Myoshi and Kaneda, IEEE ASSP, 1998]
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State-of-the-art acoustic multi-channel equalizatio n

Optimize the equalized impulse response by minimizing

Relaxed multi-channel least-squares (RMCLS)

Aim: Suppress only late reflections while not constraining early reflections

• Analytical solution 

• No guaranteed perceptual speech quality preservation

• Lower sensitivity to RIR perturbations

[Zhang et al., IWAENC 2010] [Lim et al., IEEE TASLP 2014]
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State-of-the-art acoustic multi-channel equalizatio n

Optimize the equalized impulse response by minimizing

Partial multi-channel equalization based on MINT (P MINT)

Aim: Suppress only late reflections while constraining early reflections

• Analytical solution 

• Perceptual speech quality preservation

• Sensitivity to RIR perturbations

[Kodrasi, Goetze, Doclo, IEEE TASLP, 2013]
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• Increase robustness by:
1. Decreasing filter length: better conditioned optimization criterion

2. Signal-independent regularization: control distortion energy due to RIR perturbations

with                    and                        

constructed using a statistical model

• Automatic procedure for selecting 
regularization parameter δ (based on 
L-curve), yielding both low dereverberation 
error energy and distortion energy

3. Signal-dependent regularization: enforce output signal to exhibit 
characteristics of clean signal (e.g., sparsity)

Robust acoustic multi-channel equalization

[Kodrasi and Doclo, EUSIPCO 2012] [Kodrasi, Goetze, Doclo, IEEE TASLP, 2013]
[Kodrasi, Jukić, Doclo, ICASSP 2016]



• STFT-domain: clean speech is more sparse than reverberant speech

• Aim : optimize the equalized impulse response and enforce sparsity on the 
output signal STFT coefficients

• Select      as a function which promotes sparsity of the STFT coefficients of the 
output signal, i.e. 

							with	� denoting STFT operator

Sparsity-promoting multi-channel equalization

12[Kodrasi, Jukić, Doclo, ICASSP 2016]
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• Commonly used sparsity-promoting norms

• Selecting weights 

• Ideally: STFT coefficients of clean speech signal

• In practice: STFT coefficients of a reverberant microphone signal

• No closed-form analytical solution

• Iterative optimization using the alternating direction method of multipliers 
(ADMM)

Sparsity-promoting multi-channel equalization

[Kodrasi, Jukić, Doclo, ICASSP 2016]
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Simulation parameters

• T60 ≈ 610 ms, M = 4, fs = 8 kHz, Ld = 10 ms

• RIR perturbation levels: 

ADMM parameters

• STFT: 32 ms Hamming window with 50% overlap

• Initialization                                 (first microphone signal)

• Number of iterations: 500

Performance measures

• Direct-to-reverberant ratio (DRR)

• Cepstral distance (CD)

• Perceptual evaluation of speech quality (PESQ)

Experimental results

Regularization parameters (ρ,η) intrusively selected as the parameters 
minimizing cepstral distance

[Kodrasi, Jukić, Doclo, ICASSP 2016]
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Experimental results

Exemplary spectrograms (NPM = -33 dB)

• reverberant energy

• distortions introduced by the non-robust PMINT technique

Sparsity-promoting penalty functions suppress

[Kodrasi, Jukić, Doclo, ICASSP 2016]
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Experimental results

• All sparsity-promoting norms increase robustness against RIR perturbations

• Weighted l 1 –norm yields best performance (especially for large  NPM)

Performance measures (different NPMs)

[Kodrasi, Jukić, Doclo, ICASSP 2016]
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Experimental results

• 13 self-reported normal hearing subjects

• MUSHRA test, evaluating “overall speech quality” on a scale from 0 to 100

[Kodrasi, Cauchi, Goetze, Doclo, JAES, in press]

Perceptual validation (NPM = -33 dB)

• Robust PMINT extensions outperform robust RMCLS extensions 

• Sparsity-promoting PMINT best speech quality for mo derate NPMs
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• Equalization techniques for dereverberation lead to noise amplification
• Cost functions for joint dereverberation and noise reduction:

1. Incorporate noise statistics into regularized P-MINT (RPM-DNR)

2. Incorporate speech statistics → Multi-channel Wiener Filter, using dereverberated 
output signal of regularized P-MINT as reference signal (MWF-DNR)

• Automatic selection of trade-off parameter(s)

y1(n) PMINT R-PMINT RPM-
DNR

MWF-
DNR

M=4, T60=610 msec, DRR=-2 dB, fs=8 kHz, NPM=-33 dB, SIR=0 dB, SNR=10 dB (diffuse noise), no estimation errors in correlation matrices

Joint dereverberation and noise reduction

18[Kodrasi and Doclo, IEEE TASLP, 2016]



Blind probabilistic model-based 
approach



• Multi-channel Linear Prediction (MCLP) for speech dereverberation:

– Conventional approach using time-varying Gaussian (TVG) model

– Generalization using circular sparse prior

– (Batch processing, single output signal, frequency-independent processing)

• Extensions:

1. Exploit low-rank structure of speech spectrogram (NMF)

2. MIMO speech dereverberation based on group sparsity 

3. Adaptive MCLP with robustness constraints

4. General framework for incorporating time-frequency domain sparsity

Outline
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• STFT-domain approach (although time-domain versions possible)
– Speech properties (e.g., sparsity) can be modelled more naturally in STFT-domain
– Low computational complexity (independent frequency bin processing)

• Direct approach: directly estimate clean speech STFT 
coefficients s(k,n) from reverberant (and noisy) STFT 
coefficients ym(k,n)

1. Directly using CTF model → sparse Bayesian deconvolution based on 
variational Bayesian inference

2. Transform to equivalent AR model → multi-channel linear prediction (MCLP)

Multi-channel linear prediction (MCLP)

clean signal 
(incl. early reflections)

delay
(early reflections)

prediction 
filters
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• AR model of reverberant speech 

Multi-channel linear prediction (MCLP)

How to select suitable cost function for prediction  filters ? 

predicted 
reverberation
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• Conventional approach:
– STFT coefficients of desired signal are assumed to be independent and modelled 

using circular complex Gaussian distribution with time-va rying variance λ(k,n)

– Maximum-Likelihood Estimation (batch, per frequency bin)

– Alternating optimization procedure

1. Estimate prediction vector (assuming fixed variances)

2. Estimate variances (assuming fixed prediction vector)

Multi-channel linear prediction (MCLP)

23[Nakatani et al., IEEE TASLP, 2010]



• Generalization:
– STFT coefficients of desired signal are assumed to be independent and modelled 

using circular sparse/super-Gaussian prior with time-vary ing variance λ(n)

Scaling function ψ(.) can be interpreted as hyper-prior on variance 

– Maximum-Likelihood Estimation (batch, per frequency bin)

– Alternating optimization procedure
1. Estimate prediction vector (assuming fixed variances)

2. Estimate variances (assuming fixed prediction vector)

Multi-channel linear prediction (MCLP)

24[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE TASLP, 2015]



• Example: complex generalized Gaussian (CGG) prior with shape parameter p

• Remarks:
1. ML estimation using CGG prior is equivalent to lp-norm minimization 

→ promotes sparsity of TF-coefficients across time (for p < 2)

Solved using (regularized) iteratively reweighted least-squares (IRLS) procedure

2. Conventional approach (TVG model) corresponds to p=0:

• Strong sparse prior , strongly favoring values of desired signal close to zero

• Hyper-prior on variance equal to constant value

Multi-channel linear prediction (MCLP)

25[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE TASLP, 2015]



• Instrumental validation (noiseless, batch)

Multi-channel linear prediction (MCLP)
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T60 ≈ 700ms, M={1,2,4}, distance 2 m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg={35,15,8}, τ=2 

clean microphone

WPE-CGG
p=0

WPE-CGG
p=0.5

Performance depends on p, 
with p=0.5 consistently 
yielding (small) improvements

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE TASLP, 2015]



• Incorporate additional knowledge of speech spectrog ram
– Exploit time-frequency structure of spectrogram (no frequency-independent 

processing)

– Speech spectrogram exhibits low-rank structure [Smaragdis 2006] → non-negative 
matrix factorization (NMF)

→ Improved preservation of 
time-frequency structure

→ Increased sparsity

– Incorporate NMF in MCLP-based dereverberation 

• Variances estimated as

• Either unsupervised or supervised (using pre-trained dictionary)

MCLP extensions (low -rank structure)

27[Jukić, Mohammadiha, van Waterschoot, Gerkmann, Doclo, ICASSP 2015]



• Instrumental validation (noiseless, batch)

T60 ≈ 700ms, M=4, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=8, τ=2, p=0

Clean Microphone MCLP MCLP+NMF
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MCLP extensions (low -rank structure)

1. unsupervised: dictionary 
learned from spectrogram 
|D|2 (MCLP+NMF)

2. supervised: pretrained
dictionary (MCLP+NMF+dict)

[Jukić, Mohammadiha, van Waterschoot, Gerkmann, Doclo, ICASSP 2015]

be
tte

rbetter



• Group sparsity for MIMO speech dereverberation:
– Maximize sparsity of TF-coefficients across time + simultaneously 

keep/discard TF-coefficients across microphones (= groups)

→  Mixed l 2,p-norm 

• Remarks:
– Multiple outputs → possibility to apply spatial filtering (e.g., MVDR beamforming)

• Instrumental validation (noiseless, batch)

MCLP extensions (group sparsity)

29[Yoshioka and Nakatani, IEEE TASLP, 2012] [Delcroix et al., REVERB Challenge 2015]
[Jukić, van Waterschoot, Gerkmann, Doclo, WASPAA 2015]

T60 ≈ 700ms, M=4, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=10, τ=2



• Batch processing →	adaptive processing
– Incorporate exponential weighting in cost function (iteratively reweighted l2-norm)

→	RLS-based algorithm

– Problem: overestimation of undesired component (late reverberation) for small 
forgetting factors γ (dynamic scenarios) → severe distortion in output signal

• Constrained adaptive MCLP
– Idea: constrain MCLP-based estimate of undesired component using estimate 

of late reverberant PSD (e.g., based on statistical model [Polack, Lebart])

– Constraint ensures stability and prevents overestimation

– Optimization method: ADMM – results in RLS-like updates

MCLP extensions (adaptive MCLP)

30[Yoshioka and Nakatani, EUSIPCO 2013] [Jukić, van Waterschoot, Doclo, IEEE SPL 2017]



• Instrumental validation (noiseless, adaptive)
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MCLP extensions (adaptive MCLP)

Constrained MCLP much less 
sensitive to forgetting factor 
(especially for small values)

ADA Constr.
+ADA

�=0.98

�=0.88

clean microphone

[Jukić, van Waterschoot, Doclo, IEEE SPL 2017]

T60 ≈ 700ms, M=2, distance 2m, source switching between +45 and -45, fs=16 kHz; STFT: 64ms (overlap 16ms); Lg=20, τ=2, p=0



T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, real recordings
STFT: 64ms (overlap 16ms); MCLP: Lg=30, τ=2, p=0, adaptive (�=0.96)

Microphone 1ch SE [REVERB] Adaptive MCLP Adaptive MCLP + SE

d ~ 2m

• Instrumental validation (high reverberation + noisy , adaptive)
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MCLP extensions (adaptive MCLP)



• General framework:
– Wideband (WB) signal model:

Narrowband (NB) signal model: 

– Sparsity of STFT coefficients of desired speech signal:

• Synthesis sparsity: time-domain signal d can be represented using sparse 
estimated STFT coefficients 	


• Analysis sparsity: STFT coefficients		
	of estimated time-domain signal d are sparse

– � denotes TF transform (e.g. STFT), P denotes sparsity-promoting function 
(e.g. weighted l1-norm), possibly including structured sparsity (e.g. NMF weights)

– Optimization method: ADMM

– Wideband model: more flexibility (selection of TF transform), but much larger complexity 

MCLP extensions (general framework)

33[Jukić, van Waterschoot, Gerkmann, Doclo, JAES, in press]

Wideband-Analysis (WB-A) Wideband-Synthesis (WB-S) Narrowband (NB)



• Instrumental validation
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MCLP extensions (general framework)

• ADMM-based methods 
(l1-norm) perform better 
than WPE (l 2-norm) for 
single reweighting iteration

• Similar performance for 
multiple iterations

• Structured weights result 
in improved performance 
(especially for WPE)

Local weights

NMF weights

T60 ≈ 700ms, M=2, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: Lg=5120, τ=20 (WB), Lg=20, τ=2 (NB)

[Jukić, van Waterschoot, Gerkmann, Doclo, JAES, in press]



• Incorporate sparsity of clean speech TF coefficient s into multi-
microphone speech dereverberation

• Acoustic multi-channel equalization:

– Signal-dependent regularization with sparsity-promoting penalty 
function (weighted l1-norm) increases robustness against RIR 
perturbations

• Multi-channel linear prediction:

– Role of sparsity: ML estimation using CGG prior is equivalent to 
lp-norm minimization → promotes sparsity of TF-coefficients 
across time

– Extensions by using time-frequency structure (NMF) and group sparsity 

– General framework (wideband + narrowband)

Conclusions
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• Blind probabilistic model-based approach

– Joint dereverberation and noise reduction
based on sparsity-promoting cost functions

– Comparison of CTF model vs. AR model

• Distributed MCLP for acoustic sensor 
networks

• Instrumental measures : prediction of 
perceived level of reverberation and 
speech quality for speech dereverberation
algorithms

• Inaugurate new varechoic lab

Current / future work
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