

Incorporating sparsity into multi-microphone speech dereverberation techniques

Prof. Dr. Simon Doclo University of Oldenburg, Germany Dept. of Medical Physics and Acoustics, Cluster of Excellence Hearing4All

http://www.sigproc.uni-oldenburg.de/

ICSEE 2016 Symposium on Speech and Audio Processing

• Problem

OLDENBURG

- Noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation
- Performance degradation of ASR systems

Objectives

- Develop single- and microphone joint dereverberation and noise reduction algorithms
- Exploit knowledge / statistical models of room acoustics and speech signals

• This presentation:

- Focus on multi-microphone dereverberation
- Two classes of techniques:
 - Acoustic multi-channel equalization (non-blind, time-domain)
 - Multi-channel linear prediction (*blind, frequency-domain*)
- Incorporate sparsity of clean speech TF coefficients into both techniques

Signal model

- Scenario: speech source in noisy and reverberant environment, *M* microphones
- Time-domain model: "perfect" model

$$y_m(n) = x_m(n) + v_m(n) = s(n) * h_m(n) + v_m(n)$$

 $h_m(n)$ = room impulse response (RIR), typically long and difficult to blindly estimate

• **STFT-domain model:** approximation of time-domain model

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

 $h_m(k,n)$ = convolutive transfer function (CTF) in frequency bin k and time frame n

Acoustic multi-channel equalization

Outline

- Acoustic multi-channel equalization for speech dereverberation:
 - State-of-the-art time-domain approaches (RMCLS, P-MINT)
 - Very sensitive to RIR perturbations
- Increase robustness by:
 - 1. Decreasing filter length
 - 2. Signal-independent regularization
 - 3. Signal-dependent regularization, enforcing sparsity of output signal

Acoustic multi-channel equalization

- **Time-domain approach** (although frequency-domain versions possible)
- Indirect approach:
 - 1. estimate/measure RIRs
 - Estimate the clean speech signal by inverting/equalizing the acoustic system + suppressing noise

$$z(n) = \underbrace{\mathbf{w}^T \mathbf{H}^T}_{\mathbf{c}^T} \mathbf{s}(n) + \mathbf{w}^T \mathbf{v}(n)$$

Speech enhancement objectives

- Dereverberation: Optimize c
- Noise reduction: Minimize the noise output power while controlling the speech distortion
- Joint dereverberation and noise reduction: Optimize **c** and minimize the noise output power

Acoustic multi-channel equalization

- Disregard additive noise and aim only at dereverberation
- Assumptions:
 - Measurements or estimates of RIRs H are given
 - Reshaping filter length is $L_w \ge \lceil \frac{L_h 1}{M 1} \rceil$
 - RIRs do not share any common zeros

In theory perfect dereverberation performance

Optimize the true equalized impulse response

 $\mathbf{H}\mathbf{w} = \mathbf{c}_t$

 \mathbf{c}_t = user-defined dereverberated target response (delayed impulse, early reflections, ...)

In practice large distortions due to RIR perturbations

Optimize the perturbed equalized impulse response

$$\hat{\mathbf{H}}\mathbf{w} = \mathbf{c}_t$$

State-of-the-art acoustic multi-channel equalization

Optimize the equalized impulse response by minimizing

 $J_{\text{LS}} = \|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 \qquad \mathbf{w}_{\text{LS}} = (\mathbf{W}\hat{\mathbf{H}})^+ (\mathbf{W}\mathbf{c}_t)$

Multiple-input/output inverse theorem (MINT)

Aim: Suppress all reflections

- Analytical solution
- Perceptual speech quality preservation
- Sensitivity to RIR perturbations

[Myoshi and Kaneda, IEEE ASSP, 1998]

State-of-the-art acoustic multi-channel equalization

Optimize the equalized impulse response by minimizing

 $J_{LS} = \|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 \qquad \mathbf{w}_{LS} = (\mathbf{W}\hat{\mathbf{H}})^+ (\mathbf{W}\mathbf{c}_t)$

Relaxed multi-channel least-squares (RMCLS)

Aim: Suppress only late reflections while not constraining early reflections

- Analytical solution
- No guaranteed perceptual speech quality preservation
- Lower sensitivity to RIR perturbations

[Zhang et al., IWAENC 2010] [Lim et al., IEEE TASLP 2014]

State-of-the-art acoustic multi-channel equalization

Optimize the equalized impulse response by minimizing

 $J_{\text{LS}} = \|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 \qquad \mathbf{w}_{\text{LS}} = (\mathbf{W}\hat{\mathbf{H}})^+ (\mathbf{W}\mathbf{c}_t)$

Partial multi-channel equalization based on MINT (PMINT)

Aim: Suppress only late reflections while constraining early reflections

- Analytical solution
- Perceptual speech quality preservation
- Sensitivity to RIR perturbations

[Kodrasi, Goetze, Doclo, IEEE TASLP, 2013]

Robust acoustic multi-channel equalization

• Increase robustness by:

- 1. Decreasing filter length: better conditioned optimization criterion
- 2. Signal-independent regularization: control distortion energy due to RIR perturbations

$$J = \underbrace{\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2}_{\epsilon_c} + \delta \underbrace{\mathbf{w}^T \mathbf{R}_e \mathbf{w}}_{\epsilon_e}$$

with $\mathbf{E} = \hat{\mathbf{H}} - \mathbf{H}$ and $\mathbf{R}_e = \mathcal{E}\{\mathbf{E}^T \mathbf{E}\}$

constructed using a statistical model

 Automatic procedure for selecting regularization parameter δ (based on L-curve), yielding both low dereverberation error energy and distortion energy

3. Signal-dependent regularization: enforce output signal to exhibit characteristics of clean signal (e.g., sparsity)

$$\min_{\mathbf{w}} \left[\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 + \eta f_{sp}(\mathbf{z}(n)) \right]$$

Sparsity-promoting multi-channel equalization

• **STFT-domain:** clean speech is more sparse than reverberant speech

• **Aim:** optimize the equalized impulse response and enforce sparsity on the output signal STFT coefficients

$$\min_{\mathbf{w}} \left[\| \mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t) \|_2^2 + \eta f_{sp}(\mathbf{z}(n)) \right]$$

 Select f_{sp} as a function which promotes sparsity of the STFT coefficients of the output signal, i.e.

$$\tilde{z} = \Psi z = \Psi X w$$

with Ψ denoting STFT operator

[Kodrasi, Jukić, Doclo, ICASSP 2016]

Sparsity-promoting multi-channel equalization

 $\min_{\mathbf{w}} \left[\|\mathbf{W}(\hat{\mathbf{H}}\mathbf{w} - \mathbf{c}_t)\|_2^2 + \eta f_{sp}(\mathbf{z}(n)) \right]$

Commonly used sparsity-promoting norms

<i>l</i> ₀ -norm:	$\ \widetilde{\mathbf{z}}\ _0 = q:\widetilde{z}(q) \neq 0 $
<i>l</i> ₁ -norm:	$\ \widetilde{\mathbf{z}}\ _1 = \sum_{q=0}^{L_{\widetilde{\mathbf{z}}}-1} \widetilde{z}(q) $
weighted <i>l</i> ₁ -norm:	$\ \operatorname{diag}{\mathbf{u}}{\mathbf{\tilde{z}}}\ _1 = \sum_{q=0}^{L_{\tilde{z}}-1} u(q)\tilde{z}(q) $

- Selecting weights u(q)
 - Ideally: STFT coefficients of clean speech signal $u(q) = \frac{1}{|\tilde{s}(q)|+\zeta}$
 - In practice: STFT coefficients of a reverberant microphone signal $u(q) = \frac{1}{|\tilde{x}_1(q)| + \zeta}$
- No closed-form analytical solution
- Iterative optimization using the alternating direction method of multipliers (ADMM)

Simulation parameters

OLDENBURG

- $\begin{aligned} \mathsf{T}_{60} &\approx 610 \text{ ms, } \mathsf{M} = 4, \, \mathsf{fs} :\\ \mathsf{RIR \ perturbation \ levels:} \quad \mathrm{NPM} = 10 \log_{10} \frac{\left| \mathbf{h}_m \frac{\mathbf{h}_m^T \hat{\mathbf{h}}_m}{\hat{\mathbf{h}}_m} \hat{\mathbf{h}}_m \right|_2^2}{\|\mathbf{h}_m\|_2^2} [\mathrm{dB}] \end{aligned}$

ADMM parameters

- STFT: 32 ms Hamming window with 50% overlap
- Initialization $\mathbf{w}^{(0)} = \begin{bmatrix} 1 & 0 \\ \dots & 0 \end{bmatrix}^T$ (first microphone signal)
- Number of iterations: 500

Performance measures

- Direct-to-reverberant ratio (DRR)
- Cepstral distance (CD)
- Perceptual evaluation of speech quality (PESQ)

Regularization parameters (ρ , η) intrusively selected as the parameters minimizing cepstral distance

Experimental results

Exemplary spectrograms (NPM = -33 dB)

Sparsity-promoting penalty functions suppress

- reverberant energy
- distortions introduced by the non-robust PMINT technique

Experimental results

Performance measures (different NPMs)

- All sparsity-promoting norms increase robustness against RIR perturbations
- Weighted I, –norm yields best performance (especially for large NPM)

Experimental results

Perceptual validation (NPM = -33 dB)

- 13 self-reported normal hearing subjects
- MUSHRA test, evaluating "overall speech quality" on a scale from 0 to 100

- Robust PMINT extensions outperform robust RMCLS extensions
- Sparsity-promoting PMINT best speech quality for moderate NPMs

[Kodrasi, Cauchi, Goetze, Doclo, JAES, in press]

Joint dereverberation and noise reduction

- Equalization techniques for dereverberation lead to **noise amplification**
- Cost functions for joint dereverberation and noise reduction:
 - 1. Incorporate **noise statistics** into regularized P-MINT (RPM-DNR)

$$J = \underbrace{\|\hat{\mathbf{H}}\mathbf{w} - \hat{\mathbf{h}}_{1}^{d}\|_{2}^{2}}_{\epsilon_{c}} + \delta \underbrace{\mathbf{w}^{T} \mathbf{R}_{e} \mathbf{w}}_{\epsilon_{e}} + \mu \underbrace{\mathbf{w}^{T} \mathbf{R}_{v} \mathbf{w}}_{\epsilon_{v}}$$

 Incorporate speech statistics → Multi-channel Wiener Filter, using dereverberated output signal of regularized P-MINT as reference signal (MWF-DNR)

$$J = \mathcal{E}\{(\mathbf{w}^{\mathsf{T}}\mathbf{x}(n) - \mathbf{w}_{\mathsf{RP}}^{\mathsf{T}}\mathbf{x}(n))^{2}\} + \mu \mathcal{E}\{(\mathbf{w}^{\mathsf{T}}\mathbf{v}(n))^{2}\}$$

• Automatic selection of trade-off parameter(s)

					Measure	PMINT	RPMINT	RPM-DNR	MWF-DNR
y ₁ (n)	PMINT	R-PMINT	RPM-	MWF- DNR	ΔDRR [dB]	-3.3	9.9	9.8	9.1
			DNK		ΔPESQ	-0.4	0.7	0.7	0.6
					$\psi_{_{\rm NR}}$ [dB]	-26.8	1.9	3.2	13.0
					ΔfwSSNR [dB]	-3.0	0.9	1.1	3.2

M=4, T60=610 msec, DRR=-2 dB, fs=8 kHz, NPM=-33 dB, SIR=0 dB, SNR=10 dB (diffuse noise), no estimation errors in correlation matrices

[Kodrasi and Doclo, IEEE TASLP, 2016]

Blind probabilistic model-based approach

Outline

- Multi-channel Linear Prediction (MCLP) for speech dereverberation:
 - Conventional approach using time-varying Gaussian (TVG) model
 - Generalization using **circular sparse prior**
 - (Batch processing, single output signal, frequency-independent processing)

• Extensions:

- 1. Exploit **low-rank structure** of speech spectrogram (NMF)
- 2. MIMO speech dereverberation based on **group sparsity**
- 3. Adaptive MCLP with robustness constraints
- 4. General framework for incorporating time-frequency domain sparsity

- STFT-domain approach (although time-domain versions possible)
 - Speech properties (e.g., sparsity) can be modelled more naturally in STFT-domain
 - Low computational complexity (independent frequency bin processing)
- Direct approach: directly estimate clean speech STFT coefficients s(k,n) from reverberant (and noisy) STFT coefficients y_m(k,n)

$$y_m(k,n) = \underbrace{h_m(k,n) * s(k,n)}_{x_m(k,n)} + v_m(k,n)$$

- Directly using CTF model → sparse Bayesian deconvolution based on variational Bayesian inference
- 2. Transform to equivalent AR model \rightarrow multi-channel linear prediction (MCLP)

$$x_{1}(k,n) = d(k,n) + \sum_{m=1}^{M} \sum_{l=0}^{L_{g}-1} g_{m}(k,l) x_{m}(k,n-\tau-l)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$clean signal \qquad prediction \qquad delay$$

$$(incl. early reflections) \qquad filters \ (early reflections)$$

• AR model of reverberant speech

How to select suitable cost function for prediction filters ?

- Conventional approach:
 - STFT coefficients of desired signal are assumed to be independent and modelled using circular complex Gaussian distribution with time-varying variance $\lambda(k,n)$

$$\mathcal{N}_{\mathbb{C}}(d(k,n);0,\lambda(k,n)) = rac{1}{\pi\lambda(k,n)}e^{-rac{|d(k,n)|^2}{\lambda(k,n)}}$$

- Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}(\mathbf{g},\lambda) = \prod_{n=1}^{N} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^2}{\lambda(n)} + \log \pi \lambda(n) \right)$$

- Alternating optimization procedure
 - 1. Estimate prediction vector (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}^{H}_{ au}\mathcal{D}^{-1}_{\hat{oldsymbol{\lambda}}^{(i)}}\mathbf{X}_{ au}
ight)^{-1}\mathbf{X}^{H}_{ au}\mathcal{D}^{-1}_{\hat{oldsymbol{\lambda}}^{(i)}}\mathbf{x}_{1}$$

2. Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = \operatorname*{arg\,min}_{\lambda(n)>0} \frac{\left|\hat{d}^{(i+1)}(n)\right|^2}{\lambda(n)} + \log \pi \lambda(n) \qquad \Longrightarrow \qquad \hat{\boldsymbol{\lambda}}^{(i+1)} = |\hat{\mathbf{d}}^{(i+1)}|^2.$$

• Generalization:

- STFT coefficients of desired signal are assumed to be independent and modelled using circular sparse/super-Gaussian prior with time-varying variance $\lambda(n)$

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \psi(\lambda(n))$$

Scaling function $\psi(.)$ can be interpreted as hyper-prior on variance

- Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}\left(\mathbf{g}\right) = \prod_{n=1}^{N} \rho\left(d(n)\right) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^{2}}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

- Alternating optimization procedure
 - 1. Estimate prediction vector (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{X}_{ au}^{H}\mathcal{D}_{\hat{oldsymbol{\lambda}}^{(i)}}^{-1}\mathbf{x}_{ au}$$

2. Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = \operatorname*{arg\,min}_{\lambda(n)>0} \frac{\left|\hat{d}^{(i+1)}(n)\right|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))$$

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE TASLP, 2015]

• **Example:** complex generalized Gaussian (CGG) prior with shape parameter *p*

• Remarks:

1. ML estimation using CGG prior is equivalent to I_p -norm minimization

 \rightarrow promotes sparsity of TF-coefficients across time (for p < 2)

$$\min_{\mathbf{g}} \|\mathbf{d}\|_p^p,$$

Solved using (regularized) iteratively reweighted least-squares (IRLS) procedure

- 2. Conventional approach (TVG model) corresponds to **p=0**:
 - Strong sparse prior, strongly favoring values of desired signal close to zero
 - Hyper-prior on variance equal to constant value

Instrumental validation (noiseless, batch)

Performance depends on p, with p=0.5 consistently yielding (small) improvements

T₆₀ ≈ 700ms, M={1,**2**,4}, distance 2 m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g={35,**15**,8}, τ=2

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE TASLP, 2015]

MCLP extensions (low-rank structure)

• Incorporate additional knowledge of speech spectrogram

- Exploit time-frequency structure of spectrogram (no frequency-independent processing)
- Speech spectrogram exhibits low-rank structure [Smaragdis 2006] → non-negative matrix factorization (NMF)

- → Improved preservation of time-frequency structure
- \rightarrow Increased sparsity

Incorporate NMF in MCLP-based dereverberation

- Variances estimated as $\Lambda_{LR} = \text{low}_rank_approximation(|\mathbf{D}|^2)$
- Either unsupervised or supervised (using pre-trained dictionary)

MCLP extensions (low-rank structure)

- Instrumental validation (noiseless, batch)
- unsupervised: dictionary learned from spectrogram |D|² (MCLP+NMF)
- 2. supervised: pretrained dictionary (MCLP+NMF+dict)

 $T_{60} \approx$ 700ms, M=4, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=8, τ =2, p=0

[Jukić, Mohammadiha, van Waterschoot, Gerkmann, Doclo, ICASSP 2015]

MCLP extensions (group sparsity)

- **Group sparsity** for MIMO speech dereverberation:
 - Maximize sparsity of TF-coefficients across time + simultaneously keep/discard TF-coefficients across microphones (= groups)
 - \rightarrow Mixed I_{2,p}-norm

$$\|\mathbf{D}\|_{\Phi;2,p} = \left(\sum_{n=1}^{N} \|\mathbf{d}_{n,:}\|_{\Phi;2}^{p}\right)^{1/p} \qquad \sum_{n=1}^{N} \|\mathbf{d}_{n,:}\|_{\Phi;2}^{p} \approx \sum_{n=1}^{N} w_{n}^{(i)} \|\mathbf{d}_{n,:}\|_{\Phi;2}^{2}$$

 $^{\|\}mathbf{D}\|_{2,p} = \ell_p$ norm of the vector

- Remarks:
 - Multiple outputs \rightarrow possibility to apply spatial filtering (e.g., MVDR beamforming)
- Instrumental validation (noiseless, batch)

 $T_{60} \approx$ 700ms, M=4, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_q=10, τ =2

[Yoshioka and Nakatani, IEEE TASLP, 2012] [Delcroix et al., REVERB Challenge 2015] [Jukić, van Waterschoot, Gerkmann, Doclo, WASPAA 2015]

MCLP extensions (adaptive MCLP)

• Batch processing → adaptive processing

- Incorporate exponential weighting in cost function (iteratively reweighted l₂-norm)
 - \rightarrow RLS-based algorithm

$$\hat{\mathbf{G}} = \arg\min_{\mathbf{G}} \sum_{n=1}^{N} w(n) \|\mathbf{d}(n)\|_{2}^{2} \implies \hat{\mathbf{G}}(n) = \arg\min_{\mathbf{G}(n)} \sum_{t=1}^{n} \gamma^{n-t} w(t) \|\mathbf{d}(t)\|_{2}^{2}$$

- **Problem:** overestimation of undesired component (late reverberation) for small forgetting factors γ (dynamic scenarios) \rightarrow severe distortion in output signal

• Constrained adaptive MCLP

 Idea: constrain MCLP-based estimate of undesired component using estimate of late reverberant PSD (e.g., based on statistical model [Polack, Lebart])

$$\check{\mathbf{G}}(n) = \arg\min_{\mathbf{G}(n)} \sum_{t=1}^{n} \gamma^{n-t} w(t) \|\mathbf{d}(t)\|_{2}^{2} \quad \text{subject to} \quad |\mathbf{G}^{\mathsf{H}}(n) \tilde{\mathbf{x}}_{\tau}(n)|^{2} \leq \hat{\boldsymbol{\sigma}}_{u}^{2}(n)$$

- Constraint ensures stability and prevents overestimation
- Optimization method: ADMM results in RLS-like updates

[Yoshioka and Nakatani, EUSIPCO 2013] [Jukić, van Waterschoot, Doclo, IEEE SPL 2017]

MCLP extensions (adaptive MCLP)

• Instrumental validation (noiseless, adaptive)

Constrained MCLP much less sensitive to forgetting factor (especially for small values)

 $T_{60} \approx$ 700ms, M=2, distance 2m, source switching between +45 and -45, fs=16 kHz; STFT: 64ms (overlap 16ms); $L_q=20$, $\tau=2$, p=0

[Jukić, van Waterschoot, Doclo, IEEE SPL 2017]

MCLP extensions (adaptive MCLP)

• Instrumental validation (high reverberation + noisy, adaptive)

T60 ~ 6s (St Alban The Martyr Church, London), M=2 (spacing~1m), fs=16 kHz, **real recordings** STFT: 64ms (overlap 16ms); MCLP: L_q =30, τ =2, p=0, adaptive (γ =0.96)

MCLP extensions (general framework)

• General framework:

OLDENBURG

Wideband (WB) signal model: $\mathbf{x}_{\mathrm{ref}} = \mathbf{d} + \mathbf{X} \mathbf{g}$

Narrowband (NB) signal model: $ilde{\mathbf{x}}_{ ext{ref},k} = ilde{\mathbf{d}}_k + ilde{\mathbf{X}}_k ilde{\mathbf{g}}_k$

- Sparsity of STFT coefficients of desired speech signal:
 - Synthesis sparsity: time-domain signal d can be represented using sparse estimated STFT coefficients \tilde{d}
 - Analysis sparsity: STFT coefficients \tilde{d} of estimated time-domain signal d are sparse

- Ψ denotes TF transform (e.g. STFT), P denotes sparsity-promoting function (e.g. weighted I₁-norm), possibly including structured sparsity (e.g. NMF weights)
- Optimization method: ADMM
- Wideband model: more flexibility (selection of TF transform), but much larger complexity

MCLP extensions (general framework)

- Instrumental validation
 - ADMM-based methods (I₁-norm) perform better than WPE (I₂-norm) for single reweighting iteration
 - Similar performance for multiple iterations
 - Structured weights result in improved performance (especially for WPE)

 $T_{60} \approx 700$ ms, M=2, distance 2m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g=5120, τ =20 (WB), L_g=20, τ =2 (NB)

[Jukić, van Waterschoot, Gerkmann, Doclo, JAES, in press]

Conclusions

- Incorporate sparsity of clean speech TF coefficients into multimicrophone speech dereverberation
- Acoustic multi-channel equalization:
 - Signal-dependent regularization with sparsity-promoting penalty function (weighted I₁-norm) increases robustness against RIR perturbations
- Multi-channel linear prediction:
 - Role of sparsity: ML estimation using CGG prior is equivalent to I_p -norm minimization \rightarrow promotes sparsity of TF-coefficients across time
 - Extensions by using time-frequency structure (NMF) and group sparsity
 - **General framework** (wideband + narrowband)

Current / future work

- Blind probabilistic model-based approach
 - Joint dereverberation and noise reduction based on sparsity-promoting cost functions
 - Comparison of CTF model vs. AR model
- Distributed MCLP for acoustic sensor networks
- Instrumental measures: prediction of perceived level of reverberation and speech quality for speech dereverberation algorithms
- Inaugurate new varechoic lab

Abbildung 1: In Raum E10 in den in Tabelle 1 angegebenen Raumzuständen gemessenen Nachhallzeiten in Terzbändern im Vergleich

Acknowledgments

Dr. Ina Kodrasi

Ante Jukić

Benjamin Cauchi

Dr. Nasser Mohammadiha

Prof. Timo Gerkmann

Prof. Toon van Waterschoot

Forschungsgemeinschaft

Funding:

- Cluster of Excellence Hearing4All (DFG)
- □ Marie-Curie Initial Training Network "Dereverberation and Reverberation of Audio, Music, and Speech" (EU)
- German-Israeli Foundation Project "Signal Dereverberation Algorithms for Next-Generation Binaural Hearing Aids" (Partners: International Audiolabs Erlangen; Bar-Ilan University, Israel)

Deutsche

Recent publications

- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, "A general framework for incorporating time-frequency domain sparsity in multi-channel speech dereverberation," *Journal of the Audio Engineering Society*, in press.
- I. Kodrasi, S. Doclo, *Joint Dereverberation and Noise Reduction Based on Acoustic Multichannel Equalization*, *IEEE/ACM Trans. Audio, Speech and Language Processing*, vol. 24, no. 4, pp. 680-693, Apr. 2016.
- I. Kodrasi, A. Jukic, S. Doclo, *Robust sparsity-promoting acoustic multi-channel equalization for speech dereverberation*, in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Shanghai, China, Mar. 2016.
- I. Kodrasi, S. Goetze, S. Doclo, <u>*Regularization for Partial Multichannel Equalization for Speech Dereverberation*</u>, *IEEE Trans. Audio, Speech and Language Processing*, vol. 21, no. 9, pp. 1879-1890, Sep. 2013.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Multi-channel linear prediction-based speech</u> <u>dereverberation with sparse priors</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 9, pp. 1509-1520, Sep. 2015.
- A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Group sparsity for MIMO speech dereverberation</u>, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, Oct. 2015, pp. 1-5.
- A. Jukić, N. Mohammadiha, T. van Waterschoot, T. Gerkmann, S. Doclo, <u>Multi-channel linear prediction-based</u> <u>speech dereverberation with low-rank power spectrogram approximation</u>, in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Brisbane, Australia, Apr. 2015, pp. 96-100.
- B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Jukić, T. Gerkmann, S. Doclo, S. Goetze, <u>Combination of MVDR</u> <u>beamforming and single-channel spectral processing for enhancing noisy and reverberant speech</u>, EURASIP Journal on Advances in Signal Processing, 2015:61, pp. 1-12.
- N. Mohammadiha, S. Doclo, <u>Speech Dereverberation Using Non-negative Convolutive Transfer Function and</u> <u>Spectro-temporal Modeling</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 24, no. 2, pp. 276-289, Feb. 2016.

<u>http://www.sigproc.uni-oldenburg.de</u> -> Publications

House of Hearing, Oldenburg

Questions ?