

Cognitive-Driven Binaural Beamforming for Hearing Devices Using EEG-Based Auditory Attention Decoding

Simon Doclo, Ali Aroudi

Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all University of Oldenburg, Germany

CIAP – July 12, 2021

Problem statement

- Performance of speech enhancement and speaker separation algorithms depends on correctly identifying target speaker to be enhanced
- Auditory attention decoding (AAD) using single-trial EEG recordings
- Cognitive-driven source separation and noise reduction algorithms
- This presentation: cognitive-driven binaural beamformer based on AAD and acoustic scene analysis for realistic noisy and reverberant acoustic environments

[Aroudi & Doclo, Cognitive-driven binaural beamforming using EEG-based auditory attention decoding, IEEE TASLP, 2020.]

Outline

- Least-squares-based AAD method: performance in noisy and reverberant environments
- Cognitive-driven binaural beamforming system:
 - Minimum variance distortionless response (MVDR) beamformer
 - Linearly constrained minimum variance (LCMV) beamformer
- Evaluation in noisy and reverberant environment with 2 competing speakers

O'Sullivan et al., Attentional selection in a cocktail party environment can be decoded from single-trial EEG, Cerebral Cortex, 2014.] Aroudi et al., Impact of Different Acoustic Components on EEG-based Auditory Attention Decoding in Noisy and Reverberant Conditions, IEEE Trans. Neural Systems and Rehabilitation Engineering, 2019.]

Least-squares-based AAD method

Auditory attention decoding method

Training step: compute spatio-temporal filter **g**

- Reconstruct envelope of • attended speech signal by filtering and combining EEG signals r
- Regularization to avoid over-fitting

[O'Sullivan et al., Cerebral Cortex, 2014.]

Auditory attention decoding method

• **Decoding step:** correlate envelope of estimated attended speech signal with envelopes of *reference signals*

[O'Sullivan et al., Cerebral Cortex, 2014.]

Acoustic setup and simulation

Left and right speaker simulated at -45° and 45°

Two audio stories by two different male speakers (German)

Acoustic stimuli presented to participants using insert earphones

Experimental Analysis Condition	Stimuli Presentation	$\mathbf{SNR}[\mathrm{dB}]$	$T_{60}[\mathrm{s}]$	
Noiseless	Noiseless	∞	< 0.05	
Reverberant	Reverberant I	∞	0.50	
	Reverberant II	∞	1.00	
Noisy	Noisy I	9.0	< 0.05	diffuse babble
	Noisy II	4.0	< 0.05	noise
Reverberant-noisy	Reverberant-noisy I	9.0	0.50	
	Reverberant-noisy II	4.0	0.50	
	Reverberant-noisy III	9.0	1.00	

[Aroudi, Mirkovic, De Vos, Doclo, IEEE Trans. Neural Systems and Rehabilitation Engineering, 2019.]

Simon Doclo

Cognitive-Driven Binaural Beamforming

7

EEG setup, training and decoding

- Subjects:
 - *N*=18 German-speaking participants
 - 8 instructed to attend to left speaker,
 10 instructed to attend to right speaker
- EEG signals:
 - 64 channels (Easycap GmbH)
 - band-pass filtered (2-8 Hz), f_s = 64 Hz
- Training and decoding:
 - trial length: 60 seconds
 - each participant's own data
- Decoding performance:
 - percentage of correctly decoded trials over all considered trials and participants
 - leave-one-out cross-validation approach

[Aroudi, Mirkovic, De Vos, Doclo, IEEE Trans. Neural Systems and Rehabilitation Engineering, 2019.]

Experimental results: decoding performance

Reference signals: influence of noise, reverberation and interfering speaker

Anechoic - Noisy

Reverberant - Noiseless

clean signals as reference signals *anechoic signals* as reference signals *reverberant signals* as reference signals

Reverberant - Noisy

- □ Reference signals affected by reverberation or noise → comparable decoding performance as when using clean reference signals
- □ Reference signals affected by interfering speaker → decoding performance significantly decreases

Auditory attention decoding

- Best performance using clean speech signals as reference signals, but are not available in practice ×
- **Generate** reference signals for decoding from microphone signals

Cognitive-driven binaural beamformer

Cognitive-driven beamformer

Process flow

1. Acoustic scene analysis: estimate direction-of-arrival (DOA) of speakers

[Aroudi, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, 2020.]

Simon Doclo Cognitive-Driven Binaural Beamforming

Cognitive-driven beamformer

Process flow

- 1. Acoustic scene analysis: estimate direction-of-arrival (DOA) of speakers
- 2. AAD using beamformer output signals

(steered to speakers) decides which speaker is attended/unattended

[Aroudi, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, 2020.]

Cognitive-driven beamformer

Process flow

- 1. Acoustic scene analysis: estimate direction-of-arrival (DOA) of speakers
- 2. AAD using beamformer output signals (steered to speakers) decides which speaker is attended/unattended
- 3. AAD information is used in **binaural beamformer** to:
 - **Pass** (estimated) attended speaker
 - Suppress (estimated) unattended speaker
 - **Preserve spatial impression** of acoustic scene (binaural cues)

[Aroudi, Doclo, IEEE/ACM Trans. Audio, Speech and Language Processing, 2020.]

MVDR/LCMV Beamformer

- Minimum Variance Distortionless Response (MVDR) beamformer aims at
 - 1. minimizing noise output PSD
 - 2. passing *attended direction* $\hat{\theta}_a$ without distortion

$$\min_{\mathbf{w}} \underbrace{\mathbf{w}^{H} \mathbf{\Phi}_{v} \mathbf{w}}_{\text{noise PSD}} \quad \text{subject to} \quad \underbrace{\mathbf{w}^{H} \mathbf{a}(\hat{\theta}_{a}) = 1}_{\text{target}}$$

[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015.]

MVDR/LCMV Beamformer

Linearly Constrained Minimum Variance (LCMV) beamformer aims at

- 1. minimizing noise output PSD
- 2. passing *attended direction* $\hat{\theta}_a$ without distortion
- 3. suppressing *unattended direction* $\hat{\theta}_u$ with factor $\delta < 1 \rightarrow$ enables to control suppression

$$\underset{\mathbf{w}}{\min} \underbrace{\mathbf{w}^{H} \mathbf{\Phi}_{v} \mathbf{w}}_{\text{noise PSD}} \quad \text{subject to} \quad \underbrace{\mathbf{w}^{H} \mathbf{a}(\hat{\theta}_{a}) = 1}_{\text{target}}, \underbrace{\mathbf{w}^{H} \mathbf{a}(\hat{\theta}_{u}) = \delta}_{\text{interference}}$$

Requires

- > *Noise covariance matrix*, e.g., diffuse noise assumption
- Relative transfer functions (RTFs) of sources:
 - Anechoic RTFs, based on measured head-related transfer functions (HRTFs) and DOAs
 - > Reverberant RTFs

Cognitive-driven binaural beamformer

Experimental evaluation

Acoustic setup and simulation

Experimental Analysis Condition	Stimuli Presentation	SINR [dB]	T ₆₀ [s]
Reverberant + Noisy	Reverberant-noisy I	-1.0	0.5
	Reverberant-noisy II	-2.5	0.5

Fig. 2. Acoustic simulation setup for the reverberant condition. Two competing speakers were located at DOAs $\theta_1 = -45^\circ$ and $\theta_2 = 45^\circ$ and a distance of 1 m from the listener with two hearing aids, each equipped with 3 microphones.

Cognitive-driven beamformer: implementation

DOA estimation of speakers

- oracle DOA (ODOA)
- estimated DOA (EDOA) from binaural microphone signals with SVM-based multi-source localization method using GCC-PHAT features

[Kayser et al., Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.]

Cognitive-driven beamformer: implementation

DOA estimation of speakers

- oracle DOA (ODOA)
- estimated DOA (EDOA) from binaural microphone signals with SVM-based multi-source localization method using GCC-PHAT features

MVDR/LCMV beamformer

- Noise covariance matrix: diffuse noise assumption
- Relative transfer functions:
 - oracle reverberant RTFs (ORTF)
 - estimated reverberant RTFs (ERTF)
 - anechoic RTFs using oracle DOAs (ODOA)
 - anechoic RTFs using estimated DOAs (EDOA)

Cognitive-driven beamformer: implementation

DOA estimation of speakers

- oracle DOA (ODOA)
- estimated DOA (EDOA) from binaural microphone signals with SVM-based multi-source localization method using GCC-PHAT features

MVDR/LCMV beamformer

- Noise covariance matrix: diffuse noise assumption
- Relative transfer functions:
 - oracle reverberant RTFs (ORTF)
 - estimated reverberant RTFs (ERTF)
 - anechoic RTFs using oracle DOAs (ODOA)
 - anechoic RTFs using estimated DOAs (EDOA)
- Auditory attention decoding
 - trial length: 30 seconds
 - oracle AAD (OAAD) or estimated AAD (AAD)

Experimental results: AAD performance

- Oracle signals (no noise, no interfering speaker): decoding performance ≈ 89%
- ❑ Unprocessed microphone signals: decoding performing ≈ 77%
- Decoding performance larger for LCMV beamformer than for MVDR beamformer, (larger interference suppression)
 - Best performance when using oracle reverberant RTFs (≈ 87%)
 - Worst performance when using estimated reverberant RTFs
 - Anechoic RTFs decrease AAD performance (≈ 82%) compared to reverberant RTFs, but can be used in practice

Experimental results: speech enhancement performance

- Large binaural SINR improvement of cognitive-driven beamformers compared to forward-steered beamformer
- Better performance by binaural LCMV beamformer than MVDR beamformer
- Oracle AAD:
 - Best performance when using oracle reverberant RTFs (≈ 10.1 dB)
 - Anechoic RTFs decrease performance (≈ 4.9 dB)
- Estimated AAD: AAD errors degrade binaural SINR improvement (attended speaker wrongly suppressed)
 - Best performance when using oracle reverberant RTFs (≈ 6.7 dB)
 - ❑ Anechoic RTFs decrease AAD performance (≈ 3.2 dB), but can be used in practice

Summary

- Least-squares-based AAD method
 - > clean speech signals are not available as reference signals in practice
 - decoding performance significantly decreases when reference signals contain interfering speaker
 - Improved decoding performance using LCMV output signals
- Cognitive-driven binaural beamformer system
 - Large binaural SINR improvement although AAD errors degrade performance
 - Better performance by binaural LCMV beamformer than MVDR beamformer: larger SINR improvement, controlled suppression of interfering speaker

Next steps to reality...

- **Beamforming:** convolutional LCMV beamforming
- Acoustic scenarios: multiple and moving speakers
 → computational acoustic scene analysis (CASA)
- Decoding: faster and more reliable
- Closed-loop system
- **EEG hardware:** less electrodes (e.g. cEEGrid)

[Aroudi et al., Proc. IEEE Workshop on Machine Learning for Signal Processing, 2020.] [Bleichner & Debener, Front. Hum. Neurosci., 2017]

Simon Doclo Cognitive-Driven Binaural Beamforming

