Highlights from Hearing4all for
patients with hearing aids and
the subclinical population

Prof. Dr. Simon Doclo, University of Oldenburg



Highlights e

OSSIETZKY

; universitat
arin OLDENBURG

4all

Algorithms for hearing devices B e gl
. . Lo, O (o0
Speech enhancement: binaural noise WL |
reduction and dereverberation S[sretaie]
. .CEQRD____
Speech control based on deep learning (L % A

Binaural bandwidth-adaptive dynamic
compression

Hardware / Technology
Acoustically transparent earpiece
Ultra low-power processor architecture
Demonstrator platforms




-

4all

Algorithms for hearing devices




L
N
OSSIETZKY

universita
OLDENBURG

H 1. Speech enhancement

4all

Hearing impaired suffer from a loss of speech understanding in adverse
acoustic environments with competing speakers, background noise and
reverberation

Apply acoustic signal pre-processing techniques in order to improve
speech quality and intelligibility
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Binaural noise reduction and cue preservation

Preserving binaural cues (ITD, ILD, IC) in noise reduction algorithms is
important both for spatial awareness and for speech intelligibility

Several extensions of binaural speech enhancement approaches (MVDR
beamformer, MWF), that preserve the binaural cues both for diffuse noise
as well as for interfering sources
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Figure 1.2 Block diagram for binaural spatial filtering: a) incorporating constraints into
spatial filter design, b) mixing with scaled reference signals.

Marquardt et al., IEEE Trans. Audio, Speech and Language Proc. 2015a,b. Hadad et al., IEEE Trans. Audio, Speech and Language Proc., 2015, 2016
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Binaural noise reduction and cue preservation
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Marquardt et al., IEEE Trans. Audio, Speech and Language Proc. 2015a,b.
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Binaural noise reduction and cue preservation:

Perceptual evaluation of
binaural MVDR beamformer SRT Results (Cafeteria)
with partial noise estimation,
exploiting IC discrimination i |
ability of auditory system 5

Cue preservation
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Current work:

Integration with computational
acoustic scene analysis (CASA)

Extension with remote microphone
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Marquardt et al., IEEE Trans. Audio, Speech and Language Proc. 2015a,b.
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Dereverberation:
Reverberation causes degradation of
speech quality

Objective: blindly estimate clean speech
signal from one or more reverberant
microphone signals

Exploit knowledge / statistical models
of room acoustics and speech signals

ApproaChes —— Direct path—EarIy reflections —— Late reflections‘
1. Single- and multi-microphone spectral 0.4 ]
enhancement £ 02 :
2. Multi-channel linear prediction: £ 1
probabilistic estimation using statistical _0:4
100 200 400

model of desired signal Time [me]




\

CARIL

1. Speech enhancement  Zfraunhofer — <

universitdat

arin OLDENBURG

4all

REVERB Challenge: international competition for speech
enhancement and ASR in reverberant environments
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*1 Hidden ref. corresponds to the clean/headset speech sigal.

*2 No proc. corresponds to the unprocessed reverberant speech.

Cauchi et. al., EURASIP Journal on Advances in Signal Processing 2015.
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Extension of single-microphone to multi-microphone techniques

Robust dereverberation using multi-channel equalization exploiting
sparsity properties of clean speech

Blind dereverberation based on multi-channel linear prediction
with sparse priors
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Tgo = 700ms, M=2 (BRIR), distance 4m, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L,=30, 1=2, p=0

Kodrasi et al., IEEE TASLP, Jul. 2017. Kodrasi et al., JAES, Jan/Feb 2017. Jukic et al., IEEE TASLP 2015. Juki¢ et al., IEEE SPL, Jan .2017.
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Kayser, Anemdiller, Proc. Int. Workshop on Acoustic Signal Enhancement, 2014.
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Speech probability performance measure: posterior probabilities
(phoneme posteriorgram) obtained from a Deep Neural Net (DNN)
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Meyer et al., Proc. IEEE Workshop on Speech and Language Technology, 2016.
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Acoustic scenario: speaker and localized noise source
(different SNRs, T60)
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Meyer et al., Proc. IEEE Workshop on Speech and Language Technology, 2016.
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Meyer et al., Proc. IEEE Workshop on Speech and Language Technology, 2016.
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Hearing aid fitting: discomfort at high loudness levels is a
major complaint

Aim: improve loudness restoration and fitting of hearing devices
using dynamic range compression (DRC)

Recent finding: increased binaural loudness summation for
broadband binaural signals in HI listeners (“excess loudness

sensitivity”)

Oetting et al., Hearing Research, 2016. Oetting et al., DGA 2016.
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Increased binaural broadband loudness perception can not be
seen in the audiogram

Oetting et al., Hearing Research, 2016. Oetting et al., DGA 2016.
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New algorithm: binaural bandwidth-adaptive dynamic compression
(BBDC) to normalize the loudness perception in HI listeners for narrow-
and broadband signals for monaural and binaural presentation

New fitting strategy, accounting for binaural loudness perception
using loudness scaling measurements
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Oetting et al., Hearing Research, 2016. Oetting et al., DGA 2016.
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Objective: develop a hearing device that is acoustically transparent,
i.e. allows hearing comparable to the open ear while being capable of
providing a desired sound enhancement at the eardrum

Applications: hearing aids as well as in assistive listening devices

Individualized silicon earmould with core containing 2 receivers and
2 microphones (+ concha microphone)

Integration with EEG electrodes

Denk et al., International Journal of Audiology, 2017.
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Sound equalization: optimize equalization
filter such that superposition of direct sound
and reproduced sound at eardrum is (physically
or perceptually) equal to open ear condition

In-situ individualized calibration
Results: psycho-acoustic experiments + physical evaluation (REIG)
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Denk et al., International Journal of Audiology, 2017. 21
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Multi-Loudspeaker Multi-Microphone
Feedback Cancellation

Reduce acoustic feedback in the vent

microphones by steering a (robust) spatial
null towards the receiver
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Schepker et al., Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
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System-on-Chip for hearing aids
Ultra low-power processor architecture (KAVUAKA) optimized for

real-time processing of complex audio algorithms
(CASA algorithm and beamforming algorithms as case study)
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Power Evaluation of Hearing Aid ASIP Optimizations
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Evaluation setup: TMSC 40nm netlist, Prime Time Power simulations of beamformer algorithms

Gerlach et al., Proc. IEEE International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, 2017.
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Master-Hearing-Aid (MHA) software
development system

Scalable hardware platform for mobile
testing in the field

PC / Notebooks

ARM-system (BeagleBone) with
multi-channel AD/DA

Accelerated chip-based system (KAVUAKA)
Smartphone (iPhone/iPod)
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Versatile Audio Signal Processing Platform — VASSP

Allows hearing aid processing algorithms and split across
smartphones and satellite devices

Split into Audlio Control Core (ACC; runs on smartphone) and Audio
Processing Core (APC; runs on satellite device)

VASSP

e N

ACC
- Controls (on/off, volume,...)
- Acoustic Classifier

- Signal Generator / Player (BT, Wifi, USB)

Processing )>> <<< ‘ "M aH
Device
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