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Summary

Individuals with hearing loss struggle with speech understanding and sound localization, which
significantly impacts their ability to communicate and navigate noisy environments. Hearing
aids can incorporate sound source localization techniques that often estimate the sound source
direction of arrival (DOA). Accurate DOA estimation allows hearing aids to better separate tar-
get sounds from noise, improving speech intelligibility and listening comfort through techniques
such as spatial filtering. However, existing methods, particularly those relying merely on bin-
aural spatial cues, face challenges in real-world acoustic scenarios. These challenges arise from
noise, reverberation, and multiple competing sound sources, which degrade the accuracy of DOA
estimation algorithms. Speech inactivity also poses a significant challenge to DOA estimation
systems, leading to unreliable estimates during silent periods. Deep neural networks (DNNs)
can implicitly capture the complexities of sound propagation and diverse acoustic environments,
leading to more robust and accurate DOA estimates. This enhanced accuracy can ultimately
result in better hearing aid performance and an improved listening experience for individuals
with hearing loss.
The human auditory system effectively analyzes complex acoustic scenes, segregating sound
sources based on features such as periodicity and harmonicity, in addition to spatial cues. In-
spired by the intricate mechanism of the human auditory system and potential of DNNs, the
primary objective of this thesis is to improve DOA estimation performance in noisy and rever-
berant environments by leveraging auditory-inspired periodicity features in combination with
binaural spatial features through DNN-based approaches. This thesis investigates DOA estima-
tion in binaural hearing aids, focusing on both single-talker and multi-talker scenarios.
First, this thesis proposes a novel DNN-based approach for robust DOA estimation of a single
talker in noisy and reverberant environments. The proposed method, referred to as speech-
aware DOA estimation, eliminates the need for a separate voice activity detector (VAD) by
directly estimating DOA upon speech detection that is merely conditioned on the DNN output.
Novel feature combinations, consisting of spatial and periodicity features, are utilized within
dual-path convolutional neural network (CNN) architectures for speech-aware DOA estimation.
In these architectures, each feature is processed separately through parallel convolutional path-
ways. These feature combinations include conventional spatial features, such as broadband
GCC-PHAT or narrowband cross-power spectrum (CPS), alongside a novel periodicity feature
termed periodicity degree (PD). These PD features derived from subband-averaged periodicity
analysis offer varying frequency selectivity. Evaluations are conducted for static and dynamic
single-talker scenarios in various reverberant environments with different signal-to-noise ratios
(SNRs) and in the presence of simulated and recorded background noise. Baseline systems
consist of a CNN that utilizes a single spatial feature type, and cascaded with a pitch-based
VAD. The results show that the proposed systems, using periodicity features in different feature
combinations, consistently outperform baseline systems, regardless of the spatial feature type.
Evaluation results demonstrate that incorporating PD features significantly enhances DOA es-
timation accuracy and reduces angular error, especially in adverse SNR conditions. The benefit
of the speech-aware approach is highlighted by its reliable speech detection for the DOA estima-
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tion task. The proposed approach effectively establishes the benefit of incorporating periodicity
features for speech-aware DOA estimation.
Second, building upon the success of the speech-aware approach by integrating spatial and pe-
riodicity features, this thesis proposes to directly combine real and imaginary components of
narrowband CPS features and PD features within the input of a CNN, eliminating the need for
separate branches. In particular, a novel and computationally efficient two-stage CNN architec-
ture for robust single-talker DOA estimation is proposed. A key innovation is the introduction
of a feature reduction stage employing 1 × 1 convolutions to address the sparsity and high
dimensionality of the narrowband PD features. This stage extracts compact PD saliency fea-
tures, facilitating spectro-temporal processing within the CNN and leading to a more efficient
model. Evaluation results for static scenarios across various SNR conditions, in the presence
of recorded background noise or non-speech directional interference within reverberant envi-
ronments, demonstrate significant improvements. The two-stage CNN outperforms a baseline
system using only CPS features and a pitch-based VAD, with a comparable number of train-
able parameters. Additionally, it surpasses a system using a direct feature combination strategy
without feature reduction, while requiring significantly fewer parameters. This highlights the
computational efficiency and effectiveness of the proposed two-stage architecture for practical
applications.
Finally, the thesis extends the benefits of integrating periodicity and spatial features to multi-
talker DOA estimation. A two-stage CNN, specifically adapted for the multi-talker task, is
proposed, leveraging a combination of narrowband PD features and CPS phase as input. Var-
ious architectural choices are investigated for capturing temporal and spectro-temporal depen-
dencies within the two-stage CNN. The findings reveal that processing each frequency band
independently while capturing temporal dependencies within convolutional blocks yields the
most effective configuration for multi-talker DOA estimation. This configuration offers the best
performance with the lowest computational complexity. An evaluation in static multi-talker
scenarios with two and three simultaneous speakers, in the presence of recorded background
noise across different reverberant environments and SNRs, demonstrates the effectiveness of the
proposed approach. The proposed two-stage CNN consistently outperforms baseline systems
relying solely on the CPS phase or combined with magnitude spectrograms. This shows the
benefit of integrating periodicity and spatial features in multi-talker scenarios, highlighting the
adaptability of this approach to increasingly complex acoustic environments. The results of
this thesis provide the basis for more effective DOA estimation in complex auditory scenarios.
They highlight the value of periodicity features and optimized network design in binaural signal
processing and provide new directions for future research in speech-related applications.
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Zusammenfassung

Individuen mit Hörverlust haben Schwierigkeiten beim Sprachverständnis und bei der Schall-
lokalisierung, was ihre Fähigkeit zur Kommunikation und Orientierung in lauten Umgebungen
erheblich beeinträchtigt. Hörgeräte können Techniken zur Lokalisierung von Schallquellen ein-
beziehen, die häufig die Einfallsrichtung (DOA) der Schallquelle schätzen. Eine genaue DOA-
Schätzung ermöglicht es Hörgeräten, Zielgeräusche von Hintergrundgeräuschen besser zu trennen
und so durch Techniken wie räumliche Filterung die Sprachverständlichkeit und den Hörkomfort
zu verbessern. Bestehende Methoden, insbesondere solche, die lediglich auf binauralen räum-
lichen Merkmalen beruhen, stoßen jedoch in realen akustischen Szenarien auf Herausforderun-
gen. Diese Herausforderungen entstehen durch Rauschen, Nachhall und mehrere konkurrierende
Schallquellen, die die Genauigkeit der DOA-Schätzalgorithmen beeinträchtigen. Auch Sprach-
pausen stellen eine große Herausforderung für DOA-Schätzsysteme dar, da sie während stiller
Perioden zu unzuverlässigen Schätzungen führen. Tiefe neuronale Netze (DNNs) können im-
plizit die Komplexität der Schallausbreitung und verschiedene akustische Umgebungen erfassen,
was zu robusteren und genaueren DOA-Schätzungen führt. Diese verbesserte Genauigkeit kann
letztendlich zu einer besseren Hörgeräteleistung und einem besseren Hörerlebnis für Menschen
mit Hörverlust führen.
Das menschliche Gehör analysiert effektiv komplexe Hörszenen und trennt Schallquellen anhand
von Merkmalen wie Periodizität und Harmonizität sowie räumlichen Hinweisen. Inspiriert durch
den komplexen Mechanismus des menschlichen Gehörs und dem Potenzial von DNNs, besteht
das Hauptziel dieser Arbeit darin, die Leistung der DOA-Schätzung in lauten und halligen
Umgebungen zu verbessern, indem gehörinspirierte Periodizitätsmerkmale in Kombination mit
binauralen räumlichen Merkmalen durch DNN-basierte Ansätze genutzt werden. In dieser Arbeit
wird die DOA-Schätzung in binauralen Hörgeräten untersucht, wobei sowohl Szenarien mit einem
Sprecher als auch mit mehreren Sprechern im Mittelpunkt stehen.
Zunächst wird in dieser Dissertation ein neuartiger DNN-basierter Ansatz für die robuste DOA-
Schätzung eines einzelnen Sprechers in verrauschten und halligen Umgebungen vorgeschlagen.
Die vorgeschlagene Methode, die als sprach-fokussierte DOA-Schätzung bezeichnet wird, macht
einen separaten Sprachaktivitätsdetektor (VAD) überflüssig, indem die Einfallsrichtung direkt
bei der Sprachdetektion geschätzt wird, die lediglich von der Ausgabe des DNN abhängig ist.
Neue Merkmalskombinationen, bestehend aus räumlichen und Periodizitätsmerkmalen, werden
in Dual-Pfad-Convolutional-Neural-Network (CNN)-Architekturen für die sprach-fokussierte DOA-
Schätzung verwendet. In diesen Architekturen wird jedes Merkmal separat durch parallele Fal-
tungswege verarbeitet. Diese Merkmalskombinationen umfassen konventionelle räumliche Merk-
male wie Breitband-GCC-PHAT oder schmalbandiges Cross-Power-Spectrum (CPS) sowie ein
neuartiges Periodizitätsmerkmal, genannt Periodizitätsgrad (PD). Diese PD-Merkmale, abgeleitet
aus einer Frequenzband-gemittelten Periodizitätsanalyse, bieten eine variable Frequenzselektiv-
ität. Evaluationen wurden für statische und dynamische Einzelsprecherszenarien in verschiede-
nen halligen Umgebungen mit variierenden Signal-Rausch-Verhältnissen (SNRs) in Anwesen-
heit von simuliertem und aufgezeichnetem Hintergrundrauschen durchgeführt. Basissysteme
bestehen aus einem CNN, das einen räumlichen Merkmalstyp verwendet und mit einer ton-
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höhenbasierten VAD kaskadiert ist. Die Ergebnisse zeigen, dass die vorgeschlagenen Systeme,
die Periodizitätsmerkmale in verschiedenen Merkmalskombinationen verwenden, die Basissys-
teme konsequent übertreffen, unabhängig vom räumlichen Merkmalstyp. Die Evaluationsergeb-
nisse zeigen, dass die Einbeziehung von PD-Merkmalen die Genauigkeit der DOA-Schätzung
erheblich verbessert und den Winkelabweichungsfehler verringert, insbesondere bei schwierigen
SNR-Bedingungen. Der Vorteil des sprach-fokussierten Ansatzes wird durch seine zuverlässige
Sprachdetektion für die DOA-Schätzung hervorgehoben. Der vorgeschlagene Ansatz verdeut-
licht die Vorteile der Integration von Periodizitätsmerkmalen für die sprach-fokussierte DOA-
Schätzung.
Zweitens, aufbauend auf dem Erfolg des sprach-fokussierten Ansatzes durch Integration von
räumlichen und Periodizitätsmerkmalen, schlägt die Dissertation vor, die realen und imaginären
Komponenten der schmalbandigen CPS-Merkmale und PD-Merkmale direkt im Eingabebereich
eines CNNs zu kombinieren und separate Pfade zu vermeiden. Insbesondere wird eine neuartige
und recheneffiziente zweistufige CNN-Architektur für die robuste DOA-Schätzung eines einzelnen
Sprechers vorgeschlagen. Eine zentrale Innovation ist die Einführung einer Merkmalsreduktion-
sebene mittels 1 × 1 Faltungen, um die Spärlichkeit und hohe Dimensionalität der schmalbandi-
gen PD-Merkmale zu bewältigen. Diese Stufe extrahiert kompakte PD-Salienzmerkmale, die die
spektral-temporale Verarbeitung innerhalb des CNN erleichtern und zu einem effizienteren Mod-
ell führen. Bewertungsergebnisse für statische Szenarien unter verschiedenen SNR-Bedingungen,
in Anwesenheit von aufgezeichnetem Hintergrundrauschen oder nichtsprachlicher, direktionaler
Störung in halligen Umgebungen, zeigen erhebliche Verbesserungen. Das zweistufige CNN über-
trifft ein Basissystem, das nur CPS-Merkmale und eine tonhöhenbasierte VAD verwendet, bei
einer vergleichbaren Anzahl von trainierbaren Parametern. Zusätzlich übertrifft es ein System,
das eine direkte Merkmalskombinationsstrategie ohne Merkmalsreduktion nutzt, während es
deutlich weniger Parameter benötigt. Dies unterstreicht die Recheneffizienz und Wirksamkeit
der vorgeschlagenen zweistufigen Architektur für praktische Anwendungen.
Schließlich erweitert die Dissertation die Vorteile der Integration von Periodizitäts- und räum-
lichen Merkmalen auf die DOA-Schätzung bei mehreren Sprechern. Es wird ein zweistufiges
CNN vorgeschlagen, speziell angepasst für die Mehrsprecher-Aufgabe, das eine Kombination
aus Schmalband-PD-Merkmalen und CPS-Phase als Eingabe nutzt. Es werden verschiedene
architektonische Möglichkeiten untersucht, um zeitliche und spektral-temporale Abhängigkeiten
innerhalb des zweistufigen CNN zu erfassen. Die Ergebnisse zeigen, dass die Verarbeitung
jedes Frequenzbands unabhängig voneinander, während zeitliche Abhängigkeiten innerhalb von
konvolutionalen Blöcken erfasst werden, die effektivste Konfiguration für die DOA-Schätzung
bei mehreren Sprechern darstellt. Diese Konfiguration bietet die beste Leistung bei geringster
Rechenkomplexität. Eine Evaluation in statischen Mehrsprecherszenarien mit zwei und drei gle-
ichzeitigen Sprechern, in Anwesenheit von aufgezeichnetem Hintergrundrauschen in verschiede-
nen halligen Umgebungen und bei unterschiedlichen SNRs, zeigt die Wirksamkeit des vorgeschla-
genen Ansatzes. Das vorgeschlagene zweistufige CNN übertrifft konsistent Basissysteme, die sich
ausschließlich auf die CPS-Phase oder in Kombination mit Magnitudenspektren stützen. Dies
zeigt den Vorteil der Integration von Periodizität und räumlichen Merkmalen in Szenarien mit
mehreren Sprechern und unterstreicht die Anpassungsfähigkeit dieses Ansatzes an zunehmend
komplexe akustische Umgebungen. Die Ergebnisse dieser Dissertation bilden die Grundlage für
eine effektivere DOA-Schätzung in komplexen Hörszenarien. Sie unterstreichen den Vorteil von
Periodizitätsmerkmalen und optimiertem Netzwerkdesign in der binauralen Signalverarbeitung
und geben neue Richtungen für zukünftige Forschung in sprachbezogenen Anwendungen vor.
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1.1 Motivation

The human auditory system excels in analyzing complex auditory scenes, including multiple
talkers, interference, and background noise, often referred to as cocktail party scenarios [2,
3]. This includes accurately localizing sound sources, a process crucial for communication,
spatial awareness, and navigating dynamic environments. However, individuals with hearing loss
often experience significant difficulties in sound localization, which impacts their quality of life,
leading to challenges in social interaction and environmental awareness. Hearing aid technology
enhanced by computational auditory scene analysis (CASA) [4] can mitigate this effect [5].
CASA aims to replicate the human ability to identify and segregate individual sound sources
within complex acoustic environments using computational models. Sound source localization
plays a fundamental role in the CASA systems, allowing binaural hearing aids to pinpoint the
location from which individual sound sources originate relative to the listener. Instead of locating
sound sources in three-dimensional space, binaural hearing aid algorithms often rely on direction
of arrival (DOA) information [5, 6]. By accurate DOA estimation, hearing aids can implement
advanced beamforming techniques to enhance speech intelligibility in noisy environments [7, 8].
This allows the devices to focus on desired speakers while suppressing background noise and
competing talkers. Additionally, accurate DOA estimation facilitates better spatial awareness
for hearing aid users, helping them localize sounds and navigate their auditory environment
more effectively.

Most traditional binaural DOA estimation methods leverage the natural sound processing
capabilities of the human auditory system by analyzing the spatial features that capture the
differences in sound signals arriving at the left and right ears, namely the interaural time dif-
ference (ITD) and interaural level difference (ILD) [9, 10]. These methods include approaches
comparing estimated binaural features with pre-computed templates obtained from head-related
transfer functions (HRTFs), which describe how the listener’s head and torso filter sound. An-
other approach employs relative transfer function (RTF) vectors, which capture the relationship
between sound arriving at different microphones on a listener’s head [8, 11]. Databases of either
HRTFs or RTFs, covering a range of potential source directions, are used for this compari-
son. However, these methods face significant challenges in real-world acoustic environments.
Background noise, interference, and reverberation introduce uncertainties into binaural cues.
These uncertainties cause the extracted features from microphone signals to deviate from the
pre-computed templates, leading to errors in DOA estimation.

Artificial intelligence, particularly deep neural network (DNN), has driven significant ad-
vancements in various domains, including DOA estimation [12]. Common input features for
deep learning-based binaural DOA estimation include the ILD [13, 14], ITD [13], interaural
phase difference (IPD) [15], the cross-correlation function (CCF) [14, 16], and the generalized
cross-correlation with phase transform (GCC-PHAT) [17]. DNN-based techniques often directly
map these features to the sound source DOA [14, 16, 18], while others employ a two-step ap-
proach, first enhancing signal features [19, 20]. In real-life scenarios, speech inactivity, particu-
larly in the presence of background noise or non-speech interference, challenges DOA estimation
systems, leading to unreliable results [21]. A common solution is to use a voice activity detector
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(VAD) with the DOA estimator [21–24]. However, separate VADs often require manual tuning
and can introduce errors, limiting overall system performance.

The auditory scene analysis (ASA) framework posits that the human auditory system groups
signal components based on features like harmonicity and periodicity, and segregates them using
spatial cues such as ITDs [4, 25]. However, while binaural spatial features are widely used
in sound localization and DOA estimation, especially within the DNN-based approaches, the
integration of periodicity and harmonicity remains largely unexplored in this context. This gap
highlights the potential for innovative approaches that combine these features to enhance DOA
estimation performance.

The primary objective of this thesis is to leverage the power of deep learning
to tackle the challenge of binaural DOA estimation for speech signals in noisy and
reverberant environments. Inspired by the intricate mechanisms of the human auditory sys-
tem, this thesis explores innovative DNN-based approaches for integrating auditory-
inspired periodicity features with binaural spatial features, aiming to enhance DOA
estimation performance in binaural hearing aids for both single- and multi-talker
scenarios, without the need for a separate VAD.

The remainder of this chapter presents a foundation for understanding auditory-inspired pe-
riodicity features and binaural localization. These concepts set the stage for understanding the
contributions of this thesis. The remainder of this chapter is organized as follows. Section 1.2
presents a concise overview of the human auditory system, auditory scene analysis, and binaural
sound localization. Section 1.3 explores the roles of periodicity and harmonicity in human au-
ditory scene analysis and CASA systems and investigates various periodicity analysis methods.
It also discusses classical CASA systems incorporating periodicity and harmonicity in conjunc-
tion with other cues, such as spatial cues, for sound separation and localization. Section 1.4
delves into the fundamentals of binaural DOA estimation, encompassing various aspects such as
acoustic scenarios, HRTFs, and traditional DOA estimation approaches. Section 1.5 presents in-
sights into deep learning techniques for DOA estimation, covering most important design choices
made in this thesis, including learning strategies, output coding, input features, and network
architectures. Section 1.6 highlights issues for DOA estimation, particularly those arising from
speech inactivity. It discusses the limitations of common DNN-based approaches and explores
the potential benefits of integrating auditory-inspired periodicity features for improved robust-
ness. Finally, Section 1.7 outlines the challenges addressed and the main contributions of this
thesis.

1.2 Human auditory system and sound source localization

Understanding the mechanisms of the auditory system and sound source localization is essential
for advancements in areas such as hearing aids, audio signal processing, and artificial intelligence
systems that mimic human hearing. This section provides a concise overview of the human
auditory system’s structure and function, the principles of auditory scene analysis, and the
mechanisms underlying binaural sound localization.

3



Figure 1·1: The peripheral auditory system. (Adapted from Lars Chittka; Axel
Brockmann, Perception Space - The Final Frontier, A PLoS Biology Vol. 3, No.
4, e137, https://commons.wikimedia.org/w/index.php?curid=5957984. Modified
from the original.)

1.2.1 Introduction to the human auditory system and auditory scene analysis

The human auditory system can be broadly divided into two main components: mechanical
processing, also known as the peripheral auditory system, and neural processing [26]. Mechanical
processing converts sound waves into electrical signals that the brain can interpret. Neural
processing involves the network of neural pathways and brain regions responsible for analyzing,
interpreting, and responding to auditory information.

Fig. 1·1 depicts the peripheral auditory system of the human ear [27]. In the peripheral
auditory system, sound waves enter through the outer ear, where the unique shape of the
pinna (or auricle) helps filter frequencies based on their direction, providing cues for sound
localization. These sound waves travel through the outer ear canal and reach the eardrum
(tympanic membrane), causing it to vibrate. These vibrations are transmitted through the
three tiny middle ear bones, i.e., the malleus, incus, and stapes. This chain of bones acts as
an impedance-matching system, transferring sound energy from the air-filled outer ear to the
fluid-filled inner ear. Vibrations then reach the cochlea, a spiral-shaped organ in the inner ear
containing the basilar membrane, whose stiffness varies along its length. As a result, different
frequencies cause specific areas of the basilar membrane to vibrate, high frequencies near the
base and low frequencies near the cochlea apex [26]. Hair cells on the basilar membrane convert
the mechanical vibrations into electrical signals, which are sent to the brain via the auditory
nerve.

Through neural processing, the auditory nerve transmits electrical signals from the cochlea
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to the brainstem [26]. In the brainstem, these signals are processed in specific areas that ex-
tract different spatial and spectral features of sound. Certain regions process ITDs, allowing
for the determination of timing differences between the ears. Others process ILDs, allowing to
detect differences in sound intensity. Additional structures analyze spectral cues contributing
to sound localization and segregation [28]. The midbrain integrates information from the brain-
stem, combining ITD, ILD, and spectral cues to refine the representation of auditory space.
Higher-level auditory processing occurs in the auditory cortex, where features are integrated to
create a unified spatial representation of sound sources. This includes stream segregation, which
separates sounds from different sources based on acoustic features like pitch, timbre, and spatial
location, as well as object recognition, which involves identifying and classifying sound sources
using learned patterns [4].

ASA is a fundamental mechanism by which the human auditory system interprets acoustic
signals to distinguish between different sound sources in the environment. Based on Bregman’s
conceptual framework for ASA [25], the human auditory system interprets acoustic signals using
auditory features such as temporal continuity of harmonics and formants, periodicity and har-
monicity of voiced speech, onset and offset synchrony, and spatial location. CASA [4] extends
this concept into computational models, aiming to mimic the human auditory system’s ability
in machine listening systems such as hearing aids to analyze complex auditory scenes.

A key aspect of both the human auditory system and CASA systems is binaural sound source
localization [29]. This process utilizes the difference in signals received at the two ears, known
as binaural cues, to determine the direction and distance of sound sources.

1.2.2 Binaural sound localization

The human auditory system primarily employs two physical cues, ITD and ILD, to determine
the location of sound sources [30]. These cues work in a complementary fashion, with ITD being
most effective at lower frequencies and ILD taking precedence at higher frequencies [30, 31]. ITD
arises from the time difference of arrival (TDOA) of a sound between the left and right ears,
caused by the varying distance the sound must travel to each ear. This difference depends on
the listener’s head size. ITDs are assumed to be the predominant cue for binaural localization
and exist across all frequencies, but they are most helpful in localizing sound components below
approximately 1.5 kHz [32–34]. ITD is represented spectrally as the IPD.

ITD cues alone can be ambiguous, resulting in multiple potential source locations known
as the cone of confusion [33]. The human auditory system leverages the complex shape of the
external ears (pinnae) to resolve this ambiguity [33, 35]. Pinnae introduces spectral modifica-
tions to sound signals, mainly aiding in vertical localization (elevation) and resolving front-back
ambiguities.

ILD occurs due to the shadowing effect of the head, which reduces the sound energy reaching
the ear more distant from the sound source. This effect results from sound wave diffraction and
reflection, dependent on the relationship between the sound’s wavelength and the head’s size
[31]. Diffraction occurs when the sound’s wavelength is larger than the head’s diameter, causing
the sound waves to bend around the head. Reflection happens when the sound’s wavelength is
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smaller than the head’s diameter, leading to sound waves being reflected or backscattered. This
reflection creates a distinct shadow zone behind the head, leading to ILD cues. ILDs are most
pronounced at frequencies above approximately 1.5 kHz, where the reflection of sound waves at
these frequencies is substantial.

1.3 Periodicity and harmonicity

Periodicity and harmonicity are crucial cues in human auditory scene analysis. These cues help
the auditory system to segregate concurrent sounds and organize them into meaningful auditory
objects or streams [4, 26, 36]. This section introduces the fundamental concepts of periodicity
and harmonicity and their importance in human auditory scene analysis. We will detail the
computational approaches CASA systems use to analyze periodicity and harmonicity. We also
explain how CASA systems integrate them with other cues, particularly spatial information like
ITD, to perform sound source separation and localization tasks.

1.3.1 Periodicity and harmonicity in auditory scene analysis

Periodicity is the quality of a signal that repeats itself over time. The repetition rate is called the
fundamental frequency (or pitch), and its inverse is the fundamental period. While pitch and
fundamental frequency are often used interchangeably, and pitch detection algorithms commonly
refer to fundamental frequency estimation methods, they are not strictly equivalent [37]. For
simple harmonic sounds, like pure tones, pitch, a perceptual attribute, is directly related to the
fundamental frequency. However, for more complex sounds, such as those produced by musical
instruments or the human voice, this relationship becomes less straightforward. In the context
of speech, pitch perception helps listeners identify individual voices by grouping harmonics that
are integer multiples of the fundamental frequency [26].

Harmonicity, closely related to periodicity, describes the harmonic structure of sounds where
frequencies are integer multiples of a fundamental frequency. The regular spacing of these
harmonics facilitates perceptual fusion, allowing us to perceive them as a single sound. Con-
versely, components that do not align with the harmonic series of the fundamental frequency
are more likely to be perceived as separate sounds [26]. The human auditory system leverages
this harmonic regularity to segregate concurrent sounds by identifying sets of harmonically re-
lated components within mixtures of frequencies [4]. For instance, if most frequency components
can be grouped into two subsets with different fundamental frequencies, the auditory system
interprets these as two distinct sound sources.

1.3.2 Periodicity and harmonicity analysis in CASA systems

CASA systems often employ a peripheral analysis model that simulates the frequency selectivity
of the cochlea in the human ear using filter banks, such as the gammatone filter bank (GTFB)
[38, 39]. This model incorporates auditory filters that are spaced based on the equivalent rect-
angular bandwidth (ERB), simulating how sounds are split into different frequency subbands
for processing. This bank of filters mimics the frequency response of the basilar membrane, de-
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composing the incoming audio signal into separate frequency subbands [38, 40–42]. The output
of each filter is then processed to simulate the activity of inner hair cells, including rectification,
compression, and low-pass filtering [10, 29, 36]. They then extract features e.g., related to the
periodicity and harmonicity [43–48].

Various algorithms detect and analyze pitch, periodicity, and harmonicity [39]. A com-
mon method involves computing the auto-correlation function (ACF) or normalized ACF in
each frequency subband [49, 50]. The resulting correlogram (or the normalized correlogram),
a two-dimensional representation of ACFs in all subbands [51], facilitates periodicity analy-
sis. Aggregating this correlogram across subbands yields a summary correlogram or summary
auto-correlation function (SACF), revealing multiple periodicities in the signal [50–53].

The bandwidth of gammatone filters increases with frequency, mirroring the human auditory
system but posing challenges for processing high-frequency harmonics in CASA systems [4, 39].
At low frequencies (below 1 kHz), narrow filters resolve individual harmonics. In contrast, at
higher frequencies (above 1.5 kHz), broader filters capture multiple harmonics together, resulting
in an amplitude-modulated signal that fluctuates at the fundamental frequency [54]. To address
this, algorithms often extract the envelope of high-frequency signals to capture these amplitude
fluctuations [43, 48, 53, 55–57].

To improve multi-pitch and periodicity analysis, methods like Tolonen and Karjalainen’s
model compute generalized ACFs for low-frequency signals and high-frequency envelopes, com-
bining them into an enhanced SACF [43]. Such multi-band approaches are more noise-robust,
adapting to periodicity in different frequencies and weighting or discarding those dominated by
noise before combining the remaining ACFs [53, 55]. Advanced periodicity analysis methods,
such as Tan and Alwan’s multi-band summary correlogram (MBSC) algorithm, enhance pitch
detection by emphasizing harmonic structures using comb filters and weighting ACFs based on
the Harmonic-to-Subharmonic Ratio (HSR) [57]. Similarly, Chen and Hohmann introduced the
periodicity degree (PD) by combining normalized auto-correlation (NAC), similar to the nor-
malized ACF, and comb filter ratio (CFR) to robustly measure signal periodicity for speech
enhancement [48]. The PD captures the dominance of harmonic components, distinguishing
voiced speech from aperiodic components even in noisy conditions.

Some periodicity analysis methods [39, 45–47] leverage the glimpsing model of human speech
perception, which suggests that perception relies on time-frequency segments with high local
signal-to-noise ratio (SNR). By identifying periodicity glimpses, spectro-temporal bins with high
periodicity, these methods can isolate segments where a single sound source dominates, pro-
viding a footprint of speech within complex mixtures [58, 59]. Josupeit and Hohmann utilized
the normalized synchrogram, representing the ratio of harmonic energy to total energy in each
time-frequency bin, to analyze the periodic structure of signals [46, 47]. This technique identifies
prominent periodicities corresponding to fundamental periods, aiding in detecting periodicity
glimpses in multi-talker environments for tasks like speech localization and recognition. Building
on this, Luberadzka et al. integrated sparse periodicity auditory features within a predictive
model to simulate human selective attention, effectively separating target speech from back-
ground noise in complex acoustic scenes [45].
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1.3.3 Integrating periodicity and harmonicity with spatial cues

CASA systems leverage periodicity and harmonicity as primary features for sound source sepa-
ration and segregation [36, 43, 44, 60–62]. Similar to the human auditory system, CASA systems
benefit from combining periodicity and harmonicity with other auditory cues, such as spatial
cues from multiple microphones. This integration of multiple cues leads to more robust and
accurate sound source separation.

Darwin and Hukin [63] explored the role of ITD and frequency proximity in segregating a
harmonic from a vowel. Their findings suggest that while ITD is a weak cue on its own, it
can become more effective when combined with frequency-based cues. In contrast, frequency
proximity plays a dominant role, as harmonically related components close in frequency tend to
be perceptually fused into a single sound. The study highlights how harmonicity and regular
frequency spacing help the auditory system group components, enhancing the segregation of
concurrent sounds. Similarly, [64] investigated whether listeners could group sound components
from different frequency ranges using ITD to help segregate concurrent speech sounds. Their
results also demonstrate that listeners cannot use ITD alone to group frequency components
across different subbands.

Both studies show that ITD works more effectively when combined with other auditory
cues. For localization tasks, this means that CASA systems may benefit from a combination of
spatial and spectral cues, e.g., when time-delay information such as ITD and spectral cues such
as periodicity or harmonicity are available together. While the periodicity and harmonicity of
speech have been extensively studied for source segregation and separation, a few studies have
explored their benefits for sound localization [46, 65–67].

Brandstein introduced a method that leverages the harmonic structure in voiced speech
segments [65]. This approach uses a modified generalized cross-correlation (GCC) weighting
scheme based on the periodicity of speech harmonics. Christensen et al. [66] and Woodruff et
al. [67] emphasized pitch-based grouping as a critical step for improving localization by isolat-
ing spectro-temporal regions or fragments dominated by single sources. While these method
shows improved robustness to noise and reverberation compared to traditional approaches, their
performance is inherently tied to the accuracy of the underlying pitch estimation. Josupeit
and Hohmann [46] showed that combining ITD with periodicity-based glimpses improves speech
localization in multi-talker environments, highlighting periodicity as a critical feature for segre-
gating sounds in complex auditory scenes.

Despite the advancements in utilizing periodicity and harmonicity cues for different tasks,
including sound localization, the existing approaches face limitations in complex acoustic en-
vironments. These methods often rely heavily on manually tuned thresholds and heuristics to
identify and extract periodicity glimpses and accurately estimate pitch information. This de-
pendence can limit the adaptability and robustness of these methods when dealing with noise,
reverberation, or multiple overlapping sound sources. Fixed thresholds may not generalize well
across diverse conditions, leading to limited performance. These limitations highlight the need
for more flexible, data-driven approaches that can automatically learn to extract and integrate
auditory cues without relying on preset heuristics.
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1.4 Binaural DOA estimation

Sound source localization typically encompasses estimating both the direction and distance of
sound sources [68]. However, the localization task in binaural hearing aids is often narrowed
down to binaural DOA estimation. The binaural DOA estimation focuses on determining the
angular position of sound sources in the azimuthal and elevation planes without explicitly cal-
culating distance information. This simplification is justified by the far-field assumption, which
is typically valid in most hearing aid scenarios where the listener’s distance to sound sources is
5-10 times greater than the size of the listener’s head (or the distance between two ears) [69].
Moreover, due to the physical constraints of hearing aids, namely their limited size and com-
putational resources [5], focusing on DOA estimation, hearing aids can efficiently allocate their
processing power to provide sufficient spatial information that can be utilized for beamforming,
noise reduction, and overall improvement of the listening experience [5, 70].

A core component of traditional binaural DOA estimation algorithms involves the estima-
tion of ITDs and ILDs through HRTFs, which encapsulate how sound waves are affected by the
anatomy of an individual’s head, torso, and pinnae. HRTFs are defined as the transfer functions
conveying sound from a point source to a listener’s eardrum in anechoic conditions, instrumental
in characterizing binaural cues across frequencies. These functions are unique to each person
and can be approximated using either a database or an acoustical model of the head [71, 72].
Their time-domain counterparts, head-related impulse responses (HRIRs), offer a temporal rep-
resentation of these transfer functions. Historically, HRTFs have been primarily measured in
far-field conditions, utilizing both human and artificial heads for various spatial directions as a
function of azimuth and elevation. They are often provided as HRIR measurements for discrete
angles [1, 73–76].

1.4.1 Acoustic scenarios

Fig. 1·2 depicts the most general acoustic scenario considered in this thesis for different tasks
associated with binaural DOA estimation in reverberant environments. Considered acoustic
scenarios may include single or multiple talkers, non-speech interference, or background noise.
In this thesis, it is assumed that the number of talkers is known. Chapter 2 and Chapter
3 of this thesis consider the task of single-talker binaural DOA estimation in the presence of
background noise, while Chapter 4 extends this to multi-talker scenarios. Typical background
noises considered include diffuse, ambient, and babble noise. Appendix A explores single-talker
binaural DOA estimation in the presence of directional non-speech interference, such as keyboard
typing, vacuum cleaner noise, engine sounds, and other interior/domestic sounds.

The listener in Fig. 1·2 is wearing bilateral hearing aids, one on each ear, equipped with
dual-microphone arrays with microphones near the ears. In addition to background noise or
non-speech interference, each microphone captures the direct sound from each talker and the
surrounding environment’s reflections. These reflected sounds, known as reverberation, are
caused by the interaction of sound waves with surfaces in the environment, such as walls, ceilings,
and objects, and can complicate the process of DOA estimation [68, 77, 78].
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Figure 1·2: General acoustic scenario with multiple talkers, a single non-speech
interference, and background noise in a reverberant environment. The listener
is wearing two hearing aids on the left and right ear, each consisting of two
microphones, where the microphones are located close to the ears on both sides.

1.4.2 Overview of binaural DOA estimation approaches

DOA estimation algorithms often determine the DOA in terms of the azimuth angle or both
azimuth and elevation. Azimuth-only DOA estimation describes the DOA of the sound source
relative to the listener in the horizontal plane. DOA estimation incorporating both azimuth and
elevation provides a complete representation of the sound source’s position in three-dimensional
space. However, real-world listening scenarios where hearing aids are crucial, e.g., conversations
in multi-talker scenarios, usually involve sound sources at roughly the same elevation as the lis-
tener. Hence, focusing on DOA estimation in the horizontal plane addresses the most important
needs of hearing aid users. This thesis considers the DOA estimation in the azimuthal plane
(0◦ elevation). Fig. 1·3 depicts the binaural hearing aid setup and the coordinate system in the
azimuthal plane considered in this thesis. The DOA θ in Fig. 1·3 denotes the azimuth angle
between the reference direction (look direction of the listener) and the talker in the far field.

Among the binaural cues commonly utilized for DOA estimation, ITD is the most prevalent.
ITD extraction can be performed via auditory-inspired approaches using GTFBs [10, 79] or
the broadband GCC-PHAT [79–81]. Research demonstrates that combining ITD (or IPD) and
ILD cues improves DOA estimation accuracy, particularly in challenging multi-talker environ-
ments [9, 10, 82]. These studies often adopt a common approach in binaural DOA estimation
to match the estimated binaural features with pre-computed feature templates derived from
HRTF databases. Another class of binaural DOA estimation methods leverages RTF vectors
[8, 11, 83]. These approaches use prototype RTF vectors pre-computed for various directions
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Figure 1·3: Hearing aid setup and the coordinate system in the azimuthal plane.

using measured HRTF databases. The RTF is commonly defined as the ratio of the HRTFs or
source-to-microphone acoustic transfer functions (ATFs) for a given microphone pair and source
position. It captures the difference in sound propagation paths between two microphones for a
particular source location.

Alongside these cue-based methods, classical DOA estimation techniques [77, 78] are widely
employed. TDOA-based approaches typically involve a two-step process, first estimating the
time delays between microphone signals and then mapping these delays to the source’s direction
[77]. The GCC-PHAT [80] is a well-known TDOA-based method, utilizing cross-correlation
between microphones to find the time delay corresponding to the DOA. It calculates the cross-
correlation in the frequency domain after normalizing the cross-spectrum magnitude, making
it less sensitive to room reverberation and noise. A class of DOA estimation methods, the so-
called beamforming-based methods, involve steering a beamformer towards various candidate
directions, usually searching for the direction that maximizes the output power [7, 84]. A well-
known example is the steered response power with phase transform (SRP-PHAT) method [85],
which weights the frequency components of the received signals using the PHAT weighting and
calculates the power for each potential source direction. Model-based approaches like maximum
likelihood (ML) estimation [7, 11, 86] make assumptions on statistical representations of the
underlying signals. Subspace-based techniques such as multiple signal classification (MUSIC)
[87, 88] and estimation of signal parameters via rotational-invariance techniques (ESPRIT) [89]
offer alternative strategies for DOA estimation.

A significant challenge in binaural DOA estimation is the degradation caused by real-world
acoustic conditions. Background noise, interference, and reverberation introduce uncertainties
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into the binaural cues or violate assumptions on the signal models. These uncertainties can dis-
tort the extracted features, leading to mismatches with pre-computed templates and ultimately
reducing DOA accuracy [10].

1.5 Deep learning for DOA estimation

In recent years, DOA estimation has increasingly transitioned towards DNN-based approaches,
which offer several advantages over traditional methods [12]. Unlike traditional approaches
that often rely on assumptions on signal distribution or spatial characteristics, DNN-based
approaches can capture complex patterns and relationships in acoustic data, leading to more ac-
curate and robust DOA estimation in challenging real-world conditions. DNN-based techniques
have demonstrated strong performance in challenging acoustic environments, particularly in the
presence of noise, reverberation, and interference.

1.5.1 Learning strategy

Learning strategies for DOA estimation are typically divided into unsupervised (or semi-supervised)
[90–95] and supervised approaches [14–20, 23, 96–106]. Unsupervised approaches do not require
labeled data and instead rely on identifying patterns or structures within the data to estimate
the DOA. These methods can be beneficial when labeled data is scarce or difficult to obtain,
but they often face challenges in complex environments where clear patterns are less evident,
potentially impacting accuracy. In contrast, most DNN-based DOA estimation techniques uti-
lize supervised learning, which involves training models on a large amount of labeled data. This
supervised approach is particularly advantageous as it allows the model to capture complex
patterns from the data, leading to more precise DOA estimation. In this thesis, we adopt
the supervised approach due to the availability of large labeled datasets and the feasibility of
generating additional training data as required. This approach enables us to fully exploit the
capabilities of DNNs to achieve accurate and reliable DOA estimation.

1.5.2 Output coding

When designing a DNN for DOA estimation or, more generally, sound source localization, choos-
ing between classification and regression as the output strategy is crucial. Classification involves
dividing the localization space into distinct directions or zones, representing different classes.
The DNN is trained to output the probability of a source being present in each direction or
zone [14, 16, 17, 20, 23, 95–99, 102, 103, 105, 107–117]. This method is versatile, accommodat-
ing both single [16, 20, 99, 103, 107–109, 112, 114, 116–118] and multi-source [14, 17, 23, 95–
98, 102, 105, 113, 115] localization, as the network learns to predict source activity for each zone
regardless of the total number of sources. Conversely, regression aims to directly estimate the
source’s continuous spatial location, represented in Cartesian or spherical coordinates, or through
generating intermediate features for traditional DOA estimation [15, 93, 100, 101, 104, 106].

While regression avoids the quantization errors associated with classification, it requires prior
knowledge of the number of sources and often encounters the source permutation problem in
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Figure 1·4: A block diagram of a typical classification-based DOA estimation
system for binaural hearing aids. Binaural signals are initially processed to ex-
tract input features Φ. These features are then mapped to a posterior probability
distribution for each DOA class i, representing the discretized DOA θi. Finally,
the probability distribution is used for DOA estimation.

multi-source scenarios [109, 119–122]. This problem arises due to the ambiguity in matching
estimated outputs with their corresponding targets during training and evaluation, making it
difficult to determine which estimate corresponds to which source. This is a significant drawback
of regression-based methods in multi-source scenarios, which require multiple regressors and
network architectures. While the choice between regression and classification depends on the
specific application and requirements, several studies suggest that classification might be a
more suitable option for DOA estimation, especially in multi-source scenarios and challenging
environments like low SNR conditions and when sources are closely spaced [109, 121, 123]. This
thesis adopts the classification approach for DOA estimation, which requires a single network
architecture, simplifying the system design and potentially improving performance in real-world
hearing aid scenarios.

Considering the DOA estimation as a classification problem, the DOA range is typically
discretized into a set of distinct DOA classes. For instance, the entire 360◦ azimuth range can
be divided into 72 directions, resulting in discretized DOAs with a 5◦ resolution. Fig. 1·4 depicts
the block diagram of a typical classification-based system for a binaural hearing aid setup. For
single-talker scenarios, the DNN’s output layer typically consists of neurons, each representing
a DOA class. Taking the one-hot encoding scheme, the network is trained to activate the
neuron associated with the sound source’s DOA while suppressing others. A softmax activation
function is commonly used to convert the network’s outputs into a probability distribution across
DOA classes [99, 107, 111, 112, 117]. The DOA with the highest probability is selected as the
estimated DOA during inference. For multi-talker scenarios, the output layer typically has one
neuron for each DOA class, similar to single-talker DOA estimation. However, instead of using
the softmax activation function, with an assumption of independent output classes, i.e., source
locations are independent of each other, the sigmoid activation function is often used as it allows
all neuron outputs to be independent and range from 0 to 1 [98, 102, 113]. During inference,
when the number of active sources is unknown, the approach analyzes the output probability
distribution and identifies peaks exceeding a predefined threshold. Each peak indicates an active
sound source, with the corresponding DOA class taken as the estimated DOA. This strategy is
particularly useful in dynamic environments where the number of sources can vary over time. On
the other hand, when the number of sources is known beforehand, the process involves selecting
the DOA classes with the highest probability outputs corresponding to the known number of
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sources. The DOAs associated with these classes are then taken as the estimated DOAs.

1.5.3 Input feature

Most DNN-based approaches rely on hand-crafted, pre-processed input features derived from
established signal processing techniques rather than learning directly from raw waveforms. These
features are designed to emphasize the spatial and time-frequency characteristics inherent in
multichannel audio signals. Commonly used input features include those employed in classical
DOA estimation approaches, such as CCF [14, 16, 101], GCC-PHAT [17], ITD [13, 105], ILD
[13, 14, 16, 18, 101, 105], IPD [15, 18], and RTF [23, 93]. To move towards more generalized
representations, time-frequency representations like spectrograms (based on magnitude, phase,
real, or imaginary components) are often employed [20, 96–98, 102, 103]. Additionally, mel-
scale and GTFB representations are utilized to approximate the auditory system’s frequency
response, aligning with human auditory perception [17, 104–106]. The cross-power spectrum
(CPS), closely related to cross-correlation, provides another time-frequency representation used
as input features [110]. In fact, the cross-correlation function can be obtained by taking the
inverse Fourier transform of the CPS. Similarly, the GCC-PHAT is obtained by normalizing
the CPS to isolate its phase information and then taking the inverse Fourier transform of the
CPS phase. Finally, some models use the raw multichannel waveforms as input, allowing the
network to learn its own representations [99, 100], though this approach can be computationally
demanding. The choice of input features influences the complexity and performance of the
model, and the optimal choice depends on factors like the application, acoustic environment,
and available resources.

While deep learning approaches can learn directly from raw data or spectrograms, incor-
porating hand-crafted spatial features as input can enhance performance and reduce training
requirements. These features can provide a more compact and informative representation of the
spatial audio information, allowing neural networks to focus on learning higher-level patterns
relevant to localization rather than having to learn basic acoustic principles.

1.5.4 Network architecture

A wide variety of DNN architectures [124–126] have been studied for sound source localization,
ranging from more simple structures like feedforward neural networks to more complex models
such as convolutional neural networks (CNNs), residual networks, recurrent neural networks
(RNNs), attention-based networks, and encoder-decoder architectures. Initial attempts at us-
ing neural networks for sound source localization employed relatively simple architectures, such
as multilayer perceptrons (MLPs), a particular type of feedforward neural networks (FFNNs)
with fully-connected layers [13, 14, 108, 109]. However, these architectures generally have
limited capacity to capture audio signals’ spatial and temporal intricacies. Since the intro-
duction of CNN architectures for sound localization application [107], they have been widely
used. Researchers explored various CNN architectures, ranging from basic convolutional layers
[17, 18, 22, 98, 99, 102, 110, 111, 117, 118, 127–130] to more sophisticated designs like Residual
Networks (ResNets) [92, 95, 97, 100, 112]. RNNs, known for capturing long-term temporal de-
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pendencies [124], are frequently integrated into convolutional recurrent neural network (CRNN)
architectures, leveraging the combined strengths of RNNs and CNNs [96, 113, 131]. Due to
their ability to model the temporal dynamics of sound signals, CRNNs have been predomi-
nantly used for sound event localization and detection, particularly in the DCASE challenge
[132]. Beyond CNNs, attention-based and encoder-decoder architectures have also been applied
to sound source localization. Encoder-decoder networks, including autoencoders and U-Nets,
offer powerful ways to learn compressed representations and accurately estimate sound source
DOA [23, 94, 106, 133]. Attention mechanisms, like multi-head self-attention [134], enable neural
networks to selectively concentrate on specific segments of an input sequence. This capability
is particularly useful to handle the temporal complexities of sound events [135, 136]. While
effective, these methods often come with higher computational demands and complexity.

While each architecture has its strengths, CNNs have emerged as the most commonly used
architecture for sound localization and DOA estimation systems. Although attention-based and
encoder-decoder networks are powerful for tasks involving complex sequence modeling, they in-
troduce additional complexity that may not be necessary for the relatively more straightforward
task of DOA estimation in hearing aids. Additionally, CNNs use shared weights in their con-
volutional layers, significantly reducing the number of parameters compared to fully-connected
networks. This design makes CNNs more computationally efficient and easier to train, especially
when dealing with high-dimensional audio input. For example, in [22], a real-time CNN-based
DOA estimation system was implemented on an Android smartphone using its built-in two mi-
crophones, tailored explicitly for hearing aid applications. CNNs excel at processing data with
grid-like structures, making them well-suited for handling the spatial, spectral, and temporal
patterns present in audio features like spectrograms, GCC-PHAT, and RTF representations.
The key advantage of CNNs lies in their convolutional layers, which employ learnable filters
that slide across the input data [124]. These layers extract local features, allowing the network
to identify patterns and relationships between different time-frequency bins and microphone
channels. This is particularly beneficial in sound localization as it enables the network to learn
spatial patterns and relationships across frequency bands and microphone inputs.

1.6 Open issues

In real-life applications, speech inactivity poses a substantial challenge to DOA estimation sys-
tems, often leading to unreliable results. These challenges persist despite significant advance-
ments in DOA estimation techniques, particularly those leveraging DNNs. A common approach
to address speech inactivity is the integration of a VAD with the DOA estimator, which is con-
sidered a VAD-informed approach. For instance, research has demonstrated that incorporating
a VAD can enhance DOA estimation systems utilizing CNNs for hearing aid applications by
avoiding DOA estimation during noise-only frames [22]. Fig. 1·5 illustrates the block diagram
of a classification-based system that leverages spatial features in a binaural hearing aid setup,
combined with a VAD. This configuration allows the DOA estimation process to be conditioned
on speech presence detected by the VAD.

However, this approach imposes some limitations. Separate VADs often require manual
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Figure 1·5: A block diagram of a classification-based DOA estimation system
for binaural hearing aids, combined with a voice activity detector to mitigate
the effect of speech inactivity on DOA estimation performance. A reference
microphone signal is used for the voice activity detector, commonly employed to
prevent DOA estimation when the signal is dominated by noise.

tuning, which can be time-consuming and may not generalize well across different acoustic
environments. It should be noted that a VAD is primarily designed for speech detection, and
its inclusion does not automatically translate to improved DOA estimation. The effectiveness
of using a VAD for these purposes heavily relies on its accuracy. While a VAD can contribute
positively, errors in VAD output, such as false positives, where background noise is misclassified
as speech, can impair the DOA estimation process. Many VAD methods use features related
to the pitch and periodicity of speech signals [137–140]. Real-life recordings for hearing aid
applications are often contaminated by various noise sources, such as traffic, wind, or background
conversations [141], which can degrade the performance of pitch and periodicity estimation
methods [142].

Instead of relying on a VAD-informed approach for DOA estimation, a single DNN model
could handle both speech detection and DOA estimation. This streamlined approach can poten-
tially improve DOA estimation performance, particularly in challenging acoustic environments,
while reducing computational overhead.

Moreover, while periodicity and harmonicity, especially when combined with spatial cues,
have proven helpful in traditional CASA systems, their application to DNN-based DOA esti-
mation remains unexplored. Current methods, often relying on manually tuned parameters,
struggle in complex acoustic environments. This highlights the need for data-driven approaches
that potentially leverage these auditory cues for more robust DOA estimation.

1.7 Thesis challenges and main contributions

This thesis introduces novel approaches, previously unexplored, for binaural DOA estimation
leveraging the auditory-inspired periodicity features as the distinctive footprint of speech signals.
By integrating these features with spatial features within DNN frameworks, the thesis improves
DOA estimation in binaural hearing aids across single and multi-talker environments. This
thesis highlights the potential of combining periodicity and spatial features for DOA estimation,
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Figure 1·6: A general block diagram of a classification-based DOA estimation
system for binaural hearing aids, utilizing auditory-inspired periodicity features
(Ψ) as a monaural feature combined with spatial features (Φ).

paving the way for future advancements in sound source localization and speech enhancement
for the hearing aid technology and speech processing fields.

Fig. 1·6 illustrates a general block diagram of a classification-based DOA estimation approach
that leverages the proposed feature combination. Integrating spatial and periodicity features in
a neural network is challenging due to the different nature of these features, requiring innovative
approaches and network designs to efficiently and effectively combine these heterogeneous data
types. This integration must be optimized to enhance DOA estimation accuracy while remaining
computationally efficient. This could involve concatenation, attention mechanisms, or other
fusion techniques that allow the network to learn the most relevant features for accurate DOA
estimation. Moreover, periodicity features often have a sparse structure because they are derived
from harmonic content that might not be present throughout the entire signal. The challenge is
to design a network architecture that can effectively exploit these sparse features without being
impaired by irrelevant or less informative parts of the signal. The neural network must be able
to focus on and extract the most salient periodicity features that contribute to DOA estimation.
By comparing the performance of the developed models against baseline systems in both single-
and multi-talker scenarios, this thesis endeavors to demonstrate the advantages of the proposed
feature integration strategies.

As the first contribution of this thesis, in Chapter 2, we propose a novel DNN-based
approach that reliably estimates the DOA of a single talker upon speech detection
merely relying on the DNN output, without requiring a separate VAD. We propose
different DOA estimation systems using dual-path CNNs with parallel convolu-
tional pathways, exploiting novel feature combinations consisting of the periodicity
and spatial features as separate inputs. This contribution also presents a novel subband-
averaged formulation of a periodicity feature, known as the PD, with varying frequency selec-
tivity. We show that, regardless of the spatial feature type (subband-averaged or broadband),
the proposed systems consistently demonstrate a clear benefit from the feature combination
compared to baseline systems utilizing the same spatial feature in conjunction with a cascaded
pitch-based VAD, achieving higher DOA estimation accuracy and reduced angular error.

As the second contribution, Chapter 3 introduces an efficient DOA estimation system
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within a two-stage CNN architecture for single-talker binaural DOA estimation.
Unlike the methodology detailed in Chapter 2, which processes PD and spatial
features separately, this approach merges and jointly processes the input features in
a single convolutional pathway. This two-stage CNN employs 1×1 convolutions to transform
the sparse narrowband PD features into compact PD saliency features, allowing for a more
computationally efficient system with improved performance rather than directly combining the
spatial and PD features. The proposed system also outperforms the baseline system, which
consists of a CNN using the same spatial feature and a cascaded pitch-based VAD.

As the third contribution, built upon the previous chapter, Chapter 4 proposes to use the
combination of narrowband spatial and PD features in a computationally efficient
two-stage CNN architecture specifically adapted for multi-talker scenarios. This
system effectively captures the spectro-temporal dependencies in the input features across a
few CNN layers, demonstrating the effectiveness of feature combination for multi-talker DOA
estimation in binaural hearing aids.

1.8 Thesis outline

In the remainder of this section, we provide a clear chapter-by-chapter overview of this thesis,
summarizing the content and highlighting the contributions of each chapter. A structured thesis
overview is given in Fig. 1·7.

In Chapter 2, built upon our preliminary study in [143], we explore enhancing single-talker
binaural DOA estimation by considering the speech-aware DOA estimation approach. This
DNN-based approach formulates the DOA estimation task as a classification problem where, in
addition to the DOA classes, a detection class in the output serves as an uncertainty class for
reliable DOA estimation. This chapter pioneers combining spatial features with an auditory-
inspired periodicity feature, known as the PD, as input to a CNN. In particular, we propose
dual-path CNN architectures using parallel branches of convolutional layers, each receiving the
spatial and PD features separately. The outputs of both branches are combined and used as
input to a fully-connected path. This integration facilitates a speech-aware DOA estimation
system that effectively operates without a separate VAD, distinguishing it from standard DNN-
based systems. By training with both speech and non-speech signals, the CNN is enabled to
capture the harmonic structure encoded in PD features, distinguishing speech from non-speech
portions and accurately mapping spatial features to the sound source DOA upon speech detec-
tion. A significant contribution of this chapter is the evaluation of speech-aware DOA estimation
systems utilizing both broadband and narrowband feature combinations compared to baseline
systems. For narrowband features, we investigate using real/imaginary and magnitude/phase
components of the CPS alongside a new subband-averaged PD representation. For broadband
features, we combine GCC-PHAT with broadband PD features. This is a critical advancement
over previous studies, providing insights into the benefits of employing PD features in both fea-
ture combinations for speech-aware binaural DOA estimation across different static and dynamic
source scenarios. This chapter also presents the formulation of PD that incorporates auditory
pre-processing with adjustable frequency resolution, generating a subband-averaged representa-
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Figure 1·7: Structure of the thesis.
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tion of PD. Extensive evaluations compare the performance of proposed narrowband systems
with baseline systems in static-source scenarios within reverberant environments and dynamic
scenarios with a single moving speech source. These evaluations, conducted under matched and
unmatched background noise conditions and different SNR levels, demonstrate the benefit of
incorporating PD features with any type of spatial feature for DOA estimation. The proposed
speech-aware systems outperform baseline systems that rely solely on spatial features and a
pitch-based VAD. The evaluations reveal that the proposed method, employing PD features, ef-
fectively estimates DOA in adverse SNR conditions and with higher degrees of spectro-temporal
sparseness.

In Chapter 3, we refine the speech-aware binaural DOA estimation system from Chapter
2 by proposing a novel and computationally efficient two-stage CNN architecture. This new
architecture provides a novel technique for integrating CPS and PD features while maintaining
a similar training and testing paradigm for speech-aware DOA estimation. Firstly, instead
of subband-averaged PD features, we use a narrowband representation of PD and the real
and imaginary components of CPS. Secondly, instead of a dual-path CNN architecture used in
Chapter 2, the two-stage CNN aims at directly combining the PD and CPS features on the same
spectro-temporal regions. A pivotal contribution of this work is introducing a feature reduction
stage based on 1 × 1 convolutions for the narrowband PD features before their joint processing
with CPS features. This strategy is designed to exploit the sparsity property of speech signals
more effectively by reducing the dimensionality of the PD features, which leads to a more
efficient model that can guide the speech-aware DOA estimation process more effectively by
focusing on compact, PD saliency features derived from the sparse structure of the PD features.
This chapter delves into the benefits of PD dimensionality reduction, exploring its impact on
both DOA estimation accuracy and computational efficiency. Evaluation results in terms of
DOA estimation accuracy and angular error for static single-talker scenarios in two reverberant
environments (with varying background noises and SNRs) demonstrate several key findings.
Firstly, the proposed two-stage CNN performs better than a baseline system consisting of a
CNN using only CPS features and a pitch-based VAD, even with a comparable number of
trainable parameters. Secondly, it outperforms a speech-aware system that lacks PD feature
reduction and requires a significantly lower number of trainable parameters. This highlights the
computational efficiency of the proposed two-stage system, making it a practical and attractive
solution for real-world applications.

In Chapter 4, we extend the research into more complex acoustic scenarios, focusing on
multi-talker DOA estimation. Leveraging the insights and advancements from Chapter 3, this
study addresses the gap in previous research by effectively utilizing narrowband PD features
as monaural spectral features alongside the CPS phase as binaural spatial features in a two-
stage CNN architecture adapted to the multi-talker DOA estimation task. The multi-talker
DOA estimation approach contrasts with the speech-aware approach explored in Chapters 2 and
3. While the speech-aware approach included DOA classes alongside a detection class as the
output classes, our multi-talker DOA estimation model only includes the DOA classes. Various
architectural choices are investigated for the two-stage CNN, including different approaches to
capture temporal and spectro-temporal dependencies of the PD and CPS features. Among the
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different design choices investigated, the proposed system that captures temporal dependencies
merely within convolutional blocks while independently processing each frequency emerges as
the most effective system. This configuration offers the best DOA estimation performance
with the lowest computational complexity, highlighting the importance of tailored architectural
decisions. Conducting evaluations in static source scenarios with multiple talkers across different
reverberant environments and SNRs with different background noises demonstrates that the
proposed system consistently outperforms baseline systems that utilize either CPS features alone
or in combination with magnitude spectrograms, highlighting the efficacy of integrating PD and
CPS phase features.

In Appendix A, we consider the DOA estimation systems proposed in Chapter 3 and
conduct additional experiments to investigate the benefit of the proposed systems for speech-
aware DOA estimation in challenging scenarios. In particular, we evaluate the performance of the
proposed systems and the baseline system in single-talker scenarios with non-speech interference
in two reverberant environments. The proposed two-stage CNN, leveraging narrowband PD
and CPS features, significantly enhances single-talker DOA estimation accuracy in reverberant
environments with non-speech interference, outperforming the baseline system that utilizes a
VAD. The improvement is notable across all tested SNRs, particularly under low SNR conditions.
Additionally, the two-stage CNN with feature reduction consistently outperforms the proposed
system without feature reduction. Although non-speech interference poses more significant
challenges than the background noise used in previous experiments (Chapter 3), the proposed
systems exhibit greater robustness to such interference than the baseline system.

In Chapter 5, we summarize the main findings of the thesis and provide an outlook on
potential further research for future works.
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Chapter 2
Speech-aware Binaural DOA Estimation Utilizing
Periodicity and Spatial Features in Convolutional
Neural Networks

This chapter is a reformatted reprint of the following publication:
R. Varzandeh, S. Doclo, V. Hohmann, “Speech-aware binaural DOA estimation utilizing

periodicity and spatial features in convolutional neural networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 32, pp. 1198-1213, 2024.

This study introduces a reliable DNN-based method to estimate a single talker’s DOA dur-
ing speech segments without needing a VAD. The proposed method uses a unique dual-path
CNN that combines auditory-inspired periodicity features with spatial features. This feature
combination within the DNN framework outperforms the standard approach employing a CNN
that uses the same spatial features with a separate VAD, resulting in improved DOA estimation
accuracy and lower angular error.
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Abstract

In recent years, several supervised learning-based approaches have been proposed for estimating
the direction of arrival (DOA) of a single talker in noisy and reverberant environments. In the
absence of auxiliary information, such as a voice activity detector (VAD), the estimated DOA may
be erroneous due to speech pauses or noise dominance. In this paper, we consider a speech-aware
DOA estimation system for binaural hearing aids, which does not require a separate VAD. This
system utilizes a combination of spatial features with an auditory-inspired periodicity feature called
periodicity degree (PD) as input features of a convolutional neural network (CNN). Using speech
and non-speech signals during the training, the CNN can capture the harmonic structure encoded
in the PD features, thereby distinguishing speech from non-speech portions and simultaneously
mapping spatial features to sound source DOA upon speech detection. To investigate the benefit of
using PD features for speech-aware DOA estimation, we evaluated the performance of speech-aware
systems that utilized either broadband or narrowband feature combinations compared to baseline
systems. We propose to use a novel narrowband feature combination consisting of the narrowband
cross-power spectrum (CPS) as the spatial feature and a new subband-averaged representation of
PD features. The broadband feature combination consisted of the generalized cross-correlation with
phase transform (GCC-PHAT) and the broadband PD features. The baseline systems considered in
this work consisted of a CNN that exploits only a spatial feature, cascaded with a VAD. Evaluations
in reverberant environments with different background noises for both static and dynamic single-
talker scenarios demonstrate that incorporating the PD feature in conjunction with any type of
spatial feature provides an advantage for binaural DOA estimation in terms of accuracy and angular
error.

2.1 Introduction

Reliably estimating the DOA of a target speech source is a crucial task in applications such as
binaural hearing aids. Several DOA estimation approaches have addressed this task. The model-
based approaches [4, 8, 11, 21, 79, 144] typically rely on specific assumptions about the signal,
noise, or reverberation model, which can be violated in adverse noisy and reverberant conditions,
leading to a degraded DOA estimation performance. In addition to model-based DOA estimation
approaches, in recent years several supervised learning-based DOA estimation approaches based
on DNNs have been proposed [12, 14, 16, 18–20, 98, 99, 101], which can provide more robust
performance in adverse scenarios when trained in different acoustic conditions [14, 99].

Most DNN-based binaural DOA estimation methods directly map features extracted from
the signal to the sound source DOA [14, 16, 18], while some methods follow a two-step approach
by first transforming signal features into enhanced features [19, 20]. The most frequently-used
(spatial) features for binaural DOA estimation are the ILD, the ITD, the CCF, and the GCC-
PHAT [80]. The complete CCF or the GCC-PHAT are typically used as the input feature for
the DNN [14, 16], as this was shown to outperform using the ITD as the input feature [14].
Whereas most methods estimate the DOA in the azimuthal plane [14, 16, 20, 99], a few methods
use multi-task learning approaches to jointly estimate the sound source azimuth together with
elevation [18, 101]. In this work, we only consider binaural DOA estimation in the azimuthal
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plane.
As a common DNN-based approach, the binaural DOA estimation task is often formulated

as a classification problem, aiming at determining a mapping from input to a spatial probability
map for a discretized azimuth range [14, 16, 99]. For instance, a binaural sound localization
system was proposed in [99], which employs a CNN to find a mapping from the raw binaural
signal waveforms to a posterior probability map. Although this system has been successfully
able to outperform the baseline system with the GCC-PHAT input feature, it has only been
trained and evaluated for noiseless scenarios, which is unrealistic in practical situations. Another
category of DNN-based approaches involves the task of sound event localization and detection,
which aims to identify and localize specific sound events in audio recordings, including both
speech and non-speech events [97, 132]. In this paper, we focus on classification-based binaural
DOA estimation, specifically aiming at DOA estimation of a single speech source.

A challenge when applying DOA estimation systems in real-life scenarios arises from speech
inactivity, which can result in unreliable DOA estimates [21]. A general approach to deal with
estimation errors due to speech inactivity in both model-based and DNN-based systems is to
utilize a VAD [138] in parallel or cascaded with a DOA estimation system [21–24]. It should be
realized that a separate VAD nonetheless usually requires manual and time-consuming parameter
tuning which may entail readjustments when the system is used in different acoustic conditions.
Moreover, a separate VAD itself can introduce errors that can restrict the overall performance
of the system. In [22], a VAD was integrated into a CNN-based DOA estimation system for
hearing aid applications, ensuring that the system avoids DOA estimation during noise-only
frames. We will adopt a similar VAD-informed approach in the baseline systems considered in
this paper. To address the speech inactivity problem in single-talker binaural DOA estimation,
we will consider an alternative approach in this study. We treat it as a DOA estimation task
without the need for a separate VAD, which we refer to as speech-aware DOA estimation.

To mitigate estimation errors caused by speech inactivity, classification-based systems com-
monly employ temporal averaging of the posterior probability map in the output over a relatively
long duration [14, 16, 98, 99, 102]. Although this approach helps to smooth out unreliable esti-
mates and improve the overall accuracy, it can compromise the reliability of the DOA estimation
system when a new speech source emerges or becomes inactive. It also prevents the system from
quickly detecting a change in the trajectory of a moving sound source.

A limited number of systems detect periods of silence within the output of a neural network
[110, 112]. However, these approaches, primarily utilized in robot audition scenarios, have not
been evaluated against the conventional classification-based approach, leaving their benefits
unclear. Furthermore, some of these approaches have only been evaluated under unrealistic
background noise conditions [112], while others are tailored for specific source distance and
heights and have shown limited performance when tested in conditions that were not included
in the training data [110].

It is assumed that the human auditory system groups signal components according to infor-
mation such as periodicity of voiced speech and continuity of harmonics, and then ITD informa-
tion is used to segregate the grouped components [4]. It is also known that about 75% of speech
in spoken English is voiced and periodic [145]. This motivates the usage of an auditory-inspired
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periodicity feature in combination with spatial features as input features of a neural network for
DOA estimation of a single speech source.

In [48], an auditory-inspired feature called PD was proposed for fundamental period detection
and estimation and was shown to be useful for VAD in low-SNR conditions. In [143], we proposed
a classification-based speech-aware binaural DOA estimation system based on CNNs, which does
not require a separate VAD. The proposed speech-aware system was compared to a baseline
system that used a conventional classification-based approach. This study showed the benefit
of using broadband PD features in combination with GCC-PHAT features as input features of
the CNN for speech-aware binaural DOA estimation in static source scenarios.

In this paper, we extend our earlier study [143] by incorporating novel narrowband feature
combinations. Our objective is to investigate the advantages of employing PD features in both
narrowband and broadband feature combinations for speech-aware binaural DOA estimation
across different static and dynamic source scenarios. We propose the novel narrowband feature
combinations as follows: First, we introduce a formulation of the PD that incorporates an
auditory pre-processing with an adjustable frequency resolution. This formulation generates
a subband-averaged representation of the PD, allowing us to take advantage of the frequency
selectivity of the human auditory system. Second, we propose to use narrowband CPS features
(as spatial features) in combination with the subband-averaged PD feature as input features for
the CNN. For the CPS feature, we consider either using the real and imaginary or the magnitude
and phase components of the CPS. In summary, this study aims to investigate the benefits of
PD features in the context of novel narrowband feature combinations, as established for the
broadband feature combination in [143].

We conduct evaluations to compare the performance of the proposed narrowband systems
with narrowband baseline systems consisting of a CNN utilizing only the CPS feature, cascaded
with a state-of-the-art pitch-based VAD [138]. Additionally, We evaluate the performance of
speech-aware and baseline systems that use broadband features as input features. All systems
have been evaluated for static-source scenarios in reverberant environments with matched and
unmatched background noise conditions. Furthermore, experiments were conducted for dynamic
scenarios with a single moving speech source at different velocities for different SNR conditions.
Our experimental results demonstrate the advantage of using the auditory-inspired PD feature
in combination with any type of spatial feature (including the GCC-PHAT, real and imaginary
parts, or magnitude and phase components of the CPS) for binaural DOA estimation.

The remainder of this paper is organized as follows. In Section 2.2, the single-talker DOA
estimation problem is formulated as a classification problem and different approaches are dis-
cussed. In Section 2.3, we introduce the input features employed in this study. Section 2.4
provides a comprehensive description of the proposed and baseline systems. The details of the
experimental setup for training and evaluation of all systems including datasets, data gener-
ation, training and network hyperparameters, and evaluation metrics appear in Section 2.5.
The proposed and baseline systems are evaluated, and the results are discussed in Section 2.6.
Section 2.7 summarizes the results and presents the conclusion.
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2.2 DOA estimation as a classification problem

In this work, we consider the problem of single-talker DOA estimation in the azimuthal plane
using a binaural hearing aid setup with M microphones, where the microphones are located
close to the ears on both sides. The acoustic scenario consists of a (possibly moving) sound
source at DOA θ in the azimuthal plane and background noise. The m-th microphone signal in
the time domain at time t is given by

ym(t) = xm(t) + vm(t), (2.1)

where xm and vm denote the desired speech and noise signal components in the m-th microphone
signal, respectively, which are assumed to be uncorrelated. In the short-time Fourier transform
(STFT) domain, the m-th microphone signal at time frame n and frequency bin k (with K and
D the STFT length and hop size, respectively) can be written as

Ym(n, k) = Xm(n, k) + Vm(n, k). (2.2)

By dividing the azimuth range into a set of C discrete DOAs {θ1, · · · , θC}, DOA estimation
can be considered as a classification problem, where the DOA of a sound source should be
assigned to one of the DOA classes. In this work, we consider C = 72 classes for the full 360◦

azimuth range, corresponding to a DOA map with 5◦ resolution. In the next subsections, two
different classification-based approaches for binaural DOA estimation will be discussed.

2.2.1 Conventional DOA estimation

Conventionally, DOA estimation is formulated as a C-class classification task, where each output
class corresponds to a DOA [16, 99]. During training, each training example belongs to only one
output class that has been labeled using oracle DOA information. During testing, the neural
network predicts a posterior probability map in the output. Under the single-source assumption,
the DOA is then estimated by finding the DOA class with the highest posterior probability. To
deal with erroneous DOA estimates (e.g., during speech pauses), a VAD can be cascaded to this
system [22, 23], where a DOA is only estimated from the probability map if the VAD detects
the signal as speech. In this work, we adopt the VAD-informed DOA estimation approach to
design the baseline systems depicted in Fig. 2·3.

2.2.2 Speech-aware DOA estimation

In contrast to the VAD-informed classification-based approach, in [143] we proposed a classification-
based approach referred to as speech-aware DOA estimation, which can estimate the DOA of
a single talker, without needing a separate VAD. This problem is formulated as a C + 1-class
classification task, where the first C classes represent the DOA classes and the last class rep-
resents the non-speech activity, regarded as the detection class. During training, via a one-hot
encoding scheme, if a training example belongs to a speech source from a given direction, the
DOA class corresponding to that direction is labeled by one, whereas all other classes (including
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the detection class) are labeled by zero. On the other hand, if a training example belongs to
a non-speech source, regardless of its direction, all DOA classes are labeled by zero, whereas
the detection class is labeled by one. During testing, if the class with the highest posterior
probability is a DOA class, the direction corresponding to that class indicates the sound source
DOA. Otherwise, no reliable DOA could be estimated. In this work, we adopt the speech-aware
DOA estimation approach in our proposed systems depicted in Fig. 2·4.

2.3 Input features

This section provides an overview of the spatial and periodicity features utilized as input features
for various classification-based DOA estimation methods in this study. In Section 2.3.1, we
present the broadband GCC-PHAT feature, which was also employed in [143], in addition to the
newly introduced narrowband CPS features, as spatial features. In Section 2.3.2, we introduce
the novel subband-averaged representation of the PD, along with the broadband PD used in
[143]. Furthermore, we present the rationale for the incorporation of PD through exemplary
visualizations that demonstrate different PD representations.

2.3.1 Spatial features

The GCC-PHAT has been successfully used as a feature for several data-driven DOA estimation
methods[17, 109, 146, 147]. In this work, the broadband GCC-PHAT between the i-th pair
of microphones is defined as the inverse Fourier transform of the phase of the instantaneous
narrowband CPS which is given by

Gi(n, k) = Yr(n, k)Y ∗
q (n, k), (2.3)

where microphones r and q constitute the i-th microphone pair and (·)∗ denotes complex con-
jugate. We note that there are M(M − 1)/2 microphone pairs, i.e., i ∈ [1, M(M − 1)/2]. The
GCC-PHAT for the i-th microphone pair at time frame n is computed as

τi(n, d) = IFFT
(

Gi(n, k)
|Gi(n, k)|

)
, (2.4)

where |·| denotes absolute value, and d represents the index of the time delay. In order to resolve
fractional signal delays occurring for microphone pairs with a small distance (e.g., microphones
on a hearing aid), it is useful to interpolate the GCC-PHAT function by using an oversampled
inverse Fourier transform [79]. With an upsampling factor of κ, the relevant discrete time delays
lie in the range [−κτmax

i , κτmax
i ], where τmax

i denotes the maximum delay in samples, considered
for the i-th microphone pair. The GCC-PHAT vector of the i-th microphone pair is defined as

τi(n) = [τi(n, 1), · · · , τi(n, Ti)]T , (2.5)

where (·)T denotes the vector transpose. The first and last elements in (5) correspond to
−κτmax

i and +κτmax
i , respectively. Therefore, the length of the GCC-PHAT vector is obtained

by Ti = 2κτmax
i +1. By concatenating the GCC-PHAT vectors τi(n) for all possible microphone
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pairs, and considering L consecutive time frames (including the current frame n and the previous
L − 1 frames), we obtain the two-dimensional (2D) GCC-PHAT input feature with dimensions
T × L, where T = ∑M(M−1)/2

i=1 Ti. This 2D feature will be used as a spatial input feature for
broadband systems in Section 2.4.

As can be seen in (2.4), the PHAT weighting eliminates the effect of spectral magnitude, such
that phases contribute equally for all frequencies. Hence, as an alternative to the broadband
GCC-PHAT, in this work, we will also consider the narrowband CPS [12], encoding both spectral
magnitudes and phase differences, as an input feature.

As the CPS input feature, we consider either the magnitude and phase (denoted as Mag-
Phase) or the real and imaginary parts (denoted as ReIm) of the complex-valued CPS Gi(n, k)
for all M(M − 1)/2 unique microphone pairs, for K/2 + 1 frequencies (up to the Nyquist fre-
quency, i.e., k = 0, 1, · · · , K/2), and for L consecutive time frames. This means that the shape
of the CPS input feature is equal to (K/2 + 1) × L × 2M(M − 1)/2. We note here that the
first, second, and third dimensions represent the height, width, and depth of the input feature,
respectively, where the depth corresponds to the number of input channels. For the CPS input
feature, 2M(M − 1)/2 input channels are constructed by stacking either the MagPhase or the
ReIm for all microphone pairs. The CPS features will be used as spatial input features for
narrowband systems in Section 2.4.

2.3.2 Periodicity features

Periodicity is an important cue to segregate and localize different talkers [47, 148]. Periodic-
ity features are often estimated through an auditory pre-processing step followed by a feature
extraction step [47] where they are estimated independently for each pre-processed subband
signal. In [48] a periodicity feature called PD was introduced, which captures the salience of the
periodic components in the input signal. In this work, we propose to use a subband-averaged
representation of PD features, estimated for a set of N fundamental period candidates. Similar
to spatial features, we will consider PD features from L consecutive time frames as input PD
features. This section focuses on PD computation for time samples (t) spanning a block of L

consecutive time frames.
To compute PD features, we use one of the M microphones, referred to as the reference

microphone in this paper. It is important to note that the choice of the reference microphone
is arbitrary, and determining the optimal microphone for PD estimation is not within the scope
of this study. In the following, we present signal processing steps to compute the subband-
averaged PD. In the pre-processing step, the reference microphone signal in the hearing aid
setup is first decomposed into a set of subband signals using a complex-valued GTFB [48]. The
real part of each subband signal is then passed through half-wave rectification, yielding the
half-wave rectified signal y(t, f) in the f -th gammatone subband. Although the PD is usually
computed for each subband [47], in this paper we introduce a subband averaging step, enabling
us to estimate the PD for frequency regions with adjustable bandwidths. The subband-averaged
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signal is computed as

yavg(t, f̄) = 1
σS

f̄S∑
f=(f̄−1)S+1

y(t, f), (2.6)

where f̄ denotes the (averaged) frequency band index and S denotes the number of averaged
subbands. The normalization parameter σ represents the standard deviation computed over all
subbands and times (time samples of L consecutive STFT frames) for the signal y(t, f). This
subband averaging step results in F frequency bands. Subsequently, a fifth-order low-pass filter
with 770 Hz cutoff frequency and a second-order high-pass filter with 40 Hz cutoff frequency are
applied to yavg(t, f̄), resulting in bandpass-filtered signal envelopes yenv(t, f̄).

In the feature extraction step, a set of N parallel infinite impulse response (IIR) comb filters
designed for a given set of N fundamental period candidates pj , j = 1, · · · , N , filter the signal
envelopes as

s(j, t, f̄) = (1 − α)yenv(t, f̄) + αs(j, t − pj , f̄), (2.7)

where α denotes the filter gain. The periodicity degree is defined as the mean amplitude of the
comb-filtered signal, given by

PD(j, t, f̄) = (1 − βj)|s(j, t, f̄)| + βjPD(j, t − 1, f̄), (2.8)

where the averaging parameter βj for each fundamental period candidate is defined as βj =
e−1/pj .

The PD features in (2.8) have the same temporal resolution as the time-domain signal.
Since we aim at processing of the PD and CPS features by the neural network, it is desirable to
represent both features at the same time resolution, which is the frame resolution of the STFT
framework. Hence, the high-resolution PD features are temporally averaged as

PD(j, n, f̄) = 1
K

(n−1)D+K∑
t=(n−1)D+1

PD(j, t, f̄). (2.9)

As the subband-averaged input PD feature, we consider PD features in (2.9) for all N

fundamental period candidates, for L consecutive time frames, and for all F frequency bands.
This means that the shape of the subband-averaged input PD is equal to N × L × F , where the
first, second, and third dimensions represent the height, width, and depth of the input feature,
respectively. This three-dimensional feature will be used as the periodicity input feature of the
proposed narrowband speech-aware DOA estimation systems in Section 2.4.2.

As mentioned earlier, in this work, we also use the broadband PD feature from [143] for the
broadband speech-aware DOA estimation system in Section 2.4.2. To obtain the broadband PD
feature, signals of all gammatone subbands are averaged in (2.6), i.e., F = 1. The resulting
broadband signal in (2.6) is utilized for PD feature extraction. Consequently, the broadband
input PD has a shape of N × L.

Fig. 2·1 depicts an exemplary representation of the broadband PD feature computed for
N = 180 fundamental period candidates over a 1-second duration (L = 199) of both clean and
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(a) (b)

Figure 2·1: An exemplary visualization of broadband PD computed for N = 180
fundamental period candidates and L = 199 consecutive time frames for clean
and noisy (a) female speech and (b) keyboard typing signals in an anechoic
environment with simulated diffuse noise at 0 dB SNR condition.

noisy speech, as well as non-speech (keyboard typing) signals. While for the clean and noisy
speech signals, the fundamental period variation, its multiple harmonics and their temporal
continuity are identifiable as a 2D structure over time, no such structure exists for the keyboard
signal, and in general for non-speech signals. Although speech signals are not perfectly harmonic,
we hypothesize that utilizing the fundamental period information encoded in the harmonic
structure of the PD feature could facilitate a neural network’s ability to differentiate between
signal portions that are predominantly speech (and periodic) versus non-speech, particularly
when trained with a combination of speech and non-speech signals.

The 2D structure of the pitch modulations and harmonics can also be identified in the
subband-averaged PD features. Fig. 2·2 illustrates the subband-averaged PD features computed
for N = 180 fundamental period candidates across F = 6 frequency bands (S = 10), using a
1-second duration (L = 199) of clean and noisy speech signals. As can be seen in Fig. 2·2a,
the harmonic structure of the pitch information is captured in most frequency bands for the
clean signal, particularly in frequency bands with a high degree of periodicity, e.g., in 0.3 − 0.6
kHz and 0.6 − 1.1 kHz frequency bands (with a maximum PD value of 0.5). However, as can
be seen in Fig. 2·2b, for the noisy signal this information is substantially masked by the noise
except for the frequency regions mainly in the 0.6−1.1 kHz frequency band. By using subband-
averaged PD features as input features, the neural network is expected to be able to select the
most robust and salient periodicity information, particularly for those frequency bands in which
speech signals have more energy, and hence are less susceptible to noise.

The primary rationale for employing PD features in conjunction with spatial features is
to leverage the salient periodicity features as a footprint of speech signals in a noisy mixture
[45, 46]. This approach enables the neural network to detect voiced speech portions of a signal
while simultaneously mapping the CPS features of these portions to the talker’s DOA.
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(a) Clean subband-averaged PD features

(b) Noisy subband-averaged PD features at 0 dB SNR

Figure 2·2: An exemplary visualization of the subband-averaged PD feature
shown for (a) clean female speech, and (b) noisy female speech at 0 dB SNR,
computed for N = 180 fundamental period candidates, L = 199 consecutive time
frames, and F = 6 frequency bands in an anechoic environment with simulated
diffuse noise as background noise. The frequency range corresponding to each
frequency band is specified at the top of the images.
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(a) With only broadband spatial feature (GCC-PHAT)

(b) With only narrowband spatial feature (CPS)

Figure 2·3: Baseline VAD-informed DOA estimation systems using only spa-
tial features: (a) broadband spatial feature (GCC-PHAT), and (b) narrowband
spatial feature (CPS).

2.4 CNN-based DOA estimation systems

This section outlines the CNN-based DOA estimation systems. The baseline systems are dis-
cussed in Section 2.4.1, which adopt a VAD-informed DOA estimation approach, utilizing only
spatial features. The proposed systems are presented in Section 2.4.2, which adopt a speech-
aware DOA estimation approach, utilizing a combination of spatial and PD features as input
features. Finally, we discuss the computational complexity of the proposed and baseline systems
in Section 2.4.3.

2.4.1 Baseline VAD-informed systems

Neural network architectures based on CNNs have been widely and successfully used for DOA
estimation and sound source localization [12]. Fig. 2·3 depicts the baseline systems consisting
of a CNN using only spatial features (cf. Section 2.3.1) as input, cascaded with a pitch-based
binary VAD [138]. We consider three baseline systems:

• Broadband (Fig. 2·3a) using GCC-PHAT features,

• Narrowband-ReIm (Fig. 2·3b) using the real and imaginary parts of the CPS,
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• Narrowband-MagPhase (Fig. 2·3b) using the magnitude and phase of the CPS.

The CNN architecture in all considered baseline systems starts with a cascade of three convo-
lutional blocks, with each block (Conv1 to Conv3 ) comprising a sequence of 2D convolutional,
batch normalization, rectified linear unit (ReLU) activation, and 2D max-pooling layer. The
outputs of the last pooling layer in Conv3 are concatenated and then used as an input for a
cascade of three fully-connected blocks (FC1 to FC3 ), each representing a fully-connected dense
layer followed by batch normalization, ReLU activation, and dropout layers. In the output layer,
a softmax activation function predicts the posterior probability map for the C DOA classes.

In addition to the batch normalization layer implemented in the convolutional and fully-
connected blocks of the CNNs, we applied a normalization scheme only in the input layer and
directly on the input features before the first convolutional block to improve the performance of
the CNNs. We applied layer normalization [149] on the GCC-PHAT features. Concerning the
CPS input features, layer normalization was applied on all 2M(M − 1)/2 channels of the real
and imaginary parts of the CPS to preserve phase information encoded by these features. As for
the magnitude and phase parts of the CPS, group normalization [150] was applied to the two
groups of magnitude and phase features each including M(M − 1)/2 channels. This means that
within each group, features are normalized separately. The reason for this is that the magnitude
and phase have different statistical properties, and hence, joint normalization of the magnitude
and phase may not be optimal. We note that all layer normalizations and group normalizations
have been implemented without an affine transformation.

Each training example consists of a block of L consecutive time frames, i.e., we employ block-
level labeling and the CNN generates its output for each block. We adopt a one-hot encoding
scheme during the training, i.e., each training example belongs to only one output class that has
been labeled using oracle DOA information. It is important to note that we assume a constant
DOA when assigning a ground truth DOA label to a training example of a speech signal, which
implies that the DOA remains consistent throughout the block of L consecutive time frames.
During the testing phase, the CNN in the baseline system generates a posterior probability map
P = [P1, · · · , PC ], which represents the likelihood of the sound source being located at each
of the C possible DOA classes. It should be noted that we obtain consecutive input features
with an overlap of L − 1 frames for all systems. As input features consist of L consecutive time
frames, this approach results in the generation of a new posterior probability map for each new
frame.

To mitigate the effects of erroneous DOA estimates that can arise during periods of speech
pauses, the system is augmented with a cascaded VAD. This configuration enables the DOA
estimation process to be conditioned on the presence of speech, as determined by the VAD.
Specifically, the DOA is estimated solely from the probability map when the VAD indicates the
presence of speech, which is expected to lead to more robust and accurate DOA estimates. We
note that the VAD decision is made using the same reference microphone signal that is used to
compute PD features. As a common approach, the sound source DOA can be estimated as θI
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for the DOA class I with the highest posterior probability, i.e.

I = arg max
i

Pi. (2.10)

In this work, to obtain continuous DOA estimates from discrete DOA classes, we estimate the
sound source DOA by employing parabolic interpolation [151] on three DOA classes centered
around θI , i.e., θI−1, θI and θI+1. As a result, this approach allows for a more precise estimation
of the DOA with a higher spatial resolution.

2.4.2 Proposed speech-aware systems

Instead of using a separate pitch-based VAD in combination with a CNN, we adopt the speech-
aware approach described in Section 2.2.2. Fig. 2·4 depicts the proposed speech-aware DOA es-
timation systems, which use PD features (cf. Section 2.3.2) in combination with spatial features
(cf. Section 2.3.1) as input features of the CNN. In this work, we consider three speech-aware
systems:

• Broadband (Fig. 2·4a) using GCC-PHAT features and the broadband PD features as input
features,

• Narrowband-ReIm (Fig. 2·4b) using the real and imaginary parts of the CPS and the
subband-averaged PD features as input features,

• Narrowband-MagPhase (Fig. 2·4b) using the magnitude and phase of the CPS and the
subband-averaged PD features as input features.

Each proposed system in Fig. 2·4 consists of two parallel independent branches of three
cascaded convolutional blocks. The top branch receives the spatial features as input features,
whereas the bottom branch receives the PD features as input features. The outputs of both
branches are then concatenated, which serves as a hybrid intermediate feature vector used by
a cascade of three fully-connected blocks. Similar to the baseline systems described in Sec-
tion 2.4.1, for the proposed systems each convolutional block consists of a 2D convolutional,
batch normalization, ReLU activation, and 2D max-pooling layer. Each fully-connected block
is comprised of a fully-connected dense layer followed by batch normalization, ReLU activation,
and dropout layers. In the output layer, a softmax activation function predicts the posterior
probability map for the C +1 classes. We applied layer normalization without an affine transfor-
mation on the PD input features of each proposed system. As for the spatial input features, we
used the same normalization scheme that was applied to spatial features of the baseline systems
(cf. Section 2.4.1). Please note that for each proposed system, the PD and spatial features have
been normalized separately.

We note here that for each spatial feature, GCC-PHAT or CPS, the architecture of the
convolutional branch with spatial input features in the proposed system and the architecture
of the convolutional path in the baseline system are the same. This can be seen, for instance,
by comparing Fig. 2·3a with the top branch in Fig. 2·4a, and also by comparing Fig. 2·3b with
the top branch in Fig. 2·4b. As a result, the convolutional path in the baseline system and the
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(a) With broadband feature combination (GCC-PHAT and PD)

(b) With narrowband feature combination (CPS and subband-averaged PD)

Figure 2·4: Proposed systems with (a) broadband feature combination (GCC-
PHAT and PD), and (b) narrowband feature combination (CPS and subband-
averaged PD). The architecture of the convolutional branch with a spatial input
feature (top branch) in each proposed system is identical to the architecture
of the convolutional branch in a baseline system using the same spatial feature
depicted in Fig. 2·3.

top branch of a proposed system that use the same spatial features will learn the same number
of parameters and filters, and ultimately contribute to the input of the fully-connected path by
the same amount of (intermediate) features. Consequently, we can consider the contribution of
the spatial features in the fully connected path of the proposed system to be equivalent to that
of the baseline system. This allows us to analyze the benefits of using PD features and compare
the two systems using the same spatial features.

We expect that by training the proposed systems with speech and non-speech signals, the
network is able to capture the harmonic structure of the signal encoded in the PD features over
consecutive frames. This allows the proposed system to discern between speech and non-speech
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portions, while simultaneously mapping the spatial features to a sound source DOA when speech
portions in the signal are detected.

The proposed systems were trained using oracle DOA and detection labels for speech and
non-speech signals. All C +1 output classes were labeled as a single label, meaning each training
example belonged to only one output class. This was achieved as follows: During the training
phase, training examples of input features are provided for both speech and non-speech sources.
For a given training example of a speech source, the direction of the speech source is associated
with a particular DOA class, which is labeled by one. The remaining DOA classes, along with
the detection class, are labeled by zero. In contrast, for a training example of a non-speech
sound source, regardless of its direction, all DOA classes are labeled by zero, except for the
detection class which is labeled by one.

During the testing phase, the proposed system generates a posterior probability map given
by P = [P1, · · · , PC , PC+1] for a given number of directions C. We note here again that input
features (each including L time frames) are consecutively obtained with an overlap of L − 1
frames, i.e., a new posterior probability map is generated for every new frame. The process of
speech-aware DOA estimation can be formulated by first introducing two hypotheses

Hs : speech DOA detected, (2.11)
Hns : no speech DOA detected, (2.12)

and then defining the decision rule as

decide Hns if arg max
i

Pi = C + 1 (2.13)

decide Hs otherwise.

For the DOA estimation, we first consider the direction θI corresponding to the DOA class I

with the highest posterior probability when speech DOA is detected, i.e.

I = arg max
i

Pi|Hs. (2.14)

Then, we estimate the sound source DOA by employing parabolic interpolation [151] on three
DOA classes centered around θI , i.e., θI−1, θI and θI+1. The process of speech-aware DOA
estimation can be described as follows: the output class with the highest probability in the
predicted probability map is selected. If the highest probability corresponds to the last class,
which represents the detection class, it indicates that no reliable DOA estimation is possible. On
the other hand, if the highest probability corresponds to a DOA class, the sound source DOA
is estimated as the parabolic approximation of the direction associated with that DOA class.

It should be noted that the proposed speech-aware DOA estimation systems integrate both
DOA estimation and VAD into a unified framework, with speech detection regarded as an
implicit result of the proposed systems. Whereas for the VAD-informed systems, the DOA
estimation is conditioned on the VAD decision (i.e., an explicit speech detection), for the speech-
aware systems, the DOA estimation is merely conditioned on the joint probability distribution in
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Table 2.1: Number of trainable parameters and multiply-accumulate operations
(MACs) of the baseline and proposed systems.

CNN Baseline Proposed Baseline Proposed
broadband broadband narrowband narrowband

Parameters/M 1.37 1.55 1.36 2.82
MACs/M 2.54 3.03 11.61 29.79

the CNN output, including the detection class (i.e., an implicit speech detection which we refer
to as speech DOA detection in (2.11)). Therefore, in addition to the performance evaluation of
all systems for DOA estimation, our study will assess their speech detection capabilities. This
could offer a more comprehensive insight into these systems.

2.4.3 Computational complexity

Table 2.1 shows the number of trainable parameters and multiply-accumulate operations (MACs),
both in millions for the baseline and proposed DOA estimation systems. The number of pa-
rameters, i.e. the model size, influences the memory required to store the model, while MACs
provide an estimate of the arithmetic computations, which inherently affects energy consump-
tion. By analyzing Table 2.1, we can observe that the size of the two CNNs employed for the
baseline systems using the broadband (1.37 M) and narrowband (1.36 M) spatial features are
comparable. It is important to note that the number of convolutional filters in each baseline
system (cf. Fig. 2·3) was chosen to ensure that both systems have a comparable number of
parameters. However, the proposed narrowband system exhibits a higher number of trainable
parameters (2.82 M) in comparison to the broadband counterpart (1.55 M). Table 2.1 also shows
that while the proposed broadband and narrowband systems exhibit a larger number of trainable
parameters compared to their respective baseline counterparts, the difference in the number of
trainable parameters is especially noticeable for the narrowband systems. To the best of our
knowledge, it is not possible to directly implement the considered systems in current hearing
devices. This may be possible after model size optimization, model quantization and pruning,
which is however not the main topic of this study.

2.5 Experimental setup

In this section, we conduct experiments to assess the performance of the speech-aware systems
proposed in Section 2.4.2 in comparison to the baseline systems described in Section 2.4.1.
Furthermore, we provide details of the datasets utilized in this study in Section 2.5.1, and
describe the procedures for generating training and evaluation data in Sections 2.5.2 and 2.5.3,
respectively. Additionally, we present implementation details of the input features and the VAD
in Section 2.5.4, and describe the training procedure and hyperparameters of the CNNs used
in this study in Section 2.5.5. Evaluation metrics employed to assess the performance of all
systems are described in Section 2.5.6.
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Table 2.2: Summary of the training data

Source signals Speech (TIMIT) and non-speech (ESC50)
Environment Anechoic [1]
Background noise Simulated diffuse noise
SNR −5 dB to +20 dB in 5 dB steps
Source-to-head distance 3 m
Source positions 72 positions in the horizontal plane

Table 2.3: Summary of the evaluation data

Static Scenario Dynamic Scenario
Source signals Speech (TIMIT) Speech (TIMIT)

Environment Cafeteria (T60 ≈ 1.3 s) and Office (T60 ≈ 0.3 s) [1]
Courtyard (T60 ≈ 0.9 s) [1]

Background noise Simulated diffuse noise and Simulated diffuse noise
Recorded noise

SNR −5 dB to +10 dB in 5 dB steps −5 dB to +10 dB in 5 dB steps
Source-to-head distance 1–1.6 m 1 m

Source positions 4 source positions with 2 head Trajectories from −90◦ to +90◦

orientations in each environment

2.5.1 Datasets

Signals from speech and non-speech datasets were used as sound source signals to generate
the training and validation data required during the training of all systems. In particular,
speech signals of 462 and 168 speakers from the TIMIT dataset [152] (including both male and
female speakers) were used for training and validation, respectively. In addition, three categories
(natural soundscapes and water sounds, interior and domestic sounds, exterior and urban noises)
of the ESC50 dataset [153] were used as non-speech signals, where we used 960 and 240 distinct
sound files for training and validation, respectively. For evaluation, only speech signals from the
validation TIMIT dataset were used as source signals.

We used a database of multichannel binaural room impulse responses (BRIRs) [1] to generate
data for training and evaluation. The considered binaural hearing aid setup consists of M =
4 microphones, where the front and rear microphones (approximate microphone distance of
15 mm) in both left and right hearing aids were used. The database in [1] contains BRIRs
measured in anechoic conditions for different source-to-head distances, and for C = 72 directions
in the azimuthal plane, i.e., with a resolution of 5◦. This dataset also contains BRIRs in three
reverberant environments (cafeteria with T60 ≈ 1.3 s, courtyard with T60 ≈ 0.9 s, office with
T60 ≈ 0.3 s). We generated the noisy binaural microphone signals by convolving the source
signals with BRIRs and mixing the resulting clean binaural microphone signals with background
noise. All systems were trained in noisy anechoic conditions and evaluated in noisy reverberant
environments.
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2.5.2 Training data

For training, the clean binaural microphone signals were generated by convolving both speech
and non-speech source signals with anechoic BRIRs for each of the 72 directions with a source-
to-head distance of 3 m. The noisy binaural microphone signals were generated by mixing the
clean binaural microphone signals with simulated binaural diffuse noise at SNRs ranging from
−5 dB to +20 dB in 5 dB steps. The noise at the microphones was generated by convolving
uncorrelated speech-shaped noise from the ICRA noise database [154] with anechoic BRIRs, and
summing all resulting binaural signals from 72 directions. Training examples were constructed
for both speech and non-speech signals for all 72 directions at six different SNRs. It is important
to note that in a data pre-processing step, a simple oracle broadband energy-based VAD was
employed to identify segments containing enough speech content. This step ensures that for
training examples associated with a speech source, only those containing meaningful speech
content contribute to the loss function. Each training example consists of a block of L = 20
consecutive time frames (corresponding to 105 ms). In total, we obtained 5.9 million examples
(about 172 hours) as training set and 2.4 million examples (about 70 hours) as validation set.
A summary of the training data is presented in Table 2.2.

2.5.3 Evaluation data

The performance of the baseline and proposed systems was evaluated for static and dynamic
source scenarios in reverberant environments. As already mentioned, only speech signals from
the validation TIMIT dataset were used as source signals. It should be noted that the source
and background noise signals, acoustic conditions and source positions used during evaluations
were different from those used during training and validation. A summary of the evaluation
setup and data generation is presented in Table 2.3.

2.5.3.1 Static source scenario

for the static source scenario, we considered two real environments (cafeteria and courtyard) with
a reverberation time of approximately 1300 ms and 900 ms, respectively. The clean binaural
microphone signals were generated by convolving the speech source signals with reverberant
BRIRs[1]. The room configurations of both environments are depicted in Figs. 2·5a and 2·5b. In
each environment, we considered four source positions (specified with dashed boxes), with two
head orientations for each source position. All systems were evaluated at SNRs ranging from
−5 dB to +10 dB either with matched or unmatched background noise. The same binaural
diffuse noise as that used during training was utilized for the matched noise condition, whereas
recorded cafeteria babble noise and courtyard ambient noise [1] were used for the unmatched
noise condition. A total number of 150 speech segments randomly chosen from 30 unique male
and female speakers (each with a length of 1 s) were selected from the validation TIMIT dataset.
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(a) Cafeteria (static scenario) (b) Courtyard (static scenario)

(c) Office (dynamic scenario)

Figure 2·5: Evaluation setups for static scenarios (a and b), and dynamic
scenarios (c), adapted from [1]. In the cafeteria, static source positions A, B, D,
E were considered, while in the courtyard, static source positions A, B, C, and
D were considered. In both environments, the cafeteria and courtyard, the head
position is indicated by dashed arrows extending from the source positions to the
head. The two head orientations are denoted by the numbers 1 and 2 positioned
in proximity to the head. For the dynamic scenarios in the office, the source
position traveled from left to right with respect to the look direction of the head,
either between −45◦ to +45◦ (6 ◦/s angular velocity) or between −60◦ to +60◦

(8 ◦/s angular velocity). The head position in the office environment is depicted
in the middle of the room. All distances are specified in centimeters.

2.5.3.2 Dynamic source scenario

In [1], BRIRs of a reverberant office environment with a reverberation time of approximately 300
ms (specified in [1] as Office I ) are provided, which cover the frontal azimuth range from −90◦

to +90◦ with a 5◦ resolution. Since only the BRIRs measured in the office environment allow
to simulate moving sources, simulations for the dynamic source scenario were only performed
for the office environment. To simulate a moving source, a time-aligned interpolation method
[155] with shape-preserving piecewise cubic interpolation was used to interpolate the original
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BRIRs from a 5◦ resolution to a 0.5◦ resolution. A total number of 10 speech segments were
randomly chosen from 30 unique male and female speakers (each with a length of 15 s) from the
validation TIMIT corpus. The clean binaural microphone signals were simulated for two source
velocities ( 6 ◦/s and 8 ◦/s angular velocity) by partial convolution of the interpolated BRIRs
with the clean speech signal using a frame length of 10 ms and 50% overlap. The office room
configuration and the source movement trajectory are depicted in Fig. 2·5c. Simulated binaural
diffuse noise was used to generate noisy binaural microphone signals at SNRs ranging from −5
dB to +10 dB.

2.5.4 Implementation details

All signals were sampled at 16 kHz. To compute the GCC-PHAT and CPS features, the micro-
phone signals were transformed to the STFT domain using a Hann window of length K = 160
(corresponding to 10 ms), and a hop size of length D = 80 (corresponding to 5 ms), resulting
in 81 STFT frequency bins. To compute GCC-PHAT features, we used an upsampling factor
of κ = 4. In the case of a pair of microphones located on the same side of the head (left or
right), the corresponding maximum delay τmax

i is considered as 2, which translates to a time
delay of 125 µs and Ti = 17. Conversely, for a pair of microphones located on opposite sides, the
maximum delay τmax

i is considered as 20, corresponding to a time delay of 1.25 ms and Ti = 161.
We note that the chosen maximum delays are deliberately set to be greater than the maximum
possible delay that can occur for each microphone pair by approximately a factor of two. In the
considered binaural hearing aid setup, there are a total of four microphone pairs on opposite
sides and two microphone pairs on the same side. As a result, GCC-PHAT feature vectors of
size T = 678 are obtained. For feature extraction, a block of L = 20 consecutive time frames is
employed, leading to a GCC-PHAT input feature of size 678×20. For each pair of CPS features
(real and imaginary parts, magnitude and phase components), the size of the input features is
equal to 81 × 20 × 12.

In this paper, we consider the front microphone of the left hearing aid as the reference
microphone for the PD feature extraction, and also for the binary VAD decision employed in
the baseline systems. To obtain a binary VAD decision on a block of L consecutive time frames,
a majority vote rule is applied, where the block is classified as speech if at least 50% of the time
frames are detected as such. In the baseline systems, we used the pitch-based binary VAD [138]
(rVAD) with its original frame length but adjusted the frame hop size to 5 ms, aligning it with
the proposed systems while keeping its spectral resolution unchanged.

PD features were computed using a 4-th order GTFB implementation [48] with 61 subbands,
a group delay of 256, and minimum and maximum center frequencies of 60 Hz and 7200 Hz,
respectively. By choosing the maximum and minimum fundamental frequencies as 320 Hz and
70 Hz, respectively, the range of fundamental period candidates for PD feature extraction lies
between 3.1 ms and 14.3 ms for N = 180 period candidates. To compute the subband-averaged
PD features, F = 6 frequency bands are obtained by averaging every S = 10 subband signals.
The comb filter gain was chosen to be α = 0.7. The size of the broadband and subband-averaged
input PD features is equal to 180 × 20 and 180 × 20 × 6, respectively.
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2.5.5 Training and network hyperparameters

All systems were implemented using PyTorch [156]. For all CNNs, we used a 2D convolutional
filter size of 3 × 3 with a stride size of 1 × 1. In each convolutional layer of the CNNs with
broadband (GCC-PHAT) and narrowband (CPS) input, 4 and 32 filters were used, respectively.
The max-pooling size was 2 × 2 with strides of the same size. The CNNs were trained using
the Adam optimizer [157], a cross-entropy loss function, an initial learning rate of 10−5, a mini-
batch size of 128 and a dropout rate of 0.5. We used an early stopping regularization method
which stopped the training if no improvement in validation loss was observed for 4 epochs, and
a variable learning rate scheduler to halve the learning rate if the validation loss did not improve
for 2 epochs.

The maximum epoch number for training all CNNs was set to 100. In each epoch, 1.63
million examples were randomly selected from the training set such that the network did not
see the same example twice. Each mini-batch included 128 examples that were randomly chosen
from different SNR conditions, DOA classes, and speech and non-speech signals. To calculate
the validation loss at the end of each epoch, 200000 examples were randomly selected from the
validation set and kept fixed throughout the training. The validation data were not seen by the
network during the training.

2.5.6 Evaluation metrics

We evaluated the DOA estimation performance of the proposed and baseline systems in terms
of mean absolute error (MAE) and accuracy (Acc.) [14, 98]. A DOA estimate in block l is
considered accurate if the absolute error between the estimated DOA θ̂l and the oracle DOA θl

is smaller than 5◦, i.e., the minimum angular resolution of the database in [1]. The MAE (in
degrees) and accuracy are defined as

MAE = 1
L

L∑
l=1

∣∣∣θ̂l − θl

∣∣∣ , (2.15)

Acc = Lacc
L

× 100, (2.16)

where L denotes the total number of estimates, i.e., the number of signal blocks with positive
speech detections, and Lacc denotes the total number of accurate estimates.

We evaluated the speech detection performance of the VAD used in the baseline systems and
the performance of the speech DOA detection in the proposed system using the precision (P)
and recall (R) metrics defined as

P = TP

(TP + FP ) , (2.17)

R = TP

(TP + FN) , (2.18)

where for each evaluated system, the number of true positives (TP) represents the total number
of signal blocks detected as speech by both the system and the oracle VAD, while the number of
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false positives (FP) represents the total number of signal blocks detected as speech by the system
but detected as non-speech by the oracle VAD. Conversely, the number of false negatives (FN)
denotes the total number of signal blocks detected as non-speech by the system but detected as
speech by the oracle VAD. While precision indicates the proportion of detected speech blocks that
are actually correct, recall represents the proportion of actual speech blocks that are detected
by the system. Both metrics range from 0 to 1.

2.6 Results and discussion

In this section, we will present and analyze the performance evaluation results of speech-aware
systems employing either broadband or narrowband feature combinations, in comparison to
baseline systems. The baseline systems consist of a CNN that uses only spatial features, com-
bined with a pitch-based VAD. We assessed the performance of all systems in various reverberant
environments with different background noises for both static and dynamic single-talker scenar-
ios in terms of accuracy and mean absolute error for DOA estimation, as well as precision and
recall for speech detection. Section 2.6.1 serves as an exemplary demonstration of the proposed
speech-aware DOA estimation using broadband input features. The evaluation results for static
source scenarios in both matched and unmatched noise conditions are discussed in Section 2.6.2.
The evaluation results for dynamic source scenarios are presented in Section 2.6.3. Finally, we
discuss the limitations of this study and suggest potential future works in Section 2.6.4.

2.6.1 Speech-aware DOA estimation

To illustrate speech-aware DOA estimation, we consider an exemplary static source scenario
in the courtyard (cf. Fig. 2·5b) for a female speech source at position C and head orientation
1 (corresponding to a DOA of −20◦) with simulated diffuse noise at 0 dB and 10 dB SNR
conditions. The proposed system with broadband input features (Fig. 2·4a) is chosen for DOA
estimation in this scenario. Fig. 2·6b depicts the noisy reference microphone signal with a
duration of 1 s, the corresponding block-averaged representation of the PD feature, the speech
DOA detection (cf. (2.11) and (2.13)), and the DOA estimation error. Please note that the
difference in the starting times between the reference microphone signal in subfigure (i) and
the subsequent subfigures (ii-iv) is due to the design of the proposed system, which requires
input features from consecutive time frames over a period of 105 ms before generating the first
prediction. To aid in visualization, we obtained the block-averaged PD by averaging the PD
values over consecutive time frames used by the CNN for each prediction.

When analyzing Fig. 2·6b, several key observations emerge. First, comparing speech DOA
detection results in the two SNR conditions (Fig. 2.6a.iii and Fig. 2.6b.iii) shows that the
speech-aware DOA estimation results in fewer signal blocks with DOA detections in the low
SNR condition compared to the high SNR condition. Second, comparing the DOA detection
results with the absolute error in either of the SNR conditions, e.g., in the low SNR condition
(Fig. 2.6a.iii and Fig. 2.6a.iv), demonstrates that for this example, all estimated DOAs result
in absolute errors below 5◦, i.e., 100% accuracy. These findings illustrate the primary objective
in designing the speech-aware DOA estimation systems, which is to reliably detect speech DOAs
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(a) 0 dB SNR condition

(b) 10 dB SNR condition

Figure 2·6: An exemplary illustration of DOA estimation of the proposed sys-
tem using the broadband feature combination in (a) SNR = 0 dB and (b) SNR =
10 dB: (i) Noisy reference microphone signal of a source at −20◦ with simulated
diffuse noise, (ii) Estimated block-averaged broadband PD, (iii) Speech DOA de-
tection, (iv) Absolute angular error of the estimated DOAs over time specified
by black lines, and the 5◦ error threshold specified by a red dashed line.
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while excluding signal blocks prone to poor DOA estimation performance, without needing a
separate VAD. As expected, such a system detects fewer signal blocks with reliable speech DOA
in the low SNR condition. Moreover, when comparing block-averaged PD with DOA detection
results, especially in the low SNR condition (Fig. 2.6a.ii and Fig. 2.6a.iii), it becomes evident
that the proposed system predominantly estimates the DOA for blocks with a high degree
of periodicity. These observations are noteworthy because they demonstrate that the proposed
system automatically selects the most reliable signal blocks for DOA estimation, primarily those
with a high degree of periodicity, which are less susceptible to noise.

2.6.2 Evaluation results for static source scenarios

For the static source scenarios in two reverberant environments (cafeteria and courtyard), Fig. 2·7
shows the accuracy and mean absolute error at different SNRs for three proposed systems (Sec-
tion 2.4.2) and three baseline systems (Section 2.4.1) using either broadband or narrowband
features. Performance measures of three proposed systems, i.e., the proposed system with broad-
band PD and GCC-PHAT (Prop. broadband), the proposed system with subband-averaged PD
and real and imaginary parts of CPS (Prop. narrowband ReIm), and the proposed system with
subband-averaged PD and magnitude and phase parts of CPS (Prop. narrowband MagPhase)
are depicted by colored bars. To facilitate the direct comparison between each proposed system
and the corresponding baseline system using the same spatial feature, white narrow bars in
front of the colored bars show the performance measures of the corresponding baseline system.
A dashed line in the top plots of each figure shows the maximum accuracy of 100% that each
system can achieve. In addition to the DOA estimation metrics depicted in Fig. 2·7, Fig. 2·8
shows the speech detection evaluation results in terms of precision and recall at different SNR
conditions for three proposed systems (Section 2.4.2) and the rVAD [138] used in the baseline
systems (Section 2.4.1).

2.6.2.1 Matched noise condition

Fig. 2·7a depicts the performance measures for the matched noise condition with simulated dif-
fuse background noise (also used during training). Comparing the performance of the proposed
systems (colored bars) with the corresponding baseline systems (white bars), we can clearly
observe the benefit of using PD in combination with a spatial feature in both environments for
all systems at low SNRs (−5 dB and 0 dB), whereas the benefit also persists for the broadband
system at high SNRs (5 dB and 10 dB). For example, for an SNR of 0 dB in the cafeteria
environment, the benefit of using PD features in terms of accuracy is approximately 14% points
for the broadband system, 6% points for the narrowband system (ReIm), and 1% points for the
narrowband system (MagPhase), whereas the benefit in terms of MAE is 11.7◦ for the broadband
system, 8◦ for the narrowband system (ReIm), and 3.8◦ for the narrowband system (MagPhase).

Fig. 2·8a depicts the speech detection performance measures for the matched noise condition.
It can be observed that all proposed systems exhibit nearly perfect precision, approaching 1.
This suggests a low likelihood of falsely detecting a signal portion for DOA estimation (i.e. low
false positive). It can be clearly seen for all conditions that the proposed systems demonstrate
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(a) simulated diffuse background noise (matched condition)

(b) recorded background noise (unmatched condition)

Figure 2·7: Accuracy and mean absolute error of the proposed and baseline sys-
tems for the static source scenarios in two reverberant environments (cafeteria
and courtyard) for different SNRs: (a) matched noise condition with simulated
diffuse background noise and (b) unmatched noise condition with recorded back-
ground noise. Colored bars show the performance of the proposed systems using
broadband feature combination (GCC-PHAT and broadband PD) or narrowband
feature combination (either CPS ReIm or MagPhase and subband-averaged PD),
whereas white bars show the performance of the baseline systems using only
broadband (GCC-PHAT) or narrowband (either CPS ReIm or MagPhase) spa-
tial features.
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(a) simulated diffuse background noise (matched condition)

(b) recorded background noise (unmatched condition)

Figure 2·8: The speech detection performance of the proposed systems and
rVAD in terms of the precision and recall for the static source scenarios in two re-
verberant environments (cafeteria and courtyard) for different SNRs: (a) matched
noise condition with simulated diffuse background noise and (b) unmatched noise
condition with recorded background noise.
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either better or comparable precision compared to the rVAD, but a lower recall. It is important
to emphasize once more that the rVAD is specifically designed for speech detection, whereas
the proposed systems are designed for speech DOA detection. This distinction is crucial, as the
proposed systems leverage an output class which indeed serves as an uncertainty measure for
DOA estimation. Although this class is regarded as a detection class, it has not been merely
trained for the speech detection task.

2.6.2.2 Unmatched noise condition

Fig. 2·7b depicts the performance measures for the unmatched noise condition with recorded
background noise (not seen during training). Except for the narrowband system (MagPhase) in
the cafeteria environment at 10 dB SNR and the narrowband system (ReIm) in the courtyard
environment at 10 dB SNR, the proposed systems using PD in combination with a spatial feature
outperform the corresponding baseline systems for all SNRs in both environments. For example,
for an SNR of 0 dB in the cafeteria environment, the benefit of using PD features in terms of
accuracy is approximately 10% points for the broadband system, 9% points for the narrowband
system (ReIm), and 5% points for the narrowband system (MagPhase), whereas the benefit in
terms of MAE is 8◦ for the broadband system, 12.1◦ for the narrowband system (ReIm), and
9.2◦ for the narrowband system (MagPhase).

Fig. 2·8b depicts the speech detection performance measures for the unmatched noise condi-
tion. It can be observed that in the courtyard environment, the proposed narrowband systems
result in notably low recall, particularly in low SNR conditions. The very low recall in this con-
dition corresponds to a high number of missed detections (i.e. high false negative). However, as
observed in Section 2.6.1, it’s essential to emphasize that the primary objective of speech-aware
systems is to detect the speech DOA for reliable localization, rather than solely focusing on
speech activity detection. The good results for the proposed narrowband systems at low SNRs
in the courtyard in the unmatched condition (Fig. 2·7b) can be attributed to the fact that these
systems use only a small fraction of speech signal blocks for DOA estimation.

When comparing the performance measures between the matched and unmatched noise
conditions (Fig. 2·7a and Fig. 2·7b), it can be clearly observed that in the cafeteria environment
the performance for the recorded babble noise is worse than that for the simulated diffuse
noise, whereas (somewhat surprisingly) in the courtyard environment the performance for the
recorded ambient noise is better than that for the simulated diffuse noise. This can be explained
by investigating the spectro-temporal sparsity of the signals for the different conditions. For the
sparsity analysis, we use the Gini index [158], where a large Gini index (close to 1) corresponds to
high sparsity, and a small Gini index (close to 0) corresponds to low sparsity. More in particular,
we consider the joint spectro-temporal Gini index according to [159], computed on the STFT
spectrogram of the noisy reference microphone signal. For each environment and background
noise type and for different SNRs, Fig. 2·9 depicts the spectro-temporal Gini index averaged
over all 150 speech segments. On the one hand, in the cafeteria environment, it can be observed
for all SNRs that the spectro-temporal sparsity of the microphone signals with recorded babble
noise is less than the spectro-temporal sparsity with simulated diffuse noise. On the other hand,
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Figure 2·9: The average spectro-temporal Gini index for two environments
(cafeteria, courtyard), two background noise types (simulated, recorded) and
different SNRs.

in the courtyard environment, it can be observed for all SNRs that the microphone signals with
recorded ambient noise exhibit a sparser spectro-temporal structure than with the simulated
diffuse noise. Hence, in conjunction with the DOA estimation performance in Fig. 2·7, we can
deduce that signals with sparser spectro-temporal structure appear to lead to better speech-
aware DOA estimation.

Taking a closer look at Fig. 2·7b, it becomes evident that, in the courtyard environment
with recorded background noise, the two proposed narrowband systems perform best under the
lowest SNR condition (0 dB SNR). The Gini index, however, does not provide a comprehensive
explanation for this particular case. Unlike the simulated diffuse noise and cafeteria babble
noise, the courtyard ambient noise energy predominantly falls within the first frequency band
of PD features. This means that at low SNRs, especially at −5 dB, the noise can mask the
harmonic structure of speech signals in this frequency band. This masking potentially aids the
CNN in almost perfectly identifying segments with prevalent noise, enhancing DOA estimation
accuracy. As SNR increases, enhanced harmonics in low frequencies may introduce uncertainties,
potentially compromising DOA estimation accuracy. However, this does not affect our main
findings and conclusions for speech-aware DOA estimation.

2.6.3 Evaluation results for dynamic source scenarios

For the moving source scenario in the office environment, Fig. 2·10 depicts the DOA estimation
performance measures of the proposed systems (colored bars) and the corresponding baseline
systems using the same spatial feature (white bars) for different SNRs and two angular velocities.
Similarly as for the static source scenario (Fig. 2·7), a clear benefit of using PD features can
be observed, especially for the broadband system at all SNRs and for the narrowband system
(ReIm) at low SNRs. For the narrowband system (MagPhase), whose performance is anyway
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Figure 2·10: Accuracy and mean absolute error of the proposed and baseline
systems using broadband and narrowband features for the dynamic source sce-
narios in the office environment for different SNRs and angular velocities.

lower than the narrowband system (ReIm), the baseline system (using MagPhase) exhibits
comparable or better performance. These results further reveal the benefit of using PD features
in the proposed speech-aware DOA estimation systems compared to the baseline systems using
merely spatial features. This benefit even increases with angular velocity, particularly at low
SNRs.

For the moving source scenario, the evaluation results of speech detection performance for
all considered systems are illustrated in Fig. 2·11. It becomes evident that in dynamic scenarios
across all conditions, the proposed narrowband systems yield a higher recall when compared
to all other systems (including rVAD), while maintaining a high level of precision. This is
particularly noteworthy, as the higher recall facilitates speech source tracking by generating
more observations of the dynamic scene.

Evaluation results in Fig. 2·7 and Fig. 2·10 show that, except for the matched condition in the
static source scenario, the proposed broadband system outperforms the proposed narrowband
systems, while indicating a larger benefit from the inclusion of PD features. The results also
demonstrate that the broadband baseline system using GCC-PHAT features typically outper-
forms narrowband baseline systems using CPS features. Despite a similar number of trainable
parameters (cf. Table 2.1), the narrowband baseline systems must learn more intricate pat-
terns from CPS features, whereas GCC-PHAT directly provides time delay information. This
suggests that the narrowband baseline systems may need more capacity (trainable parameters)
to match the performance of the broadband one. As our main goal was to study the benefit
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Figure 2·11: The speech detection performance of the proposed systems and
rVAD in terms of the precision and recall for the dynamic source scenarios in the
office environment for different SNRs and angular velocities.

of using PD features in the proposed narrowband and broadband systems, we didn’t optimize
the narrowband systems for performance parity with the broadband system, potentially causing
performance limitations when combining CPS and PD features.

2.6.4 Limitations and future works

This study only considered binaural DOA estimation of a far-field speech source. For a speech
source in the near field of a microphone array, accurate estimation of the time delay (and phase)
involves considering both the range and the DOA of the sound source. The normalization
inherent in the PHAT weighting (see (2.4)) eliminates the effect of the signal level (and hence
range information) due to the source-microphone distance. Consequently, a model trained solely
on the GCC-PHAT may have limited capability to leverage range-dependent information in
the near-field scenarios. Although this study only considered binaural DOA estimation in the
azimuthal plane, the proposed systems, in principle, can be extended for DOA estimation in
terms of both azimuth and elevation as azimuth and elevation information are encoded by the
spatial input features [12, 18].

In this study, we examined single-talker speech-aware DOA estimation in the presence of
background noise. Future research may explore the potential benefits of using PD features for
speech-aware DOA estimation in the presence of non-speech interference and binaural DOA
estimation in multi-talker scenarios.
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2.7 Conclusion

In this study, we proposed novel feature combinations for speech-aware DOA estimation in the
context of binaural hearing aids. The proposed systems utilize CNNs and receive a spatial feature
and an auditory-inspired periodicity feature as inputs to two parallel branches of convolutional
layers. In particular, we introduced a subband-averaged PD feature as the periodicity feature,
and combined it with either the real and imaginary or the magnitude and phase components
of the narrowband CPS as the spatial feature. The performance of speech-aware systems was
evaluated against CNN-based baseline systems which only use spatial features and a pitch-based
VAD.

Comprehensive evaluations in static single-talker scenarios with different background noise
types and SNRs demonstrate that for any type of spatial feature, the proposed method out-
performs baseline systems in terms of DOA estimation accuracy and mean absolute error, par-
ticularly in adverse SNR conditions and in conditions with higher degrees of spectro-temporal
sparseness. This study also shows that the proposed method using PD features is effective for
speech-aware DOA estimation of a moving talker, and is robust to changes in talker velocity.
Our proposed speech-aware system is able to estimate the sound source DOA when a high degree
of periodicity is captured by the CNN, without any need for a separate VAD or pitch period
estimation.

The primary finding of this study was that the usage of PD features in both narrowband and
broadband feature combinations benefits the speech-aware binaural DOA estimation in different
static and dynamic scenarios. It was also found that the proposed system employing the broad-
band feature combination typically demonstrated better performance than the proposed systems
using the narrowband feature combinations in the specific system configuration employed in this
study.

Overall, this study demonstrates the potential benefits of utilizing periodicity-based features
in conjunction with spatial features for speech-related applications such as DOA estimation.
The results also suggest that these features may have wider applications in other speech-related
tasks. The findings of this study can contribute to the development of improved methods for
sound source localization and speech enhancement in binaural hearing aids.
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Chapter 3
A Two-stage CNN with Feature Reduction for
Speech-aware Binaural DOA Estimation

This chapter is a reformatted reprint of the following publication:
R. Varzandeh, S. Doclo, V. Hohmann, “A two-stage CNN with feature reduction for speech-

aware binaural DOA estimation,” in Proc. European Signal Processing Conference (EUSIPCO),
Helsinki, Finland, 2023, pp. 241-245.

This chapter proposes an efficient two-stage CNN system for single-talker DOA estimation.
This approach merges and processes the periodicity and spatial features within a single convo-
lutional pathway. To achieve this efficiently, the system utilizes 1 × 1 convolutions to transform
the periodicity features into compact features before combining them with spatial features. This
leads to an improved performance compared to a system without feature reduction. This ap-
proach also performs better than a baseline system consisting of a CNN using only spatial
features cascaded with a VAD. In this chapter, we focus on single-talker DOA estimation in the
presence of background noise. In Appendix A, we evaluate the proposed and baseline systems
under single-talker scenarios with directional non-speech interference.
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Abstract

In recent years, several supervised learning-based approaches have been proposed to estimate the
direction of arrival (DOA) of a single talker in noisy and reverberant environments. In this paper,
we consider a speech-aware DOA estimation system for binaural hearing aids, which does not require
a separate voice activity detector (VAD). We propose the combination of two narrowband features
as the input features of a convolutional neural network (CNN), namely the cross-power spectrum as
spatial features and narrowband auditory-inspired periodicity features. Prior to the joint processing
of both features, we propose to reduce the dimensionality of the narrowband periodicity features
using a feature reduction stage based on 1 × 1 convolutions. Simulation results for two reverberant
environments with different background noises demonstrate the benefit of the feature reduction
stage in terms of DOA estimation accuracy while significantly reducing the number of trainable
parameters. In addition, simulation results show that the proposed system outperforms a baseline
system consisting of a CNN using only spatial features and a pitch-based VAD.

3.1 Introduction

Reliably estimating the DOA of a talker is a crucial task in applications such as binaural hearing
aids [160, 161]. In addition to model-based DOA estimation approaches [8, 80, 85, 162], in recent
years several supervised learning-based DOA estimation approaches based on DNNs have been
proposed [12, 14, 17, 23, 98, 99, 102]. In these approaches, the DOA estimation task is often
formulated as a classification problem, aiming at determining a mapping from input features to
a spatial probability map for a discretized DOA range. Without auxiliary information, e.g., a
VAD, such approaches also provide a DOA estimate during speech pauses or when the signal is
dominated by noise, which typically results in erroneous DOA estimates. Hence, a VAD is often
cascaded with a DOA estimation system [21, 23]. However, a separate VAD usually requires
manual and time-consuming parameter tuning, and may introduce errors that propagate through
the DOA estimation system.

In [143], we proposed a speech-aware binaural DOA estimation system based on CNNs, which
does not require a separate VAD. Simulation results showed the benefit of using broadband PD
features in combination with GCC-PHAT features as input features for the CNN. However, the
frequency integration of the CPS phase employed in the calculation of the GCC-PHAT feature
[80, 143] does not allow the CNN to effectively exploit the sparsity property of speech signals in
the time-frequency domain [163]. In addition, broadband PD only offers a coarse representation
of the harmonic structure of a signal.

In this paper, we extend the speech-aware binaural DOA estimation system of [143] in two
ways. First, aiming at exploiting the sparsity property of speech signals, we propose to use a
narrowband representation of PD features in combination with narrowband CPS features (as
spatial features) as input features for the CNN. Second, the key contribution of this paper is
introducing a PD feature reduction stage before the joint processing of both narrowband features,
resulting in a two-stage CNN architecture. We postulate here that the feature reduction stage
better guides the DOA estimation by reducing the sparse structure of narrowband PD features to
a set of more compact spectro-temporal features, referred to as PD saliency features. Evaluation
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results for a single talker in two reverberant environments for different SNRs show the benefit of
using the proposed PD feature reduction stage compared to a system without feature reduction.
Evaluation results also show that the proposed systems combining narrowband CPS and PD
features outperform a baseline system, consisting of a cascade of a CNN using only narrowband
CPS features and a pitch-based VAD.

3.2 DOA estimation as a classification problem

In this work, we consider the problem of single-talker DOA estimation in the azimuthal plane
using a binaural hearing aid setup with M microphones. In the STFT domain, the m-th mi-
crophone signal at time frame n and frequency bin k (with K the STFT length) can be written
as

Ym(n, k) = Xm(n, k) + Vm(n, k), (3.1)

where X and V denote the sound source (at direction θ) and the uncorrelated background noise,
respectively. By dividing the azimuth range into a set of C discrete DOAs {θ1, · · · , θC}, DOA
estimation can be considered as a classification problem, where the DOA of a sound source
should be assigned to one of the DOA classes. In this work, we consider C = 72 classes for
the full 360◦ azimuth range, corresponding to a DOA map with 5◦ resolution. In the next
subsections two different classification-based approaches for DOA estimation will be discussed.

3.2.1 Conventional DOA estimation

Conventionally, DOA estimation is formulated as a C-class classification task, where each output
class corresponds to a DOA [14, 23, 98, 99, 102]. During training, each training example belongs
to only one output class that has been labeled using oracle DOA information. During testing,
the neural network predicts a posterior probability map in the output. The DOA is usually
estimated as the DOA class with the highest posterior probability. In this work, to obtain
continuous DOA estimates from discrete DOA classes, we estimate the sound source DOA by
employing parabolic interpolation [151] on three DOA classes centered around the DOA class
with the highest posterior probability.

To deal with erroneous DOA estimates (e.g., during speech pauses), a VAD can be cascaded
to this system [21, 23], where a DOA is only estimated from the probability map, if the VAD
detects the signal as speech. In this work, we adopt the VAD-informed DOA estimation approach
to design the baseline system in Section 3.4.1.

3.2.2 Speech-aware DOA estimation

In contrast to the VAD-informed classification-based approach, in [143] we proposed a classification-
based approach referred to as speech-aware DOA estimation. The purpose of speech-aware DOA
estimation is to estimate the DOA of a sound source only for speech sources, without needing a
separate VAD. This problem is formulated as a C + 1-class classification task, where the first C

classes represent the DOA classes and the last class represents the non-speech activity, regarded
as the detection class. During training, via a one-hot encoding scheme, if a training example
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belongs to a speech source from a given direction, the DOA class corresponding to that direc-
tion is labeled by one, whereas all other classes (including the detection class) are labeled by
zero. On the other hand, if a training example belongs to a non-speech source, regardless of
its direction, all DOA classes are labeled by zero, whereas the detection class is labeled by one.
During testing, we consider the class with the highest posterior probability. If this class is a
DOA class, we estimate the sound source DOA by employing parabolic interpolation [151] on
three DOA classes centered around this class. Otherwise, no reliable DOA could be estimated.
In this work, we adopt the speech-aware DOA estimation approach in our proposed systems in
Section 3.4.2.

3.3 Narrowband input features

Aiming at exploiting speech sparsity in the STFT domain, in this section we describe the narrow-
band features that are used as input features for the DOA estimation, namely the cross-power
spectrum (Section 3.3.1) and the periodicity degree (Section 3.3.2).

3.3.1 Cross-power spectrum (CPS)

In [143] the broadband GCC-PHAT, defined as the inverse Fourier transform of the CPS phase,
was used as the spatial input feature. In this work, we propose to directly use the narrowband
CPS. The instantaneous CPS between the r-th and q-th microphone is defined as

Gi(n, k) = Yr(n, k)Y ∗
q (n, k), (3.2)

where (·)∗ denotes complex conjugate and i denotes a microphone pair combination. From (3.2)
it can be seen that the CPS encodes both the phase difference and the levels of a microphone pair.
As CPS input feature, we consider the real and imaginary parts of Gi(n, k) for all M(M − 1)/2
unique microphone pairs for frequencies up to the Nyquist frequency, i.e., k = 0, 1, · · · , K/2,
for L consecutive time frames. This means that the shape of the CPS input feature is equal to
L×(K/2+1)×2M(M −1)/2. We note here that the first, second, and third dimension represent
the height, width, and depth of the input feature, respectively, where the depth corresponds to
the number of input channels. For the CPS input feature, 2M(M − 1)/2 input channels are
constructed by stacking the real and imaginary parts for all microphone pairs.

3.3.2 Periodicity degree (PD)

In [143] broadband PD features, which only offer a coarse representation of the harmonic struc-
ture of a signal, were used as input features. In this work, we propose to use a narrowband
formulation of the PD features, estimated for a set of N fundamental period candidates. The
PD features are computed by first decomposing a reference microphone signal into a set of
bandpass-filtered time signals using a GTFB [48]. The real part of each bandpass-filtered signal
is then passed through a half-wave rectification, followed by a fifth-order low-pass filter with 770
Hz cutoff frequency and a second-order high-pass filter with 40 Hz cutoff frequency, resulting in
bandpass-filtered signal envelopes yenv(t, f) in time t and subband f . In the next step, a set of
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Figure 3·1: Illustrative visualization of narrowband PD features for a set of fun-
damental frequency candidates. The sparse spectro-temporal structure of these
features motivates using a feature reduction stage prior to the joint processing
of the CPS and PD features by the CNN.

N parallel IIR comb filters designed for a set of fundamental period candidates pj ,j = 1, · · · , N ,
filter the signal envelopes as

s(t, f, j) = (1 − α)yenv(t, f) + αs(t − pj , f, j), (3.3)

where α denotes the filter gain. The periodicity degree is defined as the mean amplitude of the
comb-filtered signal, computed as

PD(t, f, j) = (1 − βj)|s(t, f, j)| + βjPD(t − 1, f, j), (3.4)

where |·| denotes the absolute value and the parameter βj for each fundamental period candidate
is defined as βj = e−1/pj .

Since we aim at joint spectro-temporal processing of the PD and CPS features, it is required
to represent both features at the same time-frequency resolution. To obtain the same time
resolution as the CPS features, the PD features are averaged in each STFT frame. Unlike the
linearly-spaced STFT frequency bands, the gammatone bands have a non-uniform frequency
resolution that decreases with frequency. To obtain the same frequency resolution for the PD
features as for the CPS features, for low STFT frequencies we average the PD features in
gammatone bands associated with one STFT frequency band. In contrast, for high STFT
frequencies we replicate the PD features of each gammatone band and assign them to those
STFT frequency bands associated with one gammatone band. Similarly as for the CPS features,
we consider L consecutive frames, such that the shape of the PD input feature is equal to
L × (K/2 + 1) × N .

For a 1s clean signal of a female talker, Fig. 3·1 depicts exemplary 2D narrowband PD
features, corresponding to a subset of fundamental frequency candidates (each representing an
input channel). For a perfectly periodic signal with a certain fundamental frequency, a high PD
value will be captured in each time-frequency bin across the N input channels associated with
the harmonics and sub-harmonics of this fundamental frequency. Even though speech signals are
not perfectly harmonic, their fundamental frequency variations and multiple harmonics exhibit a
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Figure 3·2: Baseline VAD-informed DOA estimation system using only CPS
features.

spectro-temporal structure that can be identified in the input channels of the PD features. The
main idea of using PD features in combination with CPS features is to use the salient periodicity
features as a footprint of speech signals in a noisy mixture [45, 46]. This enables the CNN to
detect voiced speech portions of a signal, at the same time mapping the CPS features of these
portions to the DOA of the talker.

3.4 CNN-based DOA estimation systems

In this section, we describe the CNN-based DOA estimation systems. Section 3.4.1 discusses
the baseline system, which adopts a VAD-informed DOA estimation approach and uses only
the CPS features. Section 3.4.2 presents the proposed systems, which adopt a speech-aware
DOA estimation approach and use a combination of the CPS features and the narrowband PD
features as input features.

3.4.1 Baseline VAD-informed system

Fig. 3·2 depicts the baseline system consisting of a CNN using only spatial CPS features as input
cascaded with a pitch-based binary VAD [138]. In the baseline CNN architecture, each convolu-
tional block (Conv1 to Conv3 ) consists of a cascade of 2D convolutional, batch normalization,
ReLU activation, and 2D max-pooling layers. The outputs of the last pooling layers in Conv3
are concatenated and then used as an input for a cascade of two fully-connected blocks (FC1 to
FC2 ), each representing a fully-connected dense layer followed by batch normalization, ReLU
activation, and dropout layers. A softmax activation function predicts the posterior probability
map for the C DOA classes.

3.4.2 Proposed speech-aware systems

Fig. 3·3 depicts the proposed speech-aware DOA estimation systems, which use narrowband PD
features in combination with spatial CPS features as input features of the CNN. We expect
that by training these systems with speech and non-speech signals, the CNN can capture the
spectro-temporal structure of the signal encoded in the PD features, thereby distinguishing
between speech and non-speech portions while simultaneously mapping the CPS features to a
sound source DOA when speech portions in the signal are detected.

60



(a) without PD feature reduction

(b) with PD feature reduction stage (two-stage CNN)

Figure 3·3: Proposed speech-aware DOA estimation systems: (a) CPS and PD
features are jointly processed by the CNN, (b) PD features are reduced to PD
saliency features using 1×1 convolutions before being jointly processed with CPS
features by the CNN.

The system in Fig. 3·3a directly employs 2D convolutional filters to the time-frequency
regions of each input channel, i.e., PD and CPS features belonging to the same time-frequency
bins are jointly processed, ensuring a proper association of both features. However, the spectro-
temporal sparsity of the PD features (as visualized in Fig. 3·1) may complicate this task when
a relatively large number of PD channels are correlated to the CPS features by the CNN. This
motivates the usage of a PD feature reduction stage prior to the joint feature processing by the
CNN.

Fig. 3·3b depicts the proposed two-stage CNN architecture including a PD feature reduction
stage. The PD feature reduction stage aims at reducing the PD input depth, i.e., the number
of channels, while keeping its width and height, i.e., the time-frequency resolution fixed. We
propose to use 1 × 1 convolutions [164] to reduce the N -channel PD features to a 1-channel
PD feature, which can be interpreted as a PD saliency feature for each time-frequency bin. In
the next stage, the PD saliency features are jointly processed with the CPS features using 2D
convolutional filters. It should be noted that both stages are jointly trained.

The CNN architecture of the proposed systems in Fig. 3·3 is very similar to the CNN ar-
chitecture of the baseline system in Fig. 3·2. However, since the input features of the first
convolutional block (Conv1 ) in the considered systems are different (CPS only, CPS and PD,
CPS and PD saliency), the number of input channels is obviously different. In addition, the
VAD-informed baseline system has C nodes in the output layer, whereas the speech-aware sys-
tems have C + 1 nodes in the output layer. Finally, after hyperparameter optimization the best
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performance was obtained when using 64 convolutional filters in the baseline system and the
two-stage CNN (both corresponding to about 5.5 million trainable parameters), and using 128
convolutional filters in the proposed system without feature reduction (corresponding to about
11.2 million trainable parameters).

3.5 Experimental evaluation

In this section, we conduct experiments to evaluate the performance of the baseline system and
the proposed speech-aware systems described in Section 3.4.1 and Section 3.4.2, respectively.

3.5.1 Datasets and data generation for training and evaluation

We used a database of multichannel BRIRs [1] to generate data for training and evaluation. The
considered binaural hearing aid setup consists of M = 4 microphones, where the front and rear
microphones in both left and right hearing aids were used. We used sound source signals from
speech [152] and non-speech [153] datasets to generate the training and validation data required
during the training of all CNNs. For evaluation, only speech signals from the validation TIMIT
[152] data were used as source signals. Source signals were randomly chosen from unique speakers
(both male and female) and from three categories [143] of non-speech signals. We generated the
noisy binaural microphone signals by convolving the source signals with BRIRs and mixing the
resulting clean binaural signals with a background noise at different SNRs. All systems were
trained in noisy anechoic conditions and evaluated in noisy reverberant environments.

During training, we used a simulated binaural diffuse noise to generate noisy binaural mi-
crophone signals at SNRs ranging from −5 dB to +20 dB in 5 dB steps. This diffuse noise was
generated by convolving uncorrelated speech-shaped noise taken from the ICRA noise database
[154] with anechoic BRIRs and summing all resulting binaural signals from 72 directions. In
total, we obtain 3.85 million training examples. To calculate the validation loss at the end of
each epoch, 200000 examples were randomly selected from the validation data and kept fixed
throughout training.

We generated the evaluation data for static-source scenarios in two real environments [1]
(cafeteria and courtyard) with a reverberation time of approximately 1300 ms and 900 ms,
respectively. The recorded cafeteria babble noise and courtyard ambient noise [1] were used to
generate noisy binaural microphone signals. All systems were evaluated at SNRs ranging from
−5 dB to +10 dB in 5 dB steps. A total of 150 speech segments randomly chosen from 30
unique male and female speakers (each with a length of 1 s) were used as source signals. In
each environment, we considered BRIRs of two head orientations for four source positions [1]. It
should be noted that the source and background noise signals, acoustic conditions, and source
positions used during evaluation were different from those used during training and validation.

3.5.2 Implementation details

In our simulations, we used a sampling frequency fs = 16 kHz and an STFT framework with a
Hann window of length K = 160 (corresponding to 10 ms) and 50% overlap, resulting in 81 STFT
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frequency bins. Each training example includes a block of L = 20 consecutive time frames. For
the PD feature computation, we used a 4-th order GTFB implementation [48] with 61 frequency
subbands, a group delay of 256, and minimum and maximum center frequency of 60 Hz and
7200 Hz. For PD features, we chose N = 180 fundamental period candidates corresponding to
minimum and maximum fundamental frequencies of 70 Hz and 320 Hz, respectively. The comb
filter gain in (3.3) was chosen to be α = 0.7. We considered the front microphone of the left
hearing aid as the reference microphone for the PD feature extraction.

All systems were implemented using PyTorch [156]. For all CNNs, we used a 2D convolutional
filter size of 3 × 3 with a stride size of 1 × 1. The max-pooling size was 2 × 1, i.e., no pooling
is applied across frequencies. In addition to the batch normalization used in the convolutional
and fully-connected blocks of the CNNs, the layer normalization [149] was applied on the CPS
and PD features separately at the input. The CNNs were trained using the Adam optimizer
[157], a cross-entropy loss function, an initial learning rate of 10−5, a mini-batch size of 128 and
a dropout rate of 0.5. An early stopping regularization method on the validation loss and a
variable learning rate scheduler with a factor of 0.5 were also employed. A softmax activation
function is used at the output layer of all systems.

3.5.3 Performance measures

To evaluate the DOA estimation performance, we used MAE and accuracy (Acc). A DOA
estimate in frame l is considered accurate if the absolute error between the estimated DOA θ̂l

and the oracle DOA θl is smaller than 5◦. The MAE (in degrees) and accuracy are defined as

MAE = 1
L

L∑
l=1

∣∣∣θ̂l − θl

∣∣∣ , (3.5)

Acc = Lacc
L

× 100, (3.6)

where L and Lacc denote the total number of estimates and the total number of accurate esti-
mates, respectively.

3.5.4 Results and discussion

Fig. 3·4 shows the performance of all considered systems in terms of accuracy and MAE. By
comparing the proposed two-stage CNN with PD feature reduction to the proposed system
without PD feature reduction, it can be observed that the two-stage CNN generally results in
a better or similar performance. The benefit of using PD feature reduction is especially clear
in challenging acoustic conditions, i.e., in the highly-reverberant cafeteria environment and in
adverse SNR conditions in both environments. Although in terms of accuracy this benefit
decreases with increasing SNR in the courtyard environment in favor of the proposed system
without feature reduction, the proposed two-stage CNN maintains a lower MAE in all conditions.

The results in Fig. 3·4 clearly show that both proposed systems consistently outperform the
baseline system in both environments and for all SNR conditions. This benefit decreases towards
high SNR conditions, which is expected as there are fewer signal portions dominated by noise,
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Figure 3·4: Accuracy and MAE of the proposed systems with narrowband fea-
ture combination evaluated against the baseline system using only CPS features
in static-source scenarios for different SNR conditions in the cafeteria and court-
yard environments.

which PD features can detect.
Considering the number of trainable parameters (cf. Section 3.4.2), compared to the baseline

system the proposed two-stage CNN requires a comparable number of parameters while achieving
a better performance. Moreover, the proposed two-stage CNN outperforms the proposed system
without feature reduction while requiring significantly fewer parameters. This further highlights
the benefit of employing the proposed feature reduction stage before the joint processing of the
proposed narrowband feature combination.

3.6 Conclusion

In this paper, we proposed two speech-aware DOA estimation systems that use a combination
of narrowband periodicity features and spatial CPS features as inputs of a CNN. In particular,
we introduced a two-stage CNN with a periodicity feature reduction stage employing 1 × 1 con-
volutions. Evaluation results showed that the proposed systems yield a better DOA estimation
performance than a baseline system using CPS features and a pitch-based VAD. While offering
a lower computational complexity, the proposed two-stage CNN with feature reduction outper-
forms a system that jointly processes the feature combination without feature reduction. This
study suggests that a feature reduction stage can effectively map the sparse periodicity features
into more compact salient periodicity features, which combined with spatial features, provide
robust features to guide speech-aware DOA estimation.
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Chapter 4
Improving Multi-talker Binaural DOA Estimation by
Combining Periodicity and Spatial Features in
Convolutional Neural Networks

This chapter is a reformatted reprint of the following publication:
R. Varzandeh, S. Doclo, V. Hohmann, “Improving multi-talker binaural DOA estimation

by combining periodicity and spatial features in convolutional neural networks,” Submitted to
EURASIP Journal on Audio, Speech, and Music Processing, 2024.

The chapter proposes a method to enhance the accuracy of multi-talker DOA estimation in
binaural hearing aids by combining periodicity and spatial features. Using a two-stage CNN, the
system integrates CPS phase as spatial features and PD as spectral features. This combination
improves the robustness and accuracy of DOA estimation in noisy, multi-talker environments
over baseline systems that only use the CPS phase or a combination of the CPS phase and
magnitude spectrogram as spectral features.
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Abstract

Deep neural network-based direction of arrival (DOA) estimation systems often rely on spatial
features as input to learn a mapping for estimating the DOA of multiple talkers. Aiming to improve
the accuracy of multi-talker DOA estimation for binaural hearing aids, we investigate the usage of
periodicity features as a footprint of speech signals in combination with spatial features as input
to a convolutional neural network (CNN). In particular, we propose a multi-talker DOA estimation
system employing a two-stage CNN architecture that utilizes cross-power spectrum (CPS) phase as
spatial features and an auditory-inspired periodicity feature called periodicity degree (PD) as spectral
features. The two-stage CNN incorporates a PD feature reduction stage prior to the joint processing
of PD and CPS phase features. We investigate different design choices for the CNN architecture,
including varying temporal reduction strategies and spectro-temporal filtering approaches. The
performance of the proposed system is evaluated in static source scenarios with 2-3 talkers in two
reverberant environments under varying signal-to-noise ratios using recorded background noises. We
consider baseline systems that utilize either CPS features or a combination of CPS and magnitude
spectrogram as a spectral feature. Experimental results demonstrate the clear benefits of combining
PD and CPS phase features within our proposed system. It consistently improves DOA estimation
performance across all conditions and environments, outperforming both baseline systems in terms
of accuracy.

4.1 Introduction

Multi-talker DOA estimation is integral to acoustic signal processing and plays a pivotal role
in many applications, from enhancing auditory experiences in assisted listening devices to im-
proving voice command detection in smart devices [165, 166]. In hearing aids, accurate DOA
information facilitates improved speech intelligibility through beamforming, enables the sup-
pression of competing noise sources, and can increase environmental awareness. This ultimately
helps wearers navigate conversations in complex social environments. While the human auditory
system is uniquely able to localize speech sources in noisy and reverberant environments, this
remains a challenging task for machine listening systems such as hearing aids [4, 68]. This study
addresses multi-talker DOA estimation in the context of binaural hearing aids.

Binaural DOA estimation, the process of determining the direction of sound sources using
signals received by two microphones (e.g., in a binaural hearing aid setup), primarily lever-
ages binaural cues inspired by the human auditory system, namely ITD, IPD, and ILD [4, 79].
While ITD and IPD pertain to the differences in time and phase of a sound arriving at two
microphones, respectively, ILD concerns the difference in sound intensity levels captured by
the microphone pair. ITD information can be defined either through an auditory-inspired ap-
proach in auditory gammatone filterbank channels [10, 79] or using the broadband GCC function
[79, 80]. Integrating ITD with ILD cues has been shown to enhance the accuracy of binaural
DOA estimation compared to using ITD alone [9, 10]. Studies show that combining IPD and
ILD information improves DOA estimation accuracy in multi-talker scenarios [82]. Most of these
approaches usually match the estimated binaural features with pre-computed feature templates
from HRTF databases to obtain the DOA. Another class of conventional binaural DOA estima-
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tion approaches utilizes RTF vectors [8, 11, 83]. These methods employ a database of prototype
RTF vectors, pre-computed for each direction using a measured HRTF database.

A major challenge for these approaches in real-world acoustic conditions is that background
noise, interference, and reverberation introduce uncertainties into binaural cues. These uncer-
tainties distort the extracted binaural features from microphone signals, leading to mismatches
with the pre-computed templates and subsequently degrading DOA accuracy [10]. To address
the limitations of these approaches, researchers have developed supervised learning techniques
using DNNs [12, 14, 16–20, 23, 96, 98–106, 121]. When trained on diverse acoustic conditions,
these techniques demonstrate more robust performance in adverse scenarios [14, 99]. In this
paper, we address the multi-talker binaural DOA estimation using supervised DNN-based tech-
niques.

Supervised DNN-based approaches commonly formulate the multi-talker DOA estimation
task as a classification or regression problem [12, 121]. In classification-based approaches, the
neural network predicts a spatial probability map for a discretized DOA range. Peaks within
this map indicate the probable locations of active sound sources. A common assumption here is
that the number of sources is known in advance, and their DOAs are found by peak detection
[14, 17, 98, 102, 103]. In regression-based approaches, the neural network provides continuous
estimates directly in the output [100, 121]. This offers potential for improved performance com-
pared to the classification-based approaches, as the latter limits the DOA resolution depending
on the discretized DOA range. However, in regression-based approaches, the number of simul-
taneously active sources must be known before training, which may not align with the number
of active sources during testing. Another drawback of regression-based approaches is the source
permutation problem in multi-talker scenarios, where it becomes ambiguous which predicted
output corresponds to which target speaker. In this paper, we focus on classification-based
techniques for binaural DOA estimation.

DNN-based methods for binaural DOA estimation typically utilize spatial features extracted
from binaural signals. Commonly used features include the ILD, ITD (or IPD), CCF, and GCC-
PHAT [12, 108]. Most of these methods directly utilize the input features for DOA estimation
utilizing the network output [14, 16, 18], while some methods adopt a two-step approach, first
refining the input features into enhanced representations using the DNN and then estimate
the DOA from the enhanced features [15, 19, 20]. Previous research indicates that using the
complete CCF or GCC-PHAT can be more effective than relying solely on ITD [14]. While
most existing methods focus on DOA estimation in the azimuthal plane [14, 16, 20, 99], some
employ multi-task learning to simultaneously estimate both azimuth and elevation [18, 101], or
azimuth alongside distance [167]. In this work, we focus specifically on DOA estimation within
the azimuthal plane.

It is assumed that the human auditory system groups signal components according to infor-
mation such as periodicity of voiced speech and continuity of harmonics, and then ITD (or IPD)
information is used to segregate the grouped components [4]. Motivated by that, a learning-
based method for multi-talker DOA estimation [67] proposed to incorporate a monaural pathway
including pitch-based analysis to group time-frequency units dominated by the same talker. The
grouping provided constraints for the integration of binaural cues, improving azimuth estimation
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accuracy. It has also been shown in [47] that periodicity-based salient features yield a sparse
auditory time-frequency representation capable of decoding complex auditory scenes.

While binaural features are widely used for DOA estimation, the benefit of their combi-
nation with monaural spectral features, such as salient periodicity features as input features
for DNN-based multi-talker DOA estimation has not been investigated. In [168], we proposed
a classification-based system based on CNNs for single-talker binaural DOA estimation. This
study showed the benefit of using a periodicity feature called PD in combination with spatial
features as input to a two-stage CNN.

In this paper, we propose a DOA estimation system that builds upon our earlier work
[168] by incorporating a unique feature combination within a computationally efficient two-stage
CNN adapted for multi-talker DOA estimation. Our main objective is to explore the potential
benefits of incorporating periodicity features, alongside spatial features for DNN-based multi-
talker DOA estimation, as established for the single-talker scenarios in [168, 169]. As the spatial
feature, we use the phase component of CPS, which is closely related to the IPD for a pair
of microphones. We hypothesize that combining the CPS phase as the spatial feature with a
compact representation of PD, obtained through a feature reduction stage inspired by [168], will
outperform using the CPS phase alone in multi-talker scenarios.

To optimize performance and computational efficiency, we investigate different two-stage
CNN architectural choices, including different temporal reduction strategies (e.g., dilation, max
pooling) and different approaches to spectro-temporal filtering using convolutional kernels. We
show that the proposed system which captures the temporal dependencies for each frequency in-
dependently via convolutional kernels leads to the best performance for DOA estimation with the
lowest computational complexity. We conducted evaluations in different static-source scenarios,
including different SNRs using recorded background noises, reverberant environments, and dif-
ferent number of talkers. The proposed system was compared to baseline systems that utilized
either the CPS phase alone or a combination of the CPS phase and magnitude spectrogram
as input features. Experimental results demonstrated that the proposed system outperforms
baseline systems in all evaluated scenarios.

The remainder of this paper is structured as follows. First, in Section 4.2, the multi-talker
DOA estimation is formulated and discussed as a classification problem. Section 4.3 introduces
the input features employed in this study. In Section 4.4, comprehensive descriptions of the
proposed and baseline systems are presented. The details of the experimental setup for training
and evaluation of all systems including datasets, data generation, training and network hyper-
parameters, and evaluation metrics appear in Section 4.5. The proposed and baseline systems
are evaluated, and the results are discussed in Section 4.6. Section 4.7 summarizes the results
and presents the conclusion.

4.2 DOA estimation as a classification problem

In this work, we consider the problem of multi-talker DOA estimation in the azimuthal plane
using a binaural hearing aid setup with M microphones, where the microphones are located
close to the ears on both sides. The acoustic scenario consists of multiple speech sources and
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background noise, which are assumed to be mutually uncorrelated. The m-th microphone signal
in the time domain at time t is given by

ym(t) =
I∑

i=1
xi

m(t) + vm(t), (4.1)

where xi
m and vm denote the desired i-th speech source at DOA θi in the azimuthal plane, and

noise signal components in the m-th microphone signal, respectively. In the STFT domain, the
m-th microphone signal at time frame n and frequency bin k (with K and D the STFT length
and hop size, respectively) can be written as

Ym(n, k) =
I∑

i=1
Xi

m(n, k) + Vm(n, k). (4.2)

Conventionally, by discretizing the azimuth range into C DOAs {ϕ1, · · · , ϕC}, multi-talker
DOA estimation is formulated as a C-class classification task, where output classes correspond
to independent DOAs, i.e., sound source locations are mutually independent [98, 102, 103]. The
goal is to assign the DOAs of multiple incoming sound sources to corresponding DOA classes.
In this study, we use C = 72 classes spanning the full 360◦ azimuth range, yielding a DOA map
with 5◦ resolution.

By taking a supervised approach, during training, each training example may belong to one
or more output classes that are labeled using ground truth DOA information. In other words,
each training example can represent situations where multiple speakers are active simultaneously.
However, this approach can complicate the training data generation, as the differences in signal
levels for these scenarios can significantly impact the performance of the DOA estimation system.
In this work, we generate training examples involving only a single active speaker and evaluate
the system’s ability to generalize to multi-talker scenarios where each speaker contributes equally
to the microphone signal.

During testing, the neural network predicts a posterior probability for each DOA class in the
output. The generated posterior probability map P = [P1, · · · , PC ] represents the likelihood of
the sound source being located at each of the C possible DOAs. As a common approach, with
I active sources, the I DOA classes with the highest probability values in P are selected as the
estimated DOAs. In this study, we will take a slightly different approach for DOA estimation
in Section 4.4.

4.3 Input features

This section outlines the spatial and spectral features used as inputs for the classification-based
DOA estimation methods in this study. Section 4.3.1 introduces narrowband CPS features
as spatial features. Section 4.3.2 presents narrowband PD features (as introduced in [168]),
alongside the magnitude spectrogram as an alternative spectral feature.
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4.3.1 Spatial features

In [168], the real and imaginary components of the CPS was used as the spatial feature, which
encodes both spectral magnitudes and phase differences. In this work, we consider the phase
component of the CPS as spatial feature used in the baseline and proposed systems in Section 4.4.
The instantaneous CPS between the r-th and q-th microphone is defined as

Gd(n, k) = Yr(n, k)Y ∗
q (n, k), (4.3)

where (·)∗ denotes complex conjugate and d denotes a microphone pair combination. As CPS
input, we consider the phase components of Gd(n, k) for all M(M − 1)/2 unique microphone
pairs for frequencies up to the Nyquist frequency, i.e., k = 0, 1, · · · , K/2, for L consecutive time
frames. This means that the shape of the CPS input is equal to L × (K/2 + 1) × M(M − 1)/2.
We note here that the first, second, and third dimensions represent the height, width, and depth
of the input feature, respectively, with the depth corresponding to the number of input channels.

4.3.2 Spectral features

Periodicity is an important cue to segregate and localize different talkers [47, 148]. Periodicity
features typically require an auditory pre-processing stage followed by feature extraction [47].
In [143, 168, 169] a periodicity feature called PD was used, which captures the salience of the
periodic components in the input signal. In this work, we propose to use narrowband PD features
[168] for multi-talker DOA estimation, computed for a set of N fundamental period candidates.

To compute PD features, we select one of the M microphones as the reference. Please note
that this microphone is selected arbitrarily, and optimal microphone selection for PD estimation
is beyond the scope of this study. In the pre-processing step, the reference microphone signal in
the hearing aid setup is first decomposed into signals in different gammatone frequency bands
using a complex-valued GTFB [48]. The real part of each signal then undergoes half-wave
rectification, yielding signal y(t, f) in the f -th gammatone frequency band. In each frequency
band, y(t, f) is processed with a fifth-order low-pass filter (770 Hz cutoff) and a second-order
high-pass filter (40 Hz cutoff), resulting in bandpass-filtered signal envelopes yenv(t, f). These
envelopes serve as the basis for our PD feature extraction.

In the feature extraction step, we filter the signal envelopes using a set of N parallel IIR comb
filters. These filters are designed for a set of N fundamental period candidates pj , j = 1, · · · , N .
The comb-filtered signals are computed by

s(j, t, f) = (1 − α)yenv(t, f) + αs(j, t − pj , f), (4.4)

where α denotes the filter gain. The periodicity degree is defined as the mean amplitude of the
comb-filtered signal, given by

PD(j, t, f) = (1 − βj)|s(j, t, f)| + βjPD(j, t − 1, f), (4.5)

where the averaging parameter βj for each fundamental period candidate is defined as βj =
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Figure 4·1: PD features computed over L = 199 consecutive time frames and 61
gammatone bands for a clean female speech in an anechoic environment. A small
set of fundamental frequency candidates (specified above each image) is shown
for visualization. The sparse spectro-temporal structure of PD features contains
sufficient information to decode complex auditory scenes, and motivates using a
feature reduction stage to learn the salient PD features prior to joint processing
with the CPS phase.

e−1/pj .
To enable joint spectro-temporal processing of PD and CPS features, their time-frequency

resolutions must be aligned. Since PD features in (4.5) initially have the temporal resolution of
the time-domain signal, we achieve the necessary alignment with CPS features by temporally
averaging them within each STFT frame as

PD(j, n, f) = 1
K

(n−1)D+K∑
t=(n−1)D+1

PD(j, t, f). (4.6)

The non-uniform frequency resolution of gammatone bands (decreasing with frequency) con-
trasts with the linear spacing of STFT frequency bands. To align the frequency resolution of PD
features with CPS features, we employ different strategies based on STFT frequency. For low
frequencies, PD features from multiple gammatone bands corresponding to a single STFT band
are averaged, while for high frequencies, PD features from each gammatone band are replicated
and assigned to the associated STFT frequency bands.

AS input PD feature used for the proposed system (cf. Fig. 4·3), we consider PD features in
(4.6) for all N fundamental period candidates, for L consecutive time frames, and for all K/2+1
STFT frequency bands. This leads to an input PD feature of size L × (K/2 + 1) × N , which will
be used as the input PD feature of the proposed DOA estimation system in Section 4.4.2.

For a 1s clean signal of a female talker, Fig. 4·1 depicts exemplary 2D images of PD fea-
tures, corresponding to a subset of fundamental frequency candidates. For a perfectly periodic
signal characterized by a specific fundamental frequency, a high PD value will be captured for
candidates associated with the harmonics and sub-harmonics of this fundamental frequency.
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While speech isn’t perfectly periodic, fundamental frequency variations and harmonics create
a spectro-temporal structure visible in the PD features. The primary rationale for using PD
features alongside spatial features is to leverage the periodicity features as a robust footprint
of speech signals in a noisy mixture [45, 46]. This approach allows the neural network to pin-
point voiced speech segments while simultaneously mapping their associated CPS features to
the talker’s DOA.

Magnitude spectrograms provide rich spectro-temporal information about formant frequen-
cies and harmonic content, making them common in DOA estimation systems [12]. To explore
the benefit of spectral features in combination with spatial features for multi-talker DOA esti-
mation, as an alternative to periodicity features, we use the magnitude spectrogram of the same
microphone used for PD feature extraction. We take the magnitude of the microphone’s STFT
coefficients up to the Nyquist frequency, i.e., k = 0, 1, · · · , K/2, for L consecutive time frames.
This results is an input magnitude spectrogram of shape L × (K/2 + 1).

4.4 CNN-based DOA estimation systems

This section outlines the CNN-based DOA estimation systems. The baseline systems are dis-
cussed in Section 4.4.1, which employ either only the CPS phase or a combination of the CPS
phase and magnitude spectrogram as input. Section 4.4.2 presents our proposed system which
utilizes the CPS phase combined with PD features as input. We also explore alternative de-
sign choices for this two-stage architecture. Finally, Section 4.4.3 analyzes the computational
complexity of all considered systems.

All systems share the same training and DOA estimation procedures. The key difference
between our proposed system and the baselines lies in the two-stage CNN architecture and the
combination of CPS phase and PD features. For training, each training example consists of a
block of L consecutive time frames, i.e., we employ block-level labeling and each CNN generates
its output for the whole block. A key assumption is that the DOA remains constant within this
block of L frames when assigning a ground truth label.

For DOA estimation, with I active sources, we first find the I DOA classes ϕj , j = 1, · · · , I
with the highest probability values in the posterior probability map P . To refine these dis-
crete DOA classes into continuous estimates, we estimate the sound source DOA by employing
parabolic interpolation [151] on three DOA classes centered around ϕj , i.e., ϕj−1, ϕj and ϕj+1.
As a result, this approach allows for a more accurate DOA estimation with a higher spatial
resolution. Please note that during testing, consecutive input features for all systems overlap by
L − 1 frames, yielding a new posterior probability map for every new frame.

4.4.1 Baseline systems

Neural networks based on CNNs have proven highly effective for DOA estimation and sound
source localization [12]. Fig. 4·2 depicts the baseline systems consisting of a CNN using only the
CPS phase or a combination of the CPS phase and magnitude spectrogram as input. The CNN
architecture in both baseline systems begins with a cascade of two convolutional blocks (Conv1
and Conv2 ). Each block consists of a 2D convolutional layer, followed by batch normalization
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(a) With only CPS phase

(b) With CPS phase and magnitude spectrogram

Figure 4·2: Baseline DOA estimation systems using (a) only spatial feature
(CPS phase), and (b) spatial and spectral features (CPS phase and magnitude
spectrogram).

and a ReLU activation layer. Only Conv2 incorporates a max pooling layer after the ReLU.
Next, the concatenated outputs of Conv2 serve as an intermediate feature vector and are fed
into two fully-connected blocks (FC1 and FC2 ). These blocks each comprise a fully connected
dense layer with batch normalization, ReLU activation, and dropout layers. Finally, the output
layer employs C sigmoid activation functions to generate the posterior probability map for the
C independent DOA classes.

To improve CNN performance, we employ layer normalization [149] (without an affine trans-
formation) directly on the input features before the first convolutional block. This normalization
targets the CPS phase and magnitude spectrogram separately. It’s important to note that this
has been implemented in addition to the batch normalization used within the convolutional and
fully-connected blocks of the CNNs.

4.4.2 Proposed system

Fig. 4·3 illustrates our proposed multi-talker DOA estimation system, which combines PD fea-
tures (cf. Section 4.3.2) with the CPS phase (cf. Section 4.3.1) as input to a two-stage CNN.
Inspired by [168], our system features a PD feature reduction stage before joint processing with
CPS phase. Within this reduction stage, we use 1 × 1 convolutions [164] to transform the N -
channel PD features into a single-channel PD saliency feature for each time-frequency bin. This
aims to decrease input depth (number of channels) while preserving the time-frequency resolu-
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Figure 4·3: Proposed system using the CPS phase and PD features as input.
The PD features undergo dimensionality reduction via 1 × 1 convolutions to
create compact PD saliency features. These are then combined with CPS phase
features as input to the convolutional blocks for joint processing and extraction
of spectro-temporal patterns related to source DOA.

tion of PD features. In the following stage, these PD saliency features are jointly processed with
CPS features using convolutional filters.

The second stage of our proposed system shares the same architecture as our baseline sys-
tems (Section 4.4.1). To process the combined CPS phase and PD saliency features, we use
convolutional blocks (Conv1 and Conv2 ), each composed of a 2D convolutional layer, batch
normalization, and a ReLU activation layer. Conv2 also includes max pooling after the ReLU.
The outputs of the Conv2 block are then concatenated and fed as an intermediate feature vector
into two fully-connected blocks (FC1 and FC2 ). Each block features a fully-connected dense
layer, batch normalization, a ReLU activation layer, and a dropout layer. Finally, similar to
the baseline systems, the output layer uses C sigmoid activation functions to generate the pos-
terior probability map for the C independent DOA classes. We employ the same input layer
normalization scheme as our baseline systems, normalizing the PD and CPS phase separately.
It should be noted that both stages of the proposed system are trained jointly.

Employing convolutional kernels across L consecutive time frames and K/2+1 frequency bins
allows for different design approaches to capturing spectro-temporal dependencies. In particular,
we have made two main design choices for the two-stage CNN architecture, employed for the
proposed system.

As our first design choice, we consider a combination of kernel, dilation, and max pooling
sizes that reduces the temporal dimension of the input features to a single value at the output
of the last convolutional block. This essentially captures temporal correlation solely through
the convolutional path. Consequently, the intermediate feature vector at the input of the fully-
connected path primarily contains elements representing different frequencies. Our CNN design
is based on the assumption that convolutional blocks effectively capture temporal dependencies
in the input features, while fully-connected blocks best capture global patterns across frequencies.

In multi-talker scenarios, neighboring frequency bins may contain dominant activity from dif-
ferent speakers. Hence, previous works [98, 102] have used convolutional kernels that separately
process each frequency bin to take benefit from the widely adopted assumption of W-disjoint
orthogonality [163]. As the second design choice, we preserve frequency resolution at the output
of the convolutional path (and hence, capturing global patterns across frequencies merely via
the fully-connected path). We expect that this approach may lead to a better DOA estimation
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performance compared to joint learning of time-frequency dependencies using 2D convolutional
kernels.

With an interest in designing a computationally efficient system in this study, the proposed
system utilizes a temporal kernel size of 7, a dilation rate of 2, and a temporal max Pooling size
of 2. This CNN architecture was chosen to help reduce computational costs while maintaining
performance. The large kernel size of 7 captures long-range temporal dependencies in the input
features. Using dilation in the convolutions expands the receptive field without increasing the
number of parameters. The max pooling then further downsamples the temporal dimension to
reduce computations in subsequent layers. This specific combination implements our first design
choice while capturing large temporal contexts within just two convolutional blocks (Conv1 and
Conv2 in Fig. 4·3). To implement our second design choice, we ensure convolutional kernels and
max pooling operate exclusively across the time dimension. In the following, we investigate our
main design choices by considering alternative approaches.

First, aiming at investigating different approaches to capture temporal dependencies, we
employ convolutional blocks with different combinations of dilation and max pooling. This re-
sults in reducing the temporal dimension into different numbers of features for each filter at
the output of the convolutional path (compared to the single feature in the proposed system).
Consequently, both convolutional and fully-connected paths contribute to capturing temporal
dependencies. We compare our proposed system with two additional two-stage CNN configu-
rations: one with a dilation size of 2 and no max pooling (temporal dimension of 2), and the
other with neither dilation nor max pooling (temporal dimension of 8). Similar to the proposed
system, theses two two-stage configurations use convolutional kernels exclusively across time
(see the second and third systems in Table 4.1).

Second, we explore the usage of kernels that span both time and frequency dimensions using
different kernel sizes across frequencies. To do so, the proposed system with the kernel size of
7x1 (only temporal processing) is paired with two alternative two-stage systems that employ 2D
kernels across both time and frequency with the sizes of 7x2 and 7x3 (see the fourth and fifth
systems in Table 4.1). It should be noted that the temporal dimension in all three systems is
reduced to a single value. To prevent information loss and focus on adjacent frequencies, we
avoid dilated kernels across the frequency dimension.

To prevent temporal information loss, in all systems, the first convolutional block (Conv1 )
uses neither dilation nor max pooling. The subsequent convolutional block (Conv2 ) in the
alternative systems may incorporate max pooling and/or a dilation rate of 2 across time. All
systems include convolutional blocks with 64 filters and fully-connected blocks with 512 neurons.

4.4.3 Computational complexity

Table 4.1 shows the number of trainable parameters and multiply-accumulate operations (MACs),
both in millions for the proposed system, alternative two-stage systems using different temporal
reduction and spectro-temporal strategies, as well as the two baseline systems. The number of
parameters, i.e. the model size, influences the memory required to store the model, while MACs
provide an estimate of the arithmetic computations, which inherently affects energy consump-
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Table 4.1: Number of trainable parameters and multiply-accumulate operations
(MACs) of different systems.

CNN
Architecture

Kernel/
Dilation

Max
Pool

Temp.
Dim.

MACs
(M)

Param.
(M)

Prop. two-stage 7x1/2x1 2x1 1 11.5 3
Two-stage w/ only Dil. 7x1/2x1 No 2 14.2 5.6
Two-stage w/o MaxP. & Dil. 7x1/No No 8 44 21.6
Two-stage w/ Spectro-temp.
proc. 1

7x2/2x1 2x1 1 19.3 3

Two-stage w/ Spectro-temp.
proc. 2

7x3/2x1 2x1 1 26.8 2.9

Baseline w/ only CPS phase 7x1/2x1 2x1 1 10.7 3
Baseline w/ CPS phase &
Mag. Spec.

7x1/2x1 2x1 1 11.2 3

tion.
To investigate the effect of different dilation and max pooling strategies (across time) on

the complexity of the two-stage systems (cf. Fig. 4·3), we consider the first three systems in
Table 4.1. Using different dilation rates and max pooling results in varying degrees of tempo-
ral reduction within the convolutional path (Conv1 and Conv2 ), which consequently leads to
intermediate feature vectors with different sizes. This manipulation yields configurations with
differing computational complexities, where the complexity scales in proportion to the degree of
reduction in the intermediate feature vector. For example, the proposed system which utilizes
the maximum temporal dimension reduction (temporal dimension size of 1) has the minimum
computational complexity of 11.5 million MACs, compared to 14.2 and 44 million MACs for
the two other two-stage CNN configurations. Similarly, it has the smallest memory footprint (3
million parameters) in contrast to 5.6 and 21.6 million parameters for the two other systems.

To compare spectro-temporal processing strategies, we pair the proposed system (using 1D
temporal kernels of 7x1) with alternative two-stage CNNs employing 2D kernels spanning both
time and frequency (sizes 7x2 and 7x3). As Table 4.1 reveals, while the number of parameters
remains relatively comparable across different frequency kernel sizes, larger kernels lead to in-
creased MACs. All three systems maintain the same temporal kernel size (7), resulting in a
temporal dimension reduction to a single value. Their difference lies in the frequency kernel size
(1, 2, and 3). Due to frequency dimension reduction within the convolutional path, the modified
systems have fewer intermediate features. This translates to slightly fewer trainable parameters
in the system using 7x3 kernels.

Apart from the PD feature reduction stage, the architecture of the proposed system (Fig. 4·3)
closely mirrors the baseline systems (Fig. 4·2). Since the proposed and baseline systems use the
same kernel, dilation and max pooling sizes, as well as the same number of filters (64), they
have the same number of intermediate features. Additionally, all systems use 512 neurons
in the fully-connected blocks. This results in a comparable number of trainable parameters,
predominantly determined by the fully-connected path. Please note that the PD reduction
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stage has a negligible impact on the total number of trainable parameters (3 million). However,
the PD feature reduction stage and distinct inputs to Conv1 slightly increase the MACs of
the proposed system (11.5 million) compared to the baseline systems employing the CPS phase
alone (10.7 million) or in combination with magnitude spectrogram (11.2 million)

In summary, among the two-stage CNN configurations explored, the proposed system’s focus
on temporal feature reduction (to a single value) together with independent frequency process-
ing yields the lowest computational cost and smallest model size. Furthermore, with a slight
increase in computational need, the model size of the proposed system remains comparable to
the baselines. To the best of our knowledge, direct implementation in current hearing devices is
not feasible. Achieving this may require further model optimization, quantization, and pruning,
which are aspects beyond the scope of this study.

4.5 Experimental setup

This section presents experiments evaluating the performance of the multi-talker DOA estima-
tion systems described in Sections 4.4.2 and 4.4.1. We detail the employed datasets in Sec-
tion 4.5.1. Sections 4.5.2 and 4.5.3 describe procedures for generating training and evaluation
data. In Section 4.5.4, implementation details of input features are provided. Section 4.5.5
presents CNN training procedures and hyperparameters. Finally, Section 4.5.6 outlines the
evaluation metrics used to assess the performance.

4.5.1 Datasets

We used Speech signals of 462 and 168 speakers from the TIMIT dataset [152] (including both
male and female speakers) for training and validation, respectively. For evaluation, speech signals
from the validation TIMIT dataset were used as source signals. A database of multichannel
BRIRs [1] was used to generate data for training and evaluation. We considered a binaural
hearing aid setup consisting of M = 4 microphones, where the front and rear microphones
(approximate microphone distance of 15 mm) in both left and right hearing aids were used. The
database in [1] provides BRIRs for anechoic conditions for different source-to-head distances and
C = 72 directions in the azimuthal plane (5◦ resolution). It additionally includes BRIRs for
two reverberant environments: a cafeteria (T60 ≈ 1.3 s) and a courtyard (T60 ≈ 0.9 s). Noisy
binaural microphone signals were generated by convolving source signals with BRIRs and mixing
the resulting clean binaural microphone signals with background noise. Training was conducted
in noisy anechoic conditions, while evaluation was conducted in noisy reverberant environments.

4.5.2 Training data

For training, clean binaural microphone signals were generated by convolving speech signals with
anechoic BRIRs for each of the 72 directions at a fixed 3 m source-to-head distance. The noisy
binaural microphone signals were generated by mixing the clean binaural microphone signals
with simulated binaural diffuse noise at SNRs ranging from −5 dB to +20 dB in 5 dB steps.
This noise was generated by convolving uncorrelated speech-shaped noise (ICRA database [154])
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Table 4.2: Summary of the training data

Source signals Speech (TIMIT)
Environment Anechoic [1]
Background noise Simulated diffuse noise
SNR −5 dB to +20 dB in 5 dB steps
Source-to-head distance 3 m
Source positions 72 positions in the horizontal plane

Table 4.3: Summary of the evaluation data

Source signals Speech (TIMIT)
Environment Cafeteria (T60 ≈ 1.3 s) and courtyard (T60 ≈ 0.9 s) [1]

Background noise Recorded noise
SNR −5 dB to +10 dB in 5 dB steps

Source-to-head distance 1 − 1.6 m
Source positions 4 source positions with 2 head orientations in each environment

with anechoic BRIRs, and summing all resulting binaural signals from 72 directions. Training
examples included all 72 directions at six different SNRs. In a data pre-processing step, a
simple oracle broadband energy-based VAD was used to select segments with sufficient speech
content, ensuring meaningful data contributed to the loss function. Training examples consisted
of blocks of L = 20 consecutive time frames (corresponding to 105 ms). We generated a training
set of 1.9 million examples (approximately 55.4 hours) and a validation set of 200000 examples
(approximately 5.8 hours). A summary of the training data is presented in Table 4.2.

4.5.3 Evaluation data

We evaluated the performance of all systems for static source scenarios in reverberant environ-
ments. Source signals, background noise signals, acoustic conditions, and source positions were
distinct from those used during training. Table 4.3 summarizes the evaluation setup and data
generation. Two real environments were used, a cafeteria environment with a reverberation time
of approximately 1300 ms, and a courtyard environment with a reverberation time of approxi-
mately 900 ms. The clean binaural microphone signals were generated by convolving the speech
source signals with reverberant BRIRs[1]. Figs. 4·4a and 4·4b illustrate the room configurations.
In each environment, we considered four source positions (depicted with dashed boxes) with two
head orientations measured for each position. Two-source and three-source scenarios were cre-
ated for each environment by combining all possible pairs and triplets of source positions across
the two head orientations, resulting in 12 two-source and 8 three-source scenarios. Performance
was evaluated at SNRs from −5 dB to +10 dB in unmatched background conditions, where
recorded cafeteria babble noise and courtyard ambient noise [1] were used. A total number of
150 speech utterances (each with a length of 2 s) randomly chosen from 30 unique male and
female speakers were selected from the validation TIMIT dataset.
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(a) Cafeteria (static scenario) (b) Courtyard (static scenario)

Figure 4·4: Evaluation setups for static scenarios, adapted from [1]. In the
cafeteria, source positions A, B, D, E were considered, while in the courtyard,
source positions A, B, C, and D were considered. Dashed arrows extending
from each source position towards the head indicate the head location. Head
orientations are indicated by the numerals 1 and 2, which are placed close to the
head icon.

4.5.4 Implementation details

All signals were sampled at 16 kHz. CPS phase and magnitude spectrogram features were
calculated using an STFT with a Hann window of length K = 160 (corresponding to 10 ms)
and a hop size of D = 80 corresponding to 5 ms), yielding 81 STFT frequency bins. For each of
the 6 microphone pairs, CPS features were computed over a block of L = 20 consecutive time
frames, resulting in a CPS input feature of size 20 × 81 × 6.

In this paper, we consider the front microphone of the left hearing aid as the reference
microphone for the PD and magnitude spectrogram feature extraction. The magnitude spec-
trogram was also calculated over 20 STFT time frames and 81 frequency bins, resulting in an
input feature size of 20 × 81, aligning with the CPS input dimensions for joint spectro-temporal
processing.

PD features were computed using a 4-th order GTFB implementation [48] with 61 bands,
a group delay of 256, and minimum and maximum center frequencies of 60 Hz and 7200 Hz,
respectively. By choosing the maximum and minimum fundamental frequencies as 320 Hz and
70 Hz, respectively, the range of fundamental period candidates for PD feature extraction lies
between 3.1 ms and 14.3 ms for N = 180 period candidates. The comb filter gain was chosen
to be α = 0.7. After adjusting the frequency resolution of the PD features to match the STFT
(cf. Section 4.3.2), the input PD features had a size of 20 × 81 × 180, aligning them with the
spectro-temporal dimensions of the CPS input features.
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4.5.5 Training and network hyperparameters

All systems were implemented using PyTorch [156]. Convolutional blocks in all CNNs employed
64 filters with a stride size of 1×1. When used, max pooling had a size of 2×1 with strides of the
same size. The training was conducted using the Adam optimizer [157], a binary cross-entropy
loss function, an initial learning rate of 10−4, a mini-batch size of 128, and a dropout rate of
0.5. We employed early stopping regularization that terminated training if the validation loss
did not improve for 10 epochs. A variable learning rate scheduler was also used, halving the
learning rate if the validation loss did not improve for 2 epochs. The maximum training epoch
number was set to 100. Each epoch randomly selected 1.9 million non-repeating examples from
the training set. Mini-batches were assembled randomly, drawing examples from various SNR
conditions and DOA classes. Validation loss was computed using a fixed set of 200000 examples
from the validation set. The validation data were not seen by the network during the training.

4.5.6 Evaluation metrics

We evaluated the DOA estimation performance of all systems in terms of accuracy (Acc.) [14, 98].
For a signal block l containing a mixture of I sources, an estimated DOA for the i-th source (θ̂l

i)
is considered accurate if the absolute error between that and the oracle DOA(θl

i) is less than 5◦,
i.e., the minimum angular resolution of the database in [1]. The accuracy is defined as

Acc. = 1
LI

L∑
l=1

I∑
i=1

H(5 −
∣∣∣θ̂l

i − θl
i

∣∣∣) × 100, (4.7)

where L denotes the total number of signal blocks, and H denotes the Heaviside step function.
Please note that the Heaviside step function is defined here such that it returns 1 if the absolute
error is less than 5◦ (an accurate estimate), and 0 otherwise (an inaccurate estimate).

4.6 Results and discussion

In this section, we will present and analyze the performance evaluation results of the proposed
system and the alternative two-stage configurations employing PD and CPS phase features,
along with baseline systems using either the CPS phase or the combination of the CPS phase
and magnitude spectrogram. We assessed the performance of all systems in different reverberant
environments with different background noises for both static two-talker and three-talker sce-
narios in terms of accuracy. Section 4.6.1 compares the proposed system to the two alternative
two-stage systems using different temporal dilation and max pooling strategies. In Section 4.6.2,
we compare the performance of the proposed system and the two alternative two-stage systems
using different spectro-temporal processing strategies. Finally, Section 4.6.3 discusses the per-
formance evaluation of the proposed and baseline systems.

4.6.1 Different temporal reduction strategies

For two-source and three-source scenarios in two reverberant environments (cafeteria and court-
yard), Fig. 4·5 shows the accuracy at different SNRs for the proposed system, and the two
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Figure 4·5: Accuracy of the proposed system and the two two-stage CNN con-
figurations using different temporal feature reductions for static source scenarios
in two reverberant environments (cafeteria and courtyard) for different SNRs
and two-talker and three-talker scenarios. The proposed system (indicated by
the blue bar) employs a dilation and max pooling size combination that leads to
a temporal dimension of size 1 for each filter output, while the red and orange
bars correspond to counterpart configurations, resulting in temporal dimensions
of sizes 2 and 8, respectively. All systems use the combination of PD and CPS
phase as input, without any max pooling or convolutional kernels across frequen-
cies.

alternative two-stage systems (Section 4.4.2) using different temporal feature reduction strate-
gies. The blue bars indicate the evaluation results of the proposed system employing dilated
kernels and max pooling across time that leads to a temporal dimension of size 1 for each filter
of the Conv2 block (cf. Fig. 4·3). The red and orange bars correspond to alternative configura-
tions, one with dilated kernels but no max pooling, leading to a temporal dimension of 2, and
another with neither max pooling nor dilation across time, yielding a temporal dimension of 8
(as detailed in Table 4.1).

In particular, we intend to test the hypothesis that the temporal dependencies in the input
features can be effectively captured merely by convolutional blocks, while the frequency resolu-
tion of features is preserved. The latter is ensured by using no Max Pooling and no convolutional
kernels across frequencies. This would essentially mean that global patterns across frequencies
are exclusively captured by the fully-connected blocks.

It can be observed that in the cafeteria environment, the proposed system clearly outperforms
the other two-stage configurations. In the courtyard environment, all three systems perform
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Figure 4·6: Accuracy of the proposed system and the two two-stage CNN con-
figurations using different spectro-temporal processing for static source scenarios
in two reverberant environments (cafeteria and courtyard) for different SNRs
and two-talker and three-talker scenarios. The proposed system (indicated by
the blue bar) employs a kernel size of 1 across frequencies (no frequency corre-
lation), while the red and orange bars correspond to counterpart configurations,
using kernel sizes of 2 and 3 across frequencies. All systems use the combination
of PD and CPS phase as input, and employ kernels of size 7 with a dilation
rate and max pooling size of 2 across time, and without any max pooling across
frequencies.

comparably, with slightly higher accuracy for the two-stage configuration using no temporal
max pooling or dilated kernels (yellow bar), nonetheless at the expense of significantly more
computational cost and model size (cf. Table 4.1).

It is important to note that using a model with the highest computational complexity does
not necessarily lead to a better performance in terms of accuracy. In fact, the proposed sys-
tem, which captures temporal dependencies in the input features through convolutional blocks,
proves to be a favorable approach due to its more efficient configuration with less computational
complexity and model size.

4.6.2 Different Spectro-temporal filtering strategies

In this section, in comparison to the proposed system that only employs dilated convolutional
kernels of size 7 and dilation rate of 2 across time, we investigate the potential benefit of using
kernels across both time and frequency in alternative two-stage systems using kernels of sizes 2
and 3 across frequencies, while utilizing the same temporal kernel sizes as the proposed system.

82



In all systems, the temporal dimension across convolutional blocks is reduced to one.
For two-source and three-source scenarios in two reverberant environments (cafeteria and

courtyard), Fig. 4·6 shows the accuracy at different SNRs for the three two-stage systems using
the PD and CPS phase as inputs through different spectro-temporal feature processing. The
blue bars indicate the evaluation results of the proposed system using the kernel size of 7x1,
while the red and orange bars represent the alternative two-stage system configurations using
kernel sizes of 7x2 and 7x3, respectively.

It can be clearly observed that in all environments and SNR conditions for the two-talker and
three-talker scenarios, the proposed system performs comparably to or better than the alterna-
tive two-stage systems. This demonstrates that the two-stage CNN using PD and CPS features
does not benefit from the joint spectro-temporal filtering using 2D kernels. This also suggests
that while capturing the temporal dependencies solely through the convolutional blocks (i.e.
temporal dimension reduction to a single value), it is more effective to process each frequency
independently through the convolutional path. In this way, the fully-connected layers alone can
effectively learn global patterns across frequencies, rather than having both the convolutional
and fully-connected blocks contribute to learning these patterns. It is particularly notable when
considering the additional computational load from the joint spectro-temporal processing in the
convolutional path (cf. Table 4.1), which further demonstrates the benefit of independently
processing each frequency.

4.6.3 Comparison against baseline systems

In this section, we evaluate the advantage of incorporating PD features in combination with the
CPS phase as a spatial feature in our proposed system (cf. Fig. 4·3), compared to baseline sys-
tems that use either the CPS phase or a combination of CPS phase and magnitude spectrogram
as a spectral feature (cf. Fig. 4·2). All systems are implemented using the same convolutional
kernel, dilation, and max pooling strategies (cf. Table 4.1). The key distinction is that our
proposed system includes a feature reduction stage before merging the PD saliency features and
CPS phase features. In contrast, the baseline system using the spectral and spatial features
directly combines the magnitude spectrum with CPS phase features.

For two-source and three-source scenarios in two reverberant environments (cafeteria and
courtyard), Fig. 4·7 depicts the accuracy at different SNRs for the proposed system and the two
baseline systems. The blue bars indicate the evaluation results of the proposed system using
the PD and CPS phase as input, while the red and orange bars represent the baseline systems
using the combination of the magnitude spectrogram and CPS phase, and the one using the
CPS phase as input, respectively.

For all conditions and environments, the proposed system clearly benefits from using the PD
features in combination with CPS features, when compared to the two baseline systems. For
example, for an SNR of 0 dB in the courtyard environment, for two-source scenarios, the benefit
of using PD features is approximately 4% points compared to the baseline system using only the
CPS phase, and 5% points compared to the baseline system using the magnitude spectrogram
and CPS phase. For three-source scenarios, the benefit of using PD features is approximately
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Figure 4·7: Accuracy of the proposed system, and the two baseline systems for
static source scenarios in two reverberant environments (cafeteria and courtyard)
for different SNRs and two-talker and three-talker scenarios. The proposed sys-
tem (indicated by the blue bar) employs the PD and CPS phase as input, while
baseline systems specified by the red and orange bars employ the combination
of magnitude spectrogram and CPS phase, and the CPS phase, respectively. All
systems employ a convolutional kernel size of 7 with dilation rate and max pool-
ing size of 2 across time, without using any max pooling or convolutional kernels
across frequencies.

5% points compared to the baseline system using only CPS phase, and 3% points compared to
the baseline system using the magnitude spectrogram and CPS phase.

We can also observe from Fig. 4·7 that the benefit of using PD features increases with SNR.
For example, comparing the performance of the proposed system and the baseline system using
only the CPS phase in the cafeteria environment exhibits that, for the two-source scenarios, this
benefit increases from about 1% points at −5 dB to about 5% points at 10 dB SNR condition. At
higher SNRs, the impact of background noise is reduced, thus emphasizing the periodicity char-
acteristics of speech and making the periodicity features more distinguishable. This improved
discriminability enhances the ability of the proposed system to effectively use PD features in
conjunction with spatial CPS features, allowing the PD features to contribute more meaningfully
to the accuracy of the DOA estimation.

Including the magnitude spectrogram in combination with the CPS phase seems to be ad-
vantageous merely in the courtyard environment, in particular, for the thee-source scenario.
This observation suggests that, unlike PD features, the usage of the magnitude spectrogram
as a spectral feature in combination with the CPS phase does not offer significant benefits for
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DOA estimation for the considered settings and environments when compared to using only CPS
phase features. On the one hand, While PD features provide a clear indication of the source’s
harmonic structure, the magnitude spectrogram provides a broad spectral representation that
may not be as effective in isolating the specific characteristics of speech needed for accurate
DOA estimation, or may require a much more sophisticated network architecture to capture
these characteristics. On the other hand, PD features are less susceptible to noise that does not
share the harmonic structure of the sound sources of interest, while magnitude spectrogram fea-
tures are more general and can capture both the speech signal and noise without distinguishing
between them, making it harder to identify speech sources in noisy environments.

4.7 Conclusion

This paper investigated the effectiveness of combining periodicity and spatial features for multi-
talker DOA estimation in binaural hearing aids using a two-stage convolutional neural network
(CNN) architecture. The proposed system utilized periodicity degree (PD) features as spectral
features in combination with cross-power spectrum (CPS) phase as spatial features.

Several design choices for the two-stage CNN architecture were explored, including different
strategies for temporal feature reduction through dilation and max pooling, as well as spectro-
temporal filtering approaches using convolutional kernels of varying sizes. Experimental results
demonstrated that the proposed system which effectively captures the temporal dependencies
within the convolutional blocks alone, while independently processing each frequency, leads to
the best performance. Furthermore, the proposed system offers advantages in terms of compu-
tational complexity compared to alternative configurations.

The results demonstrated that the proposed system outperformed baseline systems which
utilized either CPS features or a combination of CPS and magnitude spectrogram features in
terms of accuracy for both two-talker and three-talker scenarios in two reverberant environments
and across various SNR conditions. The proposed system achieved this improvement without
requiring significantly higher computational complexity or model size compared to the baseline
systems.

This study paves the way for advancements in sound source localization and speech en-
hancement for binaural hearing aids. By combining periodicity and spatial features, the research
demonstrates the potential for more accurate DOA estimation and broader improvements in var-
ious speech-related tasks. Moreover, this study underscores the importance of feature selection
in designing systems for complex auditory scene analysis, particularly in noisy and reverberant
environments and multi-source scenarios.

Future work could explore the adaptation and integration of the proposed system for real-
time processing pipelines. Additionally, further research could investigate using PD features to
enhance the spatial features by taking alternative approaches other than the direct combination
of features. For instance, by exploiting periodicity features for learning-based mask estimation
techniques, which might potentially achieve even better DOA estimation performance.
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Chapter 5
Conclusions and Future Research

This chapter summarizes the key contributions outlined in the thesis and explores potential
directions for future research. We highlight the main findings and suggest possible extensions
that could serve as a continuation of the work conducted in this thesis.
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5.1 Conclusions

By accurately determining the DOA of desired speech sources, hearing aids can selectively am-
plify sounds from that direction while suppressing noise from other directions. This targeted
approach improves speech intelligibility for hearing aid users, especially in noisy environments.
The main objective of the thesis was to improve the accuracy of DOA estimation in binaural
hearing aids, particularly in challenging acoustic conditions such as noisy and reverberant envi-
ronments, by leveraging auditory-inspired periodicity features as a distinctive characteristic of
speech signals in combination with spatial features within deep learning frameworks, specifically
CNNs.

Chapters 2 through 4 focused on advancing binaural DOA estimation systems, with each
chapter building on the previous one to address increasingly complex auditory environments and
refine deep learning approaches. Chapter 2 introduced a speech-aware model for single-talker
DOA estimation in complex auditory scenes, proposing a dual-path CNN. Building on these
findings, Chapter 3 proposed a more efficient network architecture, a two-stage CNN with feature
reduction, to streamline spectro-temporal processing while maintaining the benefit of speech-
aware DOA estimation in single-talker scenarios. Finally, Chapter 4 extended these methods
to tackle multi-talker DOA estimation, by adapting the model architecture to handle multiple
talkers effectively and enabling efficient spectro-temporal processing. The model architectures
in each chapter were based on CNNs, incorporating optimized architectural modifications to
enhance computational efficiency and accuracy. The evolution from a dual-path CNN to a two-
stage CNN with feature reduction highlights this progression. Various combinations of spatial
and periodicity features were considered as input features to different CNN architectures. Spatial
features include both broadband (GCC-PHAT) and narrowband (magnitude, phase, real, and
imaginary components of CPS) representations. Periodicity features were represented in different
forms, including broadband, subband-averaged, and narrowband PD features.

All chapters in this thesis share several core features that shape a cohesive approach to
advancing binaural DOA estimation in this thesis. A key theme across all three chapters is
integrating periodicity features with spatial features. This strategy proves considerably more
effective than using spatial features alone or with a VAD. This combination enhanced DOA
estimation accuracy for different spatial features across varying auditory tasks and model archi-
tectures. For all systems, the DOA estimation problem was formulated as a classification task
in the horizontal plane, with the full 360◦ azimuthal range divided into 72 discrete directions,
each with a 5◦ angular resolution. All chapters rely on a database of multichannel BRIRs for
data generation. This database provides a wide range of BRIRs for various environments, source
positions, and head orientations. A binaural hearing aid setup with four microphones was con-
sidered, including two microphones (front and rear) on each hearing aid. All systems employed
supervised learning approaches and were trained using labeled audio data with diverse sound
source directions and SNR conditions in an anechoic environment using simulated diffuse noise
as background noise. All systems were evaluated using separate sets of BRIRs recorded in real
reverberant environments like a cafeteria, courtyard, or office with diverse source positions, with
background noise recordings with different SNRs. The types of background noise varied, in-
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cluding simulated diffuse noise, recorded cafeteria babble, and courtyard ambient noise. Varied
training and evaluation conditions were used to assess the model’s ability to generalize and adapt
to different acoustic environments. By systematically building upon each chapter’s findings, the
thesis demonstrates a clear progression toward robust and efficient binaural DOA estimation
systems for both single-talker and multi-talker scenarios. The integration of periodicity features
and the refinement of CNN architectures represent significant contributions to the field of DOA
estimation for hearing aids.

In Chapter 2, we proposed a novel approach for single-talker binaural DOA estimation
called speech-aware DOA estimation. This method aimed to accurately estimate the DOA of
a single talker only when speech is present, without requiring a separate VAD. The key in-
novation was the integration of auditory-inspired periodicity features with spatial features for
different feature combinations. This combination, as hypothesized in Chapter 1, addressed the
limitations of systems that solely rely on spatial features and require separate VADs to han-
dle speech inactivity. The chapter explored various feature combinations, including broadband
GCC-PHAT with broadband PD and narrowband CPS features (real and imaginary parts or
magnitude and phase components) with subband-averaged PD. These features were fed into dual-
path CNN architectures, where separate branches processed the spatial and periodicity features
before combining their outputs for DOA estimation. These combinations resulted in different
proposed systems for speech-aware DOA estimation. The use of dual-path CNN architecture
allowed for the separate processing of spatial and periodicity features, potentially allowing each
branch to specialize in extracting relevant information from its respective input. The proposed
systems were trained using speech (TIMIT dataset) and non-speech signals (ESC50 dataset).
This allowed the network to differentiate between speech and non-speech, a crucial aspect of the
speech-aware design. Evaluations were conducted in cafeteria and courtyard environments using
recorded background noises at different SNRs and speech source signals. The key performance
metrics used were accuracy, mean absolute error, precision, and recall. These metrics provide a
comprehensive view of the system’s capabilities in estimating the DOA and detecting the pres-
ence of speech. Evaluations across static and dynamic single-speaker scenarios demonstrated
that incorporating PD features consistently improved DOA estimation accuracy and reduced
angular error, outperforming baseline systems using the same spatial features with a cascaded
pitch-based VAD. These findings strongly supported the hypothesis that combining periodicity
and spatial features enhances the robustness of DOA estimation. All proposed speech-aware sys-
tems achieved near-perfect precision. This indicates a low likelihood of false positives, suggesting
that the systems effectively distinguish speech from non-speech. While demonstrating excellent
precision, the proposed systems exhibited lower recall than the integrated VAD of the baseline
systems, particularly at low SNRs. However, it is essential to remember that the proposed sys-
tems are not designed solely for speech detection but for speech-aware DOA estimation. The
lower recall indicates that the systems are more conservative in classifying segments as speech.
A closer analysis revealed that the speech-aware system primarily estimates DOA in segments
with a high degree of periodicity, potentially to avoid estimating DOA from noisy or unreliable
segments. Chapter 2 effectively established the benefit of incorporating periodicity features for
speech-aware DOA estimation.
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In Chapter 3, building on the benefits of combining spatial and periodicity features as
discussed in Chapter 2, we proposed integrating narrowband spatial and narrowband periodic-
ity features directly into the input of the CNN, rather than feeding them into separate CNN
branches. We also refined the speech-aware single-talker DOA estimation system by introducing
a more computationally efficient two-stage CNN architecture. This chapter utilized the real
and imaginary components of CPS and narrowband PD features as input. The chapter’s key
contribution was the implementation of a feature reduction stage using 1 × 1 convolutions to
address the high dimensionality and sparsity of the narrowband PD features in the proposed
two-stage CNN architecture. This reduction created compact PD saliency features, facilitat-
ing spectro-temporal processing within the CNN. This chapter employed a similar experimental
methodology to Chapter 2, by training the proposed systems (with and without feature reduc-
tion) using both speech signals and non-speech signals. The training was conducted in simulated
anechoic conditions, and evaluation was conducted in reverberant environments (cafeteria and
courtyard) using diverse background noise recordings at various SNRs. The performance of the
proposed systems in terms of accuracy and MAE was compared against a baseline system using
a CNN with only CPS features and a pitch-based VAD. Both proposed systems consistently out-
performed the baseline system in terms of DOA estimation accuracy and mean absolute error.
Importantly, the two-stage CNN with feature reduction achieved the better performance despite
having significantly fewer trainable parameters compared to the proposed system without fea-
ture reduction, and comparable to the baseline system. This highlighted the effectiveness of the
feature reduction stage in capturing relevant information from the sparse PD features and im-
proving computational efficiency. These findings are further underscored in Appendix A, where
the performance of the proposed and baseline systems are evaluated in single-talker scenarios
with non-speech interference. This investigation demonstrates the robustness and efficacy of the
two-stage CNN in real-world scenarios. Chapter 3 demonstrated the benefits of incorporating
periodicity features for speech-aware DOA estimation in CNN architectures, extending beyond
those proposed in Chapter 2 through a more efficient approach. This finding is particularly
relevant for implementing DOA estimation in hearing aids, where processing power and battery
life are critical constraints. The feature reduction stage in the two-stage CNN can be viewed
as a form of attention mechanism, guiding the network to focus on the most salient glimpses of
the PD features, potentially mimicking the capabilities of human auditory scene analysis. This
mechanism is hypothesized to improve robustness in noisy environments by reducing the impact
of irrelevant information within the PD features.

Building upon the advancements made particularly in Chapter 3, in Chapter 4, we tackled
the task of multi-talker DOA estimation by adapting the two-stage CNN architecture to handle
multiple simultaneous talkers. We proposed incorporating narrowband PD features and CPS
phase features as input. Consistent with earlier chapters, training was conducted in simulated
anechoic conditions across different SNR conditions with a simulated diffuse noise. Evaluations
employed realistic reverberant environments with recorded background noise at different SNRs
in static multi-talker scenarios with two and three simultaneous speakers. The chapter inves-
tigated different strategies for capturing spectro-temporal dependencies within the two-stage
CNN, including using dilated kernels, max pooling, and various kernel sizes across the frequency
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dimension. These architectural choices aimed to find an efficient and effective CNN configura-
tion that could accurately estimate multiple DOAs without significantly increasing model size
or computational complexity. The findings revealed that the two-stage CNN processes each
frequency independently and performs comparably to or better than two-stage CNNs with joint
spectro-temporal processing. This suggests that, in multi-talker scenarios, considering correla-
tions across frequencies within the convolutional blocks might not necessarily lead to improved
performance. Independently processing each frequency simplifies the model and reduces com-
putational complexity. The best performance was achieved by a the proposed two-stage CNN
that independently processes each frequency bin while using dilated kernels with max pooling
across time. This configuration employs convolutional kernels exclusively to capture temporal
dependencies. The performance of the proposed two-stage CNN with this configuration was
compared against two baseline systems, one utilizing only the CPS phase and another combin-
ing the CPS phase with magnitude spectrograms. Evaluations demonstrated that the proposed
two-stage CNN consistently outperformed both baseline systems across all evaluated SNRs and
environments. These results highlight the effectiveness of combining PD and spatial features
for multi-talker DOA estimation within a carefully designed two-stage CNN architecture. The
system achieved these improvements without requiring a substantially larger model size or in-
creased computational complexity compared to the baseline systems. Chapter 4 successfully
extends the benefits of integrating periodicity and spatial features, previously demonstrated
for single-talker scenarios, to the more challenging task of multi-talker DOA estimation. It
underscores the importance of carefully considering temporal and spectro-temporal processing
strategies within the CNN to achieve optimal performance. Developing a computationally ef-
ficient architecture in this chapter opens up possibilities for implementing multi-talker DOA
estimation in resource-constrained devices like hearing aids.

The difference in task definitions for single- and multi-talker DOA estimation led to different
approaches in the output coding of the CNNs and the data labeling process. Chapters 2 and 3
focused on speech-aware single-talker DOA estimation, training the networks to identify speech
segments and estimate DOAs only during those segments. By incorporating a detection class
alongside the DOA classes in the output layer, this approach inherently integrated speech de-
tection into the DOA estimation framework, thereby eliminating the need for a separate VAD.
By training the CNN with a mixture of speech and non-speech signals, the network learns to
associate the presence of a strong harmonic structure in the PD features with speech segments.
This is a crucial aspect of the speech-aware models, allowing the network to perform speech
detection implicitly. The speech-aware approach in these chapters modeled the output as a joint
probability distribution over the detection and DOA classes using a softmax activation function,
assuming that these classes are mutually exclusive. Unlike this approach, the multi-talker sys-
tems did not aim to condition the DOA estimation on speech detection. Instead, the proposed
multi-talker system modeled the output using only the DOA classes, assuming that sound source
locations are mutually independent, thereby allowing each output to independently predict the
probability of a source at its corresponding DOA class. Unlike the softmax function, which
assumes mutual exclusivity among classes and forces the probabilities to sum to one, multiple
sigmoid activation functions in the output layer of multi-talker systems enable the model to
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represent multiple active DOAs simultaneously. The network is trained exclusively on speech
signals without non-speech examples during training. Each training example is labeled with the
DOAs of the active speech sources. This simplifies the data generation and labeling process,
as there is no need to generate or label non-speech data. However, the network must learn to
associate the intricate harmonic pattern of speech signals with the relevant spatial information
without the contrasting information provided by non-speech signals.

5.2 Suggestions for further research

The primary focus of this thesis was to investigate the effectiveness of combining periodicity
features with standard spatial features within deep learning frameworks. We explored various
CNN architectures and design choices to optimize both performance and computational efficiency
for the proposed feature combinations. The findings demonstrated the benefit of including
periodicity features for binaural DOA estimation while identifying several promising directions
for future research.

Alternative approaches for reference microphone selection in PD feature extraction:
In this thesis, the PD features were extracted using a single reference microphone signal, specif-
ically the front microphone of the left hearing aid. The front microphone is oriented toward the
frontal hemisphere, where desired sound sources are most likely located. This orientation allows
the front microphone to capture a stronger direct sound component and possibly a higher SNR
than the rear microphone. However, this choice does not account for the potential variations
in signal quality, SNR, or various acoustic conditions that may affect different microphones.
The optimal reference microphone selection was not within the scope of this thesis. Future
research could explore strategies for dynamically selecting the reference microphone based on
real-time assessments of signal quality or periodicity measures. By continuously evaluating the
SNR or periodicity features at each microphone, the system could select the microphone that
currently provides the most reliable PD features. This adaptive approach would enhance the
robustness of the PD feature extraction process in varying acoustic conditions. Alternatively,
PD features could be extracted from multiple microphones and combined instead of relying on a
single reference microphone to form a more robust representation. Techniques such as averaging
the PD features or weighted combining based on signal quality metrics could be investigated.
This approach can potentially improve the system’s resilience to noise and interference affecting
individual microphones. Incorporating PD features from multiple microphones or implementing
dynamic selection strategies may increase computational demands. Future work should focus on
optimizing algorithms to balance the benefits of enhanced PD feature extraction with the con-
straints of processing power and energy consumption, which is especially important for real-time
applications in hearing aids.

Extesnsions to the speech-aware approach for simultaneous speech/non-speech de-
tection and DOA estimation: The speech-aware DOA estimation approach presented in
Chapters 2 and 3 of the thesis is designed to estimate the DOA of a single talker while inher-
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ently handling speech inactivity by including a detection class in addition to the DOA classes.
The labeling strategy of this approach during the training phase associates each training exam-
ple with only one active class (either a specific DOA class for speech or the detection class for
non-speech), effectively treating the problem as a single-label classification task. By labeling
all DOA classes as zero for non-speech examples, regardless of the actual direction from which
the non-speech sound originates, the network is not trained to utilize the DOA information for
non-speech sounds, essentially discarding the spatial information of non-speech sounds during
training. Future research could extend the current approach to detect and localize both speech
and non-speech sources simultaneously, by using auditory-inspired periodicity features in com-
bination with spatial features alongside modifications to the network architecture and training
methodology. First, the output layer of CNN needs to be expanded to support the detection
and localization of non-speech events in addition to speech. This expansion could be tailored
to specific task assumptions, such as scenarios involving a single talker and a single non-speech
event, or multiple talkers and multiple non-speech events. The latter, which is a more general
task, could include a set of non-speech DOA classes and removing the detection class altogether.
The neural network would then have two sets of DOA classes, one set for speech and another set
for non-speech sounds. Both sets would use sigmoid activation functions in the output layer, al-
lowing each output neuron to independently represent the probability of its corresponding class.
This modification transforms the problem into a multi-label classification task, enabling the net-
work to predict multiple classes simultaneously. Including non-speech DOA classes preserves the
spatial information that was previously lost for non-speech sounds. For speech-only examples,
the speech DOA class corresponding to the speech source’s direction is labeled as one, and all
other speech DOA classes are labeled as zero. All non-speech DOA classes are also labeled as
zero. For non-speech-only examples, the non-speech DOA class corresponding to the non-speech
sound’s direction is labeled as one, all other non-speech DOA classes are labeled as zero, and
all speech DOA classes are labeled as zero. In cases where both speech and non-speech sounds
are present simultaneously, the corresponding DOA classes in both speech and non-speech sets
are labeled as one. Implementing this modification involves careful consideration of the network
architecture, training data preparation, and feature extraction. The training dataset should
include a large set of examples containing speech, non-speech, and possibly mixed sounds from
various DOAs and acoustic conditions.

Alternative approaches to utilize periodicity features in DOA estimation: In this
thesis, we mainly investigated two approaches for the fusion of periodicity and spatial features.
In Chapter 2, two parallel branches of convolutional blocks process the periodicity and spatial
features, each leading to some feature embeddings. These embeddings were concatenated and
then used as input to fully-connected blocks. The primary role of the convolutional blocks in
both branches is to extract local patterns from the input data in terms of feature embeddings.
Fully-connected blocks take all the learned embeddings (periodicity and spatial) and combine
them in a way that optimally weighs their importance, learning global patterns in the features
extracted for the DOA estimation task. We may consider this weighting as a sort of implicit
attention mechanism on the spatial embeddings. However, this dual-path architecture may limit
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the network’s ability to learn joint representations due to separate local feature learning in each
branch.

To allow for joint learning of feature interactions, in Chapter 3, we considered a different
fusion approach and proposed combining both spatial and periodicity features directly in the
input. In particular, the two-stage CNN first learns a salient and compact representation from
high-dimensional PD features in each time-frequency bin. These PD saliency features are then
combined with the spatial features and processed via the convolutional blocks. The convolu-
tional blocks that follow the fusion of PD saliency and spatial features could naturally learn
to emphasize certain spectro-temporal regions of the spatial features based on the PD values.
Regions with higher PD saliency values may play a more significant role in how the network
processes spatial cues, effectively leading to an implicit attention mechanism where certain parts
of the spatial features may be weighted more heavily than others, depending on their alignment
with PD saliency features. While this architecture has shown improvements in DOA estimation
performance, future research could investigate whether combining PD saliency and spatial fea-
tures as input to a CNN is optimal for binaural DOA estimation. The binaural DOA estimation
may benefit from introducing an explicit attention mechanism to ensure that periodicity features
influence spatial features in a more structured way. A promising approach is a masking-based
feature fusion [116] that could be tailored for future studies, where PD features could be used to
estimate time-frequency masks that emphasize speech-dominated regions. These masks could
be applied to spatial features, effectively filtering the spatial cues based on speech presence
before convolutional processing. The mask values, derived from PD features, may indicate the
likelihood of speech in each time-frequency bin. By multiplying the spatial features with this
mask, regions with low speech presence or periodicity are suppressed, providing a refined input
to the network.

In addition to these suggestions, which could further improve performance or extend the
applicability of periodicity features to other auditory tasks, there are several other potential
avenues for exploration.

In this thesis, all models primarily use a dataset [1] of measured BRIRs from a single artificial
head. This approach may not capture the full diversity of real-world and individual differences in
HRTFs for different hearing aid users, potentially limiting the models’ generalization capabilities
for deployment. BRIRs from various artificial heads with different shapes and sizes can help
account for individual anatomical variations. The training data generation was also performed
in an anechoic environment using BRIRs of sources located in different directions with a fixed
source-to-head distance. Expanding the BRIR database to encompass source positions with
different distances to the hearing aid setup and different reverberation times can enhance the
models’ robustness and generalizability to diverse acoustic environments.

The computational complexity of the proposed systems, while being efficient compared to
alternative configurations, is still demanding for direct implementation in current hearing aid
devices. Further model optimization techniques, such as model quantization and pruning, could
be explored to reduce the computational requirements and facilitate real-time processing in
hearing aid devices.

The thesis primarily employs CNN architectures for DOA estimation. While CNNs effec-

94



tively capture spatial and temporal patterns in audio features, alternative architectures such
as RNNs, long short-term memory networks (LSTMs), or attention-based models might better
capture temporal dependencies and handle dynamic scenarios with moving sources. Future re-
search could investigate these architectures or hybrid models that combine CNNs with RNNs
or attention mechanisms to potentially improve performance.

For hearing aid users to fully benefit, the proposed methods must be integrated with existing
hearing aid signal processing pipelines. This may include considering how the DOA estimation
outputs can be effectively utilized by beamforming algorithms, noise reduction techniques, and
other components of the hearing aid processing chain. Future research could focus on integra-
tion and real-time implementation, ensuring that the proposed methods contribute to overall
improvements in hearing aid performance.
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Appendix A
Appendix to Chapter 3
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A.1 Single-talker DOA estimation in the presence of non-speech interference

In this appendix, we present an additional experiment for Chapter 3. In Chapter 3, we proposed
two speech-aware DOA estimation systems using the combination of narrowband PD and CPS
features as input features (cf. Fig. 3·3), and compared their DOA estimation performance
against a baseline system consisting of a CNN using only spatial CPS features as input cascaded
with a pitch-based VAD (cf. Fig. 3·2). The performance evaluation was conducted in single-
talker scenarios in the presence of recorded background noise. In this appendix, we consider
the same three systems and evaluate them for single-talker scenarios in the presence of non-
speech directional interference. All implementation details, including system configurations and
training data, remain identical to those described in Chapter 3. No additional training has
been conducted, and only the evaluation data has been modified. Specifically, the recorded
background noise in Chapter 3 has been replaced with non-speech directional interference to
generate the noisy microphone signals for this evaluation.

A.1.1 Evaluation data

The evaluation data were generated for static-source scenarios in two real environments, cafeteria
and courtyard, with a reverberation time of approximately 1300 ms and 900 ms, respectively.
All systems were evaluated at SNRs ranging from −5 dB to +10 dB in 5 dB steps. A total of 150
speech segments randomly chosen from 30 unique male and female speakers (each with a length
of 1 s) from the validation TIMIT [152] were used as speech source signals. To generate noisy
binaural microphone signals, we randomly selected non-speech sounds (e.g. chainsaws, washing
machines, and chirping birds) from the validation ESC50 dataset [153] (each with a length of 1
s). In each environment, we considered BRIRs of two head orientations for four source positions
as depicted in Fig. A·1. All four source positions for each head orientation were considered as
the location of a single talker. For each talker position and speech segment, a position from the
remaining three was randomly chosen as the location of the non-speech interference. The noisy
binaural microphone signals were generated by convolving the speech and non-speech source
signals with their respective BRIRs and mixing the resulting clean binaural microphone signals
with the binaural interference signals at different SNRs.

A.1.2 Performance measures

The DOA estimation performance of all systems was evaluated in terms of accuracy and MAE, as
defined in Chapter 3 (cf. (3.5) and (3.6)) and in Chapter 2 (cf. (2.15) and (2.16)). Additionally,
the speech detection performance of the rVAD [138] in the baseline system and the speech DOA
detection performance of the proposed systems were evaluated using the precision (P) and recall
(R) metrics, as defined in Chapter 2 (cf. (2.17) and (2.18)). To compute precision and recall, a
simple oracle broadband energy-based VAD was employed to identify speech segments, similar
to the method in Chapter 2. Together, these metrics provide a comprehensive evaluation of the
DOA estimation performance across all systems. Precision reflects the proportion of detected
speech segments that are indeed correct. Obtaining high precision is important as the non-
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(a) Cafeteria (b) Courtyard

Figure A·1: Evaluation setups, adapted from [1]. Static source positions A,
B, D, and E were evaluated in the cafeteria, and positions A, B, C, and D in
the courtyard. In both environments, dashed arrows originating at the source
positions indicate the head position. The numbers 1 and 2, located near the
head, denote the two head orientations. All distances are in centimeters.

speech sound could be mistakenly identified as speech (i.e. false positives), leading to erroneous
estimates. Recall, on the other hand, represents the system’s ability to capture all true speech
segments, showing how well it detects speech.

A.1.3 Results and discussion

Fig. A·2 depicts the DOA estimation performance in terms of accuracy and mean absolute error
at different SNRs for the two proposed speech-aware systems (cf. Section 3.4.2) and the baseline
system (cf. Section 3.4.1). The blue bars and red bars show the metrics of the proposed systems
with and without feature reduction, respectively, while the yellow bars represent the baseline
system’s metrics.

Comparing the performance of the two proposed systems against the baseline, it is evident
that the integration of narrowband PD with the CPS feature significantly enhances single-
talker DOA estimation accuracy in the presence of non-speech interference, across all SNR
conditions in both environments. For example, in the cafeteria environment at 0 dB SNR,
the proposed systems achieve accuracies of 68% (with feature reduction) and 64% (without
feature reduction), compared to only 40% accuracy for the baseline. This improvement translates
to a 24–28 percentage point benefit in accuracy over the baseline system. Similarly, in the
courtyard environment at 0 dB SNR, the proposed systems demonstrate a 16–21 percentage
point advantage in accuracy over the baseline. It is also evident that the proposed system
with feature reduction (two-stage CNN) outperforms the one without feature reduction. These
findings align with those presented in Chapter 3 in the presence of background noise, further
demonstrating the effectiveness of the proposed speech-aware systems, especially the two-stage
CNN, across various acoustic scenarios. Moreover, while the benefit is significantly large at low
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Figure A·2: The DOA estimation performance of the two proposed systems
and the baseline system which were presented in Chapter 3. All systems are
evaluated in terms of accuracy and mean absolute error for single-talker scenarios
with directional non-speech interference across various SNR conditions in two
reverberant environments (cafeteria and courtyard).

SNRs (−5 dB and 0 dB), it also persists toward high SNRs (5 dB and 10 dB).
The only difference between the experiment described in this appendix and the one in Chap-

ter 3 is the use of non-speech interference instead of recorded background noise signals. This
modification allows for a direct comparison of DOA estimation performance in the presence of
non-speech interference (cf. Fig. A·2) with results obtained in the presence of background noise
from Chapter 3 (cf. Fig. 3·4). The comparison indicates that non-speech interference presents
a more challenging scenario for all systems compared to the recorded background noises used
in Chapter 3. For example, in the courtyard environment, the DOA estimation accuracy of the
two proposed systems with and without feature reduction decreases from approximately 80%
(cf. Fig. 3·4) to 55% and 50% (cf. Fig. A·2), respectively, while the baseline system’s accuracy
declines from 73% to 34%. This demonstrates that although the performance of all systems
declines with non-speech interference, the baseline system, which relies on a pitch-based VAD,
is more sensitive to acoustic conditions, particularly the type of noise or interference. This effect
is even more pronounced in the cafeteria environment where, at 0 dB SNR, the accuracy of
the proposed systems only declines by approximately 1% point, whereas the baseline system’s
accuracy decreases by approximately 20% points. These comparisons suggest that the proposed
systems provide more robust DOA estimation performance across various acoustic conditions in
single-talker scenarios.

Fig. A·3 depicts the speech detection performance measures, the precision and recall, for all
three systems in the two reverberant environments. Both metrics have a possible range from 0
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Figure A·3: The speech detection performance of the two proposed systems
and the pitch-based VAD integrated into the baseline system from Chapter 3,
evaluated in terms of precision (P) and recall (R) for single-talker scenarios with
directional non-speech interference across various SNR conditions in two rever-
berant environments (cafeteria and courtyard).

to 1. It can be observed that all systems exhibit high precision close to 1. This means that there
is a low likelihood of the systems falsely detecting portions of the signal for DOA estimation.
When compared to the rVAD system, which is specifically designed for speech detection, the
proposed systems demonstrate either better or comparable precision across all tested conditions.
However, it is also observed that the proposed systems have a lower recall compared to rVAD.
This means that while they are excellent at avoiding false positives, they may miss some true
speech segments, leading to higher false negatives. This outcome can be attributed to the
design focus of the proposed systems. Unlike the rVAD that is designed for the speech detection
task, the proposed systems are designed primarily for speech DOA estimation. It should be
noted that the proposed systems, including the detection class in the output, are not exclusively
trained for speech detection, which explains the lower recall. In the context of DOA estimation,
missing some speech segments is an acceptable trade-off if those segments do not contribute
to accurate DOA estimation. These findings perfectly align with those in Section 2.6.2 in
Chapter 2, further underscoring the robustness of the speech-aware DOA estimation approach
across different network architectures and acoustic scenarios. Overall, the findings highlight
the potential of the proposed systems for real-world applications where noise is not limited to
background noise but includes various directional non-speech sounds.

101





References

[1] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, and B. Kollmeier,
“Database of multichannel in-ear and behind-the-ear head-related and binaural room im-
pulse responses,” EURASIP Journal on Advances in Signal Processing, vol. 2009, no. 1,
p. 298605, Jul. 2009.

[2] E. C. Cherry, “Some experiments on the recognition of speech, with one and with two
ears,” The Journal of the acoustical society of America, vol. 25, no. 5, pp. 975–979, Sep.
1953.

[3] A. W. Bronkhorst, “The cocktail party phenomenon: A review of research on speech
intelligibility in multiple-talker conditions,” Acta acustica, vol. 86, no. 1, pp. 117–128,
2000.

[4] D. Wang and G. J. Brown, Computational auditory scene analysis: Principles, algorithms,
and applications. Wiley-IEEE press, 2006.

[5] V. Hamacher, U. Kornagel, T. Lotter, and H. Puder, Binaural Signal Processing in Hearing
Aids: Technologies and Algorithms. John Wiley and Sons, Ltd, 2008, ch. 14, pp. 401–429.

[6] T. Wittkop, S. Albani, V. Hohmann, J. Peissig, W. S. Woods, and B. Kollmeier, “Speech
processing for hearing aids: Noise reduction motivated by models of binaural interaction,”
Acta Acustica united with Acustica, vol. 83, no. 4, pp. 684–699, Jul. 1997.

[7] M. Zohourian, G. Enzner, and R. Martin, “Binaural speaker localization integrated into
an adaptive beamformer for hearing aids,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 26, no. 3, pp. 515–528, Dec. 2017.

[8] S. Braun, W. Zhou, and E. A. P. Habets, “Narrowband direction-of-arrival estimation
for binaural hearing aids using relative transfer functions,” in Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz NY,
USA, Oct. 2015, pp. 1–5.

[9] M. Raspaud, H. Viste, and G. Evangelista, “Binaural source localization by joint estima-
tion of ILD and ITD,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 1, pp. 68–77, Jan. 2010.

[10] T. May, S. van de Par, and A. Kohlrausch, “A probabilistic model for robust localiza-
tion based on a binaural auditory front-end,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 1, pp. 1–13, Jan. 2011.

[11] M. Farmani, M. S. Pedersen, Z. Tan, and J. Jensen, “Bias-compensated informed sound
source localization using relative transfer functions,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 26, no. 7, pp. 1275–1289, Jul. 2018.

103



[12] P. A. Grumiaux, S. Kitić, L. Girin, and A. Guérin, “A survey of sound source localization
with deep learning methods,” The Journal of the Acoustical Society of America, vol. 152,
no. 1, pp. 107–151, Jul. 2022.

[13] K. Youssef, S. Argentieri, and J.-L. Zarader, “A learning-based approach to robust binaural
sound localization,” in Proc. IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, Nov. 2013, pp. 2927–2932.

[14] N. Ma, T. May, and G. J. Brown, “Exploiting deep neural networks and head move-
ments for robust binaural localization of multiple sources in reverberant environments,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 12, pp.
2444–2453, Dec. 2017.

[15] J. Pak and J. W. Shin, “Sound localization based on phase difference enhancement us-
ing deep neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, no. 8, pp. 1335–1345, Aug. 2019.

[16] J. Wang, J. Wang, K. Qian, X. Xie, and J. Kuang, “Binaural sound localization based on
deep neural network and affinity propagation clustering in mismatched HRTF condition,”
EURASIP Journal on Audio, Speech, and Music Processing, vol. 2020, no. 1, pp. 1–16,
Feb. 2020.

[17] W. He, P. Motlicek, and J. Odobez, “Deep neural networks for multiple speaker detection
and localization,” in Proc. IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, May 2018, pp. 74–79.

[18] C. Pang, H. Liu, and X. Li, “Multitask learning of time-frequency CNN for sound source
localization,” IEEE Access, vol. 7, pp. 40 725–40 737, Mar. 2019.

[19] Z. Q. Wang, X. Zhang, and D. Wang, “Robust speaker localization guided by deep learning-
based time-frequency masking,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 27, no. 1, pp. 178–188, Jan. 2019.

[20] B. Yang, H. Liu, and X. Li, “Learning deep direct-path relative transfer function for binau-
ral sound source localization,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 3491–3503, Oct. 2021.

[21] C. Evers, H. W. Löllmann, H. Mellmann, A. Schmidt, H. Barfuss, P. A. Naylor, and
W. Kellermann, “The LOCATA challenge: Acoustic source localization and tracking,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 1620–
1643, Apr. 2020.

[22] A. Küçük, A. Ganguly, Y. Hao, and I. M. S. Panahi, “Real-time convolutional neu-
ral network-based speech source localization on smartphone,” IEEE Access, vol. 7, pp.
169 969–169 978, Nov. 2019.

[23] H. Hammer, S. E. Chazan, J. Goldberger, and S. Gannot, “Dynamically localizing multiple
speakers based on the time-frequency domain,” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2021, no. 1, pp. 1–10, Apr. 2021.

[24] D. Salvati, C. Drioli, and G. L. Foresti, “Localization and tracking of an acoustic source
using a diagonal unloading beamforming and a kalman filter,” in LOCATA Challenge
Workshop - Satellite Event IWAENC, Tokyo, Japan, Sep. 2018.

104



[25] A. S. Bregman, Auditory scene analysis: The perceptual organization of sound. MIT
press, 1994.

[26] B. C. Moore, An introduction to the psychology of hearing. Brill, 2012.

[27] L. Chittka and A. Brockmann, “Perception space—the final frontier,” PLOS Biology,
vol. 3, no. 4, p. e137, Apr. 2005.

[28] J. Blauert and J. Braasch, The Technology of Binaural Understanding. Heidelberg, Ger-
many: Springer-Verlag, 2020.

[29] N. Roman, D. Wang, and G. J. Brown, “Speech segregation based on sound localization,”
The Journal of the Acoustical Society of America, vol. 114, no. 4, pp. 2236–2252, Oct.
2003.

[30] L. Rayleigh, “On our perception of sound direction,” Philosophical Magazine, vol. 13,
no. 74, pp. 214–232, 1907.

[31] J. W. S. B. Rayleigh, The theory of sound. Macmillan, 1896.

[32] F. L. Wightman and D. J. Kistler, “The dominant role of low-frequency interaural time
differences in sound localization,” The Journal of the Acoustical Society of America, vol. 91,
no. 3, pp. 1648–1661, Mar. 1992.

[33] J. Blauert, Spatial hearing: the psychophysics of human sound localization. MIT press,
1997.

[34] E. A. Macpherson and J. C. Middlebrooks, “Listener weighting of cues for lateral angle:
The duplex theory of sound localization revisited,” The Journal of the Acoustical Society
of America, vol. 111, no. 5, pp. 2219–2236, May 2002.

[35] C. Searle, L. Braida, D. Cuddy, and M. Davis, “Binaural pinna disparity: another auditory
localization cue,” The Journal of the Acoustical Society of America, vol. 57, no. 2, pp. 448–
455, Feb. 1975.

[36] G. J. Brown and D. Wang, Separation of Speech by Computational Auditory Scene Analysis.
Springer Berlin Heidelberg, 2005, pp. 371–402.

[37] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency estimator for speech
and music,” The Journal of the Acoustical Society of America, vol. 111, no. 4, pp. 1917–
1930, Apr. 2002.

[38] R. D. Patterson, I. Nimmo-Smith, J. Holdsworth, P. Rice et al., “An efficient auditory
filterbank based on the gammatone function,” in a meeting of the IOC Speech Group on
Auditory Modelling at RSRE, vol. 2, no. 7, 1987.

[39] G. Hu and D. Wang, “An auditory scene analysis approach to monaural speech segrega-
tion,” Topics in acoustic echo and noise control, pp. 485–515, 2006.

[40] R. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M. Aller-
hand, “Complex sounds and auditory images,” in Auditory Physiology and Perception,
Y. CAZALS, K. HORNER, and L. DEMANY, Eds. Pergamon, Jun. 1992, pp. 429–446.

[41] M. Slaney, “An efficient implementation of the Patterson-Holdsworth auditory filter bank,”
Apple Computer, Perception Group, Tech. Rep, vol. 35, 1993.

105



[42] V. Hohmann, “Frequency analysis and synthesis using a gammatone filterbank,” Acta
Acustica united with Acustica, vol. 88, no. 3, pp. 433–442, 2002.

[43] T. Tolonen and M. Karjalainen, “A computationally efficient multipitch analysis model,”
IEEE Transactions on Speech and Audio Processing, vol. 8, no. 6, pp. 708–716, Nov. 2000.

[44] M. Karjalainen and T. Tolonen, “Multi-pitch and periodicity analysis model for sound sep-
aration and auditory scene analysis,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol. 2, Phoenix, AZ, USA, Mar. 1999, pp.
929–932 vol.2.

[45] J. Luberadzka, H. Kayser, and V. Hohmann, “Making sense of periodicity glimpses in a
prediction-update-loop— a computational model of attentive voice tracking,” The Journal
of the Acoustical Society of America, vol. 151, no. 2, pp. 712–737, Feb. 2022.

[46] A. Josupeit, N. Kopčo, and V. Hohmann, “Modeling of speech localization in a multi-
talker mixture using periodicity and energy-based auditory features,” The Journal of the
Acoustical Society of America, vol. 139, no. 5, pp. 2911–2923, May. 2016.

[47] A. Josupeit and V. Hohmann, “Modeling speech localization, talker identification, and
word recognition in a multi-talker setting,” The Journal of the Acoustical Society of Amer-
ica, vol. 142, no. 1, pp. 35–54, Jul. 2017.

[48] Z. Chen and V. Hohmann, “Online monaural speech enhancement based on periodicity
analysis and a priori SNR estimation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 11, pp. 1904–1916, Nov. 2015.

[49] J. C. R. Licklider, “A duplex theory of pitch perception,” The Journal of the Acoustical
Society of America, vol. 23, pp. 147–147, Jan. 1951.

[50] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sensitivity of a computer model of
the auditory periphery. I: Pitch identification,” The Journal of the Acoustical Society of
America, vol. 89, no. 6, pp. 2866–2882, Jun. 1991.

[51] M. Slaney and R. F. Lyon, “A perceptual pitch detector,” in Proc. IEEE International
conference on acoustics, speech, and signal processing (ICASSP), Albuquerque, NM, USA,
Apr. 1990, pp. 357–360.

[52] R. Lyon, “Computational models of neural auditory processing,” in Proc. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 9, San
Diego, CA, USA, Mar. 1984, pp. 41–44.

[53] J. Rouat, Y. C. Liu, and D. Morissette, “A pitch determination and voiced/unvoiced
decision algorithm for noisy speech,” Speech Communication, vol. 21, no. 3, pp. 191–207,
Apr. 1997.

[54] R. P. Carlyon and T. M. Shackleton, “Comparing the fundamental frequencies of resolved
and unresolved harmonics: Evidence for two pitch mechanisms?” The Journal of the
Acoustical Society of America, vol. 95, no. 6, pp. 3541–3554, Jun. 1994.

[55] M. Wu, D. Wang, and G. J. Brown, “A multi-pitch tracking algorithm for noisy speech,”
in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 1, Orlando, FL, USA, May 2002, pp. I–369–I–372.

106



[56] G. Hu and D. Wang, “Monaural speech segregation based on pitch tracking and amplitude
modulation,” IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1135–1150, Sep.
2004.

[57] L. N. Tan and A. Alwan, “Multi-band summary correlogram-based pitch detection for
noisy speech,” Speech communication, vol. 55, no. 7-8, pp. 841–856, Sep. 2013.

[58] M. Cooke, “A glimpsing model of speech perception in noise,” The Journal of the Acoustical
Society of America, vol. 119, no. 3, pp. 1562–1573, Mar. 2006.

[59] C. J. Darwin, “Listening to speech in the presence of other sounds,” Philosophical Trans-
actions of the Royal Society B: Biological Sciences, vol. 363, no. 1493, pp. 1011–1021, Mar.
2008.

[60] T. Nakatani and H. G. Okuno, “Harmonic sound stream segregation using localization
and its application to speech stream segregation,” Speech Communication, vol. 27, no. 3,
pp. 209–222, Apr. 1999.

[61] T. Virtanen and A. Klapuri, “Separation of harmonic sounds using multipitch analysis and
iterative parameter estimation,” in Proc. IEEE Workshop on the Applications of Signal
Processing to Audio and Acoustics (WASPAA), Oct. 2001, pp. 83–86.

[62] A. Klapuri, “Multipitch analysis of polyphonic music and speech signals using an auditory
model,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 2,
pp. 255–266, Feb. 2008.

[63] C. J. Darwin and R. W. Hukin, “Perceptual segregation of a harmonic from a vowel by
interaural time difference and frequency proximity,” The Journal of the Acoustical Society
of America, vol. 102, no. 4, pp. 2316–2324, Oct. 1997.

[64] J. F. Culling and Q. Summerfield, “Perceptual separation of concurrent speech sounds:
Absence of across-frequency grouping by common interaural delay,” The Journal of the
Acoustical Society of America, vol. 98, no. 2, pp. 785–797, Aug. 1995.

[65] M. S. Brandstein, “Time-delay estimation of reverberated speech exploiting harmonic
structure,” The Journal of the Acoustical Society of America, vol. 105, no. 5, pp. 2914–
2919, May. 1999.

[66] H. Christensen, N. Ma, S. N. Wrigley, and J. Barker, “A speech fragment approach to
localising multiple speakers in reverberant environments,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, May 2009, pp.
4593–4596.

[67] J. Woodruff and D. Wang, “Binaural localization of multiple sources in reverberant and
noisy environments,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 5, pp. 1503–1512, Jul. 2012.

[68] J. Blauert, The technology of binaural listening. Heidelberg, Germany: Springer-Verlag,
2013.

[69] I. Tashev, Sound Capture and Processing: Practical Approaches. Wiley, Jul. 2009.

[70] G. R. Popelka, B. C. Moore, R. R. Fay, and A. N. Popper, Hearing aids. Springer, 2016,
vol. 56.

107



[71] G. J. B. R. Stern and D. Wang, Binaural Sound Localization. Wiley-IEEE Press, 2006,
p. 147–185.

[72] D. Hammershøi and H. Møller, Binaural technique—Basic methods for recording, synthe-
sis, and reproduction. Berlin, Heidelberg: Springer, 2005, pp. 223–254.

[73] V. Algazi, R. Duda, D. Thompson, and C. Avendano, “The CIPIC HRTF database,” in
Proc. IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz NY, USA, Oct. 2001, pp. 99–102.

[74] H. Wierstorf, M. Geier, and S. Spors, “A free database of head related impulse response
measurements in the horizontal plane with multiple distances,” in Proc. Audio Engineering
Society Convention 130. Audio Engineering Society, May 2011.

[75] W. G. Gardner and K. D. Martin, “HRTF measurements of a kemar,” The Journal of the
Acoustical Society of America, vol. 97, no. 6, pp. 3907–3908, Jun. 1995.

[76] R. Bomhardt, M. de la Fuente Klein, and J. Fels, “A high-resolution head-related transfer
function and three-dimensional ear model database,” in Proc. of Meetings on Acoustics,
vol. 29, no. 1. AIP Publishing, Jun. 2016.

[77] N. Madhu and R. Martin, Acoustic Source Localization with Microphone Arrays. John
Wiley and Sons, Ltd, 2008, ch. 6, pp. 135–170.

[78] M. Brandstein and D. Ward, Microphone arrays: signal processing techniques and appli-
cations. Springer Science and Business Media, 2013.

[79] T. May, S. van de Par, and A. Kohlrausch, “Binaural localization and detection of speakers
in complex acoustic scenes,” in The Technology of Binaural Listening, J. Blauert, Ed.
Heidelberg, Germany: Springer-Verlag, 2013, pp. 397–425.

[80] C. Knapp and G. Carter, “The generalized correlation method for estimation of time
delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp.
320–327, Aug. 1976.

[81] C. Zhang, D. Florencio, and Z. Zhang, “Why does PHAT work well in lownoise, reverber-
ative environments?” in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Las Vegas, NV, USA, Mar. 2008, pp. 2565–2568.

[82] M. Dietz, S. D. Ewert, and V. Hohmann, “Auditory model based direction estimation
of concurrent speakers from binaural signals,” Speech Communication, vol. 53, no. 5, pp.
592–605, May–Jun. 2011.

[83] D. Fejgin and S. Doclo, “Assisted RTF-vector-based binaural direction of arrival esti-
mation exploiting A calibrated external microphone array,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP, Rhodes Island, Greece,
Jun. 2023, pp. 1–5.

[84] M. Zohourian and R. Martin, “Binaural speaker localization and separation based on a
joint itd/ild model and head movement tracking,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, Mar. 2016, pp.
430–434.

[85] J. H. Dibiase, “A high-accuracy, low-latency technique for talker localization in reverberant
environments using microphone arrays,” Ph.D. dissertation, Brown University, Providence
RI, USA, Aug. 2000.

108



[86] S. A. Vorobyov, A. B. Gershman, and K. M. Wong, “Maximum likelihood direction-of-
arrival estimation in unknown noise fields using sparse sensor arrays,” IEEE Transactions
on Signal Processing, vol. 53, no. 1, pp. 34–43, Jan. 2005.

[87] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transac-
tions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, Mar. 1986.

[88] J. P. Dmochowski, J. Benesty, and S. Affes, “Broadband music: Opportunities and chal-
lenges for multiple source localization,” in Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, Oct. 2007, pp. 18–
21.

[89] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance
techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7,
pp. 984–995, Jul. 1989.

[90] R. Takeda and K. Komatani, “Unsupervised adaptation of deep neural networks for sound
source localization using entropy minimization,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA, USA: IEEE,
Apr. 2017, pp. 2217–2221.

[91] R. Takeda, Y. Kudo, K. Takashima, Y. Kitamura, and K. Komatani, “Unsupervised adap-
tation of neural networks for discriminative sound source localization with eliminative
constraint,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Calgary, AB, Canada: IEEE, Apr. 2018, pp. 3514–3518.

[92] W. He, P. Motlicek, and J.-M. Odobez, “Adaptation of multiple sound source localiza-
tion neural networks with weak supervision and domain-adversarial training,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Brighton, UK: IEEE, May 2019, pp. 770–774.

[93] R. Opochinsky, B. Laufer-Goldshtein, S. Gannot, and G. Chechik, “Deep ranking-based
sound source localization,” in Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA). New Paltz, NY, USA: IEEE, Oct. 2019, pp. 283–287.

[94] M. J. Bianco, S. Gannot, E. Fernandez-Grande, and P. Gerstoft, “Semi-supervised source
localization in reverberant environments with deep generative modeling,” IEEE Access,
vol. 9, pp. 84 956–84 970, Jun. 2021.

[95] W. He, P. Motlicek, and J.-M. Odobez, “Neural network adaptation and data augmenta-
tion for multi-speaker direction-of-arrival estimation,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1303–1317, Feb. 2021.

[96] S. Adavanne, A. Politis, and T. Virtanen, “Direction of arrival estimation for multiple
sound sources using convolutional recurrent neural network,” in Proc. European Signal
Processing Conference (EUSIPCO), Rome, Italy, Sep. 2018, pp. 1462–1466.

[97] W. He, P. Motlicek, and J.-M. Odobez, “Joint localization and classification of multiple
sound sources using a multi-task neural network,” in Proc. Interspeech 2018, Hyderabad,
India, Sep. 2018, pp. 312–316.

[98] S. Chakrabarty and E. A. P. Habets, “Multi-speaker DOA estimation using deep convo-
lutional networks trained with noise signals,” IEEE Journal of Selected Topics in Signal
Processing, vol. 13, no. 1, pp. 8–21, Mar. 2019.

109



[99] P. Vecchiotti, N. Ma, S. Squartini, and G. J. Brown, “End-to-end binaural sound local-
isation from the raw waveform,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brighton, UK, May 2019, pp. 451–455.

[100] H. Sundar, W. Wang, M. Sun, and C. Wang, “Raw waveform based end-to-end deep con-
volutional network for spatial localization of multiple acoustic sources,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,
Spain, May 2020, pp. 4642–4646.

[101] J. Ding, Y. Ke, L. Cheng, C. Zheng, and X. Li, “Joint estimation of binaural distance
and azimuth by exploiting deep neural networks,” The Journal of the Acoustical Society
of America, vol. 147, no. 4, pp. 2625–2635, Apr. 2020.

[102] A. Bohlender, A. Spriet, W. Tirry, and N. Madhu, “Exploiting temporal context in CNN
based multisource DOA estimation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 1594–1608, Mar. 2021.

[103] A. S. Subramanian, C. Weng, S. Watanabe, M. Yu, and D. Yu, “Deep learning based
multi-source localization with source splitting and its effectiveness in multi-talker speech
recognition,” Computer Speech and Language, vol. 75, p. 101360, Sep. 2022.

[104] P. Goli and S. van de Par, “Deep learning-based speech specific source localization by using
binaural and monaural microphone arrays in hearing aids,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 31, pp. 1652–1666, Apr. 2023.

[105] L. Wang, Z. Jiao, Q. Zhao, J. Zhu, and Y. Fu, “Framewise multiple sound source local-
ization and counting using binaural spatial audio signals,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece,
May 2023, pp. 1–5.

[106] Q. Yang and Y. Zheng, “DeepEar: Sound localization with binaural microphones,” IEEE
Transactions on Mobile Computing, vol. 23, no. 1, pp. 359–375, Jan. 2024.

[107] T. Hirvonen, “Classification of spatial audio location and content using convolutional
neural networks,” in Audio Engineering Society Convention. Audio Engineering Society,
May 2015.

[108] R. Roden, N. Moritz, S. Gerlach, S. Weinzierl, and S. Goetze, “On sound source localiza-
tion of speech signals using deep neural networks,” in Proc. Deutsche Jahrestagung Akustik
(DAGA), Mar. 2015, pp. 1510–1513.

[109] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A learning-based approach
to direction of arrival estimation in noisy and reverberant environments,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), South
Brisbane, QLD, Australia, Apr. 2015, pp. 2814–2818.

[110] R. Takeda and K. Komatani, “Sound source localization based on deep neural networks
with directional activate function exploiting phase information,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
Mar. 2016, pp. 405–409.

[111] S. Chakrabarty and E. A. Habets, “Broadband DOA estimation using convolutional neural
networks trained with noise signals,” in Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA). New Paltz, NY, USA: IEEE, Oct. 2017,
pp. 136–140.

110



[112] N. Yalta, K. Nakadai, and T. Ogata, “Sound source localization using deep learning mod-
els,” Journal of Robotics and Mechatronics, vol. 29, no. 1, pp. 37–48, 2017.

[113] L. Perotin, R. Serizel, E. Vincent, and A. Guérin, “CRNN-based multiple DoA estimation
using acoustic intensity features for ambisonics recordings,” IEEE Journal of Selected
Topics in Signal Processing, vol. 13, no. 1, pp. 22–33, Feb. 2019.

[114] W. Mack, U. Bharadwaj, S. Chakrabarty, and E. A. Habets, “Signal-aware broadband
DOA estimation using attention mechanisms,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, May
2020, pp. 4930–4934.

[115] T. N. T. Nguyen, W.-S. Gan, R. Ranjan, and D. L. Jones, “Robust source counting
and DOA estimation using spatial pseudo-spectrum and convolutional neural network,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2626–
2637, Aug. 2020.

[116] W. Mack, J. Wechsler, and E. A. Habets, “Signal-aware direction-of-arrival estimation
using attention mechanisms,” Computer Speech and Language, vol. 75, p. 101363, Sep.
2022.

[117] Q. Hu, N. Ma, and G. J. Brown, “Robust binaural sound localisation with temporal atten-
tion,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Rhodes Island, Greece: IEEE, Jun. 2023, pp. 1–5.

[118] E. Vargas, J. R. Hopgood, K. Brown, and K. Subr, “On improved training of CNN for
acoustic source localisation,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 720–732, Jan. 2021.

[119] L. Perotin, A. Défossez, E. Vincent, R. Serizel, and A. Guérin, “Regression versus classi-
fication for neural network based audio source localization,” in Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA). New Paltz, NY,
USA: IEEE, Oct. 2019, pp. 343–347.

[120] Z. Tang, J. D. Kanu, K. Hogan, and D. Manocha, “Regression and classification for
direction-of-arrival estimation with convolutional recurrent neural networks,” in Proc. In-
terspeech 2019, Sep. 2019, pp. 654–658.

[121] P. Cooreman, A. Bohlender, and N. Madhu, “CRNN-based multi-DOA estimator: Com-
paring classification and regression,” in Proc. ITG Conference on Speech Communication,
Aachen, Germany, Sep. 2023, pp. 156–160.

[122] D. Diaz-Guerra, A. Miguel, and J. R. Beltran, “Robust sound source tracking using
SRP-PHAT and 3D convolutional neural networks,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 300–311, Nov. 2020.

[123] F. B. Gelderblom, Y. Liu, J. Kvam, and T. A. Myrvoll, “Synthetic data for DNN-based
DOA estimation of indoor speech,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Toronto, ON, Canada, Jun. 2021, pp. 4390–4394.

[124] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[125] F. Chollet, Deep learning with Python. Simon and Schuster, 2021.

[126] S. J. Prince, Understanding deep learning. MIT press, 2023.

111



[127] E. Thuillier, H. Gamper, and I. J. Tashev, “Spatial audio feature discovery with convolu-
tional neural networks,” in Proc. IEEE international conference on acoustics, speech and
signal processing (ICASSP). Calgary, AB, Canada: IEEE, Apr. 2018, pp. 6797–6801.

[128] W. Zhang, Y. Zhou, and Y. Qian, “Robust DOA estimation based on convolutional neural
network and time-frequency masking,” in Proc. Interspeech 2019, Sep. 2019, pp. 2703–
2707.

[129] N. Liu, H. Chen, K. Songgong, and Y. Li, “Deep learning assisted sound source localiza-
tion using two orthogonal first-order differential microphone arrays,” The Journal of the
Acoustical Society of America, vol. 149, no. 2, pp. 1069–1084, Feb. 2021.

[130] D. Diaz-Guerra, A. Miguel, and J. R. Beltran, “Direction of arrival estimation of sound
sources using icosahedral CNNs,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 31, pp. 313–321, Nov. 2022.

[131] Q. Li, X. Zhang, and H. Li, “Online direction of arrival estimation based on deep learn-
ing,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Calgary, AB, Canada: IEEE, Apr. 2018, pp. 2616–2620.

[132] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Virtanen, “Overview and evalua-
tion of sound event localization and detection in DCASE 2019,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 29, pp. 684–698, Dec. 2020.

[133] L. Comanducci, M. Cobos, F. Antonacci, and A. Sarti, “Time difference of arrival es-
timation from frequency-sliding generalized cross-correlations using convolutional neural
networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Barcelona, Spain, May 2020, pp. 4945–4949.

[134] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., Dec. 2017.

[135] C. Schymura, T. Ochiai, M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki, and D. Kolossa,
“Exploiting attention-based sequence-to-sequence architectures for sound event localiza-
tion,” in Proc. European Signal Processing Conference (EUSIPCO). IEEE, Jan. 2021,
pp. 231–235.

[136] C. Schymura, B. Bönninghoff, T. Ochiai, M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki,
and D. Kolossa, “PILOT: Introducing transformers for probabilistic sound event localiza-
tion,” in Interspeech 2021, Aug. 2021, pp. 2117–2121.

[137] S. Graf, T. Herbig, M. Buck, and G. Schmidt, “Features for voice activity detection: a
comparative analysis,” EURASIP Journal on Advances in Signal Processing, vol. 2015,
no. 1, p. 91, Nov. 2015.

[138] Z. H. Tan, A. K. Sarkar, and N. Dehak, “rVAD: An unsupervised segment-based robust
voice activity detection method,” Computer Speech and Language, vol. 59, pp. 1–21, Jan.
2020.

[139] R. Tucker, “Voice activity detection using a periodicity measure,” IEE Proceedings I (Com-
munications, Speech and Vision), vol. 139, no. 4, pp. 377–380, Aug. 1992.

112



[140] T. Kristjansson, S. Deligne, and P. Olsen, “Voicing features for robust speech detection,”
in Proc. Interspeech 2005, Sep. 2005, pp. 369–372.

[141] J. M. Kates, “Classification of background noises for hearing-aid applications,” The Jour-
nal of the Acoustical Society of America, vol. 97, no. 1, pp. 461–470, Jan. 1995.

[142] K. Ishizuka, T. Nakatani, M. Fujimoto, and N. Miyazaki, “Noise robust voice activity
detection based on periodic to aperiodic component ratio,” Speech Communication, vol. 52,
no. 1, pp. 41–60, Jan. 2010.

[143] R. Varzandeh, K. Adiloğlu, S. Doclo, and V. Hohmann, “Exploiting periodicity features
for joint detection and DOA estimation of speech sources using convolutional neural net-
works,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Barcelona, Spain, May 2020, pp. 566–570.

[144] D. Fejgin and S. Doclo, “Comparison of binaural RTF-vector-based direction of arrival es-
timation methods exploiting an external microphone,” in Proc. European Signal Processing
Conference (EUSIPCO), Dublin, Ireland, Aug. 2021, pp. 241–245.

[145] G. Hu and D. Wang, “Segregation of unvoiced speech from nonspeech interference,” The
Journal of the Acoustical Society of America, vol. 124, no. 2, pp. 1306–1319, Aug. 2008.

[146] H. Kayser and J. Anemüller, “A discriminative learning approach to probabilistic acoustic
source localization,” in Proc. International Workshop on Acoustic Signal Enhancement
(IWAENC), Juan-les-Pins, France, Sep. 2014, pp. 99–103.

[147] E. L. Ferguson, S. B. Williams, and C. T. Jin, “Sound source localization in a multipath
environment using convolutional neural networks,” in Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, Apr. 2018,
pp. 2386–2390.

[148] S. Popham, D. Boebinger, D. P. Ellis, H. Kawahara, and J. H. McDermott, “Inharmonic
speech reveals the role of harmonicity in the cocktail party problem,” Nature communica-
tions, vol. 9, no. 1, pp. 1–13, Dec. 2018.

[149] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[150] Y. Wu and K. He, “Group normalization,” in Proc. of the European Conference on Com-
puter Vision (ECCV), Munich, Germany, Sep. 2018.

[151] J. O. Smith and X. Serra, “PARSHL: An analysis/synthesis program for non-harmonic
sounds based on a sinusoidal representation,” in Proc. International Computer Music Con-
ference (ICMC), Champaign/Urbana, IL, USA, Aug. 1987, pp. 290–297.

[152] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren,
and V. Zue, “TIMIT acoustic-phonetic continuous speech corpus,” Linguistic Data Con-
sortium, 1993.

[153] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proc. ACM Con-
ference on Multimedia, Brisbane, Australia, Oct. 2015, pp. 1015–1018.

[154] W. A. Dreschler, H. Verschuure, C. Ludvigsen, and S. Westermann, “ICRA noises: Artifi-
cial noise signals with speech-like spectral and temporal properties for hearing instrument
assessment,” Audiology, vol. 40, no. 3, pp. 148–157, 2001.

113



[155] M. Park, “Models of binaural hearing for sound lateralisation and localisation,” Ph.D.
dissertation, University of Southampton, Oct. 2007.

[156] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imper-
ative style, high-performance deep learning library,” in Proc. Advances in Neural Infor-
mation Processing Systems (NeurIPS), vol. 32, Vancouver, BC, Canada, Dec. 2019, pp.
8026–8037.

[157] D. K. P and J. Ba, “Adam: A method for stochastic optimization,” in Proc. International
Conference on Learning Representations (ICLR), San Diego, CA, USA, May 2015.

[158] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE Transactions on In-
formation Theory, vol. 55, no. 10, pp. 4723–4741, Oct. 2009.

[159] N. K. Desiraju, S. Doclo, and T. Wolff, “Efficient multichannel acoustic echo cancellation
using constrained tap selection schemes in the subband domain,” EURASIP Journal on
Advances in Signal Processing, vol. 2017, no. 1, pp. 1–16, Sep. 2017.

[160] G. Grimm, H. Kayser, M. Hendrikse, and V. Hohmann, “A gaze-based attention model
for spatially-aware hearing aids,” in Proc. ITG Conference on Speech Communication,
Oldenburg, Germany, Oct. 2018, pp. 1–5.

[161] A. Aroudi and S. Doclo, “Cognitive-driven binaural beamforming using EEG-based au-
ditory attention decoding,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 862–875, Jan. 2020.

[162] D. Fejgin and S. Doclo, “Coherence-based frequency subset selection for binaural RTF-
vector-based direction of arrival estimation for multiple speakers,” in Proc. International
Workshop on Acoustic Signal Enhancement (IWAENC), Bamberg, Germany, Sep. 2022.

[163] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-frequency mask-
ing,” IEEE Transactions on Signal Processing, vol. 52, no. 7, pp. 1830–1847, Jul. 2004.

[164] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 1–9.

[165] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A consolidated perspective on
multimicrophone speech enhancement and source separation,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 4, pp. 692–730, Apr. 2017.

[166] S. Doclo, W. Kellermann, S. Makino, and S. E. Nordholm, “Multichannel signal enhance-
ment algorithms for assisted listening devices: Exploiting spatial diversity using multiple
microphones,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 18–30, Feb. 2015.

[167] D. A. Krause, G. García-Barrios, A. Politis, and A. Mesaros, “Binaural sound source
distance estimation and localization for a moving listener,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 32, pp. 996–1011, Dec. 2024.

[168] R. Varzandeh, , S. Doclo, and V. Hohmann, “A two-stage CNN with feature reduction for
speech-aware binaural DOA estimation,” in Proc. European Signal Processing Conference
(EUSIPCO), Helsinki, Finland, Sep. 2023, pp. 241–245.

114



[169] ——, “Speech-aware binaural DOA estimation utilizing periodicity and spatial features in
convolutional neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 32, pp. 1198–1213, Jan. 2024.

115





List of Publications

Peer-reviewed Journal Papers

[J2] R. Varzandeh, S. Doclo, V. Hohmann, “Improving multi-talker binaural DOA estimation
by combining periodicity and spatial features in convolutional neural networks,” EURASIP
Journal on Audio, Speech, and Music Processing, 2025, 5 (2025).

[J1] R. Varzandeh, S. Doclo, V. Hohmann, “Speech-aware binaural DOA estimation utilizing
periodicity and spatial features in convolutional Neural networks,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 32, pp. 1198-1213, 2024.

Peer-reviewed Conference Papers

[C2] R. Varzandeh, S. Doclo, V. Hohmann, “A two-stage CNN with feature reduction for speech-
aware binaural DOA estimation,” in Proc. European Signal Processing Conference (EU-
SIPCO), Helsinki, Finland, 2023, pp. 241-245.

[C1] R. Varzandeh, K. Adiloğlu, S. Doclo, V. Hohmann, “Exploiting periodicity features for
joint detection and DOA estimation of speech sources using convolutional neural net-
works,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Barcelona, Spain, 2020, pp. 566-570.

117


	Acknowledgments
	Summary
	Zusammenfassung
	Acronyms
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Human auditory system and sound source localization
	1.2.1 Introduction to the human auditory system and auditory scene analysis
	1.2.2 Binaural sound localization

	1.3 Periodicity and harmonicity
	1.3.1 Periodicity and harmonicity in auditory scene analysis
	1.3.2 Periodicity and harmonicity analysis in CASA systems
	1.3.3 Integrating periodicity and harmonicity with spatial cues

	1.4 Binaural DOA estimation
	1.4.1 Acoustic scenarios
	1.4.2 Overview of binaural DOA estimation approaches

	1.5 Deep learning for DOA estimation
	1.5.1 Learning strategy
	1.5.2 Output coding
	1.5.3 Input feature
	1.5.4 Network architecture

	1.6 Open issues
	1.7 Thesis challenges and main contributions
	1.8 Thesis outline

	2 Speech-aware Binaural DOA Estimation Utilizing Periodicity and Spatial Features in Convolutional Neural Networks
	2.1 Introduction
	2.2 DOA estimation as a classification problem
	2.2.1 Conventional DOA estimation
	2.2.2 Speech-aware DOA estimation

	2.3 Input features
	2.3.1 Spatial features
	2.3.2 Periodicity features

	2.4 CNN-based DOA estimation systems
	2.4.1 Baseline VAD-informed systems
	2.4.2 Proposed speech-aware systems
	2.4.3 Computational complexity

	2.5 Experimental setup
	2.5.1 Datasets
	2.5.2 Training data
	2.5.3 Evaluation data
	2.5.3.1 Static source scenario
	2.5.3.2 Dynamic source scenario

	2.5.4 Implementation details
	2.5.5 Training and network hyperparameters
	2.5.6 Evaluation metrics

	2.6 Results and discussion
	2.6.1 Speech-aware DOA estimation
	2.6.2 Evaluation results for static source scenarios
	2.6.2.1 Matched noise condition
	2.6.2.2 Unmatched noise condition

	2.6.3 Evaluation results for dynamic source scenarios
	2.6.4 Limitations and future works

	2.7 Conclusion

	3 A Two-stage CNN with Feature Reduction for Speech-aware Binaural DOA Estimation
	3.1 Introduction
	3.2 DOA estimation as a classification problem
	3.2.1 Conventional DOA estimation
	3.2.2 Speech-aware DOA estimation

	3.3 Narrowband input features
	3.3.1 Cross-power spectrum (CPS)
	3.3.2 Periodicity degree (PD)

	3.4 CNN-based DOA estimation systems
	3.4.1 Baseline VAD-informed system
	3.4.2 Proposed speech-aware systems

	3.5 Experimental evaluation
	3.5.1 Datasets and data generation for training and evaluation
	3.5.2 Implementation details
	3.5.3 Performance measures
	3.5.4 Results and discussion

	3.6 Conclusion

	4 Improving Multi-talker Binaural DOA Estimation by Combining Periodicity and Spatial Features in Convolutional Neural Networks
	4.1 Introduction
	4.2 DOA estimation as a classification problem
	4.3 Input features
	4.3.1 Spatial features
	4.3.2 Spectral features

	4.4 CNN-based DOA estimation systems
	4.4.1 Baseline systems
	4.4.2 Proposed system
	4.4.3 Computational complexity

	4.5 Experimental setup
	4.5.1 Datasets
	4.5.2 Training data
	4.5.3 Evaluation data
	4.5.4 Implementation details
	4.5.5 Training and network hyperparameters
	4.5.6 Evaluation metrics

	4.6 Results and discussion
	4.6.1 Different temporal reduction strategies
	4.6.2 Different Spectro-temporal filtering strategies
	4.6.3 Comparison against baseline systems

	4.7 Conclusion

	5 Conclusions and Future Research
	5.1 Conclusions
	5.2 Suggestions for further research

	A Appendix to Chapter 3
	A.1 Single-talker DOA estimation in the presence of non-speech interference
	A.1.1 Evaluation data
	A.1.2 Performance measures
	A.1.3 Results and discussion


	References
	List of Publications

