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ABSTRACT

When providing the necessary amplification in hearing aids, the risk of acoustic feed-
back is increased due to the coupling between the hearing aid loudspeaker and the
hearing aid microphone(s). This acoustic feedback is often perceived as an annoying
whistling or howling. Thus, to reduce the occurrence of acoustic feedback, robust
and fast-acting feedback suppression algorithms are required. The main objective of
this thesis is to develop and evaluate algorithms for robust and fast-acting feedback
suppression in hearing aids. Specifically, we focus on enhancing the performance
of adaptive filtering algorithms that estimate the feedback component in the hear-
ing aid microphone by reducing the number of required adaptive filter coefficients
and by improving the trade-off between fast convergence and good steady-state per-
formance. Additionally, we develop fixed spatial filter design methods that can be
applied in a multi-microphone earpiece.

The main contributions of this thesis are threefold. First, we propose several op-
timization procedures that allow to compute a fixed common pole-zero filter from
multiple measured acoustic feedback paths, effectively allowing to reduce the num-
ber of adaptive filter coefficients. Second, we propose an affine combination of two
adaptive filters with different step-sizes to overcome the limitations associated with
a single fixed step-size. Third, we propose several optimization procedures to de-
sign a robust fixed null-steering beamformer that can be used for acoustic feedback
suppression in a multi-microphone earpiece and can be combined with an adaptive
filter to reduce the residual feedback component in the beamformer output.

In order to reduce the number of adaptive filter coefficients in adaptive feedback
cancellation, we propose several optimization procedures to estimate a common
pole-zero filter from multiple measured acoustic feedback paths. The proposed op-
timization procedures aim either at minimizing the misalignment or at maximizing
the maximum stable gain. To ensure the stability of the common pole-zero filter,
we propose to use two different constraints. The first constraint is based on the pos-
itive realness of the frequency-response of the all-pole component of the common
pole-zero filter, while the second constraint is based on Lyapunov theory. The re-
sulting constrained optimization problems to estimate the common pole-zero filter
can either be formulated as a linear programming problem, a quadratic program-
ming problem or a semidefinite programming problem. Simulation results using
measured acoustic feedback paths from a two-microphone behind-the-ear hearing
aid show that the proposed common pole-zero filter outperforms the existing com-
mon all-pole and common all-zero filter. Furthermore, results show that for a desired
misalignment or maximum stable gain the number of adaptive filter coefficients can
be robustly reduced. When implemented in a state-of-the-art adaptive feedback
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cancellation algorithm, using the common pole-zero filter allows to increase the
convergence speed.

In order to improve the trade-off between fast convergence and good steady-state
performance, we propose to use an affine combination of two adaptive filters with
different step-sizes. The first adaptive filter uses a large step-size, leading to a fast
convergence but large steady-state misalignment, while the second adaptive filter
uses a small step-size, leading to a slow convergence but low steady-state misalign-
ment. The proposed affine combination of these two filters then exhibits the fast
convergence properties of the first filter and the low steady-state misalignment of
the second filter. We theoretically show that the optimal combination parameter is
biased when the loudspeaker signal and the incoming signal are correlated. In order
to reduce this bias, we propose to use the prediction-error-method and present a
time-domain and a frequency-domain implementation. Simulations using measured
acoustic feedback paths show the improved convergence speed and low steady-state
misalignment of the proposed affine combination compared to a system utilizing
only a single fixed step-size.

Finally, we propose different optimization procedures to obtain a fixed null-steering
beamformer for a multi-microphone earpiece. The proposed optimization procedures
aim either at minimizing the residual feedback power or maximizing the maximum
stable gain. In order to avoid the trivial solution, we propose two different con-
straints. The first constraint sets the beamformer coefficients in a reference micro-
phone to be a delay, while the second constraint aims at preserving the relative
transfer function of the incoming signal. In order to allow for a trade-off between
distortions of the incoming signal and acoustic feedback cancellation performance,
we further propose to incorporate the relative transfer function constraint as a soft
constraint. To improve the robustness of the null-steering beamformer to variations
of the acoustic feedback paths, we propose to incorporate multiple sets of acoustic
feedback path measurements. The resulting constrained optimization problems to
compute the null-steering beamformer can be formulated as a least-squares problem
with closed-form solution, a linear programming problem, a quadratic programming
problem with quadratic constraints or a semidefinite programming problem. Results
using measured acoustic feedback paths from a custom multi-microphone earpiece
show that the fixed null-steering beamformer allows to robustly increase the added
stable gain of the multi-microphone earpiece by more than 50 dB without signifi-
cantly distorting the incoming signal. Furthermore, when combined with an adap-
tive filter to cancel the residual feedback component in the beamformer output, the
performance can be further increased, where the performance of the null-steering
beamformer and the adaptive filter are approximately complementary.
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ZUSAMMENFASSUNG

Nach aktuellen Schätzungen steigt die Anzahl an hörgeschädigten Personen stetig
an. Häufig führt die Hörschädigung zu einem verringerten Sprachverstehen in her-
ausfordernden akustischen Situation wie z. B. in Besprechungen und der sozialen
Interaktion in lauten Umgebungen. Dies macht die Nutzung von Hörgeräten
unumgänglich. Um ein normales Hörvermögen wieder herzustellen ist häufig eine
hohe Verstärkung notwendig. Diese erhöht das Auftreten von Rückkopplungen
durch die akustische Kopplung zwischen Hörgerätelautsprecher und Hörgerätemikro-
fon. Diese akustischen Rückkopplungen werden häufig als störendes Pfeifen oder
Heulen wahrgenommen. Um die akustischen Rückkopplungen zu unterdrücken
sind daher robuste und schnell agierende Rückkopplungsunterdrückungsalgorithmen
notwendig. Das Hauptziel dieser Arbeit ist es daher robuste und schnell agierende
Algorithmen zur akustischen Rückkopplungsunterdrückung in Hörgeräten zu en-
twickeln und zu untersuchen. Im speziellen liegt der Fokus auf der Verbesserung von
Algorithmen basierend auf adaptiven Filtern welche die Rückkopplungskomponente
im Hörgerätemikrofon schätzen. Das Ziel ist hierbei die Reduktion der notwendigen
Anzahl an adaptiven Filterkoeffizienten und die Verbesserung des Kompromisses
zwischen schneller Konvergenz und guter Leistung während des stationären Ver-
haltens. Ein weiteres Ziel ist die Entwicklung von Optimierungsverfahren zum En-
twurf von festen räumlichen Filtern zur akustischen Rückkopplungsunterdrückung
in einem Ohrstück mit mehreren Mikrofonen.

Diese Arbeit hat drei Hauptbeiträge. Als erstes werden mehrere Optimierungsver-
fahren vorgeschlagen, um ein festes gemeinsames Pol-Nulstellen Filter aus mehreren
gemessenen akustischen Rückkopplungspfaden zu schätzen, welches es erlaubt
die Anzahl der adaptiven Filterkoeffizienten zu reduzieren. Als zweites wird die
affine Kombination von zwei adaptiven Filtern mit unterschiedlichen Schrittweiten
vorgeschlagen, um die Limitierung einer einzelnen festen Schrittweite zu umgehen.
Als drittes werden mehrere Optimierungsverfahren vorgeschlagen, um ein festes ro-
bustes räumliches Nullstellenfilter zur akustischen Rückkopplungensunterdrückung
zu entwerfen. Dieses räumliche Filter wird weiterhin mit einem adaptiven Filter
kombiniert, welches die residuale Rückkopplungskomponente im Ausgang des räum-
lichen Filters reduziert.

Um die Anzahl der adaptiven Filterkoeffizienten bei der adaptiven Rückkopplung-
sunterdrückung zu reduzieren, werden mehrere Optimierungsverfahren vorgeschla-
gen, um ein festes gemeinsames Pol-Nullstellenfilter aus mehreren gemesse-
nen akustischen Rückkopplungspfaden zu schätzen. Die vorgeschlagenen Opti-
mierungsverfahren minimieren entweder die quadratische Abweichung des Pol-
Nullstellenfilters vom akustischen Rückkopplungspfad oder die maximale stabile
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Verstärkung des Hörgeräts. Um die Stabilität des gemeinsamen Pol-Nullstellenfilters
zu gewährleisten, werden zwei unterschiedliche Nebenbedingungen für die Opti-
mierung vorgeschlagen. Die erste Nebenbedingung basiert auf der positiven Reellw-
ertigkeit der Frequenzantwort des All-Pol Anteils des Pol-Nullstellenfilters, während
die zweite Nebenbedingung auf der Lyapunovtheorie basiert. Bei der Nutzung der er-
sten Nebenbedingung, basierend auf der positiven Reellwertigkeit der Frequenzant-
wort des All-Pol Anteils, wird das Optimierungsproblem zur Schätzung des gemein-
samen Pol-Nullstellenfilters entweder als quadratisches Programm zur Minimierung
der quadratischen Abweichung oder als lineares Programm unter Benutzung des
Reellen-Rotationstheorems zur Maximierung der maximalen stabilen Verstärkung
formuliert. Bei der Nutzung der zweiten Nebenbedingung, basierend auf der Lya-
punovtheorie, wird in beiden Fällen das Optimierungsproblem als semidefinites Pro-
gramm formuliert. Simulationen mit gemessenen akustischen Rückkopplungspfaden
von einem zwei-Mikrofon hinter-dem-Ohr Hörgerät zeigen, dass das gemeinsame Pol-
Nullstellenfilter eine bessere Leistung erzielt als das existierenden gemeinsame Pol-
stellenfilter und das gemeinsame Nullstellenfilter. Weiterhin erlaubt das gemeinsame
Pol-Nullstellenfilter die robuste Reduktion der Anzahl an adaptiven Parametern
des adaptiven Filters. Bei der Anwendung des gemeinsamen Pol-Nullstellenfilters in
einem adaptiven Rückkopplungsunterdrückungsalgorithmus zeigt sich im Vergleich
zu einem adaptiven Algorithmus, welcher kein festes gemeinsames Filter benutzt,
eine erhöhte Konvergenzgeschwindigkeit.

Um den Kompromiss zwischen schneller Konvergenz und guter Leistung während
des stationären Verhaltens von adaptiven Filtern zu vereinfachen, wird die affine
Kombination von zwei adaptiven Filtern mit unterschiedlichen Schrittweiten
vorgeschlagen. Während das erste Filter eine große Schrittweite nutzt und zu einer
schnellen Konvergenz, aber eine schlechtere stationäre Leistung aufweist, nutzt das
zweite Filter eine kleinere Schrittweite und hat somit eine langsamere Konvergenz,
aber eine bessere stationäre Leistung. Die affine Kombination dieser beiden Fil-
ter übernimmt schließlich die schnelle Konvergenz des ersten Filters und die gute
stationäre Leistung des zweiten Filters. Simulationen mit gemessenen akustischen
Rückkopplungspfaden zeigen die Verbesserung bei der Nutzung der affinen Kombi-
nation gegenüber einem System mit nur einer festen Schrittweite.

Schließlich werden verschiedene Optimierungsverfahren vorgeschlagen, um ein ro-
bustes festes räumliches Nullstellenfilter für ein Ohrstück mit zwei Mikrofonen
und einem Lautsprecher in der Belüftungsbohrung und einem dritten Mikrofon
in der Concha zu entwerfen. Die Optimierungsverfahren minimieren entweder die
quadratische Leistung am Ausgang des räumlichen Filters oder die maximale stabile
Verstärkung des Ohrstücks. Um die Triviallösung zu vermeiden werden zwei unter-
schiedliche Nebenbedingungen für die Optimierung vorgeschlagen und untersucht.
Bei der ersten Nebenbedingung werden die Koeffizienten in einem Referenzmikro-
fon als Verzögerung angenommen. Bei der zweiten Nebenbedingung wird die relative
Übertragungsfunktion für das eintreffende Signal bewahrt. Um einen Kompromiss
zwischen Verzerrungen im eintreffenden Signal und der Rückkopplungsunterdrück-
ung zu erlauben, wird weiterhin vorgeschlagen die Nebenbedingung basierend auf
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der relativen Übertragungsfunktion als zusätzlichen Term in die Kostenfunktion
zu übernehmen. Ergebnisse basierend auf Simulationen mit gemessenen akustis-
chen Rückkopplungspfaden des Ohrstücks mit mehreren Mikrofonen zeigen, dass
die maximale stabile Verstärkung robust um mehr als 50 dB erhöht werden kann
ohne das eintreffende Signal signifikant zu verzerren. Weiterhin zeigen Ergebnisse
mit der zusätzlichen Nutzung eines adaptiven Filters zur Unterdrückung der resid-
ualen Rückkopplungskomponente im Ausgang des räumlichen Filters, dass die Leis-
tungsfähigkeit mit der Kombination weiter erhöht werden kann und die Leistung
des räumlichen Filters und des adaptiven Filters komplementär sind.
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Acronyms

AFC adaptive feedback cancellation

ALS alternating least-squares

ASG added stable gain

ATF acoustic transfer function

BTE behind-the-ear

CAPZ common-acoustical-pole and zero

ECLG effective closed-loop gain

DFT discrete Fourier transform

FIR finite impulse response

IIR infinite impulse response

IR impulse response

LMI linear matrix inequality

LMS least mean squares

LP linear programming

MOS mean opinion score

MSG maximum stable gain

NLMS normalized least mean squares

PBFDAF partitioned block frequency-domain adaptive filter

PEM prediction-error-method

PESQ perceptual evaluation of speech quality

QP quadratic programming

QPQC quadratic program with quadratric constraints

RTF relative transfer function
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SDP semidefinite programming

SIMO single-input-multiple-output

SISO single-input-single-output

SLMM single-loudspeaker multi-microphone

SLSM single-loudspeaker single-microphone

SR-LMS sign-regressor least mean squares

sSSN stationary speech-shaped noise

Mathematical Notation

a scalar a

a vector a

LA length of a vector vector a

A matrix A

â estimate of scalar a

â estimate of vector a

Â estimate of matrix A

aT transpose of vector a

AT transpose of matrix A

aH conjugate transpose (hermitian) of vector a

AH conjugate transpose (hermitian) of matrix A

A−1 inverse of matrix A

ai ith element of vector a

x[k] discrete-time sequence at discrete-time index k

X(ω) discrete-time Fourier transform of x[k] at continuous
normalized frequency ω

X(ωn) discrete-time Fourier transform of x[k] at discrete normalized
frequency ωn

Rxx[k] auto-correlation matrix of vector x[k]

Rxy[k] cross-correlation matrix of vectors x[k] and y[k]

E expectation operator
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FNFFT discrete-time Fourier transform matrix of size NFFT ×NFFT
| · | absolute value

‖ · ‖2 l2-norm

Fixed Symbols

k discrete-time index

l discrete block index

m microphone index

p partition index

q discrete-time delay operator

ω continuous normalized frequency

ωn discrete normalized frequency

dG delay in the hearing aid forward path transfer function

Ds decimation factor of subband filterbank

LH length of acoustic feedback path H(q, k)

LĤ length of the adaptive filter Ĥ(q, k)

Ls length of subband adaptive filter

LW number of beamformer coefficients

M number of microphones

Ms number of subbands

NA order of linear prediction filter ALP (q, k)

N c
p order of all-pole part of common pole-zero filter

N c
z order of all-zero part of common pole-zero filter

Nh
z order of acoustic feedback path

Nv
z order of variable part all-zero filter

NFFT DFT size

Nφ number of rotation angles

P length of partition

e[k] error signal
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ef [k] prewhitened error signal

ẽ[k] beamformer output signal

f [k] feedback component

ff [k] prewhitened feedback component

fm[k] feedback component in the mth microphone

f̂ [k] estimated (residual) feedback component

u[k] loudspeaker signal

uf [k] prewhitened loudspeaker signal

w[k] white noise sequence

x[k] incoming signal

xf [k] prewhitened incoming signal

xm[k] incoming signal in the mth microphone

y[k] microphone signal

yf [k] prewhitened microphone signal

ym[k] microphone signal in the mth microphone

α regularization parameter of adaptive filter

δ stability margin parameter

ε threshold parameter

η[k] affine combination parameter

ηopt[k] optimal affine combination parameter

γm weighting parameter in the m-th microphone

λ trade-off parameter

µ[k] step-size parameter

τ stability margin parameter

ξi[k] normalized misalignment for the ith acoustic feedback path
measurement

ξm normalized misalignment in the m-th microphone

ξ̄ average normalized misalignment

Ac(·) common part all-pole filter

ALP (q, k) time-varying all-pole filter transfer function of linear prediction
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Ai[k] time-varying added stable gain for the ith acoustic feedback
path measurement

Bc(·) common part all-zero filter

Bvm(·) variable part all-zero filter in the mth microphone

C(·, k) closed-loop transfer function

Dm(·, k) acoustic transfer function of incoming signal in the mth
microphone

D̃m(·, k) relative transfer function of incoming signal in the mth
microphone

Ei[k] effective closed-loop gain for the ith acoustic feedback path
measurement

EEEm (·) equation-error in the mth microphone

EOEm (·) output-error in the mth microphone

EWEE
m (·) weighted equation-error in the mth microphone

G(·, k) hearing aid forward path

H(·, k) acoustic feedback path

Hi(·, k) acoustic feedback path of the ith measurement

Hm(·, k) acoustic feedback path for the mth microphone

Hm,i(·, k) acoustic feedback path in the mth microphone of the ith
measurement

Ĥc(·) common part filter of acoustic feedback paths

Ĥv
m(·) variable part filter of acoustic feedback paths in the m-th

microphone

JCAPZ CAPZ least-squares cost function

JEE equation-error-based least-squares cost function

JcEE equation-error-based least-squares cost function of common part

JvEE equation-error-based least-squares cost function of variable
parts

JMM output-error-based min-max cost function

JOE output-error-based least-squares cost function

JWEE weighted equation-error-based least-squares cost function

JcWEE weighted equation-error-based least-squares cost function of
common part
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JvWEE weighted equation-error-based least-squares cost function of
variable parts

JWMM weighted equation-error-based min-max cost function

JPEM cost function of the PEM

JWF cost function of the Wiener filter estimate

Mi[k] maximum stable gain for the ith acoustic feedback path
measurement

Mm maximum stable gain in the mth microphone

M̄ overall maximum stable gain

O(q, k) time-varying open-loop transfer function

Wm(·, k) spatial filter/beamformer weighting function in the mth
microphone

āLP [k] coefficient vector of linear prediction filter

āc coefficient vector of common part all-pole filter

bc coefficient vector of common part all-zero filter

b̃c zero-padded coefficient vector bc

bvm coefficient vector of variable part all-zero filter in the mth
microphone

b̃vm zero-padded coefficient vector bvm

bv stacked coefficient vector of variable part all-zero filters

dm coefficient vector of Dm(q, k)

d̃m coefficient vector of D̃m(q, k)

ec coefficient vector of common part equation-error

ev coefficient vector of variable part equation-error

f [k] feedback component vector

f(ωn) vector of Fourier transform coefficients at frequency ωn

h[k] coefficient vector of H(q, k)

hi[k] coefficient vector of Hi(q, k)

hm[k] coefficient vector of Hm(q, k)

hm,i[k] coefficient vector of Hm,i(q, k)

ĥopt[k] optimal estimate of h[k]
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h̃m[k] zero-padded coefficient vector hm[k]

h̃ stacked vector of coefficient vectors h̃m

ĥ[k] estimate of h[k]

ĥi[k] estimate of hi[k]

q vector of delay elements q

wm beamformer coefficient vector in the mth microphone

w stacked vector of wm

x[k] incoming signal vector

y[k] microphone signal vector

∆l step-size matrix of PBFDAF algorithm

B positive definite matrix in steepest-descent filter update

B̃c convolution matrix of coefficient vector b̃c

B̌c block-diagonal matrix of convolution matrices vector B̃c

B̃v
m convolution matrix of coefficient vector b̃vm

B̃v stacked matrix of convolution matrices B̃v
m

C(q, k) time-varying close-loop transfer function vector

D(·, k) vector of acoustic transfer functions of incoming signal

D̃(·, k) vector of relative transfer functions of incoming signal

D̃m convolution matrix of coefficient vector d̃m

D̃ stacked matrix of convolution matrices D̃m

H(·, k) acoustic feedback path vector

Hi(·, k) acoustic feedback path vector for the ith measurement

H̃m convolution matrix of coefficient vector h̃m

H̃ stacked matrix of convolution matrices H̃m

P, P̃ positive definite matrix

W(·, k) spatial filter/beamformer weighting function vector

Γ diagonal weighting matrix

Γstab stability constraint matrix of Lyapunov constraint
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1
INTRODUCTION

The estimated number of hearing-impaired persons is approximately 17% in sev-
eral European countries [1] and current studies predict this number to be steadily
increasing [2]. The hearing impairment often leads to a decreased speech understand-
ing in challenging acoustic conditions such as meetings with several persons talking
simultaneously or in traffic situations. In order to restore the normal hearing abili-
ties, hearing aids are used that comprise several processing stages [3, 4], e.g., speech
enhancement (noise reduction and dereverberation), frequency-dependent dynamic
range compression and amplification, acoustic scene classification, occlusion effect
management, and acoustic feedback suppression. While speech enhancement gener-
ally aims at reducing the detrimental effect of noise and reverberation on speech
intelligibility, dynamic range compression and amplification aim at restoring the
loudness perception, where typically for both approaches the processing is steered
by acoustic scene classification algorithms. Furthermore, occlusion effect manage-
ment aims at reducing the effect of a distorted perception of one’s own voice [5] due
to a (partially) occluded ear canal. While this can be done using occlusion effect
management processing, a simple alternative is to use open-fitting hearing aids and
those are becoming more and more popular [6]. With increasing amplification of
the hearing aid the risk for acoustic feedback is increased due to the coupling be-
tween the hearing aid loudspeaker and the hearing aid microphone(s). This is often
perceived as annoying whistling or howling. Furthermore, especially for open-fitting
hearing aids, feedback suppression is a challenging task due to the larger acoustic
venting [5, 7, 8] and the resulting increased risk of acoustic feedback. Thus, in order
to be able to apply the necessary amplification, robust and fast-acting feedback sup-
pression algorithms are indispensable [9]. Therefore, the main objective of this thesis
is to develop and evaluate algorithms for robust and fast-acting acoustic
feedback suppression in hearing aids.

This chapter is structured as follows. In Section 1.1 we introduce the problem
of acoustic feedback and provide a mathematical definition. In Section 1.2 we
provide a general overview of different feedback suppression methods. In Section
1.3 we provide an overview of methods to suppress the acoustic feedback by using
non-linear processing. In Section 1.4 we provide an overview of methods to esti-
mate the feedback component in the microphone. In Section 1.5 we provide an
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overview of methods using spatial filtering to cancel the feedback contribution in
the microphones. In Section 1.6 we outline this thesis and summarize the main
contributions.

1.1 Acoustic Feedback and Hearing Aids

Acoustic feedback is a phenomenon that occurs in sound reinforcement systems, e.g.,
public-address systems and hearing aids. Since this thesis focuses on hearing aids,
in the following the general implications of acoustic feedback are discussed in the
context of hearing aids if not mentioned otherwise. Specifically, we consider behind-
the-ear (BTE) hearing aids, where one or more microphones are placed behind
the ear of the hearing aid wearer, and in-ear hearing aids, where the microphones
are placed in the ear of the hearing aid wearer. If only a single microphone is
available that is used for acoustic feedback suppression, this constitutes a single-
loudspeaker single-microphone (SLSM) system, while if multiple microphones are
available and used for feedback suppression, this constitutes a single-loudspeaker
multi-microphone (SLMM) system.

Acoustic feedback is created when a sound is picked up by a microphone, played
back through a loudspeaker, and again picked up by the same microphone after
passing through the acoustic feedback path, essentially creating an electro-acoustical
closed-loop. In general, the acoustic feedback path contain parts that belong to the
hearing aid loudspeaker and microphone as well as the acoustic path between these
transducers, including, e.g., the ear canal. Figure 1.1 depicts exemplary amplitude
responses of acoustic feedback paths measured in free field and with a telephone
receiver in close distance. As can be observed, both acoustic feedback paths have
their largest peak around 4 kHz and only little energy is present in frequencies below
1.5 kHz and above 7 kHz. Additionally, a telephone receiver (or other objects) close
to the ear can alter the amplitude response significantly. Furthermore, these changes
occur quickly when a person uses the telephone. On the contrary, when the hearing
aid position is altered slightly or a person is chewing [10] smaller variations are
observed that generally occur slowly over time.

The acoustic feedback typically becomes a problem when the amplification of the
loudspeaker is larger than the dampening of the acoustic propagation between the
loudspeaker and the microphone. From Figure 1.1 the maximum stable gain (MSG)
of the hearing corresponds to a value of approximately 15 dB for the free field condi-
tion. If additional processing is used to suppress the acoustic feedback, the resulting
increase in the MSG is called the added stable gain (ASG). When the acoustic feed-
back occurs, the perceived quality of the signal is degraded and annoying audible
artifacts are often perceived as reverberating echoes, howling or whistling.

Consider the SLSM acoustic scenario depicted in Figure 1.2, where the microphone
signal y[k] at discrete time k consists of the incoming signal x[k] and the feedback
component f [k], i.e.,

y[k] = x[k] + f [k]. (1.1)
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Figure 1.1: Exemplary amplitude responses of two different acoustic feedback paths of a
behind-the-ear hearing aid measured in free-field and with a telephone receiver
in close distance.
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Figure 1.2: Generic single-loudspeaker single-microphone closed-loop system.
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The microphone signal is processed by the hearing aid forward path G(q, k), where
q denotes the discrete-time delay operator, forming the loudspeaker signal u[k],
i.e.,

u[k] = G(q, k)y[k]. (1.2)

The loudspeaker signal is then fed back via the acoustic feedback path H(q, k)
between the loudspeaker and the microphone, resulting in the feedback component
f [k] as

f [k] = H(q, k)u[k]. (1.3)

Using (1.1) and (1.3) in (1.2), the closed-loop transfer function CCL(q, k) relates
the loudspeaker signal to the incoming signal and is given by

CCL(q, k) =
u[k]

x[k]
=

1

1−OCL(q, k)
, (1.4)

where OCL(q, k) denotes the open-loop transfer function, i.e.,

OCL(q, k) = G(q, k)H(q, k). (1.5)

Assuming time-invariance of the acoustic feedback path and the hearing aid forward
path, the Nyquist stability criterion1 [13] states that the closed-loop system is unsta-
ble if and only if for any frequency the following two conditions are fulfilled

1. Amplitude condition: the magnitude of the open-loop transfer function is equal
or larger than one.

2. Phase condition: the phase response at this frequency is a multiple of 2π, i.e.,
the signal adds up constructively after passing the closed-loop.

Note that even if both conditions are not fulfilled, the perceptual quality of the loud-
speaker signal may be reduced, e.g., when the magnitude of the open-loop transfer
function is larger than one and its phase is not exactly a multiple of 2π.

1.2 Overview of Feedback Suppression Methods

In this section we provide an overview of different feedback suppression methods,
which can be broadly classified into the following three classes [11, 14]:

1. Feedforward algorithms that aim at mitigating the amplitude or phase condi-
tion of the Nyquist criterion by using non-linearities in the forward path.

2. Feedback algorithms that aim at obtaining an estimate f̂ [k] of the feedback
component and subtracting this estimate from the microphone signal. These
algorithms will be briefly reviewed in Section 1.4 and more specifically ad-
dressed in Chapter 3.

1 As mentioned in [11] for a time-varying system the so-called circle criterion should actually be used
to define stability [12, Ch. 5]. However, the Nyquist criterion is commonly used in the feedback
cancellation literature assuming a slowly varying system.
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3. Spatial filtering algorithms that rely on the availability of multiple micro-
phones and aim at designing a spatial filter. This spatial filter aims at cancel-
ing the feedback contribution of the loudspeaker in the microphone signals by
steering a spatial null into the location of the loudspeaker (cf. Section 1.5).

While feedforward algorithms, which modify the loudspeaker signal, usually pro-
vide a trade-off between a limited feedback suppression performance and perceptu-
ally audible distortions, feedback algorithms, which aim at estimating the feedback
component in the hearing aid microphone, theoretically allow for perfect feedback
suppression performance. At the same time they avoid the introduction of audible
distortions. Similarly, spatial filtering algorithms exploiting multiple microphones
theoretically allow for perfect feedback suppression and can be designed in such a
way that they avoid the introduction of audible distortions.

While usually these approaches for feedback suppression are treated independently,
a combination of at least two of these approaches is used in a practical application,
e.g., [15–19]. Although this thesis considers the hearing aid application, several
approaches for feedback suppression have been mainly investigated in the context
of public address systems, e.g., feedforward algorithms. However, since the general
scenario is very similar, in the remainder of this section we will only make a clear
distinction between the hearing aid application and public address systems when
necessary.

1.3 Feedforward Feedback Suppression

Feedforward feedback suppression algorithms generally use non-linearities in the
hearing aid forward path to reduce the impact of acoustic feedback (cf. Figure
1.3). These include gain reduction methods that aim at mitigating the amplitude
condition of the Nyquist criterion (cf. Section 1.3.1) and phase modulation methods
that aim at mitigating the phase condition of the Nyquist criterion (cf. Section 1.3.2).

1.3.1 Gain Reduction

Gain reduction methods aim at mitigating the amplitude condition of the Nyquist
criterion. Accordingly, the gain in the forward path is reduced when instability of
the system is detected. In general, these methods consist of a detection stage and a
gain reduction stage and are usually inherently reactive, i.e., they require instability
or howling to occur before reducing the gain. Only few methods act in a proactive
fashion, i.e., they aim at applying a gain reduction before instability or howling
occurs. Gain reduction methods can be categorized depending on the bandwidth
and whether the detection and gain reduction are performed separately or jointly.
Depending on the bandwidth different methods can be applied, e.g., broadband gain
reduction, e.g., [20], subband gain reduction, e.g., [21] and notch-filter based gain
reduction, e.g., [22–28]. On the one hand, broadband gain reduction and subband



6 introduction

G(q, k)

NL

H(q, k)

y[k] x[k]

u[k]

f [k]

Figure 1.3: Generic SLSM closed-loop system with a non-linearity in the forward path.

gain reduction are usually two-stage approaches that comprise a separate howling
or instability detection and verification stage and a separate bandwidth-dependent
gain reduction stage. On the other hand, notch-filter based gain reduction can be
performed using a two-stage approach or using a one-stage approach where howling
detection and gain reduction is performed jointly.

To detect and verify candidate howling components, different howling criteria have
been proposed in the literature that include spectral as well as temporal criteria
[11, 29]. Usually, the candidate howling components have similar properties as tonal
components, e.g., a sustained violin note can be easily confused with a howling
component. Therefore, on the one hand, the spectral criteria aim at detecting and
discriminating the howling component from a tonal component by means of the
entire spectrum, their (sub)harmonics or using the neighboring frequencies around
a candidate howling component. On the other hand, temporal features aim at de-
tecting and discriminating the howling component by means of its longer sustain
and its exponentially increasing energy compared to a tonal component [20, 30, 31].
Furthermore, spectro-temporal criteria [32] or the combination of spectral and tem-
poral features [29, 33] have been proposed to allow for an improved detection of
howling components.

Once one or more howling components have been detected, the broadband or sub-
band gain is reduced or one or multiple notch-filters are used to remove these howling
components. Here it should be noted that a broadband gain reduction can reduce
the howling but obviously does not increase the MSG of the hearing aid. In contrast,
based on results from the statistical properties of acoustic feedback path [34] the
MSG of the hearing aid may be increased by up to approximately 10 dB [11] when
using subband gain reduction or notch-filter based gain reduction. However, this
increase in the MSG comes at the cost of a distorted loudspeaker signal, i.e., due
to the attenuation of spectral components the loudspeaker signal is modified with
undesired spectral changes. Note that these numbers are estimates based on the
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statistics of acoustic feedback paths and frequently for real automated systems no
specific improvements are reported [11]. Nevertheless, it has been reported in [35, 36]
when the tuning of multiple notch-filters is carried out manually for a time-invariant
public address system the MSG may be increased by up to 15–20 dB.

While broadband and subband gain reduction can be easily implemented when
the forward path gain function uses subband processing (which is commonly the
case), notch-filters usually are a separate processing stage and hence act indepen-
dently of the forward path gain function. Different design procedures exist to design
notch-filters with different bandwidths and center frequencies. For the one-stage
notch-filter based gain reduction usually adaptive notch-filters are used. Due to
their easy and stable implementation, the first proposed approaches using adaptive
notch filters for feedback cancellation were using finite impulse response (FIR) fil-
ters [22, 26, 37]. In order to reduce the large filter order usually required in the
FIR filter based adaptive notch filter, later approaches used infinite impulse re-
sponse (IIR) filters [23, 27, 28, 38]. These IIR filters can be implemented using
a so-called biquadratic filter structure [39–43], i.e., a second-order filter, and thus
require only a short delay and lower computational cost compared to FIR filters.
While biquadratic filters can be designed a priori, adaptive IIR filter based notch
filtering aims at adaptively minimizing a least-squares cost function. However, for
the problem at hand this cost function is non-convex such that its global optimum
may not be obtained. Nevertheless, different approaches have been presented that
aim either at obtaining a solution by trying to circumvent the non-convexity or at
obtaining a solution close to the global optimum, e.g., [23, 27, 28]. For the two-stage
notch filter based gain reduction, similarly to the broadband and subband gain re-
duction methods, the candidate howling component is first identified and verified.
Subsequently, one or multiple biquadratic IIR filter based notch filters with appropri-
ate bandwidths and center frequencies are used. Recently, a pro-active notch-filter
based gain reduction has been proposed [16, 44], where an adaptive estimate of
the acoustic feedback path (cf. Section 1.4) is used to estimate the most critical
frequencies, i.e., those that are expected to lead to howling, and reduce the gain at
those frequencies.

While usually gain reduction methods are applied in an SLSM scenario, in [45] it
has been proposed to apply a binaural coherence-based scheme to the problem of
feedback cancellation in hearing aids, i.e., using an SLMM scenario. This method
can be considered a one-stage subband gain reduction stage, where based on the
coherence between both hearing aids a real-valued gain is applied to the microphone
signals. This is motivated by the observation that acoustic feedback usually does
not occur in both hearing aids simultaneously at the same frequency.

1.3.2 Phase-Modulation

In contrast to gain reduction methods, phase-modulation methods generally aim at
mitigating the phase condition of the Nyquist criterion in order to increase the stabil-
ity of the system. The general class of phase-modulation methods includes methods
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that perform [46, 47]: frequency shifting, e.g., [34, 48–55], true phase-modulation, e.g.,
[47, 56], amplitude modulation, frequency modulation, e.g., [57] and delay-modulation
[37, 47].

Frequency shifting aims at smoothing the open-loop transfer function such that
ideally the MSG depends only on the averaged transfer function instead of its max-
imum amplitude [34, 49, 51]. Thus, although belonging to the phase-modulation
methods, frequency shifting effectively aims at mitigating the amplitude condition
of the Nyquist criterion. Early implementations of the frequency shifting were based
on analog single-sideband modulation [50, 52] or used the analog Hilbert transform
[48, 53–55], while later implementations used the digital Hilbert transform [58, 59].
In [48, 60] it has been reported that by using frequency shifting the MSG can be
increased by up to approximately 10–12 dB, depending on the properties of the
acoustic feedback path. However, this comes at the expense of notable distortions,
mostly perceived as beating. When limiting the gain to 6 dB below the MSG these
distortions are claimed to become inaudible [49, 51]. Furthermore, the amount of
frequency shifting influences the perceived quality of the signal, where several stud-
ies claim that a shift of approximately 5Hz [34, 48, 49, 51] or even 10Hz [18, 19, 61]
provides a reasonable trade-off between performance and the amount of audible
distortions. However, in [46] it has been shown that coloration artifacts are already
noticeable for frequency shifts of as small as 2.3–4.2Hz. Note that frequency shifting
does not preserve the harmonic structure of the signal, which is especially audible
for music signals. However, in [62] is has been shown that when bandwidth compres-
sion is used instead of frequency shifting, the harmonic relation can be preserved
and the MSG can be increased by up to 10 dB.

In phase-modulation methods the phase of the loudspeaker signal is modulated
either in the broadband [47, 56, 63, 64] or in subbands [18, 65, 66]. Different ap-
proaches have been proposed using time-varying all-pass filters [63, 64], using single-
sideband modulation based on a Hilbert transform [18, 47, 65], using sinusoidal
phase modulation [56] or using frequency modulation [57], which can be considered
a special case of phase modulation [11]. MSG improvements have been reported in
the range from 4dB [47, 56] to up to 7–8 dB [57, 67]. However, the perceptual quality
of the signal is dependent on the modulation frequency and the modulation index,
i.e., the magnitude of the modulation [46]. Therefore, in [18] an acoustic feedback
suppression approach has been proposed that is based on a perceptually optimized
phase modulation function [65] that depends on the ability of the human auditory
system to detect phase modulations.

1.4 Adaptive Feedback Cancellation

In adaptive feedback cancellation (AFC) an adaptive filtering algorithm is used
to obtain an estimate of the acoustic feedback path between the loudspeaker and
the microphone [11, 15, 37] (cf. Figure 1.4). This estimate of the acoustic feedback
path is used to compute an estimate of the feedback component in the microphone
which is subsequently subtracted from the microphone signal. Note that since usu-
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Figure 1.4: Generic SLSM closed-loop system with an adaptive feedback canceller.

ally linearity of the acoustic feedback path is assumed, non-linear behavior of the
loudspeaker and the microphone may influence the performance of the adaptive
filtering algorithm [68]. In Section 1.4.1 an overview of different adaptive filter algo-
rithms is given and different ways to improve the performance of AFC algorithms
are outlined. In Section 1.4.2 the bias problem of the filter adaptation is briefly
outlined and state-of-the-art solutions to reduce the bias are reviewed.

1.4.1 Adaptive Filtering Algorithms

Commonly, the adaptation is performed in the time-domain [37, 69, 70]. In order
to improve the AFC performance, several approaches have been proposed that use
adaptation either in the subband-domain, e.g., [71–74], in the frequency-domain,
e.g., [14, 74–78] or in some transform-domain, e.g., [79–81]. The performance of the
adaptive filter is influenced by several parameters, including the step-size to update
the adaptive filter coefficients, the auto-correlation properties of the filter input
signal as well as the number of adaptive filter coefficients [82, 83]. Therefore, not
only the choice of the adaptive filtering algorithm itself [84–86], but, in particular,
the choice of the number of adaptive filter coefficients and the step-size is a non-
trivial task.

In general, a large number of filter coefficients allows to accurately estimate the
acoustic feedback path at the expense of a reduced convergence speed and tracking
capability. Similarly, the choice of a small step-size allows to accurately estimate
slowly varying acoustic feedback paths at the expense of a reduced convergence
speed and tracking capability for faster changes, while a large step-size allows for
an increased convergence speed and tracking capability at the expense of a reduced
accuracy for slowly varying acoustic feedback paths.
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In order to reduce the number of filter coefficients and hence reduce the compu-
tational complexity and improve the convergence speed of the AFC algorithm, in
[87, 88] it has been proposed to decompose the acoustic feedback path into a slowly
time-varying part that could be estimated using a fixed filter and a rapidly time-
varying part that could be estimated using an adaptive filter. The fixed filter would
account for, e.g., transducer characteristics, microphone characteristics as well as
individual ear characteristics, while the rapidly time-varying filter allows to track
larger changes, e.g., in the presence of a telephone. In [89] the fixed filter was as-
sumed to be a simple high-pass filter corresponding to the general high-pass charac-
teristic observed in acoustic feedback paths in hearing aids. In a more sophisticated
way, in [90] the fixed filter was estimated from multiple measurements of the acous-
tic feedback path, hence corresponding to parts that are common across a variety
of acoustic feedback paths. Previously all-zero [90] and all-pole filters [91] have
been used to model the fixed filter. In order to reduce the number of filter coeffi-
cients, one goal of this thesis is to extend these approaches to the general
pole-zero filter and develop novel optimization procedures to estimate a
fixed common pole-zero filter from multiple measured acoustic feedback
paths.

Different approaches have been proposed to automatically select the step-size of the
adaptive filter [19, 92–100]. However, due to the closed-loop system encountered
in feedback cancellation, the automatic step-size selection is often challenging [93,
98]. One goal of this thesis is to develop algorithms that provide an automatic
selection of the step-size.

1.4.2 Bias and Bias Reduction

In theory, AFC allows for a perfect cancellation of the acoustic feedback. However,
due to the closed-loop system, the estimate of the acoustic feedback is typically
biased [101–105]. Hence, independent of the used adaptive filtering algorithm, the
adaptive filter will converge to a biased solution. This bias can be reduced by decor-
relating the incoming signal and the loudspeaker signal in the filter adaptation.
Furthermore, note that the bias of the acoustic feedback path estimate is small if
the gain of the hearing aid is large [106, 107]. However, when the gain is large insta-
bility and howling might occur more frequently for fast changing acoustic feedback
paths. In order to completely mitigate the bias problem, first attempts have tried
using a fixed feedback cancellation filter [10, 108, 109], however, at the expense of
a reduced performance for time-varying acoustic feedback paths.

Several approaches have been presented in the literature to reduce the impact of the
bias or to reduce the bias itself when adaptively estimating the acoustic feedback
path. This includes constrained adaptation of the adaptive filter [110], band-limited
adaptation [111, 112], probe-noise injection [105, 113–116], using non-linearites and
gain reduction in the forward path [18, 61, 64, 117–120], using the prediction-error-
method (PEM) [78, 89, 104, 121–123] or using an auxiliary microphone [124, 125].
In the following we briefly review these state-of-the-art approaches for AFC.



1.4 adaptive feedback cancellation 11

1. In order to reduce the bias, in [110] it has been proposed to constrain the
adaptive filter to only deviate in a predefined margin from an initially obtained
unbiased estimate. While this leads to a good estimate when the true acoustic
feedback path does not deviate largely from the initial unbiased estimate,
the adaptive filter may not be able to model large changes in the acoustic
feedback path [126, 127]. Furthermore, when using a constrained adaptation
the general solution will still remain biased to some extent. In [111, 112] it has
been proposed to constrain the adaptation of the adaptive filter to a specific
frequency region by using a band-limited adaptation. Since acoustic feedback
typically only occurs in the frequency range above approximately 1.5 kHz,
the adaptation is only carried out in this region where acoustic feedback is
expected to occur.

2. Using probe-noise injection a probe noise is additionally injected to the loud-
speaker signal, where the probe-noise is designed to be uncorrelated with the
incoming signal [105, 113–116]. While probe-noise injection allows to improve
the feedback cancellation performance and in fact may lead to an unbiased
estimation [105], the design of the probe-noise is challenging since, on the
one hand, it should be inaudible to avoid perceptual signal distortions while,
on the other hand, its power should be maximized. Moreover, in [115] it has
been shown that the convergence properties of the adaptive filter are reduced
when using a probe-noise at the input of the adaptive filter. To enhance the
identification based on the probe-noise in [128, 129] it has been proposed to
use a long-term prediction filter, while in [130] it has been proposed to use
reshaping filter to improve the convergence properties when using a shaped
probe-noise. In [131, 132] it has been proposed to replace the high-frequency
components of the incoming signal by a vocoded signal that is perceptually
similar to the original incoming signal components, while in [96, 116] the use
of two adaptive filters using either a probe-noise or the loudspeaker signal was
proposed to increase the performance. In [133] a two-stage approach has been
presented that uses two adaptive filters, where the first filter aims at iden-
tifying the impulse response of the complete closed-loop system, while the
second filter operates on the output of the first filter and aims at identifying
the acoustic feedback path.

3. Non-linear functions can be introduced in the hearing aid forward path that
allow to reduce the bias in the adaptive filter adaptation [61], e.g., using
phase modulation [18], frequency shifting [18, 120], frequency compression
[117], half-wave rectification [61] or time-varying all-pass filters [64, 118, 119].
Theoretical analyses for stereophonic echo cancellation have shown that, when
appropriately tuned, both frequency shifting [134] and phase modulation [66]
or their combination [135] can perfectly decorrelate the loudspeaker signals.
Hence, when applied in combination with an adaptive filter (see Section 1.4.1),
these methods should theoretically allow for an improved identification of the
acoustic feedback path. Other approaches combine AFC and gain reduction
methods using either adaptive notch-filtering [25] or psycho-acoustic criteria
for gain reduction in subbands [17, 136, 137]. However, similarly as for probe-
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noise approaches, these non-linear functions and gain reduction methods need
to be tuned and provide a trade-off between decorrelation and audible signal
distortions.

4. In the prediction-error-method (PEM) it is assumed that the incoming signal
can be modeled as an auto-regressive process, e.g., a white noise sequence that
is shaped using a stable all-pole filter. The inverse of this all-pole filter can
then be used to prewhiten the microphone signal and the loudspeaker signal
prior to the adaptation [78, 89, 104, 121–123]. It can be shown that if the
all-pole filter is exactly known and the white noise sequence can be recovered,
an unbiased estimate of the acoustic feedback path may be obtained [104]. It
should be noted that this model of the incoming signal provides a good approx-
imation for unvoiced speech, while for voiced speech and especially music it
only provides a rough approximation. Thus, in practice the bias cannot be re-
moved completely but only its impact on the filter adaptation may be reduced.
Different variants of the PEM have been proposed using a fixed prewhitening
filter [89] and using an adaptive prewhitening filter [78, 104]. Various adaptive
filtering algorithms have been investigated in combination with an adaptive
prewhitening filter including different time-domain algorithms [95, 104, 138–
148], frequency-domain algorithms [14, 16, 78, 149, 150], subband-domain al-
gorithms [16, 19, 98, 100, 123] as well as other transform-domain algorithms
[79]. Furthermore, simplified prewhitening filter updates [151] as well as more
advanced models for the incoming signal have been proposed [152] that also
account for harmonic excitation signals [153–156]. Additionally, the combina-
tion with proactive notch-filters [16, 44], probe-noise injection [157] and noise
vocoding [131], single-microphone noise reduction [158, 159] and an inverse
gain filter [142] have been proposed. Theoretical analyses of AFC based on
prewhitening have been performed in [160–163], showing that the prewhiten-
ing approach converges to a stationary point for sinusoidal signals [160], has
a reduced performance in case of imperfect modelling of the incoming signal
[161], but is not influenced by the incoming signal leaking into the ear canal
[163].

5. To reduce the impact of the incoming signal on the adaptive filter adaptation
used to cancel the acoustic feedback in a primary microphone, an auxiliary
microphone that contains less acoustic feedback can be employed [124, 125].
In contrast to the previously mentioned approaches that consider a SLSM
system, this approach can only be applied in SLMM systems. While this ap-
proach heavily relies on a good positioning of the main microphone and the
auxiliary microphone, it theoretically allows to reduce the bias such that the
performance in terms of feedback cancellation in the main microphone is sim-
ilar to the performance if only the auxiliary microphone was used. In contrast
to prewhitening using, e.g., the PEM, the bias does not rely on the corre-
lation properties of the incoming signal but relies on the positioning of the
auxiliary microphone. Extensions of this approach have been proposed using
different adaptive filtering algorithms [80, 164–166] and a combination with a
prewhitening filter to further reduce the bias [167]. In [168] a similar approach
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Figure 1.5: Generic SLMM closed-loop system with a fixed beamformer.

was applied to binaural hearing aids, where the signal from the hearing aid
on the other ear was used to improve the feedback cancellation performance.

1.5 Spatial Filtering based Feedback Suppression

Spatial filtering methods exploit the availability of multiple microphones to steer
a spatial null towards the position of the loudspeaker (cf. Figure 1.5). Similarly,
multiple loudspeakers can be used to steer a spatial null towards the position of a
microphone [169]. Since in a hearing aid usually only a single loudspeaker is avail-
able, multi-microphone spatial filtering has been mainly investigated. While spatial
filtering provides the capability of perfectly suppressing the acoustic feedback, its
practical applicability in BTE has been limited due to the time-varying nature of
the acoustic feedback paths [126, 170] and these approaches have been mainly in-
vestigated in combination with noise reduction algorithms [171, 172]. However, for
a custom multi-microphone earpiece [173] with two microphones in the vent and a
third microphone located in the concha, this approach may prove beneficial since
the acoustic feedback paths may be assumed to be rather time-invariant. There-
fore, one goal of this thesis is to develop different null-steering beamformer
design procedures exploiting multiple microphones for feedback suppres-
sion which can be combined with AFC algorithms to cancel the residual
feedback component in the beamformer output.
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1.6 Thesis Outline and Main Contributions

The main objective of this thesis is to develop improved algorithms for acoustic
feedback suppression in hearing aids. The main focus is to enhance the performance
of adaptive filtering algorithms by reducing the number of the required filter coeffi-
cients and improving the trade-off between fast convergence and a good steady-state
performance and to develop fixed spatial filter design methods that can be applied
in a custom multi-microphone earpiece.

The main contributions of this thesis are threefold. First, we propose several op-
timization procedures that allow to compute a fixed common pole-zero filter from
multiple measured acoustic feedback paths, allowing to reduce the number of adap-
tive filter coefficients. Second, we propose to use an affine combination of two adap-
tive filters with different step-sizes to overcome the limitations associated with a
single fixed step-size. Third, we propose several optimization procedures to design
a fixed null-steering beamformer that can be used for acoustic feedback suppres-
sion and can be combined with an adaptive filter to cancel the residual feedback
component.

In the remainder of this section we give a chapter-by-chapter overview of this thesis,
summarize the main findings, and provide a list of publications that have been
produced in the context of this thesis. Figure 1.6 depicts a schematic overview of
this thesis.

In Chapter 2 we formally introduce the mathematical notation used in this the-
sis and present the signal processing framework for acoustic feedback cancella-
tion for the single-loudspeaker single-microphone (SLSM) as well as for the single-
loudspeaker multi-microphone (SLMM) system. We derive stability conditions for
each of these systems and present instrumental performance measures that are used
throughout this thesis to assess the benefit of the proposed algorithms.

In Chapter 3 we present a detailed treatment of existing AFC algorithms. We
specifically focus on the SLSM scenario and introduce the normalized least mean
squares (NLMS) in the time-domain as an adaptive filtering algorithm to identify
the acoustic feedback path. Furthermore, we show how the correlation between the
loudspeaker signal and the incoming signal leads to a biased solution when estimat-
ing the acoustic feedback path. Moreover, we present two different algorithms to
reduce this bias in the filter adaptation, i.e., subband adaptive filtering and the PEM,
for which we present time-domain and frequency-domain implementations.

In Chapter 4 we propose several optimization procedures to compute a common
pole-zero filter from multiple acoustic feedback paths. We first derive different least-
squares optimization procedures minimizing the misalignment and subsequently de-
rive different min-max optimization procedures that aim at directly maximizing
the MSG. Since the resulting cost functions are non-linear in the parameters, we
propose to use an iterative optimization procedure. In order to guarantee the sta-
bility of the common pole-zero filter, we propose to incorporate either a constraint
based on the positive realness of the frequency response of the all-pole component of
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the common filter or a constraint based on Lyapunov theory. While the constraint
based on the positive realness leads to a linear programming (LP) problem or a
quadratic programming (QP) problem, the constraint based on Lyapunov theory
leads to a semidefinite programming (SDP) problem. We experimentally show that
using the proposed common pole-zero filter is favorable compared to using either
the existing common all-zero filter or common all-pole filter and demonstrate the
MSG improvements that can be obtained by the proposed optimization procedures.
Furthermore, we experimentally validate that, when integrated with the state-of-
the-art PEM AFC algorithm, the proposed common pole-zero filter can be used to
reduce the number of adaptive filter coefficients and improve the convergence speed.
Publications associated with this chapter are [174–178].

In Chapter 5 we propose an AFC algorithm based on an affine combination of two
adaptive filters. For correlated loudspeaker and incoming signals we show that not
only the adaptive filters themselves lead to a biased solution but also the optimal
combination parameter is biased. We show that integrating the PEM leads to an
unbiased optimal combination parameter under certain conditions. Finally, we pro-
pose to perform the affine combination for the partitioned block frequency-domain
adaptive filter (PBFDAF) with a frequency-dependent combination parameter. Ex-
perimental results indicate that using the proposed PBFDAF-based affine combina-
tion leads to an improved performance compared to using a single PBFDAF filter.
A publication associated with this chapter is [179].

In Chapter 6 we propose to use a null-steering beamformer to cancel the acoustic
feedback contribution in the microphone(s) of a custom multi-microphone in-ear
earpiece. We present different design methods that aim at obtaining the (robust)
beamformer coefficients. To obtain the null-steering beamformer coefficients, we
first propose different least-squares optimization procedures minimizing the residual
feedback power. Second, we propose different min-max optimization procedures that
aim at directly maximizing the MSG for the considered SLMM scenario. In order
to preserve the incoming signal, we consider two different constraints. In the first
constraint we set the beamformer coefficients in the reference microphone to a delay,
which, however, does not directly control for distortions of the incoming signal. In
the second constraint we propose to directly control the distortions by using a
constraint based on the relative transfer function (RTF) of the incoming signal.
Experimental results using measured acoustic feedback paths from a custom multi-
microphone earpiece show that using the proposed optimization procedures a robust
average ASG of more than 50 dB can be achieved without significantly reducing the
quality of the incoming signal. Furthermore, combining with an AFC algorithm
using the PEM the performance can be further increased, where results indicated
that the performance of the AFC algorithm and the fixed null-steering beamformer
are complementary. Publications associated with this chapter are [180–183]

In Chapter 7 the main findings of this thesis are summarized and suggestions for
further research are given.



2
ACOUSTIC SETUP AND PERFORMANCE
MEASURES

In this chapter the general notation, the considered hearing aid setups as well as
the instrumental performance measures used in the remainder of this thesis are
presented.

In Section 2.1 the considered SLSM system and SLMM system and the resulting
closed-loop systems are discussed. Based on these descriptions, in Section 2.2 sev-
eral instrumental performance measures are introduced to evaluate the feedback
cancellation performance.

2.1 Acoustic Systems and Notation

2.1.1 Notation, Transfer Functions and Frequency Response

In this thesis generally we denote scalars as x, vectors using x and matrices using X.
Furthermore, for convenience we adopt the notation proposed in [184] and use q−1

to denote the discrete delay operator. The acoustic transfer function (ATF) H(q, k)
is defined as

H(q, k) =

LH−1∑
i=0

hi[k]q−i, (2.1)

= hT [k]q, (2.2)

where [·]T denotes transpose operation, h[k] is the LH -dimensional coefficient vector
of H(q, k) and q the vector of integer delays of appropriate size, i.e.,

h[k] =
[
h0[k] h1[k] . . . hLH−1[k]

]T
, (2.3)

q =
[
1 q−1 . . . q−LH+1

]T
. (2.4)

17
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Using this notation the output y[k] of a filtering operation of a signal x[k] with the
ATF H(q, k) can be written as

y[k] = H(q, k)x[k] = hT [k]x[k], (2.5)

where x[k] is the LH -dimensional vector of delayed elements of x[k], i.e.,

x[k] =
[
x[k] x[k − 1] . . . x[k − LH + 1]

]T
. (2.6)

Furthermore, the frequency response at discrete frequency ωn using an NFFT -point
discrete Fourier transform (DFT) is defined as

H(ωn, k) =

LH−1∑
i=0

hi[k]e
−j 2πni

NFFT , (2.7)

= fT (ωn)h[k], (2.8)

where f(ωn) is the LH -dimensional vector of the NFFT -point DFT coefficients,
i.e.,

f(ωn) =
[
1 e

−j 2πn
NFFT . . . e

−j 2πn(LH−1)

NFFT

]T
. (2.9)

Furthermore, we define the NFFT ×NFFT -dimensional DFT matrix

FNFFT =



1 1 1 . . . 1

1 e
−j 2π

NFFT e
−j 4π

NFFT . . . e
−j 2π(NFFT−1)

NFFT

1 e
−j 4π

NFFT e
−j 8π

NFFT
. . . e

−j 4π(NFFT−1)

NFFT

...
. . . . . . . . .

...

1 e
−j 2π(NFFT−1)

NFFT e
−j 4π(NFFT−1)

NFFT . . . e
−j 2π(NFFT−1)(NFFT−1)

NFFT


.

(2.10)

2.1.2 Closed-Loop System without Feedback Suppression

Consider the SLSM system depicted in Figure 1.2, where the microphone signal y[k]
at discrete time k consists of the incoming signal x[k] and the feedback component
f [k], i.e.,

y[k] = x[k] + f [k]. (2.11)

The microphone signal is processed by the forward path G(q, k), forming the loud-
speaker signal u[k], i.e.,

u[k] = G(q, k)y[k], (2.12)
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where G(q, k) is of length LG. The loudspeaker signal is then fed back via the acous-
tic feedback pathH(q, k) of length LH between the loudspeaker and the microphone.
The resulting feedback component f [k] is computed as

f [k] = H(q, k)u[k]. (2.13)

Using (2.11) and (2.13) in (2.12), the closed-loop transfer function CCL(q, k) without
feedback suppression is defined as

CCL(q, k) =
u[k]

x[k]
=

1

1−OCL(q, k)
, (2.14)

where OCL(q, k) denotes the open-loop transfer function, i.e.,

OCL(q, k) = G(q, k)H(q, k). (2.15)

Assuming time-invariance of the acoustic feedback path and the hearing aid forward
path, i.e., H(q, k) = H(q) and G(q, k) = G(q), the Nyquist stability criterion1 [13]
states that the closed-loop system is unstable if and only if for any discrete frequency
ωn the following two conditions are fulfilled: 1) the magnitude of the open-loop trans-
fer function is equal or larger than one and 2) the phase response at this frequency is
a multiple of 2π, i.e., the signal adds up constructively after passing the closed-loop.
Mathematically the time-invariant closed-loop system CCL(q, k) = CCL(q) is thus
unstable if and only if the following two conditions of the time-invariant open-loop
transfer function OCL(q, k) = OCL(q) are fulfilled simultaneously{

|OCL(ωn)| ≥ 1,

∠OCL(ωn) = r2π, r = Z.
(2.16a)

(2.16b)

Note that even if both conditions are not fulfilled, the perceptual quality of the loud-
speaker signal may be reduced, e.g., when the magnitude of the open-loop transfer
function is larger than one and its phase is not exactly a multiple of 2π.

2.1.3 Single-Loudspeaker Single-Microphone System

Consider the SLSM system depicted in Figure 2.1 where an estimate Ĥ(q, k) of
H(q, k) is used to compute an estimate f̂ [k] of the feedback component f [k] in
order to reduce the acoustic feedback in the microphone. This estimate can be
obtained, e.g., using the AFC algorithms discussed in Section 1.4. The microphone
signal y[k] is the sum of the incoming signal x[k] and the feedback component f [k],
i.e.,

y[k] = x[k] + f [k]. (2.17)

1 Note that as metioned in [11] for a time-varying system in fact the so-called circle criterion should
be used to define stability [12, Ch. 5], however, the Nyquist criterion is commonly used in the
feedback cancellation literature assuming a slowly varying system.
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Figure 2.1: Generic single-loudspeaker single-microphone hearing aid system with feedback
suppression.

An estimate f̂ [k] of the feedback component f [k] is subtracted from the microphone
signal, resulting in the so-called error signal e[k], i.e.,

e[k] = y[k]− f̂ [k]. (2.18)

The loudspeaker signal u[k] is obtained by processing the error signal using the
hearing aid forward path G(q, k), i.e.,

u[k] = G(q, k)e[k]. (2.19)

The feedback component in the microphone is defined as

f [k] = H(q, k)u[k], (2.20)

where H(q, k) is the acoustic feedback path of length LH between the loudspeaker
and the microphone. The estimated feedback component is defined as

f̂ [k] = Ĥ(q, k)u[k], (2.21)

where Ĥ(q, k) is an (adaptive) filter estimate of length LĤ of the acoustic feedback
path H(q, k).

Using (2.17), (2.18), (2.20), and (2.21) in (2.19), the loudspeaker signal can be
rewritten as

u[k] = G(q, k)(y[k]− Ĥ(q, k)u[k]), (2.22)

= G(q, k)(x[k] +H(q, k)u[k]− Ĥ(q, k)u[k]), (2.23)

= G(q, k)x[k] +G(q, k)(H(q, k)− Ĥ(q, k))u[k], (2.24)

=
G(q, k)

1−G(q, k)(H(q, k)− Ĥ(q, k))︸ ︷︷ ︸
C(q,k)

x[k], (2.25)
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G(q, k) Ĥ(q, k)

W(q, k)

H(q, k)

e[k] ẽ[k]−
+

y1[k]

yM [k]

...

x1[k]

xM [k]

...

u[k]

f1[k] fM [k]. . .

Figure 2.2: Generic single-loudspeaker multi-microphone hearing aid system with feedback
suppression.

where C(q, k) denotes the closed-loop transfer function of the SLSM system in
Figure 2.1, and the open-loop transfer function is defined as

O(q, k) = G(q, k)(H(q, k)− Ĥ(q, k)). (2.26)

Similarly as for OCL(q, k) in (2.15), the magnitude and phase conditions in (2.16)
apply to O(q, k). Note that the system is stable independently of the forward path
if the filter Ĥ(q, k) is able to perfectly estimate the acoustic feedback path, i.e.,
Ĥ(q, k) = H(q, k), such that the loudspeaker signal is given by

u[k] = G(q, k)x[k]. (2.27)

Algorithms for the SLSM system will be presented in Chapters 3, 4, and 5 of this
thesis. In Chapter 3 we present an overview on relevant adaptive filters for this
thesis and in Chapter 4 and 5 we propose two different approaches to improve the
performance of adaptive filtering algorithms for AFC.

2.1.4 Single-Loudspeaker Multi-Microphone System

Consider the SLMM system depicted in Figure 2.2 with M microphones. Similarly
as in (2.17), the mth microphone signal ym[k], m = 1, . . . ,M , is the sum of the
incoming signal xm[k] and the feedback component fm[k], i.e.,

ym[k] = xm[k] + fm[k]. (2.28)
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To combine all microphone signals, a filter-and-sum beamformer, acting as a spatial
pre-processor, is applied to the microphone signals resulting in the beamformer
output signal ẽ[k], i.e.,

ẽ[k] =

M∑
m=1

Wm(q, k)ym[k], (2.29)

=

M∑
m=1

Wm(q, k)xm[k] +

M∑
m=1

Wm(q, k)fm[k]︸ ︷︷ ︸
f̃ [k]

, (2.30)

whereWm(q, k) is the weighting function of the beamformer in the mth microphone.
An estimate f̂ [k] of the residual feedback component f̃ [k] is subtracted from the
beamformer output signal, i.e.,

e[k] = ẽ[k]− f̂ [k]. (2.31)

The loudspeaker signal is then obtained by processing the error signal using the
hearing aid forward path G(q, k), i.e.,

u[k] = G(q, k)e[k]. (2.32)

Using the loudspeaker signal u[k], the feedback component fm[k] in the mth micro-
phone is defined as

fm[k] = Hm(q, k)u[k], (2.33)

where Hm(q, k) is the mth acoustic feedback path of length LH between the loud-
speaker and the mth microphone. The estimated residual feedback component is
defined as

f̂ [k] = Ĥ(q, k)u[k], (2.34)

where Ĥ(q, k) is an (adaptive) filter estimate of length LĤ of the residual acoustic
feedback path transfer function

∑M
m=1Wm(q, k)Hm(q, k). Using matrix and vector

notation, equations (2.28), (2.31) and (2.33) can be written as

y[k] = x[k] + f [k], (2.35)

ẽ[k] = WT (q, k)y[k], (2.36)
f [k] = H(q, k)u[k], (2.37)

where

y[k] =
[
y1[k] . . . yM [k]

]T
, (2.38)

x[k] =
[
x1[k] . . . xM [k]

]T
, (2.39)

f [k] =
[
f1[k] . . . fM [k]

]T
, (2.40)
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and

W(q, k) =
[
W1(q, k) . . . WM (q, k)

]T
, (2.41)

H(q, k) =
[
H1(q, k) . . . HM (q, k)

]T
, (2.42)

are the vectors of the beamformer weighting functions and the acoustic feedback
path transfer functions, respectively. Using (2.31), (2.34), (2.35), (2.36), (2.37) and
yT [k]W(q, k) = WT (q, k)y[k] in (2.32), the loudspeaker signal can be rewritten
as

u[k] = G(q, k)(yT [k]W(q, k)− Ĥ(q, k)u[k]), (2.43)

= G(q, k)((xT [k] + HT (q, k)u[k])W(q, k)− Ĥ(q, k)u[k]), (2.44)

= G(q, k)xT [k]W(q, k) +G(q, k)(HT (q, k)W(q, k)− Ĥ(q, k))u[k], (2.45)

= xT [k]
G(q, k)W(q, k)

1−G(q, k)(HT (q, k)W(q, k)− Ĥ(q, k))︸ ︷︷ ︸
C(q,k)

, (2.46)

where C(q, k) denotes the closed-loop transfer function vector of the SLMM system
in Figure 2.2. The corresponding open-loop transfer function is defined as

O(q, k) = G(q, k)(HT (q, k)W(q, k)− Ĥ(q, k)). (2.47)

Similarly as for OCL(q, k) in (2.15), the magnitude and phase conditions in (2.16)
apply to O(q, k). It should be noted that differently from the SLSM system, in
the SLMM system the system is stable independently of the applied forward path
G(q, k) if one of the following conditions is fulfilled:

1. The beamformer W(q, k) only partially cancels the contribution of the loud-
speaker in the microphones and the filter Ĥ(q, k) is able to perfectly es-
timate the residual feedback component in the beamformer output, i.e.,
Ĥ(q, k) = HT (q, k)W(q, k), such that

HT (q, k)W(q, k)− Ĥ(q, k) = 0. (2.48)

2. The beamformer W(q, k) is able to perfectly cancel the contribution of the
loudspeaker in the microphones and/or no filter estimate Ĥ(q, k) is used, i.e.,
Ĥ(q, k) = 0, such that

HT (q, k)W(q, k) = 0. (2.49)

If either of these two conditions is fulfilled, the loudspeaker signal is given by

u[k] = G(q, k)WT (q, k)x[k]. (2.50)

This implies that depending on the beamformer design, distortions may be intro-
duced to the incoming signal. This is an important aspect which will be taken into
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account when considering algorithms for the SLMM system in Chapter 6 of this
thesis.

Note that obviously for M = 1 and W1(q, k) = 1, the SLMM system is equivalent
to the SLSM system discussed in Section 2.1.3.

2.2 Instrumental Performance Measures

In order to evaluate the performance of feedback suppression algorithms in hearing
aids, several instrumental measures have been proposed in the literature [185–191].
Most of these measures assume that no access to the internal hearing aid signals, e.g.,
the output of the adaptive filter estimating the feedback component, is available.
However, during the development of feedback cancellation algorithms access to all
signals is available, enabling the use of intrusive measures.

Commonly, the performance of AFC algorithms is evaluated by considering the
convergence state of the adaptive filter compared to the true acoustic feedback
path. The typical measures used to quantify the performance of an adaptive filter
in a closed-loop system are the normalized misalignment and the MSG [190]. Using
the MSG, the ASG and the effective closed-loop gain (ECLG) [19], which depends
on the hearing aid forward path G(q, k), can be computed. While the normalized
misalignment aims at quantifying the performance of the adaptive filter compared
to a reference, the MSG is related to the stability of the hearing aid. Similarly, the
ASG is used to describe the additional gain that can be applied in the hearing aid
forward path when feedback suppression is performed, while the ECLG described
the gain margin that is still available until instability will occur depending on the
hearing aid forward path. In the following sections we will describe these measures
for the SLSM and SLMM systems considered in the thesis. Since the algorithms
developed in this thesis may require the availability of multiple measurements of
the acoustic feedback path, these instrumental measures will also depend on the
measurement.

2.2.1 Normalized Misalignment

The normalized misalignment aims at quantifying the performance of an adaptive
filter estimate compared to a reference, e.g., the true acoustic feedback path. For
the single-loudspeaker single-microphone (SLSM) system (cf. Figure 2.1) the
normalized misalignment ξi[k] for the ith measured acoustic feedback path, i =
1, . . . , I, is defined as the normalized squared Euclidean distance between the true
acoustic feedback path coefficient vector hi[k] and the estimated acoustic feedback
path coefficient vector ĥi[k], i.e.,

ξi[k] =
‖hi[k]− ĥi[k]‖22
‖hi[k]‖22

. (2.51)
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The normalized misalignment is similarly defined in the frequency-domain as

ξi[k] =

NFFT−1∑
n=0

|Hi(ωn, k)− Ĥi(ωn, k)|2

NFFT−1∑
n=0

|Hi(ωn, k)|2
. (2.52)

For the single-loudspeaker multi-microphone (SLMM) system (cf. Figure 2.2)
the normalized misalignment ξi[k] for the ith measured acoustic feedback paths,
i = 1, . . . , I, is computed as the normalized squared Euclidean distance between the
residual beamformer transfer function HT

i (q, k)W(q, k) and the estimated residual
beamformer transfer function Ĥi(q, k), i.e.,

ξi[k] =

∥∥∥∥( M∑
m=1

hm,i[k]Wm(q, k)

)
− ĥi[k]

∥∥∥∥2

2
M∑
m=1
‖hm,i[k]‖22

, (2.53)

where hm,i[k] is the LH -dimensional coefficient vector of the mth acoustic feedback
path Hm,i(q, k). The normalized misalignment is similarly defined in the frequency-
domain as

ξi[k] =

NFFT−1∑
n=0

|HH
i (ωn, k)W(ωn, k)− Ĥi(ωn, k)|2

NFFT−1∑
n=0

HH
i (ωn, k)Hi(ωn, k)

, (2.54)

where [·]H denotes complex conjugate transpose (Hermitian).

2.2.2 Maximum Stable Gain and Added Stable Gain

For a closed-loop system the maximum stable gain (MSG) is defined as the
maximum gain that can be applied in the forward path until the stability conditions
in (2.16) are violated. In order to derive a simplified expression, it is usually assumed
that the phase condition in (2.16b) is fulfilled for all frequencies (providing a worst-
case assumption), such that only the amplitude condition in (2.16a) is considered.
Assuming a broadband forward path gain function G(q, k) = |G|q−dG with dG ≥ 1
a delay the MSG is obtained by rearranging and solving |O(ωn, k)| = 1 for the
broadband gain |G|, e.g., [88]. For the closed-loop system without feedback
suppression the maximum stable gain for the ith acoustic feedback path is defined
as

MCL
i [k] =

1

maxωn |Hi(ωn, k)|2
. (2.55)
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For the single-loudspeaker single-microphone system the maximum stable gain
for the ith measured acoustic feedback path is defined as

Mi[k] =
1

maxωn |Hi(ωn, k)− Ĥi(ωn, k)|2
(2.56)

Similarly, for the single-loudspeaker multi-microphone system the maximum
stable gain for the ith measured acoustic feedback paths is defined as

Mi[k] =
1

maxωn |HH
i (ωn, k)W(ωn, k)− Ĥi(ωn, k)|2

. (2.57)

The ASG is defined as the MSG ratio between the condition where the feedback
suppression algorithm is applied and the condition where no feedback suppression
algorithms is applied, i.e.,

Ai[k] =
Mi[k]

MCL
i [k]

. (2.58)

In the logarithmic domain it is hence defined as

10 log10Ai[k] = 10 log10Mi[k]− 10 log10MCL
i [k]. (2.59)

2.2.3 Effective Closed-Loop Gain

In order to take into the account the forward path function of the hearing aid, the
effective closed-loop gain (ECLG) is a measure of the gain margin that is available
in the closed-loop system [19]. The ECLG can be computed using the open-loop
transfer function and for the closed-loop system without feedback suppres-
sion the effective closed-loop gain for the ith measured acoustic feedback path is
defined as

ECLi [k] = max
ωn
|OCLi (ωn, k)| (2.60)

= max
ωn
|G(ωn)Hi(ωn)|. (2.61)

In view of the magnitude condition of the Nyquist stability criterion a value of
Ei < 1 indicates a stable system.

Using the definition of the open-loop transfer in (2.26) the effective closed-loop
gain for the single-loudspeaker single-microphone system for the ith measured
acoustic feedback path is defined as

Ei[k] = max
ωn
|G(ωn, k)(Hi(ωn, k)− Ĥi(ωn, k))|. (2.62)

Using the definition of the open-loop transfer in (2.47) the effective closed-loop
gain for the single-loudspeaker multi-microphone system for the ith measured
acoustic feedback path is defined as

Ei[k] = max
ωn
|G(ωn, k)(HH

i (ωn, k)W(ωn, k)− Ĥ(ωn, k))|. (2.63)
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2.2.4 Speech Quality Measures

In order to evaluate the perceived quality of speech signals processed by acoustic
feedback cancellation algorithms, we will use the perceptual evaluation of speech
quality (PESQ) measure [192]. It has been shown in [107] that for a speech signal
the PESQ measure provides a reasonable correlation between estimated quality and
subjective evaluated quality for AFC algorithms. The PESQ measure compares a
processed signal with an (unprocessed) reference signal, which in the context of
feedback cancellation for SLSM system is usually the incoming signal x[k] and for
SLMM system is usually the incoming signal xm0

[k] in a reference microphone m0.
First, the processed signal and the reference signal are time-aligned and subsequently
compared using a perceptual model that accounts for perceptual aspects of the
human auditory system. The output of PESQ is an objective listening quality MOS
in the range from -0.5 to 4.5, where the values will typically be similar to subjective
MOS scores in the range of 1 to 4.5 [192].

2.3 Summary

In this chapter we formally introduced both considered acoustic systems, i.e., the
SLSM system with a single microphone and the SLMM system with multiple micro-
phones, and we presented several instrumental measures to quantify the performance
of acoustic feedback cancellation algorithms. These measures include the normalized
misalignment, the maximum stable gain (MSG) and added stable gain (ASG), and
the effective closed-loop gain (ECLG). Finally, we introduced the perceptual evalua-
tion of speech quality (PESQ) measure that will be used to evaluate the perceptual
quality of the processed speech signals.





3
ADAPTIVE FEEDBACK CANCELLATION

In this chapter we will present a detailed overview of existing adaptive feedback
cancellation (AFC) algorithms relevant for this thesis. In Section 3.1 we first present
the continuous adaptive filtering algorithm. Since it is well known that for AFC the
optimal solution of the continuous adaptive filtering algorithm is typically biased,
in Section 3.2 we analyze this bias for the case of correlated incoming signals. In
Section 3.3 we then present different existing AFC algorithms aiming to reduce this
bias. In Section 3.3.2 we particularly focus on the prediction-error-method (PEM)
which is used in this thesis.

For conciseness we only consider the SLSM system described in Section 2.1.3. How-
ever, it should be noted that the adaptive feedback cancellation algorithms dis-
cussed in this chapter can generally also be applied in the SLMM system described
in Section 2.1.4 to cancel the residual feedback component in the beamformer out-
put.

3.1 Adaptive Filtering

Consider the SLSM system with an adaptive filter as depicted in Figure 3.1. The
optimal LĤ -dimensional filter coefficient vector ĥopt of the adaptive filter Ĥ(q, k) is
minimizing the squared error signal [82, 83], i.e., the following cost function

JWF (ĥ[k]) = E{e2[k]}, (3.1)

= ĥT [k]Ruu[k]ĥ[k]− 2ĥT [k]Ruu[k]y[k] + y2[k] (3.2)

where we used (2.17) and (2.21), E{·} denotes mathematical expectation and
Ruu[k] = E{u[k]uT [k]} and ruy[k] = E{u[k]y[k]} denote the auto-correlation ma-
trix and the cross-correlation vector, respectively, and u[k] is the LĤ -dimensional
vector of delayed elements of u[k] similarly defined as x[k] in (2.6). The optimal
closed-form solution, i.e., the so-called Wiener filter, is given as

ĥopt[k] = R−1
uu [k]ruy[k]. (3.3)

29
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G(q, k) Ĥ(q, k) H(q, k)

e[k] −
+

y[k] x[k]

u[k]

f [k]

Figure 3.1: Generic single-loudspeaker single-microphone hearing aid closed-loop system
with an adaptive filter.

Note that the filter is obtained from expectations, i.e., ensemble averages, and thus
is optimal in a stochastic sense. Note that obtaining these ensemble averages is not
possible in practice and hence they are usually substituted by time averages. In
practice the computation of the optimal solution at each time-step k is not possible
since the the exact statistical information of the data is unknown and may even
change over time. Therfore, usually adaptive algorithms are used to approximate
the optimal solution as closely as possible. There are two main classes of adaptive al-
gorithms [83]: 1) steepest-descent type of algorithms and 2) stochastic-gradient type
of algorithms. While steepest-descent algorithms update an estimate of the acoustic
feedback path using the negative gradient of the Wiener filter cost function in (3.1)
with respect to the filter coefficient vector and still require the statistical informa-
tion of the data to be available, stochastic-gradient type of algorithms substitute
the statistical information using instantaneous approximations. In the following we
first present how the Wiener filter estimate can be obtained using steepest-descent
type algorithms and derive the corresponding stochastic-gradient type of algorithms
that are used in practice.

The gradient of (3.1) with respect to ĥ[k] is given by

∇ĥ[k]JWF (ĥ[k]) = −2(ruy[k]−Ruu[k]ĥ[k]), (3.4)

= −2E{u[k]e[k]}. (3.5)

The adaptive update equation of the estimate ĥ[k] is then given as [83]

ĥ[k + 1] = ĥ[k] + µ[k]BE{u[k]e[k]}, (3.6)
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with µ[k] a possibly time-varying step-size parameter and B a positive-definite
matrix. On the one hand, choosing B = I leads to the well-known steepest descent
algorithm, i.e.,

ĥ[k + 1] = ĥ[k] + µ[k]E{u[k]e[k]}. (3.7)

On the other hand, choosing B = (αI + Ruu[k])−1 leads to the regularized Newton
method, also known as the Levenberg-Marquardt method [83], i.e.,

ĥ[k + 1] = ĥ[k] + µ[k](αI + Ruu[k])−1E{u[k]e[k]}, (3.8)

with α a positive regularization parameter.

In stochastic gradient algorithms, the expectation operator on u[k]e[k] is dropped
and instantaneous estimates from the available data are used. The update equa-
tion for the stochastic-gradient algorithm that corresponds to the steepest-descent
update in (3.7) is then given as

ĥ[k + 1] = ĥ[k] + µ[k]u[k] (y[k]− ĥT [k]u[k])︸ ︷︷ ︸
e[k]

. (3.9)

The most widely used algorithms in AFC are the least mean squares (LMS) and
normalized least mean squares (NLMS) algorithm due to their stable adaptation
and low computational complexity. The LMS algorithm is obtained from (3.9) by
using a fixed step-size, i.e.,

µLMS [k] = µ, (3.10)

while the NLMS algorithm is obtained from (3.9) by normalizing (3.10) with the
(instantaneous) power of the input signal or is similarly obtained from (3.8) by
using instantaneous approximations and applying the matrix inversion lemma [83],
i.e.,

µNLMS [k] =
µ

uT [k]u[k] + α
, (3.11)

with α a small positive regularization parameter to avoid division by zero. Note that
while for the LMS algorithm a stable adaptation of the adaptive filter depends on
the instantaneous power of the filter input u[k], for the NLMS algorithm a stable
adaptation is guaranteed for values of 0 < µ < 2. However, it should be kept in
mind that a stable adaptation of the adaptive filter does not guarantee stability of
the closed-loop hearing aid system. Since the step-size µ controls the size of the
update, a larger µ generally leads to a faster convergence at the expense of a larger
steady-state misalignment of the adaptive filter [83]. Furthermore, on the one hand,
using a longer filter length LĤ generally leads a reduced convergence speed since
more filter coefficients need to be updated but allows to model the unknown system
H(q, k) more accurately. On the other hand, using a shorter filter length LĤ leads
to an increased convergence speed at the expense of less accurate modeling of the
unknown system H(q, k) if LĤ < LH , which is usually the case since LH is unknown
in practice.
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3.2 Bias Analysis

In this section we analyze the optimal solution in (3.3) and conclude that it is
usually biased and only in certain conditions an unbiased estimate may be obtained
[101, 102, 104, 105]. Assuming a sufficient order, i.e., knowledge of the length of the
acoustic feedback path, i.e., LĤ = LH , the optimal solution given in (3.3) can be
rewritten in terms of the incoming signal x[k] and the acoustic feedback component
f [k] using (2.17), i.e.,

hopt[k] = R−1
uu [k]ruf [k] + R−1

uu [k]rux[k], (3.12)

= R−1
uu [k]Ruu[k]h[k] + R−1

uu [k]rux[k], (3.13)

= h[k] + R−1
uu [k]rux[k], (3.14)

where in the second step we made use of the definition of f [k] = uT [k]h[k] in
(2.20). From (3.14) we observe that the optimal solution is unbiased if and only if
the cross-correlation vector between the loudspeaker signal and the incoming signal
rux[k] = 0. However, this is usually not the case as we will show in the following.
Assuming that the forward path function is a broadband gain |G| and a delay dG ≥ 1,
i.e., G(q, k) = |G|q−dG , and using (2.25), the cross-correlation vector rux[k] can be
written as

rux[k] = C(q, k)|G|E




x[k − dG]

x[k − dG − 1]

. . .

x[k − dG − LĤ + 1]

x[k]

 . (3.15)

As can be observed from (3.15), if the delay dG is longer than the auto-correlation of
the incoming signal x[k], an unbiased estimate may be obtained. E.g., if the incoming
signal is white noise, then a delay of dG = 1 is sufficient to obtain an unbiased
estimate. However, if the delay dG is chosen smaller than the auto-correlation of
the incoming signal x[k], the solution will generally be biased. Note that the delay
dG cannot be chosen arbitrarily large, as it determines the input-output delay of the
hearing aid processing, which should be smaller than 10ms [193]. However, typical
sounds a hearing aid user is exposed to, e.g., speech and music, have longer auto-
correlation times in the order of, e.g., 20ms for speech signal and up to several
seconds for sustained tones in music signals.

3.3 Bias Reduction Methods

As pointed out in Section 1.4 several methods exist to reduce the bias in the adap-
tive filter. These include subband adaptive filtering, constrained adaptation of the
adaptive filter, probe-noise injection, non-linear processing of the loudspeaker sig-
nal, the PEM using prewhitening filters as well as using an auxiliary microphone.
While probe-noise injection and non-linear processing of the loudspeaker signal al-
ter the played back signal and may significantly reduce the quality of the speech
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signal, using an auxiliary microphone relies on a good position of that microphone.
In contrast, subband adaptive filtering, constrained adaptation and the PEM do
not alter the loudspeaker signal and may hence provide a better quality.

In this section we review different methods to reduce the bias in the adaptive filter
adaptation that are used in the remainder of this thesis. These include the delayless
subband adaptive filtering in Section 3.3.1 as well as the prediction-error-method
(PEM) in Section 3.3.2.

3.3.1 Using Subband Adaptive Filters

Subband adaptive filtering for AFC has been proposed in [71–74] to achieve a decor-
relation of the incoming signal and the loudspeaker signal by applying the adaptive
filtering in subbands. Different adaptive filterbank structures exist [194], e.g., an
open-loop structure, which aims at minimizing the summation of the squared er-
ror across all subbands, and a closed-loop structure, which aims at minimizing the
squared fullband error signal. In subband adaptive filtering a (decimating) analysis
filterbank is used to split the loudspeaker signal and the incoming signal (when
using an open-loop structure) or the error signal (when using a closed-loop struc-
ture) into subbands. Independent adaptive filters are then used in each subband
and finally the fullband signal is reconstructed by applying a synthesis filterbank.
Since applying an analysis and synthesis filterbank usually introduces a delay, a
delayless subband architecture has been proposed in [195], where the fullband filter
is reconstructed from the subband adaptive filters [196] and is applied on a sample-
by-sample basis to the fullband signal. Such a delayless subband architecture was
applied to AFC in, e.g., [18, 19], and will be used in this thesis in Chapter 6. More
specifically, we consider a delayless filterbank using the closed-loop structure as pro-
posed in [195]. The prototype filter used for the design of the analysis filterbank
to split the signal into Ms subbands using a decimation factor of Ds = Ms/2 is a
Kaiser-window [197], providing a good separation of the subbands [198]. In each of
the subbands the adaptive filter of length Ls = LĤ/Ds is updated using the NLMS
update rule similarly as in (3.9) using (3.11). The corresponding fullband filter of
length LĤ is obtained by using the procedure described in [196].

3.3.2 Prediction-Error-Method

The prediction-error-method (PEM) aims at reducing the bias in the filter adapta-
tion by using prewhitening filters to decorrelate the incoming signal x[k] and the
loudspeaker signal u[k]. These prewhitening filters can be either fixed, e.g., assum-
ing that the correlation properties of the incoming signal are known, or adaptive,
aiming at estimating the correlation properties of the incoming signal. In the PEM
it is generally assumed that the incoming signal can be adequately modeled as an
auto-regressive model, which is reasonable, e.g., for speech signals. Figure 3.2 de-
picts the SLSM system where the PEM is used for AFC. The incoming signal is
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Figure 3.2: Single-loudspeaker single-microphone hearing aid closed-loop system using the
PEM for AFC.

then modeled as

x[k] =
1

ALP (q, k)
w[k], (3.16)

where ALP (q, k) is a time-varying monic and inversely stable FIR filter of order NA,
i.e.,

ALP (q, k) = 1 +

NA∑
i=1

aLPi [k]q−i, (3.17)

and w[k] is a white Gaussian noise signal. For convenience we define the coefficient
vector of the auto-regressive model as

aLP [k] =
[

1 aLP1 [k] . . . aLPNA [k]︸ ︷︷ ︸
(āLP [k])T

]T
. (3.18)

Instead of minimizing JWF (ĥ[k]) in (3.1), the objective of the PEM is to minimize
the prewhitened error signal

ef [k] = ÂLP (q, k)e[k], (3.19)

i.e., minimize the following cost function

JPEM (āLP [k], ĥ[k]) = E{e2
f [k]}, (3.20)

= E{(ÂLP (q, k)e[k])2}, (3.21)

= E{(ÂLP (q, k)(y[k]− ĥT [k]u[k]))2}. (3.22)
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Note that the cost function is non-linear in the parameters of the prewhitening filter
ÂLP (q, k) and the acoustic feedback path Ĥ(q, k), and hence, the optimization may
converge to a locally optimal solution. The cost function JPEM (āLP[k], ĥ[k]) can
be minimized using, e.g., the Levenberg-Marquardt steepest-descent algorithm, i.e.,
using the following update rule[

āLP [k + 1]

ĥ[k + 1]

]
=

[
āLP [k]

ĥ[k]

]
+ µ[k](αI−Rāĥāĥ[k])−1E

{
∇āLP [k],ĥ[k]JPEM (āLP [k], ĥ[k])

}
.

(3.23)

with the gradient defined as

∇ā[k],ĥ[k]JPEM (āLP [k], ĥ[k]) = 2

[
∇āLP [k]ef [k]

∇ĥ[k]ef [k]

]
ef [k], (3.24)

and the auto-correlation matrix defined as

Rāĥāĥ[k] = E


[
āLP [k]

ĥ[k]

][
āLP [k]

ĥ[k]

]T . (3.25)

Note that (3.23) corresponds to a joint update of both the prewhitening filter and
the acoustic feedback path estimate. However, this joint update of the prewhitening
filter and the feedback path estimate may be disadvantageous since the fluctuations
in the feedback path are usually much slower than those of the prewhitening filter
[104]. Therefore, it has been proposed to decouple the update such that in the first
step the prewhitening filter is updated and in the second step the estimate of the
acoustic feedback path is updated [171]. This can be achieved by forcing the off-
diagonal entries in the auto-correlation matrix in (3.25) to zero, i.e., setting

Rāĥāĥ[k] =

[
Rāā[k] 0

0 Rĥĥ[k]

]
. (3.26)

This results in the following set update rulesāLP [k + 1] = āLP [k]− µā[k](αI + Rāā[k])−1E
{

(∇āLP [k]ef [k])ef [k]
}
,

ĥ[k + 1] = ĥ[k]− µĥ[k](αI + Rĥĥ[k])−1E
{

(∇ĥ[k]ef [k])ef [k]
}
,

(3.27a)

(3.27b)

additionally allowing to use different adaptation strategies for both estimates. Note
that in order to reduce the computational complexity, usually the gradient with re-
spect to the prewhitening filter coefficients and the acoustic feedback path estimate
are approximated by [104]

∇āLP [k]ef [k] ≈
[
e[k − 1] e[k − 2] . . . e[k −NA]

]T
, (3.28)

∇ĥ[k]ef [k] ≈ −uf [k], (3.29)
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with the prewhitened loudspeaker signal uf [k] and the vector of its delayed elements
defined as

uf [k] = ÂLP (q, k − 1)u[k], (3.30)

uf [k] =
[
uf [k] uf [k − 1] . . . uf [k − LĤ + 1]

]T
. (3.31)

For the acoustic feedback path estimate in (3.27b) usually the NLMS algorithm
is used in the time-domain or frequency-domain implementations used, e.g., using
the partitioned block frequency-domain adaptive filter (PBFDAF) algorithm, that
will be reviewed in the following sections. In order to estimate the prewhitening
filter in (3.27a), similarly the NLMS algorithm could be used. However, since the
auto-regressive model is assumed to be inversely stable, typically an estimate is
obtained by applying methods to estimate the model from the error signal e[k] that
inherently restrict the search space to inversely stable filters [104], e.g., a block-based
Levinson-Durbin recursion method [199] (cf. Algorithm 1) or a sample-based Burg
Lattice method [200] (cf. Algorithm 2). In Algorithm 1 the NA × NA-dimensional
co-identity matrix JNA is defined as

JNA =



0 0 . . . 0 1

0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0

1 0 . . . 0 0


. (3.32)

Algorithm 1: Levinson-Durbin algorithm to estimate prewhitening filters [199].
1: input: prediction order NA
2: initialize NA ×NA-dimensional co-identity matrix JNA
3: Initialize prediction-error power
4: e0[k] = ree,0[k]
5: for i = 1, . . . , NA
6: compute reflection coefficients
7: κi[k] = 1

ei−1[k] (ree,i[k]− (aLPi−1)T [k]Ji−1ree,i−1[k])

8: update prediction filter coefficients

9: āLPi [k] =

[
āLPi−1[k]

0

]
+ κi[k]Ji

[
1

āLPi−1[k]

]
10: update prediction-error power
11: ei[k] = ei−1[k](1− κi[k])2

12: end
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Algorithm 2: Burg-Lattice algorithm to estimate prewhitening filter [200].
1: input: smoothing constant λA, prediction order NA
2: Initialize forward and backward predictors
3: f0[k] = e[k] = y[k]− ĥT [k]u[k]
4: b0[k] = e[k]
5:
6: for i = 1, . . . , NA
7: update smoothed reflection coefficients
8: di[k] = λAdi[k − 1] + (1− λA)(f2i−1[k] + b2

i−1[k − 1])
9: ni[k] = λAni[k − 1] + (1− λA)(−2)fi−1[k]bi−1[k − 1]

10: κi[k] = ni[k]
di[k]

11: update forward and backward predictors
12: fi[k] = fi−1[k] + κi[k]bi−1[k − 1]
13: fi[k] = κi[k]fi−1[k] + bi−1[k − 1]
14: end

3.3.2.1 Time-Domain Implementation

Commonly, the NLMS algorithm is used to update the acoustic feedback path esti-
mate. The NLMS update when using the PEM is computed similarly as in (3.9) us-
ing (3.11) but using the prewhitened error signal and loudspeaker signal, i.e.,

ĥ[k + 1] = ĥ[k] + µf [k]uf [k]ef [k] (3.33)

with ef [k] defined in (3.19), uf [k] defined in (3.31) and µf [k] a time-varying step-
size, i.e.,

µf [k] =
µ

uTf [k]uf [k] + α
. (3.34)

3.3.2.2 Frequency-Domain Implementation

In order to increase the performance of the adaptive filter, frequency-domain pro-
cessing can be used to achieve additional decorrelation when applying frequency-
depend processing [78]. In order to reduce the delay introduced by frequency-domain
processing, in [78] the use of the partitioned block frequency-domain adaptive fil-
ter (PBFDAF) has been proposed when using the PEM. In the PEM-PBFDAF
implementation the coefficient vector ĥ[k] of the adaptive filter is partitioned into
LĤ/P non-overlapping partitions ĥp[k], p = 0, . . . , LĤ/P − 1, of length P each,
i.e.,

ĥp[k] =
[
ĥpP [k] ĥpP+1[k] . . . ĥ(p+1)P−1[k]

]T
, (3.35)
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and transformed to the frequency-domain using the NFFT -point DFT matrix,
i.e.,

Ĥp(k) =


Ĥp(ω0, k)

...
Ĥp(ωNFFT−1, k)

 = FNFFT

[
ĥp[k]

0

]
, (3.36)

where 0 is a vector of zeros of appropriate length. For a block of Lu samples of the
prefiltered loudspeaker signal at block index l, i.e.,

uf,l =
[
uf [lLu + 1] uf [lLu + 2] . . . uf [l(Lu + 1)],

]T
. (3.37)

a filter output signal f̂l is produced, i.e.,

f̂l =
[
0 I

]
F−1
NFFT

LĤ/P−1∑
p=0

Uf,p,lĤp,l︸ ︷︷ ︸
F̂f,p,l

, (3.38)

where Uf,p,l is the frequency-domain representation of the prefiltered loudspeaker
signal, i.e.,

Uf,p,l = diag

FNFFT


uf [(l + 1)Lu − pP −NFFT + 1]

...
uf [(l + 1)Lu − pP ]


 , (3.39)

and Ĥp,l is the pth partition of the estimated acoustic feedback path at block index
l. For each partition the adaptive filter is updated for a block of Lu input samples
using the following gradient constrained update rule

Ĥp,l+1 = Ĥp,l + FNFFTCF−1
NFFT

∆lU
H
f,p,lEf,l (3.40)

where Ef,l is the prefiltered error signal, i.e.,

Ef,l = FNFFT

[
0

I

]
ÂLP (q, k − 1)(yl − f̂l), (3.41)

yl =
[
y[lLu + 1] . . . y[(l + 1)Lu]

]T
, (3.42)

and C is a constraint matrix to avoid circular convolution effects [201], i.e.,

C =

[
I 0

0 0

]
. (3.43)

The frequency-dependent step-size matrix ∆l is defined as

∆l = diag
{[
µl(ω0) . . . µl(ωNFFT−1)

]}
, (3.44)
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where for each frequency the modified NLMS update rule according to [202] is used,
i.e.,

µl(ωn) =
µ

|Ef,l(ωn)|2 +
LĤ/P−1∑
p=0

|Uf,p,l(ωn)|2 + α

, (3.45)

where Ef,l(ωn) and Uf,p,l(ωn) are the elements of Ef,l and Uf,p,l, respec-
tively.

3.4 Summary

In this section we provided an overview on a selection of AFC algorithms, which will
be used in the remainder of this thesis. We first presented the conventional continu-
ous adaptive filter approach and showed that the optimal solution of the continuous
adaptive filter is usually biased due to the closed-loop system of the hearing aid.
We then presented two different methods that aim at reducing this bias in the adap-
tive filter adaptation by reducing the correlation between the incoming signal and
the loudspeaker signal. The first method is the delayless subband adaptive filtering
where the decorrelation is achieved by applying the filtering in subbands. The second
method is the PEM where the incoming signal is model as an auto-regressive process
and prewhitening filters are used for decorrelation. For the PEM we presented two
different adaptive filter implementations, i.e., a time-domain implementation using
the NLMS algorithm and a frequency-domain implementation using the PBFDAF
framework.





4
COMMON PART OPTIMIZATION FOR
ACOUSTIC FEEDBACK CANCELLATION IN
HEARING AIDS

As mentioned in Section 3.1, in general, the computational complexity and the
convergence speed of an adaptive filter is determined by the number of adaptive
parameters [82]. In order to reduce the number of adaptive parameters, in [87, 90]
it was proposed to decompose the acoustic feedback path into two parts: an invari-
ant or slowly varying part that may remains fixed over time and a variable part
that may be time-varying to enable the tracking of fast changes. In this chapter we
present different optimization procedures to obtain the fixed part and the variable
part(s). Specifically, we propose to model the fixed part as a common pole-zero
filter instead of using a common all-zero or common all-pole filter. In order to im-
prove the accuracy of the common pole-zero filter, we propose to use the so-called
Steiglitz-McBride procedure [203] and propose two different constraints to guaran-
tee the stability of the common poles. First, we propose to use a constraint based

This chapter is based in part on the following publications:
[174] H. Schepker and S. Doclo, “Modeling the common part of acoustic feedback paths in hearing

aids using a pole-zero model,” in Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Florence, Italy,, May 2014, pp. 3693–3697.

[175] ——, “Estimation of the common part of acoustic feedback paths in hearing aids using
iterative quadratic programming,” in Proc. International Workshop on Acoustic Signal En-
hancement (IWAENC), Antibes - Juan les Pins, France, Sep. 2014, pp. 46–50.

[176] ——, “Common part estimation of acoustic feedback paths in hearing aids optimizing max-
imum stable gain,” in Proc. of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 649–653.

[177] ——, “A semidefinite programming approach to min-max estimation of the common part of
acoustic feedback paths in hearing aids,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 24, no. 2, pp. 366–377, Feb. 2016.

[178] ——, “Least-squares estimation of the common pole-zero model of acoustic feedback paths
in hearing aids,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 8, pp. 1334–
1347, Aug. 2016.

41
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on the positive realness of the frequency response of the all-pole component of the
common pole-zero filter, which provides sufficient but not necessary conditions for
stability. Second, we propose to use a constraint based on Lyapunov theory, which
provides both sufficient and necessary conditions for stability. Furthermore, instead
of optimizing the least-squares error of the filter, we additionally propose to directly
maximize the maximum stable gain (MSG) of the hearing aid by formulating the es-
timation of the common pole-zero filter as a min-max optimization problem.

The fixed common pole-zero filter is typically estimated from multiple measured
acoustic feedback paths of a hearing aid and can be thought to account for, e.g.,
fixed transducer and microphone characteristics and fixed mechanical couplings.
Moreover, when estimated from different feedback paths of a hearing aid on the
same ear, this fixed filter may also account for similarities due to the individual
characteristics of that particular ear. By including a fixed filter, the goal is to reduce
the length of the adaptive filter, which is used in practice to estimate the variable
part, and thereby increase its convergence speed. The fixed filter may, e.g., be es-
timated from the impulse responses (IRs) of several microphones, e.g., in SLMM
hearing aids, which then usually models parts that are common in all of these IRs.
In the remainder of this chapter this fixed filter will therefore be termed common
part, while the possibly time-varying filter that is assumed to be different for each
IR will be termed variable part.

Several methods have been proposed to estimate the common part from multiple
IRs, including methods employing QR-decomposition [204], singular value decompo-
sition [205] or least-squares techniques [90, 91, 206]. In [91] the well-known common-
acoustical-pole and zero (CAPZ) model was proposed, where for a set of ATFs the
common part was modeled as an all-pole filter that physically corresponds to room
resonances, while the variable parts were assumed to be all-zero, i.e., FIR, filters.
Using these assumptions, a closed-form expression could be derived for all filters. In
[206] both the common part as well as the variable part were assumed to be all-zero
filters which were estimated by minimizing a non-linear least-squares cost function.
In [206] it was noted that the convergence of the iterative optimization procedure
depended on the initialization. In [90] the approach proposed in [206] was used to
estimate the common part for a set of 10 different acoustic feedback paths. On the
one hand, it was found that different types of arbitrary initialization, i.e., all-one
sequences, random sequences and truncated average IRs, only had minor effects on
the results after convergence. On the other hand, it was observed that an increase in
modeling accuracy could be achieved by initializing the common part all-zero filter
as the truncated IR of the common part obtained by the common-acoustical-pole
and zero (CAPZ) model. Instead of assuming the common part to be an all-pole
filter [91] or an all-zero filter [90, 206], in this Chapter we propose to use a
pole-zero filter for the common part. The resulting cost function is minimized
using an alternating least-squares (ALS) approach similar to [206].

In general it is desirable to minimize the so-called output-error when designing a
filter. However, this is not straightforward for IIR filters like the common all-pole
filter or the common pole-zero filter. Therefore, for the common all-pole filter in
the CAPZ model, in [91] it has been proposed to minimize the so-called equation-
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error instead, leading to an easier optimization problem. For the common all-pole
filter it could be shown that minimizing the equation-error always yields a stable
common all-pole filter. Therefore, we propose to minimize the equation-error in
order to obtain the common pole-zero filter. Furthermore, in [207] it has been shown
for single-input-single-output (SISO) systems that optimizing the equation-error
generally yields a stable pole-zero filter, which makes it appealing also for the single-
input-multiple-output (SIMO) system considered in this chapter. As is shown in
this chapter, also for the estimation of a common pole-zero filter in SIMO systems
minimizing the equation-error always yields a stable filter. Nevertheless, it is known
that pole-zero filters estimated by minimizing the equation-error typically suffer
from poor estimation accuracy in the vicinity of prominent spectral regions, e.g.,
spectral peaks [208]. To approximate the desired output-error minimization, in [203]
the so-called Steiglitz-McBride iteration has been proposed. Therefore,we propose
to incorporate the Steiglitz-McBride iteration into the optimization of
the common pole-zero filter.

Since, in general, the stability of pole-zero filters estimated by employing the
Steiglitz-McBride iteration cannot be guaranteed [209], the location of the poles
needs to be constrained. Different constraints have been proposed in the literature,
e.g., [210, 211]. A sufficient condition for the stability of a pole-zero filter is the
strict positive realness of the frequency response of its all-pole filter component [210].
However, since this sufficient condition may strongly restrict the solution space of
the optimization problem [212], it is desirable to incorporate only constraints that
provide a necessary condition for the stability of the pole-zero filter. In [211] a con-
straint based on Lyapunov theory has been proposed for SISO systems, which can
be formulated as a so-called linear matrix inequality (LMI). This leads to a convex
optimization problem [213] that can readily be solved using existing semidefinite
programming (SDP) software, e.g., CVX [214, 215]. To improve the least-squares
estimation of the common pole-zero filter in a SIMO system, in this chapter we
propose to either use a constraint based on the positive realness of the
frequency response of the all-pole filter component or use a constraint
based on Lyapunov theory.

Even while simulation results show that the proposed least-squares optimization
achieves a good performance in terms of the misalignment, the MSG [88] may be
limited (cf. Section 4.5.6). Therefore, we propose another optimization pro-
cedure to estimate the common pole-zero filter by directly maximizing
the maximum stable gain (MSG) and show that the maximization of
the MSG can be formulated as a min-max optimization problem. In or-
der to guarantee the stability of the common pole-zero filter, we again use either
the constraint based on positive realness of the frequency response of the all-pole
filter component, leading to an linear programming (LP) problem, or the constraint
based on Lyapunov theory, leading to an SDP problem.

This chapter is organized as follows. Section 4.1 introduces the common part es-
timation problem and Section 4.2 briefly reviews the instrumental measures (mis-
alignment and MSG) that we aim to optimize. In Section 4.3 the least-squares
optimization of the common pole-zero filter is presented which aims at optimizing
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the misalignment. We show how the equation-error can be optimized and subse-
quently show how the output-error optimization can be approximated by using the
Steiglitz-McBride procedure. We show how the constraint based on the positive re-
alness can be incorporated, leading to a quadratic programming (QP) problem, and
show how the constraint based on Lyapunov theory can be incorporated, leading to
an SDP problem. In Section 4.4 the maximization of the MSG is formulated as a
(non-linear) min-max optimization problem. We show that when incorporating the
constraint based on the positive realness this optimization can be formulated as an
LP problem, while for the Lyapunov-based constraint this optimization problem can
be formulated as an SDP problem. In Section 4.5 experimental results using mea-
sured acoustic feedback paths from a two-microphone behind-the-ear (BTE) hearing
aid first demonstrate the benefit of using a common pole-zero filter compared to
using a common all-pole or common all-zero filter. We further show that using the
Steiglitz-McBride procedure to approximate the desired output-error approximation
leads to an increased performance, where the constraint based on Lyapunov theory
outperforms the positive realness constraint. In addition, we show that while the
least-squares optimization approach leads to an increased modeling accuracy com-
pared to the min-max optimization approach, the min-max optimization approach
leads to an increased MSG compared to the least-squares optimization approach.
Evaluations of the perceptual speech quality using a static feedback canceller indi-
cate that both proposed optimization approaches yield a similar speech quality for
the same (broadband) hearing aid gain, while the min-max optimization approach
allows for a larger MSG. In addition, in Section 4.6 we perform simulations using
a state-of-the-art AFC algorithm based on the PEM showing that the convergence
speed can be considerably increased when employing the proposed feedback path
decomposition.

4.1 Problem Formulation

Consider the SIMO system withM outputs depicted in Figure 4.1a. Themth output
signal ym[k],m = 1, . . . ,M , is related to the input signal u[k] by themth ATFHm(q)
as

ym[k] = Hm(q)u[k]. (4.1)

Assume that the true (e.g., measured) ATFs Hm(q) can be represented by causal
all-zero filters of finite order Nh

z = LH − 1 each1, i.e.,

Hm(q) =

Nhz∑
j=0

hm,jq
−j , (4.2)

1 Note that in order to develop the optimization procedures, the acoustic feedback path Hm(q) is
also assumed to be time-invariant.
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Figure 4.1: System models: (a) general SIMO system and (b) approximation of the SIMO
system using a common part

with hm,j the jth coefficient of the polynomial representing Hm(q). To reduce the
number of coefficients required to model all M ATFs, the approximation depicted
in Figure 4.1b is introduced, i.e.,

H1(q)
...

HM (q)

 ≈

Ĥ1(q)

...
ĤM (q)

 = Ĥc(q)


Ĥv

1 (q)
...

Ĥv
M (q)

 (4.3)

where Ĥc(q) is the common part and Ĥv
m(q), m = 1, . . . ,M , are the variable parts.

The aim is now to decompose the true ATFs as well as possible into a common
part, for which a pole-zero filter model with N c

p poles and N c
z zeros is assumed, and

M variable parts, for which an all-zero filter model with Nv
z zeros each is assumed

for each variable part. The transfer functions of the common and variable parts are
given by

Ĥc(q) =
Bc(q)

Ac(q)
=

∑Ncz
j=0 b

c
jq
−j

1 +
∑Ncp
j=1 a

c
jq
−j
, (4.4)

Ĥv
m(q) = Bvm(q) =

Nvz∑
j=0

bvm,jq
−j , (4.5)

where acj , bcj and bvm,j are the coefficients of the polynomials representing the com-
mon poles, common zeros and variable zeros, respectively. Note that ac0 = 1, i.e.,
Ac(q) is assumed to be a monic polynomial. The estimated ATF Ĥm(q) can hence
be written as

Ĥm(q) =
Bc(q)

Ac(q)
Bvm(q). (4.6)
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The coefficients in vector notation are defined as

hm = [ hm,0 hm,1 . . . hm,Nhz
]T , (4.7)

āc = [ ac1 ac2 . . . acNcp
]T , (4.8)

bc = [ bc0 bc1 . . . bcNcz
]T , (4.9)

bvm = [ bvm,0 bvm,1 . . . bvm,Nvz
]T . (4.10)

We also define the concatenation of the coefficient vectors bvm as

bv = [ (bv1)T (bv2)T . . . (bvM )T ]T . (4.11)

Furthermore, the frequency-domain representation of the so-called output-error in
the mth microphone, i.e., the difference between the frequency response Hm(ωn)
of the true ATF Hm(q) and the frequency response Ĥm(ωn) of the estimated ATF
Ĥm(q) is defined as

EOEm (ωn) = Hm(ωn)− Bc(ωn)

Ac(ωn)
Bvm(ωn)︸ ︷︷ ︸

Ĥm(ωn)

, (4.12)

where ωn denotes the discrete frequency.

4.2 Review of Instrumental Measures of Feedback Cancellation Perfor-
mance

As mentioned in Section 2.2, the performance of AFC algorithms is typically assessed
using two instrumental measures [78, 90, 107, 125]: the normalized misalignment and
the maximum stable gain (MSG).

The normalized misalignment in (2.52) can be related to the output-error in (4.12)
as

ξm =

NFFT−1∑
n=0

|EOEm (ωn)|2

NFFT−1∑
n=0

|Hm(ωn)|2
. (4.13)

Furthermore we define the average normalized misalignment by averaging the nor-
malized misalignment over all microphones, i.e.,

ξ̄ =
1

M

M∑
m=1

ξm (4.14)
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The MSG in (2.56) can be related to the output-error in (4.12) as

Mm =
1

maxωn |EOEm (ωn)|2
(4.15)

Assuming that the worst MSG for a considered set of M IRs dominates the MSG
of, e.g., a SLMM system, the overall MSG is defined as

M̄ = min
m
Mm . (4.16)

4.3 Least-squares Optimization

In this section we present several least-squares optimization procedures to compute
the coefficient vectors āc, bc and bv minimizing the output-error in the least-squares
sense and hence minimize the average normalized misalignment in (4.14). The cor-
responding least-squares cost function is given as

J̄OE(āc,bc,bv) =

M∑
m=1

NFFT−1∑
n=0

γm|Hm(ωn)− Bc(ωn)

Ac(ωn)
Bvm(ωn)︸ ︷︷ ︸

EOEm (ωn)

|2, (4.17)

where γm is a weighting factor for each microphone. For γm = 1 this corresponds to
optimizing the average misalignment, while for γm = 1

‖hm‖22
this corresponds to op-

timizing the average normalized misalignment, which will be used in the remainder
of this section. As can be seen from (4.17), the output-error EOEm (ωn) is non-linear
in Ac(ωn), Bc(ωn), and Bvm(ωn), such that the output-error cost function is difficult
to minimize. To overcome this difficulty, often the so-called equation-error is used
instead of the output-error [184], i.e.,

EEEm (ωn) = Ac(ωn)EOEm (ωn), (4.18)
= Ac(ωn)Hm(ωn)−Bc(ωn)Bvm(ωn). (4.19)

The minimization of the equation-error leads to the following least-squares cost
function

J̄EE(āc,bc,bv) =

M∑
m=1

NFFT−1∑
n=0

γm|Ac(ωn)Hm(ωn)−Bc(ωn)Bvm(ωn)︸ ︷︷ ︸
EEEm (ωn)

|2.

(4.20)

Since the equation-error EEEm (ωn) is non-linear in only Bc(ωn) and Bvm(ωn), the
equation-error cost function J̄EE can be minimized, e.g., using an ALS procedure (cf.
Section 4.3.1). Additionally, the minimization of J̄EE guarantees stability of 1

Ac(q)

(cf. Appendix A.2). However, since minimization of the equation-error in (4.20) es-
sentially corresponds to multiplying the output-error EOEm (ωn) with Ac(ωn), this
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leads to an undesired weighting of the output-error. In fact, it has been noted in
[208] for SISO systems that minimization of the equation-error may lead to poor
estimation accuracy in the vicinity of prominent spectral regions of the frequency
response of Hm(ωn), e.g., spectral peaks. These spectral peaks are most often mod-
eled by the poles, i.e., 1

Ac(q) , and hence, by filtering the output-error with Ac(q),
i.e., the inverse pole filter, these regions are less weighted (cf. Simulation results
in Section 4.5.4.1). Moreover, since the MSG in hearing aids is typically largely
determined by the output-error in regions of poor modeling accuracy, minimizing
the equation-error in (4.20) to model acoustic feedback paths in hearing aids using
a common pole-zero filter model may not lead to the best possible MSG (cf. simu-
lations in Section 4.5.6). One possibility to circumvent this problem is to directly
maximize the MSG (cf. Section 4.4). In this section, however, we aim to circumvent
this problem in the least-squares optimization associated with the equation-error
minimization. Therefore, we first reformulate the output-error in (4.12) as

EOEm (ωn) =
1

Ac(ωn)
(Ac(ωn)Hm(ωn)−Bc(ωn)Bvm(ωn))︸ ︷︷ ︸

EEEm (ωn)

. (4.21)

This formulation motivates an iterative procedure known as the Steiglitz-McBride
iteration [203] from SISO system identification to approximate the desired output-
error minimization for the considered approximate SIMO system in (4.17), where
at each iteration i the following cost function is minimized,

J̄WEE(āci ,b
c
i ,b

v
i ) =

M∑
m=1

NFFT−1∑
n=0

γm|
1

Aci−1(ωn)
EEEm,i (ωn)︸ ︷︷ ︸

EWEE
m,i (ωn)

|2, (4.22)

with EWEE
m,i (ωn) the weighted equation-error at iteration i. Thus, at iteration i

the all-pole part of the estimated ATFs Ĥm,i−1(q) from the previous iteration, i.e.,
1

Aci−1(q) , is used to filter the equation-error EEEm,i (q) to counteract the undesired
weighting of the output-error in the equation-error minimization. Ideally, at conver-
gence of the iterative procedure limi→∞(Aci (q)−Aci−1(q)) = 0, such that

lim
i→∞

EWEE
m,i (q) = EOEm (q), (4.23)

i.e., the weighted equation-error is equal to the desired output-error. The weighted
equation-error based optimization will be described in more detail in Section 4.3.2.
While approximating the minimization of J̄OE in (4.17), the iterative minimization
of J̄WEE unfortunately does not guarantee stability of 1

Aci (q)
. This is true even for a

stable 1
Aci−1(q) , as has been shown for the SISO case in [209]. Hence, in the weighted

equation-error cost function in (4.22) the location of the poles of 1
Aci (q)

needs to
be constrained. Two different procedures for constraining the pole locations will be
discussed in more detail in Sections 4.3.2.1 – 4.3.2.3.
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4.3.1 Equation-Error based Optimization

The goal of the equation-error based optimization is to compute the coefficient
vectors āc, bc and bv minimizing the cost function J̄EE in (4.20). This cost function
can be reformulated in the time-domain as (see Appendix A.1)

JEE(āc,bc,bv) =

∥∥∥∥∥Γ1/2

([
h̃ H̃

] [ 1

āc

]
− B̃vbc

)∥∥∥∥∥
2

2

(4.24)

where h̃ denotes the M(Ñh
z + 1)-dimensional vector of stacked and (possibly) zero-

padded vectors of the true IRs, i.e.,

h̃ = [ h̃T1 h̃T2 . . . h̃TM ]T , (4.25)

h̃m = [ hTm 0T ]T , (4.26)

where

Ñh
z = max{Nh

z , N
c
z +Nv

z }+N c
p , (4.27)

and 0 is a vector of zeros to achieve the desired length of the (Ñh
z + 1)-dimensional

vector h̃m. H̃ denotes theM(Ñh
z +1)×N c

p -dimensional matrix of stacked convolution
matrices of the zero-padded true IRs h̃m, i.e.,

H̃ = [ H̃T
1 H̃T

2 . . . H̃T
M

]T , (4.28)

H̃m =



0 . . . . . . 0

hm,0 0
. . .

...
...

. . . . . . 0

hm,Ncp−1
. . . . . . hm,0

...
. . . . . .

...

hm,Nhz
. . . . . .

...

0 hm,Nhz
. . .

...
...

. . . . . . hm,Nhz
...

. . . . . .
...

0 . . . . . . 0



. (4.29)

Note that for the construction of H̃m in (4.29) the IRs h̃m are delayed by one sample
due to Ac(q) being a monic polynomial. Similarly, B̃v in (4.24) denotes theM(Ñh

z +
1) × (N c

z + 1)-dimensional matrix of the stacked (Ñh
z + 1) × (N c

z + 1)-dimensional
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convolution matrices B̃v
m of the (Ñh

z + 1)-dimensional zero-padded variable zero
coefficient vectors b̃vm, i.e.,

B̃v = [ (B̃v
1)T (B̃v

2)T . . . (B̃v
M )T ]T , (4.30)

B̃v
m =



bvm,0 . . . 0
...

. . .
...

bvm,Ncz+1

. . . bvm,0
... . . .

...

bvm,Nvz
. . .

...

0
. . .

...
...

. . . bvm,Nvz
...

. . .
...

0 . . . 0



, (4.31)

b̃vm = [ (bvm)T 0T ]T . (4.32)

The matrix Γ in (4.24) contains the weighting factors γm, i.e.,

Γ =


γ1I 0 0

0
. . . 0

0 0 γMI

 , (4.33)

where I denotes the (Ñh
z + 1)× (Ñh

z + 1)-dimensional identity matrix.

It should be noted that the cost function JEE in (4.24) is non-linear in bv and bc.
To minimize (4.24), an ALS optimization procedure can be applied. The objective
of the ALS procedure is to separate the non-linear least-squares cost function (4.24)
into two linear least-squares cost functions, which are minimized alternatingly until
convergence is achieved. This is advantageous since closed-form solutions for the
linear least-squares cost functions exist. At each iteration i the aim of the ALS
optimization procedure is to minimize the following linear least-squares cost func-
tions for the variable part coefficient vector bvi and for the common part coefficient
vectors aci and bci{

JvEE(bvi ) = ‖Γ1/2evi ‖22
JcEE(āci ,b

c
i ) = ‖Γ1/2eci‖22

(4.34a)

(4.34b)
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with

evi =


ev1,i
...

evM,i

 = h̃ + H̃āci−1 − B̌c
i−1b

v
i , (4.35)

eci =


ec1,i
...

ecM,i

 = h̃ + H̃āci − B̃v
i b

c
i , (4.36)

where B̃v
i denotes the matrix B̃v defined in (4.30) at iteration i. Furthermore, B̌c

i−1

in (4.35) denotes theM(Ñh
z +1)×M(Nv

z +1)-dimensional block-diagonal matrix of
convolution matrices B̃c

i−1 of the zero-padded (Ñh
z + 1)-dimensional common zero

coefficient vector b̃ci−1, i.e.,

B̌c
i−1 =


B̃c
i−1

. . .

B̃c
i−1

 , (4.37)

b̃ci−1 = [ (bci−1)T 0T ]T , (4.38)

and the (Ñh
z + 1) × (Nv

z + 1)-dimensional convolution matrix B̃c
i−1 is constructed

similar to B̃v
m in (4.31), i.e.,

B̃c
i−1 =



bci−1,0 . . . 0
...

. . .
...

bci−1,Nvz−1

. . . bci−1,0

... . . .
...

bci−1,Ncz

. . .
...

0
. . .

...
...

. . . bci−1,Ncz
...

. . .
...

0 . . . 0



. (4.39)

The closed-form solutions minimizing the cost functions in (4.34) are given as
bvi = ((B̌c

i−1)TΓB̌c
i−1)−1(ΓB̌c

i−1)T (h̃ + H̃āci−1),[
āci
bci

]
=
(
DT
i ΓDi

)−1
(ΓDi)

T h̃,

(4.40a)

(4.40b)
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where

Di = [ −H̃ B̃v
i

]. (4.41)

Note that, similarly as for SISO system, for the considered approximate SIMO
system minimization of (4.34) guarantees the stability of the estimated pole-zero
filter as we show in Appendix A.2. Due to the convolution of the common zero
filter bci and the variable zero filter bvm,i, both filters can be identified only up
to a constant scaling factor. To achieve a unique solution and to avoid numerical
problems, prior to each iteration the common zero filter coefficient vector bci is scaled
to unit-norm. An overview of the ALS equation-error-based optimization procedure
of the common pole-zero filter is given in Algorithm 3.

Algorithm 3: Optimization procedure to minimize the equation-error (4.24)
1: input N c

p , N c
z , Nv

z , and hmm = 1, . . . ,M
2: initialize āc0,b

c
0, i = 1

3: repeat
4: Normalize the common zero coefficient vector to resolve scaling ambiguity
5: bci−1 ← bci−1/‖bci−1‖2
6: Estimate the variable zero coefficient vector
7: bvi ← arg minJvEE(bvi ) cf. (4.34a), (4.40a)
8: Estimate the common pole-zero coefficient vectors
9: āci ,b

c
i ← arg minJcEE(āci ,b

c
i ) cf. (4.34b), (4.40b)

10: until convergence

Note that for the special case N c
z = 0, i.e., a common all-pole filter, a closed-form

solution to (4.24) exists [91]. The cost function in (4.24) then simplifies to the CAPZ
cost function

JCAPZ(āc,bv) = ‖Γ1/2(h̃ + H̃āc − bv)‖22, (4.42)

with closed-form solution[
āc

bv

]
= (CTΓC)−1(ΓC)T h̃, (4.43)

C = [ −H̃ I ], (4.44)

where I is the M(Ñh
z + 1)×M(Nv

z + 1)-dimensional block-diagonal matrix of (Ñh
z +

1)× (Nv
z + 1)-dimensional identity matrices. Note that when minimizing JCAPZ in

(4.42) using the ALS optimization procedure described before, the ALS optimization
procedure converges to the solution in (4.43).

4.3.2 Weighted Equation-Error based Optimization

As mentioned before, to circumvent the problem of poor estimation accuracy in the
vicinity of spectral peaks, the objective of the weighted equation-error cost function
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in (4.22) is to incorporate the Steiglitz-McBride iteration [203], hence approximating
the output-error minimization. This is accomplished by filtering the equation-error
at iteration i for each of theM IRs with the estimated common all-pole filter 1

Aci−1(q)

from the previous iteration. The cost function in (4.22) can be reformulated in the
time-domain as

JWEE(āci ,b
c
i ,b

v
i ) =

M∑
m=1

∥∥∥∥ 1

Aci−1(q)
Γ1/2
m (h̃m + H̃māci − B̃v

m,ib
c
i )

∥∥∥∥2

2

(4.45)

with the weighting matrix Γm = γmI. Since the cost function JWEE is non-linear
in the coefficient vectors bci and bvi , similarly as for the equation-error cost function
in (4.24), minimizing this non-linear cost function can be performed by using an
ALS optimization procedure. Hence, similarly as in (4.34), at each iteration i the
following two linear least-squares cost functions are minimized{

JvWEE(bvi ) = ‖Γ1/2evf,i‖22
JcWEE(āci ,b

c
i ) = ‖Γ1/2ecf,i‖22

(4.46a)

(4.46b)

with

evf,i =


evf,1,i
...

evf,M,i

 = h̃f,i + H̃f,iā
c
i−1 − B̌c

f,i−1b
v
i , (4.47)

ecf,i =


ecf,1,i
...

ecf,M,i

 = h̃f,i + H̃f,iā
c
i − B̃v

f,ib
c
i , (4.48)

where the subscript f indicates filtered quantities with the all-pole filter 1
Aci−1(q) .

The vector h̃f,i and the matrices H̃f,i, B̃v
f,i and B̌c

f,i−1 are constructed similarly
as their non-filtered counterparts h̃, H̃, B̃v and B̌c

i−1 in (4.25), (4.28), (4.30), and
(4.37), respectively, using the filtered vectors h̃f,m,i, b̃vf,m,i and b̃cf,i−1, where

h̃f,m,i =
1

Aci−1(q)
h̃m, (4.49)

b̃vf,m,i =
1

Aci−1(q)
b̃vm,i. (4.50)

b̃cf,i−1 =
1

Aci−1(q)
b̃ci−1, (4.51)

This filtering operation can be written, e.g., for (4.49), as

h̃f,m,i,κ = h̃m,κ −
Ncp∑
j=1

aci−1,j h̃f,m,i,κ−j , (4.52)
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for κ = 0, . . . , Ñh
z and h̃f,m,i,κ = 0 for κ < 0. The linear least-squares problems in

(4.46) then have similar closed-form solutions as in (4.40) but based on the filtered
quantities, i.e., they are given as

bvi = ((B̌c
f,i−1)TΓB̌c

f,i−1)−1(ΓB̌c
f,i−1)T (h̃f,i + H̃f,iā

c
i−1),[

āci
bci

]
=
(
(Df,i)

TΓDf,i

)−1
(ΓDf,i)

T h̃f,i,

(4.53a)

(4.53b)

where

Df,i = [ −H̃f,i B̃v
f,i

]. (4.54)

Similarly to the minimization of the equation-error cost function in (4.34), the
filter coefficient vectors bvi and bci can be identified only up to a constant scalar.
Therefore, prior to each iteration the common zero filter coefficient vector bci is
scaled to unit-norm.

Note that, in general, the common pole-zero filter estimated using the presented
Steiglitz-McBride procedure in (4.46b) is unfortunately not guaranteed to be sta-
ble, such that the location of the poles needs to be constrained. The stability of
a causal system is guaranteed when its poles, i.e., the roots of Aci (q), are located
strictly inside the unit circle. In the following subsections two different constraints
are proposed to guarantee stability, leading to different optimization problems. In
Section 4.3.2.1 a sufficient but not necessary constraint based on the positive real-
ness of the frequency response of the all-pole filter [210] is considered, leading to a
quadratic programming (QP) problem. In Section 4.3.2.2 a sufficient and necessary
linear matrix inequality (LMI) constraint based on Lyapunov theory [211] is consid-
ered. To allow for the incorporation of LMI constraints, the optimization problem
in (4.46b) is reformulated as a semidefinite programming (SDP) problem in Section
4.3.2.3.

4.3.2.1 Frequency-Domain Stability Constraint

In [210] it was shown that a sufficient (but not necessary) condition for the stability
of 1

Aci (q)
is that the real part of the frequency response Aci (ω) is strictly positive for

all normalized continuous frequencies ω, i.e.,

Re{Aci (ω)} > 0 ∀ω, (4.55)

where Re{·} denotes the real part. To control the stability margin, a small positive
constant δ is typically introduced, i.e.,

Re{Aci (ω)} ≥ δ ∀ω. (4.56)
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Since (4.56) requires the evaluation of Aci (ω) over a continuous frequency range and
is hence not realizable in practice, (4.56) is evaluated over a dense grid of Q discrete
frequency points, i.e.,

Re



Aci (ω0)

...
Aci (ωQ−1)


 ≥ δ1, (4.57)

where 1 is a Q-dimensional vector of ones. This can be equivalently written as

−
Ncp∑
j=1

acj cos(jωn) ≤ 1− δ ∀ωn. (4.58)

Minimizing (4.46b) subject to the stability constraint in (4.58) corresponds to a QP
problem, i.e.,

min
āci ,b

c
i

(ecf,i)
TΓecf,i

subject to −
Ncp∑
j=1

acj cos(jωn) ≤ 1− δ ∀ωn,

(4.59a)

(4.59b)

The QP in (4.59) can be efficiently solved using interior-point methods [213], e.g.,
implemented in the convex optimization toolbox CVX [214, 215].

4.3.2.2 Lyapunov Theory based Stability Constraint

Since the constraint in (4.57) provides a sufficient but not necessary condition for
the stability of the common pole-zero filter, it may restrict the solution space (cf.
Simulation results in Section 4.5.4.2). Furthermore, (4.57) requires the computation
of the frequency response Aci (ωn) using a dense grid of Q frequencies, requiring
a careful choice of Q. In the following we propose to use a constraint based on
Lyapunov theory [83, 211, 212] that provides a necessary and sufficient condition
for the stability of the common pole-zero filter and does not require the computation
of the frequency response.

Requiring the roots of Aci (q) to be located strictly inside the unit circle is equivalent
to requiring the absolute value of all eigenvalues of the canonical matrix

Ac
i =


−aci,1 −aci,2 . . . −aci,Ncp

1 0
. . .

...
1 0

 (4.60)
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to be strictly smaller than 1. From Lyapunov theory [83] it is known that the
canonical matrix Ac

i corresponds to a stable IIR filter, if and only if there exists a
positive definite matrix Pi, such that

Pi − (Ac
i )
TPiA

c
i � 0, (4.61)

where � 0 denotes positive definiteness. Although (4.61) is a necessary condition for
stability, it is important to realize that it cannot be implemented directly as an LMI
constraint since it requires the joint estimation of Pi and Ac

i . Therefore, at each
iteration i the positive definite matrix P̃i is first computed by solving the Lyapunov
equation using the matrix Ac

i−1 from the previous iteration [216], i.e.,

P̃i − (Ac
i−1)T P̃iA

c
i−1 = I subject to P̃i � 0. (4.62)

Using P̃i computed from (4.62), the constraint in (4.61) is then reformulated
as

P̃i − (Ac
i )
T P̃iA

c
i � 0, (4.63)

Note that since Ac
i now appears affinely in (4.63), it can be formulated as an LMI

by recognizing the Schur complement [213] in (4.63), i.e.,

Γstabi =

[
P̃i − τI (Ac

i )
T

Ac
i P̃−1

i − τI

]
� 0 (4.64)

where τ is a small positive constant to control the stability margin and � 0 denotes
positive semi-definiteness. Note that the constraint in (4.64) is no longer a necessary
but a sufficient condition for stability since P̃i has been computed from the previous
Ac
i−1. Nevertheless, it has been noted in [216] for the design of SISO pole-zero filters

that the constraint will become less strict as the iterative procedure converges, i.e.,
limi→∞(Ac

i −Ac
i−1) = 0.

4.3.2.3 Semi-Definite Programming Formulation of (4.46b)

To be able to use the constraint in (4.64) in the Steiglitz-McBride procedure, the
minimization of the cost function JcWEE in (4.46b) is also reformulated as an LMI,
which can then be solved using SDP [213]. To this end the auxiliary variable t is
introduced which provides an upper bound for the cost, i.e., the cost function in
(4.46b) can be reformulated as

min
t,āci ,b

c
i

t (4.65a)

subject to (ecf,i)
TΓecf,i ≤ t (4.65b)
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Rewriting (4.65b) as t − (ecf,i)
TΓecf,i ≥ 0 and recognizing the Schur complement,

minimizing (4.65) subject to the constraint (4.64) can be written as an SDP problem,
i.e.,

min
t,āci ,b

c
i

t

subject to

[
t (Γ1/2ecf,i)

T

Γ1/2ecf,i I

]
� 0,

Γstabi � 0,

(4.66a)

(4.66b)

(4.66c)

where I is the M(Ñh
z + 1) ×M(Ñh

z + 1)-dimensional identity matrix. The SDP
problem in (4.66) can be efficiently solved using interior-point methods [213], e.g.,
implemented in the convex optimization toolbox CVX [214, 215]. An overview of
the proposed weighted equation-error based optimization procedure of the common
pole-zero filter optimizing either the QP problem in (4.59) or the SDP problem in
(4.66) is given in Algorithm 4.

Algorithm 4: Optimization procedures to minimize the weighted equation-error
(4.45)
1: input N c

p , N c
z , Nv

z , and hm, m = 1, . . . ,M
2: initialize āc0,b

c
0, i = 1

3: repeat
4: Normalize the common zero coefficient vector to resolve scaling ambiguity
5: bci−1 ← bci−1/‖bci−1‖2
6: Filter the IRs and the common zero coefficient vector
7: h̃f,m,i ← 1

Aci−1(q) h̃m, m = 1, . . . ,M cf. (4.49)

8: b̃cf,i−1 ← 1
Aci−1(q) b̃

c
i−1 cf. (4.51)

9: Estimate the variable zero coefficient vector
10: bvi ← arg minJvWEE(bvi ), cf. (4.46a), (4.53a)
11: Filter the variable zero coefficient vector
12: b̃vf,m,i = (Aci−1(q))−1b̃vm,i, m = 1, . . . ,M , cf. (4.32)
13: if QP
14: Estimate the common pole-zero coefficient vectors
15: āci ,b

c
i ← solve the QP problem in (4.59)

16: else if SDP
17: Solve the Lyapunov equation
18: P̃i ← solve P̃i − (Ac

i−1)T P̃iA
c
i−1 = I s.t. P̃i � 0, cf. (4.62)

19: Estimate the common pole-zero coefficient vectors
20: āci ,b

c
i ← solve the SDP problem in (4.66) s.t. Γstabi in (4.64)

21: end
22: until convergence
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4.4 Min-max Optimization

In Section 4.3 different least-squares optimization procedures minimizing the aver-
age normalized misalignment in (4.14) have been proposed to estimate the coeffi-
cients vectors āc, bc, bv of the common and variable parts. While this leads to a good
performance in terms of the average normalized misalignment, the performance in
terms of the MSG may not be the best. Therefore, in this section we propose to
estimate the coefficient vectors āc, bc, bv of the common and variable parts in order
to maximize the overall MSG in (4.16). Maximizing M̄ in (4.16) corresponds to min-
imizing the worst-case maximum absolute difference of all M frequency responses
(cf. the definition of the MSG in (4.15)) of the true and estimated ATFs. Thus,
maximizing M̄ for the considered approximate SIMO system can be formulated as
a min-max optimization problem, where we aim to minimize

JMM (āc,bc,bv) = max
ωn

1≤m≤M

∣∣EOEm (ωn)
∣∣2 (4.67)

with the output-error EOEm (ωn) defined in (4.12). Similarly as for the least-squares
cost function in (4.17), the minimization of the output-error in (4.67) is not straight
forward. Therefore, to ease the optimization we again consider the formulation
of the output-error in (4.21). Similarly as for the least-squares optimization, this
formulation suggests an iterative min-max optimization procedure to approximate
(4.67), where at iteration i we aim to minimize

JWM (āci ,b
c
i ,b

v
i ) = max

ωn
1≤m≤M

1

|Aci−1(ωn)|2
|EEEm,i (ωn)|2 (4.68)

where the equation-error EEEm,i (ωn) is weighted by the inverse frequency-response
of Aci−1(ωn) from the previous iteration. Note that a similar optimization proce-
dure has been suggested in [216] in the context of SISO digital filter design and is
extended here for the considered approximate SIMO system. Similarly as for the
least-squares optimization procedure, at convergence ideally Aci (ωn) ≈ Aci−1(ωn)
and hence Aci−1(ωn)EEEm,i (ωn) ≈ EOEm (ωn) approximating the desired output-error
minimization.

Similarly as for the least-squares cost function in (4.22), the min-max cost function
in (4.68) can be split into two separate convex subproblems. In order to minimize
(4.68), we thus employ a two-step alternating optimization procedure similar to the
ALS optimization procedure Section 4.3. In the alternating min-max optimization
at each iteration i, the following two linear min-max cost functions are minimized


JWM (bvi ) = max

ωn
1≤m≤M

1

|Aci−1(ωn)|2
|Evm,i(ωn)|2

JWM (āci ,b
c
i ) = max

ωn
1≤m≤M

1

|Aci−1(ωn)|2
|Ecm,i(ωn)|2

(4.69a)

(4.69b)
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with

Evm,i(ωn) = Aci−1(ωn)Hm(ωn)−Bci−1(ωn)Bvm,i(ωn), (4.70)

Ecm,i(ωn) = Aci (ωn)Hm(ωn)−Bci (ωn)Bvm,i(ωn), (4.71)

denoting the frequency-domain representation of the prefilted time-domain equation-
error in (4.35) and (4.36), respectively. Note that similarly as for the least-squares
optimization procedure of the weighted equation-error in Section 4.3.2, the stability
of the common pole-zero filter estimated by minimizing (4.69b) is not guaranteed.
Hence, the location of the poles, i.e., the roots of Aci (q), needs to be constrained.
In the following two subsections we will use the constraints based on the positive
realness and the constraint based on Lyapunov theory to guarantee the stability of
the common pole-zero filter, leading to different optimization problems. In Section
4.4.1 the constraint based positive realness of the frequency response of the all-pole
filter [210] presented in Section 4.3.2.1 is considered, leading to a linear programming
(LP) problem. In Section 4.4.2 the sufficient and necessary linear matrix inequality
(LMI) constraint based on Lyapunov theory [211] presented in Section 4.3.2.3 is
considered, leading to a semidefinite programming (SDP) problem.

4.4.1 Linear Programming Formulation

In order to approximate the optimization of the min-max cost function in (4.69a),
we use the real rotation theorem [217]. By projecting the complex-valued prefilted
error Ecm,i onto a rotating complex pointer, the real rotation theorem [217] allows to
approximate the optimization problem with arbitrarily small error (cf. Appendix C
for a brief introduction and geometrical interpretation of the real rotation theorem
[217]). Using a finite number ofNφ rotation angles φl, l = 1, . . . , Nφ and the auxiliary
variable t which provides an upper bound for the employed cost function, the min-
max optimization problem can be formulated as the following LP problem [213]

min
t,bvi

t

s.t. t ≥ 0

pvf,m,i(ωn) cosφl + qvf,m,i(ωn) sinφl ≤ t ∀ωn, φl,m

(4.72a)

(4.72b)
(4.72c)

where pvf,m,i(ωn) and qvf,m,i(ωn) denote the real and imaginary parts of the pre-
filtered equation-error Evm,i(ωn), i.e.,

pvf,m,i(ωn) = Re

{
Evm,i(ωn)

Aci−1(ωn)

}
, (4.73)

qvf,m,i(ωn) = Im

{
Evm,i(ωn)

Aci−1(ωn)

}
. (4.74)
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They can be computed as

pvf,m,i(ωn) = cT (ωn)evf,m,i, (4.75a)

qvf,m,i(ωn) = sT (ωn)evf,m,i, (4.75b)

with

c(ωn) = [ 1 cosωn . . . cos(Ñh
z +N c

p)ωn ]T , (4.76)

s(ωn) = [ 0 sinωn . . . sin(Ñh
z +N c

p)ωn ]T , (4.77)

and evf,m,i defined in (4.47).

Similarly, the min-max optimization of the cost function in (4.69b) subject to the
additional constraint in (4.58) can be formulated as an LP problem using the real-
rotation theorem [217], i.e.,

min
t,āci ,b

c
i

t

s.t. t ≥ 0

pcf,m,i(ωn) cosφl + qcf,m,i(ωn) sinφl ≤ t ∀ωn, φl

−
Ncp∑
j=1

acj cos(jωn) ≤ 1− δ ∀ωn

(4.78a)

(4.78b)
(4.78c)

(4.78d)

where pcf,m,i(ωn) and qcf,m,i(ωn) are the real and imaginary part of the prefiltered
equation error Ecm,i(ωn), respectively, i.e.,

pcf,m,i(ωn) = Re

{
Ecm,i(ωn)

Aci−1(ωn)

}
, (4.79)

qcf,m,i(ωn) = Im

{
Ecm,i(ωn)

Aci−1(ωn)

}
. (4.80)

Similarly as in (4.75), they can be computed as

pcf,m,i(ωn) = cT (ωn)ecf,m,i, (4.81a)

qcf,m,i(ωn) = sT (ωn)ecf,m,i, (4.81b)

with ecf,m,i defined in (4.48).

The LP problems in (4.72) and (4.78) are solved alternatingly until some conver-
gence criterion is achieved or a maximum number of iterations is exceeded. Both
LP problems can be efficiently solved using interior-point methods [213], e.g., im-
plemented in the convex optimization toolbox CVX [214, 215].

4.4.2 Semi-Definite Programming Formulation

While the LP formulation in Section 4.4.1 allows for an arbitrarily good approxima-
tion of the min-max optimization problem in (4.69), the constraint of the positive
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realness of the all-pole frequency response may be too restrictive to the solution
space (cf. Simulations in Section 4.5.4.2). Therefore, similarly as for the least-squares
optimization in Section 4.3.2.3, we can also formulate the min-max optimization
problem as an SDP problem. This not only allows to use the constraint based on
Lyapunov theory in (4.64) but also allows to exactly solve the min-max optimiza-
tion problems in (4.69a) and (4.69b). Using the auxiliary variable t, which provides
an upper bound for the employed cost function, the minimization of (4.69a) can be
reformulated as the following SDP problem for all considered frequencies ωn and
IRs m (see Appendix A.3 for a detailed derivation)

min
t,bvi

t

subject to

 t pvf,m,i(ωn) qvf,m,i(ωn)

pvf,m,i(ωn) 1 0

qvf,m,i(ωn) 0 1

 � 0

(4.82a)

(4.82b)

where pvf,m,i(ωn) and qvf,m,i(ωn) are defined in (4.75a) and (4.75b), respec-
tively.

Similarly as for the cost function in (4.69a), the minimization of (4.69b) can be
reformulated as an SDP problem. However, in this case the stability constraint in
(4.64) needs to be added to guarantee stability of the estimated common poles,
leading to the following SDP problem for all considered frequencies ωn and IRs m

min
t,āci ,b

c
i

t

subject to

 t pcf,m,i(ωn) qcf,m,i(ωn)

pcf,m,i(ωn) 1 0

qcf,m,i(ωn) 0 1

 � 0

Γstabi � 0

(4.83a)

(4.83b)

(4.83c)

where pcf,m,i(ωn) and qcf,m,i(ωn) are defined in (4.81a) and (4.81b), respectively.
The SDP problems in (4.82) and (4.83) can be efficiently solved using interior-
point methods [213], e.g., implemented in the convex optimization toolbox CVX
[214, 215].

An overview of the proposed min-max optimization procedures to estimate the
common pole-zero filter using the LP or the SDP formulation is given in Algorithm
5.

4.5 Experimental Evaluation

In this section the different proposed optimization procedures to estimate the com-
mon pole-zero filter minimizing the average normalized misalignment presented in
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Algorithm 5: Optimization procedures to solve the optimization problem in (4.68).
1: input N c

p , N c
z , Nv

z , and hm m = 1, . . . ,M
2: initialize āc0,b

c
0, i = 1

3: repeat
4: Normalize the common zero coefficient vector to resolve scaling ambiguity
5: bci−1 ← bci−1/‖bci−1‖2
6: Filter the IRs and the common zero coefficient vector
7: h̃f,m,i ← 1

Aci−1(q) h̃m, m = 1, . . . ,M cf. (4.49)

8: b̃cf,i−1 ← 1
Aci−1(q) b̃

c
i−1 cf. (4.51)

9: Estimate the variable zero coefficient vector
10: if LP
11: bvi ← solve the LP in (4.72)
12: else if SDP
13: bvi ← solve the SDP problem in (4.82)
14: end
15: Estimate common pole-zero coefficient vectors
16: if LP
17: āci ,b

c
i ← solve the LP problem in (4.78)

18: else if SDP
19: Solve the Lyapunov equation
20: P̃i ← solve P̃i − (Ac

i−1)T P̃iA
c
i−1 = I s.t. P̃i � 0, cf. (4.62)

21: Estimate the common pole-zero coefficient vectors
22: āci ,b

c
i ← solve the SDP problem in (4.83) with Γstabi in (4.64)

23: end
24: until convergence
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Section 4.3 and maximizing the MSG in Section 4.4 are experimentally evaluated
using measured acoustic feedback paths. In Section 4.5.1 the used acoustic setup,
the considered performance measures as well as the algorithmic parameters are in-
troduced. In Section 4.5.2 we first show that using the proposed common pole-zero
filter an improved performance in terms of the average normalized misalignment can
be obtained compared to using a common all-zero filter and common all-pole filter.
In Section 4.5.3 we investigate the effect of the initialization of the common pole-
zero filter. In Section 4.5.4 the performance of the least-squares optimization pro-
cedures presented in Section 4.3 is compared and in Section 4.5.5 the performance
of the min-max optimization procedures presented in Section 4.4 is compared. The
results for both the least-squares and the min-max optimization procedures indi-
cate that minimizing the weighted equation-error using the Lyapunov theory based
stability constraint lead to the best performance in terms of the average normal-
ized misalignment and the overall MSG. Therefore, in Section 4.5.6 we compare
the performance of the SDP formulations using the Lyapunov stability constraint
of the least-squares and the min-max optimization procedures. In Section 4.6 the
proposed common part decomposition using both SDP formulations is applied in
a state-of-the-art AFC algorithm showing that an improved convergence speed can
be achieved while maintaining a good steady-state performance compared to not
using the proposed decomposition.

4.5.1 Acoustic Setup, Performance Measures and Algorithmic Parameters

Several acoustic feedback paths were measured using a two-microphone behind-
the-ear hearing aid with open-fitting earmolds (cf. Appendix B). To account for
differences in the acoustic feedback paths, e.g., due to different ear canal geometries,
a dummy head with adjustable ear canals was used [218]. In total M = 12 acoustic
feedback paths were used for the experimental evaluations (cf. Table 4.1), i.e., using
two microphones for three different acoustic scenarios for two different ear canal
geometries, hence encompassing both variability across acoustics and subjects. The
first set of eight IRs, m = 1, 2, . . . , 8, was measured using an ear canal diameter of
d1 = 6mm and a length of l1 = 15mm. The second set of four IRs, m = 9, 10, 11, 12,
was measured using d2 = 7mm, l2 = 20mm. The IRs m = 1, 2, 7, 8, 9, 10 were
measured in free-field, i.e., no obstruction was in close distance to the dummy head,
while IRs m = 3, 4, 11, 12 were measured with a telephone receiver positioned in
close distance to the dummy heads ear and IRs m = 5, 6 were measured with
the telephone receiver positioned at a distance of approximately 23 cm. All IRs
were sampled using a sampling frequency of fs = 16000Hz and truncated to order
Nh
z = 99.

Figures 4.2 and 4.3 depict the amplitude and phase responses of the IRs for the first
ear canal setting (d1 = 6mm, l1 = 15mm), while Figure 4.4 depicts the amplitude
and phase responses for the second ear canal setting (d2 = 7mm, l2 = 20mm). At
first sight, all IRs for the same ear canal setting seem to share a great similarity
which could potentially be exploited by means of a common pole-zero filter. Note,
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Table 4.1: Overview of the acoustic feedback paths used in the experimental evaluation

m d l acoustic scenario microphone

1 6mm 15mm free-field front
2 6mm 15mm free-field back
3 6mm 15mm telephone near front
4 6mm 15mm telephone near back
5 6mm 15mm telephone far front
6 6mm 15mm telephone far back
7 6mm 15mm free-field repetition front
8 6mm 15mm free-field repetition back

9 7mm 20mm free-field front
10 7mm 20mm free-field back
11 7mm 20mm telephone near front
12 7mm 20mm telephone near back

however, that the difference between the IRs measured in free-field and with a
telephone receiver in close distance is largest.

As performance measures, we use the average normalized misalignment ξ̄ as defined
in (4.14) to assess the modeling accuracy, and the overall MSG as defined in (4.16)
to assess the feedback cancellation performance. If not mentioned otherwise, the
performance was evaluated for the following set of parameters of the common part
and the variable parts: N c

p , N c
z ∈ {0, 4, . . . , 24} and Nv

z ∈ {12, 24, 36, 48}. For con-
ciseness we will denote the number of common part parameters as N c = N c

p+N c
z . In

order to control the stability margin of the stability constraints, for all experiments
we used δ = 10−4 for the positive realness constraint in (4.58) and τ = 10−6 for the
Lyapunov theory based constraint in (4.61). To evaluate the frequency responses,
for the positive realness constraint we used a DFT-size of Q = 2048 and for the min-
max optimization we use a DFT-size of NFFT = 2048. For the LP-based min-max
optimization we use Nφ = 16 rotation angles to approximate the absolute value,
limiting the approximation error to 0.17 dB [217].

Similarly to the convergence criterion in [216], we assume convergence of the ALS
optimization procedures when the sum of the normalized norm of the difference
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Figure 4.2: Amplitude response (top) and phase response (bottom) of IRs m = 1, 2, 3, 4
for the first ear canal setting (diameter d1 = 6mm and length l1 = 15mm).
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Figure 4.3: Amplitude response (top) and phase response (bottom) of IRs m = 5, 6, 7, 8
for the first ear canal setting (diameter d1 = 6mm and length l1 = 15mm).
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Figure 4.4: Amplitude response (top) and phase response (bottom) of IRs m = 9, 10, 11, 12
for the second ear canal setting (diameter d1 = 7mm and length l1 = 20mm).

between successive common part coefficients vectors and successive variable part
coefficient vectors is smaller than a given threshold ε, i.e.,∥∥∥∥∥

[
āci−1

bci−1

]
−

[
āci
bci

]∥∥∥∥∥
2∥∥∥∥∥

[
āci−1

bci−1

]∥∥∥∥∥
2

+
‖bvi − bvi−1‖2
‖bvi−1‖2

< ε, (4.84)

where in this study ε = 10−4 was chosen. Since in the min-max optimization the
overall MSG is determined only by a single microphone measurement, for the alter-
nating min-max optimization procedures we assume convergence when the normal-
ized norm of the difference between successive common part coefficients vectors is
smaller than a given threshold ε, i.e.,∥∥∥∥∥

[
āci−1

bci−1

]
−

[
āci
bci

]∥∥∥∥∥
2∥∥∥∥∥

[
āci−1

bci−1

]∥∥∥∥∥
2

< ε, (4.85)

where again ε = 10−4 was chosen.
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4.5.2 Comparison of Common Filters

In this section we compare the performance of the common all-zero, common all-
pole and the proposed common pole-zero filter in terms of the average normalized
misalignment. In order to allow for a fair comparison with existing optimization
procedures of the common all-zero filter [90] and the common all-pole filter [91],
we only consider the equation-error based least-squares optimization procedure (Al-

gorithm 3). For all common filters we used the initialization bc0 =
[
1 0 . . . 0

]T
,

āc0 =
[
0 . . . 0

]T
. The common part was optimized using the set of acoustic

feedback paths m = 1, 2 and the performance was evaluated using the same set of
acoustic feedback paths. We used a large set of parameters of N c

p , N
c
z ∈ {0, 1, . . . 30},

Nv
z ∈ {0, 2, . . . , 50}. Note that the common all-zero filter and the common all-pole

filter are special cases of the common pole-zero filter with N c
p = 0 and N c

z = 0,
respectively.

Figure 4.5 shows the average normalized misalignment that is obtained for different
choices of Nv

z and N c = N c
p + N c

z . Note that, for most N c different combinations
of N c

p and N c
z are possible, i.e., for N c = 2 three different combinations of pa-

rameters are possible: N c
p = 2, N c

z = 0 corresponding to a common all-pole filter,
N c
p = 0, N c

z = 2 corresponding to a common all-zero filter and N c
p = 1, N c

z = 1
corresponding to the proposed common pole-zero filter. For each N c only the com-
bination leading to the lowest average normalized misalignment is shown. In general,
it can be observed that by increasing the number of parameters N c of the common
part and by increasing the number of parameters Nv

z of the variable part the aver-
age normalized misalignment is decreased. However, increasing N c does not always
lead to a lower average normalized misalignment, especially for low Nv

z .

To quantify the influence of using a pole-zero filter, in the following two cross sections
of Figure 4.5 are considered. First, in order to investigate the influence of Nv

z on
the modeling accuracy, a cross section for a fixed N c is shown. Second, in order to
investigate the influence of N c on the number of parameters of the variable part
needed to model the complete acoustic feedback path with a desired accuracy, a
cross section for a fixed average normalized misalignment is shown.

Figure 4.6 depicts the average normalized misalignment as a function of Nv
z for a

given number of parameters N c = 20 of the common part. Different symbols indi-
cate three different assumptions for the common part filter, i.e., an all-zero filter
(N c

p = 0, N c
z = 20), an all-pole filter (N c

p = 20, N c
z = 0), and a pole-zero filter (only

the combination of N c
p and N c

z leading to the lowest average normalized misalign-
ment is shown). When increasing the number of variable part parameters Nv

z , all
three common part filters show an expected reduction in the average normalized
misalignment . Note that by choosing those combinations of N c

p and N c
z for the

common part that lead to the lowest average normalized misalignment it is obvious
that the pole-zero filter will always show lower (or equal) average normalized mis-
alignment compared to either the all-zero or the all-pole filter. For large values of
Nv
z (> 20) the results for the pole-zero filter and the all-pole filter coincide, while
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Figure 4.5: Average normalized misalignment as a function of Nv
z and Nc = Nc

p + Nc
z

for the set of IRs m = 1, 2 when the common part is optimized using the
least-squares procedures minimizing the equation-error (cf. Algorithm 3).
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Figure 4.6: Average normalized misalignment as a function of Nv
z given a fixed Nc = 20.

for smaller values of Nv the pole-zero filter clearly shows the best performance.
While for small Nv

z the performance of the common all-zero filter is better than the
common all-pole filter but worse than the common pole-zero filter, for larger Nv

z

the common all-zero filter performs slightly worse than the common all-pole and
common pole-zero filter. These results indicate that when maintaining a fixed num-
ber of parameters for modeling the common part an increase in modeling accuracy
compared to the common all-zero and common all-pole filter can be achieved when
a common pole-zero filter is used, especially for lower values of Nv

z .

Figure 4.7 depicts the influence of the number of parameters N c of the common
part on the number of parameters Nv

z of the variable part required to model the
complete acoustic feedback path for a predefined average normalized misalignment
ξ̄ = −20 dB. As expected from the results in Figure 4.5, an increase in N c leads
to a reduction in the required number of parameters Nv

z . For small values of N c

the common pole-zero filter and the common all-pole filter perform equally well,
suggesting that using only poles might be sufficient to model the general structure
of the common part. For N c > 4 the common pole-zero filter is able to reduce
the number of parameters Nv

z to a larger extend than the common all-pole filter
which seems to saturate for N c > 16. This shows that an additional parameter
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Figure 4.7: Minimum number of parameters Nv
z as a function of Nc required to achieve

an average normalized misalignment of ξ̄ = −20dB.

reduction can be achieved by using a pole-zero filter that makes use of additional
zeros to model common part in more detail with a medium number of N c. When
further increasing N c, ultimately the common pole-zero filter and the common all-
zero filter coincide in their performance indicating that using a large number of
zeros is sufficient to model the common part. Thus, by using a pole-zero filter for
the common part, a reduction in Nv

z is possible while maintaining a given average
normalized misalignment compared to the common all-pole filter and the common
all-zero filter.

In summary, these results show 1) that for a fixed number of common part pa-
rameters N c using a common pole-zero filter leads to a lower average normalized
compared to the common all-zero filter and the common all-pole filter and 2) that
for a desired average normalized misalignment the common pole-zero filter leads to
the largest reduction in the number of variable part parameters compared to the
common all-zero filter and the common all-pole filter.

4.5.3 Effect of Common Pole-Zero Initialization

Since all presented optimization procedures to estimate the common pole-zero filter
aim at minimizing a non-linear cost function, they may converge to a local mini-
mum. Therefore, in general, a good initialization of the common pole-zero coefficient
vectors āc and bc (cf. Algorithms 3 - 5) is essential for all procedures. For all opti-
mization procedures we investigated the influence of different initializations on the
performance over a wide range of parameters.

The results show the following:

• For the least-squares optimization procedure minimizing the equation-error
(cf. Algorithm 3) the best results were obtained when initializing the poles
of the common pole-zero filter using the poles estimated from a common all-
pole filter and N c

z + Nv
z variable zeros and when initializing the zeros of the

common pole-zero filter using a delta pulse.
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• For the least-squares optimization procedures minimizing the weighted
equation-error (cf. Algorithm 4) the best results were obtained when initial-
izing the poles of the common pole-zero filter using the poles estimated from
the least-squares equation-error based optimization procedure (cf. Algorithm
3) and initializing the zeros of the common pole-zero filter using a delta pulse.

• For the min-max optimization procedures maximizing the MSG (cf. Algorithm
5) the best results were obtained when initializing the poles and zero of the
common pole-zero filter using the common pole-zero filter estimated from the
least-squares weighted equation-error based optimization procedure that used
the same stability constraint in Algorithm 4.

Exemplary results for all optimization procedures are depicted in Figure 4.8 for
different initializations when using the following parameters m = 1, 2, N c

p = 12,
N c
z = 4:

1. Init A: bc0 =
[
1 0 . . . 0

]
and āc0 =

[
0 . . . 0

]
.

2. Init B : bc0 =
[
1 0 . . . 0

]
and āc0 was computed by minimizing the CAPZ

cost function in (4.42) with N c
p poles and N c

z +Nv
z variable zeros.

3. Init C : bc0 =
[
1 0 . . . 0

]
and āc0 was obtained from the least-squares

optimization procedure minimizing the equation-error (cf. Algorithm 3) using
the same parameters N c

p , N c
z , and Nv

z .

4. Init D : bc0 and āc0 were obtained from the least-squares optimization proce-
dure minimizing the weighted equation-error (cf. Algorithm 4) using the same
stability constraint and using the same parameters N c

p , N c
z , and Nv

z .

As can be observed from Figure 4.8(a), for the least-squares optimization procedure
minimizing the equation-error Init B outperforms Init A, leading to a lower average
normalized misalignment. Furthermore, as can be observed from Figure 4.8(b), for
the least-squares optimization procedures minimizing the weighted equation-error
Init C outperforms Init A for most conditions in terms of a lower average normal-
ized misalignment. Finally, as can be observed from Figure 4.8(c), for the min-max
optimization procedures maximizing the MSG, Init D clearly outperforms Init A in
terms of the overall MSG.

4.5.4 Comparison of Least-Squares Optimization Procedures

In this section we compare the performance of the three different least-squares
optimization procedures presented in Section 4.3, i.e., the ALS optimization proce-
dure to minimize the equation-error (cf. Algorithm 3) and the two ALS optimiza-
tion procedures to minimize the weighted equation-error (cf. Algorithm 4). We first
present exemplary comparisons of the desired output-error and then compare the
performance of the optimization procedures in terms of the average normalized mis-
alignment and the overall MSG. Finally, we investigate the robustness to unknown
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Figure 4.8: Average normalized misalignment and overall MSG for different initializations
of the common pole-zero filter using the set of feedback paths m = 1, 2 (Nc

p =
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z = 4).
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acoustic feedback paths and the ability to reduce the number of variable parameters
when using a common pole-zero filter.

4.5.4.1 Exemplary Comparison of Output-Error

The proposed weighted equation-error based optimization procedure is motivated by
the observation from SISO filter design that the equation-error based optimization
procedure leads to poor estimation accuracy in the vicinity of spectral peaks [208]. It
is therefore expected that the weighted equation-error based optimization procedure
leads to an increased accuracy in the vicinity of these spectral peaks. To demon-
strate this, Figure 4.9 shows the amplitude response of the first IR H1(f) and the
amplitude responses of the corresponding output-errors EOE1 (f) for the equation-
error based optimization procedure (EE) and the weighted equation-error based
optimization procedures for both stability constraints (QP and SDP). The common
pole-zero filter was estimated from IRs m = 1, 2 using the exemplary parameters
N c
p = 8, N c

z = 4, and Nv
z = 12. As expected, the output-error for the weighted

equation-error based optimization procedures is spread across the whole frequency
range, whereas the output-error of the equation-error based optimization procedure
more or less follows the spectral shape of |H1(f)|. Hence, the largest peak in the
output-error occurs in the frequency range of the largest peak of |H1(f)| around
4 kHz. This directly affects the MSG as defined in (2.56), which corresponds to the
largest peak of the output-error. For the presented example, the MSG is 28.1 dB
for the equation-error based optimization procedure and 37.2 dB and 38.8 dB for
the weighted equation-error based optimization procedure using the QP and SDP
formulations, respectively.

In summary, these results show that the weighted equation-error based optimization
procedure is able to successfully counteract the undesired weighting introduced in
the equation-error based optimization procedure.

4.5.4.2 Misalignment and Maximum Stable Gain

To show the improved modeling accuracy of the weighted equation-error based op-
timization procedures, simulations have been carried out for the free-field scenario
for several choices of the parameters N c

p , N c
z , and Nv

z . The impact of a mismatch in
the acoustic scenario (cf. Table 4.1) on the validity of the common pole-zero filter
is investigated in Section 4.5.4.3. Since the least-squares optimization procedures
aim at minimizing the average normalized misalignment, we first evaluate the per-
formance in terms of the average normalized misalignment and then investigate the
performance in terms of the overall MSG.

Figure 4.10 shows the average normalized misalignment for different choices of N c
p

and N c
z as a function of Nv

z . The common and variable parts have been estimated
for IRs measured in free field, i.e., the set m = 1, 2 (top row) and the set m = 9, 10
(bottom row). Note that for the right-most column (N c

p = 12, N c
z = 0) the re-

sults for the equation-error based optimization procedure correspond to the CAPZ
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Figure 4.9: Amplitude response of H1(f) and amplitude responses of the residual output-
errors for all three least-squares optimization procedures (Nc

p = 8, Nc
z = 4,

Nv
z = 12).

model proposed in [91]. As can be observed, both weighted equation-error based
optimization procedures lead to a lower normalized average misalignment than the
equation-error based optimization procedure. Furthermore, it can be observed that,
in general, the SDP-based optimization procedure leads to a lower average normal-
ized misalignment than the QP-based optimization procedure. Improvements of the
SDP-based optimization procedure compared to the QP-based optimization proce-
dure are in general consistent across different values of Nv

z , but tend to decrease for
larger Nv

z . This can be intuitively explained by the larger amount of zeros being
available to model the variable parts. Only for N c

p = 8, N c
z = 4, Nv

z = 48 and
for the first ear canal setup (d1 = 6mm, l1 = 15mm) the SDP-based optimization
procedure is slightly worse than the QP-based optimization procedure, which can
most likely be explained by the SDP-based optimization procedure converging to a
poor local minimum. Comparison between the top and the bottom row shows that
the assumption of a common pole-zero filter is valid for different ear canal geome-
tries. Although the absolute improvements are slightly different, the same trends
are clearly visible.

Using the same parameter choices and IRs, Figure 4.11 depicts the results for the
overall MSG. Similarly as for the average normalized misalignment depicted in
Figure 4.10, the weighted equation-error based optimization procedures outperform
the equation-error based optimization procedure. Furthermore, the proposed SDP-
based optimization procedure using the Lyapunov stability constraint typically leads
to the largest MSG of all optimization procedures. This is consistent with the results
shown in Section 4.5.4.1.

The use of the Lyapunov stability constraint is motivated by the fact that this
constraint does not restrict the solution space as much as the positive realness sta-
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Figure 4.10: Average normalized misalignment for the least-squares optimization proce-
dures as a function of Nv

z for different choices of Nc
p and Nc

z for two sets of
free-field IRs (m = 1, 2 top row; m = 9, 10 bottom row).

bility constraint (cf. Section 4.3.2). To show that the positive realness constraint
may be too restrictive, we consider the choice of N c

p = 8, N c
z = 0, Nv

z = 12, i.e.,
a common all-pole filter, that is optimized for the set of IRs m = 1, 2. For this
parameter choice, the solution of the equation-error based optimization procedure
using the ALS optimization procedure in Algorithm 3 converges to the globally
optimal solution of the CAPZ cost function in (4.42) and is guaranteed to be sta-
ble, i.e., in fact no stability constraint is required. Figure 4.12 depicts the pole
locations for the equation-error based optimization procedure (without constraints)
and when adding stability constraints on the pole location using either the positive
realness stability constraint (QP-based optimization procedure) or the Lyapunov
stability constraint (SDP-based optimization procedure)2. As can be observed, the
pole locations using the Lyapunov constraint coincide with the pole locations of
the unconstrained equation-error optimization procedure, while the pole locations
using the positive realness constraint are significantly different. This experimentally
demonstrates the more restrictive effect of the positive realness constraint and the
improved performance of the Lyapunov constraint. Therefore, in the remainder of
this section only the SDP-based optimization procedure using the Lyapunov based
stability constraint is considered.

To investigate the performance for a larger number of common part parameters
N c, Figure 4.13 depicts the average normalized misalignment as a function of the
variable part parameters Nv

z for different combinations of N c using the set of IRs

2 Note that, in fact these constraints are not necessary, however, only for the CAPZ cost function
in (4.42) minimizing the equation-error the globally optimal solution can be obtained. Therefore,
any restriction of the stability constraints may lead to a deviation of the pole location from the
optimal pole location obtained by minimizing (4.42).
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Figure 4.13: Minimum average normalized misalignment for the least-squares optimization
procedure using the Lyapunov stability constraint as a function of Nv

z for
different choices of Nc for the set of IRs m = 1, 2.

m = 1, 2. For conciseness we only consider the first ear canal setting (d1 = 6mm
and l1 = 15mm). Note that for each N c only the combination of N c

p and N c
z leading

to the lowest average normalized misalignment is shown. As can be observed, in
general, an increase in the number of common part parameters and an increase in
the variable part parameters leads to a decreased average normalized misalignment.
Note that the improvement of including a common part, i.e., N c > 0, compared to
not using a common part, i.e., N c = 0, decreases with increasing number of variable
part parameters. This is expected since most of the energy of the IRs falls within
the first 50 samples such that the IRs can be well modeled using a variable part only.
Similar observations can be made when considering the overall MSG as depicted in
Figure 4.14, where the maximum overall MSG of all combinations of N c

p and N c
z

leading to the same N c is depicted.

In summary, these results show that least-squares optimization procedure minimiz-
ing the weighted equation-error using the Lyapunov stability constraint typically
leads to the lowest average normalized misalignment and the largest overall MSG.
This is due to the fact that the optimization procedures minimizing the weighted
equation-error are able to successfully counteract the undesired weighting of the
equation-error and that the Lyapunov stability constraint is less restrictive com-
pared to the positive realness stability constraint. Furthermore, the results show
that using a common pole-zero filter leads to an increased performance compared
to not using a common pole-zero filter.

4.5.4.3 Robustness to Unknown Acoustic Scenarios

Since in practice the acoustic feedback paths may obviously change over time, in
this section we evaluate the performance when using the estimated common part
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Figure 4.14: Maximum overall MSG for the least-squares optimization procedure using the
Lyapunov stability constraint as a function of Nv

z for different choices of Nc

for the set of IRs m = 1, 2.

from the set of free-field acoustic feedback paths for unknown acoustic feedback
paths that have not been included in the optimization.

For conciseness we only consider the first ear canal setting (d1 = 6mm, l1 = 15mm),
where the common part is estimated using the set of IRs m = 1, 2 and for the
evaluation six unknown IRs are used that have not been included in the optimization
of the common part, e.g., IRs m = 3, 4, 5, 6, 7, 8. First, the common part coefficients
vectors āc and bc are estimated from the free-field IRs H1(q) and H2(q) using the
weighted equation-error based optimization using the Lyapunov stability constraint.
For the unknown IRs only the least-squares solution in (4.53a) is then computed
using āc and bc to obtain the variable part coefficient vectors.

Figure 4.15 depicts the average normalized misalignment for the different unknown
IRs as a function of Nv

z for different N c. Note that for each N c only the combi-
nation of N c

p and N c
z that lead to the lowest average normalized misalignment is

shown. In general, it can be observed that the average normalized misalignment
decreases with increasing number of common part parameters N c and variable part
parameters Nv

z . On the one hand, the comparison between the free-field scenario
in Figure 4.15 (m = 7, 8) after repositioning of the hearing aid and the optimized
free-field scenario in Figure 4.13 (m = 1, 2) indicates that very small changes do
not affect the performance of the common pole-zero filter. On the other hand, the
average normalized misalignment for the telephone far scenario (m = 5, 6) indicates
that minor changes by objects far away may increase the misalignment, especially
when a larger number of common part parameters is used. A similar observation can
be made for the telephone near scenario (m = 3, 4), where the average normalized
misalignment is slightly worse compared to the telephone far scenario (m = 5, 6).
Note that, however, also compared to the free-field condition the average normal-
ized misalignment for the case of N c = 0 is generally larger for both scenarios.
Furthermore, by including a common part improvements in the average normalized
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Figure 4.15: Minimum average normalized misalignment for the least-squares optimization
procedure using the Lyapunov stability constraint as a function of Nv

z for dif-
ferent unknown acoustic feedback paths and number of common part param-
eters Nc. The common part was estimated from the free-field IRs m = 1, 2.

misalignment can be obtained. These improvements for IRs m = 3, 4, 5, 6 are in
general lower than for the sets of IRs m = 1, 2 and IRs m = 7, 8. Nevertheless, con-
sidering the total number of parameters used to model the acoustic feedback path,
i.e., N c + Nv

z , for small N c and small Nv
z a similar performance can be achieved

for the same total number of parameters, e.g., comparing {N c = 12, Nv
z = 12}

and {N c = 0, Nv
z = 24}. This indicates that when the total number of parameters

N c + Nv
z is kept constant the number of variable part coefficients can be reduced

when using a common part while maintaining a similar performance in terms of the
average normalized misalignment compared to not using a common part.

For the the same IRs Figure 4.16 depicts the overall MSG as a function of Nv
z for

different N c. In general, it can be observed that the overall MSG increases with
increasing number of common part parameters N c and variable part parameters
Nv
z . As expected from Figure 4.15, including a common part leads to an increase

in the overall MSG, where the improvement for the unknown acoustic feedback
paths is smaller. Nevertheless, as for the average normalized misalignment a similar
performance can be achieved for the same total number of parameters, e.g., com-
paring {N c = 12, Nv

z = 12} and {N c = 0, Nv
z = 24}. This indicates that when

the total number of parameters N c + Nv
z is kept constant, the number of variable

part coefficients can be reduced when using a common part while maintaining a
similar performance in terms of the overall MSG compared to not using a common
part.

In summary, incorporating a common part estimated using the proposed weighted
equation-error optimization procedure with the Lyapunov based constraint leads
to a decrease in terms of the average normalized misalignment and an increase in
terms of the overall MSG even for acoustic feedback paths that were not included
in the optimization of the common part.
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Figure 4.16: Maximum overall MSG for the least-squares optimization procedure using
the Lyapunov stability constraint as a function of Nv

z for different unknown
acoustic feedback paths and number of common part parameters Nc. The
common part was estimated from the free-field IRs m = 1, 2.

4.5.4.4 Reduction of the Number of Variable Part Parameters

It should be recalled that one of the main objectives for decomposing the acoustic
feedback path into a common part and variable parts is to reduce the number of pa-
rameters Nv

z required to model the variable part. In this section we investigate how
many variable part parameters can be reduced when including a common part, even
in case of a mismatch in the acoustic feedback paths. Similarly as in the previous
section, the common part was estimated from the set of free-field acoustic feedback
paths m = 1, 2 using the weighted equation-error based optimization procedure
with the Lyapunov stability constraint. Since the least-squares optimization proce-
dure aims at minimizing the average normalized misalignment, we investigate the
performance for three different desired average normalized misalignments (-30 dB,
-20 dB, and -10 dB) in order to provide insights into the performance and the limits
of the proposed feedback path decomposition.

Figure 4.17 depicts the minimum number of variable part parametersNv
z required to

achieve the desired average normalized misalignment of -30 dB, -20 dB and -10 dB
as a function of the number of common part parameters N c. Note that N c = 0
corresponds to using only a variable part, i.e., no common part is used, and thus
provides the baseline performance. In general, the results indicate that by including
a common part the number of variable part parameters can be reduced. As expected,
for all desired misalignments the best performance, i.e., the lowest Nv

z , is achieved
for the set of IRs m = 1, 2, i.e., the same acoustic feedback paths that were used for
estimating the common part. A similar performance is achieved for the set of free-
field IRsm = 7, 8 after repositioning of the hearing aid, indicating that the estimated
common part is robust to small changes of the hearing aid position. For the set of IRs
m = 3, 4, i.e., a telephone in close distance, the number of variable part parameters
needs to be substantially larger, especially to achieve a low misalignment, e.g., -
30 dB and -20 dB. Nevertheless, for these IRs including the common part estimated
from the set of IRs m = 1, 2 generally does allow for a reduction of Nv

z , if the
desired misalignment is not too low. For the set of IRs m = 5, 6, i.e., a telephone
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in far distance, on the one hand, including the common part allows to reduce the
number of variable part parameters almost by the same amount as for the free-
field conditions (m = 1, 2 and m = 7, 8) for the desired misalignment of −20 dB
and −10 dB. On the other hand, for the lowest desired misalignment of −30 dB a
reduction in variable part parameters can not be achieved.

In summary, these results indicate that including a common part estimated from
only a limited set of IRs enables to reduce the number of variable part parameters,
especially when the desired misalignment is not too low.

4.5.5 Comparison of Min-Max Optimization Procedures

In this section we compare the performance of the two different min-max optimiza-
tion procedures presented in Section 4.4, i.e., the alternating min-max procedures
to optimize the MSG using either the positive realness stability constraint or us-
ing the Lyapunov based stability constraint. Similarly as in Section 4.3 for the
least-squares optimization procedures, we first present exemplary comparisons of
the desired output-error and then compare the optimization procedures in terms of
the overall MSG and the average normalized misalignment. Finally, we investigate
the robustness to unknown acoustic feedback paths and the ability to reduce the
number of variable parameters when using a common pole-zero filter.

4.5.5.1 Exemplary Comparison of Output-Error

Figure 4.18 shows the amplitude response of the IRs H1(f) and H2(f) and the
amplitude responses of the corresponding output-errors EOE1 (f) and EOE2 (f) of the
proposed min-max optimization procedures. The common pole-zero filter was esti-
mated from the set of IRsm = 1, 2 using the exemplary parameters N c

p = 8, N c
z = 4,
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Figure 4.18: Amplitude response of H1(f) and H2(f) and amplitude responses of the cor-
responding residual output-errors for both min-max optimization procedures
(Nc

p = 8, Nc
z = 4, Nv

z = 12).

and Nv
z = 12. First, it can be observed that both optimization procedures are able

to approximate the amplitude responses of both acoustic feedback paths quite well
(output-error below 39 dB). However, examining the output-error more closely it can
be observed that the min-max optimization procedure using the positive realness
stability constraint yields a larger estimation error (mainly between 2500Hz and
7000Hz) than the min-max optimization procedure using the Lyapunov stability
constraint. Since the maximum output-error is directly related to the MSG defined
in (4.16), the proposed min-max optimization procedure using the Lyapunov theory
based constraint yields a larger MSG (42.2 dB for m = 1 and 42.8 for m = 2) than
the min-max optimization procedure using the positive realness constraint (39.1 dB
for both IRs).

In summary, these results indicate that using the Lyapunov stability constraint
potentially leads to a larger overall MSG compared to using the positive realness
stability constraint.

4.5.5.2 Maximum Stable Gain and Misalignment

In order to quantify the observation that the Lyapunov stability constraint leads to
a larger overall MSG made in the previous section, in this section the performance
of both min-max optimization procedures is compared for the free-field scenario for
several choices of N c

p , N c
z , and Nv

z in terms of the overall MSG and the average
normalized misalignment. The impact of a mismatch in the acoustic scenario (cf.
Table 4.1) on the validity of the common pole-zero filter is investigated in Section
4.5.5.3. Since the min-max optimization procedures aim at maximizing the overall
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Figure 4.19: Overall MSG for the min-max optimization procedure as a function of Nv
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different choices of Nc
p and Nc

z for two the set of free-field IRs (m = 1, 2 top
row; m = 9, 10 bottom row).

MSG, we first evaluate the performance in terms of the overall MSG and then
investigate the performance in terms of the average normalized misalignment.

Figure 4.19 shows the overall MSG for different choices of N c
p and N c

z (N c = 12)
as a function of Nv

z . The common and variable parts have been estimated for the
sets of IRs measured in free field, i.e., m = 1, 2 (top row) and m = 9, 10 (bottom
row). As can be observed, in general, the SDP-based optimization procedure using
the Lyapunov stability constraint leads to a larger overall MSG than the LP-based
optimization procedure using the positive realness constraint. Improvements of the
SDP-based optimization procedure compared to the LP-based optimization proce-
dure are, in general, consistent across different values of Nv

z , but tend to decrease
for larger Nv

z . This can be intuitively explained by the larger amount of zeros being
available to model the variable parts. Only for N c

p = 8, N c
z = 4, Nv

z = 48 and
N c
p = 4, N c

z = 8, Nv
z = 48 for the first ear canal setup (d1 = 6mm, l1 = 15mm)

the SDP-based optimization procedure is slightly worse than the LP-based opti-
mization procedure, which can most likely be explained by the initialization of the
SDP-based optimization procedure provided by the least-squares optimization pro-
cedure (cf. Figure 4.11). Comparison between the top and the bottom row shows
that the assumption of a common pole-zero filter is valid for different ear canal
geometries. Although the absolute improvements are slightly different, the same
trends are visible.

Using the same parameter choices and IRs, Figure 4.20 depicts the results for the av-
erage normalized misalignment. Similarly as for the overall MSG depicted in Figure
4.19, the SDP-based min-max optimization procedure using the Lyapunov stability
constraint outperforms the LP-based min-max optimization procedure using the pos-
itive realness stability constraint. This is consistent with the results shown in Section
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4.5.5.1. Therefore, in the remainder of this section only the SDP-based optimization
procedure using the Lyapunov based stability constraint is considered.

To investigate the performance for a larger number of common part parameters N c,
Figure 4.21 depicts the overall MSG as a function of the variable part parameters
Nv
z for different combinations of N c using the set of IRs m = 1, 2. For conciseness

we only consider the first ear canal setting (d1 = 6mm and l1 = 15mm). Note
that for each N c only the combination of N c

p and N c
z leading to the highest overall

MSG is shown. As can be observed, in general, an increase in the number of the
common part parameters and an increase in the variable part parameters leads to
an increase in the overall MSG. Note that the improvement of including a common
part compared to not using a common part, i.e., N c = 0, decreases with increasing
number of variable part parameters. This is expected since most of the energy of the
IRs falls within the first 50 samples such that the IRs can be well modelled using the
variable part alone. Similar observations can be made when considering the average
normalized misalignment as depicted in Figure 4.22, where the minimum average
normalized misalignment of all combinations of N c

p and N c
z leading to the same N c

is shown.

In summary, these results show that the min-max optimization procedure maxi-
mizing the overall MSG using the Lyapunov stability constraint typically leads to
the largest overall MSG and the lowest average normalized misalignment. Further-
more, the results show that using a common pole-zero filter leads to an increased
performance compared to not using a common pole-zero filter.
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Figure 4.21: Maximum overall MSG for the min-max optimization procedure using the
Lyapunov stability constraint as a function of Nv

z for different choices of Nc
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cedure using the Lyapunov stability constraint as a function ofNv
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4.5.5.3 Robustness to Unknown Acoustic Scenarios

Similarly as for the least-squares optimization procedures, we investigate the ro-
bustness of the estimated common part to a mismatch of the acoustic feedback
paths between optimization and evaluation. For conciseness we only consider the
first ear canal setting (d1 = 6mm, l1 = 15mm), where the common part is esti-
mated using the set of IRs m = 1, 2 and for the evaluation six unknown sets of
IRs are used that have not been included in the optimization of the common part,
e.g., IRs m = 3, 4, 5, 6, 7, 8. First, the common part coefficients vectors āc and bc

are estimated from the free-field IRs H1(q) and H2(q) using the proposed min-max
optimization procedure using the Lyapunov stability constraint. For the unknown
IRs only the SDP problem in (4.82) is then solved using āc and bc to obtain the
variable part coefficient vector.

Figure 4.23 depicts the overall MSG for the different IRs as a function of Nv
z for

different N c. Note that for each N c only the combination of N c
p and N c

z that leads
to the highest overall MSG is shown. In general, it can be observed that the overall
MSG increases with increasing number of common part parameters N c and vari-
able part parameters Nv

z . On the one hand, the comparison between the free-field
scenario after repositioning of the hearing aid in Figure 4.23 (m = 7, 8) and the
optimized free-field condition in Figure 4.21 (m = 1, 2) indicates that very small
changes do not affect the performance of the common pole-zero filter. On the other
hand, the overall MSG for the telephone far scenario (m = 5, 6) indicates that minor
changes by objects far away may decrease the overall MSG, especially when a larger
number of common part parameters is used. A similar observation can be made for
the telephone near scenario (m = 3, 4), where the overall MSG is slightly lower com-
pared to the telephone far scenario (m = 5, 6). Note that, however, also compared
to the free-field scenario the overall MSG for the set of IRs m = 3, 4 and the set of
IRs m = 5, 6 is smaller when the common pole-zero filter is not used, i.e., N c = 0.
Furthermore, it can be observed that by including a common part improvements
in the overall MSG can be obtained. These improvements for IRs m = 3, 4, 5, 6 are
generally lower than for the set of IRs m = 1, 2 and the set of IRs m = 7, 8. Nev-
ertheless, considering the total number of parameters used to model the acoustic
feedback path, i.e., N c+Nv

z , using a common pole-zero filter for small N c and small
Nv
z a similar (or better) performance can be achieved for the same total number

of parameters, e.g., comparing {N c = 12, Nv
z = 12} and {N c = 0, Nv

z = 24}. This
indicates that when the total number of parameters N c + Nv

z is kept constant the
number of variable part coefficients can be reduced when using a common part while
maintaining a similar performance in terms of the overall MSG compared to not
using a common part.

For the the same IRs Figure 4.24 depicts the average normalized misalignment as
a function of Nv

z for different N c. In general, it can be observed that the average
normalized misalignment decreases with increasing number of common part param-
eters N c and variable part parameters Nv

z . As expected from Figure 4.23, including
a common part leads to a decrease in the average normalized misalignment, where
for the unknown acoustic feedback paths improvements are smaller. Nevertheless,
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similarly as for the overall MSG, a similar (or better) performance can be achieved
for the same total number of parameters, e.g., comparing {N c = 12, Nv

z = 12}
and {N c = 0, Nv

z = 24}. This indicates that when the total number of parameters
N c + Nv

z is kept constant, the number of variable part coefficients can be reduced
when using a common part while maintaining a similar performance in terms of the
average normalized misalignment compared to not using a common part.

In summary, incorporating a common part estimated by the proposed min-max
optimization procedure using the Lyapunov stability constraint leads to an increase
in terms of the overall MSG and a decrease in the average normalized misalignment
even for acoustic feedback paths that were not included in the optimization of the
common part.
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4.5.5.4 Reduction of Number of Variable Part Parameters

Similarly as in Section 4.5.4.4 for the least-squares optimization procedures, in this
section we investigate how many variable part parameters can be reduced when
including a common part, even in case of a mismatch in the acoustic feedback
paths. Similarly as in the previous section, the common part was estimated from
the free-field acoustic feedback paths m = 1, 2 using the min-max optimization
procedure with the Lyapunov stability constraint. Since the min-max optimization
aims at maximizing the MSG, we investigate the performance for three different
desired overall MSGs (45 dB, 35 dB and 25 dB) in order to provide insights into the
performance and limits of the proposed feedback path decomposition.

Figure 4.25 depicts the minimum number of variable part parameters Nv
z required

to achieve the desired overall MSG of 45 dB, 35 dB and 25 dB as a function of
the number of common part parameters N c. Note that N c = 0 corresponds to
using only a variable part, i.e., no common part is used, and thus provides the
baseline performance. In general, the results indicate that by including a common
part the number of variable part parameters can be reduced and similar trends
to those obtained with the least-squares optimization procedure in Section 4.5.4.4
for a desired average normalized misalignment are observed. As expected, for all
desired MSGs the best performance, i.e., the lowest Nv

z , is achieved for the set of
IRsm = 1, 2, i.e., the same acoustic feedback paths that were used for estimating the
common part. A similar performance is achieved for the set of free-field IRsm = 7, 8
after repositioning of the hearing aid, indicating that the estimated common part
is robust to small changes of the hearing aid position. For the set of IRs m = 3, 4,
i.e., a telephone in close distance, the number of variable part parameters needs
to be substantially larger, especially to achieve a high MSG, e.g., 45 dB and 35 dB.
Nevertheless, for these IRs including the common part estimated from the set of
IRs m = 1, 2 generally does allow for a reduction of Nv

z if N c is not too low. For
the set of IRs m = 5, 6, i.e., a telephone in far distance, on the one hand including
the common part allows to reduce the number of variable part parameters almost
by the same amount as for the free-field conditions (m = 1, 2 and m = 7, 8) for the
desired MSG of 35 dB and 25 dB. On the other hand, for the highest desired MSG
of 45 dB the reduction in variable part parameters is smaller.

In summary, these results indicate that including a common part estimated from
only a limited set of IRs enables to reduce the number of variable part parameters,
especially when the desired MSG is not too large.

4.5.6 Comparison of Least-Squares and Min-Max Optimization Procedures

In this section we compare the performance of the least-squares optimization pro-
cedure aiming to optimize the average normalized misalignment (cf. Algorithm 4)
and the min-max optimization procedure aiming to optimize the overall MSG (cf.
Algorithm 5). For conciseness we only consider the optimization procedures using
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the Lyapunov stability constraint as these optimization procedures showed the best
performance in the previous experiments (cf. Sections 4.5.4 and 4.5.5)

4.5.6.1 Exemplary Comparison of Output-Error

Figure 4.26 depicts the amplitude responses of the acoustic feedback paths H1(f)
and H2(f) and the amplitude responses of the corresponding output-errors of the
SDP-based least-squares optimization procedure and the SDP-based min-max op-
timization procedure. The common pole-zero filter was estimated from the set of
IRs m = 1, 2 using the exemplary parameters N c

p = 8, N c
z = 4, Nv

z = 12. Note
that these amplitude responses have been shown in Figure 4.9 and 4.18 individually.
As indicated by the generally low output-error, both optimization procedures are
able to approximate the amplitude response of both acoustic feedback paths quite
well. However, examining the output-error more closely it can be observed that
the least-squares optimization procedure yields a larger estimation error (around
2500 and 6700Hz) than the min-max optimization procedure, which is almost flat.
Since the maximum output-error is directly related to the overall MSG, the min-
max optimization procedure yields a larger overall MSG (42.2 dB for m = 1 and
42.8 dB form = 2) than the least-squares optimization procedure (38.8 dB form = 1
and 41.4 dB for m = 2), i.e., the min-max optimization procedure yields an over-
all MSG improvement of about 3 dB compared to the least-squares optimization
procedure.

4.5.6.2 Misalignment and Maximum Stable Gain

In order to compare the performance of both SDP-based optimization procedures,
Figure 4.27 shows the difference in the average normalized misalignment between
the least-squares optimization procedure and the min-max optimization procedure



4.5 experimental evaluation 89

0   1000 2000 3000 4000 5000 6000 7000 8000

-55

-45

-35

-25

-15

-5 

f / Hz

A
m

pl
itu

de
 / 

dB

H
1
(f)

H
2
(f)

E
1
(f): LS

E
2
(f): LS

E
1
(f): MM

E
2
(f): MM
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(LS) and min-max (MM) optimization procedures using the Lyapunov stabil-
ity constraint (Nc

p = 8, Nc
z = 4, Nv

z = 12).

for different N c as a function of Nv
z . The common and variable parts have been

estimated from the set of free-field IRs m = 1, 2. Note that for both optimization
procedures individual results for the set m = 1, 2 have been presented in Section
4.5.4.2 and 4.5.5.2 for the least-squares and min-max optimization procedures, re-
spectively. For each value of N c the difference between the two optimization proce-
dures was computed for each combination of N c

p and N c
z resulting in N c and then

the average of the this difference was computed. Note that negative values indicate
a better performance for the least-squares optimization procedure. As expected,
for all considered values of N c, the proposed least-squares optimization procedure
outperforms the proposed min-max optimization procedure in terms of the average
normalized misalignment by approximately 3 to 5 dB.

Figure 4.28 shows the average difference in the overall MSG between both optimiza-
tion procedures for different N c as a function of Nv

z . Similarly as for the average
normalized misalignment, for each value of N c the difference between the optimiza-
tion procedures in the overall MSG was computed for all possible combinations
of N c

p and N c
z resulting in N c and then its average was computed. Note that for

both optimization procedures individual results for the set m = 1, 2 have been pre-
sented in Section 4.5.4.2 and 4.5.5.2 for the least-squares and min-max optimization
procedure, respectively. For all considered values of N c the proposed min-max opti-
mization procedure outperforms the proposed least-squares optimization procedure
in terms of the average overall MSG by generally 4 to 8 dB. For small numbers of N c

large improvements are typically obtained, while for large N c improvements tend
to be smaller.
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Figure 4.27: Average normalized misalignment improvements as a function of Nv
z of the

least-squares optimization procedure using the Lyapunov stability constraint
compared to the min-max optimization procedure using the Lyapunov stabil-
ity constraint for IRs m = 1, 2.

In summary, these results indicate that depending on the desired average normalized
misalignment or the desired MSG both optimization procedures provide complemen-
tary results, i.e., if a low misalignment is desired, the least-squares optimization is
beneficial, while if a high MSG is desired, the min-max optimization is beneficial.

4.6 Common Part based Feedback Cancellation

As shown in Sections 4.5.4.4 and 4.5.5.4 the proposed common part decomposition
allows to reduce the number of variable part parameters while maintaining a low mis-
alignment and a high MSG. However, even though the MSG is large, the perceptual
quality of the hearing aid loudspeaker signal may still be degraded. Furthermore,
in practice only the common part is kept fixed, while the variable part parameters
need to be estimated using an AFC algorithm (cf. Figure 4.29). Therefore, in Section
4.6.1 we first investigate the impact of the proposed common part decomposition on
the perceptual quality when a fixed common part and a fixed variable part filter is
used. Second, in Section 4.6.2 we investigate the feedback cancellation performance
when the common part decomposition is used in an AFC algorithm.

4.6.1 Perceptual Quality Using a Static Feedback Canceller

For the perceptual quality evaluation, we have considered an SLSM feedback can-
cellation system as depicted in Figure 4.29. In order to avoid the impact of artifacts
due to the adaptation of an AFC algorithm, we have considered a static feedback
canceller, i.e., using the optimized common and variable parts as Ĥc(q) and Ĥv

m(q),
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Figure 4.28: Average overall MSG improvements as a function of Nv
z of the min-max opti-

mization procedure using the Lyapunov stability constraint compared to the
least-squares optimization procedure using the Lyapunov stability constraint
for IRs m = 1, 2.

respectively. We have evaluated the perceptual quality of the loudspeaker signal
using the PESQ measure [192] (cf. Section 2.2.4) since results from [107] indicate
that the rankings obtained by PESQ are very similar to the rankings obtained by
formal listening tests. The reference signal for the PESQ measure was the incom-
ing signal processed with the hearing aid forward path only. As incoming signal
we have used an 80 s long speech signal as in [124], comprising several male and
female speakers. For the hearing aid forward path we have used a delay correspond-
ing to 6ms and two different broadband gains: 1) a broadband gain that is 3 dB
lower than the MSG obtained with the least-squares optimization procedure using
the Lyapunov stability constraint (MSGLS) and 2) a broadband gain that is 3 dB
lower than the MSG obtained with the min-max optimization procedure using the
Lyapunov stability constraint (MSGMM )3. Since applying a broadband hearing aid
gain of MSGMM − 3dB typically led to an unstable system for the least-squares
optimization procedure, in the following we only present the results for the min-max
optimization procedure for this broadband hearing aid gain.

Figure 4.30 depicts exemplary results for N c = 12, where those combinations of N c
p

and N c
z were chosen that correspond to the largest overall MSG depicted in Figures

4.14 and 4.21. The results in Figure 4.30 show that the PESQ MOS scores for the
broadband hearing aid gain of MSGLS−3 dB are very similar for the min-max opti-
mization procedure and the least-squares optimization procedure. When increasing
the broadband hearing aid gain to MSGMM − 3dB, the least-squares optimization
procedure led to an unstable system, while for the min-max optimization procedure
the PESQ MOS scores are about 0.6 lower than for the broadband hearing aid
gain of MSGLS − 3 dB. These results indicate that the proposed min-max optimiza-
tion procedure allows to achieve the same perceptual quality as the least-squares

3 We used a gain that was 3 dB lower than the MSG in order to avoid too strong artifacts due to
the system being close to instability.
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procedure (MM) using the Lyapunov stability constraint.

optimization procedure while providing a larger stability margin as shown by an
increased MSG.

4.6.2 Application to Adaptive Feedback Cancellation in Hearing Aids

In order to assess the feedback cancellation performance when the proposed com-
mon part decomposition is implemented in an AFC system, we consider the AFC
system in Figure 4.29. In order to reduce the impact of the correlation between
the loudspeaker signal and the incoming signal, we have used the PEM (cf. Sec-
tion 3.3.2). As incoming signal we have used an 80 s long speech signal as in [124],
comprising several male and female speakers. For the hearing aid forward path we
have used G(q) = |G|q−dG with |G| = 1020/20 corresponding to a broadband gain
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of 20 dB and dG = 96 corresponding to a delay of 6ms. The prediction error filter
was estimated from the error signal e[k] using the Burg-lattice algorithm [200] (cf.
Algorithm 2), where the order of the prediction filter was set to NA = 20. The
step-size of the NLMS algorithm was set to µ = 0.0002.

Figure 4.31 depicts the results in terms of the misalignment and the MSG as a func-
tion of time for the following two parameter settings of the common and variable
parts: 1) N c

p = 0, N c
z = 0, and Nv

z = 36, i.e., not using common part, and 2) N c
p = 8,

N c
z = 4, Nv

z = 24, i.e., using a common part which is estimated from the set of free-
field IRsm = 1, 2 using the least-squares optimization procedure with the Lyapunov
stability constraint or the min-max optimization procedure with the Lyapunov sta-
bility constraint. During the first 40 s the acoustic feedback path H1(q) was used in
the simulation after which the acoustic feedback path was instantaneously switch
to H3(q), which was not included in the optimization of the common part.

In general, the results show that the proposed feedback path decomposition leads
to an increased initial convergence speed as well as an increased convergence speed
when the acoustic feedback path changes after 40 s. Additionally, the AFC algorithm
using the proposed feedback path decomposition achieves a similar steady-state per-
formance compared to the AFC algorithm without a common part. Comparing the
performance of the common part obtained from both SDP-based optimization proce-
dures, it can be observed that the results are very similar, indicating that although
both optimization procedures lead to different (optimal) solutions, in a practical
scenario (where the gain is typically not too high) both optimization procedures
can be used to increase the performance of an AFC algorithm.

4.7 Summary

In this chapter we proposed to decompose the acoustic feedback path into a common
pole-zero filter, accounting for slowly varying and invariant parts, and a variable
all-zero filter, which can be adapted using adaptive filtering techniques. We first pro-
posed to generalize the existing common all-zero filter and common all-pole filter to
the common pole-zero filter. Second, in order to obtain the common pole-zero filter,
we formulated the estimation either as a least-squares optimization problem aim-
ing to minimize the average normalized misalignment or as min-max optimization
problem aiming to maximize the MSG.

We showed that the proposed common pole-zero filter estimated using the least-
squares equation-error based optimization is able to outperform the existing com-
mon all-zero and common all-pole filter, both in terms of the average normalized
misalignment and the ability to reduce the number of variable part parameters. Fur-
thermore, we showed that using more sophisticated optimization procedures the av-
erage normalized misalignment and the overall MSG can be further improved. First,
we proposed to formulate the minimization of the average normalized misalignment
as a least-squares optimization procedure minimizing the weighted equation-error to
approximate the desired output-error minimization. In order to ensure the stability
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of the common pole-zero filter, we proposed to incorporate two different constraints,
leading to two different optimization procedures. The first stability constraint is
based on the positive realness of the frequency response of the all-pole component
of the common pole-zero filter, leading to a QP problem, while the second stability
constraint is based on Lyapunov theory, leading to an SDP problem. Second, we
formulated the maximization of the overall MSG as a min-max optimization prob-
lem. In order to ensure the stability of the common pole-zero filter, we proposed
to incorporate the same stability constraints as for the least-squares optimization
procedures, leading to an LP problem for the positive realness stability constraint
and an SDP problem for the Lyapunov stability constraint. For the LP problem
formulation we used the real rotation theorem to ensure a sufficient approximation
of the desired min-max optimization.

Experimental results using measured acoustic feedback paths from a two-
microphone BTE hearing aid show that the proposed optimization procedures allow
to accurately model the acoustic feedback paths, i.e., achieving a low average nor-
malized misalignment and a high overall MSG. In particular, for both optimization
procedures the Lyapunov stability constraint outperformed the sufficient but not
necessary positive realness stability constraint. Furthermore, the experimental re-
sults show that the obtained common pole-zero filter is robust to a mismatch in the
acoustic conditions, e.g., in the presence of a telephone receiver, and also allows to
reduce the number of variable part parameters.

A comparison of both optimization procedures using the Lyapunov stability con-
straint shows that, as expected, the least-squares optimization procedure leads to a
lower average normalized misalignment compared to the min-max optimization pro-
cedure, while the min-max optimization procedure leads to a larger MSG compared
to the least-squares optimization procedure.

Furthermore, using a static feedback canceller, perceptual quality evaluations us-
ing the PESQ measure show that the min-max optimization procedure leads to a
similar speech quality compared to the least-squares optimization procedure for the
same broadband gain and additionally allows for a larger hearing aid gain. When
incorporated into a state-of-the-art AFC algorithm, the proposed feedback path
decomposition allows to increase the convergence speed compared to an AFC algo-
rithm without a common part while maintaining a similar steady-state performance,
both in terms of the normalized misalignment as well as the MSG.





5
AFFINE COMBINATION OF ADAPTIVE
FILTERS FOR ACOUSTIC FEEDBACK
CANCELLATION

While in Chapter 4 the goal was to improve the convergence speed of adaptive
feedback cancellation (AFC) algorithms by reducing the number of adaptive filter
coefficients, in this chapter the goal is to improve the convergence speed by using an
affine combination of two adaptive filters with different step-sizes. Assuming that
the conditions for an unbiased estimation of the acoustic feedback path are fulfilled
[219], e.g., by using the PEM, the choice of the step-size in the LMS and the NLMS
algorithm usually is a trade-off between a slow convergence but a low steady-state
misalignment and a fast convergence but a high steady-state error [82, 83]. In order
to achieve both fast convergence as well as low steady-state misalignment, several
solutions have been proposed that use either variable step-sizes [147, 220–222] or
adaptively combine the outputs of two filters with different step-sizes [223–228].
Similarly as variable step-size algorithms, the combination of two adaptive filters
can be intuitively interpreted as changing the global step-size controlled by the
output of the two filters. While both approaches have been successfully applied
to acoustic echo cancellation, their application to acoustic feedback cancellation
is more challenging due to the correlation between the loudspeaker signal and the
incoming signal. Up to now, mostly the use of variable step-size algorithms has been
considered for AFC in hearing aids [92, 95, 98].

In this chapter we propose to apply the combination of two adaptive filters to the
problem of acoustic feedback cancellation in hearing aids, more specifically the affine
combination as proposed in [225, 227]. We show that in case of correlation between
the loudspeaker signal and the incoming signal the combination scheme will, in

This chapter is based in part on the following publication
[179] H. Schepker, L. T. T. Tran, S. E. Nordholm, and S. Doclo, “Improving adaptive feedback

cancellation in hearing aids using an affine combination of filters,” in Proc. of IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, Mar. 2016, pp. 231–235.
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general, adapt to a biased solution. In order to reduce the influence of this bias,
we propose to use the PEM together with the PBFDAF [78]. Simulation results
using measured acoustic feedback paths show that the proposed AFC algorithm
outperforms an AFC algorithm that only uses either of the individual adaptive
filters in terms of misalignment and ASG.

5.1 Proposed Adaptive Feedback Cancellation Algorithm

An overview of a SLSM hearing aid system using the proposed AFC algorithm
is depicted in Figure 5.1. In contrast to the AFC algorithm presented in Section
3.3.2 using a single adaptive filters to estimate the feedback component in the
microphone, this algorithm uses two independent adaptive filter to estimate the
feedback component in the microphone. Specifically, in order to achieve both fast
convergence as well as low steady-state misalignment, the algorithm comprises two
adaptive filters Ĥ1(q, k) and Ĥ2(q, k) operating on the same input signal uf [k],
where the first adaptive filter uses a large step-size and the second adaptive filter
uses a small step-size. In order to reduce the bias in the estimation of both adaptive
filters (cf. Section 3.2), adaptive pre-whitening using the PEM is performed [104]
using the filter ÂLP (q, k), which is estimated from the error signal e[k] using the
Levinson-Durbin algorithm (cf. Algorithm 1).

The affine combination aims at combining the estimated prewhitened feedback
signals f̂f,1[k] and f̂f,2[k] such that the squared prewhitened error signal e2

f [k]
is minimized. Theoretically such a combination shows universal potential, i.e.,
the affine combination always performs at least as good as the best single filter
[225, 227].

Similarly as for the case of single adaptive filter and the PEM (cf. Figure 3.2), the
microphone signal y[k] is the sum of the incoming signal x[k] and the feedback
component f [k], i.e.,

y[k] = x[k] + f [k]. (5.1)

The feedback component is the loudspeaker signal signal filtered with the acoustic
feedback path H(q, k), i.e.,

f [k] = H(q, k)u[k]. (5.2)

Using an adaptive filter Ĥ(q, k), an estimate f̂ [k] of the feedback component is
subtracted from the microphone signal, resulting in the so-called error signal e[k],
i.e.,

e[k] = y[k]− Ĥ(q, k)u[k]︸ ︷︷ ︸
f̂ [k]

, (5.3)

which is subsequently filtered by the hearing aid forward path G(q, k), forming the
loudspeaker signal u[k], i.e.,

u[k] = G(q, k)e[k]. (5.4)
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In order to reduce the bias in the adaptive filter estimate Ĥ(q, k) (cf. Section 3.2),
the prediction-error-method (PEM) is used to prewhiten the microphone signal and
the loudspeaker signal for the filter adaptation with the time-varying prewhitening
filter ÂLP (q, k), i.e.,

yf [k] = ÂLP (q, k)y[k], (5.5)

uf [k] = ÂLP (q, k)u[k]. (5.6)

In the proposed affine combination scheme two adaptive filters Ĥ1(q, k) and Ĥ2(q, k)

are used to obtain two estimates f̂f,1[k] and f̂f,2[k] of the prewhitened feedback
component ff [k]

f̂f,1[k] = Ĥ1(q, k)uf [k], (5.7)

f̂f,2[k] = Ĥ2(q, k)uf [k], (5.8)
ff [k] = H(q, k)uf [k]. (5.9)

These two estimated feedback components are then combined using a real-valued
affine combination parameter η[k] to obtain an improved estimate the prewhitened
feedback component in the prewhitenend microphone signal, i.e., using the following
combination

f̂f [k] = η[k]f̂f,1[k] + (1− η[k])f̂f,2[k], (5.10)

= η[k](f̂f,1[k]− f̂f,2[k]) + f̂f,2[k]. (5.11)

Similarly, the adaptive filter estimates Ĥ1(q, k) and Ĥ2(q, k) of the acoustic feedback
path H(q, k) can be combined using the same affine combination parameter η[k],
i.e.,

Ĥ(q, k) = η[k]Ĥ1(q, k) + (1− η[k])Ĥ2(q, k). (5.12)

In the following we first present the derivation of the optimal affine combination
parameter η[k] and theoretically show that the affine combination parameter is
biased when the loudspeaker signal u[k] and the incoming signal x[k] cannot be
perfectly decorrelated. Second, we present two different adaptive implementation
to estimate both adaptive filters Hi(q, k), i = 1, 2 as well as the affine combination
parameter η[k]. In the first implementation the adaptation is performed in the
time-domain (cf. Section 5.1.2) and in the second implementation the adaptation is
performed in the frequency-domain using the PBFDAF implementation (cf. Section
5.1.3).

5.1.1 Optimal Affine Combination Parameter

The optimal affine combination parameter η[k] is obtained by minimizing the
squared pre-filtered error signal ef [k], i.e.,

ef [k] = yf [k]− f̂f [k]. (5.13)
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Figure 5.1: Hearing aid system using the proposed AFC algorithm using an affine combi-
nation scheme of two independent adaptive filters.

The cost function of the optimal affine combination parameter is defined as

JAC(η[k]) = E{e2
f [k]}, (5.14a)

= E{(yf [k]− f̂f [k])2}, (5.14b)

= E{y2
f [k]} − 2E{(η[k](f̂f,1[k]− f̂f,2[k]) + f̂f,2[k])yf [k]}

+ E{(η[k](f̂f,1[k]− f̂f,2[k]) + f̂f,2[k])2}
(5.14c)

The optimal solution of the affine combination parameter is then obtained as

ηopt[k] = E

{
(f̂f,1[k]− f̂f,2[k])(yf [k]− f̂f,2[k])

(f̂f,1[k]− f̂f,2[k])2

}
(5.15)

The optimal affine combination parameter can be rewritten using

yf [k]− f̂f,2[k] = xf [k] + ff [k]− f̂f,2[k], (5.16)

as

ηopt[k] = E

{
(f̂f,1[k]− f̂f,2[k])∆f̂f,2[k]

(f̂f,1[k]− f̂f,2[k])2

}
+ E

{
(f̂f,1[k]− f̂f,2[k])xf [k]

(f̂f,1[k]− f̂f,2[k])2

}
(5.17)

where we defined

∆f̂f,2[k] = ff [k]− f̂f,2[k], (5.18)
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with ff [k] defined in (5.9), which depends on the loudspeaker signal u[k], and
xf [k] = ÂLP (q, k)x[k] the prewhitened incoming signal. From (5.17) it can be ob-
served that if the incoming signal xf [k] and the estimated feedback components
f̂f,1[k] and f̂f,2[k] are correlated, the second term in (5.17) influences the optimal
solution and may hence alter the performance. Therefore, we refer to this second
term as a bias term. In practice this may be the case if the PEM does not perfectly
decorrelate xf [k] and uf [k], e.g., for speech signals.

In order to approximate the optimal solution in (5.15), steepest-descent algorithms
(cf. Section 3.1) can be used. This requires the gradient of the affine combination
cost function in (5.14), which is given as

∇η[k]JAC(η[k]) = −2E
{

(f̂f,1[k]− f̂f,2[k])ef [k]
}
. (5.19)

Similarly as in Section 3.1 for the update of the adaptive filter Ĥ(q, k), the adaptive
update equation of the affine combination parameter η[k] is then given as

η[k + 1] = η[k] + µη[k]BE{(f̂f,1[k]− f̂f,2[k])ef [k]}, (5.20)

with µη[k] a possibly time-varying step-size parameter and B a positive-definite
matrix. In the following two sections we will present two adaptive implementation
using stochastic-gradient algorithms to update both the adaptive filters Hi(q, k),
i = 1, 2, and the affine combination parameter η[k].

5.1.2 Time-Domain Implementation

In the time-domain implementation the coefficient vectors of both adaptive filters
Ĥ1(q, k) and Ĥ2(q, k) estimating the acoustic feedback path H(q, k) are updated
using the NLMS algorithm (cf. Section 3.1), i.e.,

ĥi[k + 1] = ĥi[k] +
µi

uTf [k]uf [k] + α
uf [k]ef,i[k], i = 1, 2 (5.21)

with ef,i[k] = yf [k] − f̂f,i[k] the error signal and µi the step-size of the ith fil-
ter.

The outputs of both adaptive filters f̂f,i[k] = ĥTi [k]uf [k] are then combined using
the affine combination in (5.10) to obtain the estimated feedback signal f̂ [k]. Using
instantaneous approximations of the expected values in (5.20) and B = I, the
combination parameter η[k] can be updated using a stochastic gradient-descent
rule, e.g., an LMS-based update rule

η[k + 1] = η[k] + µη(f̂f,1[k]− f̂f,2[k])ef [k], (5.22)

with µη a positive step-size parameter. In [227] it has been shown that an improved
performance for the affine combination can be achieved when an NLMS-based up-
date rule or a sign-regressor least mean squares (SR-LMS)-based update rule is
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used. Therefore, in the proposed AFC algorithm we use the SR-LMS algorithm to
to update η[k], i.e.,

η[k + 1] = η[k] + µηsgn{(f̂f,1[k]− f̂f,2[k])}ef [k] (5.23)

In order to avoid instability and following [225], η[k + 1] is restricted to be smaller
than or equal to 1.

5.1.3 Partitioned Block Frequency-Domain implementation

As will be shown in the experimental evaluation (cf. Section 5.2), when using speech
signals as input signals, the PEM is not able to completely eliminate the second
term of the optimal solution of the combination parameter η[k] in (5.17). Therefore,
in this section we present an PBFDAF-based implementation, which, in addition to
the PEM, makes use of frequency-domain processing to decorrelate the loudspeaker
signal from the incoming signal. While the affine combination of filters has already
been derived for other block and partitioned block filters [226, 228], here we extend
this approach to the partitioned block frequency-domain adaptive filter (PBFDAF)
framework introduced in Section 3.3.2.2.

When using the PBFDAF implementation, for the ith adaptive filter, i = 1, 2, each
partition p at block-index l is updated similarly as in (3.40) as

Ĥi,p,l+1 = Ĥi,p,l + FNFFTCF−1
NFFT

∆i,lU
H
f,p,lEf,i,l, (5.24)

where the prewhitened filter input Uf,p,l is defined in (3.39), the constraint matrix
C is defined in (3.43) and Ef,i,l is the prewhitened error signal of the ith adaptive
filter similar as in (3.41). Similarly to (3.44), the frequency-dependent step-size
matrix ∆i,l for the ith filter in (5.24) is equal to

∆i,l = diag{[ µi,l(ω0) . . . µi,l(ωNFFT−1) ]}, (5.25)

with

µi,l(ωn) =
µi

|Ef,i,l(ωn)|2 +
LĤ/P−1∑
p=0

|Uf,p,l(ωn)|2 + α

, (5.26)

and α a small positive constant.

Using a partition- and frequency-dependent combination parameter ηp,l, similarly
to (5.10), the affine combination of the estimated feedback components for the pth
partition is now given as

F̂f,p,l = ηp,lF̂f,1,p,l + (I− ηp,l)F̂f,2,p,l, (5.27)

with ηp,l = diag{ηp,l(ω0), . . . , ηp,l(ωNFFT−1)}.
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Assuming that the PBFDAF-based processing provides sufficient independency be-
tween frequency-bands, we use a partition- and frequency-dependent update rule to
compute the combination parameter. Similarly as for the time-domain implementa-
tion, we use an SR-LMS-based update rule and restrict the combination parameter
to be real-valued1, i.e.,

ηp,l+1(ωn) = ηp,l(ωn) + µηsgn
{
Re{F̂f,1,p,l(ωn)− F̂f,2,p,l(ωn)}

}
Re{Ef,l(ωn)}

(5.28)

where Re{·} denotes the real value of a complex number and µη is a partition- and
frequency-independent step-size parameter. Similarly to the time-domain implemen-
tation, ηp,l+1(ωn) is restricted to be smaller than or equal to 1.

5.2 Experimental Evaluation

In this section the time-domain and the partitioned block frequency-domain adap-
tive filter (PBFDAF) implementations of the proposed AFC algorithm using the
affine combination of two adaptive filters is evaluated. Acoustic feedback paths
were measured on a dummy head with adjustable ear canals [218] using a two-
microphone behind-the-ear hearing aid and open-fitting earmolds (cf. Appendix B).
The ear canal geometries used in this experiment corresponded to a diameter of
d = 7mm and a length of l = 15mm and only the front microphone of the two-
microphone hearing aid was considered. The IRs were sampled at fs = 16000Hz
and truncated to length LH = 100. Figure 5.2 depicts the amplitude and phase re-
sponses of the IRs used in the evaluation which were measured in free-field (H1(f))
and with a telephone receiver (H2(f)) in close distance to the ear of the dummy
head.

The performance was evaluated for two different incoming signals x[k]: 1) a
stationary speech-shaped noise (sSSN) and 2) a speech signal consisting of female
and male speech used in [124]. These signals allow to evaluate the proposed AFC al-
gorithm under the following conditions: 1) the incoming signal and the loudspeaker
signal can be perfectly decorrelated by the PEM, i.e., for sSSN, and 2) the signals
can only be approximately decorrelated by the PEM, i.e., for speech. All signals
were 80s long and an instantaneous change of the acoustic feedback path was simu-
lated after 40s by switching from the IR measured in free-field to the IR measured
with the telephone receiver. As instrumental measures, the normalized misalignment
ξ[k] defined in (2.52) and the ASG A[k] defined in (2.58) using the MSG defined in
(2.56) were used.

The following settings were used in all simulations. The forward path gain of the
hearing aid was set to G(q, k) = |G0|z−dG with |G0| = 1020/20, corresponding to a
broadband gain of 20 dB, and dG = 96, corresponding to a delay of 6ms. For the
time-domain implementation we used: adaptive filter length LĤ = 64; regularization

1 A similar update rule of the SR-LMS algorithm for complex-valued signals has been implemented
as part of the official Communications Systems Toolbox in Matlab.
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Figure 5.2: Amplitude and phase responses of the acoustic feedback paths measured on a
dummy head used in the experimental evaluation.

parameter α = 10−6 and affine combination step-size parameter: µη = 1; and for
the sSSN we chose the adaptive filter step-sizes as µ1 = 0.02 and µ2 = 0.004,
while for the speech signal we chose the adaptive filter step-sizes as µ1 = 0.002 and
µ2 = 0.0004 since the PEM was not able to perfectly decorrelated the incoming
signal and the loudspeaker signal for the speech signal. For the frequency-domain
implementation we used: adaptive filter length LĤ = 64; block length Lu = 32;
partition length P = 32; DFT-size NFFT = 128; regularization parameter α =
10−10; affine combination step-size µη = 2; adaptive filter step-sizes µ1 = 0.015
and µ2 = 0.001. For both implementations the step-sizes where chosen to results
in a similar initial convergence (µ1) and yield a low variability during steady-state
performance (µ2). For both implementations the prediction error filter ÂLP (q, k)
was of order NA = 20 and was updated every 10ms using the Levinson-Durbin
recursion (cf. Algorithm 1).

Figure 5.3 shows the results for the sSSN using the time-domain implementation.
The left column depicts the normalized misalignment and the affine combination pa-
rameter η[k], when the PEM is not used. As expected from (5.17), the time-domain
implementation is not able to track the best filter when x[k] and u[k] are highly
correlated, i.e., it follows only the fast filter and η[k] ≈ 1 most of the time. However,
if the PEM is used (right column) the affine combination scheme is well able to
track the best filter (i.e., initially the fast filter and after a while the slow filter). In
some instances the affine combination even outperforms the best filter.

Figure 5.4 shows the results in terms of the misalignment and ASG for the speech
signal using both the time-domain implementation (left column) and the PBFDAF
implementation (right column), both using the PEM. While for the time-domain
implementation the affine combination is not able to track the best filter, for the
PBFDAF implementation the affine combination is able to track the best filter and
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Figure 5.3: Normalized misalignment and affine combination parameter η[k] for the sSSN
using the time-domain implementation with and without PEM (µ1 = 0.02,
µ2 = 0.004, µη = 1, α = 10−6).

even outperforms the fast filter when the slow filter has not yet converged. This is
especially visible between 30-40s, where the misalignment (cf. Figure 5.4b) can be
decreased by about 2 dB for the affine combination, and from from 40 s to 60 s, where
the misalignment can be decreased by approximate 1 dB for the affine combination.
This indicates that the additional decorrelation achieved by the frequency-domain
processing enables the affine combination to track the best filter. Additionally, a less
fluctuating misalignment over time is achieved for the affine combination compared
to the fast filter. These results show the benefit of using the affine combination
of two adaptive filters compared to using only a single adaptive filter with a fixed
step-size.

5.3 Conclusion

In this chapter we have presented an AFC algorithm that uses the affine combi-
nation of two adaptive filters with different step-sizes in order to yield both a fast
convergence and a low steady-state misalignment of the combined filter. We have
theoretically shown that for AFC the affine combination parameter is biased when
no decorrelation is applied to the loudspeaker and the incoming signals. Simulation
results using measured acoustic feedback paths show that for speech signals the
time-domain implementation of the proposed AFC algorithm is not able to track
the best filter even when the PEM is used to decorrelate the signals. However, us-
ing the PBFDAF implementation, which provides additional decorrelation due to
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Figure 5.4: Normalized misalignment and ASG for the speech signal using the time-domain
implementation (µ1 = 0.002, µ2 = 0.0004, µη = 1 and α = 10−6) and using
the PBFDAF-based implementation (µ1 = 0.015, µ2 = 0.001, µη = 2, and
α = 10−10).

the frequency-domain processing, the combined filter is able to outperform each
individual filter in terms of misalignment and ASG.



6
ACOUSTIC FEEDBACK CANCELLATION FOR
A MULTI-MICROPHONE EARPIECE BASED
ON NULL-STEERING

While in Chapters 4 and 5 we developed methods to improve the performance
of AFC algorithms for the single-loudspeaker single-microphone (SLSM) system in
terms of convergence speed and steady-state misalignment by using either a common
part or an affine combination of two filters, in this chapter we consider the single-
loudspeaker multi-microphone (SLMM) system and present different optimization
procedures to obtain a fixed null-steering beamformer to perform feedback sup-
pression. This fixed null-steering beamformer is then combined with existing AFC
algorithms to cancel the residual feedback component in the output of the beam-
former. In particular, we apply this approach to a custom earpiece [173] (see Figure
6.1) with two closely spaced microphones and a loudspeaker in the vent and a third
microphone located in the concha. In contrast to conventional behind-the-ear hear-
ing aids, this earpiece allows to design a fixed beamformer with a spatial null in
the direction of the hearing aid loudspeaker located in the vent. Thus, the fixed
null-steering beamformer ideally cancels all signals originating from the hearing aid
loudspeaker and does not impact the incoming signal. We propose several least-
squares optimization procedures aiming to minimize the residual feedback power

This chapter is based in part on the following publications
[180] ——, “Acoustic feedback cancellation for a multi-microphone earpiece based on a null-

steering beamformer,” in Proc. International Workshop on Acoustic Signal Enhancement
(IWAENC), Xi’an, China, Sep. 2016.

[181] ——, “A robust null-steering beamformer for acoustic feedback cancellation for a multi-
microphone earpiece,” in Proc. 12th ITG Conference on Speech Communication, Paderborn,
Germany, Oct. 2016, pp. 165–169.

[182] ——, “Null-steering beamformer for acoustic feedback cancellation in a multi-microphone
earpiece optimizing the maximum stable gain,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017, pp. 341–
345.

[183] ——, “Combining null-steering and adaptive filtering for acoustic feedback cancellation in a
multi-microphone earpiece,” in Proc. European Signal Processing Conference (EUSIPCO),
Kos Island, Greece, Aug. 2017, pp. 241–245.
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Figure 6.1: Custom in-ear earpiece considered in this chapter with three microphones and
one receiver. Two microphones are in the vent (only the so-called vent micro-
phone is visible in this picture) and the third microphone is located in the
concha. The loudspeaker is located inside the vent.

and several min-max optimization procedures aiming to maximize the maximum
stable gain both using a single set of acoustic feedback path measurements. How-
ever, since the performance of the fixed null-steering beamformer may be limited for
unknown acoustic feedback paths, e.g., in the presence of a telephone receiver, when
optimized using a single set of acoustic feedback paths measurements, we propose
extensions of the null-steering beamformer that use a data-dependent regulariza-
tion and we combine the fixed robust null-steering beamformer with an adaptive
filter that aims at reducing the residual feedback component at the beamformer
output.

For the design of the null-steering beamformer, we propose different optimization
procedures that aim at either minimizing the least-squares error or aim at directly
maximizing the MSG of the hearing aid, similarly as we have proposed for the
estimation of the common part of acoustic feedback paths in Chapter 4. In or-
der to preserve the incoming signal, we introduce two different constraints. In the
first constraint the beamformer coefficients in one of the microphones are set to
be a simple delay, which does not directly control for distortions of the incoming
signal. In order to control the amount of distortions of the incoming signal, we in-
troduce a second constraint that is based on the RTF of the incoming signal. To
trade-off between feedback cancellation performance and distortions of the incom-
ing signal, we additionally propose to incorporate an RTF-based soft constraint.
Furthermore, in order to increase the robustness of the null-steering beamformer
for unknown acoustic conditions, we propose a data-dependent regularization, i.e.,
we optimize the beamformer coefficients using multiple sets of measured acoustic
feedback paths.
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Experimental results using multiple sets of measured acoustic feedback paths show
that the proposed null-steering beamformer enables to substantially reduce the
acoustic feedback while preserving a high perceptual speech quality. Furthermore,
the fixed beamformer enables to increase the ASG for unknown acoustic conditions,
i.e., after repositioning of the earpiece and with a telephone receiver close to the
ear. A comparison of the different constraints shows that a soft constraint based
on the RTF of the incoming signal yields the largest ASG. Furthermore, a compar-
ison of the two cost functions using the RTF-based soft constraint indicate that,
in general, the min-max optimization procedure yields a larger ASG compared to
the least-squares optimization procedure when the sets of acoustic feedback paths
used for the evaluation do not differ largely from the sets of acoustic feedback paths
used in the optimization. However, results comparing the least-squares and min-
max optimization procedures using a data-dependent regularization show that both
optimization procedures perform very similar for all considered constraints when
considering sets of unknown acoustic feedback paths with larger differences, e.g.,
measured in the presence of a telephone receiver. Finally, when combined with an
adaptive filter to cancel the residual feedback component in the beamformer output
the performance is complementary, i.e., the combination of an adaptive filter with
the fixed beamformer outperforms both individual components.

This chapter is organized as follows. In Section 6.1 the considered acoustic sce-
nario and general notation are introduced. In Section 6.2 several cost functions and
constraints are proposed for computing the fixed null-steering beamformer. In Sec-
tion 6.3 the fixed null-steering beamformer is evaluated using measured acoustic
feedback paths from a custom multi-microphone earpiece with three microphones
and one loudspeaker. In Section 6.4 the combination of the proposed null-steering
beamformer with an adaptive filter to reduce the residual feedback component is
presented and evaluated.

6.1 Acoustic Scenario and Notation

Consider an SLMM hearing aid system with M microphones depicted in Figure 6.2
and previously described in Section 2.1.4. We apply a fixed beamformer W(q) to the
M -dimensional microphone signal vector y[k] and aim at canceling the residual feed-
back component in the beamformer output using an adaptive filter Ĥ(q, k).

The microphone signals ym[k], m = 1, . . . ,M , in the mth microphone is the sum of
the incoming signal xm[k] and the feedback component fm[k], which can be written
in vector notation as

y[k] = x[k] + f [k], (6.1)
= x[k] + H(q, k)u[k], (6.2)

where H(q, k) is the vector of the set of acoustic feedback path transfer functions
defined in (2.42), u[k] is the loudspeaker signal, and x[k] and y[k] are defined in
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(2.39) and (2.38), respectively. Applying the fixed beamformer W(q) results in the
beamformer output signal ẽ[k], i.e.,

ẽ[k] = WT (q)y[k], (6.3)

= WT (q)x[k] + WT (q)f [k]︸ ︷︷ ︸
f̃ [k]

, (6.4)

where W(q) is the vector of the fixed beamformer weighting functions, similarly
defined as in (2.41), and f̃ [k] is the residual feedback component. The corresponding
LW -dimensional beamformer coefficient vector for the mth microphone is defined
as

wm =
[
wm,0 . . . wm,LW−1

]T
, (6.5)

and the MLW -dimensional stacked vector of beamformer coefficients is defined
as

w =
[
wT

1 . . . wT
M

]T
. (6.6)

An estimate f̂ [k] of the residual acoustic feedback component f̃ [k], computed us-
ing an adaptive filter Ĥ(q, k), is subtracted from the beamformer output signal,
i.e.,

e[k] = ẽ[k]− Ĥ(q, k)ũ[k]︸ ︷︷ ︸
f̂ [k]

. (6.7)

The loudspeaker signal is obtained by processing the error signal using the hearing
aid forward path G(q, k), i.e.,

u[k] = G(q, k)e[k]. (6.8)

The loudspeaker signal is then fed back to the microphones via the acoustic feedback
paths Hm(q, k), cf. (6.2).

Assuming that the incoming signal is composed of a single directional source s[k],
the signal vector x[k] in (2.39) can be written as

x[k] = D(q, k)s[k], (6.9)

where D(q, k) is theM -dimensional vector containing the ATFs between the source
and the M microphones, i.e.,

D(q, k) =
[
D1(q, k) . . . DM (q, k)

]T
. (6.10)

The LD-dimensional IR vector of the ATF for the mth microphone is defined
as

dm[k] =
[
dm,0[k] . . . dm,LD−1[k]

]T
. (6.11)
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Figure 6.2: Generic single-loudspeaker multi-microphone hearing aid system.

The incoming signal vector x[k] can also be defined by using the relative transfer
functions (RTFs) between a reference microphone m0 and the remaining micro-
phones and can be written as

x[k] = D̃(q, k)xm0
[k] = D̃(q, k)Dm0

(q, k)s[k], (6.12)

where D̃(q, k) is the M -dimensional vector containing the RTFs between the micro-
phones, i.e.,

D̃(q, k) =
D(q, k)

Dm0(q, k)
, (6.13)

with Dm0(q, k) the ATF between the source and the reference microphone m0. The
LD̃-dimensional IR vector of the RTF for the mth microphone is defined as

d̃m[k] =
[
d̃m,0[k] . . . d̃m,LD̃−1[k]

]T
. (6.14)

Note that the RTF defined in (6.13) is an IIR filter which in practice is only ap-
proximated using an FIR filter based on the IR vector d̃m[k].

6.2 Fixed Null-steering Beamformer Design

In this section we present several optimization procedures, i.e., combinations of cost
functions and constraints, to design a fixed null-steering beamformer, which aims
at canceling the feedback components of the loudspeaker in the microphones. In
Section 6.2.1 we first introduce the frequency-domain representation used in the
optimization procedures. In Section 6.2.2 and 6.2.3 we present the different cost
functions and the different constraints. In Section 6.2.4 we then formulate the least-
squares optimization procedures aiming to minimize the residual feedback power
and in Section 6.2.5 we formulate the min-max optimization procedures aiming to
maximize the MSG.
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To compute the fixed beamformer, in this section we assume time-invariance of
the set of acoustic feedback paths, i.e., H(q, k) = H(q), and we assume knowl-
edge of these acoustic feedback paths, e.g., by measurement. Furthermore, we as-
sume time-invariance of the ATFs between the source and the microphones, i.e.,
D(q, k) = D(q), and we assume knowledge of the ATFs or their corresponding
RTFs D̃(q).

6.2.1 Frequency-Domain Representation

The beamformer response for the acoustic feedback paths in the frequency domain
at discrete frequency ωn can be computed by applying an NFFT -point DFT to the
beamformer response in the time-domain, i.e.,

HH(ωn)W(ωn) = fT (ωn)Hw, (6.15)

where f(ωn) is the (LH + LW − 1)-dimensional vector of the NFFT -point DFT,
similarly defined as in (2.9), i.e.,

f(ωn) =
[
1 e

−j 2πn
NFFT . . . e

−j 2πn(LH−1)

NFFT

]T
, (6.16)

and H is the (LH + LW − 1) × MLW -dimensional matrix of the concatenated
(LH + LW − 1)× LW -dimensional convolution matrices Hm, i.e.,

H =
[
H1 . . . HM

]
, (6.17)

with

Hm =



hm,0 0 . . . 0

hm,1 hm,0
. . .

...
...

. . . . . .
...

hm,LW−1
. . . . . . hm,0

...
. . . . . .

...

hm,LH−1
. . . . . .

...
...

. . . . . .
...

0 . . . . . . hm,LH−1



. (6.18)

6.2.2 Cost Functions

To compute the beamformer coefficient vector w we propose two different cost
functions, aiming at either minimizing the residual feedback power or maximizing
the MSG.
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On the one hand, minimizing the residual feedback power corresponds to minimizing
the least-squares error of the beamformer, i.e., the least-squares cost function

JLS(w) = ‖Hw‖22 (6.19)

On the other hand, maximizing the MSG corresponds to minimizing the denomina-
tor in (2.57) when no adaptive filter is used, i.e., the following cost function

JMM (w) = max
ωn
|HH(ωn)W(ωn)|2 (6.20)

6.2.3 Constraints

Note that both cost functions (6.19) and (6.20) can be minimized by w = 0, which
is obviously not desired since this would result in u[k] = ẽ[k] = 0. Therefore, in
this section we present two different constraints that aim at mitigating this trivial
solution.

The first constraint sets the beamformer coefficients in the reference microphone
m0 equal to a delay of Ld samples, i.e.,

wm0 = ěLd = [ 0 . . . 0︸ ︷︷ ︸
Ld

1 0 . . . 0 ]T . (6.21)

However, note that applying this fixed delay constraint does not control for distor-
tions of the incoming signal. Therefore, we propose a second constraint that aims at
preserving the incoming signal in a reference microphone in the beamformer output,
i.e., x̃[k] = xm0 [k]. Applying the beamformer to the incoming signal x[k] in (6.9) the
beamformer output for the incoming yields x̃[k] = WT (q, k)D(q)s[k]. Similarly, this
can be done for the definition of the incoming x[k] in (6.12) using the RTFs where
the beamformer output for the incoming signal yields x̃[k] = WT (q, k)D̃(q, k)xm[k].
Hence, if the beamformer output for the RTF of the incoming signal yields a unit
(or a delayed unit) response, i.e.,

WT (q, k)D̃(q, k) = 1, (6.22)

the incoming signal is preserved. This can be formulated in the time-domain
as

D̃w = ěLd , (6.23)

with ěLd the (LD̃+LW −1)-dimensional vector of zeros and the Ldth element equal
to 1. Similarly as in (6.21), D̃ is the (LD̃ +LW − 1)×MLW -dimensional matrix of
concatenated (LD̃ + LW − 1)× LW convolution matrices D̃m, i.e.,

D̃ =
[
D̃1 . . . D̃M

]
, (6.24)

where D̃m is defined similarly as Hm in (6.18).
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6.2.4 Least-Squares Optimization

In this section we present several least-squares optimization procedures to compute
a fixed beamformer aiming to cancel the feedback contribution in the microphones.
In Section 6.2.4.1 we combine the least-squares cost function in (6.19) with the
constraint in (6.21) or (6.23). In Section 6.2.4.2 we present a method to increase
the robustness of the beamformer in the presence of unknown acoustic feedback
paths.

6.2.4.1 Optimization using a Single Measurement

By combining the least-squares cost function in (6.19) with the fixed delay constraint
in (6.21) we obtain the following linearly constrained least-squares optimization
problem

min
w

‖Hw‖22
s. t. wm0 = ěLd

(6.25a)

(6.25b)

By substituting the constraint directly in the cost function this optimization prob-
lem can be reformulated as

min
w

‖Hm0
ěLd +

M∑
m=1
m6=m0

Hmwm‖22. (6.26)

The closed-form solution of this optimization problem is given by

w̌ = −(ȞT Ȟ)−1ȞTHm0 ěLd , wm0 = ěLd , (6.27)

where w̌ is the stacked (M − 1)LW -dimensional beamformer coefficient vector of
beamformer coefficients wm, m = 1, . . . ,M , m 6= m0, similarly defined as w in
(6.6), and Ȟ is the stacked (M − 1)LW × (LH + LW − 1)-dimensional convolution
matrix of Hm, m = 1, . . . ,M , m 6= m0, similarly defined as H in (6.17).

When using the RTF constraint in (6.23) instead of the fixed delay constraint in
(6.21), this leads to similar linearly constrained least-squares problem as in (6.25),
i.e.,

min
w

‖Hw‖22

s. t. D̃w = ěLd

(6.28a)

(6.28b)

The closed-form solution to this RTF-based hard constraint optimization problem
can easily be obtained by using the method of Lagrange multipliers and is given by,
e.g., [229],

w = (HTH)−1D̃T (D̃(HTH)−1D̃T )−1ěLd . (6.29)
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While using an RTF-based hard constraint for the incoming signal avoids signal
distortions, the feedback cancellation performance of the beamformer may be lim-
ited. However, since slight distortions of the incoming signal may not be perceivable,
especially for hearing-impaired subjects, we propose to use an RTF-based soft con-
straint of the incoming signal. This allows to trade off between feedback cancellation
performance and distortions of the incoming signal. The least-squares optimization
problem can then be formulated as

min
w

‖Hw‖22 + λ‖D̃w − ěLd‖22 (6.30)

with λ a real-valued trade-off parameter. The closed-solution to this optimization
problem is given by

w = λ(HTH + λD̃T D̃)−1D̃T ěLd . (6.31)

Note that if H and D̃ have full rank, for λ → ∞ the solutions of the optimization
problems in (6.28) and (6.30) will be the same [230].

6.2.4.2 Optimization using a Data-Dependent Regularization

It should be noted that the beamformers computed using the optimization pro-
cedures in (6.25), (6.28), and (6.30) are optimized using a single set of acoustic
feedback paths H(q, k), but may yield a reduced performance for unknown sets of
acoustic feedback paths (cf. Simulations in Section 6.3.2.1). In order to increase the
robustness of the null-steering beamformers to variations in the set of acoustic feed-
back paths, we propose to optimize the average least-squares error across multiple
(I) sets of the acoustic feedback path measurements. This can be viewed as using a
data-dependent regularization.

The linearly constraint least-squares optimization problem using fixed delay con-
straint in (6.25) is then extended as

min
w

I∑
i=1

‖(H(i))w‖22

s. t. wm0 = ěLd

(6.32a)

(6.32b)

where H(i) is the convolution matrix of the acoustic feedback paths for the ith set
of measurements defined similarly as H in (6.17). Similarly as for the optimization
problem in (6.25), the optimization problem in (6.32) can be reformulated as

min
w

I∑
i=1

‖(H(i)
m0

)ěLd +

M∑
m=1
m6=m0

(H(i)
m )wm‖22. (6.33)

The closed-form solution to this optimization problem is given by

w̌ = (H̄T H̄)−1H̄T H̄m0
ěLd , wm0

= ěLd , (6.34)
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where H̄ is the (LW + LH − 1)I × (M − 1)LW -dimensional matrix of stacked and
concatenated convolution matrices H

(i)
m , m = 1, . . . ,M , m 6= m0, i = 1, . . . , I in

(6.18) and H̄m0
is the (LW +LH−1)I×LW -dimensional matrix of stacked matrices

(H
(i)
m0), i = 1, . . . , I.

Similarly as in (6.28), for the RTF-based hard constraint the optimization problem
using a data-dependent regularization can then be formulated using multiple (J)
RTF constraints, e.g., to constraint multiple incoming signal directions, as

min
w,i

I∑
i=1

‖(H(i))Tw‖22

s. t. D̃(j)w = ěLd ∀j = 1, . . . , J

(6.35a)

(6.35b)

where the convolution matrix D̃(j) for the jth RTF measurement is defined similarly
as D̃ in (6.24).

The closed-form solution of this optimization problem is given by

w = (H̃T H̃)−1D̄T (D̄(H̃T H̃)−1D̄T )−1ēLd , (6.36)

where H̃ is the (LW +LH − 1)I ×MLW -dimensional matrix of stacked convolution
matrices H(i), i = 1, . . . , I in (6.17) and D̄ is the J(LD̃+LW−1)×MLW -dimensional
stacked convolution matrix of D̃(j), j = 1, . . . , J , and ēLd is the J(LD̃ + LW − 1)-
dimensional vector of stacked vectors ěLd .

Similarly as in (6.30), in order to provide a trade-off between feedback cancella-
tion and distortions of the incoming signal, we use an RTF-based soft constraint
using multiple RTFs instead of the hard constraints in (6.35) leading to the linearly
constrained least-squares optimization problem

min
w

I∑
i=1

‖(H(i))Tw‖22 + λ

J∑
j=1

‖D̃(j)w − ěLd‖22 (6.37)

The closed-form solution of this optimization problem is given by

w = λ(H̃T H̃ + λD̄T D̄)−1D̄T ēLd . (6.38)

Note that if H̃ and D̃ have full rank, for λ → ∞ the solutions of the optimization
problems in (6.35) and (6.37) will be the same [230]. Furthermore, for I = J = 1
the optimization problem presented in this section are equivalent to those presented
in Section 6.2.4.

6.2.5 Maximum Stable Gain Optimization

Instead of minimizing the residual feedback power using the least-squares optimiza-
tion procedures in Section 6.2.4, in this section we formulate the optimization of
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the null-steering beamformer to directly maximize the MSG. In Section 6.2.5.1 we
formulate the optimization problem by combining the cost function in (6.20) and
use either the constraint in (6.21) or (6.23). In Section 6.2.5.2 we present a method
to increase the robustness of the beamformer in the presence of unknown acoustic
feedback paths.

6.2.5.1 Optimization using a Single Measurement

By combining the least-squares cost function in (6.20) with the fixed delay constraint
in (6.21), we obtain a linearly constrained min-max optimization problem as

min
t,w

max
ωn
|HH(ωn)w(ωn)|2

subject to wm0
= ěLd

(6.39a)

(6.39b)

Contrary to the least-squares optimization problem in (6.25), this min-max op-
timization problem does not have closed-form solution. By introducing the non-
negative auxiliary variable t [213], the optimization problem in (6.39) can be refor-
mulated as

min
t,w

t (6.40a)

subject to |HH(ωn)W(ωn)|2 ≤ t (6.40b)
wm0

= ěLd . (6.40c)

Similarly as in Section 4.4.2, by recognizing (6.40b) as a Schur complement [83],
the optimization problem in (6.40) can be formulated as the following semidefinite
programming (SDP) problem

min
t,w

t (6.41a)

subject to

 t p(ωn) q(ωn)

p(ωn) 1 0

q(ωn) 0 1

 � 0,∀ωn (6.41b)

wm0 = ěLd , (6.41c)

where p(ωn) and q(ωn) denote the real and the imaginary part of the residual
beamformer error, i.e.,

p(ωn) = Re{HH(ωn)W(ωn)}, (6.42)

q(ωn) = Im{HH(ωn)W(ωn)}. (6.43)

The SDP problem in (6.41) can then be solved using existing convex optimization
tools, e.g., as implemented in the convex optimization toolbox CVX [214, 215]. How-
ever, with an increasing number of frequencies and/or number of measurements (cf.
the optimization procedures in Section 6.2.5.2 using multiple measurements) it can-
not be exactly solved using existing optimization tools due to the increasingly large
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scale of the optimization problem [214]. Therefore, similarly as in Section 4.4.1, us-
ing the real rotation theorem [217] (cf. Appendix C) we propose to approximate
the optimization problem in (6.41) as an linear programming (LP) with arbitrarily
small approximation error. Using the real rotation theorem [217] the aim is to ap-
proximate the minimization of the absolute value by projecting the complex residual
beamformer error onto a rotating complex pointer using a finite set of rotation an-
gles. The optimization problem in (6.40) can thus be approximated as the following
LP problem

min
t,w

t (6.44a)

subject to p(ωn) cosφl + q(ωn) sinφl ≤ t, ∀ωn, φl (6.44b)
wm0 = ěLd , (6.44c)

with φl the lth rotation angle, l = 1, . . . , Nφ. The approximation error when using
(6.44) depends on the choice of Nφ [217] and is bounded for, e.g., a choice of Nφ = 4
to approximately 3 dB and for Nφ = 16 to approximately 0.17 dB.

The design of the null-steering beamformer using the RTF-based hard constraint in
(6.23) can be formulated as the following linearly constrained min-max optimization
problem

min
t,w

max
ωn
|HH(ωn)W(ωn)|2

s. t. D̃w = ěLd .

(6.45a)

(6.45b)

Using the real rotation theorem the optimization problem in (6.45) can be formu-
lated as the LP problem

min
t,w

t (6.46a)

s. t. p(ωn) cosφl + q(ωn) sinφl ≤ t,∀ωn, φl (6.46b)

D̃w = ěLd (6.46c)

Similarly as for the least-squares optimization procedure, using a RTF-based hard
constraint of the incoming signal avoids signal distortions of the incoming signal
but may limit the MSG (cf. Simulation results in Section 6.3.3.1). Incorporating an
RTF-based soft constraint into the optimization problem can be achieved as

min
t,ζ,w

t+ ζ

subject to |HH(ωn)W(ωn)|2 ≤ t ∀ωn
λ‖D̃w − ěLd‖22 ≤ ζ

(6.47a)

(6.47b)

(6.47c)

with ζ a second auxiliary variable and λ a real-valued trade-off parameter. Note
that for λ → ∞ it can be expected that the optimization problems in (6.45) and
(6.47) yield similar solutions.
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Using the real rotation theorem [217], the optimization problem in (6.47) can be
approximated as a quadratic program with quadratric constraints (QPQC), i.e.,

min
t,ζ,w

t+ ζ (6.48a)

s. t. p(ωn) cosφl + q(ωn) sinφl ≤ t,∀ωn, φl (6.48b)

λ‖D̃w − ěLd‖22 ≤ ζ. (6.48c)

6.2.5.2 Optimization using a Data-Dependent Regularization

While the null-steering beamformers computed using the optimization problems in
(6.44), (6.46), and (6.48) maximize the MSG for the acoustic feedback path included
in the optimization, they may not be robust to changes of the acoustic feedback
paths. In order to increase the robustness to variations, we propose to optimize the
overall MSG defined similarly as in (4.16), i.e.,

M̄ = min
i
Mi, (6.49)

where the MSG for the ith measurement is defined in (2.57). Using a similar inter-
pretation as for the least-squares optimization, we consider this as a data-dependent
regularization by considering multiple (I) set of measurements of the acoustic feed-
back paths.

For the fixed delay constraint, the linearly constrained min-max optimization prob-
lem in (6.39) is extended to

min
w

max
ωn,i
|(H(i))H(ωn)W(ωn)|2

subject to wm0 = ěLd .

(6.50a)

(6.50b)

where H(i)(ωn) is the vector containing the frequency response of the acoustic
feedback paths for the ith measurement.

Similarly as the optimization problem in (6.39), the optimization problem in (6.50)
can be approximated as an LP problem using the real rotation theorem, i.e.,

min
t,w

t (6.51a)

subject to p(i)(ωn) cosφl + q(i)(ωn) sinφl ≤ t, ∀ωn, φl, i = 1, . . . , I (6.51b)
wm0 = ěLd (6.51c)

where p(i)(ωn) and q(i)(ωn) denote the real and the imaginary part of the residual
beamformer error for the ith measurement, defined similarly as p(ωn) and q(ωn) in
(6.42) and (6.43), respectively.
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When using the RTF-based hard constraint we additionally also aim at avoiding
distortions of the incoming signal by considering multiple (J) RTF measurements.
The linearly constrained min-max optimization problem in (6.46) is then extended
to

min
w

max
ωn,i
|(H(i))H(ωn)W(ωn)|2

subject to D̃(j)w = ěLd j = 1, . . . , J

(6.52a)

(6.52b)

Similarly as the optimization problem in (6.45), the optimization problem in (6.52)
can be approximated as an LP problem using the real rotation theorem, i.e.,

min
t,w

t (6.53a)

subject to p(i)(ωn) cosφl + q(i)(ωn) sinφl ≤ t, ∀i, ωn, φl (6.53b)

D̃(j)w = ěLd j = 1, . . . , J (6.53c)

Finally, the soft-constrained optimization problem in (6.47) can be extended to
multiple sets of acoustic feedback path measurements and multiple sets of RTF
measurements for the incoming signal as

min
t,ζ,w

t+ ζ

subject to |(H(i))H(ωn)W(ωn)|2 ≤ t ∀ωn, i = 1, . . . , I

λ‖D̃(j)w − ěLd‖22 ≤ ζ j = 1, . . . , J

(6.54a)

(6.54b)

(6.54c)

Note that for λ → ∞ it can be expected that the optimization problems in (6.45)
and (6.47) yield similar solutions. Similarly as the optimization problem in (6.47),
the optimization problem in (6.54) can be reformulated as a QPQC problem using
the real rotation theorem, i.e.,

min
t,ζ,w

t+ ζ (6.55a)

subject to p(i)(ωn) cosφl + q(i)(ωn) sinφl ≤ t, ∀ωn, φl, i = 1, . . . , I
(6.55b)

λ‖D̃(j)w − ěLd‖22 ≤ ζ, j = 1, . . . , J. (6.55c)

6.3 Experimental Evaluation

In this section the least-squares optimization procedures minimizing the residual
feedback power (cf. Section 6.2.4) and the min-max optimization procedures max-
imizing the MSG (cf. Section 6.2.5) are experimentally evaluated using measured
acoustic feedback paths. In Section 6.3.1 the used acoustic setup, the considered
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performance measures as well as the algorithmic parameters are introduced. In Sec-
tion 6.3.2 the results for the least-squares optimization procedures are presented
and the different constraints are compared in terms of their optimal performance
and robustness to variations of the acoustic feedback paths. In Section 6.3.3 the
results for the min-max optimization procedures are presented and the different
constraints are compared for the same experiments as for the least-squares opti-
mization procedures. Results indicate that the RTF-based soft constraint yields the
largest ASG for both the least-squares optimization as well as the min-max optimiza-
tion. In Section 6.3.4 the results of both the least-squares optimization procedures
and the min-max optimization procedures are compared where results indicate that
generally the min-max optimization procedures outperform the least-squares opti-
mization procedures. Note that the null-steering beamformer is combined with an
adaptive filtering algorithm in Section 6.4.

6.3.1 Acoustic Setup and Performance Measures

Acoustic feedback paths and ATFs for the incoming signal were measured for the
custom three-microphone earpiece schematically depicted in Figure 6.3 on a dummy
head with adjustable ear canals [218] (d = 7mm, l = 20mm). The IRs were sampled
at fs = 16000Hz and truncated to length LH = 100 for the acoustic feedback paths
and LD = 3000 for the ATFs of the incoming signal. Measurements were performed
in an acoustically treated chamber (T60 ≈ 300ms) and the distance between the
external source and the dummy head was approximately 1.2m. The acoustic feed-
back paths and ATFs were measured without any obstruction close to the dummy
head and with a telephone receiver in close distance. In total these measurements
were repeated 10 times after repositioning of the earpiece. This resulted in a total
of 20 different sets of acoustic feedback path measurements (2 acoustic conditions
× 10 repetitions). Figure 6.4 shows exemplary amplitude responses of the mea-
sured acoustic feedback paths for the three microphones and for different acoustic
conditions. Furthermore, the ATFs of the incoming were measured for the frontal
direction, resulting in a total of 20 different sets of ATF measurements (2 acoustic
conditions × 10 repetitions).

We evaluate the performance of the null-steering beamformer in terms of its feedback
cancellation performance as well as in terms of the distortions of the incoming
speech signal. In order to evaluate the feedback cancellation performance, we use
the ASG as defined in (2.58) using the MSG in (2.57). To evaluate the distortions
introduced in the incoming speech signal due to the null-steering beamformer we
use the PESQ measure [192]. More in particular, the speech quality of the output
signal of the null-steering beamformer ẽ[k] is evaluated using the incoming signal
xm0

[k] in the reference microphone m0 as a reference signal. Note that in order
to avoid any influence of the feedback component on the PESQ measure, we set
G(q, k) = 0 when computing the PESQmeasure, i.e., the loudspeaker signal u[k] = 0.
As incoming signal we used a speech signal consisting of 26 sentences spoken by 4
different speakers from the TIMIT database [231], resulting in an 80 s long signal.
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y3[k]

y2[k]

y1[k]

W(q)

G(q, k)Ĥ(q, k)

u[k]

−
+ẽ[k] e[k]

Figure 6.3: Considered hearing aid setup with a single loudspeaker and three microphones
using a fixed beamformer W(q) and an adaptive filter Ĥ(q, k).

For computational reasons only the first 10 s of this signal where used to compute
the PESQ measure in the following experiments.

For all experiments the reference microphone m0 = 2 was used, i.e., the microphone
located at the outer phase of the vent (cf. the schematic overview in Figure 6.3).
This choice provides a natural position for sound pickup since it also captures a
significant part of the head-related transfer function. For M = 2 microphones we
chose m = 1, 2 and for M = 3 microphones we chose m = 1, 2, 3. Note that the
acoustic feedback paths for the concha mircophone (m = 3) is influenced much
stronger than m = 1, 2 when an object is close to the ear (cf. Figure 6.4). When
using the fixed delay constraint in (6.21) we chose Ld = LW /2, while when using
the RTF-based constraint for the incoming signal in (6.23) we used LD̃ = 8, Ld = 0.
Furthermore, for the extended optimization procedures we only consider a single
set of RTF measurements of the incoming signal, i.e., J = 1. When using the
proposed min-max optimization to obtain the beamformer coefficients, we used
NFFT = 2048 and the number of rotation angles when applying the real rotation
theorem was chosen as Nφ = 16, resulting in a maximum approximation error of
0.17 dB. The trade-off parameter λ ∈ {10−16, 10−15, . . . , 104} in the RTF-based
soft constraint optimization procedures was chosen such that the resulting PESQ
MOS score differed by a maximum of 0.5 from the corresponding hard-constraint
optimization procedure for the considered set of acoustic feedback paths used in the
optimization1.

1 Note that although a maximum difference of 0.5 was considered, the resulting difference in the
PESQ MOS scores may be (much) smaller than 0.5 since only a limited set of trade-off parameters
λ was considered.
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Figure 6.4: Amplitude responses of three sets of measured acoustic feedback paths. Con-
tinuous lines show a set of acoustic feedback paths measured in free-field, i.e.,
without any obstruction, dashed-dotted lines show an exemplary set of acoustic
feedback paths measured after repositioning of the earpiece, and dashed lines
show a set of acoustic feedback paths measured in the presence of a telephone
receiver.

6.3.2 Least-Squares Optimization

In this section we evaluate the performance and the robustness of the different least-
squares optimization procedures presented in Section 6.2.4 in terms of their feedback
cancellation performance as well as in terms of the distortions of the incoming sig-
nal. First, in Section 6.3.2.1 we investigate the performance of the optimization
procedures using a single measurement presented in Section 6.2.4.1. Second, in Sec-
tion 6.3.2.2 we investigate the performance of the optimization procedures using a
data-dependent regularization presented in Section 6.3.2.2.

6.3.2.1 Optimization using a Single Measurement

In this section we consider the null-steering beamformers computed using the least-
squares optimization procedures using a single measurement, i.e., (6.25) using the
fixed delay constraint, (6.28) using the RTF-based hard constraint, and (6.30) using
the RTF-based soft constraint.

In the first experiment the optimal performance is investigated, i.e., when the same
set of acoustic feedback paths is used for optimization and for evaluation. In the
second and third experiment we investigate the robustness to variations of the in-
ternal sound field, i.e., variations in the hearing aid position, as well as variations
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in the external sound field, i.e., when a telephone receiver is positioned close to the
ear.

experiment 1: optimal performance
In the first experiment we investigate the optimal performance of the null-steering
beamformers using feedback paths measured in free-field. For each of the 10 available
sets of acoustic feedback paths measured in free-field the beamformer coefficient
vector w was computed, resulting in 10 different beamformers. For each of the
beamformers the average performance measures (ASG, PESQ) were computed by
averaging these measures over the same sets of acoustic feedback path measurements
that were used in the optimization.

Figure 6.5 depicts the results for the average ASG (Figure 6.5(a)) and the average
PESQ MOS scores (Figure 6.5(b)). From Figure 6.5(a) it can be observed that,
in general, the average ASG increases with increasing number of beamformer co-
efficients LW and that using M = 3 microphones leads to a larger average ASG
compared to using M = 2 microphones. It should be noted that the optimal per-
formance in this first experiment can reach extremely large ASG values of more
than 120 dB, which are of course not possible in practice (cf. Experiment 2 and 3
for more realistic conditions). The largest average ASG of approximately 123 dB is
achieved using the RTF-based soft constraint (LW = 48, M = 3). When comparing
the different constraints, forM = 2 the RTF-based hard constraint leads to the low-
est average ASG of approximately 12 dB to 14 dB. The fixed delay constraint leads
to a larger average ASG of approximately 24 dB to 47 dB and the RTF-based soft
constraint leads to the largest average ASG of approximately 48 dB to 68 dB. For
M = 3 the fixed delay constraint leads to the lowest average ASG of approximately
50 dB to 65 dB. The RTF-based hard constraint leads to a larger average ASG of
65 dB to 86 dB and the RTF-based soft constraint leads to the largest average ASG
of approximately 85 dB to 123 dB.

From Figure 6.5(b) it can be observed that the average PESQ MOS scores are
larger than 4.1, indicating a high perceptual quality and, thus, low distortions of the
incoming signal. The highest scores are obtained for the RTF-based hard constraint,
which is expected since this constraint directly aims at preserving the incoming
signal. However, note that the PESQ MOS scores are not perfect since the RTF is an
IIR filter that is only approximated using an FIR filter, as mentioned in Section 6.1.
Furthermore, the largest variations are observed for the RTF-based soft constraint
which is due to the selection procedure of the regularization parameter.

In summary, these results indicate that the null-steering beamformers computed
using the proposed least-squares optimization procedures, in general, result in a
very good feedback cancellation performance for the considered custom earpiece.
In particular, the fixed null-steering beamformer is able to achieve extremely large
ASG values in optimal conditions while maintaining a low distortion of the incom-
ing signal, where the best performance is achieved when using the RTF-based soft
constraint.
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Figure 6.5: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the optimal performance (Experiment 1) of the least-squares
optimization procedures using a single measurement for different constraints
and number of microphones. Errorbars indicate minimum and maximum ASG
and PESQ MOS scores, respectively. Note that to improve visibility the PESQ
MOS scores have been slightly offset.
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experiment 2: robustness to internal variations
In the second experiment the robustness of the null-steering beamformers against
internal sound field variations is evaluated, since it has been shown that only small
changes of the hearing aid position may alter the acoustic feedback path [232]. Sim-
ilarly as in Experiment 1, for each of the 10 available sets of acoustic feedback
paths measured in free-field a different null-steering beamformer is computed. To
evaluate the robustness, for each of the 10 beamformers the average performance
measures (ASG, PESQ) were computed by averaging these measures over the re-
maining 9 sets of acoustic feedback path measurements that were not used in the
optimization.

Figure 6.6 depicts the results for the average ASG (Figure 6.6(a)) and the average
PESQ MOS scores (Figure 6.6(b)). From Figure 6.6(a) it can be observed that, in
general, using M = 3 microphones leads to a larger average ASGs compared to
using M = 2 microphones. Furthermore, the performance appears to be rather con-
stant for different values of LW . Similarly as in Experiment 1, the largest average
ASG of up to approximately 55 dB is achieved when using the RTF-based soft con-
straint (LW = 32, M = 3). When comparing the different constraints, for M = 2
the RTF-based hard constraint leads to the lowest average ASG of approximately
13 dB to 14 dB. The fixed delay constraint leads to a larger average ASG of ap-
proximately 23 dB to 26 dB and the RTF-based soft constraint leads to the largest
ASG of approximately 34 dB to 37 dB. For M = 3 the fixed delay constraint leads
to the lowest average ASG of approximately 24 dB to 25 dB. The RTF-based hard
constraint leads to a larger average ASG of approximately 38 dB to 46 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 51 dB
to 55 dB.

In summary, although the robust performance for internal variations is generally
reduced compared to the optimal performance depicted in Figure 6.5, the obtained
average ASG values are still large for all considered conditions. This indicates that
the beamformer coefficients obtained from the least-squares optimization procedures
using only a single measurement can be used when small changes in the acoustic
feedback paths occur. Furthermore, as shown in Figure 6.6(b), the average PESQ
MOS scores are larger than 4.0, indicating a high perceptual quality of the incoming
signal.

experiment 3: robustness to internal and external varia-
tions
In the third experiment the robustness of the null-steering beamformers against in-
ternal and external sound field variations is evaluated. Similarly as in Experiments
1 and 2, for each of the 10 available sets of acoustic feedback paths measured in free-
field a null-steering beamformer was computed. To evaluate the robustness, for each
of the 10 beamformers the average performance measures (ASG, PESQ) were com-
puted by averaging these measures over the remaining 9 sets of acoustic feedback
path measured with a telephone receiver in close distance. Thus, this experiment
includes both internal and external sound field variations.
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Figure 6.6: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance for internal variations (Experiment 2)
of the least-squares optimization procedures using a single measurement for
different constraints and number of microphones. Errorbars indicate minimum
and maximum ASG and PESQ MOS scores, respectively. Note that to improve
visibility the PESQ MOS scores have been slightly offset.
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Figure 6.7 depicts the results for the average ASG (Figure 6.7(a)) and the average
PESQ MOS scores (Figure 6.7(b)). From Figure 6.7(a) it can be observed that, in
general, using M = 3 microphones leads to larger average ASG compared to using
M = 2 microphones. Similarly as in Experiments 1 and 2, the largest average ASG
of approximately 49 dB is achieved using the RTF-based soft constraint (LW = 32,
M = 3). When comparing the different constraints, for M = 2 the RTF-based
hard constraint leads to the lowest average ASG of approximately 13 dB to 14 dB.
The fixed delay constraint leads to a larger average ASG of approximately 23 dB
to 26 dB and the RTF-based soft constraint leads to the largest average ASG of
approximately 34 dB to 38 dB. For M = 3 the fixed delay constraint leads to the
lowest average ASG of approximately 17 dB to 20 dB. The RTF-based hard con-
straint leads to a larger average ASG of approximately 36 dB to 41 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 46 dB
to 49 dB.

Although the robust performance considering both internal and external sound field
variations is generally reduced compared to only considering internal sound field
variations (cf. Figure 6.6), the obtained results can still be considered large. Fur-
thermore, as shown in Figure 6.7(b) the average PESQ MOS scores are larger than
4.0, indicating a high perceptual quality of the incoming signal.

In summary, using the least-squares optimization procedures using only a single
measurement a large average ASG of up to approximately 49 dB (LW = 32,M = 3)
can be achieved without significantly distorting the incoming signal, even consider-
ing internal and external variations of the acoustic feedback paths. Furthermore, a
minimum ASG of approximately 37 dB can be obtained for this specific choice of pa-
rameters (LW = 32, M = 3). However, note that there is a significant spread of the
obtained results, indicating that although a large average ASG can be achieved, the
performance may vary significantly for different unknown acoustic feedback paths
(e.g., by approximately 20 dB for LW = 32, M = 3 when using the RTF-based soft
constraint).

6.3.2.2 Optimization using a Data-Dependent Regularization

In this section we consider the null-steering beamformers computed using the least-
squares optimization procedures with data-dependent regularization, i.e., (6.32) us-
ing the fixed delay constraint, (6.35) using the RTF-based hard constraint, and
(6.37) using the RTF-based soft constraint.

Similarly to the evaluation of the null-steering beamformer optimization procedures
using only a single measurement in Section 6.3.2.1, in the first experiment the op-
timal performance of the null-steering beamformers is investigated. In the second
and third experiment we investigate the robustness to variations of the internal
sound field as well as variations of the external sound field. While in Section 6.3.2.1
only a single measurement, i.e., I = 1, was used to compute the beamformer co-
efficient vectors, in this section the number of measurements is larger, i.e., I > 1.
More specifically, in the first experiment we use I = 10 and in the second and third
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Figure 6.7: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance for internal and external variations (Ex-
periment 3) of the least-squares optimization procedures using a single measure-
ment for different constraints and number of microphones. Errorbars indicate
minimum and maximum ASG and PESQ MOS scores, respectively. Note that
to improve visibility the PESQ MOS scores have been slightly offset.
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experiment we use I = 9. Note that the results obtained in this section are not
directly comparable to the results presented in Section 6.3.2.1 since the average per-
formance measures are computed differently, e.g., they do not use the same number
of acoustic feedback path measurements.

experiment 1: optimal performance
In the first experiment we investigate the optimal performance of the null-steering
beamformers using feedback paths measured in free-field. The beamformer coeffi-
cient vector w was computed using all 10 sets of acoustic feedback paths measured
in free-field, resulting in a single beamformer. The average performance measures
(ASG, PESQ) were computed by averaging these measures over the same sets of
acoustic feedback path measurements that were used in the optimization.

Figure 6.8 depicts the results for the average ASG (Figure 6.8(a)) and the average
PESQ MOS scores (Figure 6.8(b)). From Figure 6.8(a) it can be observed that, in
general, the average ASG increases when using M = 3 microphones compared to
using M = 2 microphones. Furthermore, there is a general trend that a larger LW
leads to a larger average ASG. The largest average ASG of approximately 64 dB is
achieved using the RTF-based soft constraint (LW = 16, M = 3). When comparing
the different constraints, for M = 2 the RTF-based hard constraint leads to the
lowest average ASG of approximately 14 dB. The fixed delay constraint leads a larger
average ASG of approximately 24 dB to 29 dB and the RTF-based soft constraint
leads to the largest average ASG of approximately 47 dB. ForM = 3 the fixed delay
constraint leads to the lowest average ASG of approximately 30 dB to 31 dB. The
RTF-based hard constraint leads to a larger average ASG of approximately 50 dB
to 51 dB and the RTF-based soft constraint leads to the largest average ASG of
approximately 64 dB.

From Figure 6.8(b) it can be observed that the average PESQ MOS scores are
always larger than 4.1. As for the least-squares optimization using only a single
measurement, the RTF-based hard constraint leads to the highest perceptual qual-
ity.

In summary, these results indicate that, in general, the proposed null-steering beam-
formers computed using the least-squares optimization procedures using a data-
dependent regularization result in a very good feedback cancellation performance.
In particular, in optimal conditions the null-steering beamformers significantly in-
crease the ASG while they do not significantly impact the perceptual quality of the
incoming signal, where the best performance is achieved when using the RTF-based
soft constraint.

experiment 2: robustness to internal variations
Similarly as in Section 6.3.2.1, in the second experiment the robustness of the pro-
posed null-steering beamformers to internal sound field variations is evaluated. For
each of the 10 available sets of acoustic feedback paths measured in free-field a
different null-steering beamformer is computed using the remaining I = 9 sets of
acoustic feedback path measurements. To evaluate the robustness, for each of the
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Figure 6.8: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the optimal performance (Experiment 1) of the least-squares op-
timization procedures using a data-dependent regularization for different con-
straints and number of microphones. Errorbars indicate minimum and maxi-
mum ASG and PESQ MOS scores, respectively. Note that to improve visibility
the PESQ MOS scores have been slightly offset.
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10 beamformers the average performance measures (ASG, PESQ) were computed
for the set of acoustic feedback paths that was not used in the optimization, i.e.,
using a leave-one-out cross validation approach.

Figure 6.9 depicts the results for the average ASG (Figure 6.9(a)) and the average
PESQ MOS scores (Figure 6.9(b)). From Figure 6.9(a) it can be observed that,
in general, using M = 3 microphones leads to a larger average ASG compared
to using M = 2 microphones. Furthermore, the performance appears to be rather
constant for different values of LW . Similarly as in Experiment 1, the largest average
ASG of approximately 63 dB is achieved when using the RTF-based soft constraint
(LW = 16, M = 3). When comparing the different constraints, for M = 2 the RTF-
based hard constraint leads to the lowest average ASG of approximately 14 dB to
15 dB. The fixed delay constraint leads to a larger average ASG of approximately
23 dB to 28 dB and the RTF-based soft constraint leads to the largest average ASG
of approximately 46 dB. For M = 3 the fixed delay constraint leads to the lowest
average ASG of approximately 29 dB to 30 dB. The RTF-based hard constraint leads
to a larger average ASG of approximately 42 dB to 45 dB and the RTF-based soft
constraint leads to the largest average ASG of approximately 63 dB.

In summary, although the robust performance for internal variations is generally
reduced compared to the optimal performance depicted in Figure 6.8, the obtained
average ASG values are still large for all considered conditions. This indicates that
the null-steering beamformers obtained from the least-squares optimization using a
data-dependent regularization are robust to small changes in the acoustic feedback
paths. Furthermore, as shown in Figure 6.9(b), the average PESQ MOS scores are
larger than 4.1, indicating a high perceptual quality of the incoming signal.

experiment 3: robustness to internal and external varia-
tions
Similarly as in Section 6.3.2.1, in the third experiment the robustness of the null-
steering beamformers to internal and external sound field variations is evaluated.
Similarly as in Experiment 2, for each of the 10 available sets of acoustic feedback
paths measured in free-field a different beamformer is computed using the remain-
ing I = 9 sets of acoustic feedback path measurements. However, instead of using
the sets of free-field feedback path measurements for evaluation, here we used the
corresponding sets of acoustic feedback paths measured with a telephone receiver
in close distance. Thus, this experiment includes both internal and external sound
field variations.

Figure 6.10 depicts the results for the average ASG (Figure 6.10(a)) and the average
PESQ MOS scores (Figure 6.10(b)). From Figure 6.10(a) it can be observed that,
in general, using M = 3 microphones leads to a larger average ASG compared to
using M = 2 microphones. Furthermore, there is a general trend that a larger LW
leads to a larger ASG. Similarly as in Experiments 1 and 2, the largest average ASG
of approximately 55 dB dB is achieved for the RTF-based soft constraint (LW = 16,
M = 3). When comparing the different constraints, for M = 2 the RTF-based hard
constraint leads to the lowest average ASG of approximately 15 dB. The fixed delay



6.3 experimental evaluation 133

16 32 48

0  

20 

40 

60 

80 

100

L
W

A
S

G
 / 

dB

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(a) ASG.

16 32 48

3.7

3.8

3.9

4  

4.1

4.2

4.3

4.4

4.5

L
W

P
E

S
Q

 M
O

S

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(b) PESQ.

Figure 6.9: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance to internal variations (Experiment 2) of
the least-squares optimization procedures using a data-dependent regulariza-
tion for different constraints and number of microphones. Errorbars indicate
minimum and maximum ASG and PESQ MOS scores, respectively. Note that
to improve visibility the PESQ MOS scores have been slightly offset.
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constraint leads to a larger average ASG of approximately 23 dB to 27 dB and
the RTF-based soft constraint leads to the largest average ASG of approximately
45 dB. For M = 3 the fixed delay constraint leads to the lowest average ASG of
approximately 26 dB to 27 dB. The RTF-based hard constraint leads to a larger
average ASG of approximately 38 dB to 41 dB and the RTF-based soft constraint
leads to the largest average ASG of approximately 54 dB to 55 dB.

Although the robust performance considering both internal and external sound-
field variations is generally reduced compared to only considering internal sound
field variations (cf. Figure 6.9), the obtained results can still be considered large.
Furthermore, as shown in Figure 6.10(b) the average PESQ MOS scores are larger
than 4.1, indicating a high perceptual quality of the incoming signal.

In summary, using the least-squares optimization procedures using a data-dependent
regularization a larger average ASG of up to 55 dB (LW = 16, M = 3) can be
achieved without significantly distorting the incoming signal, even for internal and
external variations of the acoustic feedback paths. Furthermore, a minimum ASG of
approximately 52 dB can be obtained for this specific choice of parameters (LW = 16,
M = 3). It should be noted that compared to using only a single measurement
there is only a small spread of the obtained results, indicating that a large average
performance can be achieved without significant variations for different unknown
acoustic feedback paths (e.g., approximately 6 dB for LW = 16, M = 3 when using
the RTF-based soft constraint).

6.3.3 Min-Max Optimization

Similarly as for the least-squares optimization procedures in Section 6.3.2, in this
section we evaluate the performance and the robustness of the different min-max
optimization procedures presented in Section 6.2.5 in terms of their feedback cancel-
lation performance as well as in terms of the distortions of the incoming signal. First,
in Section 6.3.3.1 we investigate the performance of the optimization procedures us-
ing a single measurement presented in Section 6.2.5.1. Second, in Section 6.3.3.2 we
investigate the performance of the optimization procedures using a data-dependent
regularization presented in Section 6.2.5.2.

6.3.3.1 Optimization using a Single Measurement

In this section we consider the null-steering beamformers computed using the min-
max optimization procedures using a single measurement, i.e., (6.39) using the fixed
delay constraint, (6.45) using the RTF-based hard constraint, and (6.47) using the
RTF-based soft constraint.

We perform the same experiments as for the least-squares optimization procedures in
Section 6.3.2.1, i.e., in the first experiment we investigate the optimal performance of
the null-steering beamformers and in the second and third experiment we investigate
the robustness to variations of the internal and external sound field.



6.3 experimental evaluation 135

16 32 48

0  

20 

40 

60 

80 

100

L
W

A
S

G
 / 

dB

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(a) ASG.

16 32 48

3.7

3.8

3.9

4  

4.1

4.2

4.3

4.4

4.5

L
W

P
E

S
Q

 M
O

S

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(b) PESQ.

Figure 6.10: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance to internal and external variations
(Experiment 3) of the least-squares optimization procedures using a data-
dependent regularization for different constraints and number of microphones.
Errorbars indicate minimum and maximum ASG and PESQ MOS scores, re-
spectively. Note that to improve visibility the PESQ MOS scores have been
slightly offset.
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experiment 1: optimal performance
In the first experiment we investigate the optimal performance of the proposed null-
steering beamformers using feedback paths measured in free-field. For each of the
10 available sets of acoustic feedback path measurements the beamformer coefficient
vector w was computed, resulting in 10 different beamformers. For each of the 10
beamformers the average performance measures (ASG, PESQ) were computed by
averaging these measures over the same sets of acoustic feedback path measurements
that were used in the optimization.

Figure 6.11 depicts the results for the average ASG (Figure 6.11(a)) and the average
PESQ MOS scores (Figure 6.11(b)). From Figure 6.11(a) it can be observed that,
in general, the average ASG increases with increasing number of the beamformer
coefficients LW and that using M = 3 microphones leads to a larger average ASG
compared to usingM = 2 microphones. It should be noted that, similarly as for the
least-squares optimization procedures in Figure 6.5(a), the optimal performance in
this first experiment can reach extremely large average ASG values of more than
130 dB, which are of course not possible in practice (cf. Experiment 2 and 3 for more
realistic conditions) The largest average ASG of approximately 137 dB is achieved
using the RTF-based soft constraint (LW = 48, M = 3). When comparing the
different constraints, for M = 2 the RTF-based hard constraint leads to the lowest
average ASG of approximately 17 dB to 18 dB. The fixed delay constraint leads
to a larger average ASG of approximately 27 dB to 51 dB and the RTF-based soft
constraint leads to the largest average ASG of approximately 50 dB. For M = 3
the fixed delay constraint leads to the lowest average ASG of approximately 52 dB
to 68 dB. The RTF-based hard constraint leads to a larger average ASG of 68 dB
to 91 dB and the RTF-based soft constraint leads to the largest average ASG of
approximately 89 dB to 137 dB.

From Figure 6.11(b) it can be observed that the average PESQ MOS scores are
larger than 4.1, indicating a high perceptual quality and, thus, low distortions of
the incoming signal. Similarly as in Experiment 1 in Section 6.3.2.1, the highest
scores are obtained for the RTF-based hard constraint, which is expected since
this constraint directly aims at preserving the incoming signal. Furthermore, the
largest variations are observed for the RTF-based soft constraint, which is due to
the selection procedure of the regularization parameter.

In summary, these results indicate that the null-steering beamformers computed
using the proposed min-max optimization procedures, in general, results in a very
good feedback cancellation performance. Similarly as for the least-squares optimiza-
tion procedures in Section 6.3.2.1, in optimal conditions the min-max optimization
procedures achieve extremely large ASG values while maintaining a low distortion
of the incoming signal, where the best performance is achieved when using the
RTF-based soft constraint. Note that a comparison of the optimal performance
of the least-squares and min-max optimization procedures is presented in Section
6.3.4.1.



6.3 experimental evaluation 137

16 32 48
0  

20 

40 

60 

80 

100

120

140

L
W

A
S

G
 / 

dB

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(a) ASG.

16 32 48

3.7

3.8

3.9

4  

4.1

4.2

4.3

4.4

4.5

L
W

P
E

S
Q

 M
O

S

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(b) PESQ.

Figure 6.11: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the optimal performance (Experiment 1) of the min-max opti-
mization procedures using a single measurement for different constraints and
number of microphones. Errorbars indicate minimum and maximum ASG and
PESQ MOS scores, respectively. Note that to improve visibility the PESQ
MOS scores have been slightly offset.
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experiment 2: robustness to internal variations
Similarly as in Section 6.3.2.1, in the second experiment the robustness of the null-
steering beamformers to internal sound field variations is evaluated. Similarly as in
Experiment 1, for each of the 10 available sets of acoustic feedback paths measured in
free-field a different beamformer is computed and for each beamformer the average
performance measures (ASG, PESQ) are computed by averaging these measures
over the remaining 9 sets of acoustic feedback path measurements that were not
used in the optimization.

Figure 6.12 depicts the results for the average ASG (Figure 6.12(a)) and the average
PESQ MOS scores (Figure 6.12(b)). From Figure 6.12(a) it can be observed that, in
general, usingM = 3 microphones leads to a larger average ASG compared to using
M = 2 microphones. Furthermore, in general, the performance appears to be rather
constant for different values of LW . Similarly as in Experiment 1, the largest average
ASG of approximately 50 dB is achieved when using the RTF-based soft constraint
(LW = 32, M = 3). When comparing the different constraints, for M = 2 the RTF-
based hard constraint leads to the lowest average ASG of approximately 13 dB to
14 dB. The fixed delay constraint leads to a larger average ASG of approximately
22 dB to 26 dB and the RTF-based soft constraint leads to the largest average ASG
of approximately 34 dB to 35 dB. For M = 3 the fixed delay constraint leads to
the lowest average ASG of approximately 17 dB to 24 dB. The RTF-based hard
constraint leads to a larger average ASG of approximately 36 dB to 41 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 47 dB
to 50 dB.

In summary, although the robust performance for internal variations is generally
reduced compared to the optimal performance depicted in Figure 6.11, the obtained
ASG values are still large for all considered conditions. This indicates that, similarly
as for the least-squares optimization procedures in Section 6.3.2.1, the beamformer
coefficients obtained from the min-max optimization procedures using only a single
measurement can be used when only small changes in the acoustic feedback paths
occur. Furthermore, as shown in Figure 6.12(b) the average PESQ MOS scores are
larger than 4.1, indicating a high perceptual quality of the incoming signal.

experiment 3: robustness to internal and external varia-
tions
Similarly as in Experiment 3 in Section 6.3.2.1, in the third experiment the robust-
ness of the null-steering beamformers to internal and external sound field variations
is evaluated. Similarly as in Experiments 1 and 2, for each of the 10 available
sets of acoustic feedback paths measured in free-field a null-steering beamformer is
computed. Similarly as in Experiment 3 in Section 6.3.2.1, to evaluate the robust-
ness, for each of the 10 different beamformers the average performance measures
(ASG, PESQ) were computed by averaging these measures over the remaining 9
sets of acoustic feedback path measurements with a telephone receiver in close
distance. Thus, this experiment includes both internal and external sound field vari-
ations.
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Figure 6.12: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance for internal variations (Experiment 2) of
the min-max optimization procedures using a single measurement for different
constraints and number of microphones. Errorbars indicate minimum and
maximum ASG and PESQ MOS scores, respectively. Note that to improve
visibility the PESQ MOS scores have been slightly offset.
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Figure 6.13 depicts the results for the average ASG (Figure 6.13(a)) and the average
PESQ MOS scores (Figure 6.13(b)). From Figure 6.13(a) it can be observed that,
in general, using M = 3 microphones leads to a larger average ASG compared
to using M = 2 microphones. Similarly as in Experiments 1 and 2, the largest
average ASG of approximately 45 dB is achieved using the RTF-based soft constraint
(LW = 16, M = 3). When comparing the different constraints, for M = 2 the RTF-
based hard constraint leads to the lowest average ASG of approximately 13 dB to
14 dB. The fixed delay constraint leads to a larger average ASG of approximately
21 dB to 26 dB and the RTF-based soft constraint leads to the largest average ASG
of approximately 34 dB to 35 dB. For M = 3 the fixed delay constraint leads to
the lowest average ASG of approximately 10 dB to 17 dB. The RTF-based hard
constraint leads to a larger average ASG of approximately 34 dB to 39 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 43 dB
to 45 dB.

Although the robust performance considering both internal and external variations
is generally reduced compared to only considering internal sound field variations
(cf. Figure 6.12), the obtained results can still be considered large. Furthermore,
as shown in Figure 6.13(b) the average PESQ MOS scores are larger than 4.1,
indicating a high perceptual quality of the incoming signal.

In summary, similarly as for the least-squares optimization procedures in Section
6.3.2.1, using the null-steering beamformers computed based on the min-max opti-
mization procedure using only a single measurement a large average ASG of up to
approximately 45 dB (LW = 16, M = 3) can be achieved without significantly dis-
torting the incoming signal, even considering internal and external variations of the
acoustic feedback path. Furthermore, a minimum ASG of approximately 26 dB can
be obtained for this specific choice of parameters (LW = 16,M = 3). However, note
that there is a significant spread of the obtained results, indicating that although
a large average performance can be achieved, the performance may vary signifi-
cantly for different unknown acoustic feedback paths (e.g., approximately 28 dB for
LW = 16, M = 3 when using the RTF-based soft constraint).

6.3.3.2 Optimization using a Data-Dependent Regularization

In this section we consider the null-steering beamformers computed using the min-
max optimization procedures using a data-dependent regularization presented in
Section 6.2.5.2, i.e., (6.50) using the fixed delay constraint, (6.52) using the RTF-
based hard constraint, and (6.54) using the RTF-based soft constraint.

We perform the same experiments as for the least-squares optimization procedures
using a data-dependent regularization in Section 6.3.2.2, i.e., in the first experiment
we investigate the optimal performance of the null-steering beamformers and in
the second and third experiment we investigate the robustness of the null-steering
beamformers to variations of the internal and external sound field. Similarly as in
Section 6.3.2.2, in the first experiment we use I = 10 and in the second and third
experiment we use I = 9.



6.3 experimental evaluation 141

16 32 48

0  

20 

40 

60 

80 

100

L
W

A
S

G
 / 

dB

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(a) ASG.

16 32 48

3.4

3.5

3.6

3.7

3.8

3.9

4  

4.1

4.2

4.3

4.4

4.5

L
W

P
E

S
Q

 M
O

S

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(b) PESQ.

Figure 6.13: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance for internal and external variations (Ex-
periment 3) of the min-max optimization procedures using a single measure-
ment for different constraints and number of microphones. Errorbars indicate
minimum and maximum ASG and PESQ MOS scores, respectively. Note that
to improve visibility the PESQ MOS scores have been slightly offset.
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experiment 1: optimal performance
Similarly as in Experiment 1 in Section 6.3.2.2, in the first experiment we investigate
the optimal performance of the null-steering beamformers using feedback paths
measured in free-field. The beamformer coefficient vector w was computed using all
10 sets of feedback paths measured in free-field, resulting in a single beamformer.
The average performance measures (ASG, PESQ) were computed by averaging these
measures over the same sets of acoustic feedback path measurements that were used
in the optimization.

Figure 6.14 depicts the results for the average ASG (Figure 6.14(a)) and the average
PESQ MOS scores (Figure 6.14(b)). From Figure 6.14(a) it can be observed that,
in general, the average ASG increases when using M = 3 microphones compared to
using M = 2 microphones. Furthermore, there is a general trend that the average
ASG is similar for different values of LW . The largest average ASG of approximately
55 dB is achieved using the RTF-based soft-constraint (LW = 48, M = 3). When
comparing the different constraints, for M = 2 the RTF-based hard constraint
leads to the lowest average ASG of approximately 13 dB to 14 dB. The fixed delay
constraints leads a larger average ASG of approximately 20 dB to 26 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 36 dB.
For M = 3 the fixed delay constraint leads to the lowest average ASG of approx-
imately 28 dB. The RTF-based hard constraint leads to a larger average ASG of
approximately 47 dB and the RTF-based soft constraint leads to the largest average
ASG of approximately 55 dB.

From Figure 6.14(b) it can be observed that the average PESQ MOS scores are
always larger than 3.9. Similarly as for the min-max optimization using only a
single measurement in Section 6.3.3.1, the RTF-based hard constraint leads to the
highest perceptual quality.

In summary, similarly as for the least-squares optimization procedures using a data-
dependent regularization in Section 6.3.2.2, these results indicate that the proposed
null-steering beamformers computed using the min-max optimization procedures
using a data-dependent regularization result in a very good feedback cancellation
performance. In particular, in optimal conditions the null-steering beamformers
significantly increase the average ASG while they do not significantly impact the
perceptual quality of the incoming signal, where the best performance is achieved
when using the RTF-based soft constraint.

experiment 2: robustness to internal variations
Similarly as in Sections 6.3.3.1, in the second experiment the robustness of the
null-steering beamformers to internal sound field variations is evaluated. Similarly
as in Section 6.3.2.2, for each of the 10 available sets of acoustic feedback paths
measured in free-field a different null-steering beamformer is computed using the
remaining I = 9 sets of acoustic feedback path measurements. To evaluate the
robustness, for each of the 10 beamformers the performance measures (ASG, PESQ)
were computed for the set of acoustic feedback path measurements that was not used
in the optimization, i.e., using a leave-one-out cross validation approach.
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Figure 6.14: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the optimal performance (Experiment 1) of the min-max opti-
mization procedures using a data-dependent regularization for different con-
straints and number of microphones. Errorbars indicate minimum and maxi-
mum ASG and PESQMOS scores, respectively. Note that to improve visibility
the PESQ MOS scores have been slightly offset.



144 feedback cancellation based on null-steering

Figure 6.15 depicts the results for the average ASG (Figure 6.15(a)) and the average
PESQ MOS scores (Figure 6.15(b)). From Figure 6.15(a) it can be observed that, in
general, usingM = 3 microphones leads to a larger average ASG compared to using
M = 2 microphones. Furthermore, there is a general trend that a larger LW leads
to a larger average ASG. Similarly as in Experiment 1, the largest average ASG
of approximately 62 dB is achieved using the RTF-based soft constraint (LW = 48,
M = 3). Comparing the different constraints, for M = 2 the RTF-based hard
constraint leads to the lowest average ASG of approximately 14 dB. The fixed delay
constraint leads to a larger average ASG of approximately 20 dB to 25 dB and the
RTF-based soft constraint leads to the largest average ASG of approximately 35 dB
to 36 dB. For M = 3 the fixed delay constraint leads to the lowest average ASG
of approximately 27 dB to 28 dB. The RTF-based hard constraint leads to a larger
average ASG of 39 dB to 43 dB and the RTF-based soft constraint leads to the
largest average ASG of approximately 52 dB to 62 dB.

In summary, although the robust performance considering internal variations is gen-
erally reduced compared to the optimal performance depicted in Figure 6.14, the
obtained average ASG values are still large for all considered conditions. This indi-
cates that the null-steering beamformers obtained from the min-max optimization
using the data-dependent regularization are robust to small changes in the acoustic
feedback paths. However, it should be noted that compared to Experiment 1, the
ASG variations are significantly larger, e.g., they were approximately 3 dB to 8 dB
in Experiment 1 and may be as large as 24 dB in this experiment. Furthermore,
as shown in Figure 6.15(b), the average PESQ MOS scores are larger than 4.0,
indicating a high perceptual quality of the incoming signal.

experiment 3: robustness to internal and external varia-
tions
Similarly as in Sections 6.3.3.1, in the third experiment the robustness of the null-
steering beamformers to internal and external sound field variations is evaluated.
Similarly as in Experiment 2, for each of the 10 available sets of acoustic feedback
paths measured in free-field a different beamformer is computed using the remain-
ing I = 9 sets of acoustic feedback path measurements. However, instead of using
the sets of free-field feedback path measurements for evaluation, here we used the
corresponding set of acoustic feedback paths measured with a telephone receiver in
close distance. Thus, this condition includes both internal and external sound field
variations.

Figure 6.16 depicts the results for the average ASG (Figure 6.16(a)) and the average
PESQ MOS scores (Figure 6.16(b)). From Figure 6.16(a) it can be observed that, in
general, usingM = 3 microphones leads to a larger average ASG compared to using
M = 2 microphones. Furthermore, there is a general trend that a larger LW leads to
a larger average ASG. Similarly as in Experiment 1 and 2, the largest average ASG
of approximately 56 dB is achieved using the RTF-based soft constraint (LW = 48,
M = 3). When comparing the different constraints, for M = 2 the RTF-based hard
constraint leads to the lowest average ASG of approximately 14 dB. The fixed delay
constraint leads to a larger average ASG of approximately 20 dB to 24 dB and the



6.3 experimental evaluation 145

16 32 48

0  

20 

40 

60 

80 

100

L
W

A
S

G
 / 

dB

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(a) ASG.

16 32 48

3.7

3.8

3.9

4  

4.1

4.2

4.3

4.4

4.5

L
W

P
E

S
Q

 M
O

S

Fixed M=2
Fixed M=3
RTF hard M=2
RTF hard M=3
RTF soft M=2
RTF soft M=3

(b) PESQ.

Figure 6.15: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance to internal variations (Experiment 2) of
the min-max optimization procedures using a data-dependent regularization
for different constraints and number of microphones. Errorbars indicate min-
imum and maximum ASG and PESQ MOS scores, respectively. Note that to
improve visibility the PESQ MOS scores have been slightly offset.
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RTF-based soft constraint leads to the largest average ASG of up to approximately
35 dB. For M = 3 the fixed delay constraint leads to the lowest average ASG of
approximately 21 dB to 22 dB. The RTF-based hard constraint leads to an larger
average ASG of approximately 37 dB to 40 dB and the RTF-based soft constraint
leads to the largest average ASG of approximately 47 dB to 56 dB.

Although the robust performance considering both internal and external sound field
variations is generally reduced compared to only considering internal sound field
variations (cf. Figure 6.15), the obtained results can still be considered large. Fur-
thermore, as shown in Figure 6.16(b) the average PESQ MOS scores are larger than
4.0, indicating a high perceptual quality of the incoming signal.

In summary, similarly as for the least-squares optimization procedures in Section
6.3.2.2, using the min-max optimization procedures using a data-dependent regular-
ization a large average ASG of up to approximately 57 dB (LW = 48, M = 3) can
be achieved without significantly distorting the incoming signal, even for internal
and external variations of the acoustic feedback paths. Furthermore, a minimum
ASG of approximately 37 dB can be obtained for this specific choice of parameters
(LW = 48,M = 3). It should be noted that except for the RTF-based soft constraint
there is a small spread of the obtained results, indicating that a large average ASG
can be achieved without significant variations for different unknown acoustic feed-
back paths (e.g., generally a spread of approximately 10 dB is observed).

6.3.4 Comparison of Least-Squares and Min-Max Optimization

In the previous sections the null-steering beamformers computed using either the
least-squares or the min-max optimization procedures have been investigated sepa-
rately with respect to their ability to cancel acoustic feedback and the distortions
introduced in the incoming signal. In this section we compare the performance of
both the least-squares and the min-max optimization procedures for the different
proposed constraints. Specifically, we consider the results from Experiment 1 for
the optimization procedures using a single measurement (cf. Section 6.3.2.1 and
6.3.3.1) as well as the results from Experiments 1 and 3 for the optimization proce-
dures using a data-dependent regularization (cf. Section 6.3.2.2 and 6.3.3.2). Since
all considered null-steering beamformers lead to a high perceptual quality as indi-
cated by PESQ MOS scores larger than 3.9, in this section we only consider the
ASG.

6.3.4.1 Optimization using a Single Measurement

For Experiment 1 (optimal performance) Figure 6.17 compares the average ASG
of the least-squares and min-max optimization procedures using only a single mea-
surement for the different constraints for M = 2 and M = 3. On the one hand,
when using either the fixed delay constraint or the RTF-based hard constraint the
min-max optimization procedure outperforms the least-squares optimization proce-
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Figure 6.16: Average ASG and PESQ MOS scores as a function of the beamformer length
LW , showing the robust performance to internal and external variations (Ex-
periment 3) of the min-max optimization procedures using a data-dependent
regularization for different constraints and number of microphones. Errorbars
indicate minimum and maximum ASG and PESQ MOS scores, respectively.
Note that to improve visibility the PESQMOS scores have been slightly offset.
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dure. For M = 2 these improvements are approximately 4 dB to 5 dB, while for
M = 3 they are approximately 3 dB to 5 dB. Furthermore, the overall ASG, i.e.,
the minimum ASG the minimum ASG indicated by the lower error-bar, are in a
similar range as the average ASG. On the other hand, when using the RTF-based
soft constraint the performance is sometimes better for the min-max optimization
procedure (LW = 16 and LW = 32 for M = 2 and LW = 16 and LW = 48 for
M = 3), while sometimes the performance is better for the least-squares optimiza-
tion procedure (LW = 48 for M = 2 and LW = 32 for M = 3). This is most
likely due to the process used to select the trade-off parameter in the soft constraint
optimization (cf. Section 6.3.1).

In summary, these results show that by formulating the computation of the null-
steering beamformer using only a single measurement as a min-max optimization
procedure aiming to directly maximize the MSG (and hence the ASG), an increased
feedback cancellation performance can be achieved compared to formulating the
computation of the null-steering as a least-squares optimization procedure aiming
to minimize the residual feedback power.

6.3.4.2 Optimization using a Data-Dependent Regularization

In this section we compare the results of Experiments 1 and 3 for the least-squares
and the min-max optimization procedures using a data-dependent regularization.
This comparison provides insights into the optimal performance (Experiment 1) and
the robust performance considering internal and external variations of the acoustic
feedback paths (Experiment 3).

experiment 1: optimal performance
In terms of the optimal performance, Figure 6.18 compares the average ASG of the
least-squares and the min-max optimization procedures using a data-dependent reg-
ularization for the different constraints for M = 2 and M = 3. As can be observed,
the least-squares optimization procedures outperform the min-max optimization
procedures in terms of the average ASG for all considered constraints. However,
it should be recalled that the min-max optimization aims at maximizing the over-
all MSG, i.e., the minimum MSG of multiple sets of acoustic feedback paths, and
hence the overall ASG. When using the fixed delay constraint or the RTF-based
hard constraint, the min-max optimization procedure generally outperforms the
least-squares optimization procedure by approximately 2 dB to 3 dB in terms of the
overall ASG (indicated by the lower whisker of the errorbar). However, similarly
as for the optimization procedures using only a single measurement (cf. Section
6.3.4.1), when using the RTF-based soft constraint the overall ASG is larger for the
least-squares optimization procedure than for the min-max optimization procedure.
This is again most likely due to the selection of the trade-off parameter in the soft
constraint optimization.

In summary, these results show that by formulating the computation of the null-
steering beamformer using multiple measurements of the acoustic feedback as a
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Figure 6.17: Average ASG as a function of the beamformer length LW , showing the opti-
mal performance (Experiment 1) of the least-squares optimization procedures
(LS) and min-max optimization procedures (MM) using only single measure-
ment for different constraints and number of microphones. Errorbars indicate
minimum and maximum ASG.
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min-max optimization procedure aiming to directly maximize the overall MSG (and
hence the overall ASG), an increased feedback cancellation performance can be
achieved compared to formulating the computation of the null-steering as a least-
squares optimization procedure aiming to minimize the residual feedback power.

experiment 3: robustness to internal and external varia-
tions
When considering both internal and external sound field variations, Figure 6.19
compares the average ASG of least-squares and the min-max optimization proce-
dures for the different constraints for M = 2 and M = 3. As can be observed, the
least-squares optimization procedure outperforms the min-max optimization proce-
dure in terms of the average ASG for all considered constraint. However, similarly
as for the comparison of Experiment 1, for M = 2 the min-max optimization proce-
dures outperform the least-squares optimization procedures in terms of the overall
ASG (indicated by the lower whisker of the errorbar). For the fixed delay con-
straint the min-max optimization procedure leads to an overall ASG improvement
of approximately 1 dB to 2 dB compared to the least-squares optimization proce-
dure. Similarly, for the RTF-based hard constraint the min-max optimization leads
to an overall ASG improvement of approximately 3 dB to 4 dB compared to the
least-squares optimization procedure. In contrast, for M = 3 the least-squares opti-
mization procedures outperform the min-max optimization procedures with overall
ASG improvements of approximately 1 dB to 3 dB for the fixed delay constraint
and approximately 2 dB to 4 dB for the RTF-based hard constraint. This can most
likely be explained by the fact that when using M = 3 microphones (including the
microphone located in the concha) external variations have a larger influence (cf.
exemplary amplitude responses in Figure 6.4). Furthermore, similarly as for Exper-
iment 1, using the RTF-based soft constraint leads to a larger overall ASG for the
least-squares optimization procedure compared to the min-max optimization proce-
dure. This is again most likely due to the selection procedure for trade-off parameter
in the soft constraint optimization.

In summary, these results show that, as expected, in terms of the optimal perfor-
mance a larger overall ASG is generally obtained by the min-max optimization
procedures aiming to directly maximize the MSG compared to the least-squares
optimization procedures aiming to minimize the residual feedback power. However,
when analyzing the robustness to internal and external sound field variations, the
results are mixed, where for M = 2 the min-max optimization procedures generally
lead to the best performance, while for M = 3 the least-squares optimization pro-
cedures generally lead to the best performance. Hence, generally all optimization
procedure lead to very good feedback cancellation performance, where depending on
the number of microphones either the min-max optimization procedures (forM = 2)
or the least-squares optimization procedures (for M = 3) should be chosen.
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Figure 6.18: Average ASG as a function of the beamformer length LW , showing the opti-
mal performance (Experiment 1) of the least-squares optimization procedures
(LS) and min-max optimization procedures (MM) using a data-dependent reg-
ularization for different constraints and number of microphones. Errorbars
indicate minimum and maximum ASG.
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Figure 6.19: Average ASG as a function of the beamformer length LW , showing the robust
performance (Experiment 3) of the least-squares optimization procedures (LS)
and min-max optimization procedures (MM) using a data-dependent regular-
ization for different constraints and number of microphones. Errorbars indi-
cate minimum and maximum ASG.
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6.4 Combined Null-Steering and Adaptive Feedback Cancellation

Although the results in the previous section showed that a large ASG can be
achieved using a fixed null-steering beamformer based on the optimization proce-
dures using a data-dependent regularization, the performance may still be increased
by using an additional adaptive feedback canceller. Therefore, in this section we con-
sider the combination of a fixed null-steering beamformer with an AFC algorithm
as shown in Figure 6.2. The aim of the adaptive feedback canceller Ĥ(q, k) is to
reduce the residual feedback component f̃ [k] in the beamformer output signal ẽ[k].
In order to reduce the bias in the solution of the adaptive filter (cf. Section 3.2) due
to the closed-loop system [102, 104], we consider two different adaptive filter imple-
mentations to decorrelate the loudspeaker and microphone signals: 1) the delayless
subband adaptive filtering [195, 196] (cf. Section 3.3.1) and 2) the prediction-error-
method (PEM) [14, 104] (cf. Section 3.3.2).

6.4.1 Experimental Evaluation

In the experimental evaluation we compare the performance of combining the fixed
null-steering beamformer and an AFC algorithm with using only an AFC algorithm
and using only the fixed null-steering beamformer. In particular, we investigate a
challenging acoustic scenario with a time-varying broadband gain G(q, k).

We consider the same acoustic feedback paths and speech signals as in Section 6.3
and used M = 2 microphones. Note that in contrast to the evaluations performed
in Section 6.3 we used the complete 80 s of the speech signal. The acoustic feed-
back paths used for the simulations was the first set measured in free-field (which
was not included in the optimization of the beamformer, see below), which was
switched instantaneously after 40 s to the corresponding set measured with a tele-
phone receiver in close distance. The forward path of the hearing aid was set to
G(q, k) = |G(q, k)|q−dG with dG = 96 corresponding to a delay of 6ms and |G(q, k)|
the magnitude of the time-varying broadband gain.

The null-steering beamformer was obtained from 9 out of the 10 free-field measure-
ments using the least-squares optimization procedure with data-dependent regular-
ization using the fixed delay constraint and the following parameters were chosen:
beamformer length LW = 16; number of microphonesM = 2 and fixed delay Ld = 8.
The parameters of both adaptive filtering algorithms were chosen to yield similar
initial convergence. The parameters of the subband adaptive filter (SB) were chosen
as: number of subbands Ms = 32; decimation factor Ds = 16; subband filter length
Ls = 4; step-size µ = 0.003; regularization parameter α = 10−6; an 128-point DFT
was used to obtain the corresponding fullband filter of length LĤ = 64. The param-
eters of the PEM-based fullband adaptive filter (FB-PEM) were chosen as: filter
length LĤ = 64; step-size µ = 0.002; regularization parameter α = 10−6. The order
of the prediction-error filter was chosen as NÂ = 20 and the prewhitening filter
ÂLP (q, k) was computed using the Levinson-Durbin recursion (cf. Algorithm 1) ev-
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Figure 6.20: ASG results of two adaptive filtering algorithms (FB-PEM and SB) and
their combination with the fixed null-steering beamformer (FB-PEM+BF and
SB+BF) for an exemplary time-varying broadband gain G(q, k) indicated by
the read line. approximately 25 dB overcritical. MSGbf denotes the MSG
using only the fixed null-steering beamformer alone.

ery 10ms from the most recent 10ms of the error signal e[k], similarly as proposed
in [78].

Figure 6.20 depicts ASG results for both adaptive filtering algorithms (SB and
FB-PEM) and their combination with the fixed null-steering beamformer (SB+FB
and FB-PEM+BF), where the red line indicates the time-varying broadband gain.
The time-varying broadband gain starts with the MSG of the fixed null-steering
beamformer (MSGbf) and finally reaches the target gain G0 for the last 10 s of the
signal. The target gain G0 is approximately 25 dB overcritical, i.e., the hearing aid
is stable without processing for gains that are approximately 25 dB lower than G0.
As can be observed for this exemplary time-varying broadband gain, all considered
AFC systems perform very similar. Note that due to the choice of the overcritical
target gain G0 the null-steering beamformer alone yields an unstable system after
10 s and is thus not shown. It should be noted that the change of the acoustic
feedback paths after 40 s is small due to the physical design of the earpiece.

To compare both adaptive filtering algorithms and their combination with the fixed
null-steering beamformer for different overcritical target gains G0, Figure 6.21 de-
picts the distribution of the time-dependent effective closed-loop gain (ECLG) com-
puted using (2.63) from the last 10 s of the speech signal where the target gain
G0 is applied. For four different overcritical target gains G0 Figure 6.21 depicts the
distributions of the ECLG using boxplots. As can be observed for lower target gains
(15 dB to 35 dB) all systems lead to a stable performance, i.e., the ECLG < 0 dB.
No major differences are observed between both AFC algorithms, with a slightly
better performance when using the FB-PEM compared to the SB (both alone and
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Figure 6.21: Exemplary ECLG results for different overcritical gains.

for the combination FB-PEM+BF), which will hence be used in the remainder of
the evaluation. For the largest considered target gain G0 (45 dB) the combination of
the null-steering beamformer with an AFC algorithm (FB-PEM+BF and SB+BF)
leads to a stable system, while using only using an AFC algorithm (FB-PEM and
SB) leads to an unstable system as indicated by the median ECLG > 0dB.

To evaluate the additional benefit of combining the fixed null-steering beamformer
with an AFC algorithm in comparison to using only an AFC algorithm or using
only the fixed null-steering beamformer, we compute the median ECLG for different
overcritical gains for the fixed null-steering beamformer, the FB-PEM algorithm and
the FB-PEM+BF combination. Figure 6.22 depicts the median ECLG as a function
of the overcritical gain. Note that the median values of the FB-PEM algorithm
and the FB-PEM+BF combination shown in Figure 6.22 for overcritical gains of
15 dB, 25 dB, 35 dB, and 45 dB correspond to those shown in Figure 6.21. As can be
observed, when using only the null-steering beamformer the system only remains
stable for overcritical gains of up to 14 dB. This can be related to the average
ASG results shown in Figure 6.10 (the chosen beamformer leads to the performance
indicated by the lower whisker of the errorbar). When using only the FB-PEM, the
system remains stable for overcritical gains of up to approximately 40 dB, while
the combination of the fixed null-steering beamformer and FB-PEM remains stable
for overcritical gains of up to approximately 55 dB showing the advantage of this
combination.

In summary, these results show that combining the fixed null-steering beamformer
and an AFC algorithm enables to outperform both individual algorithms in terms of
their feedback cancellation performance. In particular, for the considered scenario
the combination of the fixed null-steering beamformer and the FB-PEM algorithm
additionally achieving approximately 15 dB in ASG compared to using only the
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FB-PEM algorithm. This improvement is approximately the same as the ASG that
could be achieved by only using the fixed null-steering beamformer.

6.5 Summary

In this chapter we proposed to suppress acoustic feedback for a custom multi-
microphone in-ear earpiece using a fixed null-steering beamformer and investigated
its combination it with an adaptive filter to cancel the residual feedback component
in the beamformer output. We proposed several optimization procedures to obtain
the filter coefficients of the fixed null-steering beamformer, either aiming at min-
imizing the residual feedback power or at maximizing the MSG. Minimization of
the residual feedback power can be formulated as a least-squares optimization proce-
dure, while maximization of the MSG can be formulated as a min-max optimization
procedure. In order to prevent the trivial solution, we proposed two different con-
straint, where the first constraint sets the beamformer coefficients in a reference
microphone to a delay, while the second constraint aims at preserving the incom-
ing signal in the beamformer output based on the RTF of the incoming signal. We
proposed to incorporate the RTF-based constraint either using a hard constraint
aiming to completely avoid distortions of the incoming signal or as a soft constraint
trading off between distortions of the incoming signal and feedback cancellation per-
formance. The trade-off parameter in the soft constraint optimization was selected
such that the quality of the incoming speech signal is degraded at most by 0.5
PESQ MOS scores compared to the hard constraint optimization. To increase the
robustness of the null-steering beamformers to variations of the acoustic feedback
paths, we presented optimization procedures that take into account multiple sets of
measurements using a data-dependent regularization.
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Experimental results using measured acoustic feedback paths from a custom multi-
microphone in-ear earpiece show that by using a fixed null-steering beamformer the
ASG can be robustly increased by more than 50 dB without significantly degrad-
ing the sound quality of the incoming signal as indicated by PESQ MOS scores
larger than 4.0. Results indicate that even if only a single set of measurements
is used for the optimization a large performance in terms of the ASG can be ob-
tained, while a more robust performance can be obtained when using multiple sets
of measurements in the optimization. Generally, the best feedback cancellation per-
formance is achieved when using the RTF-based soft constraint, followed by the
RTF-based hard constraint and the fixed delay constraint. Furthermore, when using
a data-dependent regularization the min-max optimization procedures maximizing
the MSG generally outperform the least-squares optimization procedures minimiz-
ing the residual feedback power. It should be realized that the results obtained in
this chapter are specific to the custom multi-microphone in-ear earpiece and the
performance for a different physical design may be different.

To further improve the performance of the fixed null-steering beamformer we pro-
posed to combine the fixed null-steering beamformer with an AFC algorithm aiming
to cancel the residual feedback component in the beamformer output. Experimen-
tal results show that for the considered scenario the improvement of the combina-
tion enables to outperform both individual algorithms in terms of their feedback
cancellation performance. In particular, the improvement of the combination com-
pared to using only an AFC algorithm is approximately the same as the ASG that
could be achieved by only using the fixed null-steering beamformer, indicating the
both approaches are complementary in terms of their feedback cancellation perfor-
mance.





7
CONCLUSION & OUTLOOK

In this chapter the main contributions of this thesis are summarized and an outlook
for future research directions is provided.

7.1 Conclusion

In hearing aids acoustic feedback occurs due to the coupling between the loud-
speaker and the microphone(s), resulting in a the closed-loop acoustical system.
This often leads to annoying howling or whistling. Therefore, the main objective of
this thesis was to develop improved algorithms for acoustic feedback suppression in
hearing aids. The main contributions were threefold: first, in order to reduce the
computational complexity and increasing the convergence speed of existing AFC
algorithms we propose several optimization procedures to decompose the acoustic
feedback path into a fixed common filter and time-varying variable filter(s). Second,
we showed that the performance of an existing AFC algorithm can be increased by
using an affine combination of the output of two adaptive filters aiming to model
the acoustic feedback path with different step-sizes. Third, we proposed several op-
timization procedure to design a null-steering beamformer to cancel the acoustic
feedback in a custom multi-microphone earpiece.

In order to reduce the number of adaptive parameters and thus improve the perfor-
mance of AFC algorithms in terms of computational complexity and convergence
speed, in Chapter 4 we proposed several optimization procedures to obtain a com-
mon pole-zero filter from several acoustic feedback paths. Instead of using an exist-
ing common all-zero or common all-pole filter, we showed how a common pole-zero
filter and the corresponding variable part filters can be obtained by either mini-
mizing the misalignment using different least-squares optimization procedures or
maximizing the MSG using different min-max optimization procedures. To approxi-
mate the desired output-error minimization, we incorporated the Steiglitz-McBride
iteration into the optimization procedure. In order to guarantee stability of the es-
timated common pole-zero filter, we proposed to incorporate two different stability
constraints. The first constraint was based on the positive realness of the frequency
response of the all-pole component of the pole-zero filter, providing a sufficient but
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not necessary condition for stability. The second constraint was based on Lyapunov
theory, providing a sufficient and necessary condition for stability. Using measured
acoustic feedback paths from a two-microphone BTE hearing aid we showed three
main results:

1. The proposed common pole-zero filter outperforms the existing common all-
zero and common all-pole filter in terms of the normalized misalignment and
ASG as well as the reduction of variable part parameters.

2. Using a common pole-zero filter the number of adaptive parameters can be
robustly reduced while maintaining a desired misalignment or MSG even for
unknown acoustic feedback paths.

3. When integrated into a state-of-the-art AFC using the PEM, the common
pole-zero filter allows to improve the convergence speed of the AFC algorithm.

Furthermore, as expected, the proposed least-squares optimization procedures out-
perform the min-max optimization procedures in terms of the misalignment, while
the min-max optimization procedures outperform the least-squares optimization
procedures in terms of the MSG. Additionally, the constraint based on Lyapunov
theory leads to an increased performance compared to using the constraint based
on the positive realness of the frequency response. We experimentally showed that
this is due to the more restricted solution space when using the positive realness
constraint compared to the constraint based on Lyapunov theory.

While in Chapter 4 the aim was to improve the convergence speed by reducing the
number of adaptive filter coefficients, in Chapter 5 we proposed to use an affine
combination of two adaptive filters with different step-sizes in order to allow for an
automatic selection of the step-size in AFC algorithms. The large step-size allows
for an increased convergence speed and tracking capabilities for rapidly changing
acoustic feedback paths, while the small step-size allows for a small misalignment for
slowly varying acoustic feedback paths. We proposed two different implementations
of the affine combination, namely a time-domain implementation and a PBFDAF-
based implementation. For the time-domain implementation we theoretically showed
that the solution of the affine combination parameter is usually biased. In order to
reduce the bias, we proposed to use the PEM algorithm as well as a PBFDAF-based
implementation. Using measured acoustic feedback paths from a two-microphone
BTE hearing aid we showed three main results:

1. For an sSSN the PEM mitigates the bias, while for a real speech signals the
bias is still present in the time-domain implementation.

2. The bias for a real speech signal can be reduced when using the PBFDAF-
based implementation.

3. The affine combination using the PBFDAF-based implementation outper-
forms an AFC algorithm using the PEM and PBFDAF using either only the
large or only the small step-size.
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While in Chapters 4 and 5 we proposed different methods to improve the perfor-
mance of AFC algorithms, in Chapter 6 we proposed to use a fixed null-steering
beamformer to cancel the acoustic feedback for a multi-microphone earpiece. Sim-
ilarly as in Chapter 4, we propose several least-squares optimization procedures
aiming to minimize the residual feedback power and min-max optimization proce-
dures aiming to maximize the ASG to compute the beamformer coefficients. In order
to prevent the trivial solution, we proposed two different constraints. The first con-
straint sets the beamformer coefficients in a reference microphone to a delay, while
the second constraint aims at preserving the incoming signal in the beamformer
output based on the RTF of the incoming signal. In order to allow for a trade-off
between distortions of the incoming signal and feedback cancellation performance,
we also proposed to use an RTF-based soft-constraint of the incoming signal. The
trade-off parameter in the soft constraint optimization was selected such that the
quality of the incoming speech signal is degraded at most by 0.5 PESQ MOS scores
compared to the hard constraint optimization. In order to improve the performance
of the null-steering beamformer, we proposed to extend the optimization procedures
using a single measurement to take into account multiple sets of acoustic feedback
path measurements. Simulations were carried out using measured acoustic feedback
paths from a custom multi-microphone earpiece with a loudspeaker and two mi-
crophones in a vent and a third microphone in the concha. We showed three main
results:

1. Using the proposed null-steering beamformer a robust average ASG improve-
ment of more than 50 dB can be achieved without significantly distorting the
incoming signal, even for unknown acoustic feedback paths.

2. While a single measurement can be used in the optimization of the beamformer
that leads to a large average ASG, a more robust performance can be achieved
when taking into account multiple sets of acoustic feedback paths.

3. When combined with an AFC algorithm using the PEM the performance can
be further increased, where results indicated that the performance of the AFC
algorithm and the fixed null-steering beamformer are complementary.

Furthermore, in general, the proposed min-max optimization procedures outperform
the proposed least-squares optimization procedures in terms of the average ASG
and overall ASG. Additionally, using the RTF-based soft constraint leads to the
largest average ASG compared to the fixed delay constraint and the RTF-based
hard constraint.

7.2 Suggestions for Future Research

In Chapter 4 we proposed several optimization procedures to estimate the
common pole-zero filter from several acoustic feedback paths. While using a
common pole-zero filter generally shows a good performance in terms of the mis-
alignment and the MSG as well as the reduction of variable part parameters, there
is still a gap between the performance for acoustic feedback paths that are very
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similar to those used for the optimization and acoustic feedback paths that exhibit
larger variations, e.g., in the presence of a telephone receiver. In order to improve
the robustness, a data-independent regularization, e.g., using Tikhonov regulariza-
tion [213], could be used either for the variable part filter or the common pole-zero
filter or both. Additionally, in this thesis the performance was evaluated for a large
number of common part and variable part parameters. However, in a practical sce-
nario, e.g., in a clinical setting, this might not be possible. Therefore, future research
could aim at developing an automatic selection procedure for the number of common
poles and common zeros as well as the number of variables zeros. Furthermore, in
the proposed procedure the common pole-zero filter is fixed and cannot account for
slowly time-varying common parts, e.g., when chewing or when the earmould of the
hearing aid is slowly changing its position in the ear canal. To take these variations
into account, a dictionary of common pole-zero filters could be estimated, where
at each time the best matching common pole-zero filter or combination of com-
mon pole-zero filters is chosen. This choice could, e.g., be performed using an affine
combination algorithm, similarly to the algorithm developed in Chapter 5.

In Chapter 5 we proposed to use an affine combination of two adaptive filters.
Although it can be theoretically shown that this combination exhibits universal
performance, i.e., it always performs as good as or even better than the individual
filters, in practice this performance is difficult to achieve. In order to improve the
performance for AFC, it could be interesting to investigate the combination of more
than two adaptive filters or even the combination of fixed and adaptive filters.

In Chapter 6 we proposed several robust optimization procedures to compute a
fixed null-steering beamformer for acoustic feedback cancellation in a
multi-microphone earpiece. Generally it was observed that the min-max optimiza-
tion procedures outperformed the least-squares optimization procedures and the
best performance for both procedures was achieved when using an RTF-based soft
constraint. However, for this constraint the performance of the least-squares opti-
mization procedure in terms of the overall ASG was sometimes better than the
performance of the min-max optimization procedure, which was attributed to the
selection procedure of the trade-off parameter. While in this thesis the trade-off
parameter was chosen from a fixed set of values leading to a difference of at most
0.5 in terms of the PESQ MOS score compared to the RTF-based hard constraint,
future research could aim at an improved selection procedure of the trade-off pa-
rameter.

In order to achieve robustness to variations in the acoustic feedback paths, the pro-
posed optimization procedures rely on the availability of multiple measured acoustic
feedback paths. However, the availability of multiple measurements covering a suf-
ficient amount of variations may not be guaranteed in a practical scenario, e.g.,
in a clinical setting. Recently, an electro-acoustical model of the multi-microphone
earpiece has been proposed in [233] that allows to obtain accurate estimates of all
ATFs between the loudspeakers and microphones. Using such a parametric electro-
acoustical model may overcome the necessity of measuring multiple acoustic feed-
back paths by artificially introducing these variations in the model and using dif-
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ferent modeled acoustic feedback paths to optimize the null-steering beamformer.
Furthermore, the performance could be increased by using multiple null-steering
beamformers optimized for different acoustic conditions, e.g., the presence of a tele-
phone receiver, where the best beamformer is chosen adaptively, e.g., similarly as
using an affine combination of fixed filters.

Currently, the null-steering beamformer only aims at reducing the acoustic feed-
back while preserving the incoming signal for a single direction. If the position of
the source changes, this may lead to undesired artifacts. Therefore, in the proposed
optimization procedures multiple direction of the incoming signal could be taken
into account1. Additionally, since the null-steering beamformer is optimized for each
device independently, the null-steering beamformer may alter the spatial perception
if used in a binaural configuration. Therefore, the distortions of the binaural cues
for two independently optimized null-steering beamformers should be investigated
and, potentially, a binaural optimization should be performed to reduce these dis-
tortions.

Furthermore, the propose null-steering beamformer only aims at reducing the acous-
tic feedback while preserving the incoming signal. Future research should therefore
aim at investigating the potential of integrated solutions of acoustic feedback cancel-
lation with other processing, e.g., spatial filter based noise reduction, sound pressure
equalization or occlusion effect reduction. This includes the combination of differ-
ent algorithms as well as the development of algorithms that jointly achieve, e.g.,
feedback cancellation and sound pressure equalization.

Finally, the custom multi-microphone earpiece also has a second loudspeaker that
could be exploited in order to achieve acoustic feedback cancellation in a multi-
loudspeaker single-microphone system or a multi-loudspeaker multi-microphone sys-
tem. The proposed optimization procedures to compute a null-steering beamformer
for a SLMM system could easily be transferred to the multi-loudspeaker single-
microphone system, where the aim is to cancel the acoustic feedback from one of
the loudspeakers in the microphone by playing back a filtered version from the
second loudspeaker. Furthermore, the general multi-loudspeaker multi-microphone
system could be analyzed and algorithms for acoustic feedback cancellation, oc-
clusion effect and noise reduction as well as sound pressure equalization could be
developed and investigated for this much more complex hearing aid system.

1 Note that, in fact, the proposed optimization procedures using a data-dependent regularization
are able to account for multiple directions of the incoming signal. However, up to now only a
single set of measurements has been included when computing the null-steering beamformer in the
evaluation.





A
APPENDIX TO CHAPTER 4

A.1 Time-domain notation of equation-error optimization

Using the causality assumption on hm[k], i.e., hm[k] = 0 for k < 0, the output-error
cost function (4.17) is written in the time-domain as

JOE(āc,bc,bv) =

M∑
m=1

γm

∞∑
k=0

(hm[k] +

Ncp∑
j=1

ac[j]ĥm[k − j]−
Ncz∑
j=0

bc[j]bvm[k − j])2.

(A.1)

Substituting ĥm[k− j] on the right-hand side by hm[k− j] yields the equation-error
cost-function

JEE(āc,bc,bv) =

M∑
m=1

γm

∞∑
k=0

(hm[k] +

Ncp∑
j=1

ac[j]hm[k − j]−
Ncz∑
j=0

bc[j]bvm[k − j])2.

(A.2)

With the assumptions of hm[k] being of finite orderNh
z , the upper summation bound

of k in (A.2) may be changed to k = Ñh
z +N c

p . Thus, (A.2) can be written in vector
notation as given in (4.24).

A.2 Proof of stability of equation-error optimization

Proving the stability of the IRs estimated minimizing (4.24) for the special case
Nv
z = N c

z = 0, i.e., only considering common poles, and using Γ = I has been done
in [91]. For this special case, the closed-form solution in (4.43) reduces to

āc = −(H̃T H̃)−1H̃T h̃. (A.3)

Since H̃T H̃ is a symmetric positive definite matrix with Toeplitz structure, it can
be shown that the all-pole filter 1

Ac(q) is stable [91, 234].
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In the following we will show that this proof can be generalized to the case of
arbitrary values of Nv

z and N c
z . Without loss of generality we assume the diagonal

weighting matrix to be Γ = I. For the problem at hand we only need to guarantee
stability of the poles when minimizing (4.34b). Although a closed-form solution
exists (cf. (4.40b)), minimizing (4.34b) can also be carried out using an alternating
optimization procedure, i.e., minimizing at each iteration l{

JcEE(bci,l) = ‖h̃ + H̃āci,l−1 − B̃v
i b

c
i,l‖22,

JcEE(āci,l) = ‖h̃ + H̃āci,l − B̃v
i b

c
i,l‖22.

(A.4a)

(A.4b)

The closed-form solution of the filter minimizing (A.4b) is given as

āci,l = −(H̃T H̃)−1H̃T (h̃− B̃v
i b

c
i,l), (A.5)

where, similarly as in (A.3), H̃T H̃ is symmetric, positive definite and of Toeplitz
structure. Hence, at each iteration l the all-pole filter 1

Aci,l(q)
is stable. Since for

l → ∞ the filter āci,l minimizing (A.4b) is equal to the closed-form solution āci in
(4.40b), also the filter āci in (4.40b) is stable such that the common pole-zero filter
minimizing (4.24) is stable.

A.3 Schur complement of JvWMM in (4.69a)

The absolute values in (4.69a) can be rewritten in terms of the real part pvf,m,i(ωn)
and imaginary part qvf,m,i(ωn) of the frequency response optimized in (4.69a),
i.e.,

1

|Aci−1(ωn)|2
|Evm,i(ωn)|2 = | 1

Aci−1(ωn)
Evm,i(ωn)|2 (A.6)

= (pvf,m,i(ωn))2 + (qvf,m,i(ωn))2. (A.7)

Using this result, the cost function in (4.69a) can be rewritten as

JWM (bvi ) = max
ωn

1≤m≤M
(pvf,m,i(ωn))2 + (qvf,m,i(ωn))2 ∀ωn,m. (A.8)

Introducing the auxiliary variable t [213, 216] and using (A.7) this can be reformu-
lated as

min
t,bvi

t

subject to (pvf,m,i(ωn))2 + (qvf,m,i(ωn))2 ≤ t ∀ωn,m.

(A.9a)

(A.9b)

Rewriting (A.9b) as

t− ((pvf,m,i(ωn))2 + (qvf,m,i(ωn))2) ≥ 0, (A.10)
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and thus recognizing (A.9b) as the Schur complement [83] of a matrix of the follow-
ing form

M =

[
A B

C D

]
, (A.11)

with A = t, B = [ (pvf,m,i(ωn)) (qvf,m,i(ωn)) ], C = BT and D the 2 × 2-
dimensional identity matrix, the min-max problem in (4.69a) can be formulated
as the SDP in (4.82).





B
MEASUREMENT OF ACOUSTIC FEEDBACK
PATHS

In this appendix we introduce the measurement setup and the obtained acoustic
feedback paths used in Simulations in Chapter 4 and Chapter 5. Note that during the
measurement different ear canal geometries and earmolds were used and additionally
to the traditional direct measurement a reciprocal measurement was performed.
However, only measurements from a subset of the ear canal geometries and earmolds
from the direct measurement are relevant for the simulations conducted in this thesis.
For completeness, in the following we first describe the complete setup for the set
of the direct measurements and when presenting the results we will only consider
the ear canal geometries and earmolds relevant for this thesis.

As depicted in Figure B.1 we used a two-microphone behind-the-ear hearing aid1. In
order to avoid any mechanical feedback, an external receiver (type Knowles TWFK-
23991) was used and attached to a tube of 84mm length and 1mm inner diameter.
The acoustic feedback path was determined from the microphone signals and the
signal that was applied to the receiver, which was additionally recorded.

The measurements of the acoustic feedback paths were performed for different ear
canal geometries and ventings and for a variety of outer sound fields. A dummy
head with adjustable ear canals (DADEC [218]) was used, where the ear canal is
simulated by means of tubes with different diameters, terminated by a resonator
mimicking the acoustic impedance of the eardrum. By changing the position of
the resonator, the length of the ear canals could be adjusted continuously, where
we considered three different ear canal length (d = 6mm, 7mm, and 8mm) and
two different ear canal lengths (l = 15mm and 20mm). Furthermore, custom-made
earmolds with two different ventings were produced for each ear canal diameter: 1)
an open earmold and 2) an earmold with a vent of 2 mm diameter.

This chapter is based in part on the following publication
[232] T. Sankowsky-Rothe, M. Blau, H. Schepker, and S. Doclo, “Reciprocal measurement of the

acoustic feedback path in hearing aids,” J. Acoust. Soc. Am., vol. 138, no. 4, pp. EL399–
EL404, Oct. 2015.

1 Note that this setup was also used to obtain reciprocal measurements of the acoustic feedback
paths, which are not relevant for this thesis and are thus not described.
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hearing aid mic.
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Figure B.1: Picture of the behind-the-ear hearing aid at the ear with the external receiver.
Note that this setup was also used to obtain reciprocal measurements of the
acoustic feedback paths, which are not relevant for this thesis and are therefore
not described.

In addition, several outer sound field conditions were considered since these may
significantly influence the acoustic feedback path [88, 126]. More specifically, five
different conditions were included in the measurements:

1. a free-field condition, meaning that there was no obstruction in a distance of
at least 1.5 m to the ear,

2. a wall condition, where the dummy head was placed with its shoulder at a
wall,

3. three conditions with a telephone handset at different distances to the ear
(0 cm, 11.5 cm, and 23 cm).

In order to quantify the variability when the hearing aid is reattached to the ear,
the measurements for the free-field condition were repeated 10 times.

All measurements were carried out using a white noise sequence of 10 s duration
and a sampling frequency of 48 kHz. The acoustic transfer functions were computed
using standard FFT-based methods (H1 estimate, 16384-point Hann-window, 50 %
overlap) and the IRs were obtained by using an inverse FFT.

Figure B.2 show the measure amplitude responses of the different feedback paths
for the ear canal settings of d = 6mm, l = 15mm; d = 7mm, l = 15mm; d =
7mm, l = 20mm using the open earmold. The left column depicts the first set of
free-field measurements for both microphones in black and the remaining 9 sets of
free-field measurements in grey. The right column depicts the first set of free-field
measurements as well as the sets of measurements with a telephone in far distance,
a telephone in close distance, and the the wall condition. As can be observed, for the
sets of free-field measurements all feedback paths for the same ear canal setting a
very similar. Furthermore, comparing the different ear canal settings, a shift of the
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maximum of the amplitude response is observed that seems to depend on the length
as well as an the diameter of the ear canal. Comparing the different conditions (cf.
the right column), a much larger variety compared to the free-field conditions (cf.
left column) is observed. This indicates that these conditions will most likely provide
a challenging scenario for the algorithms developed in this thesis.
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Figure B.2: Amplitude responses from the two-microphone behind-the-ear hearing aid
for different ear canal settings. The left column depicts all 10 sets of free-field
measurements for the front (continuous lines) and the rear microphone (dashed
lines), where the first set is shown in black and the remaining 9 sets are shown
in gray. The right column depicts the first set of free-field measurements as
well as measurements with an obstruction close to the dummy head (front
microphone: continuous lines; ear microphone: dashed lines).



C
REAL ROTATION THEOREM

In this appendix we provide parts of the proofs given in [217, 235] of the real rotation
theorem to approximate the absolute value of a complex number as used in the min-
max optimization procedures in Chapters 4 and 6. We show that the absolute value
of a complex number can be equally obtained by projecting the complex number
onto a rotating complex pointer with phase φ using continuous phase values or that it
can be approximated by using discretized phase values. For the more involved proofs
of the approximation error using the real rotation theorem the reader is referred to
[217, 235]. Furthermore, we provide a graphical interpretation of this result for the
case of continuous phase values of the rotating complex pointer.

The absolute value of a complex number is exactly obtained if the continuous phase
of the complex number and the complex pointer are identical as stated in the fol-
lowing Lemma.
Lemma 1. If z = x+ jy, where x and y are real and φ is the phase of the complex
pointer then

|z| = max
−π<φ≤π

(x cosφ+ y sinφ). (C.1)

Proof. If z = 0, the results is obvious. Assume now that z 6= 0. Using the Cauchy-
Schwartz inequality, for every real valued phase φ we obtain

x cosφ+ y sinφ ≤
√
x2 + y2︸ ︷︷ ︸
|z|

√
cos2 φ+ sin2 φ = |z|, (C.2)

such that

max
−π<φ≤π

(x cosφ+ y sinφ) ≤ |z|. (C.3)

Using z = |z|(cosφz + j sinφz), it can easily be seen that for φ = φz equality holds,
which concludes the proof.

Figure C.1 shows a graphical illustration of the projection of the complex number
onto the rotating complex pointer for two different phases φ1 and φ2. As can be
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Figure C.1: Graphical illustration of the real rotation theorem in the complex plane for two
different angles θ1 and θ2 of the complex pointer. The orthogonal projection of
the complex number z onto the complex pointer is indicated by dotted lines.

observed, with the smaller the difference in the phase of the complex number z
and the complex pointer, the larger the projection of the complex number. In the
limit the absolute value will be identical to |z| if φ = φz as stated in the Lemma
above.

Similarly, the absolute value of the complex number can be approximated within
some boundaries when the phase of complex pointer is discretized as stated in the
following Lemma.
Lemma 2. Let φi = π i−1

p , i = 1, 2, . . . , 2p, where p ≤ 2 and let z = x+ jy with x
and y real valued number, and let

M = max
i=1,...,2p

(x cosφi + y sinφi). (C.4)

Then

M ≤ |z| ≤M sec
π

2p
, (C.5)

with sec denoting the secant.
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Proof. From Lemma 1 it is obvious that |z| ≤M , so only a proof of |z| ≤M sec π
2p

is necessary. Let P (x, y) be the point in the complex plane corresponding to the
complex number z = x+ jy 6= 0, such that

x = |z| cosφz, (C.6)
y = |z| sinφz. (C.7)

Thus, for any angle θ, we must have

(|z| cosφz − x) cos θ + (|z| sinφz − y) sin θ = 0, (C.8)

which can be rewritten as

|z| = x̃(θ) secα(θ), (C.9)
x̃(θ) = x cos θ + y sin θ, (C.10)

α(θ) = arg(ze−jθ) = φz − θ. (C.11)

Alternatively, (C.9) can be derived geometrically by considering x̃ to be the x coor-
dinate of the point P (x, y) after a rotation of the axes through the angle θ. From
(C.9) we have

|z| = x̃(φi) secα(φj), i = 1, . . . , 2p. (C.12)

Let the index k be such that

M = x̃(φk) = max
1≤i≤2p

x̃(φi). (C.13)

With the particular angles φi chosen here, x̃(φi+p) = −x̃(φi), i = 1, . . . , p, such that
we must have x̃(φk) > 0. Since z 6= 0 is fixed in (C.12), it is clear from (C.12) and
the definition of the angles φi that

0 < secα(φk) = min
1≤i≤2p

| secα(φi)| ≤ sec(
π

2p
). (C.14)

Therefore,

|z| = x̃(φk) secα(φk), (C.15)

= M sec
π

2p
, (C.16)

which concludes the proof.





BIBLIOGRAPHY

[1] D. Heger and I. Holube, “Wie viele menschen sind schwerhörig?” Z. Audiol.,
vol. 49, no. 2, pp. 61–70, 2010.

[2] P. von Gablenz, E. Hoffmann, and I. Holube, “Prevalence of hearing loss in
northern and southern germany,” HNO, vol. online first, 2017.

[3] V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder,
and U. Rass, “Signal processing in high-end hearing aids: State of the art,
challenges, and future trends,” EURASIP J. Appl. Signal Process., vol. 18,
pp. 2915–2929, Jan. 2005.

[4] B. Kollmeier and J. KIessling, “Functionality of hearing aids: State-of-the-art
and future model-based solutions,” Int. J. Audiol., vol. early online, pp. 1–26,
2016.

[5] S. Gatehouse, “Limitations on insertion gain with vented earmoulds imposed
by oscillatory feedback,” Brit. J. Audiol., vol. 23, no. 2, pp. 133–136, Apr.
1989.

[6] A. Winkler, M. Latzel, and I. Holube, “Open versus closed hearing-aid fittings:
A literature review of both fitting approaches,” Trends in Hearing, vol. 20, pp.
1–13, 2016.

[7] K. MacKenzie, G. G. Browning, and L. G. Clymont, “Relationship between
earmould venting, comfort and feedback,” Brit. J. Audiol., vol. 23, no. 4, pp.
335–337, Oct. 1989.

[8] F. K. Kuk, “Maximum usable real-ear insertion gain with ten earmold designs,”
J. Am. Acad. Audiol., vol. 5, no. 1, pp. 44–51, Jan. 1994.

[9] M. French-St. George, D. J. Wood, and A. M. Engebretson, “Behavioral assess-
ment of adaptive feedback neutralization in a digital hearing aid,” J. Rehab.
Res. Dev., vol. 30, no. 1, pp. 17–25, Jan. 1993.

[10] B. Rafaely, M. Roccasalva-Firenze, and E. Payne, “Feedback path variability
modeling for robust hearing aids,” J. Acoust. Soc. Am., vol. 107, no. 5, pp.
2665–2673, May 2000.

[11] T. van Waterschoot and M. Moonen, “Fifty Years of Acoustic Feedback Con-
trol: State of the Art and Future Challenges,” Proc. IEEE, vol. 99, no. 2, pp.
288–327, Feb. 2011.

177



178 bibliography

[12] J. C. Willems, The Analysis of Feedback Systems. MIT Press, Cambridge,
1971.

[13] H. Nyquist, “Regeneration theory,” Bell System Tech. J., vol. 2, pp. 126–147,
Jan. 1932.

[14] A. Spriet, S. Doclo, M. Moonen, and J. Wouters, Feedback Control in Hearing
Aids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 979–1000.

[15] S. Kamerling, K. Janse, and F. van der Meulen, “A new way of acoustic feed-
back suppression,” in Audio Engineering Society Convetion 104, Amsterdam,
Netherlands, May 1998.

[16] G. Rombouts, T. van Waterschoot, and M. Moonen, “Robust and efficient im-
plementation of the pem-afrow algorithm for acoustic feedback cancellation,”
J. Audio Eng. Soc., vol. 55, no. 11, pp. 955–966, Nov. 2007.

[17] A. Pandey and V. J. Mathews, “Adaptive gain processing with offending fre-
quency suppression for digital hearing aids,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 20, no. 3, pp. 1043–1055, Mar. 2012.

[18] M. Guo, S. H. Jensen, J. Jensen, and S. L. Grant, “On the use of phase
modulation method for decorrelation in acoustic feedback cancellation,” in
Proc. European Signal Process. Conf. (EUSIPCO), Bucharest, Romania, Aug.
2012, pp. 2000–.

[19] F. Strasser and H. Puder, “Adaptive feedback cancellation for realistic hearing
aid applications,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23,
no. 12, pp. 2322–2333, Dec. 2015.

[20] E. T. Patronis, “Electronic detection of acoustic feedback and automatic sys-
tem gain control,” J. Audio Eng. Soc., vol. 26, no. 5, pp. 323–326, May 1978.

[21] N. Osmanovic, V. E. Clarke, and E. Velandia, “An in-flight low latency acous-
tic feedback cancellation algorithms,” in Audio Engineering Society Conven-
tion 123, New York, USA, 2007.

[22] J. B. Foley, “Adaptive periodic noise cancellation for the control of acous-
tic howling,” in IEE Colloquium on Adaptive Filters, London, England, Mar.
1989.

[23] S. M. Kuo and J. Chen, “New adaptive iir notch filter and its application to
howling control in speakerphone system,” Electronics Letters, vol. 28, no. 8,
pp. 764–766, Apr. 1992.

[24] R. Wang and R. Harjani, “Acoustic feedback cancellation in hearing aids,”
in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., Minneapolis, USA,
Apr. 1993, pp. I–137–I–140.

[25] ——, “Suppression of acoustic oscillations in hearing aids using minimum
phase techniques,” in Proc. IEEE Int. Symp. Circ. Syst. (ISCAS), Chicago,
USA, May 1993, pp. 818–821.



bibliography 179

[26] J. Timoney and J. B. Foley, “Robust performance of the adaptive periodic
noise canceller in a closed-loop system,” in Proc. Europ. Signal Process. Conf.,
Rhodes, Greece, Sep. 1998.

[27] W. Loetwassana, R. Punchalard, A. Lorsawatsiri, J. Koseeyporn, and P. Ward-
kein, “Adaptive howling suppressor in an audio amplifier system,” in Proc.
Asia-Pacific Conf. Comm., Bangkok, Thailand, Oct. 2007, pp. 445–448.

[28] P. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. H. Jensen, “Regularized
adaptive notch filters for acoustic howling suppression,” in Proc. Europ. Signal
Process. Conf. (EUSIPCO), Glasgow, Scotland, Aug. 2009, pp. 2574–2578.

[29] T. van Waterschoot and M. Moonen, “Comparative evaluation of howling
detection criteria in notch-filter-based howling suppression,” J. Audio Eng.
Soc., vol. 58, no. 11, pp. 923–940, Nov. 2010.

[30] C. Zheng, H. Liu, R. Peng, and X. Li, “Temporal coherence-based howling
detection for speech applications,” in Audio Engineering Society Convention
133, San Francisco, USA, Oct. 2012.

[31] C. Zheng, Y. Ke, R. Peng, X. Li, and Y. Zhou, “Statistical analysis of temporal
coherence function and its application in howling detection,” in Proc. Int.
Conf. Digital Signal Process. (DSP), Hongkong, China, Aug. 2014, pp. 856–
861.

[32] S. A. Khoubrouy, I. M. S. Panahi, and J. H. L. Hansen, “Howling detection in
hearing aids based on generalized teager-kaiser operator,” IEEE Trans. Audio,
Speech, Lang. Process, vol. 23, no. 1, pp. 154–161, Jan. 2015.

[33] J. Flocon-Cholet, J. Faure, A. Guerin, and P. Scalart, “A robust howling
detection algorithm based on a statistical approach,” in Proc. Int. Workshop
Acoust. Signal Enhance. (IWAENC), Juan-les-Pins, France, Sep. 2014, pp.
65–69.

[34] M. R. Schroeder, “Improvement of acoustic-feedback stability by frequenc
shifting,” J. Acoust. Soc. Am., vol. 36, no. 9, pp. 1718–1724, Sep. 1964.

[35] C. P. Boner and C. R. Boner, “Minimizing feedback in sound systems and
room-ring modes with passive networks,” J. Acoust. Soc. Am, vol. 37, no. 1,
pp. 131–135, Jan. 1965.

[36] ——, “A procedure for controlling room-ring modes and feedback modes in
sound systems with narrow-band filters,” J. Audio Eng. Soc., vol. 13, no. 4,
pp. 297–299, Oct. 1965.

[37] D. K. Bustamante, T. L. Worrall, and M. J. Williamson, “Measurement
and adaptive suppression of acoustic feedback in hearing aids,” in Proc. of
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Glasgow, Scotland, May 1989.

[38] J. A. Maxwell and P. M. Zurek, “Reducing acoustic feedback in hearing aids,”
IEEE Trans. Speech Audio Process., vol. 3, no. 4, pp. 304–313, Jul. 1995.



180 bibliography

[39] S. A. White, “Design of digital biquadratic peaking or notch filter for digital
audio equalization,” J. Audio Eng. Soc., vol. 34, no. 6, pp. 479–483, Jun. 1986.

[40] D. J. Shpak, “Analytical design of biquadratic filter sections for parametric
filters,” J. Audio Eng. Soc., vol. 40, no. 11, pp. 876–885, Nov. 1992.

[41] R. Bristow-Johnson, “The equivalence of various methods of computing biquad
coefficients for audio parametric equalizers,” in Audio Engineering Society
Convention 97, San Francisco, USA, Nov. 1994.

[42] S. J. Orfanidis, “Digital parametric equalizer design with prescribed nyquist-
frequency gain,” J. Audio Eng. Soc., vol. 45, no. 6, pp. 444–455, Jun. 1997.

[43] T. van Waterschoot and M. Moonen, “A pole-zero placement technique for
designing second-order iir parametric equalizer filters,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 15, no. 8, pp. 2561–2565, Nov. 2007.

[44] G. Rombouts, T. van Waterschoot, and M. Moonen, “Proactive notch filtering
for acoustic feedback cancellation,” in Proc. Annual IEEE Benelux/DSP Val-
ley Signal Process. Symp (SPS-DARTS), Antwerp, Belgium, Mar. 2006, pp.
169–172.

[45] G. Grimm, V. Hohmann, and B. Kollmeier, “Increase and subjective evalua-
tion of feedback stability in hearing aids by a binaural coherence-based noise
reduction scheme,” IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 7,
pp. 1408–1419, Sep. 2009.

[46] P. Svensson, “On reverberation enhancement in auditoria,” Ph.D. dissertation,
Chalmers University of Technology, Göteborg, Sweden, Nov. 1994.

[47] P. U. Svensson, “Computer simulations of periodically time-varying filters for
acoustic feedback control,” J. Audio Eng. Soc., vol. 43, no. 9, pp. 667–677,
Sep. 1995.

[48] M. R. Schroeder, “Improvement of acoustic feedback stability in public address
systems,” in Proc. 3rd Int. Congr. Acoust., Stuttgart, Germany, 1959, pp. 771–
775.

[49] ——, “Improvement of feedback stability of public address systems by fre-
quency shifting,” in Audio Engineering Society Convention 13, New York,
USA, Oct. 1961.

[50] A. J. Prestigiacomo and D. J. McLean, “A frequency shifter for improving
acoustic feedback stability,” in Audio Engineering Society Convention 13, New
York, USA, Oct. 1961.

[51] M. R. Schroeder, “Improvement of feedback stability of public address systems
by frequency shifting,” J. Audio Eng. Soc., vol. 10, no. 2, pp. 108–109, Apr.
1962.

[52] A. J. Prestigiacomo and D. J. McLean, “A frequency shifter for improving
acoustic feedback stability,” J. Audio Eng. Soc., vol. 10, no. 2, pp. 110–113,
Apr. 1962.



bibliography 181

[53] M. D. Burkhard, “A simplified frequency shifter for improving acoustic feed-
back stability,” in Audio Engineering Society Convetion 14, New York, USA,
Oct. 1962.

[54] ——, “A simplified frequency shifter for improving acoustic feedback stability,”
J. Audio Eng. Soc., vol. 11, no. 3, pp. 234–237, Jul. 1963.

[55] H. Bode and R. Moog, “A high-accuracy frequency shifter for professional
audio applications,” in Audio Engineering Society Convetion 42, Los Angeles,
USA, May 1972.

[56] R. W. Guelke and A. D. Broadhurst, “Reverberation time control by direct
feedback,” Acustica, vol. 24, no. 1, pp. 33–41, Jan. 1971.

[57] G. Nishinomiya, “Improvement of acoustic feedback stability of public address
system by warbling,” in Proc. Int. Congr. Acoust., Tokya, Japan, Aug. 1968.

[58] S. Wardle, “A hilbert-transform frequency shifter for audio,” in Proc. Work-
shop on Dig. Audio Eff. (DAFx), Barcelona, Spain, Nov. 1998, pp. 25–29.

[59] C. V. Deutschbein, “Digital frequency shifting for electroacoustic feedback
suppression,” in Audio Engineering Society Convention 118, Barcelona, Spain,
May 2005.

[60] C. Zheng, C. Hoffmann, X. Li, and W. Kellermann, “Analysis of additional
stable gain by frequency shifting for acoustic feedback suppression using statis-
tical room acoustics,” IEEE Signal Process. Lett., vol. 23, no. 1, pp. 159–163,
Jan. 2016.

[61] T. van Waterschoot and M. Moonen, “Assessing the acoustic feedback control
performance of adaptive feedback cancellation in sound reinforcement sys-
tems,” in Proc. Europ. Signal Process. Conf. (EUSIPCO), Glasgow, Scotland,
Aug. 2009, pp. 1997–2001.

[62] J. Alisobhani and S. G. Knorr, “Improvement of acoustic-feedback stability by
bandwidth compression,” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-28, no. 6, pp. 636–644, Dec. 1980.

[63] M. Ali, “Stereophonic acoustic echo cancellation system using time-varying
all-pass filtering for signal decorrelation,” in Proc. Int. Conf. Acoust, Speech,
Signal Process. (ICASSP), Seattle, USA, May 1998, pp. 3689–3692.

[64] C. Boukis, D. P. Mandic, and A. G. Constantinides, “Towards bias minimiza-
tion in acoustic feedback cancellation systems,” J. Acoust. Soc. Am., vol. 121,
no. 3, pp. 1529–1537, Mar. 2007.

[65] J. Herre, H. Buchner, and W. Kellermann, “Acoustic echo cancellation for
surround sound using perceptually motivated convergence enhancement,” in
Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Honolulu, USA,
Apr. 2007, pp. I–17–I–20.

[66] M. L. Valero and E. A. P. Habets, “Insight into a phase modulation technique
for signal decorrelation in multi-channel acoustic echo cancellation,” in Proc.



182 bibliography

Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Shanghai, China, Mar.
2016, pp. 519–523.

[67] J. L. Nielsen and U. P. Svensson, “Performance of some linear time-varying
systems in control of acoustic feedback,” J. Acoust. Soc. Am., vol. 106, no. 1,
pp. 240–254, Jul. 1999.

[68] D. J. Freed, “Adaptive feedback cancellation in hearing aids with clipping in
the feedback path,” J. Acoust. Soc. Am., vol. 123, no. 3, pp. 1616–1626, Mar.
2008.

[69] A. M. Engebretson and M. French-St. George, “Properties of an adaptive
feedback equalization algorithms,” J. Rehab. Res. Dev., vol. 30, no. 1, pp.
8–16, Jan. 1993.

[70] R. Vicen-Bueno, A. Martinez-Leira, R. Gil-Pita, and M. Rosa-Zurera, “Modi-
fied lms-based feedback reduction subsystems in digital hearing aids based on
wola filter bank,” IEEE Trans. Inst. Meas., vol. 58, no. 9, pp. 3177–3190, Sep.
2009.

[71] M. G. Siqueira, R. Speece, E. Petsalis, A. Alwan, S. Soli, and S. Gao, “Subband
adaptive filtering applied to acoustic feedback reduction in hearing aids,” in
Proc. Asilomar Conf. Signals, Syst., Comp., Pacific Grove, USA, Nov. 1996,
pp. 788–792.

[72] S. Wyrsch and A. Kaelin, “Adaptive feedback cancelling in subband for hearing
aids,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Phoenix, USA, Mar. 1999, pp. 921–924.

[73] ——, “Subband signal processing for hearing aids,” in Proc. IEEE Int. Symp
Circ. Syst. (ISCAS), Orlando, USA, May 1999, pp. III–29–III–32.

[74] ——, “Performance comparison of pbfdaf algorithms,” in Proc. IEEE Int.
Conf. Electr., Circ., Syst. (ICECS), Pafos, Cyprus, Sep. 1999, pp. 831–834.

[75] P. Estermann and A. Kaelin, “Feedback cancellation in hearing aids: Results
from using frequency-domain adaptive filters,” in Proc. IEEE Int. Symp. Circ.
Syst. (ISCAS), London, UK, May 1994, pp. 257–260.

[76] S. Wyrsch and A. Kaelin, “A dsp implementation of a digital hearing aid with
recruitment of loudness compensation and acoustic echo cancellation,” in Proc.
Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, USA,
1997.

[77] T. Fillon and J. Prado, “Acoustic feedback cancellation for hearing-aids, using
multi-delay filter,” in Proc. Nordic Signal Process. Symp. (NORSIG), on board
Hurtigruten, Norway, 2002.

[78] A. Spriet, G. Rombouts, M. Moonen, and J. Wouters, “Adaptive feedback
cancellation in hearing aids,” J. Franklin Inst., vol. 343, no. 6, pp. 545–573,
Sep. 2006.



bibliography 183

[79] J. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. H. Jensen, “Transform
domain prediction error method for improved acoustic echo and feedback can-
cellation,” in Proc. Europ. Signal Process. Conf. (EUSIPCO), Bucharest, Ro-
mania, Aug. 2012, pp. 2422–2426.

[80] C. R. C. Nakagawa, S. Nordholm, F. Albu, and W.-Y. Yan, “Closed-loop feed-
back cancellation utilizing two microphones and transform domain process-
ing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Florence, Italy, May 2014, pp. 3645–3649.

[81] G. Panda and N. B. Puhan, “A low complexity hirschman optimal transform
based feedback cancellation scheme for hearing aids,” in Proc. IEEE Power,
Comm. Inform. Techn. Conf. (PCITC), Bubaneswar, India, Oct. 2015.

[82] S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice Hall, 1996.

[83] A. H. Sayed, Fundamentals of Adaptive Filtering, 1st ed. John Wiley & Sons,
2003.

[84] M. Guo, T. B. Elmedyb, S. H. Jensen, and J. Jensen, “Analysis of adaptive
feedback and echo cancellation algorithms in a general multiple-microphones
and single-loudspeaker system,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Prague, Czech Republic, May 2011, pp. 433–436.

[85] ——, “Comparison of multiple-microphone and single-loudspeaker adaptive
feedback/echo cancellation systems,” in Proc. Europ. Signal Process. Conf.
(EUSIPCO), Barcelona, Spain, Sep. 2011, pp. 1279–1283.

[86] ——, “Analysis of acoustic feedback/echo cancellation in multiple-microphone
and single-loudspeaker systems using a power transfer function method,”
IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5774–5788, Dec. 2011.

[87] J. M. Kates, “Feedback cancellation apparatus and methods,” U.S. Patent
6,072,884, 2000.

[88] ——, “Room reverberation effects in hearing aid feedback cancellation,” J.
Acoust. Soc. Am., vol. 109, no. 1, pp. 367–378, Jan. 2001.

[89] J. Hellgren, “Analysis of feedback cancellation in hearing aids with filtered-x
lms and the direct method of closed loop identification,” IEEE Trans. Speech
Audio Process., vol. 10, no. 2, pp. 119–131, Feb. 2002.

[90] G. Ma, F. Gran, F. Jacobsen, and F. Agerkvist, “Extracting the invariant
model from the feedback paths of digital hearing aids,” J. Acoust. Soc. Am.,
vol. 130, no. 1, pp. 350–363, Jul. 2011.

[91] Y. Haneda, S. Makino, and Y. Kaneda, “Common acoustical pole and zero
modeling of room transfer functions,” IEEE Trans. Speech Audio Process.,
vol. 2, no. 2, pp. 320–328, Apr. 1994.

[92] S. Thipphayathetthana and C. Chinrungrueng, “Variable step-size of the least-
mean-square algorithm for reducing acoustic feedback in hearing aids,” in Proc.
IEEE Asia-Pacific Conf Circ. Syst., Tianjin, China, Dec. 2000, pp. 407–410.



184 bibliography

[93] H. Puder and B. Beimel, “Controlling the adaptation of feedback cancellation
filters - problem analysis and solution approaches,” in Proc. Europ. Signal
Process. Conf. (EUSIPCO), Vienna, Austria, Sep. 2004, pp. 25–28.

[94] S. Lee, I. Kim, and Y. Park, “An efficient feedback canceler for hearing aids
based on approximated affine projection,” in Computational Intelligence and
Bioinformatics. ICIC 2006. Lecture Notes in Computer Science, D. S. Huang,
K. Li, and G. W. Irwin, Eds. Springer, Berlin, 2006, vol. 4115, pp. 711–720.

[95] M. Rotaru, F. Albu, and H. Coanda, “A variable step size modified decor-
related nlms algorithm for adaptive feedback cancellation in hearing aids,”
in Proc. Int. Symp. Electr. Telecomm. (ISETC), Timisoara, Romania, Nov.
2012.

[96] M. T. Akhtar and A. Nishihara, “Acoustic feedback neutralization in digital
hearing aids - a two adaptive filter-based solution,” in Proc. IEEE Int. Symp.
Circ. Syst. (ISCAS), Beijing, China, May 2013, pp. 529–532.

[97] ——, “On delay-based technique for acoustic feedback cancellation in digital
hearing aids,” in Proc. IEEE Int. Midwest Symp. Circ. Syst. (MWSCAS),
Columbus, USA, Aug. 2013, pp. 983–986.

[98] F. Strasser and H. Puder, “Sub-band feedback cancellation with variable step-
sies for music signals in hearing aids,” in Proc. IEEE Int. Conf. Acoust. Speech,
Signal Process. (ICASSP), Florence, Italy, May 2014, pp. 8207–8211.

[99] H. Shen and L. Zhang, “A new variable step-size algorithm for acoustic feed-
back suppression for digital hearing aids,” in Proc. Int. Conf. Audio, Lang.
Image Process. (ICALIP), Shanghai, China, Jul. 2014, pp. 171–175.

[100] F. Strasser and H. Puder, “Correlation detection for adaptive feedback cancel-
lation in hearing aids,” IEEE Signal Process. Lett., vol. 23, no. 7, pp. 979–983,
Jul. 2016.

[101] M. Siqueira, A. Alwan, and R. Speece, “Steady-state analysis of continuous
adaptation systems in hearing aids,” in Proc. Work. Appl. Signal Process. to
Audio Acoust., 1997, p. 4.

[102] M. Siqueira and a. Alwan, “Steady-state analysis of continuous adaptation
in acoustic feedback reduction systems for hearing-aids,” IEEE Trans. Speech
Audio Process., vol. 8, no. 4, pp. 443–453, Jul. 2000.

[103] J. Hellgren and U. Forssell, “Bias of feedback cancellation algorithms in hear-
ing aids based on direct closed loop identification,” IEEE Trans. Speech Audio
Process., vol. 9, no. 7, pp. 906–913, Nov. 2001.

[104] A. Spriet, I. Proudler, M. Moonen, and J. Wouters, “Adaptive feedback can-
cellation in hearing aids with linear prediction of the desired signal,” IEEE
Trans. Signal Process., vol. 53, no. 10, pp. 3749–3763, 2005.



bibliography 185

[105] C. R. C. Nakagawa, S. Nordholm, and W.-y. Yan, “New insights into optimal
acoustic feedback cancellation,” IEEE Signal Process. Lett., vol. 20, no. 9, pp.
869–872, Sep. 2013.

[106] W. G. Knecht, “Some notes on feedback suppression with adaptive filters in
hearing aids,” in Proc. IEEE AASP Workshop Appl. Signal Process. Audio,
Acoust. (WASPAA), New Paltz, USA, Oct. 1997.

[107] M. Guo, S. H. Jensen, J. Jensen, and S. L. Grant, “Analysis of closed-loop
acoustic feedback cancellation systems,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Vancouver, Canada, May 2013, pp. 590–
594.

[108] B. D. Woodruff and D. A. Preves, “Fixed filter implementation of feedback
cancellation for in-the-ear hearing aids,” in Proc. IEEE Workshop Appl. Signal
Process. Audio Acoust. (WASPAA), New Paltz, USA, Oct. 1995.

[109] B. Rafaely and M. Roccasalve-Firenze, “Control of feedback in hearing aids -
a robust filter design approach,” IEEE Trans. Speech Audio Process., vol. 8,
no. 6, pp. 754–756, Nov. 2000.

[110] J. M. Kates, “Feedback cancellation in hearing aids using constrained adap-
tation,” in Proc. IEEE Workshop on Appl. Signal. Process. Audio Acoust.
(WASPAA), New Paltz, US, Oct. 1999, pp. 231–234.

[111] H.-F. Chi, S. X. Gao, and S. D. Soli, “A novel approach for adaptive feedback
cancellation for hearing aids,” in Proc. IEEE Int. Symp. Circ. Syst. (ISCAS),
Orlando, USA, May 1999, pp. III–195–III–198.

[112] H.-F. Chi, S. X. Gao, S. D. Soli, and A. Alwan, “Band-limited feedback can-
cellation with a modified filtered-x lms algorithm for hearing aids,” Speech
Communication, vol. 39, no. 1–2, pp. 147–161, Jan. 2003.

[113] J. M. Kates, “Feedback cancellation in hearing aids: Results from a computer
simulation,” IEEE Trans. Signal Process., vol. 39, no. 3, pp. 553–562, Mar.
1991.

[114] Y.-C. Park, D.-W. Kim, and I.-Y. Kim, “An efficient feedback cancellation for
multiband compression in hearing aids,” in Proc. Ann. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBS), Hong Kong, China, vol. 20, no. 5, Nov. 1998, pp.
2706–2709.

[115] M. Guo, T. B. Elmedyb, S. H. Jensen, and J. Jensen, “On acoustic feedback
cancellation using probe noise in multiple-microphone and single-loudspeaker
systems,” IEEE Signal Process. Lett., vol. 19, no. 5, pp. 283–286, May 2012.

[116] M. T. Akhtar and A. Nishihara, “Automatic tuning of probe noise for con-
tinuous acoustic feedback cancellation,” in Proc. Europ. Signal Process. Conf.
(EUSIPCO), Budapest, Hungary, Sep. 2016, pp. 888–892.



186 bibliography

[117] H. A. L. Joson, F. Asano, Y. Suzuki, and T. Sone, “Adaptive feedback can-
cellation with frequency compression for hearing aids,” J. Acoust. Soc. Am.,
vol. 94, no. 6, pp. 3248–3254, Dec. 1993.

[118] A. Chankawee and N. Tansangiumvisai, “On the improvement of acoustic
feedback cancellation in hearing-aid devices,” in Proc. IEEE Int. Midwest
Symp. Circ. Syst. (MWSCS), Hiroshima, Japan, Jul. 2004, pp. II–17 – II–20.

[119] C. Boukis, D. P. Mandic, and A. G. Constantinides, “Bias reduction in acoustic
feedback cancellation systems with varying all-pass filters,” Elect. Lett., vol. 42,
no. 9, Apr. 2006.

[120] M. Guo and B. Kuenzle, “On the periodically time-varying bias in adaptive
feedback cancellation systems with frequency shifting,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Shanghai, China, Mar. 2016,
pp. 539–543.

[121] A. Chankawee and N. Tangsangiumvisai, “Performance improvement of acous-
tic feedback cancellation in hearing aids using linear prediction,” in IEEE
Region 10 Conf. TENCON, Chiang Mai, Thailand, Nov. 2004, pp. 116–119.

[122] A. Spriet, I. Proudler, M. Moonen, and J. Wouters, “An instrumental variable
method for adaptive feedback cancellation in hearing aids,” in Proc. IEEE
Int. COnf. Acoust. Speech Signal Process. (ICASSP), Philadelphia, USA, Mar.
2005, pp. 192–132.

[123] P. Chaisakul, N. Tangsangiumvisai, P. Luangpitakchumpon, and A. Nishi-
hara, “On the use of linear prediction for acoustic feedback cancellation in
multi-band hearing aids,” in Proc. Europ. Signal Process. Conf. (EUSIPCO),
Florence, Italy, Sep. 2006.

[124] C. R. C. Nakagawa, S. Nordholm, and W.-Y. Yan, “Dual microphone solution
for acoustic feedback cancellation for assistive listening,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Kyoto, Japan, Mar. 2012,
pp. 149–152.

[125] ——, “Analysis of two microphone method for feedback cancellation,” IEEE
Signal Process. Lett., vol. 22, no. 1, pp. 35–39, Jan. 2015.

[126] J. Hellgren, T. Lunner, and S. Arlinger, “Variations in the feedback of hearing
aids,” J. Acoust. Soc. Am., vol. 106, no. 5, pp. 2821–2833, Nov. 1999.

[127] M. R. Stinson and G. A. Daigle, “Effect of handset proximity on hearing aid
feedback,” J. Acoust. Soc. Am., vol. 115, no. 3, pp. 1147–1156, Mar. 2004.

[128] M. Guo, S. H. Jensen, and J. Jensen, “An improved probe noise approach
for acoustic feedback cancellation,” in Proc. IEEE Sensor Array Multichan.
Signal Process. Workshop (SAM), Hoboken, USA, 2012.

[129] ——, “Novel acoustic feedback cancellation approaches in hearing aid applica-
tions using probe noise and probe noise enhancement,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 20, no. 9, pp. 2549–2563, Nov. 2012.



bibliography 187

[130] C. R. C. Nakagawa, S. Nordholm, and W.-Y. Yan, “Feedback cancellation
with probe shaping compensation,” IEEE Signal Process. Lett., vol. 21, no. 3,
pp. 365–369, Mar. 2014.

[131] G. Ma, F. Gran, F. Jacobsen, and F. T. Agerkvist, “Adaptive feedback can-
cellation with band-limited lpc vocoder in digital hearing aids,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 677–687, May 2011.

[132] A. Anand and R. Bhatia, “Performance evaluation of band-limited lpc vocoder
and band-limited relp vocoder in adaptive feedback cancellation,” in Proc. Int.
Conf. Adv. Comput. Comm. Inf. (ICACCI), Kochi, India, Aug. 2015, pp. 126–
132.

[133] N. A. Shusina and B. Rafaely, “Unbiased adaptive feedback cancellation in
hearing aids by closed-loop identification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 14, no. 2, pp. 658–665, Mar. 2006.

[134] M. L. Valero and E. A. P. Habets, “Insight into linear periodically time-varying
coherence reduction methods for stereophonic acoustic echo cancellation,” in
Proc. Int. Worksh. Acout. Signal Enhance. (IWAENC), Xi’an, China, Sep.
2016.

[135] ——, “On the performance of lptv coherence reduction methods in the sub-
band domain for stereophonic acoustic echo cancellation,” in Proc. ITG Con-
ference Speech Communication, Paderborn, Germany, Oct. 2016, pp. 317–321.

[136] A. Pandey and V. J. Mathews, “Howling suppression in hearing aids using
least-squares estimation and perceptually motivated gain control,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Toulouse, France, May 2006,
pp. V–149–V–152.

[137] A. Pandey, V. J. Mathews, and M. Nilsson, “Adaptive gain processing to
improve feedback cancellation in digital hearing aids,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), Las Vegas, USA, Mar. 2008,
pp. 357–360.

[138] T. van Waterschoot, G. Rombouts, and M. Moonen, “Mse optimal regulariza-
tion of apa and nlms algorithms in room acoustic applications,” in Proc. Int.
Workshop Acoust. Echo Noise Control (IWAENC), Paris, France, Sep. 2006.

[139] ——, “Dually regularized prediction error identification for acoustic feedback
and echo cancellation,” in Proc. Europ. Signal Process. Conf. (EUSIPCO),
Poznan, Poland, Sep. 2007, pp. 1610–1614.

[140] ——, “Optimally regularized adaptive filtering algorithms for room acoustic
signal enhancement,” Signal Process., vol. 88, no. 3, pp. 594–611, Mar. 2008.

[141] M. Nikjoo, A. Seyedi, and A. S. Tehrani, “Performance analysis of approximate
affine projection algorithm in acoustic feedback cancellation,” in Proc. Ann.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Vancouver, Canada, Oct. 2008,
pp. 258–261.



188 bibliography

[142] K. Lee, Y.-H. Baik, Y. Park, D. Kim, and J. Sohn, “Robust adaptive feedback
canceller based on modified pseudo affine projection algorithm,” in Proc. Ann.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Boston, USA, Aug. 2011, pp.
3760–3763.

[143] J. M. Gil-Cacho, T. van Waterschoot, and M. Moonen, “Wiener variable step
size and gradient spectral variance smoothing for double-talk-robust acoustic
echo cancellation and acoustic feedback cancellation,” Signal Process., vol. 104,
pp. 1–14, Nov. 2014.

[144] G. Panda and N. B. Puhan, “A vss sparseness control algorithm for feedback
suppression in hearing aids,” in Proc. IEEE Int. Symp. Signal Process. Inform.
Techn. (ISSPIT), Abu Dhabi, United Arab Emirates, Dec. 2015, pp. 151–156.

[145] K. Kashima, A. Kawamura, M. Sunohara, K. Nishiyama, N. Hiruma, and
Y. Iiguni, “Adaptive feedback canceller with howling detection for hearing
aids,” in Proc. Asia-Pacific Signal and Inform Process. Assoc. Ann. Summ.
Conf. (APSIPA ASC), Dec. 2015, pp. 704–710.

[146] L. T. T. Tran, H. H. Dam, and S. E. Nordholm, “Affine projection algorithm
for acoustic feedback cancellation using prediction error method in hearing
aids,” in Proc. Int. Workshop Signal Enhance. (IWAENC), Xi’an, China, Sep.
2016.

[147] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, and S. E. Nordholm, “Im-
proved practical variable step-size algorithm for adaptive feedback control
in hearing aids,” in Proc. International Conference on Signal Processing and
Communication Systems, Surfers Paradise, Gold Coast, Australia, Dec. 2016,
pp. 1–8.

[148] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, and S. Nordholm, “Pro-
portionate nlms for adaptive feedback cancellation in hearing aids,” in Proc.
of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, USA, 2017, pp. 211–215.

[149] G. Bernardi, T. van Waterschoot, J. Wouters, M. Hillbratt, and M. Moonen,
“A pem-based frequency-domain kalman filter for adaptive feedback cancella-
tion,” in Proc. Europ. Signal Process. Conf. (EUSIPCO), Nice, France, Sep.
2015, pp. 270–274.

[150] G. Bernardi, T. van Waterschoot, J. Wouters, and M. Moonen, “An all-
frequency-domain adaptive filter with pem-based decorrelation for acoustic
feedback control,” in Proc. IEEE Workshop Appl. Signal Process. Audio
Acoust. (WASPAA), New Paltz, USA, Oct. 2015.

[151] Y. FanChiang, C.-W. Wei, Y.-L. Meng, Y.-W. Lin, S.-J. Jou, and T.-S. Chang,
“Low complexity formant estimation adaptive feedback cancellation for hear-
ing aids using ptich based processing,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 22, no. 8, pp. 1248–1259, Aug. 2014.



bibliography 189

[152] T. vanWaterschoot and M. Moonen, “Adaptive feedback cancellation for audio
applications,” Signal Process., vol. 89, no. 11, pp. 2185–2201, Nov. 2009.

[153] G. Rombouts, T. van Waterschoot, K. Struyve, and M. Moonen, “Acoustic
feedback cancellation for long acoustic paths using a nonstationary source
model,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3426–3434, Sep. 2006.

[154] K. Ngo, T. van Waterschoot, M. G. Christensen, M. Moonen, S. H. Jensen,
and J. Wouters, “Adaptive feedback cancellation in hearing aids using a sinu-
soidal near-end signal model,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal
Process. (ICASSP), Dallas, USA, Mar. 2010, pp. 181–184.

[155] ——, “Prediction-error-method-based adaptive feedback cancellation in hear-
ing aids using pitch estimation,” in Proc. Europ. Signal Process. Conf. (EU-
SIPCO), Aalborg, Denmark, Aug. 2010, pp. 40–44.

[156] K. Ngo, T. van Waterschoot, M. G. Christensen, M. Moonen, and S. H. Jensen,
“Improved prediction error filters for adaptive feedback cancellation in hearing
aids,” Signal Process., vol. 93, no. 11, pp. 3062–3075, Nov. 2013.

[157] G. Ma, F. Gran, F. Jacobsen, and F. T. Agerkvist, “Noise injection for feed-
back cancellation with linear prediction,” in Proc. Int. Congr. Acoust. (ICA),
Sydney, Australia, Aug. 2010.

[158] A. Bastari, S. Squartini, and F. Piazza, “Joint acoustic feedback cancellation
and noise reduction within the prediction error method framework,” in Proc.
Hands-Free Comm. Mic. Arrays (HSCMA), Trento, Italy, May 2008, pp. 228–
231.

[159] S. Cifani, R. Rotili, E. Principi, S. Squartini, and F. Piazza, “Real-time imple-
mentation of robust pem-afrow based solutions for acoustic feedback control,”
in Audio Engineering Society Convention 127, New York, USA, Oct. 2009.

[160] H. Sakai and H. Fukuzono, “Analysis of adaptive filters in feedback cancel-
lation for sinusoidal signals,” in Proc. Asia Pacific Signal Inform. Process.
Assoc. Ann. Summ. Conf. (APSIPA-ASC), Sapporo, Japan, Oct. 2009.

[161] V. B. Nicolau and M. H. Costa, “Analysis of the deficient length prediction
error method in a hearing aid’s feedback canceller,” in Proc. Europ. Signal
Process. Conf. (EUSIPCO), Barcelona, Spain, Aug. 2011, pp. 714–718.

[162] Y. Montenegro Maluenda and J. C. M. Bermudez, “Transient mean-square
analysis of prediction error method-based adaptive feedback cancellation in
hearing aids,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp.
261–275, Jan. 2012.

[163] R. C. Borges and M. H. Costa, “Influence of the occlusion effect over the
prediction-error feedback cancellation system in hearing aids,” in Proc. Ann.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Milan, Italy, Aug. 2015, pp.
2725–2728.



190 bibliography

[164] L. T. T. Tran, H. H. Dam, H. Schepker, S. Doclo, and S. E. Nordholm, “Eval-
uation of two-microphone acoustic feedback cancellation using uniform and
non-uniform sub-bands in hearing aids,” in Proc. Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA
ASC) [invited paper], Dec. 2015, pp. 308–313.

[165] L. T. T. Tran, S. Nordholm, H. H. Dam, W. Y. Yan, and C. R. Nakagawa,
“Acoustic feedback cancellation in hearing aids using two microphones em-
ploying variable step size affine projection algorithms,” in Proc. IEEE Conf.
Digital Signal Process. (DSP), Singapore, Jul. 2015, pp. 1191–1195.

[166] F. Albu, R. Nakagawa, and S. Nordholm, “Proportionate algorithms for two-
microphone active feedback cancellation,” in Proc. Europ. Signal Process.
Conf. (EUSIPCO), Nice, France, Aug. 2015, pp. 290–294.

[167] L. T. T. Tran, S. Doclo, H. Schepker, H. H. Dam, and S. Nordholm, “Two-
microphone hearing aids using prediction error method for adaptive feedback
control,” IEEE/ACM Trans. Audio, Speech, Lang. Process, vol. 25, no. 5, pp.
909–923, May 2018.

[168] H.-W. Lee and M.-Y. Jeon, “A combined feedback and noise cancellation al-
gorithm for binaural hearing aids,” Adv. Electr. Comp. Eng., vol. 11, no. 3,
pp. 35–40, Aug. 2011.

[169] M. Goodwin and G. Elko, “Beam dithering: Acoustic feedback control using a
modulated-directivity loudspeaker array,” in Audio Engineering Society Con-
vention 93, San Francisco, USA, Oct. 1992.

[170] T. Sankowsky-Rothe, H. Schepker, and M. Blau, “Reziproke messung des
akustischen feedbackpfads bei hörgeräten (reciprocal measurement of the
acoustic feedback path in hearing aids),” in Fortschritte der Akustik - DAGA,
Erlangen, Mar. 2015, pp. 1162–1165.

[171] A. Spriet, G. Rombouts, M. Moonen, and J. Wouters, “Combined feedback
and noise suppression in hearing aids,” IEEE Trans. Audio, Speech and Lang.
Process., vol. 15, no. 6, pp. 1777–1790, Aug. 2007.

[172] G. Rombouts, A. Spriet, and M. Moonen, “Generalized sidelobe canceller
based combined acoustic feedback- and noise cancellation,” Signal Process.,
vol. 88, no. 3, pp. 571–581, Mar. 2008.

[173] F. Denk, M. Hiipakka, B. Kollmeier, and S. M. A. Ernst, “An individualised
acoustically transparent earpiece for hearing devices,” Int. J. Audiol., vol.
early only, pp. 1–9, 2017.

[174] H. Schepker and S. Doclo, “Modeling the common part of acoustic feedback
paths in hearing aids using a pole-zero model,” in Proc. of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence,
Italy,, May 2014, pp. 3693–3697.

[175] ——, “Estimation of the common part of acoustic feedback paths in hearing
aids using iterative quadratic programming,” in Proc. International Workshop



bibliography 191

on Acoustic Signal Enhancement (IWAENC), Antibes - Juan les Pins, France,
Sep. 2014, pp. 46–50.

[176] ——, “Common part estimation of acoustic feedback paths in hearing aids
optimizing maximum stable gain,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia,
Apr. 2015, pp. 649–653.

[177] ——, “A semidefinite programming approach to min-max estimation of the
common part of acoustic feedback paths in hearing aids,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 24, no. 2, pp. 366–377, Feb. 2016.

[178] ——, “Least-squares estimation of the common pole-zero model of acoustic
feedback paths in hearing aids,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 24, no. 8, pp. 1334–1347, Aug. 2016.

[179] H. Schepker, L. T. T. Tran, S. E. Nordholm, and S. Doclo, “Improving adaptive
feedback cancellation in hearing aids using an affine combination of filters,”
in Proc. of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Shanghai, China, Mar. 2016, pp. 231–235.

[180] ——, “Acoustic feedback cancellation for a multi-microphone earpiece based
on a null-steering beamformer,” in Proc. International Workshop on Acoustic
Signal Enhancement (IWAENC), Xi’an, China, Sep. 2016.

[181] ——, “A robust null-steering beamformer for acoustic feedback cancellation
for a multi-microphone earpiece,” in Proc. 12th ITG Conference on Speech
Communication, Paderborn, Germany, Oct. 2016, pp. 165–169.

[182] ——, “Null-steering beamformer for acoustic feedback cancellation in a multi-
microphone earpiece optimizing the maximum stable gain,” in Proc. of
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, USA, 2017, pp. 341–345.

[183] ——, “Combining null-steering and adaptive filtering for acoustic feedback
cancellation in a multi-microphone earpiece,” in Proc. European Signal Pro-
cessing Conference (EUSIPCO), Kos Island, Greece, Aug. 2017, pp. 241–245.

[184] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification.
M. I. T. Press, 1983.

[185] D. J. Freed and S. D. Soli, “An objective procedure for evaluation of adaptive
antifeedback algorithms in hearing aids,” Ear & Hearing, vol. 27, no. 4, 2006.

[186] A. Spriet, K. Eneman, M. Moonen, and J. Wouters, “Objective measures for
real-time evaluation of adaptive feedback cancellation algorithms in hearing
aids,” in Proc. Europ. Signal Process. Conf (EUSIPCO), Lausanne, Switzer-
land, Aug. 2008.

[187] A. Spriet, M. Moonen, and J. Wouters, “Objectie evaluation of feedback re-
duction techniques in hearing aids,” in Proc. Europ. Signal Process. Conf.
(EUSIPCO), Glasgow, Scotland, Aug. 2009, pp. 1859–1863.



192 bibliography

[188] ——, “Evaluation of feedback reduction techniques in hearing aids based on
physical performance measures,” J. Acoust. Soc. Am., vol. 128, no. 3, pp.
1245–1261, Sep. 2010.

[189] A. J. Manders, D. M. Simpson, and S. L. Bell, “Objective prediction of the
sound quality of music processed by an adaptive feedback canceller,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 6, pp. 1734–1745, Aug. 2012.

[190] M. Guo, S. H. Jensen, and J. Jensen, “Evaluation of state-of-the-art acoustic
feedback cancellation systems for hearing aids,” J. Audio Eng. Soc., vol. 61,
no. 3, pp. 125–137, Mar. 2013.

[191] M. Guo, A. Meng, B. Kuenzle, and K. Kappeler, “Intrusive howling detection
methods for hearing aid evaluation,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), Shanghai, China, Mar. 2016, pp. 236–240.

[192] Perceptual evaluation of speech quality (PESQ): An objective method for
end-to-end speech quality assessment of narrow-band telephone networks and
speech codecs, International Telecommuncation Union Std. P.862, Feb. 2001.

[193] J. Agnew and J. M. Thornton, “Just noticeable and objectionable group delays
in digital hearing aids,” J. Am. Acad. Audiol., vol. 11, no. 6, pp. 330–336, Jun.
2000.

[194] K.-A. Lee, W.-S. Gan, and S. M. Kuo, Subband Adaptive Filtering: Theory
and Implementations, 1st ed. John Wiley & Sons, Ltd., 2009.

[195] D. R. Morgan and J. C. Thi, “A delayless subband adaptive filter architecture,”
IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1819–1830, Aug. 1995.

[196] J. Huo, S. Nordholm, and Z. Zang, “New weight transform schemes for delay-
less subband adaptive filtering,” in Proc. Global Telecomm. Conf. (GLOBE-
COM), San Antonio, USA, Nov. 2001, pp. 197–201.

[197] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Al-
gorithms, and Applications, 4th ed. Pearson Prentice Hall, 2007.

[198] K. F. C. Yiu, N. Grbic, S. Nordholm, and K. L. Teo, “A hybrid method for
the design of oversampled uniform dft filter banks,” Signal Processing, vol. 86,
no. 7, pp. 1355–1364, Jul. 2006.

[199] J. Benesty, J. Chen, and Y. Huang, Springer Handbook of Speech Processing.
Springer, 2007, ch. Linear Prediction, pp. 121–134.

[200] J. Makhoul, “Stable and efficient lattice methods for linear prediction,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 25, no. 5, pp. 423–428, Oct. 1977.

[201] J.-S. Soo and K. K. Pang, “Multidelay block frequency domain adaptive filter,”
IEEE Trans. Acoustics, Speech, Signal Process., vol. 38, no. 2, pp. 373–376,
Feb. 1990.



bibliography 193

[202] J. E. Greenberg, “Modifiied lms algorithm for speech processing with an adap-
tive noise canceller,” IEEE Trans. Speech Audio Process., vol. 6, no. 4, pp.
338–351, Jul. 1998.

[203] K. Steiglitz and L. McBride, “A technique for the identification of linear sys-
tems,” IEEE Trans. Autom. Control, vol. 10, no. 4, pp. 461–464, Oct. 1965.

[204] C. J. Zarowski, X. Ma, and F. W. Fairman, “Qr-factorization method for com-
puting the greatest common divisor of polynomials with inexact coefficients,”
IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3042–3051, Nov. 2000.

[205] W. Qiu, Y. Hua, and K. Abed-Meraim, “A subspace method for the computa-
tion of the gcd of polynomials,” Automatica, vol. 33, no. 4, pp. 741–743, Apr.
1997.

[206] P. Chin, R. M. Corless, and G. F. Corliss, “Optimization strategies for the ap-
proximate gcd problem,” in Proc. Int. Symp. Symb. Algebraic Comp., Rostock,
Germany, Aug. 1998, pp. 228–235.

[207] C. Mullis and R. Roberts, “The use of second-order information in the ap-
proximation of discrete linear systems,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 24, no. 3, pp. 226–238, Jun. 1976.

[208] J. O. Smith III, Introduction to digital filters: with audio applications. W3K
Publishing, 2007, vol. 2.

[209] H. Fan and M. Nayeri, “On reduced order identification; revisiting on some
system indentification techniques for adaptive filtering,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 37, no. 9, pp. 1144–1151, Sep. 1990.

[210] A. Chottera and G. Jullien, “A linear programming approach to recursive
digital filter design with linear phase,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 29, no. 3, pp. 139–149, Mar. 1982.

[211] W. S. Lu and A. Antoniou, “Design of digital filters and filter banks by op-
timization: A state of the art review,” in Proc. Europ. Signal Process. Conf.
(EUSIPCO), Tampere, Finland, Sep. 2000.

[212] W. S. Lu, S.-C. Pei, and C.-C. Tseng, “A weighted least-squares method for
the design of stable 1-d and 2-d iir digital filters,” IEEE Trans. Signal Process.,
vol. 46, no. 1, pp. 1–10, Jan. 1998.

[213] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[214] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming, version 2.1,” Dec. 2016. [Online]. Available: http://cvxr.com/
cvx

[215] ——, Recent Advances in Learning and Control, ser. Lecture Notes in Con-
trol and Information Sciences V. Springer-Verlag Limited, 2008, ch. Graph
Implementations of Nonsmooth Convex Programs.

http://cvxr.com/cvx
http://cvxr.com/cvx


194 bibliography

[216] W. S. Lu, “Design of stable minimax iir digital filters using semidefinite pro-
gramming,” in Proc. IEEE Int. Symp. Circ. and Syst. (ISCAS), Geneva, Italy,
May 2000, pp. 355–358.

[217] R. L. Streit and A. H. Nuttall, “A general chebyshev complex function approx-
imation procedure and an application to beamforming,” J. Acoust. Soc. Am.,
vol. 72, no. 1, pp. 181–190, Jul. 1982.

[218] M. Hiipakka, M. Tikander, and M. Karjalainen, “Modeling the external ear
acoustics for insert headphone usage,” J. Audio Eng. Soc., vol. 58, no. 4, pp.
269–281, Apr. 2010.

[219] U. Forssell and L. Ljung, “Closed-loop identification revisited,” Automatica,
vol. 35, no. 7, pp. 1215–1241, Jul. 1999.

[220] A. Mader, H. Puder, and G. U. Schmidt, “Step-size control for acoustic echo
cancellation filters - an overview,” Signal Processing, vol. 80, no. 9, pp. 1697–
1719, Sep. 2000.

[221] J. Benesty, H. Rey, L. R. Vega, and S. Tressens, “A non-parametric vss nlms
algorithm,” IEEE Signal Process. Lett., vol. 13, no. 10, pp. 581–584, Oct. 2006.

[222] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, and S. E. Nordholm, “Adap-
tive feedback control using improved variable step-size affine projetion algo-
rithm for hearing aids,” in submitted to Proc. Asia-Pacific Signal Inform. Pro-
cess. Assoc. Annual Summit Conf. (APSIPA-ASC), Dec. 2017.

[223] J. Arenas-Garcia, V. Gomez-Verdejo, and A. R. Figueiras-Vidal, “New algo-
rithms for improved adaptive convex combination of lms transversal filters,”
IEEE Trans. Instrum. Meas., vol. 54, no. 6, pp. 2239–2249, Dec. 2005.

[224] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean-square per-
formance of a convex combination of two adaptive filters,” IEEE Trans. Signal
Process., vol. 54, no. 3, pp. 1078–1090, Mar. 2006.

[225] N. J. Bershad, J. C. M. Bermudez, and J.-Y. Tourneret, “An affine combina-
tion of two lms adaptive filters: Transient mean-square analysis,” IEEE Trans.
Signal Process., vol. 56, no. 5, pp. 1853–1864, May 2008.

[226] J. Arenas-Garcia and A. R. Figueiras-Vidal, “Adaptive combination of pro-
portionate filters for sparse echo cancellation,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 17, no. 6, pp. 1087–1098, Aug. 2009.

[227] R. Candido, M. T. M. Silva, and V. H. Nascimento, “Transient and steady-
state analysis of the affine combination of two adaptive filters,” IEEE Trans.
Signal Process., vol. 58, no. 8, pp. 4064–4078, Aug. 2010.

[228] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, “Acous-
tic echo cancellation in discrete fourier transform domain based on adaptive
combination of adaptive filters,” in Proc. Meet. Acoust., Montreal, Canada,
vol. 19, Jun. 2013, pp. 055 043–055 043.



bibliography 195

[229] O. L. Frost, “An algorithm for linearly constrained adaptive array processing,”
Proc. IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.

[230] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. The John
Hopkins University Press, 1996.

[231] J. S. Garofolo, “Getting started with the darpa timit cd-rom: An acoustic
phonetic continuous speech database,” Nat. Inst. Standards Technol. (NIST),
Gaithersburg, MD„ Tech. Rep., Dec. 1988.

[232] T. Sankowsky-Rothe, M. Blau, H. Schepker, and S. Doclo, “Reciprocal mea-
surement of the acoustic feedback path in hearing aids,” J. Acoust. Soc. Am.,
vol. 138, no. 4, pp. EL399–EL404, Oct. 2015.

[233] S. Vogl, T. Sankowsky-Rothe, and M. Blau, “Elektroakustische model-
lierung eines ohrpassstücks mit integrierten mikrofonen und lautsprechern,”
in Fortschritte der Akustik - DAGA 2016, Aachen, Germany, Mar. 2016, pp.
1163–1166.

[234] T. Ulrych and S. Treitel, “A new proof of the minimum phase property of the
unit delay prediction error operator - revisited,” IEEE Trans. Signal Process.,
vol. 39, no. 1, pp. 252–254, Jan. 1991.

[235] R. L. Streit and A. H. Nuttall, “Linear chebyshev complex function approxi-
mation,” Naval Underwater Systems Center, New Port, Rhode Island / New
London, USA, Tech. Rep., 1981.





LIST OF PUBLICATIONS

Peer-reviewed Journal Papers

[1] H. Schepker, S. E. Nordholm, L. T. T. Tran, S. Doclo, “Acoustic Feedback
Cancellation for a Multi-Microphone Earpiece using a Null-Steering Beam-
former and Adaptive Filtering,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, manuscript in preparation.

[2] T. Sankowsky-Rothe,H. Schepker, S. Doclo, M. Blau, “Comparison of physi-
cal and non-physically motivated models of acoustic feedback paths in hearing
aids,” The Journal of the Acoustical Society of America, manuscript in prepa-
ration.

[3] L. T. T. Tran, S. Nordholm, H. Schepker, H. H. Dam, S. Doclo, “Two-
Microphone Hearing Aids Using Prediction Error Method for Adaptive Feed-
back Control,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 5, pp. 909–923, May 2018.

[4] S. E. Nordholm, H. Schepker, L. T. T. Tran, S. Doclo, “Stability controlled
hybrid adaptive feedback cancellation for hearing aids,” The Journal of the
Acoustical Society of America, vol. 143, no. 1, pp. 150–166, Jan. 2018.

[5] J. Rennies-Hochmuth, J. Drefs, D. Hülsmeier,H. Schepker, S. Doclo, “Exten-
sion and evaluation of a near-end listening enhancement algorithm for listeners
with normal and impaired hearing,” The Journal of the Acoustical Society of
America, vol 141, no. 4, pp. 2526–2537, Apr. 2017.

[6] H. Schepker, K. Haeder, J. Rennies, I. Holube, “Listening effort and speech
intelligibility in reverberation and noise for hearing-impaired listeners,” Inter-
national Journal of Audiology, vol. 55, no. 12, pp. 738–747, Dec. 2016.

[7] H. Schepker, S. Doclo, “Least-squares estimation of the common pole-zero
model of acoustic feedback paths in hearing aids,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 24, no. 8, pp. 1334-1347, Aug.
2016.

[8] H. Schepker, S. Doclo, “A semidefinite programming approach to min-max
estimation of the common part of acoustic feedback paths in hearing aids,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.
24, no. 2, pp. 366-377, Feb. 2016.

197



198 list of publications

[9] H. Schepker, J. Rennies, S. Doclo, “Speech-in-noise enhancement using am-
plification and dynamic range compression controlled by the speech intelligi-
bility index,” The Journal of the Acoustical Society of America, vol. 138, no.
5, pp. 2692–2706, Nov. 2015.

[10] T. Sankowsky-Rothe, M. Blau, H. Schepker, S. Doclo, “Reciprocal measure-
ment of the acoustic feedback path in hearing aids,” The Journal of the Acous-
tical Society of America, vol. 138, no. 4, pp. EL399–EL404, Oct. 2015.

[11] J. Rennies,H. Schepker, I. Holube, B. Kollmeier, “Listening effort and speech
intelligibility in listening situations affected by noise and reverberation,” The
Journal of the Acoustical Society of America, vol. 136, no. 5, pp. 2642–2653,
Nov. 2014.

Peer-reviewed Conference Papers

[1] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, S. Nordholm, “Frequency
Domain Improved Practical Variable Step-Size for Adaptive Feedback Cancel-
lation using Pre-Filters,” to be submitted to Proc. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada,
Apr. 2018.

[2] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, S. E. Nordholm, “Adap-
tive Feedback Control using Improved Variable Step-Size Affine Projection
Algorithm for Hearing Aids,” submitted to Proc. Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA
ASC), Kuala Lumpur, Malaysia, Dec. 2017.

[3] H. Schepker, L. T. T. Tran, S. E. Nordholm, S. Doclo, “Combining null-
steering and adaptive filtering for acoustic feedback cancellation in a multi-
microphone earpiece,” in Proc. European Signal Processing Conference (EU-
SIPCO), Kos Island, Greece, Aug. 2017, pp. 241–245.

[4] F. Denk, S. Vogl, H. Schepker, B. Kollmeier, M. Blau, S. Doclo, “The Acous-
tically Transparent Hearing Device: Towards integration of Individualized
Sound Equalization, Electro-Acoustic Modeling and Feedback Cancellation,”
in Proc. International Workshop on Challenges in Hearing Assistive Technolo-
gies (CHAT), Stockholm, Sweden, Aug. 2017.

[5] H. Schepker, L. T. T. Tran, S. E. Nordholm, S. Doclo, “Null-steering beam-
former for acoustic feedback cancellation in a multi-microphone earpiece op-
timizing the maximum stable gain,” in Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, USA,
Mar. 2017, pp. 341-345.

[6] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, S. E. Nordholm, “Pro-
portionate NLMS for adaptive feedback cancellation in hearing aids,” in Proc.



list of publications 199

IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), New Orleans, USA, Mar. 2017, pp. 211-215.

[7] L. T. T. Tran, H. Schepker, S. Doclo, H. H. Dam, S. E. Nordholm, “Im-
proved practical variable step-size algorithm for adaptive feedback control
in hearing aids,” in Proc. International Conference on Signal Processing and
Communication Systems (ICSPCS), Surfers Paradise, Gold Coast, Australia,
Dec. 2016.

[8] H. Schepker, L. T. T. Tran, S. E. Nordholm, S. Doclo, “A robust null-steering
beamformer for acoustic feedback cancellation for a multi-microphone ear-
piece,” in Proc. 12th ITG Conference on Speech Communication, Paderborn,
Germany, Oct. 2016, pp. 165–169.

[9] H. Schepker, L. T. T. Tran, S. E. Nordholm, S. Doclo, “Acoustic feedback
cancellation for a multi-microphone earpiece based on a null-steering beam-
former,” in Proc. International Workshop on Acoustic Signal Enhancement
(IWAENC), Xi’an, China, Sept. 2016, pp 1–4.

[10] H. Schepker, L. T. T. Tran, S. E. Nordholm, S. Doclo, “Improving adaptive
feedback cancellation in hearing aids using an affine combination of filters,” in
Proc. IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Shanghai, China, Mar. 2016, pp. 231–235.

[11] L. T. T. Tran, H. H. Dam, H. Schepker, S. Doclo, S. E. Nordholm, “Eval-
uation of two-microphone acoustic feedback cancellation using uniform and
non-uniform sub-bands in hearing aids,” in Proc. Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA
ASC), Hong Kong, Dec. 2015, pp. 308–313.

[12] H. Schepker, D. Hülsmeier, J. Rennies, S. Doclo, “Model-based integration
of reverberation for noise-adaptive near-end listening enhancement,” in Proc.
Interspeech, Dresden, Germany, Sept. 2015, pp. 75–79.

[13] H. Schepker, S. Doclo, “Common part estimation of acoustic feedback paths
in hearing aids optimizing maximum stable gain,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane,
Australia, Apr. 2015, pp. 649–653.

[14] H. Schepker, S. Doclo, “Estimation of the common part of acoustic feedback
paths in hearing aids using iterative quadratic programming,” in Proc. In-
ternational Workshop on Acoustic Signal Enhancement (IWAENC), Antibes -
Juan Les Pins, France, Sept. 2014, pp. 46–50.

[15] H. Schepker, S. Doclo, “Modeling the common part of acoustic feedback
paths in hearing aids using a pole-zero model,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence,
Italy, May 2014, pp. 3693–3697.

[16] H. Schepker, J. Rennies, S. Doclo, “Improving speech intelligibility in noise
by SII-dependent preprocessing using frequency-dependent amplification and



200 list of publications

dynamic range compression,” in Proc. Interspeech, Lyon, France, Sept. 2013,
pp. 3577–3581.

[17] H. Schepker, F. X. Nsabimana, J. Rennies, “Non-intrusive objective assess-
ment of speech perception in noisy classrooms,” in Proc. 10th ITG Conference
on Speech Communication, Braunschweig, Germany, Oct. 2012, pp. 215–218.

Abstracts and Others

[1] A. Pusch, J. Rennies-Hochmuth,H. Schepker, S. Doclo, “Höranstrengung als
Messverfahren zur Evaluation von Near-end listening enhancement Algorith-
men,” to be submitted to Fortschritte der Akustik - DAGA 2018, München,
Germany, Mar. 2018.

[2] J. Rennies-Hochmuth,H. Schepker, D. Hülsmeier, J. Drefs, S. Doclo, “Evalu-
ating near-end listening enhancement in noise for normal-hearing and hearing-
impaired listeners,” in Acoustics 2017, Boston, USA, June 2017.

[3] H. Schepker, S. Doclo, “Acoustic feedback cancellation for a novel multi-
microphone earpiece combining null-steering and adaptive filtering,” in 44th
Erlanger Kolloquium, Erlangen, Germany, Feb. 2017.

[4] J. Rennies-Hochmuth,H. Schepker, D. Hülsmeier, J. Drefs, S. Doclo, “Noise-
adaptive near-end listening enhancement for normal-hearing and hearing-
impaired listeners,” in 9th Workshop on Speech in Noise, Oldenburg, Germany,
Jan. 2017.

[5] H. Schepker, S. Doclo, “Acoustic Feedback Cancellation for a Multi-
Microphone Earpiece using a Null-Steering Beamformer,” in International
Hearing Aid Research Conference (IHCON), Lake Tahoe, USA, Aug. 2016.

[6] J. Rennies, A. Volgenandt, H. Schepker, S. Doclo, “Model-based pre-
processing of speech for enhanced intelligibility in noise and reverberation,”
in Proc. of Interspeech - Show and Tell Demonstration, Dresden, Germany,
Sept. 2015, pp. 2619-2620.

[7] J. Drefs, J. Rennies, H. Schepker, S. Doclo, “Modellbasierte Verbesserung
von Sprachverständlichkeit in störgeräuschbehafteter Umgebung,” in
Fortschritte der Akustik - DAGA 2015, Erlangen, Germany, Mar. 2015, pp.
1031-1034.

[8] D. Hülsmeier, J. Rennies, J. Drefs, H. Schepker, S. Doclo, “Evaluation eines
Algorithmus zur SII-basierten Sprachverständlichkeitsverbesserung in störg-
eräuschbehafteter Umgebung mit schwerhörenden Probanden,” in Fortschritte
der Akustik - DAGA 2015, Erlangen, Germany, Mar. 2015, pp. 154-157.

[9] T. Sankowsky-Rothe,H. Schepker, M. Blau, “Reziproke Messung des akustis-
chen Feedbackpfades bei Hörgeräten,” in Fortschritte der Akustik - DAGA
2015, Erlangen, Germany, Mar. 2015, pp. 1162-1165.



list of publications 201

[10] I. Holube, H. Schepker, K. Haeder, J. Rennies, “Listening effort and speech
intelligibility in reverberation and noise,” in International Hearing Aid Re-
search Conference (IHCON), Lake Tahoe CA, USA, Aug. 2014.

[11] H. Schepker, S. Doclo, “Common part modeling of acoustic feedback paths in
open-fitting hearing aids,” in International Hearing Aid Research Conference
(IHCON), Lake Tahoe CA, USA, Aug. 2014.

[12] K. Haeder, H. Schepker, I. Holube, J. Rennies, “Zusammenhang von
Höranstrengung, Sprachverständlichkeit und STI bei Schwerhörenden,” in
Fortschritte der Akustik - DAGA 2014, Oldenburg, Germany, Mar. 2014, pp.
431-432.

[13] J. Rennies, H. Schepker, A. Kubiak, S. Doclo, “Adaptive Verbesserung
der Sprachverständlichkeit und Medienwiedergabe in Fahr- und Verkehrs-
geräuschen,” in Fortschritte der Akustik - DAGA 2014, Oldenburg, Germany,
Mar. 2014, pp. 42-43.

[14] H. Schepker, S. Doclo, “Comparison of common part modeling of acoustic
feedback paths in hearing aids, in Fortschritte der Akustik - DAGA 2014,
Oldenburg, Germany, Mar. 2014, p. 92 (A).

[15] H. Schepker, J. Rennies, S. Doclo, “Improving speech intelligibility in back-
ground noise by SII-dependent amplification and compression,” in Proc. An-
nual Conference on Acoustics (AIA-DAGA), Merano, Italy, Mar. 2013, pp.
2140-2143.

[16] H. Schepker, J. Rennies, S. Doclo, “Improving speech intelligibility in back-
ground noise by SII-dependent amplification and compression,” in 5th Work-
shop on Speech in Noise: Intelligibility and Quality, Vitoria, Spain, Jan. 2013.

[17] H. Schepker, J. Rennies, I. Holube, B. Kollmeier, “Zusammenhang von
Höranstrengung, Sprachverständlichkeit und STI,” in Fortschritte der Akustik
- DAGA 2012, Darmstadt, Germany, Mar. 2012, pp. 875-876.

[18] H. Schepker, J. Rennies, I. Holube, B. Kollmeier, “Kontinuierliche Messung
und Vorhersage von Höranstrengung,” in Fortschritte der Akustik - DAGA
2011, Düsseldorf, Germany, Mar. 2011, pp. 589-590.

Patent Applications

[1] H. Schepker, J. Rennies, S. Doclo, J. E. Appell, “Improving speech intelligi-
bility in background noise by SII-dependent amplification and compression,”
(WO/2014/108222, US/2015/0310875 A1, JP2016-505896A)




	Dedication
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction 
	1.1 Acoustic Feedback and Hearing Aids 
	1.2 Overview of Feedback Suppression Methods 
	1.3 Feedforward Feedback Suppression 
	1.4 Adaptive Feedback Cancellation 
	1.5 Spatial Filtering based Feedback Suppression 
	1.6 Thesis Outline and Main Contributions 

	2 Acoustic Setup and Performance Measures 
	2.1 Acoustic Systems and Notation
	2.2 Instrumental Performance Measures 
	2.3 Summary

	3 Adaptive Feedback Cancellation 
	3.1 Adaptive Filtering 
	3.2 Bias Analysis 
	3.3 Bias Reduction Methods 
	3.4 Summary

	4 Common Part Optimization for AFC in Hearing Aids
	4.1 Problem Formulation 
	4.2 Review of Instrumental Measures of Feedback Cancellation Performance
	4.3 Least-squares Optimization 
	4.4 Min-max Optimization 
	4.5 Experimental Evaluation 
	4.6 Common Part based Feedback Cancellation 
	4.7 Summary

	5 Affine Combination of Adaptive Filters for AFC
	5.1 Proposed Adaptive Feedback Cancellation Algorithm
	5.2 Experimental Evaluation
	5.3 Conclusion

	6 Feedback Cancellation based on Null-Steering
	6.1 Acoustic Scenario and Notation
	6.2 Fixed Null-steering Beamformer Design 
	6.3 Experimental Evaluation 
	6.4 Combined Null-Steering and Adaptive Feedback Cancellation 
	6.5 Summary

	7 Conclusion & Outlook 
	7.1 Conclusion
	7.2 Suggestions for Future Research

	A Appendix to Chapter 4
	A.1 Time-domain notation of equation-error optimization 
	A.2 Proof of stability of equation-error optimization 
	A.3 Schur Complement of JWMMv

	B Measurement of Acoustic Feedback Paths 
	C Real Rotation Theorem 
	Bibliography
	Publications


