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ABSTRACT

Due to their decreased ability to understand speech hearing impaired may have
difficulties to interact in social groups, especially when several people are talking
simultaneously. Fortunately, in the last decades hearing aids have evolved from
simple sound amplifiers to modern digital devices with complex functionalities
including noise reduction algorithms, which are crucial to improve speech under-
standing in background noise for hearing-impaired persons. Since many hearing aid
users are fitted with two hearing aids, so-called binaural hearing aids have been
developed, which exchange data and signals through a wireless link such that the
processing in both hearing aids can be synchronized. In addition to reducing noise
and limiting speech distortion, another important objective of noise reduction al-
gorithms in binaural hearing aids is the preservation of the listener’s impression
of the acoustical scene, in order to exploit the binaural hearing advantage and to
avoid confusions due to a mismatch between the acoustical and the visual infor-
mation. This can be achieved by preserving the binaural cues, i.e. the Interaural
Level Difference (ILD), the Interaural Time Difference (ITD) and the Interaural
Coherence (IC) of all sound sources in the acoustical scene.

Considering the importance of the binaural cues for speech intelligibility and spa-
tial awareness, the main objective of this thesis is to develop and evaluate algo-
rithms for noise reduction in binaural hearing aids, which, in addition to preserving
the binaural cues of the speech component, also preserve the binaural cues of the
noise component. Generally, the proposed algorithms are based on the binaural
multi-channel Wiener filter (MWF), since this technique advantageously combines
spatial filtering with spectral filtering and preserves the binaural cues of the speech
source. We propose several extensions of the binaural MWF aiming to preserve
the binaural cues for acoustic scenarios with

1. a single desired speech source in a diffuse noise field,

2. a single desired speech source with an additional interfering source in a diffuse
noise field.

For acoustic scenarios with a diffuse noise field, we propose an extension of the
binaural MWF, namely the MWF-IC, aiming to also preserve the IC of the diffuse
noise field. Since for the MWF-IC no closed-form solution exists, we also propose
to preserve the IC of a diffuse noise field using both the binaural MWF with par-
tial noise estimation (MWF-N) and the binaural MVDR beamformer with partial
noise estimation (MVDR-N), for which closed-form solutions exist. Since for all
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proposed algorithms a trade-off between IC preservation and noise reduction per-
formance exists, depending on trade-off parameters, we propose to select these
trade-off parameters based on the IC discrimination ability of the human auditory
system, such that an optimal trade-off between noise reduction performance and
spatial awareness preservation is obtained. In addition, for the MVDR-N beam-
former we derive a closed-form expression for the trade-off parameter yielding a
desired Magnitude Squared Coherence (MSC) for the output noise component.
Furthermore, we evaluate the proposed algorithms using objective measures and
subjective listening tests, showing that the proposed algorithms always improve
the spatial impression of the output signal and can in some cases even increase
speech intelligibility compared to the binaural MWF.
Since previously proposed extensions of the binaural MWF are not able to achieve
perfect binaural cue preservation for both the speech source and a directional
interfering source, for acoustic scenarios with an interfering source, we propose
two extensions of the binaural MWF. The first extension, denoted as MWF-RTF,
aims to preserve the binaural cues of the interfering source by adding an RTF
preservation constraint to the binaural MWF cost function. The second extension,
denoted as MWF-IR, aims to completely suppress the interfering source by adding
an interference rejection constraint to the binaural MWF cost function. Since for
both extensions the impact of these additional constraints on speech distortion,
noise reduction and binaural cue preservation performance will be different, we
provide a rigorous theoretical analysis and comparison of the performance of the
binaural MWF, MWF-RTF and MWF-IR algorithms. The theoretical analysis is
validated by simulations using measured Acoustic Transfer Functions of a binaural
hearing aid in a reverberant room, showing that the performance of the binaural
MWF, MWF-RTF and MWF-IR highly depends on the position of the interfer-
ing source and the number of microphones. Furthermore, simulation results show
that the MWF-RTF achieves a very similar overall noise reduction performance as
the binaural MWF, while preserving the binaural cues of both the speech source
and the interfering source, whereas the overall noise reduction performance of
the MWF-IR is significantly degraded compared to the binaural MWF and the
MWF-RTF. In addition, we mathematically analyse the relations of the MWF-
RTF and the MWF-IR to the recently proposed BLCMV beamformer, showing
that for a special case of the MWF-RTF, the MWF-RTF is equal to the BLCMV
beamformer with the interference rejection parameter maximizing the signal-to-
noise-plus-interference ratio. Furthermore, we will show that the MWF-IR can be
decomposed into a special case of the BLCMV beamformer and a single-channel
Wiener postfilter.
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ZUSAMMENFASSUNG

Aufgrund ihres Hörverlustes fällt es Hörgeschädigten schwer, in sozialen Grup-
pen zu interagieren, besonders wenn mehrere Personen gleichzeitig sprechen. Er-
freulicherweise haben sich Hörgeräte in den letzten Jahrzehnten von einfachen
Klangverstärkern zu modernen digitalen Geräten mit komplexen Funktionen ent-
wickelt. Besonders Algorithmen zur Störgeräuschunterdrückung sind unabdingbar,
um das Sprachverstehen in akustischen Szenarien mit Hintergrundgeräuschen zu
verbessern. Da viele Hörgeräteträger mit 2 Hörgeräten ausgestattet sind, wur-
den sogenannte binaurale Hörgeräte entwickelt, welche mittels einer drahtlosen
Verbindung Signale austauschen, sodass die Verarbeitung in beiden Hörgeräten
synchronisiert werden kann. Zusätzlich zur Unterdrückung des Störgeräusches und
der Begrenzung auftretender Sprachverzerrungen ist eine wichtige Aufgabe von
binauralen Algorithmen zur Störgeräuschunterdrückung die Bewahrung des räum-
lichen Eindruckes der akustischen Szene, um somit zusätzlich den Vorteil des bin-
auralen Hörens für Sprachverständlichkeit auszunutzen. Dies kann durch die Be-
wahrung der sogenannten binauralen Cues, d. h. der interauralen Pegeldifferenz,
der interauralen Zeitdifferenz und der interauralen Kohärenz erreicht werden.

In Anbetracht der enormen Bedeutung der binauralen Cues für die Sprachver-
ständlichkeit und den räumlichen Eindruck ist das primäre Ziel dieser Arbeit, Al-
gorithmen zur Störgeräuschunterdrückung in binauralen Hörgeräten zu entwickeln,
welche nicht nur die binauralen Cues des Sprachsignals, sondern auch die binau-
ralen Cues des Störgeräusches bewahren. Im Allgemeinen basieren die vorgeschlage-
nen Algorithmen auf dem binauralen mehrkanaligenWiener Filter (MWF), welcher
räumliche und spektrale Filterung vereint und die binauralen Cues des Sprach-
signals bewahrt. Wir entwickeln mehrere Erweiterungen des binauralen MWF mit
dem Ziel, die binauralen Cues in akustischen Szenarien mit

1. einem Sprachsignal in einem diffusen Geräuschfeld,

2. einem Sprachsignal mit einem zusätzlichen Störsprecher in einem diffusen
Geräuschfeld

zu bewahren. Für akustische Szenarien mit einem diffusen Geräuschfeld präsen-
tieren wir einen Algorithmus, basierend auf dem binauralen MWF - genannt MWF-
IC - mit dem Ziel, die interaurale Kohärenz des diffusen Geräuschfeldes zu be-
wahren. Da für den MWF-IC keine mathematisch geschlossene Lösung existiert,
verwenden wir zusätzlich den binauralen MWF mit teilweiser Bewahrung des Stör-
geräusches (MWF-N) und den binauralen MVDR Beamformer mit teilweiser Be-
wahrung des Störgeräusches (MVDR-N), für die eine mathematisch geschlossene
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Lösung existiert. Da für alle vorgeschlagenen Algorithmen ein Kompromiss zwi-
schen erreichbarer Störgeräuschreduktion und Bewahrung der interauralen Ko-
härenz existiert, welcher durch einen Parameter gesteuert werden kann, setzen
wir diesen Parameter basierend auf der Fähigkeit des menschlichen Gehörs, Un-
terschiede in der interauralen Kohärenz wahrzunehmen, um ein psychoakustisch
optimiertes Ausgangssignal zu erhalten. Die Algorithmen werden mittels objek-
tiver Qualitätsmaße und subjektiver Qualitäts- und Sprachverständlichkeitstests
evaluiert. Die subjektiven Ergebnisse zeigen, dass die vorgeschlagenen Algorithmen
immer den räumlichen Eindruck der akustischen Szene verbessern, und dass für
bestimmte Fälle sogar die Sprachverständlichkeit im Vergleich zu dem binauralen
MWF verbessert werden kann.
Da bereits existierende Erweiterungen des binauralen MWFs keine gänzliche Be-
wahrung der binauralen Cues des Sprachsignals und des Störsprechers erreichen
können, werden in dieser Arbeit 2 Erweiterungen des binauralen MWFs für akus-
tische Szenarien mit einem Störsprecher in einem diffusen Geräuschfeld vorgeschla-
gen. Die erste Erweiterung - genannt MWF-RTF - bewahrt die binauralen Cues
des Störsprechers, indem eine zusätzliche Bedingung - die Bewahrung der Rela-
tiven Übertragungsfunktion (RTF) - zur Kostenfunktion des binauralen MWFs
hinzugefügt wird. Die zweite vorgeschlagene Erweiterung - genannt MWF-IR -
hat zum Ziel, den direktionalen Störsprecher vollständig zu unterdrücken. Da die
zusätzlichen Bedingungen in den Optimierungsfunktionen beider Algorithmen eine
unterschiedliche Auswirkung auf die auftretenden Sprachverzerrungen, die Stör-
geräuschreduktion und die Bewahrung der binauralen Cues haben werden, präsen-
tieren wir eine umfangreiche theoretische Analyse der Leistungsfähigkeit des bin-
auralen MWFs, MWF-RTFs und MWF-IRs. Wir validieren die theoretische Ana-
lyse durch Simulationen, wobei akustische Übertragungsfunktionen, welche mit-
tels eines Kunstkopfes mit binauralen Hörgeräten in einer verhallten Cafeteria-
Umgebung gemessen wurden, verwendet wurden. Die Ergebnisse zeigen, dass die
Leistungsfähigkeit des binauralen MWFs, MWF-RTFs und MWF-IRs in hohem
Maße von der Position des Störsprechers und der Anzahl der verwendeten Mikro-
fone abhängt. Weitere Simulationsergebnisse zeigen, dass der Grad der Störge-
räuschreduktion des binauralen MWFs und MWF-RTFs sehr ähnlich ist, wobei
der MWF-RTF die binauralen Cues des Sprachsignals und des Störsprechers be-
wahrt. Andererseits ist für den MWF-IR - im Vergleich zu dem binauralen MWF
und MWF-RTF - eine deutliche Abnahme des Grades der Störgeräuschreduktion
erkennbar. Zusätzlich führen wir eine theoretische Analyse durch, um den Zusam-
menhang zwischen dem MWF-RTF und MWF-IR und dem kürzlich präsentierten
BLCMV Beamformer zu untersuchen. Die Analyse zeigt, dass für eine bestimmte
Wahl der Parameter der MWF-RTF ein Spezialfall des BLCMV Beamformers
darstellt, welcher das Ausgangs Signal-Rausch-Verhältnis maximiert. Des weiteren
zeigen wir, dass für einen Spezialfall des BLCMV Beamformers der MWF-IR als
ein BLCMV Beamformer gefolgt von einem einkanaligen Wiener Postfilter aufge-
fasst werden kann.
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GLOSSARY

Acronyms and Abbreviations

ADM Adaptive Directional Microphone

AIR Acoustic Impulse Response

ANOVA Analyses of Variance

ATF Acoustic Transfer Function

BLCMV Binaural Linearly Constrained Minimum Variance

BTE-IR Behind-The-Ear Impulse Response

CPSD Cross Power Spectral Density

DOA Direction of Arrival

DRR Direct to Reverberant Ratio

DS Delay and Sum

EC Equalization Cancellation

fwSegSnr frequency-weighted Segmental SNR

GSC Generalised Sidelobe Canceler

HRTF Head-Related Transfer Function

IC Interaural Coherence

ILD Interaural Level Difference

IPD Interaural Phase Difference

iSNR intelligibility-weighted Signal-to-Noise Ratio

ITD Interaural Time Difference

ITF Interaural Transfer Function

LCMV Linearly Constrained Minimum Variance

MMSE Minimum Mean Squared Error

MSC Magnitude Squared Coherence
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MUSHRA MUltiple Stimuli with Hidden Reference and Anchor

MVDR Minimum Variance Distortionless Response

MVDR-N Minimum Variance Distortionless Response with partial noise
estimation

MVDR-NP MVDR-N beamformer with single-channel Wiener postfilter

MWF Multi-channel Wiener Filter

MWF-IC Multi-channel Wiener Filter with Interaural Coherence
preservation

MWF-IR Multi-channel Wiener Filter with Interference Rejection

MWF-ITF Multi-channel Wiener Filter with Interaural Transfer Function
preservation

MWF-N Multi-channel Wiener Filter with partial noise estimation

MWF-RTF Multi-channel Wiener Filter with Relative Transfer Function
preservation

OLSA Oldenburger Satztest (Oldenburg Sentence Test)

PESQ Perceptual Evaluation of Speech Quality

PSD Power Spectral Density

RTF Relative Transfer Function

SD Speech Distortion

SII Speech Intelligibility Index

SINR Signal-to-Interference-plus-Noise Ratio

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio

SPP Speech Presence Probability

SRT Speech Reception Threshold

STFT Short-Time Fourier Transform

VAD Voice Activity Detector
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Mathematical notation

{·}∗ complex conjugate of a scalar
<{·} real part of a complex number
{·}T transpose of a vector or a matrix
{·}H hermitian transpose of a vector or a matrix
{·}−1 inverse of a matrix
R̂ estimate of matrix R
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Fixed symbols

k STFT frequency index
l frame index
m microphone index
t time index

A ATF of the speech source
B ATF of the interfering source
G0 spectral gain in the left hearing aid
G1 spectral gain in the right hearing aid
G common spectral gain applied to both hearing aids
Gmin minimum common spectral gain
K total number of frequency bands
L total number of STFT segments
M0 number of microphones at the left hearing aid
M1 number of microphones at the right hearing aid
M total number of microphones
N input background noise component
Nf STFT-segment length
Pi PSD of the interfering source
Ps PSD of the speech source
Sx speech source
Si interfering source
U input interference component
V input overall noise component
X input speech component
Y overall input signal
Z0 overall output signal in the left hearing aid
Z1 overall output signal in the right hearing aid
Zn0 output background noise component in the left hearing aid
Zn1 output background noise component in the right hearing aid
Zu0 output interference component in the left hearing aid
Zu1 output interference component in the right hearing aid
Zv0 output overall noise component in the left hearing aid
Zv1 output overall noise component in the right hearing aid
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Zx0 output speech component in the left hearing aid
Zx1 output speech component in the right hearing aid

A ATF vector of the desired source
A RTF vector of the desired source
B ATF vector of the interfering source
B RTF vector of the interfering source
Rn correlation matrix of the background noise component
Ru correlation matrix of the interference component
Rv correlation matrix of the overall noise component
Rx correlation matrix of the speech component
Ry correlation matrix of the overall signal
W0 filter vector for the left hearing aid
W1 filter vector for the right hearing aid
W stacked filter vector

δ trade-off parameter in the MWF-ITF
η trade-off parameter in the MWF-N and MVDR-N beamformer
λ trade-off parameter in the MWF-IC
µ trade-off parameter in the MWF
ρ output SNR of the MWF and MVDR beamformer
τ interference rejection parameter in the BLCMV beamformer
ωk k-th frequency band

Φn PSD of the diffuse noise component
Φn,0 PSD of the background noise in the reference microphone of the

left hearing aid
Φn,1 PSD of the background noise in the reference microphone of the

right hearing aid
Φn,01 CPSD of the background noise in the reference microphones of

the left and the right hearing aid
Φu,0 PSD of the interference component in the reference microphone

of the left hearing aid
Φu,1 PSD of the interference component in the reference microphone

of the right hearing aid
Φu,01 CPSD of the interference component in the reference micro-

phones of the left and the right hearing aid
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Φv,0 PSD of the overall noise component in the reference microphone
of the left hearing aid

Φv,1 PSD of the overall noise component in the reference microphone
of the right hearing aid

Φv,01 CPSD of the overall noise component in the reference micro-
phones of the left and the right hearing aid

Φx,0 PSD of the speech component in the reference microphone of
the left hearing aid

Φx,1 PSD of the speech component in the reference microphone of
the right hearing aid

Φx,01 CPSD of the speech component in the reference microphone of
the left and the right hearing aid

Ωk normalized angular frequency
Γ spatial coherence matrix
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1
INTRODUCTION

Due to their decreased ability to understand speech hearing impaired may have
difficulties to interact in social groups. Especially in complex acoustic scenarios
where several people are talking simultaneously, i.e. a so-called cocktail party sce-
nario [1], the speech intelligibility may substantially decrease and communicating
with other people becomes a serious challenge. Fortunately, in the last decades hear-
ing aids have evolved from simple sound amplifiers to modern digital devices with
complex functionalities. Several signal processing stages are typically integrated
in modern hearing aids, encompassing, e.g. noise reduction, feedback suppression,
multiband compression and scenario classification [2]. While speech intelligibility
in quiet acoustic environments and in face-to-face situations can be significantly in-
creased by individual loudness adaptation, i.e. frequency-dependent amplification
and dynamic range compression, in the presence of background noise, interfering
sources and reverberation, speech understanding is still a challenging problem for
the hearing aid user.
In order to increase speech intelligibility for the hearing impaired, several algo-
rithms, either using a single microphone or multiple microphones, have been de-
veloped to suppress undesired components such as noise and reverberation. In
addition, many hearing aid users are fitted with two hearing aids. When the left
and the right hearing aid process the input signals independently (bilateral fit-
ting) this may cause distortions of the binaural cues [2, 3], which are known to
be important for source localization, spatial awareness and speech intelligibility
[4, 5]. It has been shown in several studies, e.g., [5, 6, 7, 8] that for binaural hear-
ing compared to monaural hearing, speech intelligibility increases if the desired
speech source and the undesired noise component, such as interfering sources and
background noise, are spatially separated, which is known as the binaural hearing
advantage [7]. In order to combine the processing of both hearing aids, binaural
hearing aids have been developed [9], which exchange data and signals through a
wireless link such that the processing in both hearing aids can be synchronized.
When all microphone signals are available in both hearing aids, they can be used
in order to perform combined noise reduction and binaural cue preservation of
all sound sources in the acoustical scene. However, many state-of-the art binaural
noise reduction techniques preserve the binaural cues of the speech component but
distort the binaural cues of the noise component, such that no spatial separation
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2 introduction

between the output speech and noise components exists. Hence, both components
are perceived as coming from the same direction and no binaural hearing advan-
tage can be exploited by the auditory system of the hearing aid user.
Considering the importance of the binaural cues for speech intelligibility and spa-
tial awareness, the main objective of this thesis is to develop and evaluate algo-
rithms for noise reduction in binaural hearing aids, which, in addition to preserving
the binaural cues of the speech component, also preserve the binaural cues of the
noise component. Preserving the binaural cues of both components assures that in
the output signal a spatial separation between the speech component and the noise
component exists, such that the binaural hearing advantage can be exploited and
confusions due to a mismatch between the acoustical and the visual information
can be avoided. In this thesis we will propose, analyse and evaluate several binaural
noise reduction and cue preservation algorithms for spatial scenarios with differ-
ent kinds of noise components, such as interfering sources and diffuse background
noise. In addition, we will incorporate psychoacoustical criterias in the binaural
noise reduction algorithms in order to achieve a perceptually optimised trade-off
between noise reduction and binaural cue preservation.
In this chapter we present a general introduction to the problem and the outline
of the thesis.

In Section 1.1 a characterisation of the signals and the acoustical environments
which are typical for hearing aid applications is presented.

In Section 1.2 the psychophysics of spatial hearing is briefly reviewed. The bin-
aural cues which are important for source localisation and the perceived spatial
impression of the acoustic scene are introduced and the importance of these bin-
aural cues for speech intelligibility is discussed.

In Section 1.3 a brief overview of single-microphone and multi-microphone noise
reduction algorithms is presented and the application of these algorithms in bin-
aural hearing aids is discussed. Furthermore, several existing noise reduction algo-
rithms which have been developed specifically in the context of binaural hearing
aids are reviewed.

In Section 1.4 we present the main contributions and a chapter-by-chapter overview
of the thesis.

1.1 Characterisation of signals and the acoustic environment

The aim of noise reduction algorithms is basically to suppress the noise component
while retaining the speech component without introducing noticeable distortions.
For this purpose, it is useful to exploit certain signal characteristics which distin-
guish the speech from the noise component. Speech and noise signals can typi-
cally be distinguished by differences in spectro-temporal properties (e.g. frequency
content, stationarity) and spatial properties (e.g. positions of sources, spatially
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isotropic noise). In the following, the most important properties of speech signals,
noise signals and the acoustic environment, which are usually exploited in noise
reduction algorithms, are discussed.

1.1.1 Speech signals

Speech signals can considered to be highly non-stationary signals with frequency
components between 50 Hz and 8 kHz. They can be roughly categorized into voiced
signals and unvoiced signals. While voiced signals exhibit a harmonic structure
with energy mainly concentrated below 4 kHz, unvoiced signals can be charac-
terised as colored noise signals, having less overall energy than the voiced signals
and with energy mainly concentrated in higher frequencies [10]. For speech signals
a short-term stationarity of 20-30 ms can be assumed, which is often exploited
in single-microphone noise reduction algorithms. Furthermore, for speech signals
silence periods between the words exist, which may be used in noise reduction
algorithms to estimate the signal statistics of the noise component.

1.1.2 Noise signals

In general noise signals can be any signal which is undesired and hence should be
suppressed. Very common noise types are fan noise, car noise, traffic noise, and very
important for hearing aid applications, so-called babble noise which occurs when
multiple speakers are simultaneously talking. The main difference between the
mentioned noise types and speech signals is their slowly time-varying spectral con-
tent, i.e. noise signals can typically be assumed to be more stationary than speech
signals. This difference is quite often exploited in single-channel noise reduction
algorithms in order to distinguish the speech signal from the noise signal. However,
if the noise signal is a undesired interfering speaker, stationarity of the noise signal
can obviously not be assumed and other signal properties such as different pitch
frequencies or the difference in source position should be exploited.

1.1.3 Acoustic environment and spatial properties

The acoustic environment plays an important role in the context of single-channel
and multi-channel noise reduction algorithms since the performance of these algo-
rithms depends on the properties of the acoustic environment. Figure 1.1 depicts
an acoustic scenario with a desired speech source, an undesired interfering source
(e.g. competing speaker) and additional background noise. Assuming the acous-
tic paths between the desired speech source and the microphone to be linear and
time-invariant, the speech signal in the m-th microphone is given by convolving
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Figure 1.1: Acoustic scenario with a desired speech source, an undesired interfering source
and additional background noise.

the speech source sx(t), with t the discrete time index, with the Acoustic Impulse
Response (AIR) a(t), i.e.,

xm(t) = sx(t) ∗ am(t). (1.1)

Similarly, the m-th microphone signal of the interfering source si(t) can be written
as

um(t) = si(t) ∗ bm(t). (1.2)

with b(t) the AIR of the interfering source. In the frequency-domain, the m-th
microphone signal of the speech component and the interference component can
be written as

Xm(ω) = Sx(ω)Am(ω), Um(ω) = Si(ω)Bm(ω), (1.3)

with ω the frequency variable and Sx(ω), Si(ω), Am(ω) and Bm(ω), the Fourier
transform of the respective time-domain signals, where Am(ω) and Bm(ω) denote
the Acoustic Transfer Functions (ATFs) between the speech source and the inter-
fering source, respectively. The AIR (cf. Figure 1.2) is usually separated into 3
components

• the direct path, which is the first signal arriving at the microphones,

• the early reflections, which are distinct impulses with a large amplitude de-
termined by the room shape and the position of the source,

• the late reflections, also called the reverberant part, which is a superposition
of many reflections with smaller amplitudes.

For speech signals recorded in a room the AIR causes a smearing of the speech
energy across time and frequency, deteriorating the harmonic structure of voiced
sounds. From the AIR two important room acoustical measures, which also in-
fluence the performance of noise reduction algorithms, can be calculated, i.e. the
reverberation time (T60) and the Direct-to-Reverberant Ratio (DRR) [11]. The
reverberation time is the time it takes for a sound to decay by 60 dB compared to
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Figure 1.2: Acoustic Impulse Response

the direct sound. The DRR is usually defined as the ratio between the energy of
the early reflections, including the direct path, and the reverberant part. Gener-
ally speaking a larger reverberation time and a lower DRR results in a decreased
performance of noise reduction algorithms.
While background noise signals typically can not be described by using the convolu-
tive model in (1.1) and (1.2), the spatial information between the noise component
in the 2 microphones can, e.g., be exploited by assuming a spatially isotropic sound
field. A spatially isotropic sound field is defined as a sound field that is composed
of a superposition of uncorrelated plane waves that are uniformly distributed on
a surface with equal power spectrum densities [12]. The spatial coherence Γ(ω)
between 2 microphone signals can be calculated as

Γ(ω) =
E{N0(ω)N∗1 (ω)}√

E{|N0(ω)|2} E{|N1(ω)|2}
, (1.4)

where N0(ω) and N1(ω) are the Fourier transforms of the noise components n0(t)
and n1(t) in the first and the second microphone and E {·} denotes the expectation
operator. For crowded rooms, where multiple speakers are simultaneously talking,
spatially isotropic sound fields have been shown to be reasonable approximations.
Since these kind of sound fields are very important in the context of hearing aids,
in Section 2.5 we will review the theory of spatially isotropic sound fields in more
detail. Note that in the remainder of this thesis spatially isotropic sound fields will
be referred as diffuse sound fields.

1.2 Spatial hearing

In this section the binaural cues which are used by the human auditory system
to localise sound sources and to determine the spatial width of a sound field are
discussed. Figure 1.3 depicts a speech source located at the right side of the head.
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Figure 1.3: Binaural Cues

(a) ILD (b) IPD

Figure 1.4: ILD (in dB) and IPD for a source at −45◦ in an anechoic environment mea-
sured on an artificial head.

The sound signals arriving at the left and the right ear will differ in intensity and
phase. The intensity difference, called the Interaural Level Difference (ILD) [4] (cf.
Figure 1.4a), occurs due to the fact that the head serves as an obstacle for the
waves traveling between the ears, i.e. the so-called head shadow effect. While for
very low frequencies the head is barely an obstacle, large ILDs up to 20-25 dB
mainly occur at higher frequencies depending on the source position and the size
of the head.
The phase difference between the two ears, called the Interaural Phase Difference
(IPD) (cf. Figure 1.4b), occurs due to the fact that the waves first arrive at the
right ear and after a certain time at the left ear. From the IPD, the Interaural
Time Difference (ITD) can be calculated by normalizing the IPD with the respec-
tive frequency. ITD values are usually in the range of -700 µs to 700 µs, depending
on the source position and the size of the head. It has been shown that for source
localisation the ITD cue plays a dominant role at low frequencies and the ILD cue
plays a dominant role at high frequencies [13].
Another important cue for source localisation and spatial perception, especially
in multi-source and reverberant environments, is the Interaural Coherence (IC),
which can be determined by calculating the normalized cross-correlation between
the signals at the left and the right ear (cf. (1.4)). The IC (and its absolute value)
is important for source localisation in multi-source and reverberant environments
since it determines the reliability of the ILD and ITD cues [14, 15]. Furthermore,
the IC is an important cue for the perception of the width of sound fields [16] and
is widely used in the context of room acoustics and spatial audio reproduction
systems [17, 18].
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Besides source localisation and spatial perception, the binaural cues play an impor-
tant role for speech intelligibility [5]. It has been shown in [8] that in an anechoic
environment with one target speech source and one directional interfering source,
both located in front of the listener, a Speech Reception Threshold (SRT) at 50%
speech intelligibility for binaural hearing of −8 dB can be obtained. If the sources
are spatially separated, i.e. the directional interfering source is not located in front
of the listener, a decrease of the SRT down to −20 dB has been reported, depending
on the position of the directional interfering source [5, 8]. For reverberant environ-
ments this SRT improvement is usually smaller than for anechoic environments.
However, for reverberant environments SRT improvements for spatially separated
sources up to 6 dB have still been reported [6, 8]. Furthermore, for a speech source
located in front of the listener in a low reverberant environment, masked by a
spatially isotropic noise field, it has been shown in [19] that an improvement of
the SRT for binaural hearing compared to monaural hearing up to 3.4 dB can be
achieved.
Consequently, the binaural cues ITD, ILD and IC are commonly used to predict
the binaural hearing advantage, which occurs due to a spatial separation between
the speech and the noise component [5, 7], which is used in combination with the
signal-to-noise ratio to predict speech intelligibility for binaural signals [8, 20].
Due to the importance of the binaural cues for spatial perception and speech intel-
ligibility, in this thesis we will incorporate the preservation of the binaural cues of
the speech and noise component in noise reduction algorithms for binaural hearing
aids.

1.3 Noise reduction

In Sections 1.3.1 and 1.3.2, single-channel and multi-channel noise reduction tech-
niques will be briefly reviewed. In Section 1.3.3 noise reduction techniques for
binaural hearing aids will be discussed in more detail.

1.3.1 Single-channel noise reduction

The block diagram for single-channel noise reduction algorithms is depicted in Fig-
ure 1.5a. In the first stage of a single-channel noise reduction algorithm, usually a
Short-Time Fourier Transform (STFT) is applied since it is computationally effi-
cient and it delivers approximately uncorrelated transform coefficients, such that
each frequency band can be treated independently [10, 21]. In the STFT domain
several estimators have been proposed, aiming to either estimate the complex-
valued STFT coefficients of the speech component or the real-valued amplitude of
the STFT coefficients of the speech component. The STFT coefficients of the clean
speech signal are estimated by applying a real-valued spectral gain to the STFT co-
efficients of the noisy input signal in the STFT domain in order to obtain the clean
speech signal. Typically this real-valued gain is obtained using an estimator which
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is optimal in a certain statistical sense, e.g., the Minimum Mean Squared Error
(MMSE) sense. The most well-known linear MMSE estimator is the Wiener filter,
which is optimal if the STFT coefficients of the speech and the noise component
are complex Gaussian and the phase is uniformly distributed and independent of
the amplitude. In addition, non-linear estimators have been proposed, assuming
different distributions of the speech and noise STFT coefficients [22, 23].
These optimal gain functions usually require an estimate of the short-term Power
Spectral Densities (PSDs) of the speech and the noise component, which can be
obtained by exploiting the different signal statistics and a-priori knowledge about
the speech signal and the noise signal. The noise PSD can be estimated during
speech absence, based on a so-called Voice Activity Detector (VAD) [24, 25]. In or-
der to also estimate the noise PSD during speech presence, the minimum statistics
approach has been proposed in [26], where the noise PSD is estimated based on the
minimum value of the noisy periodogram over a sufficiently large time duration
(around 1 to 2 seconds) and by applying a bias correction. Although the minimum
statistics approach works quite well for stationary noise, in order to obtain a more
accurate estimate of the noise PSD for non-stationary noise, PSD estimators based
on the Speech Presence Probability (SPP) have been proposed in [27, 28, 29].
Estimating the speech PSD is usually a trade-off between avoiding undesired fluc-
tuations in the PSD estimate, which may lead to audible artifacts, and avoiding a
smearing of speech energy across time. Hence, in order to reduce the variance of
the PSD estimate, a careful (adaptive) smoothing of the PSD across time needs to
be considered, avoiding artifacts such as musical tones and preserving the speech
properties such as onsets and the harmonic structure of voiced sounds. For this
purpose several smoothing methods have been proposed: In the so-called decision-
directed approach [22, 30] the speech PSD is estimated based on an estimate of the
previous clean speech estimate, whereas the cepstral smoothing technique [31, 32]
exploits prior knowledge about the speech signal in the cepstral domain.
Due to the introduced speech distortion, single-channel noise reduction algorithms
in general do not improve speech intelligibility [33, 34] but are able to improve
the listening comfort for hearing aid users [35]. In order to achieve noise reduction
while keeping the speech distortion low, several techniques that also exploit spa-
tial information by using multiple microphones have been proposed and will be
discussed in the following sections.

gain
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(a) Block diagram for the single-
channel noise reduction algo-
rithms.

Y + Z
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...

(b) Block diagram for the multi-
channel noise reduction algo-
rithms.

Figure 1.5: Block diagram for the single-channel and multi-channel noise reduction algo-
rithms.



1.3 noise reduction 9

1.3.2 Multi-channel noise reduction

In contrast to single-channel noise reduction algorithms, which only use spectro-
temporal information, multi-channel noise reduction algorithms are also able to
exploit the spatial information captured by the multiple microphones, enabling
these algorithms to achieve noise reduction while keeping speech distortion low.
The block diagram for the filter-and-sum structure, used in multi-channel noise
reduction algorithms, is depicted in Figure 1.5b. In this section several classes of
multi-channel noise reduction algorithms are discussed.

1.3.2.1 Fixed beamforming

Fixed beamformers, also denoted as data-independent beamformers, are typically
designed such that the signals arriving from a certain direction are passed through
without any distortion [36, 37]. To design such a beamformer the Direction of
Arrival (DOA) of the desired signal needs to be known a-priori or needs to be esti-
mated from the microphone signals [38]. The simplest beamformer is the so-called
Delay-and-Sum (DS) beamformer [36], which spatially aligns the microphone sig-
nals to the direction of the desired source by delaying and summing the microphone
signals. The DS beamformer does not explicitly take the noise characteristics into
account but can be shown to provide the optimal array gain in the case of a spa-
tially uncorrelated noise field.
Since the achieved directivity of the DS beamformer is quite poor, especially at low
frequencies, the so-called superdirective beamformer has been proposed [37, 39].
In contrast to the DS beamformer, the superdirective beamformer maximizes the
directivity, i.e. the array gain, assuming a spatially isotropic noise field. Since
the superdirective beamformer is known to be very sensitive to microphone mis-
matches and amplifies spatially uncorrelated noise, especially at low frequencies,
usually a white noise gain constraint is added to the superdirective beamformer
in order to increase its robustness [37, 40, 41]. Hence, the obtained solution is a
trade-off between the maximum directivity of the superdirective beamformer and
the robustness to spatially uncorrelated noise of the DS beamformer. In addition
to the DS and the superdirective beamformer, several beamformer designs have
been proposed, e.g., in order to maximize the front-to-back ratio [37], to obtain
a frequency-independent beampattern [42] or to design broadband beamformers
with an arbitrary spatial directivity pattern for an arbitrary microphone configu-
ration [43].

1.3.2.2 Adaptive beamforming

In contrast to fixed (data-independent) beamformers, adaptive (data-dependent)
beamformers also exploit the signal statistics of the noise component in order
to adapt to changing noise fields [36]. The Minimum Variance Distortionless Re-
sponse (MVDR) beamformer, which is a special case of the Linearly Constrained
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Minimum Variance (LCMV) beamformer [36, 44], aims to minimize the power of
the output signal subject to a single constraint assuring an undistorted response
for the target source. In practice, the MVDR beamformer is often implemented
using a so-called Generalised Sidelobe Canceler (GSC) structure [45, 46]. The well-
known GSC structure consists of a fixed beamformer, a blocking matrix and an
adaptive filtering stage. The fixed beamformer generates a speech reference signal,
the blocking matrix generates a so-called noise reference by steering a spatial null
in the direction of the speech source and the adaptive filtering stage uses a (multi-
channel) adaptive filter aiming to remove the remaining correlation between the
residual noise component in the speech reference signal and the noise reference.
Since the originally proposed GSC in [45] only aims to preserve the direct part
of the speech component, i.e. assuming free-field propagation, the GSC has been
extended to the Transfer Function GSC (TF-GSC) in [47] aiming to preserve the
reverberant speech component in one of the microphone signals.
Since due to estimation errors or violated model assumptions the speech signal
may leak into the noise reference, several extensions of the GSC have been pro-
posed, e.g., by modifying the blocking matrix [48, 49, 50, 51] or by taking signal
leakage into account using a VAD [46, 48, 52] or additional constraints [46, 53].
The Adaptive Directional Microphone (ADM) is a simple and popular variant of
the GSC, consisting of two directional microphones with a forward-facing and a
backward facing pattern [54, 55]. These two directional microphones are then com-
bined in an adaptive stage aiming to preserve the signals coming from the frontal
hemisphere and steering a spatial null into the direction of the strongest interferer
in the back hemisphere.

1.3.2.3 Multi-channel Wiener filter

Another class of multi-microphone noise reduction algorithms is the multi-channel
Wiener filter (MWF). The MWF [56, 57, 58, 59] produces an MMSE estimate of
the speech component in one of the reference microphone signals, hence simulta-
neously reducing noise and limiting speech distortion. In contrast to beamforming
techniques, the MWF does not require any a-priori knowledge or assumptions
about the location of the speech source and the microphone configuration, since
the MWF exploits the second-order signal statistics, i.e. the correlation matrices of
the speech and the noise component. However, in order to achieve an accurate esti-
mate of the correlation matrices, techniques that determine time-frequency regions
where the desired speech is dominant and time-frequency regions where the noise
is dominant are required. In order to allow for a trade-off between noise reduction
and speech distortion, a trade-off parameter has been added to the MWF opti-
mization problem, leading to the speech-distortion-weighted MWF [57, 59]. For
online applications, a frequency-domain adaptive implementation of the speech-
distortion-weighted MWF has been proposed in [59]. Furthermore, it has been
shown in [60] that for a single speech source, the MWF can be decomposed into a
MVDR beamformer followed by a single-channel Wiener filter.
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1.3.3 Noise reduction in binaural hearing aids

In general all of the aforementioned approaches can be applied in binaural hearing
aids. However, for binaural hearing aids two different output signals are required
which are presented to the left and the right ear. If the same output signal would
be presented to both ears, no spatial information could be exploited by the human
auditory system and neither localizing of sources nor exploiting the binaural hear-
ing advantage would be possible. Hence, for noise reduction algorithms in binaural
hearing aids in addition to reducing noise and limiting speech distortion, another
important objective is the preservation of the listener’s impression of the acoustical
scene, in order to exploit the binaural hearing advantage and to avoid confusion
due to a mismatch between the acoustical and the visual information. This can be
achieved by using noise reduction algorithms that generate two different output
signals and preserve the binaural cues of the speech and the noise component.
For single-channel noise reduction algorithms, binaural cue preservation can be
easily taken into account by calculating a common spectral gain from the spectral
gains in the left and the right hearing aid. Consequently, this will typically lead to
an underestimation of the SNR in the hearing aid with the larger input SNR and
an overestimation of the SNR in the hearing aid with the lower input SNR.
To achieve binaural noise reduction with binaural cue preservation based on multi-
channel noise reduction algorithms, two main concepts have been developed. In
the first concept, a real-valued time-varying spectral gain is calculated using mi-
crophone signals from both hearing aids, where the same gain is applied to the
reference microphone signals in the left and the right hearing aid (cf. Figure 1.6).
This spectral gain is calculated based on the output of a multi-channel noise reduc-
tion algorithm (e.g. MVDR, MWF, GSC) [61, 62, 63] or by explicitly exploiting
the spatial information between two microphones using several assumptions about
the acoustic scenario [64, 65, 66, 67, 68, 69, 70, 71]. This processing strategy allows
for perfect preservation of the instantaneous binaural cues of both the speech and
the noise component, but typically suffers from a limited noise reduction perfor-
mance and possible single-channel noise reduction artifacts [21]. In [65] the noise
component was assumed to be spatially uncorrelated and the speech component
was assumed to be the same in both microphones, i.e. the speech source was lo-
cated in front of the listener. An extension of this algorithm has been proposed in
[70], where the noise component was assumed to be diffuse noise. A more general
version has been proposed in [68], using the assumption of a diffuse noise field and
a coherent speech source without using any a-priori knowledge about the position
of the speech source. Furthermore, in [69] a coherent speech source in front of the
listener and a coherent directional interfering source were assumed. In the context
of bilateral hearing aids, in [72] a noise reduction algorithm has been proposed
using the same assumptions as in [69], and in addition assuming the SNR in both
microphones to be the same, due to the small microphone spacing. This algorithm
has also been applied in the context of binaural hearing aids in [71].
The second concept is to directly apply a complex-valued filter to all available
microphone signals on the left and the right hearing aid, combining spatial and
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spectral filtering [73, 74, 75] (cf. Figure 2.1). Using this processing strategy, a large
noise reduction performance can be achieved, but the binaural cues of the speech
and the noise component are not guaranteed to be preserved. Since typically the
binaural cues of the speech component are preserved while the binaural cues of the
residual noise component are distorted [73], algorithms have been proposed that
aim to preserve the binaural cues of the residual noise component by including a
cue preservation term in the binaural noise reduction cost function [73, 74, 75, 76].
The MVDR beamformer and the MWF can be straightforwardly extended into a
binaural version, by estimating the speech component in a reference microphone
signal at the left and the right hearing aid [74]. It has been theoretically proven in
[73] that in case of a single speech source the binaural MWF (and hence also the
binaural MVDR) preserves the Relative Transfer Function (RTF), comprising the
ILD and the ITD cues, of the speech source, but typically distorts the binaural
cues of the noise component since both output components exhibit the RTF of the
speech source. Hence, after applying the binaural MWF no spatial separation be-
tween the output speech and noise components exists, such that both components
are perceived as coming from the same direction and no binaural unmasking can
be exploited by the auditory system. In [73] an extension of the binaural MWF,
namely the MWF-ITF, has been proposed by adding an additional term related
to the preservation of the ITF1 of the noise component to the binaural MWF cost
function. It has been shown that for the MWF-ITF a trade-off between the preser-
vation of the binaural cues of the speech and the noise component exists, which
depends, e.g., on the input SNR and a trade-off parameter. Furthermore, in [77]
the binaural MWF with partial noise estimation (MWF-N) has been proposed,
corresponding to mixing the binaural MWF output signal with a scaled version of
the noisy reference microphone signals in the left and the right hearing aid. It has
been shown that the MWF-N perfectly preserves the binaural cues of the speech
component and that a trade-off between the noise reduction performance and the
preservation of the binaural cues of the noise component exists, depending on
the choice of a trade-off parameter [73]. Furthermore, in [75] the Binaural Linearly
Constrained Minimum Variance (BLCMV) beamformer has been presented, which
aims to partially suppress directional interfering sources while perfectly preserving
the binaural cues of both the desired speech source and the undesired interfering
sources.
In Chapter 3 we will further investigate the performance of the briefly discussed
binaural MVDR beamformer, the binaural MWF, the MWF-ITF and the MWF-N
in a scenario with a single speech source in a diffuse noise field and a scenario with
a single speech source and a directional interfering source.

1 Note that for the special case of a single source the ITF is equal to the RTF, e.g. as shown in
[73].
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Figure 1.6: Block diagram for the binaural noise reduction concept calculating a common
spectral gain.

1.4 Outline of the thesis

1.4.1 Main contributions and schematic overview

The main objective of this thesis is to incorporate binaural cue preservation into
noise reduction algorithms for binaural hearing aids for different acoustic scenar-
ios. The proposed algorithms are based on the binaural MWF, since this tech-
nique advantageously combines spatial with spectral filtering. We propose several
extensions of the binaural MWF aiming to preserve the binaural cues for acoustic
scenarios with

1. a single desired speech source in a diffuse noise field,

2. a single desired speech source with an additional interfering source in a diffuse
noise field.

Furthermore, we exploit the decomposition of the binaural MWF into a binaural
MVDR beamformer and a single-channel Wiener postfilter in order to show the re-
lations of the proposed algorithms to existing binaural noise reduction algorithms
and to separate the spatial filtering stage from the spectro-temporal filtering stage,
allowing full control of both stages.
For acoustic scenarios with a diffuse noise field, we aim to obtain a psychoacousti-
cally optimal trade-off between noise reduction and binaural cue preservation. To
this end, we propose an extension of the binaural MWF, namely the MWF-IC,
aiming at preserving the IC of the noise component. First we will show that for
the MWF-IC a trade-off between IC preservation and output SNR exists, depend-
ing on the selection of a trade-off parameter. Therefore, we propose to select this
trade-off parameter based on the IC discrimination ability of the human auditory
system such that an optimal trade-off between noise reduction performance and
spatial awareness preservation is obtained. Experimental results show that for the
MWF-IC a controllable IC preservation without significantly degrading the output
SNR compared to the binaural MWF can be obtained.
Since for the MWF-IC no closed-form solution exists, such that one needs to resort
to iterative optimization techniques, we also propose to preserve the IC of the noise
component using both the binaural MWF with partial noise estimation (MWF-N)
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and the binaural MVDR beamformer with partial noise estimation (MVDR-N), for
which closed-form solutions exist. In addition, for the MVDR-N beamformer we
derive a closed-form expression for the trade-off parameter yielding a desired Mag-
nitude Squared Coherence (MSC) for the output noise component. For both the
MWF-N and the MVDR-N beamformer, the amount of IC preservation is again
determined based on the IC discrimination ability of the human auditory system.
Simulation results show that the proposed MWF-IC, MWF-N and MVDR-N beam-
former, considering the psychoacoustically optimal trade-off parameters, are able
to preserve the IC of the output noise component, while generally the MWF-IC
shows a slightly better noise reduction performance.
In addition to evaluating the proposed algorithms using objective measures, we
also conduct subjective listening tests, showing that the proposed algorithms al-
ways improve the spatial impression of the output signal and can in some cases
even increase the speech intelligibility compared to the binaural MWF.
Since previously proposed extensions of the binaural MWF are not able to achieve
perfect binaural cue preservation for both the speech source and a directional in-
terfering source, for acoustic scenarios with an interfering source, we propose two
extensions of the binaural MWF. The first extension, denoted as MWF-RTF, aims
to preserve the binaural cues of the interfering source by adding a RTF preserva-
tion constraint to the binaural MWF cost function. The second extension, denoted
as MWF-IR, aims to completely suppress the interfering source by adding an in-
terference rejection constraint to the binaural MWF cost function. Since for both
extensions the impact of these additional constraints on speech distortion, noise
reduction and binaural cue preservation performance will be different, we provide
a rigorous theoretical analysis and comparison of the performance of the binaural
MWF, MWF-RTF and MWF-IR algorithms. The theoretical analysis is validated
by simulations using measured ATFs on a binaural hearing aid in a reverberant
room, showing that the performance of the binaural MWF, MWF-RTF and MWF-
IR highly depends on the position of the interfering source and the number of
microphones. Furthermore, simulation results show that the MWF-RTF achieves
a very similar overall noise reduction performance as the binaural MWF, while
preserving the binaural cues of both the speech source and the interfering source,
whereas the overall noise reduction performance of the MWF-IR is significantly
degraded compared to the binaural MWF and the MWF-RTF. In addition, we
mathematically analyse the relations of the MWF-RTF and the MWF-IR to the
recently proposed BLCMV beamformer, showing that for a specific parameter set-
ting the MWF-RTF is a special case of the BLCMV beamformer and the MWF-IR
can be decomposed into a BLCMV beamformer, aiming to completely suppress
the interfering source, and a single-channel Wiener postfilter.
Figure 1.7 shows a schematic overview of the thesis. The arrows indicate that
the findings in one chapter are utilized in another chapter. Several chapters are
grouped together in parts since they represent a certain research goal. The thesis
can be divided into 3 parts. In Part I, we provide a general introduction and
define the considered signal model and several objective performance measures. In
addition, we provide a detailed overview of state-of-the-art binaural noise reduc-
tion algorithms. In Part II we propose several extensions and modifications of
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the algorithms presented in Part I in order to achieve a perceptually optimised
trade-off between noise reduction and binaural cue preservation in diffuse noise
fields. In addition, we present a subjective evaluation of these algorithms in terms
of speech intelligibility and spatial quality. In Part III we propose several exten-
sions of the binaural MWF presented in Part I, aiming to combine noise reduction
and binaural cue preservation for acoustic scenarios with an interfering source. In
addition, we provide a theoretical analysis and comparison of these algorithms in
terms of speech distortion, noise reduction and binaural cue preservation.

Figure 1.7: Schematic overview of the thesis.
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1.4.2 Chapter-by-chapter overview

In this section we provide a chapter-by-chapter overview of the thesis, describing
the main contributions of each chapter.

In Chapter 2 we present the considered signal model and two categories of objec-
tive performance measures which are used throughout the thesis. The first category
consists of purely mathematical performance measures, which are used to theoreti-
cally assess and compare the performance of algorithms. The second category con-
sists of psychoacoustically motivated performance measures, which also take the
properties of the human auditory system into account. In addition to objective
measures that assess the noise reduction and speech distortion performance, we
will assess the binaural cue preservation performance of binaural noise reduction
algorithms using a model of binaural auditory processing. Furthermore, we review
the theory of spatially isotropic noise fields and present a database of binaural im-
pulse responses which will be used to evaluate binaural noise reduction algorithms.

In Chapter 3 we provide a detailed overview of state-of-the-art binaural noise
reduction algorithms, which will serve as the basis for the algorithms developed in
this thesis. These algorithms are the binaural MVDR beamformer, the binaural
MWF, the binaural MWF with ITF preservation (MWF-ITF) and the binaural
MWF with partial noise estimation (MWF-N). We analyse the advantages and
disadvantages of these algorithms in a scenario with a single speech source in a
diffuse noise field and a scenario with a single speech source and an additional
directional interfering source. For the diffuse noise field scenario we show that the
MWF-ITF algorithm is not at all suitable and that the performance of the MWF-
N algorithm highly depends on the selection of a trade-off parameter.
Furthermore, for the scenario with one directional interfering source we show that
neither the MWF-ITF nor the MWF-N algorithm is able to achieve a perfect
preservation of the binaural cues of the interfering source without significantly dis-
torting the binaural cues of the speech source (MWF-ITF) or decreasing the noise
reduction performance (MWF-N). This analysis serves as the motivation to derive
several novel extensions and modifications of these algorithms in Chapters 4, 5
and 7 aiming to achieve an improved and psychoacoustically motivated trade-off
between noise reduction and binaural cue preservation performance.

In Chapter 4 we propose an extension of the binaural MWF, namely the MWF-
IC, aiming to preserve the IC of the noise component in diffuse noise fields. First
we show that a trade-off between IC preservation and output SNR exists, depend-
ing on the selection of a trade-off parameter. Therefore, we propose to select this
trade-off parameter based on the IC discrimination ability of the human auditory
system. Based on psychoacoustical data we define frequency-dependent lower and
upper boundaries for the Magnitude Squared Coherence (MSC) of the output noise
component, preserving the spatial impression of a diffuse noise field. Considering
these boundaries, we propose different procedures to determine the trade-off pa-
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rameter for the MWF-IC, such that an optimal trade-off between noise reduction
performance and spatial awareness preservation is obtained. The performance of
the proposed MWF-IC, the binaural MWF and the MWF-ITF are evaluated in
terms of intelligibility-weighted SNR improvement, MSC error of the noise compo-
nent and ILD and ITD distributions. Experimental results show that incorporating
the psychoacoustically determined MSC boundaries to determine the trade-off pa-
rameter for the MWF-IC yields a controllable IC preservation without significantly
degrading the output SNR compared to the binaural MWF and the MWF-ITF,
while retaining the spatial separation between the output speech and noise com-
ponents.
This chapter is based on the following publications [78, 79, 80, 81].

Since for the MWF-IC no closed-form solution exists, such that one needs to resort
to iterative optimization techniques, inChapter 5 we propose to preserve the IC of
the noise component using the binaural MWF-N, for which a closed-form solution
exists. As a special case of the MWF-N we also consider the binaural MVDR beam-
former with partial noise estimation (MVDR-N). For both the MWF-N and the
MVDR-N beamformer, the amount of IC preservation is again determined based
on the MSC boundaries proposed in Chapter 4. For the MVDR-N beamformer a
closed-form expression for the trade-off parameter, yielding a desired MSC for the
output noise component, can be derived. In order to also exploit the time-varying
PSDs of the speech and the noise component in the MVDR-N beamformer, we
propose to use a single-channel spectral postfilter at the output of the MVDR-N
beamformer. Simulation results show that both the proposed MWF-IC and the
MWF-N algorithms are able to preserve the IC of the output noise component,
while generally the MWF-IC shows a slightly better noise reduction performance
at a larger complexity. Furthermore, simulation results show that the MWF-N and
the MVDR-N beamformer with spectral postfilter show a very similar performance
in terms of noise reduction, speech distortion and binaural cue preservation.
This chapter is based on the following publications: [82].

In Chapter 6, the binaural noise algorithms proposed in Chapters 4 and 5 are
subjectively evaluated in terms of speech intelligibility and spatial quality, both
in an anechoic environment and a reverberant cafeteria environment. In order to
evaluate the speech intelligibility, we used the Oldenburg Sentence test (OLSA)
to measure the SRT at 50% speech intelligiblity for different trade-offs between
noise reduction and MSC preservation. In order to evaluate the spatial quality of
the proposed algorithms, we conducted a MUltiple Stimuli with Hidden Reference
and Anchor (MUSHRA) test. The speech intelligibility results show that for the
MWF-IC a small decrease in SRT compared to the binaural MVDR beamformer
can be achieved, whereas the MVDR-N beamformer shows a small increase in SRT
compared to the binaural MVDR beamformer. For the anechoic scenario, no sta-
tistically significant SRT difference between the binaural MVDR beamformer and
both the MVDR-N beamformer and the MWF-IC was observed. For the cafeteria
scenario, the MWF-IC achieved a statistically significant improvement in SRT, and
the MVDR-N beamformer showed a statistically significant degradation in SRT,
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compared to the binaural MVDR beamformer. On the other hand, the MUSHRA
results show that the MVDR-N beamformer yields a better spatial impression com-
pared to the MWF-IC, while both the MWF-IC and the MVDR-N beamformer
outperform the binaural MVDR beamformer.

After considering an acoustic scenario with a single speech source in a diffuse
noise field in Chapters 4, 5 and 6, in Chapter 7 we focus on acoustic scenar-
ios with a directional interfering source. Since previously proposed extensions of
the binaural MWF are not able to achieve perfect binaural cue preservation for
both the speech source and a directional interfering source, we propose two ex-
tensions of the binaural MWF, which in addition to minimizing the overall noise
output power and speech distortion aim to either preserve the binaural cues of the
interfering source or to completely suppress the interfering source. The first exten-
sion, denoted as MWF-RTF, aims to preserve the binaural cues of the interfering
source by adding a RTF preservation constraint to the binaural MWF cost func-
tion. Instead of preserving the RTF of the interfering source, one could also aim to
completely suppress the interfering source, avoiding the presence of a residual inter-
ference component with distorted binaural cues in the output signal. The second
extension, denoted as MWF-IR, hence aims to completely suppress the interfer-
ing source by adding an interference rejection constraint to the binaural MWF
cost function. Since for both extensions the impact of these additional constraints
on speech distortion, noise reduction and binaural cue preservation performance
will be different, we provide a rigorous theoretical analysis and comparison of the
performance of the binaural MWF, MWF-RTF and MWF-IR algorithms. The the-
oretical analysis is validated by simulations using measured ATFs on a binaural
hearing aid in a reverberant room, showing that the performance of the binaural
MWF, MWF-RTF and MWF-IR highly depends on the position of the interfer-
ing source and the number of microphones. Furthermore, simulation results show
that the MWF-RTF achieves a very similar overall noise reduction performance
as the binaural MWF, while preserving the binaural cues of both the speech and
interfering source, whereas the overall noise reduction performance of the MWF-
IR is significantly degraded compared to the binaural MWF and the MWF-RTF.
In addition, we mathematically analyse the relations of the MWF-RTF and the
MWF-IR to the recently proposed BLCMV beamformer, showing that for a spe-
cific parameter setting the MWF-RTF is a special case of the BLCMV beamformer
and the MWF-IR can be decomposed into a BLCMV beamformer, aiming to com-
pletely suppress the interfering source, and a single-channel Wiener postfilter.
This chapter is based on the following publications: [83, 84, 85, 86, 87].

In Chapter 8 we present an overall conclusion based on the findings in the pre-
vious chapters. Furthermore, we propose suggestions for further research, e.g., ad-
dressing the estimation of the signal statistics and possible modifications of the
proposed algorithms in order to improve the robustness to estimation errors.



2
CONFIGURATION, NOTATION AND
PERFORMANCE MEASURES

In this chapter the signal model and the objective performance measures, which are
used throughout the thesis are presented. In Section 2.1 the general signal model
with one desired speech source, one undesired interfering source and additional
background noise is defined. The mathematical definitions of the binaural cues are
introduced in Section 2.2 and the objective performance measures, which are used
to assess and compare the performance of binaural noise reduction algorithms in
a theoretical context, are introduced in Section 2.3. In Section 2.4 psychoacous-
tically motivated performance measures are introduced, which in contrast to the
performance measures defined in Section 2.3 also take the psychoacoustic proper-
ties of the human auditory system into account. In addition to objective measures
that assess the noise reduction and speech distortion performance, we also propose
a measure to assess the binaural cue preservation performance of binaural noise
reduction algorithms which is based on a model of binaural auditory processing.
In Section 2.5 we review the theory of spatially isotropic sound fields, which is a
commonly encountered sound field in hearing aid applications, especially for the
background noise. In Section 2.6 we briefly describe the database of binaural im-
pulse responses, which will be used in the entire thesis to evaluate the performance
of binaural noise reduction algorithms.

2.1 Microphone signals, signal statistics and output signals

Consider the binaural hearing aid configuration in Figure 2.1, with M0 micro-
phones on the left hearing aid and M1 microphones on the right hearing aid. The
m-th microphone signal of the left hearing aid Y0,m (ω) can be written in the
frequency-domain as

Y0,m (ω) = X0,m (ω) + U0,m (ω) +N0,m (ω) , (2.1)

with ω the normalized radian frequency, X0,m (ω) the desired speech component,
U0,m (ω) the undesired interference component and N0,m (ω) the background noise

19
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component in them-th microphone signal. Them-th microphone signal of the right
hearing aid Y1,m (ω) is defined similarly as

Y1,m (ω) = X1,m (ω) + U1,m (ω) +N1,m (ω) . (2.2)

For conciseness we will omit the frequency variable ω in the remainder of the
thesis, except where explicitly required. We define the M -dimensional stacked
signal vector Y as

Y = [Y0,1 . . . Y0,M0
Y1,1 . . . Y1,M1

]
T
, (2.3)

which can be written as

Y = X + U + N︸ ︷︷ ︸
V

, (2.4)

where the vectors X, U, N and V are defined similarly as Y in (2.3) and the
vector V = U + N is defined as the overall noise component, i.e. the interference
component plus background noise component. Considering an acoustical scenario
with one desired speech source Sx and one directional interfering source Si, the
components X and U can be written as

X = SxA, U = SiB, (2.5)

with A and B the Acoustic Transfer Functions (ATFs) between the microphones
and the speech source and the interfering source, respectively. Without loss of
generality, we will use the first microphone on the left hearing aid and the first
microphone on the right hearing aid as the so-called reference microphones for the
speech enhancement algorithms. For conciseness, the reference microphone signals
Y0,1 and Y1,1 of the left and the right hearing aid are denoted as Y0 and Y1, which
can be written as

Y0 = eT0 Y, Y1 = eT1 Y, (2.6)

W0

Y0,1 (ω)

Y ,M0

Y0,2 (ω)

(ω)

Y1,1 (ω)

Y ,M1

Y1,2 (ω)

(ω)

(ω) W1 (ω)

Z0 (ω) Z1 (ω)

0 1

Figure 2.1: General binaural hearing aid configuration, consisting of M0 microphones on
the left hearing aid and M1 microphones on the right hearing aid. The left
and the right output signals Z0(ω) and Z1(ω) are obtained by filtering and
summing all microphone signals with the filters W0 and W1, respectively.
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where e0 and e1 are M -dimensional vectors with one element equal to 1 and all
other elements equal to 0, i.e. e0(1) = 1 and e1(M0 + 1) = 1. The reference
microphone signals can then be written as

Y0 = SxA0 + SiB0 +N0, (2.7)
Y1 = SxA1 + SiB1 +N1. (2.8)

The correlation matrices of the overall microphone signals, the speech component,
the interference component, the background noise component and the overall noise
component are defined as

Ry = E
{
YYH

}
, (2.9)

Rx = E
{
XXH

}
, (2.10)

Ru = E
{
UUH

}
, (2.11)

Rn = E
{
NNH

}
, (2.12)

Rv = E
{
VVH

}
, (2.13)

where E {·} denotes the expectation operator. Using (2.5), the correlation matrices
of the speech component and the interference component can be written as

Rx = E
{
XXH

}
= PsAAH , (2.14)

Ru = E
{
UUH

}
= PiBBH , (2.15)

where Ps = E
{
|Sx|2

}
and Pi = E

{
|Si|2

}
denote the Power Spectral Density (PSD)

of the speech source and the interfering source, respectively. Furthermore, assuming
a homogeneous noise field, e.g., spatially white noise or a diffuse noise field, the
correlation matrix of the background noise component can be written as

Rn = E
{
NNH

}
= ΦnΓ, (2.16)

with Φn the background noise PSD in the microphone signals and Γ the spatial
coherence matrix of the noise field [88]. Assuming statistical independence between
the speech, interference and background noise components, the correlation matrix
of the microphone signals can be written as

Ry = Rx + Ru + Rn︸ ︷︷ ︸
Rv

, (2.17)

with Rv = Ru +Rn, the correlation matrix of the overall noise component which
is assumed to be invertible. Furthermore, we define the cross-correlation vectors
of the speech component in all microphones with the speech component in the
reference microphones as

rx,0 = E {XX∗0} = Rxe0 = PsAA∗0, (2.18)
rx,1 = E {XX∗1} = Rxe1 = PsAA∗1. (2.19)
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The PSD and the Cross Power Spectral Density (CPSD) of the speech component
in the reference microphone signals are equal to

Φx,0 = E
{
|X0|2

}
= eT0 Rxe0 = Ps|A0|2, (2.20)

Φx,1 = E
{
|X1|2

}
= eT1 Rxe1 = Ps|A1|2, (2.21)

Φx,01 = E {X0X
∗
1} = eT0 Rxe1 = PsA0A

∗
1. (2.22)

Similarly, the PSD and the CPSD of the interference component in the reference
microphone signals are equal to

Φu,0 = E
{
|U0|2

}
= eT0 Rue0 = Pi|B0|2, (2.23)

Φu,1 = E
{
|U1|2

}
= eT1 Rue1 = Pi|B1|2, (2.24)

Φu,01 = E {U0U
∗
1 } = eT0 Rue1 = PiB0B

∗
1 . (2.25)

Similarly, the PSD and the CPSD of the background noise component in the
reference microphone signals are equal to

Φn,0 = E
{
|N0|2

}
= eT0 Rne0, (2.26)

Φn,1 = E
{
|N1|2

}
= eT1 Rne1, (2.27)

Φn,01 = E {N0N
∗
1 } = eT0 Rne1. (2.28)

Similarly, the PSD and the CPSD of the overall noise component in the reference
microphone signals are equal to

Φv,0 = E
{
|V0|2

}
= eT0 Rve0, (2.29)

Φv,1 = E
{
|V1|2

}
= eT1 Rve1, (2.30)

Φv,01 = E {V0V
∗
1 } = eT0 Rve1. (2.31)

The input Signal-to-Noise Ratio (SNR) in the reference microphones of the left and
the right hearing aid is defined as the ratio of the PSDs of the speech component
and the background noise component, i.e.,

SNRin
0 =

Φx,0

Φn,0
, SNRin

1 =
Φx,1

Φn,1
. (2.32)

The input Signal-to-Interference Ratio (SIR) in the reference microphones of the
left and the right hearing aid is defined as the ratio of the PSDs of the speech
component and the interference component, i.e.,

SIRin
0 =

Φx,0

Φu,0
, SIRin

1 =
Φx,1

Φu,1
. (2.33)

The input Signal-to-Interference-plus-Noise Ratio (SINR) in the reference micro-
phones of the left and the right hearing aid is defined as the ratio of the PSDs of
the speech component and the overall noise component, i.e.,

SINRin
0 =

Φx,0

Φv,0
, SINRin

1 =
Φx,1

Φv,1
. (2.34)
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It should be noted that if no interfering source is present, i.e. Rv = Rn, the input
SINR is equal to the input SNR.
The output signals at the left and the right hearing aid Z0 and Z1 (cf. Figure 2.1)
are obtained by summing a filtered version of all microphone signals, i.e.,

Z0 = WH
0 Y = Zx0 + Zu0 + Zn0 = WH

0 X + WH
0 U + WH

0 N, (2.35)

Z1 = WH
1 Y = Zx1 + Zu1 + Zn1 = WH

1 X + WH
1 U + WH

1 N, (2.36)

with W0 and W1, theM -dimensional complex-valued filter vectors in the left and
the right hearing aid, respectively. Furthermore, we define the 2M -dimensional
complex-valued stacked filter vector W as

W =

[
W0

W1

]
. (2.37)

2.2 Binaural cues

In Section 2.2.1 we first present general mathematical definitions and relationships
for the binaural cues of all components. For directional sources we then provide
specific expressions and relationships in Section 2.2.2.

2.2.1 General mathematical definition

The input Interaural Level Difference (ILD) of the speech component, the interfer-
ence component, the background noise component and the overall noise component
is defined as the power ratios of the components in the left and the right hearing
aid [73], i.e.,

ILDin
x =

E{|X0|2}
E{|X1|2}

=
eT0 Rxe0

eT1 Rxe1
, (2.38)

ILDin
u =

E{|U0|2}
E{|U1|2}

=
eT0 Rue0

eT1 Rue1
, (2.39)

ILDin
n =

E{|N0|2}
E{|N1|2}

=
eT0 Rne0

eT1 Rne1
, (2.40)

ILDin
v =

E{|V0|2}
E{|V1|2}

=
eT0 Rve0

eT1 Rve1
. (2.41)



24 configuration, notation and performance measures

The output ILD of the speech component, the interference component, the back-
ground noise component and the overall noise component is defined as

ILDout
x =

E{|Zx0|2}
E{|Zx1|2}

=
WH

0 RxW0

WH
1 RxW1

, (2.42)

ILDout
u =

E{|Zu0|2}
E{|Zu1|2}

=
WH

0 RuW0

WH
1 RuW1

, (2.43)

ILDout
n =

E{|Zn0|2}
E{|Zn1|2}

=
WH

0 RnW0

WH
1 RnW1

, (2.44)

ILDout
v =

E{|Zv0|2}
E{|Zv1|2}

=
WH

0 RvW0

WH
1 RvW1

. (2.45)

The input Interaural Transfer Function (ITF) of the speech component, the inter-
ference component, the background noise component and the overall noise compo-
nent is defined as [73]

ITF in
x =

E{X0X
∗
1}

E{|X1|2}
=

eT0 Rxe1

eT1 Rxe1
, (2.46)

ITF in
u =

E{U0U
∗
1 }

E{|U1|2}
=

eT0 Rue1

eT1 Rue1
, (2.47)

ITF in
n =

E{N0N
∗
1 }

E{|N1|2}
=

eT0 Rne1

eT1 Rne1
, (2.48)

ITF in
v =

E{V0V
∗
1 }

E{|V1|2}
=

eT0 Rve1

eT1 Rve1
. (2.49)

The output ITF of the speech component, the interference component, the back-
ground noise component and the overall noise component is defined as

ITF out
x =

E{Zx0Z
∗
x1}

E{|Zx1|2}
=

WH
0 RxW1

WH
1 RxW1

, (2.50)

ITF out
u =

E{Zu0Z
∗
u1}

E{|Zu1|2}
=

WH
0 RuW1

WH
1 RuW1

, (2.51)

ITF out
n =

E{Zn0Z
∗
n1}

E{|Zn1|2}
=

WH
0 RnW1

WH
1 RnW1

, (2.52)

ITF out
v =

E{Zv0Z
∗
v1}

E{|Zv1|2}
=

WH
0 RvW1

WH
1 RvW1

. (2.53)

The Interaural Phase Difference (IPD) and Interaural Time Difference (ITD) cues
can be calculated from the ITF as [73]

IPD =∠ITF, (2.54)

ITD =
IPD

ω
, (2.55)
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with ∠ denoting the phase.
The input Interaural Coherence (IC) of the speech component, the interference
component, the background noise component and the overall noise component
is defined as the normalized cross-correlation between the reference microphone
signals, i.e.,

IC in
x =

E{X0X
∗
1}√

E{|X0|2} E{|X1|2}
=

eT0 Rxe1√
(eT0 Rxe0) (eT1 Rxe1)

, (2.56)

IC in
u =

E{U0U
∗
1 }√

E{|U0|2} E{|U1|2}
=

eT0 Rue1√
(eT0 Rue0) (eT1 Rue1)

, (2.57)

IC in
n =

E{N0N
∗
1 }√

E{|N0|2} E{|N1|2}
=

eT0 Rne1√
(eT0 Rne0) (eT1 Rne1)

, (2.58)

IC in
v =

E{V0V
∗
1 }√

E{|V0|2} E{|V1|2}
=

eT0 Rve1√
(eT0 Rve0) (eT1 Rve1)

. (2.59)

The output IC of the speech component, the interference component, the back-
ground noise component and the overall noise component is defined as the normal-
ized cross-correlation between the output signals, i.e.,

ICout
x =

E{Zx0Z
∗
x1}√

E{|Zx0|2} E{|Zx1|2}
=

WH
0 RxW1√

(WH
0 RxW0) (WH

1 RxW1)
, (2.60)

ICout
u =

E{Zu0Z
∗
u1}√

E{|Zu0|2} E{|Zu1|2}
=

WH
0 RuW1√

(WH
0 RuW0) (WH

1 RuW1)
, (2.61)

ICout
n =

E{Zn0Z
∗
n1}√

E{|Zn0|2} E{|Zn1|2}
=

WH
0 RnW1√

(WH
0 RnW0) (WH

1 RnW1)
, (2.62)

ICout
v =

E{Zv0Z
∗
v1}√

E{|Zv0|2} E{|Zv1|2}
=

WH
0 RvW1√

(WH
0 RvW0) (WH

1 RvW1)
. (2.63)

The Magnitude Squared Coherence (MSC) is defined as the square of the absolute
value of the IC, i.e.,

MSC = |IC|2. (2.64)
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2.2.2 Directional sources

The so-called Relative Transfer Function (RTF) vectors of the speech source and
the interfering source are defined as the ATF vectors A and B normalised with
the ATFs of the reference microphones, i.e.,

A0 =
A
A0

, A1 =
A
A1

, (2.65)

B0 =
B
B0

, B1 =
B
B1

. (2.66)

The input ITF for the speech source and the interfering source is equal to the RTF
of the source between the reference microphones, i.e.,

ITF in
x = RTF in

x =
A0

A1
, (2.67)

ITF in
u = RTF in

u =
B0

B1
. (2.68)

The input ILD for the speech source and the interfering source is equal to the
squared absolute value of the RTF, i.e.,

ILDin
x =

∣∣RTF in
x

∣∣2 =

∣∣∣∣A0

A1

∣∣∣∣2 , (2.69)

ILDin
u =

∣∣RTF in
u

∣∣2 =

∣∣∣∣B0

B1

∣∣∣∣2 . (2.70)

Similarly, for the speech source and the interfering source the output ITF is equal
to the output RTF, i.e.,

ITF out
x = RTF out

x =
WH

0 A
WH

1 A
, (2.71)

ITF out
u = RTF out

u =
WH

0 B
WH

1 B
, (2.72)

and the output ILD is equal to the squared absolute value of the output RTF,
i.e.,

ILDout
x = |RTF out

x |2, (2.73)

ILDout
u = |RTF out

u |2. (2.74)

The input IC for the speech source and the interfering source is equal to the
normalized input ITF/RTF, i.e.,

IC in
x =

ITF in
x

|ITF in
x |

=
RTF in

x

|RTF in
x |

= ej∠RTF
in
x , (2.75)

IC in
u =

ITF in
u

|ITF in
u |

=
RTF in

u

|RTF in
u |

= ej∠RTF
in
u , (2.76)
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which also implies that the MSC of the speech source and the interfering source is
equal to 1.

2.3 Objective performance measures

In this section we present the objective performance measures for the noise reduc-
tion algorithms, i.e. the signal-to-noise ratio, the signal-to-interference ratio, the
signal-to-interference-plus-noise ratio and speech distortion.
The output PSD of the speech component in the left and the right hearing aid is
defined as

PSDout
x,0 = WH

0 RxW0 = Ps|WH
0 A|2, (2.77)

PSDout
x,1 = WH

1 RxW1 = Ps|WH
1 A|2. (2.78)

The output PSD of the interference component in the left and the right hearing
aid is defined as

PSDout
u,0 = WH

0 RuW0 = Pi|WH
0 B|2, (2.79)

PSDout
u,1 = WH

1 RuW1 = Pi|WH
1 B|2. (2.80)

The output PSD of the background noise in the left and the right hearing aid is
defined as

PSDout
n,0 = WH

0 RnW0, (2.81)

PSDout
n,1 = WH

1 RnW1. (2.82)

The output PSD of the overall noise component in the left and the right hearing
aid is defined as

PSDout
v,0 = WH

0 RvW0, (2.83)

PSDout
v,1 = WH

1 RvW1. (2.84)

The output SNR in the left and the right hearing aid is defined as the ratio of
the output PSDs of the speech component and the background noise component,
i.e.,

SNRout
0 =

PSDout
x,0

PSDout
n,0

=
WH

0 RxW0

WH
0 RnW0

, (2.85)

SNRout
1 =

PSDout
x,1

PSDout
n,1

=
WH

1 RxW1

WH
1 RnW1

. (2.86)

The binaural output SNR is defined as the ratio of the average output PSDs of the
speech component and the background noise component, i.e.,

SNRout =
PSDout

x,0 + PSDout
x,1

PSDout
n,0 + PSDout

n,1

=
WH

0 RxW0 + WH
1 RxW1

WH
0 RnW0 + WH

1 RnW1

. (2.87)
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The output SIR in the left and the right hearing aid is defined as the ratio of the
output PSDs of the speech component and the interference component, i.e.,

SIRout
0 =

PSDout
x,0

PSDout
u,0

=
WH

0 RxW0

WH
0 RuW0

, (2.88)

SIRout
1 =

PSDout
x,1

PSDout
u,1

=
WH

1 RxW1

WH
1 RuW1

. (2.89)

The binaural output SIR is defined as the ratio of the average output PSDs of the
speech component and the interference component, i.e.,

SIRout =
PSDout

x,0 + PSDout
x,1

PSDout
u,0 + PSDout

u,1

=
WH

0 RxW0 + WH
1 RxW1

WH
0 RuW0 + WH

1 RuW1

. (2.90)

The output SINR in the left and the right hearing aid is defined as the ratio of the
output PSDs of the speech component and the overall noise component, i.e.,

SINRout
0 =

PSDout
x,0

PSDout
v,0

=
WH

0 RxW0

WH
0 RvW0

, (2.91)

SINRout
1 =

PSDout
x,1

PSDout
v,1

=
WH

1 RxW1

WH
1 RvW1

. (2.92)

The binaural output SINR is defined as the ratio of the average output PSDs of
the speech component and the overall noise component, i.e.,

SINRout =
PSDout

x,0 + PSDout
x,1

PSDout
v,0 + PSDout

v,1

=
WH

0 RxW0 + WH
1 RxW1

WH
0 RvW0 + WH

1 RvW1

. (2.93)

It should be noted that if no interfering source is present, i.e. Rv = Rn, the output
SINR is equal to the output SNR.
The Speech Distortion (SD) in the left and the right hearing aid is defined as the
ratio of the input PSD of the speech component in the reference microphone signal
and the output PSD of the speech component, i.e.,

SD0 =
Ps|A0|2

WH
0 RxW0

, (2.94)

SD1 =
Ps|A1|2

WH
1 RxW1

. (2.95)

The binaural speech distortion is defined as the ratio of the average input PSD of
the speech component in the reference microphone signals and the average output
PSD of the speech component, i.e.,

SD =
Ps|A0|2 + Ps|A1|2

WH
0 RxW0 + WH

1 RxW1

. (2.96)
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2.4 Psychoacoustically motivated performance measures

Due to their simplicity the objective performance measures defined in Section 2.3
are well suited to mathematically analyse and compare the performance of different
binaural noise reduction algorithms. However, the disadvantages of these perfor-
mance measures is the fact that they do not take any psychoacoustic properties of
the human auditory system into account. Especially for algorithms that introduce
artifacts due to time-varying spectral filtering, the purely long-term energy-based
measures are of limited value to assess speech quality and speech intelligibility.
Furthermore, to evaluate binaural cue preservation, especially in reverberant envi-
ronments, the auditory processing needs to be taken into account. Hence, in this
section we will also define psychoacoustically motivated performance measures
which aim to predict speech quality and/or speech intelligibility.

2.4.1 Speech intelligibility and speech quality

To account for the relative importance of different frequency bands for speech intel-
ligibility, the global speech intelligibility-weighted SNR (iSNR) has been proposed
in [89], where the SNR in each frequency band is weighted, i.e,

iSNR =

K∑
k=1

I(ωk) 10 log10(SNR(ωk)), (2.97)

with I(ωk), the band importance function for the k-th third-octave band, accord-
ing to [90]. While the energy-based iSNR is a suitable measure for algorithms
that introduce small distortions of the speech component such as beamforming
algorithms, it is not well suited for algorithms that apply time-varying spectral
filtering.
In order to predict speech intelligibility, several more advanced measures have
been proposed, e.g., based on an internal representation of the signal derived from
an auditory model [91, 92], exploiting the frequency-weighted MSC between the
clean speech and the processed signal [93], using subband envelope correlation
[94, 95] or using the short-time objective intelligibility measure (STOI) [96]. More
information and an overview of the performance of several speech intelligibility
prediction measures can be found in [97, 98] and the references therein. However,
since these intelligibility measures are designed to predict speech intelligibility for
monaural output signals, they do not take the influence of the binaural cues on
speech intelligibility into account. Hence, several models for predicting binaural
speech intelligibility in noise have been proposed [8, 20, 99, 100, 101]. In [8, 102]
a model for binaural speech intelligibility, called BSIM, has been presented using
a equalization cancellation (EC) stage as a preprocessing stage for calculating the
speech intelligibility index (SII). Further extensions of this model by incorporating
the modulation transfer function or by using a separation of the speech component
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into useful and detrimental components prior to the EC stage have been proposed
and evaluated in [101, 103].
For the prediction of speech quality a wide variety of instrumental measures have
been proposed and evaluated [10, 104]. One of the most commonly used mea-
sures for predicting speech quality is the Perceptual Evaluation of Speech Quality
(PESQ) [105, 106]. This measure shows a high correlation with subjective listening
tests for the overall quality of speech signals [107] but shows modest to poor per-
formance for predicting speech intelligibility [97, 98]. A simple alternative to the
PESQ measure is the frequency-weighted segmental SNR (fwSegSnr), which shows
a similar performance compared to the PESQ measure [97, 107]. The fwSegSnr is
defined as [107]

fwSegSnr =
10

L

L∑
l=1

∑K
k=1H(ωk, l) log10

|X(ωk,l)|2

|X(ωk,l)−Z(ωk,l)|2∑K
k=1H(ωk, l)

, (2.98)

with l the frame index, ωk the k-th mel-frequency band, K the total number of fre-
quency bands, L the total number of frames, X(ωk, l) the input speech component,
Z(ωk, l) the output signal and H(ωk, l) a weighting function with

H(ωk, l) = |X(ωk, l)|0.2 . (2.99)

For the calculation of the fwSegSnr measure only frames with a segmental SNR in
the range of −10 to 35 dB are taken into account. The fwSegSnr measure has been
calculated using a frame-length of 512 samples, an overlap of 256 samples and 23
Mel-frequency bands at a sampling frequency of 16 kHz.

2.4.2 Binaural cue preservation

For evaluating binaural cue preservation performance, unfortunately no established
objective measure is available. The frequency-averaged ILD and ITD errors defined
in [73] can provide an indication how well a certain algorithm performs in terms of
binaural cue preservation, but since no auditory model is involved, the ability to
predict the impact of the algorithms on source localization and spatial impression
is rather limited, especially for reverberant environments. Hence, to evaluate bin-
aural cue preservation performance, we will use the output of a binaural auditory
processing model, which calculates the so-called reliable ILD and ITD cues which
are used by the human auditory system to localize sound sources. In the following
paragraph this model is briefly reviewed.
The so-called IPD model proposed in [15] incorporates several aspects of the human
auditory system, i.e. the middle ear transfer characteristic, auditory band-pass fil-
tering on the basilar membrane using a linear Gammatone filter bank, cochlear
compression and half-wave rectification with additional lowpass filtering in the in-
ner hair cells. The complex-valued binaural signals for the i-th Gammatone filter
are equal to

y0(i, t) = a0(i, t)ejφ0(i,t), y1(i, t) = a1(i, t)ejφ1(i,t), (2.100)
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with t denoting the time index, a(i, t) denoting the amplitude and φ(i, t) denot-
ing the phase. From the binaural signals in (2.100) the cross-correlation (CC) is
calculated as

CC(i, t) = y0(i, t)y∗1(i, t) = a0(i, t)a1(i, t)ej(φ0(i,t)−φ1(i,t)). (2.101)

A temporally smoothed IPD is then calculated as

IPD(i, t) = arg

[∫ ∞
0

CC(i, t− τ)e−τ/τs(i)dτ

]
, (2.102)

with τs(i) = 2.5/fc(i) and fc(i) the center frequency of the i-th Gammatone filter.
The IPD is translated to the ITD through division by the mean instantaneous
frequency of the left and the right signal and ambiguities of the IPD between
700 Hz and 1400 Hz are resolved using the corresponding ILD values [15]. For
calculating the ILD, a second-order low-pass modulation filter with a 30-Hz cut-off
frequency is employed to the signals y0(i, t) and y1(i, t). The ILD is then derived
from the energy ratio of the two low-pass filtered signals yp,0(i, t) and yp,1(i, t),
i.e.,

ILD(i, t) =
20

c
log10

(
|yp,0(i, t)|
|yp,1(i, t)|

)
, (2.103)

where the factor c scales the internal representation to the ILD occurring at the
ears prior to basilar membrane compression.
In order to discard segments that are not likely to originate from a directional
source, the interaural vector strength (IVS) has been proposed in [15] as a measure
of psychoacoustic decorrelation sensitivity, i.e.,

IV S(i, t) =

∣∣∫∞
0
CC(i, t− τ)e−τ/τs(i)dτ

∣∣∫∞
0
|CC(i, t− τ)| e−τ/τs(i)dτ

. (2.104)

From the IVS a binary mask B(i, t) is derived, i.e.,

B(i, t) =

1 if IVS(i, t) ≥ IVS0 &
dIVS(i,t)

dt ≥ 0

0 else
, (2.105)

where the threshold IVS0 was set to 0.98 and the additional condition dIVSi(t)
dt ≥ 0

filters out misleading time segments caused by the sluggishness of the IVS due to
the low-pass filtering of the CC [15]. The so-called reliable ILD and ITD cues are
then obtained as

ILDrel(i, t) = B(i, t)ILD(i, t), (2.106)

ITDrel(i, t) = B(i, t)ITD(i, t). (2.107)

To evaluate the impact of the algorithms on the binaural cues, in the remainder
of the thesis we will either consider the complete cue distribution of the reliable
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ILD and ITD cues of the input and output speech component or we calculate the
mean difference as

∆ILD =

∣∣∣∣∑i

∑
tB

in(i, t) ILDin(i, t)∑
i

∑
tB

in(i, t)
−
∑
i

∑
tB

out(i, t) ILDout(i, t)∑
i

∑
tB

out(i, t)

∣∣∣∣ , (2.108)

∆ITD =

∣∣∣∣∑i

∑
tB

in(i, t) ITDin(i, t)∑
i

∑
tB

in(i, t)
−
∑
i

∑
tB

out(i, t) ITDout(i, t)∑
i

∑
tB

out(i, t)

∣∣∣∣ . (2.109)

where Bin(i, t), ILDin(i, t) and ITDin(i, t) are calculated from the input speech
component and Bout(i, t), ILDout(i, t) and ITDout(i, t) are calculated from the
output speech component. The ITD cues are calculated up to the Gammatone
filter with a center frequency of 1.4 kHz and the ILD cues are calculated up to a
Gammatone filter with a center frequency of 4.8 kHz.
Figure 2.2 depicts an exemplary distribution of the reliable ILD and ITD cues
for a speech source at −45◦ in an anechoic and a reverberant environment (office
room) using binaural impulse responses measured on an artificial head [108]. The
distribution of the ILD cues in an anechoic environment shows two distinct peaks,
which is due to the strong frequency dependence of the ILD. For the reverberant
environment, the second peak vanishes and the distribution becomes broader due
to the early reflections, which arrive from different spatial locations. For the ITD
cues in an anechoic environment, a distinct peak can be observed since for a single
plane wave the ITD is frequency independent. For the reverberant environment,
the distribution becomes broader, which is again due to the early reflections which
arrive from different spatial locations.

(a) Distribution of the reliable ILD cues (b) Distribution of the reliable ITD
cues

Figure 2.2: Exemplary distributions of the reliable ILD and ITD cues in an anechoic and
a reverberant environment for a speech source at −45◦.
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2.5 Theory of spatially isotropic sound fields

Spatially isotropic sound fields have been shown to be a reasonable approxima-
tions for noise in crowded rooms. A spatially isotropic sound field is defined as a
sound field that is composed of a superposition of uncorrelated plane waves that
are uniformly distributed on a surface with equal power spectrum densities [12].
The spatial coherence of a cylindrically isotropic sound field can be derived by
integrating over all plane waves located on a cylinder under free-field condition.
The spatial coherence between 2 microphones at a distance d for a cylindrically
isotropic sound field is equal to [109]

Γcyl(ω) = J0

(
ωd

c

)
, (2.110)

with J0(·) the zero-order Bessel function of the first kind and c the speed of sound.
The spatial coherence of a spherically isotropic sound field can be derived by
integrating over all plane waves located on a sphere under free-field condition.
The spatial coherence between 2 microphones at a distance d for a spherically
isotropic sound field is equal to [12]

Γsph(ω) = sinc

(
ωd

c

)
, (2.111)

with sinc(x) = sin(x)
x . For a binaural setup, the free-field condition is not valid since

the head shadow effect needs to be taken into account (cf. Section 1.2). The spatial
coherence between the reference microphone at the left and the right hearing aid,
denoted as Interaural Coherence (IC), of a cylindrically isotropic sound field can
be calculated as

ICcyl(ω) =

∫ 2π

0
A0(φ, ω)A∗1(φ, ω) dφ√∫ 2π

0
|A0(φ, ω)|2 dφ

∫ 2π

0
|A1(φ, ω)|2 dφ

, (2.112)

with A0 denoting the anechoic ATF between the source and the reference micro-
phone at the left hearing aid and A1 denoting the anechoic ATF between the
source and the reference microphone at the right hearing aid and φ ∈ [0, 2π]. If the
microphones are located at the entrance of the ear canal, these anechoic ATFs are
also denoted as Head-Related Transfer Functions (HRTFs). However, this special
case is not considered in this thesis. The IC of a spherically isotropic sound field
can be calculated as

ICsph(ω) =

∫ 2π

0

∫ π
0
A0(φ, θ, ω)A∗1(φ, θ, ω) sin(φ) dφ dθ√∫ 2π

0

∫ π
0
|A0(φ, θ, ω)|2 sin(φ) dφ dθ

∫ 2π

0

∫ π
0
|A1(φ, θ, ω)|2 sin(φ) dφ dθ

,

(2.113)

with φ ∈ [0, π] and θ ∈ [0, 2π]. If an analytical model of the ATFs A0 and A1

is available and the integrals in (2.112) or (2.113) are analytically solvable, an
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analytical solution for the IC can be obtained. If no analytical solution for the
integrals can be obtained or it is desired to calculate the IC based on measurements,
the integrals can be approximated by summation. In [110] the anechoic ATFs have
been modeled using a geometrical model of the human head which have been
used to approximate the IC of cylindrically and spherically isotropic sound fields.
Furthermore, based on experimental data in [111] it has been shown that the IC of
a spherically isotropic sound field can be approximated as a modified sinc-function,
i.e.,

ICsph(ω) = sinc

(
α
ω d

c

)
1√

(1 + (β ω dc )4)
, (2.114)

with α = 2.2 and β = 0.5. This formula implies that the presence of the head
results in a shifting of the zero crossings of the sinc-function in (2.111) towards
lower frequencies and causes an additional frequency-dependent damping. These
effects also occur in the physical model in [110]. Figure 2.3 depicts the IC of a
spherically isotropic sound field calculated using the free-field model in (2.111),
the modified sinc-function in (2.114) and the physical head model in [110].

Figure 2.3: Interaural Coherence for a spherically isotropic noise field calculated using
the free-field model in (2.111) (free-field), the modified sinc-function in (2.114)
(modified sinc), and the physical head model in [110] (physical model) with
the parameter settings c = 340m

s and d = 0.164m.

2.6 Database of binaural impulse responses

To evaluate the performance of binaural noise reduction algorithms, we use a
database of impulse responses for a binaural behind-the-ear hearing aid setup
mounted on a Brüel & Kjær Type 4128C artificial head [108]. Each behind-the-ear
hearing aid was equipped with 3 microphones, such that in total 6 microphones
were available. The impulse responses were measured in an anechoic, an office and
a cafeteria environment. In addition, in the cafeteria environment ambient noise
including babble noise, clacking plates and interfering speakers has been recorded
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using the binaural hearing aids mounted on the artificial head. Figure 2.4a depicts
the behind-the-ear hearing aid mounted on the right ear of the dummy head,
showing the distance between the microphones in mm. The distance between the
first microphone at the left hearing aid and the first microphone at the right hearing
aid was approximately 0.164m. Furthermore, Figure 2.4b depicts the coordinate
system used throughout the thesis, where 0◦ denotes a source in front of the
artificial head and −90◦ denotes a source at the left side of the artificial head.
For the anechoic scenario the source was located at a distance of 0.8m and 3m
from the artificial head. The impulse responses were measured for angles ranging
from −180◦ to 180◦ in steps of 5◦. For the office scenario, depicted in Figure
2.5a, the source was located at a distance of 1m from the artificial head and the
reverberation time was approximately 300ms [108]. The impulse responses were
measured for angles ranging from −90◦ to 90◦ in steps of 5◦. For the cafeteria
scenario, depicted in Figure 2.5b, the impulse responses were measured for several
source positions and the reverberation time was approximately 1250ms according
to [108]. In this thesis we use the positions A, B, C, D and E, corresponding to
source positions of 0◦, −45◦, −90◦, 90◦ and 135◦.

(a) (b)

Figure 2.4: Hearing aid setup and coordinate system. Figure (a) depicts the right ear of
the artificial head with the behind-the-ear hearing aid. The distances between
the microphones of the hearing aid are given in mm. The distance between the
first microphone at the left hearing aid and the first microphone at the right
hearing aid was approximately 0.164m. Figure (b) depicts the coordinate
system used in the thesis. 0◦ denotes a source in front of the artificial head
and −90◦ denotes a source at the left side of the artificial head.
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(a) Office scenario setup. (b) Cafeteria scenario setup.

Figure 2.5: Office and cafeteria scenario. For the office scenario the source was located
at a distance of 1m from the artificial head and the reverberation time was
approximately 300ms. The impulse responses were measured for angles rang-
ing from −90◦ to 90◦ in steps of 5◦. For the cafeteria scenario the impulse
responses were measured for source positions A, B, C, D and E, correspond-
ing to source positions of 0◦, −45◦, −90◦, 90◦ and 135◦. The reverberation
time was approximately 1250ms.



3
BINAURAL NOISE REDUCTION

In this chapter several state-of-the-art binaural noise reduction algorithms are re-
viewed and their performance in terms of noise reduction, speech distortion and
binaural cue preservation is compared. In Section 3.1, we present the binaural
Minimum Variance Distortionless Response (MVDR) beamformer using Relative
Transfer Functions (RTFs). In Section 3.2 the binaural Multi-channel Wiener Filter
(MWF) is presented, which for the case of a single speech source, can be decom-
posed into a binaural MVDR beamformer and a single-channel spectral postfilter.
In Section 3.3 and 3.4 extensions of the binaural MWF are presented, either aiming
to preserve the ITF of the noise component (MWF-ITF) or to partially preserve
the noise component (MWF-N). In Section 3.5 we analyse the advantages and
disadvantages of these algorithms both for a scenario with a single speech source
in a diffuse noise field (Section 3.5.1) and a scenario with an additional directional
interfering source (Section 3.5.2). For this aim, we extend the existing theoretical
analysis of the binaural cue preservation performance of these algorithms to diffuse
noise fields, i.e. we analyse the impact of the algorithms on the IC of the speech and
the noise component. We show that the MWF-ITF is not suitable for diffuse noise
fields and that the performance of the MWF-N in diffuse noise fields highly de-
pends on the selection of a trade-off parameter. Furthermore, for the scenario with
one interfering source we show that neither the MWF-ITF nor the MWF-N can
perfectly preserves the binaural cues of the interfering source without significantly
distorting the binaural cues of the speech source (MWF-ITF) or decreasing the
noise reduction performance (MWF-N). This analysis serves as the motivation to
derive several novel extensions and modifications of these algorithms in Chapters 4,
5 and 7, aiming to achieve an improved and psychoacoustically optimised trade-off
between noise reduction and binaural cue preservation performance.

3.1 Binaural Minimum Variance Distortionless Response (MVDR) beam-
former

The binaural MVDR beamformer [112] aims to minimize the output PSD of the
overall noise component in the left and the right hearing aid while preserving

37
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the speech component in the reference microphone signals. The constrained opti-
mization problem for the left and the right hearing aid can hence be formulated
as

min
W0

WH
0 RvW0 subject to WH

0 A = A0, (3.1)

min
W1

WH
1 RvW1 subject to WH

1 A = A1, (3.2)

which can be written in terms of the stacked filter vector W (cf. (2.37)) as

min
W

WHR̃vW subject to WHC = b, (3.3)

with

R̃v =

[
Rv 0M×M

0M×M Rv

]
, C =

[
A 0M×1

0M×1 A

]
, b =

[
A0 A1

]
.

(3.4)

The solution to the optimization problem in (3.3) is equal to [36, 44] (cf. Appendix
A.1)

WMVDR = R̃
−1

v C
(
CHR̃

−1

v C
)−1

bH . (3.5)

The solution can be decomposed into the filter vector for the left and the right
hearing aid W0 and W1, i.e.,

WMVDR,0 =
R−1

v A
AHR−1

v A
A∗0, (3.6)

WMVDR,1 =
R−1

v A
AHR−1

v A
A∗1. (3.7)

The binaural MVDR beamformer can also be written in terms of the RTF vectors
of the speech source A0 and A1 (cf. 2.65), i.e.,

WMVDR,0 =
R−1

v A0

A
H

0 R
−1
v A0

, (3.8)

WMVDR,1 =
R−1

v A1

A
H

1 R
−1
v A1

. (3.9)

However, for the sake of readability the ATF formulation will be used throughout
the entire thesis. Equations (3.6) and (3.7) imply that the filter vectors for the left
and the right hearing aid are related by the input RTF of the speech source (cf.
2.67), i.e.,

WMVDR,0 =

(
A0

A1

)∗
WMVDR,1. (3.10)
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Substituting (3.10) in (2.71), it can be shown that the output RTF of the speech
source is equal to the input RTF of the speech source, i.e., [73]

RTF out
x =

A0

A1
= RTF in

x . (3.11)

Moreover, substituting (3.10) in (2.53), it can be shown that the output ITF of
the overall noise component is equal to the input RTF of the speech source, i.e.,
[73]

ITF out
v =

A0

A1
= RTF in

x . (3.12)

From (3.11) and (3.12) we can conclude that the output RTF of the speech source
and the output ITF of the overall noise component are the same and equal to
the input RTF of the speech source, implying that both output components are
perceived as directional sources coming from the speech direction, which is obvi-
ously not desired. Due to the distortionless constraint in (3.3), the binaural MVDR
beamformer does not introduce any speech distortion, i.e.,

SDMVDR,0 = SDMVDR,1 = 1. (3.13)

Substituting (3.6) and (3.7) in (2.91) and (2.92), the output SINR of the binaural
MVDR beamformer is equal to

SINRout
MVDR,0 = SINRout

MVDR,1 = ρ = PsAHR−1
v A. (3.14)

The SINR improvement in the left and the right hearing aid is then equal to

∆SINRMVDR,0 =
SINRout

MVDR,0

SINRin
0

= ρ
Φv,0

Φx,0
, (3.15)

∆SINRMVDR,1 =
SINRout

MVDR,1

SINRin
1

= ρ
Φv,1

Φx,1
. (3.16)

In the next section the binaural multi-channel Wiener filter will be presented,
which for the case of a single speech source can be seen as a generalization of the
binaural MVDR beamformer.

3.2 Binaural Multi-channel Wiener Filter (MWF)

The binaural speech-distortion-weighted MWF [73, 74] produces an MMSE esti-
mate of the speech component in the reference microphone signals of both hearing
aids, hence simultaneously reducing noise and limiting speech distortion. Contrary
to the binaural MVDR beamformer in Section 3.1, where a distortionless constraint
for the speech component is applied, the binaural MWF allows for a controllable
amount of speech distortion. The binaural MWF cost function, estimating the
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speech components X0 and X1 in the left and the right hearing aid, is defined as
[73, 74]

JMWF,0(W0) = E
{∣∣∣X0 −WH

0 X
∣∣∣2}+ µE

{∣∣∣WH
0 V

∣∣∣2} , (3.17)

JMWF,1(W1) = E
{∣∣∣X1 −WH

1 X
∣∣∣2}+ µE

{∣∣∣WH
1 V

∣∣∣2} , (3.18)

where the parameter µ with µ ≥ 0 enables a trade-off between noise reduction and
speech distortion. As for the binaural MVDR, the binaural cost function can be
written in terms of the stacked filter vector W as

JMWF(W) = JMWF,0(W0) + JMWF,1(W1)

= WHRW−WHrx − rHx W + Φx,0 + Φx,1, (3.19)

with

R =

[
R̃y 0M×M

0M×M R̃y

]
, R̃y = (Rx + µRv) , rx =

[
rx,0

rx,1

]
, (3.20)

with rx,0 and rx,1 defined in (2.18) and (2.19). The filter minimizing JMWF(W) in
(3.19) is equal to [74] (cf. Appendix A.2)

WMWF = R−1rx . (3.21)

Using (3.20), the filter vectors for the left and the right hearing aid can then be
written as

WMWF,0 = (Rx + µRv)
−1rx,0, (3.22)

WMWF,1 = (Rx + µRv)
−1rx,1. (3.23)

As already shown in [73, 74], for the case of a single speech source the binaural
MWF can be decomposed into a binaural MVDR beamformer and a single-channel
Wiener postfilter applied to the output of the MVDR beamformer [60, 88] (cf.
Appendix A.3), i.e.,

WMWF,0 =
ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗0 =
ρ

µ+ ρ
WMVDR,0, (3.24)

WMWF,1 =
ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗1 =
ρ

µ+ ρ
WMVDR,1, (3.25)

with WMVDR,0 and WMVDR,1 defined in (3.6) and (3.7) and ρ the output SINR
of the binaural MVDR beamformer defined in (3.14). Hence, for the special case
µ = 0, the binaural MWF is equivalent to the binaural MVDR beamformer. For
the case µ > 0, the single-channel Wiener postfilter will further decrease the noise
output power on the expense of speech distortion.
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Similarly as for the binaural MVDR beamformer, the filter vectors for the left and
the right hearing aid are related by the input RTF of the speech source as

WMWF,0 =

(
A0

A1

)∗
WMWF,1. (3.26)

Hence, similarly as for the binaural MVDR beamformer the output RTF of the
speech source and the output ITF of the overall noise component are equal to the
input RTF of the speech source, i.e.,

RTF out
x =

A0

A1
= RTF in

x , (3.27)

ITF out
v =

A0

A1
= RTF in

x . (3.28)

Hence, both components are again perceived as directional sources coming from
the speech direction.
Substituting (3.24) and (3.25) in (2.94) and (2.95), the speech distortion of the
binaural MWF is equal to [73]

SDMWF,0 = SDMWF,1 =
(µ+ ρ)2

ρ2
, (3.29)

which is always larger than or equal to 1.
Substituting (3.24) and (3.25) in (2.91) and (2.92), the output SINR of the binaural
MWF is equal to [73, 74]

SINRout
MWF,0 = SINRout

MWF.1 = ρ, (3.30)

which is equal to the output SINR of the binaural MVDR beamformer in (3.14).
Hence, the SINR improvement in the left and the right hearing aid of the bin-
aural MWF will also be equal to the SINR improvement of the binaural MVDR
beamformer, i.e.,

∆SINRMWF,0 = ∆SINRMVDR,0 =
SINRout

MWF,0

SINRin
0

= ρ
Φv,0

Φx,0
, (3.31)

∆SINRMWF,1 = ∆SINRMVDR,1 =
SINRout

MWF,1

SINRin
1

= ρ
Φv,1

Φx,1
. (3.32)

It should be noted that although the Wiener postfilter will not have an impact on
the narrowband output SINR, it will have an impact on the global output iSNR
in (2.97) and the fwSegSnr measure in (2.98).
Since both the binaural MVDR beamformer and the binaural MWF introduce
undesired distortions of the binaural cues of the noise component, in the next
sections two extensions of the binaural MWF are presented, which aim to preserve
the binaural cues of the residual noise component.
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3.3 Binaural MWF with ITF preservation (MWF-ITF)

In order to control the binaural cues of the residual noise component for directional
interfering sources, it has been proposed in [73, 76] to extend the binaural MWF
cost function with a term related to the Interaural Transfer Function (ITF) of
the noise component (cf. Section 2.2). The ITF cost function for preserving the
binaural cues of the noise component is defined as [73]

JITF(W) = E{|WH
0 V− ITF des

v WH
1 V|2} = WHRvtW, (3.33)

with

Rvt =

[
Rv −ITF des,∗

v Rv

−ITF des
v Rv |ITF des

v |2 Rv

]
, (3.34)

and ITF des
v a desired ITF which can, e.g., be chosen to be equal to the input ITF of

the noise component in (2.49). The total cost function, trading off noise reduction,
speech distortion, and binaural cue preservation, is then defined as

JMWF−ITF(W) = JMWF(W) + δJITF(W), (3.35)

where the parameter δ enables to put more emphasis on binaural cue preservation
for the noise component. Similarly as for the binaural MWF in (3.21), the filter
minimizing JMWF−ITF(W) is equal to [73]

WMWF−ITF = (R + δRvt)
−1rx. (3.36)

In the case of a single speech source, it has been shown in [73] that the filter vectors
for the left and the right hearing aid can be written as

WMWF−ITF,0 =
Ps

µ+ ρ
(A∗0 − ξ)R

−1
v A, (3.37)

WMWF−ITF,1 =
Ps

µ+ ρ

(
A∗1 + ξITF des

v

)
R−1

v A, (3.38)

with

ξ =
δ
(
A∗0 − ITF des,∗

v A∗1
)

µ+ ρ+ δ(1 + |ITF des
v |2)

. (3.39)

Note that the filter vectors in (3.37) and (3.38) are equal to the binaural MWF
filter vectors in (3.24) and (3.25) and an extra term due to the extension with
the ITF cost function for the noise component. It has been shown in [73] that the
output SINR for the MWF-ITF is the same as for the MWF, i.e.,

SINRout
MWF−ITF,0 = SINRout

MWF−ITF,1 = ρ. (3.40)

Moreover, since it can be shown that the filter vectors in (3.37) and (3.38) are
related as [73]

WMWF−ITF,0 = ITF out,∗WMWF−ITF,1, (3.41)
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with

ITF out =
A0 − ξ∗

A1 + ξ∗ITF des,∗
v

, (3.42)

the output RTF of the speech source and the output ITF of the overall noise
component are again the same but are now equal to

RTF out
x = ITF out

v = ITF out. (3.43)

Similarly as for the binaural MWF and the binaural MVDR beamformer, both
output components for the MWF-ITF are hence perceived as directional sources
coming from the same direction. This direction is determined by ITF out in (3.42)
and depends, e.g., on the trade-off parameter δ and the output SINR ρ. If δ = 0,
then ITF out = RTF in

x , and if δ → ∞, then ITF out = ITF des
v , such that there is

always a trade-off between preserving the RTF of the speech source and preserving
the ITF of the noise component. However, as has been noted in [73], (3.42) implies
that for high output SINRs the output ITF is shifted towards the RTF of the
speech source and for low output SINRs the output ITF is shifted towards the
desired ITF for the noise component. Due to this advantageous perceptual effect,
an increase in localization performance for the MWF-ITF compared to the binaural
MWF has been observed in subjective listening experiments [76].

3.4 Binaural MWF with partial noise estimation (MWF-N)

In this section, a more general approach for preserving the binaural cues of the
noise component is presented, which aims to preserve a portion of the noise com-
ponent in the reference microphones. The MWF-N is an extension of the binaural
MWF, which in addition to preserving the binaural cues of the speech component
also aims to partially preserve the binaural cues of the noise component [73, 77].
The MWF-N produces an MMSE estimate of the speech component and a portion
of the noise component in the reference microphones for both hearing aids. The
MWF-N cost function for the left and the right hearing aid is defined as [73]

JMWF−N,0(W0) = E
{∣∣∣X0 −WH

0 X
∣∣∣2}+ µE

{∣∣∣ηV0 −WH
0 V

∣∣∣2} , (3.44)

JMWF−N,1(W1) = E
{∣∣∣X1 −WH

1 X
∣∣∣2}+ µE

{∣∣∣ηV1 −WH
1 V

∣∣∣2} , (3.45)

where the parameter η with 0 ≤ η ≤ 1 provides a trade-off between noise reduction
and the preservation of the binaural cues of the noise component. If η = 0, the
MWF-N cost function reduces to the cost function of the binaural MWF in (3.17)
and (3.18). The filter vectors minimizing (3.44) and (3.45) are equal to [73] (cf.
Appendix A.4)

WMWF−N,0 = (1− η) WMWF,0 + ηe0, (3.46)
WMWF−N,1 = (1− η) WMWF,1 + ηe1. (3.47)
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Hence, the output signals of the MWF-N are equal to the sum of the output signals
of the binaural MWF (weighted with 1-η) and the noisy reference microphone
signals (weighted with η). Setting η = 0 results in the solution for the binaural
MWF. It has been shown in [73] that for the MWF-N the binaural cues of the
speech component are preserved for all trade-off parameters η, i.e.,

RTF out
x =

(1− η) ρ
(µ+ρ)A0 + ηA0

(1− η) ρ
(µ+ρ)A1 + ηA1

=
A0

A1
= RTF in

x . (3.48)

The output ITF of the noise component can be calculated by substituting (3.46)
and (3.47) in (2.53) and is equal to [73]

ITF out
v =

ψPsA0A
∗
1 + η2Φv,01

ψPs|A1|2 + η2Φv,1
, (3.49)

with

ψ = (1− η)2 ρ

(µ+ ρ)2
+ 2η(1− η)

1

(µ+ ρ)
. (3.50)

Equation (3.49) implies that ITF out
v is equal to RTF in

x if η = 0 and ITF out
v is

equal to ITF in
v if η = 1. Hence, for 0 < η < 1 the output ITF of the noise

component will lie between the input RTF of the speech component and the input
ITF of the noise component.
The speech distortion of the MWF-N can be calculated by substituting (3.46) and
(3.47) in (2.94) and (2.95) and is equal to [73]

SDMWF−N,0 = SDMWF−N,1 =

(
µ+ ρ

ηµ+ ρ

)2

. (3.51)

Comparing (3.51) with (3.29) implies that when 0 < η ≤ 1 the binaural MWF
always yields a larger speech distortion than the MWF-N. This can be intuitively
explained by the fact that the mixing of the output speech component of the bin-
aural MWF with the input speech component of the reference microphone signals
partially compensates the speech distortion introduced by the Wiener postfilter.
As already shown in [73], the output SINR of the MWF-N can be calculated by
substituting (3.46) and (3.47) in (2.91) and (2.92), i.e.,

SINRout
MWF−N,0 =

ρ
(
ηµ+ρ
µ+ρ

)2

[(
ηµ+ρ
µ+ρ

)2

+ η2 (∆SINRMWF,0 − 1)

] , (3.52)

SINRout
MWF−N,1 =

ρ
(
ηµ+ρ
µ+ρ

)2

[(
ηµ+ρ
µ+ρ

)2

+ η2 (∆SINRMWF,1 − 1)

] , (3.53)

with ∆SINRMWF,0 and ∆SINRMWF,1, defined in (3.31) and (3.32), the SINR
improvement of the binaural MWF in the left and the right hearing aid. Since the
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SINR improvement of the MWF is always larger than or equal to 1 [113], (3.52)
and (3.53) imply that the output SINR of the MWF-N is always smaller or equal
to the output SINR of the binaural MWF, i.e.,

SINRout
MWF−N,0 ≤ SINRout

MWF,0, (3.54)

SINRout
MWF−N,1 ≤ SINRout

MWF,1, (3.55)

which again can be intuitively explained by the mixing of the output signals of the
binaural MWF with the reference microphone signals.

3.5 Performance of the binaural MWF, MWF-ITF and MWF-N

In this section some additional insights (theoretically and experimentally) on the
performance of the binaural MWF, MWF-ITF and MWF-N are provided for a
diffuse noise scenario (Section 3.5.1) and a scenario with one interfering source
(Section 3.5.2). For the diffuse noise scenario a theoretical analysis of the binau-
ral cue preservation performance of the MWF-ITF is provided, showing that the
MWF-ITF is not well suited for diffuse noise scenarios. Furthermore, for both sce-
narios the impact of the trade-off parameters of the MWF-ITF and the MWF-N
on the noise reduction and binaural cue preservation performance is experimen-
tally investigated, validating the analytical expressions in Sections 3.2, 3.3 and
3.4. In order to analyse the full potential of the discussed algorithms it should be
realised that the impact of estimation errors of the required signal statistics on the
performance of the algorithms is not considered in Sections 3.5.1 and 3.5.2. The
findings in this section will motivate the further improvements of binaural MWF-
based noise reduction and binaural cue preservation techniques in the following
chapters.

3.5.1 Performance in diffuse noise fields

For a diffuse noise field, the noise correlation matrix is equal to Rv = Rn = ΦnΓ
(cf. (2.16)), with Γ the spatial coherence matrix (cf. Section 2.5). By substituting
this correlation matrix into the binaural MVDR beamformer in (3.6) and (3.7),
we obtain

WMVDR,0 =
Γ−1A

AHΓ−1A
A∗0, (3.56)

WMVDR,1 =
Γ−1A

AHΓ−1A
A∗1. (3.57)

For binaural hearing aid applications, the spatial coherence matrix Γ can be calcu-
lated from measured BTE-IRs, using the modified sinc-function in (2.114) or the
physical model described in [110] (cf. Section 2.5). In order to overcome the prob-
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lem of self-noise amplification, which occurs especially at low frequencies, usually
a regularization term is used in the spatial coherence matrix Γ [37], i.e.,

WMVDR,0 =

(
Γ + σ2

wI
)−1 A

AH (Γ + σ2
wI)
−1 A

A∗0, (3.58)

WMVDR,1 =

(
Γ + σ2

wI
)−1 A

AH (Γ + σ2
wI)
−1 A

A∗1, (3.59)

where σ2
w determines the amount of regularization and I denotes the M × M -

dimensional identity matrix. To determine σ2
w several approaches have been pro-

posed, e.g., in [53]. Since in this thesis the spatial coherence matrix Γ is generally
calculated from data, i.e., recorded impulse responses, the additional regulariza-
tion is not required.
Even though the binaural MVDR beamformer in (3.58) and (3.59) maximizes the
narrowband output SNR for a diffuse noise field [36], the overall noise reduction
performance can be further increased by applying additional spectral postfiltering
[114]. Hence, the binaural MWF is a preferable choice, since the global output
SNR can be increased by utilizing short-term estimates of the output SNR of the
MVDR beamformer in the spectral Wiener postfilter (cf. 3.24 and 3.25). Unfortu-
nately, the additional noise reduction comes at the expense of speech distortion.
For the special case of a diffuse noise field the binaural MWF filter vector is equal
to (cf. (3.24) and (3.25))

WMWF,0 =
ρ

µ+ ρ

Γ−1A
AHΓ−1A

A∗0 =
ρ

µ+ ρ
WMVDR,0, (3.60)

WMWF,1 =
ρ

µ+ ρ

Γ−1A
AHΓ−1A

A∗1 =
ρ

µ+ ρ
WMVDR,1. (3.61)

Hence, the binaural MWF is decomposed into a spatial part, which requires an
estimate of the spatial coherence matrix Γ and the RTF vectors of the speech
source (cf. (2.65)), and a spectro-temporal part, which requires an estimate of the
output SNR of the MVDR beamformer ρ.
As already mentioned in Sections (3.1) and (3.2), both the binaural MVDR beam-
former and the binaural MWF preserve the RTF of the speech source (cf. (3.11)
and (3.27)), but distort the ITF of the noise component (cf. (3.12) and (3.28)).
In contrast to directional sources, the spatial characteristics of diffuse noise fields
however can not be properly described by the ITF, but rather by the Interaural
Coherence (IC) (cf. Sections 1.2 and 2.5). Substituting (3.26) in (2.60) and (2.63),
it can be shown that for the binaural MWF, and hence also for the binaural MVDR
beamformer, the output IC of the speech and the noise component are the same
and equal to

ICout
x = ICout

v = ej ∠RTF
in
x , (3.62)

such that
MSCout

x = MSCout
v = 1. (3.63)
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For the MWF-ITF, by substituting (3.41) in (2.60) and (2.63), we can show that
the output IC of the speech and the noise component are also the same and equal
to

ICout
x = ICout

v =
ITF out

|ITF out|
= ej ∠ITF

out

, (3.64)

such that

MSCout
x = MSCout

v = 1. (3.65)

Hence, for both the binaural MWF and the MWF-ITF the frequency-dependent
IC/MSC of a diffuse noise field (cf. Section 2.5) can not be preserved. Since both
output speech and noise components will be perceived as directional sources from
the same direction, the perceived width of a diffuse noise field will not be present
in the output noise component of the binaural MWF and the MWF-ITF and no
binaural hearing advantage can be exploited. In the following, we provide a deeper
insight into the binaural cue preservation performance of the MWF-ITF in diffuse
noise fields and the applicability of the MWF-N will be discussed.
For a diffuse noise field the PSDs of the input noise components of the reference
microphone signals are assumed to be the same, i.e. Φv,0 = Φv,1, such that

ITF in
v = IC in

v . (3.66)

Furthermore, assuming the common hearing aid scenario of a speech source located
in front of the listener and assuming symmetry of the head, i.e. A0 = A1, and
setting ITF des

v = ITF in
v , the output ITF of the MWF-ITF in (3.42) can then be

computed as

ITF out =
1− δ(1−ICin

v )
µ+ρ+δ(1+|ICin

v |2)

1 + IC in
v

δ(1−ICin
v )

µ+ρ+δ(1+|ICin
v |2)

, (3.67)

where IC in
v can be calculated using (2.114). Substituting (3.41) in (2.45), the

output ILD of the noise component is equal to

ILDout
v =

∣∣ITF out
∣∣2 . (3.68)

Figure 3.1 depicts the output ITF and the output ILD, calculated according to
(3.67) and (3.68), for several trade-off parameters δ. As expected from the theoret-
ical analysis, the output ITF in Figure 3.1a is real-valued and converges towards
the input ITF when the trade-off parameter δ is increased. As depicted in Figure
3.1b, the output ILD (in dB) is always negative and significantly different from
the frequency-independent input ILD which is equal to 0 dB. Due to the relation
between the output IC and the output ITF in (3.64), the output IC is equal to 1
or −1, depending on the sign of the output ITF, i.e.,

ICout
v =

1, if ITF out ≥ 0

−1, if ITF out < 0
. (3.69)
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Consequently, since the IPD can be calculated from the ITF, cf. (2.54), the output
IPD is equal to 0 or π, depending on the sign of the output ITF, i.e.,

IPDout
v =

0, if ITF out ≥ 0

π, if ITF out < 0
. (3.70)

The output ITD can be calculated according to (2.55) and is equal to

ITDout
v =

0, if ITF out ≥ 0

π
ω , if ITF out < 0

. (3.71)

Note that due to the relation in (3.43) the same analysis also holds for the bin-
aural cues of the output speech component. From this analysis we can conclude
that in diffuse noise fields the fairly unnatural combination of the output ILD and
IPD/ITD for the MWF-ITF will lead to perceptually unsatisfying results for both
the speech and the noise component, especially for large trade-off parameters δ.
For the MWF-N it has been shown in Section 3.4 that depending on the trade-
off parameter η a partial preservation of the ITF of the noise component can be
achieved at the expense of a reduced noise reduction performance. The ITF preser-
vation of the noise component is achieved due to the mixing of the output signal
of the binaural MWF with a portion of the reference microphone signals. Hence,
also for a diffuse noise field the MWF-N is applicable since it will provide a partial
preservation of the IC while preserving the binaural cues of the speech component.
A more detailed analysis on the impact of the trade-off parameter η on the output
IC of the noise component will be provided in Chapter 5.

(a) ITF (b) ILD in dB

Figure 3.1: Binaural Cues of the MWF-ITF according to (3.67) and (3.68). The param-
eters µ and ρ are equal to 1. IC in

v is calculated according to (2.114) with
c = 340m

s and d = 0.164m.
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(a) binaural MVDR beamformer, 2 mi-
crophones

(b) binaural MVDR beamformer, 4 mi-
crophones

Figure 3.2: Beampattern for the binaural MVDR beamformer using 2 microphones, i.e.
the frontal microphones of both hearing aids (Figure 3.2a) and 4 microphones,
i.e. the frontal and middle microphones of both hearing aids (Figure 3.2b)
from the binaural impulse response database described in Section 2.6.

Figure 3.2 depicts the beampattern [37] of the binaural MVDR beamformer for a
speech source in front of the listener in a diffuse noise field using 2 microphones,
i.e. the frontal microphones of both hearing aids (Figure 3.2a) and 4 microphones,
i.e. the frontal and middle microphones of both hearing aids (Figure 3.2b) from
the database in [108] (cf. Section 2.6). Figure 3.2a shows the so-called sidelobes
which occur due to spatial aliasing, depending on the microphone distance [37]. If
4 microphones are used (cf. Figure 3.2b), the sidelobes can be reduced due to the
small microphone spacing between the two microphones at the same hearing aid
and the additional degrees of freedom available to solve the optimization problem.
Furthermore, the impact of the two additional microphones on the noise reduction
performance is clearly visible. Please note that the beampattern of the binaural
MWF and the MWF-ITF will look exactly the same since the narrowband output
SNR is the same as for the binaural MVDR beamformer.
To demonstrate the performance of the binaural MWF, MWF-ITF and MWF-N
in diffuse noise fields, we use BTE-IRs measured in an office environment with a
reverberation time of approximately 300ms with the source at 1 m from the arti-
ficial head [108] (cf. Section 2.6). The ATF of the speech source A was calculated
from the measured BTE-IRs. The speech source was located at 0◦ and the PSD
of the speech source Ps was calculated from a speech signal (Welch method using
FFT size of 512 samples and Hann window). The spatial coherence matrix of a
cylindrically isotropic noise field Γ was calculated using the anechoic ATFs mea-
sured at a distance of 3m. The (i, j)-th element of the spatial coherence matrix
Γ(i, j) was calculated as (cf. Section 2.5)

Γ(i, j) =

∑S
s=1Ai(θs)A

∗
j (θs)√∑S

s=1 |Ai(θs)|2
∑S
s=1 |Aj(θs)|2

, (3.72)
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with A(θs) denoting the anechoic ATF for a source at angle θs and S the total
number of angles, i.e. S = 72. The PSD of the diffuse noise component Φn was
equal to the PSD of speech-shaped noise.
The global input SNR in the left hearing aid, averaged over all frequencies, was
set to 0 dB. For all algorithms the trade-off parameter µ was set to 1. For the
MWF-ITF the desired ITF for the noise component ITF des

v was set to ITF in
v .

In Figure 3.3 the SNR improvement, the ILD error between the input ILD and the
output ILD for the speech source and the MSC error between the input MSC and
the output MSC for the noise component, averaged over frequency, is depicted for
the binaural MWF, MWF-ITF and MWF-N. While the average SNR improvement
of the binaural MWF and the MWF-ITF are the same (cf. Section 3.3), the per-
formance of the MWF-N highly depends on the trade-off parameter η (cf. (3.52)
and (3.53)). Figure 3.3c shows that for both the binaural MWF and the MWF-N
the ILD of the speech source is always preserved (cf. (3.27) and (3.48)), whereas
the ILD error for the MWF-ITF increases with increasing the trade-off parameter
δ (cf. (3.43)). Furthermore, Figure 3.3d depicts that for both the binaural MWF
and the MWF-ITF the MSC error is very large, since the output MSC of the noise
component is equal to 1 (cf. (3.63) and (3.65)). For the MWF-N, the MSC error for
the noise component monotonically decreases for an increasing trade-off parameter
η. The trade-off between noise reduction and preservation of the output MSC of
the noise component for the MWF-N is clearly visible by comparing Figure 3.3a
and 3.3b to Figure 3.3d.
Based on the analytical expressions in Sections 3.1 - 3.5 and the simulation results
in Figure 3.3 we can make the following conclusions. The binaural MWF and the
MWF-ITF show the largest SNR improvement and the binaural MWF also pre-
serves the binaural cues of the speech component but does not preserve the MSC
of the noise component. The MWF-ITF neither preserves the binaural cues of
the speech component (depending on the trade-off parameter δ) nor preserves the
MSC of the noise component (independent of the trade-off parameter δ). Hence,
the MWF-ITF, which was originally proposed for scenarios with directional in-
terfering sources [73], is not a suitable choice for diffuse noise field scenarios. On
the other hand, the MWF-N preserves the binaural cues of the speech component
and achieves preservation of the MSC of the noise component on the cost of a
degraded noise reduction performance. This trade off can be controlled by the
trade-off parameter η, what we will further investigate in Chapter 5.

3.5.2 Performance for directional interfering sources

In comparison to diffuse noise fields it is known that for directional interfering
sources multi-microphone noise reduction algorithms are typically able to achieve
a much larger noise reduction performance. Since the binaural MWF and the bin-
aural MVDR beamformer aim to maximize the output SINR in both hearing aids
(cf. Sections 3.1 and 3.2), the binaural MWF/MVDR will typically be able to al-
most fully suppress a directional interfering source when no background noise is
present, by forming a spatial null in the direction of the interfering source. When
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(a) SNR improvement in the left hear-
ing aid averaged over frequency.

(b) SNR improvement in the right
hearing aid averaged over fre-
quency.

(c) ILD error for the speech source av-
eraged over frequency.

(d) MSC error for the noise component
averaged over frequency.

Figure 3.3: SNR improvement for the left and the right hearing aid, ILD error for the
speech source and MSC error for the noise component averaged over frequency
for the binaural MWF, MWF-ITF and MWF-N for a speech source at 0◦ in
a cylindrically isotropic noise field.

background noise is present, the binaural MWF/MVDR will trade-off between
forming a spatial null in the direction of the interfering source and suppressing the
background noise.
To demonstrate the performance of the binaural MWF, MWF-ITF and MWF-N
for a directional interfering source, we used BTE-IRs measured in an office envi-
ronment with a reverberation time of approximately 300ms with the source at 1
m from the artificial head [108] (cf Section 2.6). The ATFs A and B of the speech
source and the interfering source were calculated from the measured BTE-IRs. The
speech source was located at 0◦ and the interfering source was located at 60◦. The
PSDs of the speech source and the interfering source Ps and Pi were calculated
from two different speech signals (Welch method using FFT size of 512 and Hann
window). For the background noise a spatially uncorrelated noise signal was used
and Φn was equal to the PSD of speech-shaped noise. The global input SNR and
the global input SIR in the left hearing aid, averaged over all frequencies, were
equal to 20 dB and 10 dB, respectively. The desired ITF for the noise component
ITF des

v was set to the RTF of the interfering source RTF in
u and the trade-off pa-

rameter µ was set to 1 for all algorithms.
The performance of the binaural MWF, MWF-ITF and MWF-N in terms of SINR
improvement and ILD error for the speech source and the interfering source, av-
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eraged over frequency, is depicted in Figure 3.4. As can be observed from Figure
3.4a and 3.4b, for the binaural MWF and the MWF-ITF the noise reduction per-
formance is the same and independent of the trade-off parameter δ, while for the
MWF-N the performance highly depends on the trade-off parameter η. Figure 3.4c
depicts that for the MWF-ITF the ILD error of the interfering source ∆ILDu de-
creases with increasing δ and converges towards 0. On the contrary, the ILD error
for the speech source ∆ILDx increases with increasing δ and converges towards
the ILD error for the interfering source for the binaural MWF. Figure 3.4d shows
that for the MWF-N the ILD error for the speech source is equal to 0 and inde-
pendent of the trade-off parameter η. On the other hand, the ILD error for the
interfering source decreases with increasing η, showing the trade-off between noise
reduction and preservation of the binaural cues of the interfering source.
In summary, both the MWF-ITF and the MWF-N can not achieve perfect preser-
vation of the binaural cues of the interfering source without significantly distorting
the binaural cues of the speech source (MWF-ITF) or decreasing the noise reduc-
tion performance (MWF-N).

(a) SINR gain in the left hearing aid
averaged over frequency.

(b) SINR gain in the right hearing aid
averaged over frequency.

(c) ILD error for the binaural MWF
and the MWF-ITF averaged
over frequency.

(d) ILD error for the binaural MWF
and the MWF-N averaged over
frequency.

Figure 3.4: SINR gain for the left and the right hearing aid and ILD error for the speech
source and the interfering source, averaged over frequency for the binaural
MWF, MWF-ITF and MWF-N for a speech source at 0◦, an interfering source
at 60◦ and additional spatially uncorrelated noise.
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3.6 Conclusion

In this section, we reviewed several state-of-the art binaural noise reduction algo-
rithms and presented or derived analytical expressions for their performance in
terms of speech distortion, noise reduction and binaural cue preservation. For a
speech source in a diffuse noise field, we showed that both the binaural MWF and
the MWF-ITF are not suitable for binaural cue preservation of all components and
that the performance of the MWF-N highly depends on the trade-off parameter η.
Due to the perceptual disadvantages of the binaural MWF and the MWF-ITF in
diffuse noise fields and the strong performance dependency of the MWF-N on the
trade-off parameter η, in Chapters 4 and 5 we will propose a novel extension of
the binaural MWF and a modification of the MWF-N. Both proposed algorithms
aim to partially preserve the IC/MSC of the noise component, where the amount
of MSC preservation is determined based on the IC discrimination ability of the
human auditory system.
For the scenario with a directional interfering source, we showed that neither the
MWF-ITF nor the MWF-N can achieve perfect preservation of the binaural cues
of the interfering source without either significantly distorting the binaural cues
of the speech source (MWF-ITF) or decreasing the noise reduction performance
(MWF-N). Hence, in Chapter 7 we will directly address the binaural cue preser-
vation of the interfering source by adding linear constraints to the binaural MWF
cost function, aiming to either preserve the RTF of the interfering source or to
completely suppress the interfering source.





4
BINAURAL MULTI-CHANNEL WIENER
FILTER WITH INTERAURAL COHERENCE
PRESERVATION (MWF-IC)

In Chapter 3 we have shown both using analytical expressions and using simulation
results that the binaural MWF and the MWF-ITF are not able to preserve the
spatial characteristics for diffuse noise field scenarios. Therefore, in this chapter we
propose another extension of the binaural MWF, called the MWF-IC, aiming to
preserve the IC of the residual noise component in diffuse noise fields (Section 4.2).
Since for the MWF-IC a substantial trade-off between IC preservation and output
SNR exists, we propose to control the amount of IC preservation based on the
IC discrimination ability of the human auditory system. Based on psychoacoustic
experimental results, in Sections 4.3 and 4.4 we define frequency-dependent lower
and upper boundaries for the Magnitude Squared Coherence (MSC) of the output
noise component in order to maintain the spatial impression of a diffuse noise field.
Considering these boundaries, we then propose different methods to determine
the trade-off parameter for the MWF-IC, such that an optimal trade-off between
spatial awareness preservation and noise reduction performance is obtained. In
Section 4.5 the performance of the proposed MWF-IC, the binaural MWF and the
MWF-ITF are evaluated in terms of intelligibility-weighted SNR improvement,
MSC error of the noise component and ILD and ITD distributions. Extensive ex-
perimental results in different diffuse noise scenarios show that incorporating the
psychoacoustically determined MSC boundaries, to determine the trade-off param-
eter for the MWF-IC, yields a controllable IC preservation without significantly
degrading the output SNR compared to the binaural MWF and the MWF-ITF,
while retaining the spatial separation between the output speech and noise com-
ponents. In order to evaluate the impact of the trade-off between noise reduction
and IC preservation on speech intelligibility and spatial impression, the MWF-IC
will be subjectively evaluated in Chapter 6.
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4.1 Signal model

Based on the general signal model defined in Section 2.1, in this chapter we assume
an acoustical scenario with one desired speech source and diffuse background noise,
i.e. no directional interfering source. Hence, the signal vector in (2.4) is equal
to

Y = X + N = SxA + N, (4.1)

such that the correlation matrix of the overall noise component in (2.13) is equal
to

Rv = Rn = ΦnΓ. (4.2)

Consequently, for this scenario the input and output SINR is equal to the input
and output SNR.

4.2 Binaural MWF with IC preservation (MWF-IC)

In Chapter 3 we have shown that the binaural MWF and the MWF-ITF are not
able to preserve the IC for a diffuse noise field. Hence, similarly to the cost function
for the MWF-ITF in (3.35), we propose to extend the binaural MWF cost function
in (3.19) with an IC preservation term for the noise component, defined as

JIC(W) =
∣∣ICout

v − ICdes
v

∣∣2 , (4.3)

=

∣∣∣∣∣∣∣∣
WH

0 RvW1√(
WH

0 RvW0

)(
WH

1 RvW1

) − ICdes
v

∣∣∣∣∣∣∣∣
2

, (4.4)

where ICdes
v denotes the desired output IC of the noise component. The desired

output IC can, e.g., be equal to the input IC of the noise component in (2.59) or
can be defined based on models of the IC in diffuse noise fields, as discussed in
Section 2.5. Similarly as for the MWF-ITF cost function in (3.35), the total MWF-
IC cost function, trading off noise reduction, speech distortion and IC preservation,
is defined as

JMWF−IC(W) = JMWF(W) + λJIC(W), (4.5)

where the parameter λ enables to put more emphasis on IC preservation for the
noise component. Since unfortunately no closed-form expression is available for the
MWF-IC filter WMWF−IC(λ), minimizing the non-linear cost function in (4.5), we
need to resort to an iterative numerical optimization method, for which we have
used a large-scale trust region method [115, 116]. In order to improve the numerical
robustness and the convergence speed, analytical expressions for the gradient and
the Hessian of the cost function JMWF−IC(W) have been provided. The analytical
expression for the gradient can be found in Appendix B.
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Figure 4.1: Output MSC of the noise component and output SNR for the left and the right
hearing aid for different trade-off parameters λ and a frequency of 2 kHz. The
vertical line indicates the minimal value λmin for which the MSC constraints
γmsc
max = 0.16 and γmsc

min = 0 are satisfied. MSCdes
v is equal to 0.01.

4.3 Optimization of the trade-off parameter λ

The parameter λ in (4.5) enables to trade off noise reduction and IC preservation
of the noise component. Hence, it is crucial to determine a suitable (frequency-
dependent) parameter λ which provides an acceptable trade-off between noise
reduction and IC preservation. We first determine the set of possible trade-off
parameters Λ, for which the output MSC of the noise component for the resulting
filter WMWF−IC(λ) lies between the boundaries γmsc

min and γmsc
max, i.e.,

Λ =
{
λ | γmsc

min ≤MSCout
v (WMWF−IC(λ)) ≤ γmsc

max

}
, (4.6)

with MSCout
v = |ICout

v |
2 and ICout

v defined in (2.63). Instead of directly impos-
ing a constraint on the complex-valued IC, we propose to impose a constraint
on the real-valued MSC, since psychoacoustical experiments have shown that the
perceived width of a sound field mainly depends on the absolute value of the IC
[16]. The choice of the frequency-dependent boundaries γmsc

min and γmsc
max based on

psychoacoustically motivated criteria will be discussed in detail in Section 4.4.
For an exemplary scenario (cf. simulation setup in Section 4.5.1), Figure 4.1 de-
picts the output MSC of the noise component and the output SNR for the left and
the right hearing aid for different values of the trade-off parameter λ. As can be
observed from this figure, for larger values of λ the MSC error becomes smaller
at the expense of a degraded output SNR. The vertical line indicates the smallest
trade-off parameter λmin that satisfies the MSC constraint for a certain value γmsc

max,
which should obviously be chosen to be larger than MSCdes

v . As can be observed,
all parameters λ > λmin also satisfy the MSC constraint but result in lower output
SNRs, whereas all parameters λ < λmin result in larger output SNRs but do not
satisfy the MSC constraint.
Assuming monotonically decreasing output SNRs as depicted in Figure 4.1, which
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is typically - but not always - the case, the smallest value of the parameter λ
satisfying the MSC constraint in (4.6), i.e,

λmin = min
λ∈Λ

(λ), (4.7)

will result in the largest output SNR for both hearing aids. However, since it can
not be theoretically proven that the output SNRs are monotonically decreasing,
we also propose two other methods for determining the trade-off parameter, the
first one optimizing the narrowband average output SNR, i.e.,

λsnr = arg max
λ∈Λ

SNRout
0 (WMWF−IC(λ)) + SNRout

1 (WMWF−IC(λ))

2
, (4.8)

and the second one optimizing the narrowband better ear output SNR, i.e.,

λsnr,be = arg max
λ∈Λ

SNRout
be (WMWF−IC(λ)), (4.9)

with

SNRout
be (WMWF−IC(λ)) = max

[
SNRout

0 (WMWF−IC(λ)), SNRout
1 (WMWF−IC(λ))

]
.

(4.10)

Since no closed-form expressions exist for these trade-off parameters, we have used
an exhaustive search method. However, since this is a computationally expensive
method, we also propose an iterative search method resulting in the trade-off pa-
rameter λit. The iterative search method is initialized with a large value λinit

such that the MSC constraint is definitely satisfied. This value is then repeatedly
decreased by a factor 10 until the MSC constraint in (4.6) is not satisfied. The
trade-off parameter λ is then increased by this value until the MSC constraint is
again satisfied. The output MSC and the trade-off parameters for this iterative
search method are exemplarily depicted in Figure 4.2.
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Figure 4.2: Iterative search method for determining the trade-off parameter λit. The iter-
ative search method is initialized with λinit = 1e− 3 which is decreased by a
factor 10 until the MSC constraint is not satisfied (λ = 1e− 5). The trade-off
parameter is then increased by this value (1e − 5) until the MSC constraint
is again satisfied.
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4.4 Psychoacoustically motivated MSC boundaries

We propose to define the MSC boundaries γmsc
min and γmsc

max in (4.6) based on subjec-
tive listening experiments evaluating the IC discrimination abilities of the human
auditory system in a diffuse noise field. In [117] frequency-dependent IC discrimi-
nation thresholds in a diffuse noise field have been measured for frequencies up to
1.5 kHz. It has been shown that the sensitivity to changes in the IC from a refer-
ence IC strongly depends on the reference IC value. For a reference IC close to 1
small changes can be perceived, whereas for a reference IC close to 0 the human
auditory system is less sensitive to changes in the IC. This is consistent with the
perceptual results of other IC discrimination studies in [118, 119]. Furthermore,
in [120] the IC discrimination sensitivity in a diffuse noise field was examined by
setting the reference IC below 500 Hz equal to 1 and the reference IC above 500
Hz equal to 0, approximating the IC of a diffuse noise field. The perceptual results
indicate that for frequencies above 500 Hz a deviation of the IC of ±0.6 is not
discriminable from the reference IC of 0.
Combining the subjective results from [117] and [120], we propose to define the
following constraint boundaries γmsc

min and γmsc
max. For frequencies below 500 Hz,

the boundaries γmsc
min and γmsc

max are a function of the desired MSC, denoted as
g(MSCdes

v ) and h(MSCdes
v ), respectively, according to the results in [117]. The

functions g(x) and h(x) can be approximated from the discrete data in [117] using
polynomial fitting, with

g(x) =

2.88x2 − 2.96x+ 0.715, x ∈ [0.64 . . . 1]

0, else
, (4.11)

h(x) = 0.78x3 − 1.76x2 + 1.57x+ 0.42, x ∈ [0 . . . 1]. (4.12)

For frequencies above 500 Hz, we define an MSC-independent lower and upper
boundary inspired by the perceptual results in [120]. The lower boundary γmsc

min is
set to 0. To investigate the impact of the MSC-independent upper boundary on
the output SNR and the IC preservation, we consider three boundary values for
the MSC, i.e., γmsc,6

max = 0.36, γmsc,4
max = 0.16, γmsc,2

max = 0.04, corresponding to an IC
threshold of ±0.6, ±0.4 and ±0.2. The lower and upper MSC boundaries γmsc

min and
γmsc

max which will be used in the following simulations are hence defined as

γ
msc,6\4\2
min =

g(MSCdes
v ) , f ≤ 500Hz

0 , f > 500Hz
, (4.13)

γmsc,6\4\2
max =

h(MSCdes
v ) , f ≤ 500Hz

0.36\0.16\0.04 , f > 500Hz
. (4.14)

For MSCdes
v calculated according to (2.114) with c = 340m

s and d = 0.164m, the
lower and upper MSC boundaries are exemplarily depicted in Figure 4.3a - 4.3c for
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Figure 4.3: Psychoacoustically motivated lower and upper MSC boundaries. For frequen-
cies below 500 Hz, the boundaries depend on MSCdes

v . For frequencies above
500 Hz, the boundaries are independent of MSCdes

v .

the 3 considered upper boundary values. To illustrate the MSC dependency of the
lower and upper boundaries for frequencies below 500Hz, the functions g(MSCdes

v )
and h(MSCdes

v ) for frequencies below 500Hz are depicted in Figure 4.3d. Based
on the subjective listening experiments in [117] and [120], it is hence assumed that
if the output MSC lies within γmsc

min and γmsc
max, the spatial impression of the output

noise component is perceptually not discriminable from the spatial impression of
a diffuse noise field.

4.5 Objective performance evaluation

In this section, we present extensive simulation results for a cafeteria scenario, com-
paring the performance of the proposed binaural noise reduction and cue preserva-
tion algorithms. In the first experiment, we compare the different procedures for
selecting the trade-off parameter λ in the MWF-IC as introduced in Section 4.3.
These results are then used in the second experiment, where we compare the per-
formance of the binaural MWF, the MWF-ITF and the proposed MWF-IC using
psychoacoustically motivated MSC boundaries. Since the main objective of this
evaluation is the comparison of the noise reduction and binaural cue preservation
performance of MWF-based algorithms in diffuse noise fields, the algorithms are
evaluated using so-called batch processing, where the noise correlation matrix is
estimated from a noise-only period, and the speech-plus-noise correlation matrix
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is estimated during speech activity. For an online implementation the correlation
matrices would need to be estimated adaptively (e.g. based on a voice activity
detection mechanism), which will not be considered in this chapter. However, it
should be noted that an online version of the MWF-IC, exploiting short-term esti-
mates of the signal statistics, has already been successfully applied in the context
of dereverberation [121].

4.5.1 Input signals and signal statistics

The hearing aid microphone signals have been generated using measured impulse
responses for a binaural hearing aid setup mounted on an artificial head in a
cafeteria with a reverberation time of about 1250ms [108] (cf. Section 2.6). For
both hearing aids we used the first 2 microphones, i.e. all together 4 microphones.
The speech source was located in front of the artificial head at a distance of 1m.
Two different noise types have been used for the experiments:

• Babble noise: To allow for a controlled experiment, a spatially stationary
noise field was generated using the method described in [122], where the
time-varying PSD of the noise component was calculated from a babble noise
signal and the time-invariant spatial coherence matrix of the binaural setup
was calculated according to (2.114) with c = 340ms and the distance between
the microphones d is depicted in Figure 2.4.

• Ambient noise: To generate a more realistic scenario, recorded ambient noise
from the cafeteria including babble noise, clacking plates and interfering
speakers has been used as the noise component [108].

The speech-and-noise signals had a length of 10 s and were preceded by a noise-only
signal of 3 s. The speech and noise components were mixed such that the average
intelligibility-weighted input SNR [89] in the reference microphones at the left and
the right hearing aid was equal to −5, 0, and 5dB, respectively, at a sampling
frequency of 16 kHz. The microphone signals were transformed to the frequency-
domain using the short-time Fourier transform (STFT) with segments of length
Nf overlapping by Nf −P samples, e.g., for the reference microphone signal of the
left hearing aid

Y0(k, l) =

Nf−1∑
n=0

y0(l P + n)w(n) e−jΩkn,

= X0(k, l) + V0(k, l),

(4.15)

with k the frequency index, l the block index, Ωk = 2πk/Nf the normalized angular
frequency, and w(n) an analysis window of length Nf . The segment length was set
to Nf = 512, P was set to 256 and for the analysis window we have used a Hann
window.
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For calculating the filter vectors W for the MWF, MWF-ITF and MWF-IC, the
correlation matrices of the signal components are estimated as

R̂y(k) =
1

Ly

Ly−1∑
i=0

Y(k, i)YH(k, i) speech-and-noise, (4.16)

R̂v(k) =
1

Lv

Lv−1∑
i=0

V(k, i)VH(k, i) noise-only, (4.17)

where the speech-plus-noise correlation matrix R̂y(k) has been computed during
the 10 s speech-and-noise part and the noise correlation matrix R̂v(k) has been
computed during the 3 s noise-only part. Ly denotes the number of segments during
the 10 s speech-and-noise part and Lv denotes the number of segments during
the 3 s noise-only part. Since the speech component is not available in real-world
scenarios, the speech correlation matrix has been estimated as

R̂x(k) = R̂y(k)− R̂v(k). (4.18)

Since the noise correlation matrix is estimated during the noise-only period, it
will deviate from the noise correlation matrix during the speech-and-noise period.
In addition, by estimating the speech correlation matrix as in (4.18), additional
estimation errors are introduced. Since due to this estimation errors it can not
be guaranteed that the speech correlation matrix estimate R̂x(k) is positive semi-
definite, which may lead to signal distortions, we have used the rank-1 approxima-
tion

R̂1
x(k) = σ1(k)q1(k)qH1 (k), (4.19)

with σ1(k) the largest eigenvalue of R̂x(k) and q1(k) the corresponding eigenvector.
In the case of estimation errors, using a rank-1 approximation has been shown to
improve the output SNR [80, 123, 124].
For the MWF-ITF the desired ITF for the noise component ITF des

v is calculated
according to (2.49) using the estimated noise correlation matrix R̂v. For the MWF-
IC the desired IC for the noise component ICdes

v is calculated according to (2.114)
with c = 340 m

s and d = 0.164m. For all algorithms the trade-off parameter µ is
set to 1.
The narrowband output SNR at the left and the right hearing aid is calculated
according to (2.85) and (2.86) and the intelligibility-weighted broadband output
SNR (iSNR) [89, 90] is calculated as

iSNRout =

Nf−1∑
k=1

I(k) 10 log10(SNRout(k)), (4.20)

where I(k) is a weighting function that takes the importance of different frequency
bands for the speech intelligibility into account [90]. The broadband better ear
output SNR is then defined as

iSNRout
be = max(iSNRout

0 , iSNRout
1 ). (4.21)
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To evaluate the binaural cue preservation for the noise component, we have used
the broadband MSC error ∆MSCv, which has been calculated by averaging the
MSC error across frequencies, i.e.,

∆MSCv =
1

Nf − 1

Nf−1∑
k=1

∣∣MSCdes
v (k)−MSCout

v (k)
∣∣ , (4.22)

where the output MSC has been calculated according to (2.64) and the output IC
has been calculated according to (2.63).
For the directional speech component the MSC error is however not an appropri-
ate objective measure, since the MSC contains information about the amount of
correlation of a signal in the microphones but does not contain information about
the perceived direction of a directional source. Hence, to evaluate the binaural cue
preservation of the speech component we calculate the distribution of the so-called
reliable ILD and ITD cues using a model of binaural auditory processing [15], as
described in Section 2.4.

4.5.2 Experimental Results

In the first experiment, we compare the different procedures for selecting the trade-
off parameter λ in the MWF-IC as introduced in Section 4.3. These results are
then used in the second experiment, where we compare the performance of the bin-
aural MWF, the MWF-ITF and the proposed MWF-IC using psychoacoustically
motivated MSC boundaries.

4.5.2.1 Experiment 1

In the first experiment, we compare the different methods proposed in Section 4.3
for selecting the trade-off parameter λ, namely the smallest value λmin in (4.7),
λsnr in (4.8) and λsnr,be in (4.9), optimizing the average output SNR and the bet-
ter ear output SNR, respectively, and λit using the iterative search method (cf.
Section 4.3). The ambient noise was added to the speech component such that the
average intelligibility-weighted input SNR in the reference microphones at the left
and the right hearing aid was equal to 0 dB. For the exhaustive search methods we
have used 500 values for λ, which are logarithmically spaced between 10−10 and 1.
The iterative search method has been initialized with λinit = 10. To have a real-
istic procedure for determining the trade-off parameter λ, in this experiment the
output iSNR and MSC error have been computed based on the same correlation
matrices that have been used to compute the filter vectors, i.e., R̂1

x and R̂v.
Figures 4.4a - 4.4c depict the intelligibility-weighted output SNR at the left ear
(Figure 4.4a), at the right ear (Figure 4.4b) and at the better ear (Figure 4.4c) for
different values of the upper MSC boundary γmsc

max and for different selection pro-
cedures of the trade-off parameter λ. The better ear output iSNR for the binaural
MWF is equal to 7.8 dB. If λmin or λsnr are used, the better ear output iSNR
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slightly decreases to 6.9 dB (γmsc,6), to 6.4 dB (γmsc,4) and to 5.8 dB (γmsc,2).
The results for λmin and λsnr are the same, which seems to imply that in this case
the output SNR is monotonically decreasing. If λit is used, the better ear output
iSNR of the MWF-IC decreases by only 0.2 dB compared to the better ear output
iSNR for λmin and λsnr, showing the applicability of the iterative search method
for determining a suitable trade-off parameter λ. Furthermore, when using λsnr,be,
the better ear output iSNR decreases by 1 dB compared to the better ear output
iSNR for λmin. If the output iSNR at the left or the right hearing aid is not strictly
monotonically decreasing with increasing λ, on the one hand the output iSNR for
the better ear hearing aid can become slightly larger for λsnr,be than for λsnr, but
on the other hand the output iSNR for the other hearing aid may be much lower
for λsnr,be than for λsnr, possibly resulting in a decrease of the overall iSNR per-
formance for λsnr,be.
The MSC error of the noise component for different values of the upper MSC
boundary γmsc

max (cf. (4.14)) and for different selection procedures for the trade-off
parameter λ is depicted in Figure 4.4d. As expected, the MSC error is significantly
reduced for the MWF-IC compared to the binaural MWF. Furthermore, decreas-
ing the MSC boundary γmsc

max for the MWF-IC leads to a better preservation of the
output MSC of the noise component but also results in a decrease of the output
iSNR, as already indicated for a specific frequency in Figure 4.1. In addition, for λit

and λsnr,be, the MSC error is always lower than for λmin, which can be explained
by the fact that λit ≥ λmin and λsnr,be ≥ λmin.
In conclusion, since using λit considerably decreases the computational complexity
while not significantly affecting the output iSNR and the MSC error compared to
λsnr and λmin, in the following experiments only the iterative search method (λit)
will be considered.

4.5.2.2 Experiment 2

In the second experiment, the performance of the binaural MWF, the MWF-ITF
and the MWF-IC using λit is investigated for the babble noise and the ambient
noise scenario at an average input iSNR of −5dB, 0dB and 5 dB. As for the first
experiment, the iterative search method for the trade-off parameter λ has been
initialized with λinit = 10. The output iSNR and the MSC error have been cal-
culated using the speech and noise correlation matrices calculated during the 10 s
speech-and-noise period.
For the babble noise scenario, Figures 4.5a-4.5d depict the iSNR gain for the left
and the right hearing aid, the better ear output iSNR and the MSC error for differ-
ent input iSNRs and different algorithms, i.e. the binaural MWF, MWF-ITF and
MWF-IC for different MSC boundaries. As expected from the theoretical analysis
in Section 3.3, the iSNR gain at the left and the right hearing aid are the same for
the binaural MWF and the MWF-ITF. Moreover, the iSNR gain for the MWF-IC
is lower than the iSNR gain for the binaural MWF and the MWF-ITF for all MSC
boundaries. While the iSNR gain of all algorithms depends on the input iSNR, the
decrease in iSNR gain of the MWF-IC compared to the binaural MWF is rather
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(d) MSC error

Figure 4.4: Output iSNR and MSC error of the noise component for different trade-off
parameters (λsnr,be, λsnr, λmin, andλit) and MSC boundaries (γmsc,6, γmsc,4

and γmsc,2) for the MWF-IC. The average intelligibility-weighted input SNR
in the reference microphones at the left and the right hearing aid was equal
to 0 dB.

independent of the input iSNR but very much depends on the MSC boundary
γmsc. For example, for an input iSNR of -5 dB, the decrease in iSNR gain for the
MWF-IC compared to the binaural MWF ranges from 0.8 dB (γmsc,6) up to 1.8
dB (γmsc,2) in the left hearing aid and from 1 dB (γmsc,6) up to 2.2 dB (γmsc,2) in
the right hearing aid.
As depicted in Figure 4.5d, both the binaural MWF and the MWF-ITF yield a
large MSC error. The MSC error can be significantly decreased if the MWF-IC is
used, where the amount of MSC error depends on the MSC boundary γmsc but
not on the input iSNR. However, a lower MSC error is always associated with a
decrease of the iSNR gain in the left and the right hearing aid as can be observed
from Figures 4.5a-4.5b.
For the different considered algorithms, the distributions of the reliable ILD and
ITD cues of the speech component, calculated according to [15] (cf. Section 2.4),
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are depicted in Figures 4.6 and 4.7. For the binaural MWF and the MWF-IC (all
MSC boundaries), it can be observed that the ILD and ITD distributions are very
similar to the input distributions, with slightly larger deviations for lower input
iSNRs. For an input iSNR of -5 dB (Figure 4.6a), a slight shift for the ILD distri-
bution of the binaural MWF and the MWF-IC can be observed, which decreases
for larger input iSNRs (Figures 4.6b-4.7c). Although from the theoretical analysis
in Section 3.2 a perfect preservation of the binaural cues of the speech component
is expected for the binaural MWF, this is not exactly the case due to estimation
errors in the speech correlation matrix and the short STFT segment length. Fur-
thermore, it can be observed from Figure 4.6 that the impact of the IC preservation
term in the MWF-IC on the binaural cues of the speech component is very small
and almost independent of the desired amount of IC preservation. On the other
hand, for the MWF-ITF a large deviation from the input distributions occurs,
which appears to be much larger for the ILD cues than for the ITD cues. This can
be explained based on the findings in Section 3.5, i.e., the output ILD cues are
shifted towards negative values (cf. Figure 3.1b), whereas the output ITD cues are
shifted towards 0 for frequency bands that exhibit a positive value of the output
ITF and towards π

ω for frequency bands that exhibit a negative value of the output
ITF, cf. (3.71). Figure 4.6 also shows that for an increasing iSNR the distributions
of the binaural cues of the output speech component for the MWF-ITF are shifted
towards the distributions of the binaural cues of the input speech component due
to the SNR dependency of the output ITF of the MWF-ITF, cf. (3.67). Please note
that especially for the small differences between the ILD and ITD distributions for
the binaural MWF and the MWF-IC, it is not possible to make a clear statement
regarding the perceived location of the speech source. Also the large errors for the
MWF-ITF can not be directly mapped to a source location error. However, since
the differences between the binaural cues of the input speech component and the
output speech component of the binaural MWF and the MWF-IC are very small,
no impact on the perceived location of the speech source is expected, what has
also been verified in informal listening tests. As expected from the ILD and ITD
distributions, for the MWF-ITF a perceptually unsatisfying result is obtained.
For the ambient noise scenario, Figures 4.8a - 4.8d depict the iSNR gain for the
left and the right hearing aid, the better ear output iSNR and the MSC error for
the noise component for different input iSNRs and for the different considered al-
gorithms. In general, compared to the babble noise scenario, a larger iSNR gain is
achieved due to the occasional presence of directional components such as interfer-
ing speakers in the ambient noise scenario. For an input iSNR of -5 dB the decrease
in iSNR compared to the binaural MWF ranges from 0.8 dB (γmsc,6) up to 1.7
dB (γmsc,2) in the left hearing aid and from 0.6 dB (γmsc,6) up to 1.2 dB (γmsc,2)
in the right hearing aid. Again, the MSC error for the noise component can be
significantly reduced using the MWF-IC, while the MWF-ITF exhibits the same
large MSC error as the binaural MWF. Furthermore, the MSC errors in Figure
4.5d and 4.8d appear to be rather independent of the input iSNR and the noise
type, showing that the proposed algorithm is applicable for different scenarios.
The distributions of the reliable ILD and ITD cues for the speech component are
depicted in Figures 4.9 and 4.10. Similarly as for the babble noise scenario (cf. Fig-
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ures 4.6 and 4.7), the distributions of the ILD and ITD cues of the output speech
component for the binaural MWF and the MWF-IC are very close to the distribu-
tions of the ILD and ITD cues of the input speech component, independent of the
amount of desired IC preservation. Again, the MWF-ITF shows a large deviation
from the distribution of the binaural cues of the input speech component.

4.6 Conclusion

In this chapter we proposed an extension of the binaural MWF, namely the MWF-
IC, aiming to preserve the IC in diffuse noise fields. The amount of IC preserva-
tion is controlled by a trade-off parameter, which has been determined based on
psychoacoustically determined MSC boundaries. Several methods for determining
this trade-off parameter have been proposed and experimentally validated, show-
ing that the iterative search method leads to a very similar result in terms of noise
reduction and IC preservation as a computationally expensive exhaustive search
method. Furthermore, we have shown that the MWF-IC yields a better preserva-
tion of the IC of the noise component compared to the binaural MWF and the
MWF-ITF without significantly distorting the binaural cues of the speech compo-
nent but at the expense of a degraded SNR improvement. In order to evaluate the
impact of this trade-off between IC preservation and SNR improvement on speech
intelligibility and spatial awareness, we will subjectively evaluate the MWF-IC in
Chapter 6.
As mentioned in Section 4.2, for the MWF-IC no closed-form expression for the
filter vector and the optimal trade-off parameter exists. Since it has been shown
in Section 3.5.1 that the binaural MWF with partial noise estimation (MWF-N)
is also suitable in diffuse noise field scenarios, in Chapter 5 we will propose a
modification of the MWF-N, where we will propose to determine the frequency-
dependent trade-off parameter for the MWF-N in a similar way as for the MWF-IC,
i.e. based on the same MSC boundaries. It will be shown that for a special case
of the MWF-N a closed-form expression for both the filter vector as well as the
optimal trade-off parameter exists.



68 binaural mwf with interaural coherence preservation (mwf-ic)

 
 MWF MWF−ITF MWF−IC (γmsc,6) MWF−IC (γmsc,4) MWF−IC (γmsc,2)

−5 0 5
0

1

2

3

4

5

6
iSNR gain left HA

input iSNR

∆ 
iS

N
R

(a)

−5 0 5
0

1

2

3

4

5
iSNR gain right HA

input iSNR

∆ 
iS

N
R

(b)

−5 0 5

−2

0

2

4

6

8

10

better ear output iSNR

input iSNR

ou
tp

ut
 iS

N
R

(c)

−5 0 5
0

0.2

0.4

0.6

0.8

1
MSC error

input iSNR

∆ 
M

S
C

(d)

Figure 4.5: iSNR improvement, better ear output iSNR and MSC error of the noise com-
ponent for different input iSNRs and different algorithms for the diffuse bab-
ble noise scenario.
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Figure 4.6: Distributions of the reliable ILD cues of the speech component for different
input iSNRs and different algorithms for the diffuse babble noise scenario.
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Figure 4.7: Distributions of the reliable ITD cues of the speech component for different

input iSNRs and different algorithms for the diffuse babble noise scenario.
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Figure 4.8: iSNR improvement, better ear output iSNR and MSC error of the noise com-

ponent for different input iSNRs and different algorithms for the ambient
noise scenario.
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Figure 4.9: Distributions of the reliable ILD cues of the speech component for different
input iSNRs and different algorithms for the ambient noise scenario.
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Figure 4.10: Distributions of the reliable ITD cues of the speech component for different
input iSNRs and different algorithms for the ambient noise scenario.



5
INTERAURAL COHERENCE PRESERVATION
USING THE MULTI-CHANNEL WIENER
FILTER WITH PARTIAL NOISE
ESTIMATION

In Chapter 4 we have shown that for the MWF-IC no closed-form solution exists
such that one has to resort to iterative numerical optimization methods, which are
computationally quite intensive. To reduce the computational complexity, in this
chapter we therefore propose to preserve the IC of the noise component using the
binaural MWF with partial noise estimation (MWF-N), for which a closed-form so-
lution exists. In Section 5.2 the theoretical performance of the MWF-N in terms of
noise reduction and binaural cue preservation in diffuse noise fields is investigated
and an exhaustive search method to determine the trade-off parameter, yielding
a desired MSC for the output noise component, is presented. Furthermore, in Sec-
tion 5.3 we derive the binaural MVDR beamformer with partial noise estimation
(MVDR-N), which is a special case of the MWF-N. Moreover, for the MVDR-N
beamformer it can be shown that a closed form solution for the trade-off parameter,
yielding a desired MSC for the output noise component, can be derived. Similarly
as for the MWF-IC, we propose to determine the amount of MSC preservation
both for the MWF-N and the MVDR-N beamformer based on the psychoacous-
tically motivated MSC boundaries presented in Chapter 4. In addition, in order
to also exploit the time-varying PSDs of the speech and the noise component in
the MVDR-N beamformer, a single-channel spectral postfilter is applied at the
output of the MVDR-N beamformer in Section 5.4 and the application of a SNR
estimator for all proposed algorithms is discussed in Section 5.5. In Section 5.6, we
compare the performance of the binaural MWF, the MWF-N and the MWF-IC
in terms of noise reduction and binaural cue preservation in several diffuse noise
scenarios. The simulation results show that both the MWF-IC and the MWF-N
are able to preserve the IC of the noise component, while generally the MWF-IC
shows a slightly better noise reduction performance at a larger complexity. Fur-
ther simulation results show that the MWF-N and the MVDR-N beamformer with
spectral postfilter show a very similar performance in terms of noise reduction and
binaural cue preservation.

71
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5.1 Signal model

Similarly as in Chapter 4, in this chapter we assume an acoustical scenario with a
desired speech source and diffuse background noise, i.e. no directional interfering
source. Hence, the signal vector in (2.4) is equal to

Y = X + N = SxA + N, (5.1)

such that the correlation matrix of the overall noise component in (2.13) is equal
to

Rv = Rn = ΦnΓ. (5.2)

Consequently, for this scenario the input and output SINR is equal to the input
and output SNR.

5.2 MWF-N in diffuse noise fields

As shown in Section 3.4, the MWF-N is an extension of the binaural MWF which
in addition to reducing noise and preserving the binaural cues of the speech com-
ponent also aims to partially preserve the binaural cues of the noise component
[73, 77]. This is achieved by generating an MMSE estimate of the speech compo-
nent and a portion of the noise component in the reference microphone signals
of both hearing aids. As shown in (3.44) and (3.45), the MWF-N cost function is
equal to

JMWF−N(W) = E


∥∥∥∥∥
[
X0 −WH

0 X

X1 −WH
1 X

]∥∥∥∥∥
2

+µ

∥∥∥∥∥
[
ηV0 −WH

0 V

ηV1 −WH
1 V

]∥∥∥∥∥
2
 , (5.3)

where the parameter η provides a trade-off between noise reduction and the preser-
vation of the binaural cues of the noise component. If η = 0, the MWF-N cost func-
tion reduces to the cost function of the binaural MWF in (3.19). It should be noted
that contrary to [73], where the trade-off parameter η has been implicitly assumed
to be real-valued, we here allow the trade-off parameter to be complex-valued. A
complex-valued trade-off parameter allows for a wider set of solutions, possibly re-
sulting in a better trade-off between noise reduction and binaural cue preservation
performance. On the other hand, a complex-valued trade-off parameter may result
in additional speech distortions, due to independent phase manipulations in differ-
ent frequency bands. Similarly to (3.46) and (3.47), the filter vectors minimizing
the cost function in (5.3) are equal to

WMWF−N,0 = (1− η∗)WMWF,0 + η∗e0, (5.4)
WMWF−N,1 = (1− η∗)WMWF,1 + η∗e1. (5.5)

Hence, the output signals of the MWF-N correspond to mixing the output signals
of the binaural MWF, weighted with the possibly complex-valued factor (1− η∗),
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and the reference microphone signals, weighted with η∗.
Contrary to the MWF-IC in Chapter 4, where the impact of the IC preservation
term on the binaural cues of the speech component can not be theoretically eval-
uated, since no closed-form solution for the MWF-IC exists, for the MWF-N it
has been shown in [73] (cf. (3.48)) that the binaural cues of the speech compo-
nent are preserved independent of the trade-off parameter η. Hence, allowing the
trade-off parameter η to be complex-valued has no impact on the preservation of
the RTF of the speech source. Similarly to (3.52) and (3.53), for a complex-valued
trade-off parameter, the output SNR of the binaural MWF-N can be calculated
by substituting (5.4) and (5.5) in (2.85) and (2.86), i.e.,

SNRout
MWF−N,0 =

ρ |ρ+ηµ|
2

(µ+ρ)2[
|ρ+ηµ|2
(µ+ρ)2 + |η|2 (∆SNRMWF,0 − 1)

] , (5.6)

SNRout
MWF−N,1 =

ρ |ρ+ηµ|
2

(µ+ρ)2[
|ρ+ηµ|2
(µ+ρ)2 + |η|2 (∆SNRMWF,1 − 1)

] , (5.7)

with ρ defined in (3.14) and

∆SNRMWF,0 = ρ
Φv,0

Φx,0
, (5.8)

∆SNRMWF,1 = ρ
Φv,1

Φx,1
, (5.9)

denoting the SNR improvement of the binaural MWF in the left and the right
hearing aid. Since the SNR improvement of the MWF is always larger than or
equal to 1 [113], (5.6) and (5.7) imply that the output SNR of the MWF-N is
always smaller than or equal to the output SNR of the binaural MWF, i.e.,

SNRout
MWF−N,0 ≤ SNRout

MWF,0, (5.10)

SNRout
MWF−N,1 ≤ SNRout

MWF,1. (5.11)

Moreover, since SNRout
MWF−N(η) = SNRout

MWF−N(η∗), the output SNR does not
depend on the sign of the imaginary part of the trade-off parameter η. Substituting
(5.4) and (5.5) in (2.63), the output IC of the noise component of the MWF-N can
be calculated as (cf. Appendix C.1)

ICout
v =

ψΦx,01 + |η|2Φv,01√
(ψΦx,0 + |η|2Φv,0)(ψΦx,1 + |η|2Φv,1)

, (5.12)

with

ψ = |1− η|2 ρ

(µ+ ρ)2
+ 2<{η∗(1− η)} 1

(µ+ ρ)
. (5.13)

The output MSC of the noise component can then be calculated as

MSCout
v =

∣∣ICout
v

∣∣2 =
|ψΦx,01 + |η|2Φv,01|2

(ψΦx,0 + |η|2Φv,0)(ψΦx,1 + |η|2Φv,1)
. (5.14)
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(a) MSCout
v for the MWF-N (b) SNRout

1 for the MWF-N

Figure 5.1: Output MSC of the noise component and output SNR in the right hearing aid
for the MWF-N for different values of the complex-valued trade-off parameter
η for a frequency of 250Hz. The speech source was located in an anechoic
environment at −30◦ in a diffuse noise field using the database described in
Section 2.6 and the input SNR in the right hearing aid was equal to −2 dB.
For the MWF-N, the first microphone at the left hearing aid and the first
microphone at the right hearing aid have been used, i.e. M = 2, and µ was
set to 3. The input IC of the diffuse noise field has been calculated according
to (2.114) with c = 340m

s and d = 0.164m.

As can be observed from these expressions, since ψ(η) = ψ(η∗) and hence ICout
v (η) =

ICout
v (η∗) and MSCout

v (η) = MSCout
v (η∗), the output IC/MSC of the noise com-

ponent does not depend on the sign of the imaginary part of the trade-off parameter
η. Moreover, as already noted in Section 3.4, for the binaural MWF, i.e. setting
η = 0, the output MSC of the noise component is equal to 1. On the other hand,
for η = 1, the output MSC of the noise component is equal to the input MSC of
the noise component, but obviously no noise reduction is achieved. To demonstrate
the impact of the complex-valued trade-off parameter on the performance of the
MWF-N, in Figure 5.1 the output SNR of the right hearing aid (cf. (5.7)) and
the output MSC of the noise component (cf. (5.14)) for a frequency of 250Hz are
exemplarily depicted. The speech source was located in an anechoic environment
at −30◦ in a diffuse noise field using the database described in Section 2.6 and
the input SNR in the right hearing aid was equal to −2 dB. Figure 5.1 shows, as
indicated by (5.7) and (5.14), that the output SNR and the output MSC of the
noise component for the MWF-N highly depends on the combination of the real
and imaginary part of η and is symmetric with respect to the real-axis of η. Fur-
thermore, Figure 5.1 shows that for different trade-off parameters (e.g. η = 0 and
η = −0.5) the same output MSC can be achieved but the corresponding output
SNRs for these trade-off parameters are very different. Hence, similarly as for the
MWF-IC, for the MWF-N a substantial trade-off between the preservation of the
IC/MSC of the noise component and noise reduction performance exists.
Similarly as for the MWF-IC in Chapter 4, we would now like to determine the
(complex-valued) trade-off parameter η, such that a desired interaural coherence
ICdes

v or a desired magnitude squared coherence MSCdes
v at the output of the

MWF-N can be achieved, where ICdes
v or MSCdes

v can be defined based on the
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IC discrimination ability of the human auditory system (cf. Section 4.4). Unfor-
tunately, we have not been able to find a closed-form expression for the complex-
valued trade-off parameter η, solving ICout

v (η) = ICdes
v or MSCout

v (η) = MSCdes
v .

However, assuming that A0 = A1, corresponding to the scenario of a speech source
in front of the listener and assuming a symmetric head, we derived a closed form
expression for the trade-off parameter η in [82] (cf. Appendix C.2). For the general
case where A0 6= A1, we have used an exhaustive search method for determining
the complex-valued trade-off parameter η, yielding a desired output MSC for the
noise component, similar to the method for determining the trade-off parameter
λ for the MWF-IC in Section 4.3. We first determine the set of possible trade-off
parameters Υ for which the output MSC of the noise component for the result-
ing filter WMWF−N(η) lies between the frequency-dependent boundaries γmsc

min and
γmsc

max (cf. Section 4.4), i.e.,

Υ =
{
η | γmsc

min ≤MSCout
v (η) ≤ γmsc

max

}
. (5.15)

The optimal trade-off parameter is then defined as the one maximizing the average
narrowband output SNR, i.e.,

ηopt = arg max
η∈Υ

SNRout
MWF−N,0(η) + SNRout

MWF−N,1(η)

2
. (5.16)

In order to avoid an exhaustive search method for determining the optimal trade-
off parameter ηopt, in the next section a special case of the MWF-N, namely
the binaural MVDR beamformer with partial noise estimation (MVDR-N), will
be presented. It will be shown that for the MVDR-N beamformer a closed-form
expression for the trade-off parameter η, yielding a desired output MSC for the
noise component, can be derived.

5.3 Binaural MVDR beamformer with partial noise estimation (MVDR-
N)

Similarly as for the MWF-N in Section 5.2, the cost function of the binaural
MVDR beamformer can be modified such that, in addition to perfectly preserving
the speech component, also a portion of the noise component is preserved. Similarly
as (3.1) and (3.2), the MVDR-N beamformer cost function for the left and the right
hearing aid is then defined as

min
W0

E
{∣∣ηV0 −WH

0 V
∣∣2} subject to WH

0 A = A0, (5.17)

min
W1

E
{∣∣ηV1 −WH

1 V
∣∣2} subject to WH

1 A = A1. (5.18)

The filters minimizing (5.17) and (5.18) are equal to (cf. Appendix C.3)

WMVDR−N,0 = (1− η∗)WMVDR,0 + η∗e0, (5.19)
WMVDR−N,1 = (1− η∗)WMVDR,1 + η∗e1. (5.20)
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Hence, similarly as for the binaural MWF and the binaural MVDR beamformer,
the solution for the MVDR-N beamformer can be obtained from the solution for
the MWF-N in (5.4) and (5.5), by setting µ = 0, i.e. neglecting the spectral Wiener
postfilter. Due to the distortionless constraint for the speech component in (5.17)
and (5.18) the binaural cues of the speech component are perfectly preserved and
the MVDR-N beamformer does not introduce any speech distortion, i.e.,

SDMVDR−N,0 = SDMVDR−N,1 = 1. (5.21)

The output SNR of the MVDR-N beamformer can be calculated by setting µ = 0
in the output SNR of the MWF-N in (5.6) and (5.7), i.e.,

SNRout
MVDR−N,0 =

ρ

[1 + |η|2 (∆SNRMVDR,0 − 1)]
, (5.22)

SNRout
MVDR−N,1 =

ρ

[1 + |η|2 (∆SNRMVDR,1 − 1)]
. (5.23)

Please note that the output SNR of the MVDR-N beamformer hence only depends
on the absolute value of η and is always smaller than or equal to the output SNR
of the MVDR beamformer, i.e.,

SNRout
MVDR−N,0 ≤ SNRout

MVDR,0, (5.24)

SNRout
MVDR−N,1 ≤ SNRout

MVDR,1. (5.25)

Setting µ = 0 in (5.13), the expression for ψ simplifies to

ψ0 =
1

ρ

(
|1− η|2 + 2<{η} − 2|η|2

)
=

1− |η|2

ρ
, (5.26)

such that the output MSC of the noise component in (5.14) for the MVDR-N
beamformer can now be calculated as

MSCout
v =

∣∣∣ 1−|η|2ρ Φx,01 + |η|2Φv,01

∣∣∣2(
1−|η|2
ρ Φx,0 + |η|2Φv,0

)(
1−|η|2
ρ Φx,1 + |η|2Φv,1

) . (5.27)

Comparing (5.27) with (5.14), the expression for the output MSC of the noise
component significantly simplifies for the MVDR-N beamformer compared to the
MWF-N. Furthermore, similarly as for the output SNR in (5.22) and (5.23), the
output MSC of the noise component now only depends on the absolute value of η
and hence, for simplicity η can be chosen to be real-valued.
To demonstrate the impact of the complex-valued trade-off parameter on the per-
formance of the MVDR-N beamformer, in Figure 5.2 the output SNR of the right
hearing aid (cf. (5.23)) and the output MSC of the noise component (cf. (5.27))
for a frequency of 250Hz are exemplarily depicted for the same acoustic scenario
as for the MWF-N in Figure 5.1. For the MVDR-N beamformer, as indicated in
(5.27) and (5.23), the output MSC of the noise component and the output SNR
in the right hearing aid in Figure 5.2a and 5.2b only depend on the absolute
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(a) MSCout
v for the MVDR-N beamformer(b) SNRout

1 for the MVDR-N beamformer

Figure 5.2: Output MSC of the noise component and output SNR in the right hearing
aid for the MVDR-N beamformer for different values of the complex-valued
trade-off parameter η for a frequency of 250Hz. The speech source was located
in an anechoic environment at −30◦ in a diffuse noise field using the database
described in Section 2.6 and the input SNR in the right hearing aid was
equal to −2dB. For the MVDR-N beamformer, the first microphone at the
left hearing aid and the first microphone at the right hearing aid have been
used, i.e. M = 2. The input IC of the diffuse noise field has been calculated
according to (2.114) with c = 340m

s and d = 0.164m.

value of η. Furthermore, Figure 5.2 indicates that the output MSC of the noise
component and the output SNR for the MVDR-N beamformer are monotonically
decreasing with increasing |η|, for 0 ≤ |η| ≤ 1. Since for η = 0, MSCout

v = 1 and
for η = 1, MSCout

v = MSC in
v , the output MSC of the noise component will lie be-

tweenMSC in
v and 1 for 0 ≤ |η| ≤ 1. Hence, for any desired output MSC (MSCdes

v )
which is larger or equal to the input MSC (MSC in

v ), a solution for |η| can be found
with 0 ≤ |η| ≤ 1, for which the output SNR will lie between the output SNR of
the MVDR beamformer and the input SNR. Based on these observations and re-
garding the psychoacoustically motivated MSC boundaries in Figure 4.3, it can be
concluded that setting MSCdes

v = γmsc
max yields the optimal trade-off between a de-

sired amount of MSC preservation and maximum noise reduction performance for
the MVDR-N beamformer. In the next section, it will be shown that an analytical
solution for the optimal trade-off parameter η can be derived.

5.3.1 Optimal trade-off parameter η for the MVDR-N beamformer

The trade-off parameter η that yields a desired output MSC for the noise compo-
nent at the filter output of the MVDR-N beamformer can be obtained by setting
MSCout

v = MSCdes
v and solving (5.27) for |η|2. Using the assumption of a diffuse
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noise field, i.e. using (2.16), and setting MSCout
v = MSCdes

v , the expression in
(5.27) can be written as

MSCdes
v =

(1−|η|2)2

ρ2 Φx,0Φx,1 + |η|4MSC in
v Φ2

n + 2 |η|
2−|η|4
ρ Φn<

{
Φx,01(IC in

v )∗
}

(1−|η|2)2

ρ2 Φx,0Φx,1 + |η|4Φ2
n + |η|2−|η|4

ρ Φn(Φx,0 + Φx,1)
.

(5.28)

Using the fact that for a diffuse noise field ρ =
Φx,0

Φn
ρ̃0 =

Φx,1

Φn
ρ̃1, with

ρ̃0 =
AHΓ−1A
|A0|2

, ρ̃1 =
AHΓ−1A
|A1|2

, (5.29)

the expression in (5.28) is equal to

MSCdes
v =

(1−|η|)2
ρ̃0ρ̃1

+ |η|4MSC in
v + 2 |η|

2−|η|4
ρ̃1

<
{
A0

A1
(IC in

v )∗
}

(1−|η|2)2

ρ̃0ρ̃1
+ |η|4 + (|η|2 − |η|4) ( 1

ρ̃0
+ 1

ρ̃1
)

, (5.30)

and can further be written as

(1− |η|2)2a+ |η|4b+ (|η|2 − |η|4)c = 0, (5.31)

with

a = MSCdes
v − 1, (5.32)

b = (MSCdes
v −MSC in

v )ρ̃0ρ̃1, (5.33)

c = MSCdes
v (ρ̃0 + ρ̃1)− 2<

{
A0

A1
(IC in

v )∗
}
ρ̃0, (5.34)

Solving (5.31) for |η|2 yields

|η|21,2 =
−c+ 2a±

√
(c− 2a)2 − 4a(a+ b− c)
2(a+ b− c)

, (5.35)

where the solution satisfying 0 ≤ |η| ≤ 1 is the optimal solution. Equation (5.35)
implies that in the case of a diffuse noise field the frequency-dependent parameter
η does not depend on the PSDs of the speech and the noise component and hence
is fixed for each frequency for a spatially stationary scenario.

5.4 MVDR-N beamformer with spectral postfilter

Contrary to the MWF-N, the MVDR-N beamformer does not take the PSDs of the
speech and the noise component into account. This results in no speech distortion
but also in limited noise reduction capabilities, since the time-varying spectral
properties of the speech and the noise component are not taken into account.
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To also exploit the spectro-temporal filtering capabilities as in the MWF-N, we
propose to apply a Wiener postfilter at the output of the MVDR-N beamformer.
The cost functions for the postfilters G0 and G1 for the left and the right hearing
aid are defined as

min
G0

E
{
|G0W

H
MVDR−N,0X−WH

MVDR−N,0X|2
}

+ µE
{
|G0W

H
MVDR−N,0V|2

}
,

(5.36)

min
G1

E
{
|G1W

H
MVDR−N,1X−WH

MVDR−N,1X|2
}

+ µE
{
|G1W

H
MVDR−N,1V|2

}
,

(5.37)

and the solution is equal to

G0 =
SNRout

MVDR−N,0

µ+ SNRout
MVDR−N,0

, (5.38)

G1 =
SNRout

MVDR−N,1

µ+ SNRout
MVDR−N,1

. (5.39)

Since in general SNRout
MVDR−N,0 6= SNRout

MVDR−N,1, the real-valued gains G0 and
G1 will not be same and hence may distort the output ILD of the speech and
the noise component. To avoid ILD distortions, similarly as in [69], we compute a
common gain for the left and the right hearing aid

G =
√
G0G1. (5.40)

Hence, assuming that the output SNR at the left hearing aid is larger than the
output SNR at the right hearing aid, i.e. G0 > G1, the common gain G will be
smaller than G0, resulting in an increase in noise reduction but also introducing
more speech distortion in the left hearing aid. On the other hand, the common
gain G will be larger than G1, resulting in an decrease in noise reduction but also
introducing less speech distortion in the right hearing aid.
The MVDR-N beamformer with Wiener postfilter, denoted as MVDR-NP, is then
equal to

WMVDR−NP = GWMVDR−N. (5.41)

The separation into a spatial filter WMVDR−N and a spectro-temporal postfilter G
moreover enables to set the trade-off parameter η based on the spatial information
only, while the spectro-temporal Wiener postfilter only depends on the SNRs at
the output of the MVDR-N beamformer.

5.5 Single-channel SNR estimator

As discussed in Section 3.5.1, if the decomposition of the binaural MWF into a
binaural MVDR beamformer and a single-channel Wiener postfilter is used, an
estimate of the SNR at the output of the binaural MVDR beamformer is required.



80 interaural coherence preservation using the mwf-n

For this purpose, we first estimate the PSD of the noise component at the output
of the MVDR beamformer in each hearing aid using the single-channel Speech
Presence Probability (SPP) based estimator described in [29, 125]. The output
SNR of the binaural MVDR beamformer is then estimated using the obtained
noise PSD estimate in the decision-directed approach [22]. For the binaural MWF
the SNR estimate is then used in the Wiener postfilter in (3.60) and (3.61). This
MWF filter vector is then used in the MWF-N in (5.4) and (5.5). For the postfilter
in the MVDR-NP in (5.41), an estimate of the output SNR of the MVDR-N
beamformer is required (cf. (5.38) and (5.39)), which can be directly estimated at
the output of the MVDR-N beamformer using the SPP-based estimator. However,
since the binaural MVDR beamformer obtains a lower noise variance than the
MVDR-N beamformer, the SPP based estimator used at the output of the MVDR
beamformer shows a better performance. Therefore, using the assumption of a
diffuse noise field, we calculate the output SNR of the MVDR-N beamformer
based on the output SNR of the binaural MVDR beamformer using (5.22) and
(5.23), i.e.,

SNRout
MVDR−N,0 =

SNRout
MVDR,0

1 + |η|2 (ρ̃0 − 1)
, (5.42)

SNRout
MVDR−N,1 =

SNRout
MVDR,1

1 + |η|2 (ρ̃1 − 1)
. (5.43)

with ρ̃0 and ρ̃1 defined in (5.29). Hence, for all three algorithms, the binaural
MWF, the MWF-N and the MVDR-NP, we exploit the same spatial information
and the same SNR estimate, allowing for a fair comparison of these algorithms in
Section 5.6.

5.6 Objective performance evaluation

In this section, we present extensive simulation results for two reverberant envi-
ronments, comparing the performance of the binaural MVDR, the binaural MWF,
the MWF-IC, the MWF-N, the MVDR-N beamformer and the MVDR-NP. In the
first experiment, we compare the performance of the binaural MWF, MWF-IC and
MWF-N with different MSC boundaries using batch processing as for the objective
performance evaluation in Chapter 4. In the second experiment, we compare the
binaural MVDR beamformer, the binaural MWF, the MVDR-N beamformer with
and without spectral postfilter and the MWF-N using a-priori assumptions about
the acoustic scenario and short-term SNR estimates for the spectral postfilter in
the binaural MWF, the MWF-N and the MVDR-NP.

5.6.1 Input signals and signal statistics

The hearing aid microphone signals have been generated using measured impulse
responses for a binaural hearing aid setup mounted on an artificial head in an
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office room (T60 = 300ms) and a cafeteria (T60 = 1250ms) [108] (cf. Section 2.6).
For each hearing aid the frontal and the rear microphones (cf. Figure 2.4a), i.e. all
together 4 microphones, have been used. For the office scenario the speech source
was located at −20◦, −10◦, 0◦, 10◦ or 20◦ and for the cafeteria scenario the speech
source was located at −90◦, −45◦, 0◦, 90◦ or 135◦. Two different noise types have
been used for the experiments:

• Babble noise: To allow for a controlled experiment, a diffuse noise field was
generated using the method described in [122], where the time-varying PSD
of the noise component was calculated from a babble noise signal and the
time-invariant spatial coherence matrix Γ was calculated using the ATFs of
the anechoic BTE-IRs measured at a distance of 3m. The (i, j)-th element
of the spatial coherence matrix Γ(i, j) was calculated according to (3.72).

• Ambient noise: To generate a less spatially stationary and more realistic
noise field, recorded ambient noise including babble noise, clacking plates and
interfering speakers from the cafeteria has been used as the noise component
[108].

The speech-and-noise signals had a length of 20 s and were preceded by a noise-
only signal of 5 s. The speech and noise components were mixed such that the
intelligibility-weighted input SNR [89] in the reference microphone at the left
hearing aid was equal to 0 dB for each position of the speech source at a sam-
pling frequency of 16 kHz. The corresponding iSNRs in the reference microphone
at the right hearing aid in the office room and the cafeteria are depicted in Tables
5.1 and 5.2. The microphone signals were transformed to the frequency-domain
using the STFT as described in Section 4.5.1, with Nf = 512 and L = 256.
For the first experiment, the correlation matrices of the speech-and-noise compo-
nent R̂y(k), the noise-only component R̂v(k) and the speech component R̂x(k)
have been estimated according to (4.16), (4.17) and (4.18), where Ly denotes the

−20◦ −10◦ 0◦ 10◦ 20◦

iSNR left [dB] 0 0 0 0 0
iSNR right [dB] -3 -1.3 0.25 1.6 3.2

Table 5.1: Intelligibility-weighted input SNRs of the reference microphone signals at the
left and the right hearing aid for each position of the speech source in the office
room.

−90◦ −45◦ 0◦ 90◦ 135◦

iSNR left [dB] 0 0 0 0 0
iSNR right [dB] -8.2 -7.3 0.1 5.3 4.3

Table 5.2: Intelligibility-weighted input SNRs of the reference microphone signals at the
left and the right hearing aid for each position of the speech source in the
cafeteria.
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number of segments during the 20s speech-and-noise part and Lv denotes the
number of segments during the 5s noise-only part. To assure the speech correla-
tion matrix R̂x(k) to be positive semi-definite, we used the rank-1 approximation
R̂1

x(k) according to (4.19).
The estimates of the correlation matrices R̂1

x(k) and R̂v(k) are then used to calcu-
late the filter vectors of the binaural MWF (cf. (3.22) and (3.23)), the MWF-IC
(cf. Section 4.2) and the MWF-N (cf. (5.4) and (5.5)). For the MWF-IC, the trade-
off parameter λ has been calculated using the iterative search method described
in Section 4.3 with λinit = 10. For the MWF-N, the trade-off parameter ηopt has
been determined using the exhaustive search method described in Section 5.2 (cf.
(5.15) and (5.16)), where 100 values for |η|, linearly spaced between 0 and 1, and
50 values for ∠η, linearly spaced between −π and 0, i.e. all together 5000 values
for η, have been used. For both the MWF-IC and the MWF-N we have used the
MSC boundaries γmsc,6 and γmsc,2 (cf. Section 4.4). If the MSC boundary γmsc,6

is used, the filters are denoted as MWF-IC(0.6) and MWF-N(0.6) and if the MSC
boundary γmsc,2 is used, the filters are denoted as MWF-IC(0.2) and MWF-N(0.2).
For all algorithms the trade-off parameter µ is set to 1.
In the second experiment, we compare the binaural MVDR beamformer, the bin-
aural MWF, the MVDR-N beamformer with and without spectral postfilter and
the MWF-N using a-priori assumptions about the acoustic scenario and short-term
SNR estimates for the spectral postfilter. For the MVDR-N beamformer and the
MWF-N only the MSC boundary γmsc,6 has been considered.
We first calculate the binaural MVDR beamformer (cf. (3.56) and (3.57)), where
the spatial coherence matrix Γ is calculated according to (3.72) and for the ATF
vector of the speech source A, the anechoic BTE-IRs of the same database [108]
have been used, assuming the direction of arrival of the speech source to be known.
The SNR for the Wiener postfilter ρ is estimated from the output signals of the bin-
aural MVDR beamformer using the SPP based estimator as described in Section
5.5. The binaural MWF is then calculated using the filter vectors of the binaural
MVDR beamformer WMVDR,0 and WMVDR,1 and the SNR estimate ρ according
to (3.60) and (3.61). The binaural MWF filter vectors are then used to calculate the
MWF-N filter vectors in (5.4) and (5.5). For the MWF-N, the frequency-dependent
trade-off parameter ηopt is determined using the same exhaustive search method as
in the first experiment, although it should be realized that the trade-off parameter
is now determined for each segment and is hence time-varying. The filter vectors
for the MVDR-N beamformer are calculated using the filter vectors of the binaural
MVDR beamformer WMVDR,0 and WMVDR,1 according to (5.19) and (5.20). For
the MVDR-N beamformer, the frequency-dependent trade-off parameter η is calcu-
lated according to the closed form expression in (5.35). Contrary to the MWF-N,
for the MVDR-N beamformer the trade-off parameter η is fixed over time and
does not depend on the SNR estimate. The SNR for the Wiener postfilter in the
MVDR-NP is calculated according to (5.42) and (5.43). The common gain for the
MVDR-NP in (5.41) is then calculated according to (5.40). For all postfilters the
minimum gain is set to Gmin = −10 dB and the trade-off parameter µ is set to
1.
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5.6.2 Performance measures

The performance of the considered algorithms is calculated in terms of noise reduc-
tion and binaural cue preservation performance using objective measures. To evalu-
ate the noise reduction performance, we used the intelligibility-weighted broadband
output SNR (iSNR) calculated according to (4.20) and the broadband better ear
output SNR according to (4.21). Since the long-term energy-based iSNRout mea-
sure does not adequately account for speech distortions introduced by the spectro-
temporal filtering, for the second experiment we have also used the frequency-
weighted segmental SNR (fwSegSnr) [107] (cf. Section 2.4) as a combined measure
for speech distortion and noise reduction.
To evaluate the binaural cue preservation for the noise component, similarly to
(4.22), we have used the broadband MSC error ∆MSCv, which has been calcu-
lated by averaging the MSC error across frequencies, i.e.,

∆MSCv =
1

N − 1

N−1∑
k=1

∣∣MSC in
v (k)−MSCout

v (k)
∣∣ , (5.44)

where the output MSC has been calculated according to (2.64) and the output IC
has been calculated according to (2.63).
For the directional speech component the MSC error is however not an appropri-
ate objective measure, since the MSC contains information about the amount of
correlation of a signal in the microphones but does not contain information about
the perceived direction of a directional source. Hence, to evaluate the binaural cue
preservation of the speech component we calculate the distribution of the so-called
reliable ILD and ITD cues using a model of binaural auditory processing [15] as
described in Section 2.4. Furthermore, we calculate the mean error between the
distributions of the input and the output cues ∆ILD and ∆ITD according to
(2.108) and (2.109).

5.6.3 Experimental Results

5.6.3.1 Experiment 1

In the first experiment, we compare the performance for the binaural MWF, MWF-
IC and MWF-N using estimated speech and noise correlation matrices for different
MSC boundaries and positions of the speech source. The results for the office
scenario are depicted in Figure 5.3. From Figure 5.3a it can be observed that the
binaural MWF obtains a very large MSC error, which is significantly smaller for
the MWF-IC and the MWF-N depending on the MSC boundary. For each position
of the speech source the MSC error is the same for each MSC boundary, which
implies that for both the MWF-IC and the MWF-N a suitable trade-off parameter
yielding a desired output MSC can be determined for each scenario.
The impact of preserving the MSC of the noise component on the output iSNR is
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depicted in Figures 5.3b-5.3d. As expected from the theoretical analysis in Section
5.2, the binaural MWF obtains the largest output iSNR for all positions of the
speech source. For the MWF-IC and the MWF-N the output iSNR is significantly
lower than for the binaural MWF, especially in the contralateral hearing aid, while
the MWF-IC outperforms the MWF-N. As expected, for the larger MSC boundary
γmsc,6

max both the MWF-IC and the MWF-N show a better performance in terms of
output iSNR than for the boundary γmsc,2

max . For the MSC boundary γmsc,6
max , the loss

in better ear output iSNR (Figure 5.3b) for the MWF-IC compared to the binaural
MWF is between 0.3 and 0.5 dB and for the MWF-N between 0.4 and 0.9 dB. For
the MSC boundary γmsc,2

max , the loss in better ear output iSNR for the MWF-IC
compared to the binaural MWF is between 0.5 and 1.1 dB and for the MWF-N
between 0.4 and 2.6 dB. Hence, for the MSC boundary γmsc,6

max the performance of
the MWF-IC and the MWF-N is comparable, while the MWF-IC performs slightly
better than the MWF-N. On the other hand, for the MSC boundary γmsc,2

max the
MWF-IC clearly outperforms the MWF-N.
The mean ILD and ITD error for the speech component are depicted in Figures 5.3e
and 5.3f. From the theoretical analysis in Sections 3.2 and 3.4 a perfect preservation
of the binaural cues of the speech component is expected for the binaural MWF
and the MWF-N. However, this is not exactly the case due to estimation errors
in the speech correlation matrix and the short STFT segment length. It can be
observed that the binaural cue distortion introduced by all algorithms is rather
low and no clear trend in which algorithm performs best in terms of binaural cue
preservation is noticeable.
The results for the cafeteria scenario are depicted in Figure 5.4. Similarly as for
the office scenario, both the MWF-IC and the MWF-N significantly reduce the
MSC error (Figure 5.4a), while the MWF-IC outperforms the MWF-N in terms
of output iSNR (Figure 5.4b, 5.4c and 5.4d), especially for the MSC boundary
γmsc,2

max . Again the binaural cue distortion (Figure 5.4e and 5.4f) is rather low for
all algorithms.
In summary, both the MWF-IC and the MWF-N significantly reduce the MSC
error for the noise component compared to the binaural MWF. For both algorithms
the output iSNR is reduced compared to the output iSNR of the binaural MWF,
depending on the MSC boundary, while the MWF-IC outperforms the MWF-
N, especially for the MSC boundary γmsc,2

max . Furthermore, all algorithms show a
very similar performance in terms of preserving the binaural cues of the speech
component.

5.6.3.2 Experiment 2

In the second experiment, we compare the binaural MVDR beamformer, the bin-
aural MWF, the MVDR-N beamformer with and without spectral postfilter and
the MWF-N using a-priori assumptions about the acoustic scenario and short-term
SNR estimates for the spectral postfilter. The results for the office scenario are de-
picted in Figure 5.5. From Figure 5.5a it can be observed that the binaural MVDR
and the binaural MWF obtain a very large MSC error for the noise component,
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Figure 5.3: Objective Measures ∆MSCv, iSNRout, ∆ILD and ∆ITD for the binaural
MWF, MWF-IC and the MWF-N for different MSC boundaries and posi-
tions of the speech source in the office scenario.

which is significantly smaller for the MVDR-N beamformer, the MWF-N and the
MVDR-NP. For each position of the speech source the MSC error is very similar,
which implies that for the MVDR-N beamformer, the MWF-N and the MVDR-NP
a suitable trade-off parameter, yielding a desired output MSC, can be determined
for each scenario.
The impact of preserving the MSC of the noise component on the output iSNR is
depicted in Figures 5.5b-5.5d. As expected from the theoretical analysis in Section
5.3, the output iSNR for the MVDR-N beamformer decreases compared to the
MVDR beamformer especially for the contralateral ear. Comparing the results of
the binaural MVDR beamformer and the binaural MWF, the usage of the spec-
tral postfilter in the binaural MWF significantly improves the output iSNR for all
positions of the speech source. Similarly, for the MWF-N and the MVDR-NP the
usage of the spectral postfilter results in an increasing output iSNR compared to
the MVDR-N beamformer, while the MVDR-NP performs slightly better than the
MWF-N.
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Figure 5.4: Objective Measures ∆MSCv, iSNRout, ∆ILD and ∆ITD for the binaural
MWF, MWF-IC and the MWF-N for different MSC boundaries and posi-
tions of the speech source in the cafeteria scenario.

The output fwSegSnr is depicted in Figures 5.5e and 5.5f. It is interesting to note
that the fwSegSnr for the MVDR-N beamformer is larger than for the binaural
MVDR beamformer, although the output iSNR of the binaural MVDR beamformer
is larger than for the MVDR-N beamformer. Since the fwSegSnr is a combined mea-
sure of speech distortion and noise reduction, it penalizes dereverberation effects
of the binaural MVDR beamformer, which occur due to the fact that anechoic
ATFs have been used for calculating the filter vectors and hence, only the direct
part of the speech component is fully preserved. These dereverberation effects
are partially compensated by the MVDR-N beamformer (and hence also by the
MWF-N and the MVDR-NP), leading to a better result for the fwSegSnr. For the
binaural MWF, MWF-N and MVDR-NP the fwSegSnr is very similar, where it
can be observed that the MVDR-NP slightly outperforms the binaural MWF and
the MWF-N.
The mean ILD and ITD errors for the speech component are depicted in Figures
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5.6a and 5.6b. The mean ILD and ITD errors are rather low and very similar as for
the first experiment (Figure 5.3e and 5.3f), except for the position of the speech
source at −20◦. A detailed analysis of the binaural cue preservation performance
will be given at the end of this section.
The results for the cafeteria scenario are depicted in Figure 5.7. From Figure 5.7a
it can be observed that the binaural MVDR and the binaural MWF obtain the
same very large MSC error for the noise component as for the office scenario, which
is again significantly smaller for the MVDR-N beamformer, the MWF-N and the
MVDR-NP for each position of the speech source. Although the recorded ambi-
ent noise in the cafeteria is spatially less stationary than the artificially generated
diffuse babble noise used in the office scenario, it can be observed that also for a
time-varying realistic noise signal a controlled MSC preservation can be achieved
using the proposed binaural cue preservation algorithms MVDR-N beamformer,
MWF-N and MVDR-NP.
For the output iSNRs in Figures 5.7b-5.7d, similar observations can be made as
for the office scenario. Using the spectral postfilter in the binaural MWF, MWF-N
and the MVDR-NP significantly improves the output iSNR for all positions of
the speech source compared to the binaural MVDR beamformer and the MVDR-
N beamformer. While the binaural MWF generally outperforms all algorithms
in terms of output iSNR, the output iSNR at the ipsilateral ear is less reduced
by the binaural cue preservation algorithms (MVDR-N beamformer, MWF-N and
MVDR-NP) than the output iSNR at the contralateral ear. Hence, for all positions
of the speech source, except for a speech source position at 0◦, the output iSNR
at the better ear (Figure 5.7b) of the binaural MWF, MWF-N and MVDR-NP
are very similar due to the strong input iSNR differences between the reference
microphone signals of the left and the right hearing aid (cf. Table 5.2).
The output fwSegSnr is depicted in Figures 5.7e-5.7f. It can be observed that the
fwSegSnr at the contralateral ear for the MVDR-N beamformer is better than
for the MVDR beamformer, which is again due to the compensation of derever-
beration effects in the MVDR-N beamformer. Similarly as for the office scenario,
the fwSegSnr is very similar for the binaural MWF, MWF-N and the MVDR-NP
and larger compared to the binaural MVDR beamformer and the MVDR-N beam-
former.
Comparing the mean ILD and ITD errors for the speech component in Figures
5.8a and 5.8b to the results of the first experiment in Figures 5.4e and 5.4f, it can
be observed that the mean ILD and ITD errors are generally larger in the second
experiment. For the ILD error this is especially the case for the speech source
position at −45◦ and 135◦, and for the ITD error this is the case for all speech
source positions, except for 0◦. Moreover, it can be observed that the binaural
cue preservation algorithms MVDR-N, MWF-N and MVDR-NP perform slightly
better than the binaural MVDR/MWF. To further investigate the results for the
speech source position with the largest binaural cue distortions, i.e. the speech
source at −45◦, the complete distributions of the reliable input cues for the cafe-
teria scenario and the output cues for the MVDR beamformer and the MVDR-N
beamformer are depicted in Figure 5.9. For the binaural MVDR beamformer, the
influence of using anechoic ATFs on the output binaural cues can be examined
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using (3.27). Since for the binaural MVDR beamformer the output binaural cues
only depend on the choice of A0 and A1, the binaural cues of the output signal
will be equal to the binaural cues of the respective anechoic signal. To verify this
statement, in Figure 5.9 the distributions of the reliable cues for the anechoic
signal for the speech source position at −45◦ are also depicted. It can be clearly
observed that the ILD and ITD distributions of the MVDR beamformer output
signal are very similar to the ILD and ITD distributions of the anechoic signal.
Hence, the perceived location of the output speech source for the binaural MVDR
beamformer will be the same as for a speech source in an anechoic environment
at the same position. Hence, even if a large error for the binaural cues is observed
(cf. Figure 5.8), the perceived location of the output speech source will still be
very similar to the perceived location of the input speech source, but the overall
impression of the perceived source width may change, which can not be directly
evaluated using the distributions of the reliable ILD and ITD cues.
In contrast, for the MVDR-N beamformer, the output binaural cues will be a
mixture of the anechoic binaural cues and the binaural cues of the input speech
component. Figure 5.9b depicts that the distribution of the output ITD for the
MVDR-N beamformer is slightly wider than for the binaural MVDR beamformer
and shifted towards the distribution of the input ITD cues. For the ILD distribu-
tion in Figure 5.9a this effect is not as clear as for the ITD distribution due to the
frequency-dependency of the ILD.
In summary, all binaural cue preservation algorithms (MVDR-N beamformer, MWF-
N and MVDR-NP) significantly reduce the MSC error for the noise component
compared to the binaural MVDR beamformer and the binaural MWF. Further-
more, it has been shown that the usage of a spectral postfilter in the binaural MWF,
the MWF-N and the MVDR-NP significantly improves the output iSNR compared
to the binaural MVDR beamformer and the MVDR-N beamformer for both acous-
tic scenarios and all positions of the speech source. In terms of output iSNR, the
binaural MWF shows the best performance and in terms of output fwSegSnr, the
binaural MWF, the MWF-N and the MVDR-NP show a very similar performance.
While the MWF-N and the MVDR-NP show a very similar performance in terms
of noise reduction and binaural cue preservation, the computational complexity
for the MVDR-NP is much lower compared to the MWF-N. For the MVDR-NP,
the optimal trade-off parameter η can be calculated using a closed-form expression
and is fixed over time, whereas for the MWF-N, the trade-off parameter has to be
calculated for each STFT-segment using an exhaustive search method.
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Figure 5.5: Objective Measures ∆MSCv, iSNRout and fwSegSnr for the binaural MVDR
beamformer, the binaural MWF, the MVDR-N beamformer, the MWF-N
and the MVDR-NP for the office scenario for different positions of the speech
source.
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Figure 5.6: ∆ILD and ∆ITD of the speech component for the binaural MVDR beam-
former, the binaural MWF, the MVDR-N beamformer, the MWF-N and the
MVDR-NP for the office scenario for different positions of the speech source.
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Figure 5.7: Objective Measures ∆MSCv, iSNRout and fwSegSnr for the binaural MVDR
beamformer, the binaural MWF, the MVDR-N beamformer, the MWF-N and
the MVDR-NP for the cafeteria scenario for different positions of the speech
source.

  
MVDR MWF MVDR−N MWF−N MVDR−NP

−90 −45 0 90 135
0

1

2

3

4

5

Speaker Position

∆ 
IL

D
 [d

B
]

(a) ∆ILD

−90 −45 0 90 135
0

0.05

0.1

0.15

0.2

0.25

Speaker Position

∆ 
IT

D
 [m

s]

(b) ∆ITD

Figure 5.8: ∆ILD and ∆ITD of the speech component for the binaural MVDR beam-
former, the binaural MWF, the MVDR-N beamformer, the MWF-N and the
MVDR-NP for the cafeteria scenario for different positions of the speech
source.



5.7 conclusion 91

−15 −10 −5 0 5
0

0.01

0.02

0.03

0.04

0.05

0.06

ILD [dB]

ILD Distribution

 

 

Anechoic
MVDR
Cafeteria
MVDR−N

(a) ILD

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.05

0.1

0.15

0.2

0.25

ITD [ms]

ITD Distribution

 

 

Anechoic
MVDR
Cafeteria
MVDR−N

(b) ITD

Figure 5.9: Input binaural cue distributions for a speech source position of −45◦ for the
cafeteria and the anechoic scenario and output binaural cue distributions
for the MVDR beamformer and the MVDR-N beamformer for the cafeteria
scenario.

5.7 Conclusion

In this chapter we proposed the MWF-N and the MVDR-N beamformer for com-
bined noise reduction and binaural cue preservation in diffuse noise fields. For
both the MWF-N and the MVDR-N, the amount of IC preservation was deter-
mined based on the psychoacoustically motivated MSC boundaries proposed in
Chapter 4. For the MVDR-N beamformer a closed-form solution for the trade-off
parameter η, yielding a desired MSC for the output noise component, has been de-
rived. Using simulations, we have shown that the MWF-N and the MWF-IC yield
a very similar performance in terms of IC preservation, where the MWF-IC shows
a slightly better noise reduction performance. However, the better noise reduction
performance of the MWF-IC, compared to the MWF-N, comes at the cost of a
higher computational complexity, since no closed-form solution for the MWF-IC
exists. Further simulation results show that the MWF-N and the MVDR-NP show
a very similar performance in terms of noise reduction and binaural cue preserva-
tion if for the spatial filter a-priori assumptions about the spatial scenario, and
for the spectral filter a SPP-based SNR estimator are used. However, the compu-
tational complexity for the MVDR-NP is much lower compared to the MWF-N.
For the MVDR-NP, the optimal trade-off parameter, yielding a desired output
MSC for the noise component, can be calculated using a closed-form expression
and is fixed over time, whereas for the MWF-N, the trade-off parameter has to be
calculated for each STFT-segment using an exhaustive search method. In order to
evaluate the impact of the trade-off between binaural cue preservation and output
SNR on speech intelligibility and spatial awareness, we will subjectively evaluate
the MVDR beamformer, the MVDR-N beamformer and the MWF-IC in Chapter
6 with respect to speech intelligibility and spatial impression.





6
SUBJECTIVE EVALUATION OF BINAURAL
NOISE REDUCTION ALGORITHMS IN
DIFFUSE NOISE FIELDS

In order to assess the influence of MSC preservation for diffuse noise fields on
speech intelligibility and spatial impression, in this chapter we present subjective
evaluation results for the binaural MVDR beamformer, the MVDR-N beamformer
and the MWF-IC in an anechoic and a reverberant cafeteria environment. To
evaluate the performance of the algorithms in terms of speech intelligibility, the
Oldenburg sentence test (OLSA) has been used to measure the Speech Reception
Threshold (SRT) at 50% speech intelligiblity. To evaluate the spatial quality of the
algorithms, a subjective listening test using the MUltiple Stimuli with Hidden Ref-
erence and Anchor (MUSHRA) [126] procedure has been conducted. The speech
intelligibility results show that for the MWF-IC a small decrease in SRT com-
pared to the binaural MVDR beamformer can be achieved, whereas the MVDR-N
beamformer shows a small increase in SRT compared to the binaural MVDR beam-
former. The spatial quality results show that both the MVDR-N beamformer and
the MWF-IC outperform the binaural MVDR beamformer, while the MVDR-N
beamformer achieves better MUSHRA scores compared to the MWF-IC. While
the performance of the MWF-IC is rather independent of the considered MSC
boundaries, the performance of the MVDR-N beamformer highly depends on the
MSC boundaries.

6.1 Speech Intelligibility Test (OLSA)

Speech intelligibility was measured using the Oldenburg sentence test [127, 128,
129], which consists of sentences of the fixed syntactical structure “name verb nu-
meral adjective object.”, e.g., “Kerstin nahm acht schwere Steine” (Kerstin took
eight heavy stones). For each part of the sentence, ten alternative words are avail-
able which are combined in a randomized order to generate semantically unpre-
dictable sentences. The test comprises 45 lists of 20 sentences, each list containing
each of the 50 words exactly twice. From the 45 lists, 7 lists have been used to
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conduct the test. The SRT is determined using an adaptive procedure, where the
SNR for each OLSA sentence is adaptively adjusted based on the number of words
that have been correctly identified in the previous sentence and a convergence fac-
tor [130]. The initial SNR was set to 0 dB and the level of the overall signal was
kept at 65 dB Sound Pressure Level (SPL). Each sentence was preceded by a noise-
only signal whose length was randomly set between 1s and 2s. For each presented
sentence the subjects were asked to repeat the 5 words of the sentence and an
instructor checked how many of the 5 words were correctly understood. The SNR
was then changed depending on the number of correctly understood words and a
convergence factor [130]. In order to familiarize the subjects with the stimuli and
the task and to account for the training effect [128], for each subject two practice
lists were presented using the unprocessed signals. The first training list was pre-
sented at a fixed SNR of 0 dB, which should be easily understandable for normal
hearing listeners. The second training list was used to familiarize the subjects with
the adaptive test procedure. The data from the training test lists were discarded.
The test was conducted with 15 self-reported normal hearing subjects.
We conducted two experiments, one in an anechoic and one in a reverberant envi-
ronment (cf. Section 6.3), and for each experiment the SRT for several algorithms
(cf. Section 6.4), in the following denoted as conditions, has been measured. Each
subject performed the same experiments, where the order of the conditions, the
order of the OLSA lists and the order of the sentences in each OLSA list were
randomized. Figure 6.1 depicts an example of the adaptive procedure used to mea-
sure the SRT. In the beginning of the test the SNR changes for each iteration are
typically rather large, depending on the number of words that have been correctly
identified. After some iterations the SNR changes decrease and the SNR converges
towards the SRT.
For each experiment (anechoic and cafeteria scenario) the statistical significance
was analyzed using a repeated measures analyses of variance (ANOVA), with the
factor “Algorithm” as the dependent variable and the factor “Subject” as the in-
dependent variable. In order to determine the significance of the effects indicated
by the ANOVA, Holm-Bonferroni post hoc tests [131], using student’s t-test, have
been used.
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Figure 6.1: Example of the adaptive SRT measurement procedure.
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6.2 Subjective Quality Test (MUSHRA)

To evaluate the spatial quality of the algorithms, a subjective listening test using
the MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) [126] proce-
dure has been conducted [126]. In the MUSHRA test all conditions, including a
hidden reference and at least one anchor which should have a worse quality than
any of the tested conditions, are compared to a reference. The conditions are then
rated on a five-interval quality scale, i.e. “no difference”, “small”, “medium”, “large”,
“extreme” (cf. Figure 6.2). The subjects are instructed to score at least one stimulus
with a rating of 100, which should correspond to the hidden reference. The anchor
is used in order to stabilize the scale. The subjects are allowed to listen to the
reference condition and each condition as often as they want. The subjects were
asked to rate the spatial similarity between the reference condition and all other
conditions. For the MUSHRA test, the same experiments (anechoic and cafeteria
scenario) and algorithms as for the OLSA test have been used. For the unprocessed
condition, 3 OLSA sentences were concatenated and the intelligibility-weighted in-
put SNR was set to -5 dB, such that the intelligibility-weighted output SNR of
all considered algorithms was around 0 dB. For the reference condition the output
signal of the MVDR-OPT (cf. Section 6.4) was used. For the anchor, a monaural
signal which was obtained by averaging the left and the right output signal of the
MVDR-OPT has been used. The test was conducted with 11 self-reported normal
hearing subjects who also participated in the OLSA test. For each experiment
(anechoic and cafeteria scenario) the statistical significance was analyzed using a
repeated measures analyses of variance (ANOVA), with the factor “Algorithm” as
the dependent variable and the factor “Subject” as the independent variable. In
order to determine the significance of the effects indicated by the ANOVA, Holm-
Bonferroni post hoc tests [131], using student’s t-test, have been used.

6.3 Test signals

The hearing aid microphone signals have been generated using measured impulse
responses for a binaural hearing aid setup mounted on an artificial head in an
anechoic environment and a cafeteria (T60 ≈ 1250ms) [108] (cf. Section 2.6). For
each hearing aid the frontal and the middle microphones (cf. Figure 2.4a), i.e. all
together 4 microphones, have been used. For both acoustic scenarios the speech
source was located in front of the artificial head. Two different noise types have
been used for the experiments:

• For the anechoic scenario, a stationary speech-shaped noise, the so-called
olnoise, has been used as the noise component. This noise component has
been generated by randomly superimposing all speech signals of the OLSA
sentence test [127]. Therefore, the long-term spectrum is very close to the
average long-term spectrum of the speech material. Using this noise signal,
diffuse noise has been generated using the method described in [122], where
the PSD of the olnoise was used and the time-invariant spatial coherence
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matrix of the binaural setup Γ was calculated using the ATFs of the anechoic
BTE-IRs measured at a distance of 3m from the artificial head according to
(3.72).

• In order to use a less controlled but more realistic noise field for the cafete-
ria scenario, recorded ambient noise including babble noise, clacking plates
and interfering speakers [108] has been used as the noise component. From
the overall noise signal a snippet of 15 s has been identified which does not
contain dominant interfering speakers since this may have a large influence
on the results of the OLSA test.

For each OLSA sentence, one section of the noise component is randomly selected
and added to the speech component at the required SNR.

Figure 6.2: Matlab GUI for the MUSHRA test.

6.4 Algorithms

The algorithms we evaluate in this study are

• UNPROC.: The unprocessed reference microphone signals.

• MVDR: The binaural MVDR beamformer (cf. Section 3.1).

• MVDR-OPT: Artificially generated signal yielding the same output SNR
as the binaural MVDR beamformer but perfectly preserving the IC of the
noise component (for details, cf. description in this section).

• MWF-IC(0.6) and MWF-IC(0.2): The MWF-IC (cf. Section 4.2) using
the MSC boundaries γmsc,6 and γmsc,2 (cf. Section 4.4), respectively.
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• MVDR-N(0.6) and MVDR-N(0.2): The MVDR-N beamformer (cf. Sec-
tion 5.3) using the MSC boundaries γmsc,6 and γmsc,2 (cf. Section 4.4), re-
spectively.

For normal hearing subjects, the expected SRT for an unprocessed binaural signal,
where the speech and the noise source (olnoise) are located at the same position,
is around −9 dB [8] and will obviously be even lower if multi-microphone noise
reduction algorithms are applied. If spectral filtering is applied at very low SNR
values, the amount of speech distortion will be rather high, having a huge impact
on speech intelligibility [33]. Since the main objective of our subjective listening
test is to examine the impact of the trade-off between noise reduction and IC
preservation on speech intelligibility and spatial quality, we decided to keep the
amount of speech distortion as low as possible by using distortionless versions of all
algorithms. While for the binaural MWF and the MWF-N distortionless versions,
i.e. the binaural MVDR beamformer and the MVDR-N beamformer, are available
by setting µ = 0, this is not the case for the MWF-IC. However, by setting µ in
the MWF-IC to a very small value, e.g., µ = 10−7, the PSDs of the speech and
the noise component will practically have no impact on the overall performance,
leading to a quasi-distortionless version of the MWF-IC.
For calculating the correlation matrix of the noise componentRv, we have assumed
a diffuse noise field, i.e.,

Rv = Γ, (6.1)

where each element of Γ has been calculated according to (3.72). The binaural
MVDR beamformer and the MVDR-N beamformer are then calculated using the
anechoic ATF A for the 0◦ direction and a distance to the artificial head of 0.8m
from [108]. For the MWF-IC, the anechoic ATF A has been used to calculate the
speech correlation matrix Rx, i.e.,

Rx = AAH , (6.2)

and Rv has been calculated according to 6.1. For the MWF-IC the trade-off pa-
rameter λ has been determined using the iterative procedure described in Section
4.3 and for the MVDR-N beamformer the trade-off parameter η has been calcu-
lated according to (5.35). For both the MWF-IC and the MVDR-N beamformer
the psychoacoustically motivated MSC boundaries γmsc,6 and γmsc,2 (cf. Section
4.4) have been used in order to investigate the trade-off between MSC preservation
and output SNR.
It should be noted that for the anechoic scenario the same ATF and spatial coher-
ence matrix as for generating the input signals has been used in the algorithms.
Hence, for this scenario no estimation errors occur and the optimal performance
for the binaural MVDR beamformer, the MVDR-N beamformer and the MWF-IC
will be obtained. For the cafeteria scenario, using the anechoic ATF A will result
in dereverberation of the speech component as discussed in Section 5.6.3. More-
over, the assumed spatial coherence matrix Γ will not exactly correspond with
the spatial coherence of the ambient noise signal, but since Γ has been calculated
using anechoic ATFs measured on the same artificial head that has been used for
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recording the ambient noise signal, a good performance is still expected.
In order to define an upper performance limit for combined noise reduction and
MSC preservation in diffuse noise fields, we also artificially generate an output
signal that yields the same output SNR and speech component as the binaural
MVDR beamformer but perfectly preserves the IC of the noise component. This
processing strategy is denoted as MVDR-OPT. The output noise component of
the MVDR-OPT in the left and the right hearing aid is calculated as a scaled
version of the noise component in the reference microphone signals, i.e.,

Zv0,MVDR−OPT = V0

WH
MVDR,0R̂vWMVDR,0

eT0 R̂ve0

, (6.3)

Zv1,MVDR−OPT = V1

WH
MVDR,1R̂vWMVDR,1

eT1 R̂ve1

, (6.4)

where R̂v is calculated from the input noise component V. Hence, for the MVDR-
OPT the PSD of the output noise component is exactly equal to the PSD of the
output noise component for the MVDR beamformer, i.e.,

E
{
|Zv0,MVDR−OPT|2

}
= WH

MVDR,0R̂vWMVDR,0, (6.5)

E
{
|Zv1,MVDR−OPT|2

}
= WH

MVDR,1R̂vWMVDR,1. (6.6)

The output speech component for the MVDR-OPT is equal to the output speech
component for the binaural MVDR beamformer, i.e.,

Zx0,MVDR−OPT = Zx0,MVDR = WH
MVDR,0X, (6.7)

Zx1,MVDR−OPT = Zx0,MVDR = WH
MVDR,1X. (6.8)

Hence, the binaural MVDR beamformer and the MVDR-OPT only differ in terms
of the output IC of the noise component. The output IC of the noise component
for the MVDR-OPT will be equal to the input IC of the noise component, whereas
the output IC of the noise component for the binaural MVDR beamformer will be
equal to ej∠

A0
A1 and hence, the MSC will be equal to 1 (cf. Section 3.1).

6.5 SRT results for speech intelligibility

6.5.1 Anechoic scenario

The SRT results for the anechoic scenario are depicted in Figure 6.3. The median
SRT for the unprocessed signals is equal to −12 dB, which is consistent with the
results in [132]. All evaluated binaural noise reduction algorithms result in a signifi-
cant decrease in SRT compared to the unprocessed condition. The median SRT for
the binaural MVDR beamformer is equal to −17.1 dB, i.e. the SRT improvement
compared to the unprocessed condition is equal to 5.1 dB. For the MVDR-OPT,
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the median SRT is even further decreased to −19.1 dB. As shown in Section
3.1, the binaural MVDR beamformer preserves the binaural cues of the speech
component but distorts the binaural cues of the noise component, whereas the
artificially generated MVDR-OPT preserves the binaural cues of both the speech
and the noise component (cf. Section 6.4). Since both algorithms yield the same
output SNR and output speech component, the SRT improvement of 2.1 dB for
the MVDR-OPT compared to the binaural MVDR beamformer can be explained
by the preservation of the MSC of the noise component. This benefit is known
as the binaural hearing advantage and similar results (without binaural noise re-
duction processing) for a speech source in front of the listener in a diffuse noise
field for normal hearing and hearing impaired listeners have been reported in [19].
Using the practically feasible algorithms MWF-IC(0.6) and MWF-IC(0.2), the me-
dian SRT is equal to −17.8 dB and −17.1dB, respectively. Hence, for both MSC
boundaries a very similar SRT as for the binaural MVDR beamformer is obtained.
The median SRT for the MVDR-N(0.6) and the MVDR-N(0.2) beamformer are
equal to −16.3 dB and −14.9 dB, respectively. Hence, for the MVDR-N beam-
former the impact of the MSC boundary on speech intelligibility appears to be
more prominent than for the MWF-IC. Furthermore, the MWF-IC shows a better
performance in terms of SRT compared to the MVDR-N for both MSC boundaries.
Since both the MWF-IC and the MVDR-N beamformer yield a lower output SNR
compared to the MVDR-OPT (cf. Figures 6.4a and 6.4b) and do not perfectly
preserve the MSC of the noise component (cf. Figure 6.4c), the SRT results are
not as good as for the artificially generated MVDR-OPT but comparable to the
SRT results for the MVDR beamformer, except for the MVDR-N(0.2).
The results of the post hoc test are given in Table 6.1. These results show that
all algorithms show a significant decrease in SRT compared to the unprocessed
condition, while the MVDR-OPT performs significantly better than all other algo-
rithms. Although the median SRT for the MWF-IC is lower than for the binaural
MVDR beamformer, this difference appears not to be significant for both MSC
boundaries. For the MVDR-N beamformer, the MVDR-N(0.6) beamformer per-
forms significantly better than the MVDR-N(0.2) beamformer. While the SRT
difference of the MVDR-N(0.6) beamformer compared to the binaural MVDR
beamformer, the MWF-IC(0.6) and the MWF-IC(0.2) appears not to be signifi-
cant, the MVDR-N(0.2) beamformer performs significantly worse than all other
algorithms.
In order to compare these SRT results to the objective measures used in the pre-
vious chapters, Figure 6.4 depicts the intelligibility weighted SNR improvement,
cf. (2.97), and the MSC error for the noise component, cf. (5.44), averaged over
20 sentences for an input SNR of −20 dB and 0 dB. As expected, both the iSNR
improvement and the MSC error are independent of the input SNR for all algo-
rithms, since in all considered algorithms only the spatial information is exploited.
As expected, the iSNR improvement for the MVDR-OPT is the same as for the
binaural MVDR beamformer, while the MSC error for the binaural MVDR beam-
former is very large and equal to 0 for the MVDR-OPT. For the MWF-IC the iSNR
improvement is smaller than for the MVDR beamformer but the MWF-IC also
yields a smaller MSC error. In general the MSC errors for the MWF-IC and the
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MVDR-N beamformer are the same, while the iSNR improvement for the MWF-
IC is larger than for the MVDR-N beamformer, especially for the MSC boundary
γmsc,2, which corresponds to the results in Section 5.6.
Comparing the SRT results to the iSNR results, it can be observed that for the
MVDR-OPT the SRT decrease compared to the unprocessed condition of 7.2 dB is
very similar to the iSNR improvement in Figure 6.4, while for the binaural MVDR
beamformer, the SRT improvement is smaller than the iSNR improvement. Also
for the other algorithms, the iSNR improvement is a bit higher than the decrease
in SRT except for the MVDR-N(0.2) beamformer, where the iSNR improvement
and the decrease in SRT are again very similar. Hence, for algorithms that intro-
duce only a small amount of speech distortion or binaural cue distortion, the iSNR
improvement is a good indication for the impact of these algorithms on speech in-
telligibility for the anechoic scenario. If a large difference between the binaural
cues of the input signal and the binaural cues of the output signal is obtained, the
usage of models that also take the binaural cues into account in order to predict
speech intelligibility (cf. Section 2.4) should be considered.

Figure 6.3: SRT results for the unprocessed signals and the evaluated algorithms for
the anechoic scenario, averaged over all subjects. The boxplot visualizes the
interquartile range (IQR) from the 25% percentile to the 75% percentile and
the vertical line inside the box visualizes the median value. The upper whisker
indicates the largest value that is smaller than the 75% percentile plus 1.5
times the IQR and the lower whisker indicates the smallest value that is
larger than the 25% percentile minus 1.5 times the IQR. The circles indicate
outliers.
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UNPROC. MVDR MVDR-OPT MWF-IC(0.6) MVDR-N(0.6) MWF-IC(0.2) MVDR-N(0.2)
UNPROC. *** *** *** *** *** ***
MVDR *** *** o o o ***

MVDR-OPT *** *** *** *** *** ***
MWF-IC(0.6) *** o *** *** o ***
MVDR-N(0.6) *** o *** *** o ***
MWF-IC(0.2) *** o *** o o ***
MVDR-N(0.2) *** *** *** *** *** ***

Table 6.1: Significance of the measured SRT differences between algorithms for the ane-
choic scenario. The asterisks denote results that are statistically significant
(*** p < 0.001, ** p < 0.01, * p < 0.05) and o denotes results that are not
statistically significant (p > 0.05).

MVDR MVDR−OPT MWF−IC(0.6) MVDR−N(0.6) MWF−IC(0.2) MVDR−N(0.2)
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Figure 6.4: Intelligibility-weighted SNR improvement in the left and the right hearing aid
and MSC error for the noise component, averaged over 20 sentences for an
input SNR of −20 dB and 0 dB for the anechoic scenario.

6.5.2 Cafeteria scenario

The SRT results for the cafeteria scenario are depicted in Figure 6.5. The me-
dian SRT for the unprocessed signals is equal to −8.2 dB, i.e. 3.8 dB larger than
for the anechoic scenario. A possible explanation for this SRT value could be the
additional reverberation for the speech source and the more non-stationary noise
type. Similarly as for the anechoic scenario, all algorithms result in a significant
decrease in SRT compared to the unprocessed condition. The median SRT for
the binaural MVDR beamformer is equal to −11.9 dB, i.e. the SRT improvement
compared to the unprocessed condition is equal to 3.7 dB. For the MVDR-OPT,
the SRT is further decreased to −13.4 dB. Hence, similarly as for the anechoic
scenario, preserving the input IC results in an SRT decrease of −1.5 dB compared
to the binaural MVDR beamformer. For the MWF-IC(0.6) and the MWF-IC(0.2),
the SRT is equal to −12.3 dB and −12.5 dB, respectively. Hence, for both MSC
boundaries a very similar SRT is obtained, which is about 0.5 dB lower than
for the binaural MVDR beamformer. The SRT for the MVDR-N(0.6) and the
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MVDR-N(0.2) beamformer is equal to −11.0 dB and −10.2 dB, respectively. For
both MSC boundaries the SRT for the MVDR-N beamformer is worse than the
SRT for the MWF-IC and the SRT difference between the MVDR-N(0.6) and the
MVDR-N(0.2) beamformer is smaller than for the anechoic scenario.
The results of the post hoc test are given in Table 6.2. Similarly as for the ane-
choic scenario, all algorithms show a significant decrease in SRT compared to the
unprocessed condition, while the MVDR-OPT performs significantly better than
all other algorithms. Although the SRT for the MWF-IC for both boundaries is
lower than for the binaural MVDR beamformer, this difference only appears to be
significant for the MWF-IC(0.6). The MVDR-N beamformer performs significantly
worse than all other algorithms, where the MVDR-N(0.6) beamformer performs
significantly better than the MVDR-N(0.2) beamformer.
In order to compare these SRT results to objective measures, Figure 6.6 depicts
the intelligibility weighted SNR improvement and the MSC error for the noise
component, averaged over 20 sentences for an input SNR of −20 dB and 0 dB.
The results are very similar as for the anechoic scenario, i.e. the iSNR improve-
ment and the MSC error are independent of the input SNR for all algorithms. The
iSNR improvement for the MVDR-OPT is the same as for the binaural MVDR
beamformer and the MSC error for the binaural MVDR beamformer is very large
and equal to 0 for the MVDR-OPT. In addition, in general the iSNR improvement
for the MWF-IC is larger than for the MVDR-N beamformer, especially for the
MSC boundary γmsc,2, which corresponds to the results in Section 5.6.
In summary, from the results for the anechoic and the cafeteria scenario we can
conclude that all considered algorithms are able to significantly improve speech
intelligibility. The SRT results for the MVDR-OPT indicate that compared to the
binaural MVDR beamformer the SRT can be further decreased by 2dB if the IC
of the noise component is preserved. Since both the MVDR-N beamformer and the
MWF-IC preserve the IC of the noise component but degrade the noise reduction
performance, compared to the binaural MVDR beamformer, both effects seem to
compensate each other in terms of speech intelligibility, such that only for the
MWF-IC(0.6) in the cafeteria scenario a significant increase in speech intelligibil-
ity could be obtained. For the anechoic scenario, no statistically significant SRT
difference between the binaural MVDR beamformer and both the MVDR-N beam-
former and the MWF-IC was observed. For the cafeteria scenario, the MWF-IC
achieved a statistically significant improvement in SRT, and the MVDR-N beam-
former yields a statistically significant degradation in SRT, compared to the bin-
aural MVDR beamformer. Furthermore, for the MWF-IC the choice of the MSC
boundary does not seem to have a significant impact on speech intelligibility. On
the other hand for the MVDR-N beamformer the results for the MVDR-N(0.6)
beamformer were always significantly better than for the MVDR-N(0.2) beam-
former, due to the large iSNR loss for the MVDR-N(0.2) beamformer compared
to the MVDR-N(0.6) beamformer.
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Figure 6.5: SRT results for the unprocessed signals and the evaluated algorithms for
the cafeteria scenario, averaged over all subjects. The boxplot visualizes the
interquartile range (IQR) from the 25% percentile to the 75% percentile and
the vertical line inside the box visualizes the median value. The upper whisker
indicates the largest value that is smaller than the 75% percentile plus 1.5
times the IQR and the lower whisker indicates the smallest value that is
larger than the 25% percentile minus 1.5 times the IQR. The circles indicate
outliers.
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Figure 6.6: Intelligibility-weighted SNR improvement in the left and the right hearing aid
and MSC error for the noise component, averaged over 20 sentences for an
input SNR of −20 dB and 0 dB for the cafeteria scenario.



104 subjective evaluation

UNPROC. MVDR MVDR-OPT MWF-IC(0.6) MVDR-N(0.6) MWF-IC(0.2) MVDR-N(0.2)
UNPROC. *** *** *** *** *** ***
MVDR *** *** * *** o ***

MVDR-OPT *** *** *** *** ** ***
MWF-IC(0.6) *** * *** *** o ***
MVDR-N(0.6) *** *** *** *** *** *
MWF-IC(0.2) *** o ** o *** ***
MVDR-N(0.2) *** *** *** *** * ***

Table 6.2: Significance of the measured SRT differences between algorithms for the cafe-
teria scenario. The asterisks denote results that are statistically significant
(*** p < 0.001, ** p < 0.01, * p < 0.05) and o denotes results that are not
statistically significant (p > 0.05).

6.6 MUSHRA results for spatial quality

6.6.1 Anechoic scenario

The results of the MUSHRA test for the anechoic scenario are depicted in Figure
6.7 and the results of the post hoc test are given in Table 6.3. The median score
for the reference condition is equal to 100, showing that all subjects were able to
distinguish the hidden reference from the other conditions and the anchor achieves
the lowest score as desired. The binaural MVDR beamformer performs only slightly
better than the anchor, but this difference appears not to be significant. Compared
to the binaural MVDR beamformer, for both the MVDR-N beamformer and the
MWF-IC a significant improvement in terms of spatial quality can be achieved.
Generally, for the MVDR-N beamformer a better performance than for the MWF-
IC is be achieved, even though the MSC error for the noise component is very
similar for both algorithms (cf. Figure 6.4c). The better performance of the MVDR-
N beamformer may be explained by the fact that the output signals of the binaural
MVDR beamformer are mixed with the reference microphone signals, resulting in a
more natural sounding output signal and possibly a better preservation of the short-
term IC than for the MWF-IC. For both the MVDR-N beamformer and the MWF-
IC the impact of the different MSC boundaries on spatial quality is not significant
and only the difference between the MVDR-N(0.2) beamformer and the MWF-IC
appears to be statistically significant. Nevertheless, for both algorithms the median
scores for the MSC boundary γmsc,2 are better than for the MSC boundary γmsc,6.
However, it should be noted that there is still a significant difference between
the reference condition and the proposed algorithms, leaving room for further
improvement. Furthermore, it should be noted that for the MVDR-N beamformer
and the MWF-IC the range between the upper and the lower whisker is quite
large, indicating that the rating across the subjects is not very consistent and the
subjects had a different interpretation of the overall scale.
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Figure 6.7: MUSHRA results for the evaluated algorithms for the anechoic scenario, av-
eraged over all subjects. The boxplot visualizes the interquartile range (IQR)
from the 25% percentile to the 75% percentile and the vertical line inside the
box visualizes the median value. The upper whisker indicates the largest value
that is smaller than the 75% percentile plus 1.5 times the IQR and the lower
whisker indicates the smallest value that is larger than the 25% percentile
minus 1.5 times the IQR. The circles indicate outliers.

REF. ANCHOR MVDR MWF-IC(0.6) MVDR-N(0.6) MWF-IC(0.2) MVDR-N(0.2)
REF. *** *** *** *** *** **

ANCHOR *** o ** *** *** ***
MVDR *** o * * * **

MWF-IC(0.6) *** ** * o o *
MVDR-N(0.6) *** *** * o o o
MWF-IC(0.2) *** *** * o o *
MVDR-N(0.2) ** *** ** * o *

Table 6.3: Significance of the measured scores across algorithms for the MUSHRA test
for the anechoic scenario. The asterisks denote results that are statistically
significant (*** p < 0.001, ** p < 0.01, * p < 0.05) and o denotes results that
are not statistically significant (p > 0.05).

6.6.2 Cafeteria scenario

The results of the MUSHRA test for the cafeteria scenario are depicted in Figure
6.8 and the results of the post hoc test are given in Table 6.4. The median score
for the reference condition is equal to 100 (with one outlier), showing that almost
all subjects were able to distinguish the hidden reference from the other conditions
and the anchor achieves the lowest score as desired. Similarly as for the anechoic
scenario, the binaural MVDR beamformer performs only slightly better than the
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anchor, what again appears not to be significant. For the cafeteria scenario, the
binaural MVDR beamformer achieves even lower scores than for the anechoic
scenario. Compared to the binaural MVDR beamformer, for both the MVDR-N
beamformer and the MWF-IC a significant improvement in terms of spatial quality
can be achieved. Similarly as for the anechoic scenario, the MVDR-N beamformer
performs better than the MWF-IC even though the MSC error is very similar
for both algorithms (cf. Figure 6.6c). Again, the impact of the different MSC
boundaries on spatial quality is not significant for the MVDR-N beamformer and
the MWF-IC and only the difference between the MVDR-N(0.2) beamformer and
the MWF-IC(0.2) appears to be significant. Also for the cafeteria scenario, for
the MVDR-N beamformer and the MWF-IC the range between the upper and
the lower whisker is quite large, especially for the MWF-IC. In summary, from
the results for the anechoic and the cafeteria scenario we can conclude that both
the MWF-IC and the MVDR-N are able to significantly improve spatial quality
compared to the binaural MVDR beamformer. For both scenarios the MVDR-N
beamformer achieves higher scores in the MUSHRA test compared to the MWF-
IC where for both algorithms the choice of the psychoacoustically motivated MSC
boundary does not seem to have a significant impact on spatial quality.

Figure 6.8: MUSHRA results for the evaluated algorithms for the cafeteria scenario, av-
eraged over all subjects. The boxplot visualizes the interquartile range (IQR)
from the 25% percentile to the 75% percentile and the vertical line inside the
box visualizes the median value. The upper whisker indicates the largest value
that is smaller than the 75% percentile plus 1.5 times the IQR and the lower
whisker indicates the smallest value that is larger than the 25% percentile
minus 1.5 times the IQR. The circles indicate outliers.
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REF. ANCHOR MVDR MWF-IC(0.6) MVDR-N(0.6) MWF-IC(0.2) MVDR-N(0.2)
REF. *** *** *** *** *** o

ANCHOR *** o *** *** *** ***
MVDR *** o ** *** *** ***

MWF-IC(0.6) *** *** ** o o o
MVDR-N(0.6) *** *** *** o o o
MWF-IC(0.2) *** *** *** o o *
MVDR-N(0.2) o *** *** o o *

Table 6.4: Significance of the measured scores across algorithms for the MUSHRA test
for the cafeteria scenario. The asterisks denote results that are statistically
significant (*** p < 0.001, ** p < 0.01, * p < 0.05) and o denotes results that
are not statistically significant (p > 0.05).

6.7 Conclusion

In order to evaluate the impact of the trade-off between MSC preservation and
output SNR improvement on speech intelligibility and spatial awareness, in this
chapter we subjectively evaluated the binaural MVDR beamformer, the binaural
MVDR-N beamformer and the MWF-IC for two different MSC boundaries.
From the results of the speech intelligibility test we can conclude that all consid-
ered binaural noise reduction algorithms significantly improve speech intelligibility.
The SRT results for the artificially generated MVDR-OPT indicate that the SRT
can be improved by 2 dB if the IC of the noise component is perfectly preserved.
Since both the MVDR-N beamformer and the MWF-IC preserve the IC of the
noise component but degrade the noise reduction performance, compared to the
binaural MVDR beamformer, both effects seem to compensate each other in terms
of speech intelligibility, such that only for the MWF-IC(0.6) in the cafeteria sce-
nario a significant increase in speech intelligibility could be obtained.
In terms of spatial quality, the results show that the MVDR-N beamformer and the
MWF-IC are able to achieve a significant improvement compared to the binaural
MVDR beamformer, where the impact of the MSC boundaries was not significant
for both algorithms. While the MWF-IC achieves a better performance in terms of
speech intelligibility compared to the MVDR-N beamformer, the MVDR-N beam-
former shows a better performance in the spatial quality test, even though the
MSC error of the noise component is very similar for both algorithms. The better
performance of the MVDR-N beamformer may be explained by the fact that the
output signals of the binaural MVDR beamformer are mixed with the reference mi-
crophone signals, resulting in a more natural sounding output signal and possibly
a better preservation of the short-term IC than for the MWF-IC.





7
BINAURAL NOISE REDUCTION AND CUE
PRESERVATION FOR SCENARIOS WITH
INTERFERING SOURCES

In contrast to Chapters 4-6, where we considered a desired speech source in a diffuse
noise field, in this chapter we consider an acoustic scenario with a desired speech
source and a directional interfering source in a noisy and reverberant environment,
where the objective is to reduce the overall noise component (including the inter-
fering source) and to preserve the binaural cues (ILD and ITD) of the directional
speech source and the interfering source. Please not that in contrast to Chapters
4-6 we will not consider binaural cue preservation of the (diffuse) background noise
component. For the considered acoustic scenario it has been shown in Chapter 3
that both the MWF-ITF and the MWF-N are able to partially preserve the binau-
ral cues of the noise component. However, for the MWF-ITF a trade-off between
the preservation of the binaural cues of the speech and the noise component exists
and for the MWF-N a trade-off between the preservation of the binaural cues of
the noise component and the output SINR exists, such that the performance of
both algorithms highly depends on a careful tuning of trade-off parameters. Hence,
in this chapter we propose two extensions of the binaural MWF, which in addition
to minimizing the overall noise output power and speech distortion aim to either
perfectly preserve the binaural cues of the interfering source or to completely sup-
press the interfering source. The first extension, denoted as MWF-RTF aims to
preserve the binaural cues of the interfering source by adding an RTF preservation
constraint to the binaural MWF cost function. Instead of preserving the RTF of
the interfering source, one could also aim to completely suppress the interfering
source to avoid the presence of a residual interference component with distorted
binaural cues in the output signal. Hence, the second extension, denoted as MWF-
IR, aims to completely suppress the interfering source by adding an interference
rejection constraint to the binaural MWF cost function.
In Sections 7.3 - 7.6, the theoretical relationship between the binaural MWF, the
MWF-RTF and the MWF-IR will be mathematically analysed and the perfor-
mance in terms of noise reduction, speech distortion and binaural cue preservation
will be thoroughly compared. In Section 7.7 the theoretical analysis is validated
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by experiments using measured ATFs of a binaural hearing aid setup in an office
scenario, showing that the performance of the binaural MWF, MWF-RTF and
MWF-IR highly depends on the position of the interfering source and the num-
ber of microphones. Furthermore, in Section 7.8 the relation of the proposed algo-
rithms to the recently presented Binaural Linearly Constrained Minimum Variance
(BLCMV) beamformer, which aims to partially suppress a directional interfering
source while maintaining the binaural cues of both the desired speech source and
the interfering source, is investigated.

7.1 Signal model

In this chapter we assume an acoustical scenario with one desired speech source
Sx, one directional interfering source Si and diffuse background noise N , i.e using
the same signal model as defined in Section 2.1. For the sake of readability, we
rewrite the overall signal vector Y in (2.4) which is equal to

Y = X + U + N︸ ︷︷ ︸
V

= SxA + SiB + N, (7.1)

with X the speech component, U the interference component, N the background
noise component and V the overall noise component. The vectors A and B denote
the ATFs between the microphones and the speech source and the interfering
source, respectively.
It should be noted that the extension of the proposed algorithms to scenarios
with multiple interfering sources is straightforward, what is not the case for the
theoretical analysis provided in this chapter. Hence, we restrict ourselves to a
scenario with one interfering source.

7.2 Mathematical definitions

In this section we define mathematical expressions which will be used throughout
the theoretical analysis in this chapter.
We define the inner products of the ATFs of the speech and the interfering source,
weighted with the inverse of the overall noise correlation matrix Rv, cf. (2.13),
as

σa = AHR−1
v A, (7.2)

σab = AHR−1
v B, (7.3)

σb = BHR−1
v B, (7.4)

and

Σ =
|σab|2

σaσb
. (7.5)
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Since Rv is assumed to be a positive-definite Hermitian matrix, using the Cauchy-
Schwartz inequality it can be shown that

0 ≤ Σ ≤ 1. (7.6)

Furthermore, we define the inner products of the ATFs of the speech and the
interfering source, weighted with the inverse of the speech-distortion-weighted cor-
relation matrix R̃y, cf. (3.20), as

λa = AHR̃
−1

y A, (7.7)

λab = AHR̃
−1

y B, (7.8)

λb = BHR̃
−1

y B, (7.9)

and

Γ =
|λab|2

λaλb
. (7.10)

Using (A.10) and (7.2)-(7.5), it can be shown that

λa =
σa
µ+ ρ

, (7.11)

λab =
σab
µ+ ρ

, (7.12)

λb =
1

µ

(
σb −

Ps |σab|2

(µ+ ρ)

)
, (7.13)

and hence

Γ =
µΣ

µ+ ρ(1− Σ)
. (7.14)

Again, since R̃y is a positive-definite Hermitian matrix, using the Cauchy-Schwartz
inequality it can be shown that

0 ≤ Γ ≤ 1. (7.15)

7.3 Binaural multi-channel Wiener filter (MWF)

For the sake of readability the binaural MWF (cf. Section 3.2) is briefly reviewed
in this section. As described in Section 3.2, the binaural MWF is equal to

WMWF,0 =
ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗0, (7.16)

WMWF,1 =
ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗1. (7.17)
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The speech distortion of the binaural MWF is equal to (cf. Appendix D.1.1)

SDMWF =
(µ+ ρ)2

ρ2
(7.18)

which is always larger than or equal to 1. Furthermore, the output SIR of the
binaural MWF can be calculated by substituting (7.16) and (7.17) in (2.90) as (cf.
Appendix D.1.2)

SIRout
MWF =

Psσ
2
a

Pi|σab|2
(7.19)

with σa and σab defined in (7.2) and (7.3). As already shown in Section 3.2, the
binaural output SINR is equal to

SINRout
MWF = ρ (7.20)

As shown in Section 3.2, the binaural MWF perfectly preserves the RTF of the
speech source but distorts the RTF of the interfering source, such that the output
RTF of the interfering source is equal to the output RTF of the speech source,
i.e.,

RTF out
u =

A0

A1
= RTF in

x . (7.21)

Hence, in the next sections we propose two extensions of the binaural MWF, which
in addition to minimizing the overall noise output power and speech distortion aim
to either perfectly preserve the binaural cues of the interfering source or to com-
pletely suppress the interfering source. The first extension, denoted as MWF-RTF
(cf. Section 7.4) aims to preserve the binaural cues of the interfering source by
adding an RTF preservation constraint to the binaural MWF cost function. The
second extension, denoted as MWF-IR (cf. Section 7.5), aims to completely sup-
press the interfering source by adding an interference rejection constraint to the
binaural MWF cost function. In Sections 7.4 and 7.5, we derive analytical expres-
sions for the filter vectors, the output RTF of the speech and the interfering source,
the speech distortion, the output SIR and the output SINR, defined in Section 2.3.
In Section 7.6, we will mathematically analyse the theoretical relationship between
the binaural MWF, the MWF-RTF and the MWF-IR in terms of noise reduction,
speech distortion and binaural cue preservation. In Section 7.7 this theoretical
analysis is validated by experiments using measured ATFs of a binaural hearing
aid setup in an office scenario. Furthermore, in Section 7.8 the relation of the
proposed algorithms to the recently presented BLCMV beamformer [75] will be
investigated.

7.4 Binaural MWF with RTF preservation (MWF-RTF)

In order to control the binaural cues of the overall noise component, it has been
proposed in [83] to add a linear constraint to the binaural MWF cost function,



7.4 binaural mwf with rtf preservation (mwf-rtf) 113

aiming to preserve the instantaneous ITF of the overall noise component. However,
since for the filter in [83] an accurate estimate of the noise component is required,
in this paper we propose a modified version by adding a linear constraint to the
binaural MWF cost function, aiming to preserve the RTF of the interfering source,
i.e.,

min
W

JMWF(W) subject to
WH

0 B
WH

1 B
=
B0

B1
, (7.22)

with JMWF(W) defined in (3.19). The constraint in (7.22) can be written as

WHC = 0, (7.23)

with

C =

[
B
αB

]
, α = −B0

B1
= −RTF in

u . (7.24)

Using the method of Lagrange multipliers, the solution of the constrained opti-
mization problem in (7.22) is equal to [83]

WMWF−RTF = R−1rx −
R−1CCHR−1rx

CHR−1C
, (7.25)

with R and rx defined in (3.20). The stacked filter vector in (7.25) can fur-
ther be written as a binaural MWF and an additional term, i.e. (cf. Appendix
D.2.1),

WMWF−RTF,0 = WMWF,0 − κ R̃−1
y B, (7.26)

WMWF−RTF,1 = WMWF,1 − ακ R̃−1
y B, (7.27)

with

κ =
Ps (A0 + αA1)

∗
σa

(1 + |α|2)σab
Γ. (7.28)

Although not directly visible, please note that the filter vectors in (7.26) and
(7.27) can be rewritten in terms of the RTF vectors of the speech source and the
interfering source, i.e. A0, A1, B0 and B1 (cf. (2.65) and (2.66)). While estimating
the ATF vectors A and B is known to be quite difficult [133], several methods for
estimating the RTF vectors have been proposed and applied in multi-channel noise
reduction algorithms, e.g., by exploiting the nonstationarity of speech signals and
using generalized eigenvalue decomposition [47, 134, 135, 136, 137]. However, it
should be noted that in this chapter we assume the RTF vectors of the speech
source and the interfering source to be known, not taking into account the impact
of RTF estimation errors when validating the derived analytical expressions in
Section 7.7.
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Substituting (7.26) and (7.27) in (2.71), the output RTF of the speech source is
equal to (cf. Appendix D.2.2)

RTF out
x =

A0

A1

1− Γ
A0

(
(A0+αA1)

1+|α|2

)
1− α∗Γ

A1

(
(A0+αA1)

1+|α|2

) . (7.29)

Hence, contrary to the binaural MWF the output RTF of the speech source is
not always perfectly preserved for the MWF-RTF. Due to the RTF constraint in
(7.22), the output RTF of the interfering source is preserved, i.e.,

RTF out
u =

B0

B1
= RTF in

u . (7.30)

Substituting (7.26) and (7.27) in (2.96), the speech distortion of the MWF-RTF
is equal to (cf. Appendix D.2.2)

SDMWF−RTF =
(µ+ ρ)2

ρ2

1

(1 + Γ2K − 2ΓK)
(7.31)

with

K =
|A0 + αA1|2

(1 + |α|2)(|A0|2 + |A1|2)
. (7.32)

Realizing that the expression in (7.32) can be written as the square of the normal-
ized inner product of the two vectors u and v, i.e.,

K =

∣∣uHv
∣∣2

‖u‖2 ‖v‖2
, (7.33)

with

u =

[
1

α∗

]
, v =

[
A0

A1

]
, (7.34)

it can be shown using the Cauchy-Schwarz inequality that

0 ≤ K ≤ 1. (7.35)

Furthermore, (7.31) implies that the speech distortion of the MWF-RTF is equal to
the speech distortion of the binaural MWF in (7.18) multiplied with an additional
term that depends on Γ and K.
The SIR of the MWF-RTF can be calculated by substituting (7.26) and (7.27) in
(2.90), i.e. (cf. Appendix D.2.3),

SIRout
MWF−RTF =

Psσ
2
a

Pi|σab|2

(
1 + Γ2K − 2ΓK

)
1−K

(7.36)
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Similarly as for the speech distortion, the output SIR of the MWF-RTF is hence
equal to the output SIR of the binaural MWF in (7.19) multiplied with an addi-
tional term that depends on Γ and K.
By substituting (7.26) and (7.27) in (2.93), the SINR of the MWF-RTF is equal
to (cf. Appendix D.2.4)

SINRout
MWF−RTF = ρ

1 + Γ2K − 2ΓK

1 + νΓ2K − 2ΓK
(7.37)

with

ν =
(µ+ ρ)

2

µ2Σ
− ρ2 + 2µρ

µ2
. (7.38)

Again, similarly as for the speech distortion and the output SIR, the output SINR
of the MWF-RTF is equal to the output SINR of the binaural MWF in (7.20)
multiplied with an additional term that depends on Γ, K and ν. A more detailed
analysis and comparison of the SD, SIR and SINR performance will be provided
in Section 7.6.

7.5 Binaural MWF with interference rejection (MWF-IR)

Instead of preserving the RTF of the interfering source as proposed in Section 7.4,
one could also aim at completely suppressing the interfering source in order to
avoid the presence of a residual interference component with distorted binaural
cues in the output signal. Similarly to the BLCMV beamformer in [75] (cf. Section
7.8), we propose to extend the binaural MWF cost function with an interference
rejection constraint. The cost function for the left and the right hearing aid can
be written as

min
W0

JMWF(W0) subject to WH
0 B = 0, (7.39)

min
W1

JMWF(W1) subject to WH
1 B = 0, (7.40)

with JMWF,0 and JMWF,1 defined in (3.17) and (3.18). The linear constraints in
(7.39) and (7.40) are similar to (7.23) and can be written as

WH
0 C = 0, WH

1 C = 0, with C = B. (7.41)

Hence, the solution to the optimization problem in (7.39) and (7.40) can be ob-
tained from (7.25) by replacing R with R̃y, C with B and rx with rx,0 or rx,1,
i.e.,

WMWF−IR,0 = R̃−1
y rx,0 −

R̃−1
y BBHR̃−1

y rx,0

BHR̃−1
y B

, (7.42)

WMWF−IR,1 = R̃−1
y rx,1 −

R̃−1
y BBHR̃−1

y rx,1

BHR̃−1
y B

. (7.43)
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Similarly as for the MWF-RTF, the filter vectors in (7.42) and (7.43) can be
rewritten in terms of the RTF vectors of the speech source and the interfering
source, i.e. A0, A1, B0 and B1 (cf. (2.65) and (2.66)).
Using (3.22), (3.23), (7.8), (7.9) and (D.11), the filter vectors in (7.42) and (7.43)
can further be written as a binaural MWF and an additional term, i.e.,

WMWF−IR,0 = WMWF,0 − γA∗0 R̃−1
y B, (7.44)

WMWF−IR,1 = WMWF,1 − γA∗1 R̃−1
y B, (7.45)

with

γ =
Psσa
σab

Γ. (7.46)

Similarly as for the binaural MWF, the filter for the left and the right hearing aids
are related by the input RTF of the speech component, i.e.,

WMWF−IR,0 =

(
A0

A1

)∗
WMWF−IR,1. (7.47)

Substituting (7.47) in (2.71), the output RTF of the speech source for the MWF-IR
is equal to

RTF out
x =

A0

A1
= RTF in

x
. (7.48)

Hence, contrary to the MWF-RTF, the MWF-IR always preserves the RTF of the
speech source. The output RTF of the interfering source can not be calculated
since theoretically the interfering source is completely suppressed and hence not
present in the output signal of the MWF-IR.
Note the similarity of the MWF-IR filter vectors in (7.44) and (7.45) with the
MWF-RTF filter vectors in (7.26) and (7.27). Using (7.28) in (7.26) and (7.27) and
using (7.46) in (7.44) and (7.45), it can be shown that for the special case

κ = γA∗0, (7.49)
ακ = γA∗1, (7.50)

the MWF-RTF filter vectors in (7.26) and (7.27) are equal to the MWF-IR filter
vectors in (7.44) and (7.45). By substituting (7.49) in (7.50), it can be shown that
this holds when

αs =
A∗1
A∗0

, (7.51)

which, by substituting (7.51) in (7.32), corresponds to

Ks =
|A0 +

A∗
1

A∗
0
A1|2

(1 + |A
∗
1

A∗
0
|2)(|A0|2 + |A1|2)

= 1. (7.52)
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Hence, by using (7.52), the analytical expressions for the speech distortion and
the output SINR for the MWF-IR can be easily obtained by setting K = 1 in
the analytical expressions for the MWF-RTF. Setting K = 1 in the expression
of the speech distortion for the MWF-RTF in (7.31), the speech distortion of the
MWF-IR is equal to

SDMWF−IR =
(µ+ ρ)2

ρ2

1

(1− Γ)
2 (7.53)

Since the interfering source is completely suppressed, the output SIR of the MWF-
IR is equal to

SIRout
MWF−IR =∞ (7.54)

Setting K = 1 in the expression of the output SINR for the MWF-RTF in (7.37),
the output SINR of the MWF-IR is equal to

SINRout
MWF−IR = ρ

1 + Γ2 − 2Γ

1 + νΓ2 − 2Γ
(7.55)

with ν defined in (7.38).

7.6 Comparison between the binaural MWF, MWF-RTF and MWF-
IR

In this section we compare the theoretical performance of the binaural MWF,
MWF-RTF and MWF-IR in terms of speech distortion, output SIR, output SINR
and output SNR using the analytical expressions derived in Sections 7.3, 7.4 and
7.5.

7.6.1 Speech distortion

Noting the similarity of the analytical expressions for the speech distortion of the
MWF-RTF and the MWF-IR in (7.31) and (7.53) and using the fact that 0 ≤ Γ ≤ 1
(cf. (7.15)) and 0 ≤ K ≤ 1 (cf. (7.35)), we can show that

(1− Γ)
2 ≤ 1 + Γ2K − 2ΓK ≤ 1. (7.56)

Using (7.56) in (7.31) and (7.53), the speech distortion of the presented algorithms
is hence related as

1 ≤ SDMWF ≤ SDMWF−RTF ≤ SDMWF−IR (7.57)

Hence, all algorithms introduce a speech distortion greater than or equal to 1,
where the MWF-IR introduces the largest amount of speech distortion and the
binaural MWF introduces the smallest amount of speech distortion. The speech
distortion introduced by the MWF-RTF lies between the speech distortion of the
binaural MWF and the MWF-IR.
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7.6.2 Signal-to-Interference Ratio

Noting the similarity of the analytical expressions for the SIR of the binaural MWF
and the MWF-RTF in (7.19) and (7.36) and using the fact that 0 ≤ K ≤ 1 (cf.
(7.35)), we can show that

1 ≤ 1 + Γ2K − 2ΓK

1−K
. (7.58)

Hence, the output SIR of the binaural MWF is always smaller than or equal to
the output SIR of the MWF-RTF, i.e.,

SIRout
MWF ≤ SIRout

MWF−RTF. (7.59)

Since for the MWF-IR the interference component is completely suppressed and
hence the output SIR is equal to infinity (cf. (7.54)), the output SIR of the pre-
sented algorithms is related as

SIRout
MWF ≤ SIRout

MWF−RTF ≤ SIRout
MWF−IR (7.60)

7.6.3 Signal-to-Interference-plus-Noise Ratio

Noting the similarity of the analytical expressions for the SINR of the binaural
MWF and the MWF-RTF in (7.20) and (7.37), we first show that ν defined in
(7.38) is greater than or equal to 1, i.e.,

1 ≤ (µ+ ρ)
2

µ2Σ
− ρ2 + 2µρ

µ2
. (7.61)

The inequality to be proven in (7.61) can be written as

Σ(µ+ ρ)2 ≤ (µ+ ρ)2. (7.62)

Since 0 ≤ Σ ≤ 1 (cf. (7.6)) the inequality in (7.62) holds. Since ν ≥ 1 and
0 ≤ K ≤ 1 (cf. (7.35)), we can now show that

1 + Γ2K − 2ΓK

1 + νΓ2K − 2ΓK
≤ 1, (7.63)

and hence

SINRout
MWF−RTF ≤ SINRout

MWF. (7.64)

In the last proof of this section we will show that the output SINR of the MWF-
RTF in (7.37) is greater than or equal to the output SINR of the MWF-IR in
(7.55) by showing that the following inequality holds:

1 + Γ2 − 2Γ

1 + νΓ2 − 2Γ
≤ 1 + Γ2K − 2ΓK

1 + νΓ2K − 2ΓK
. (7.65)
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Due to the common terms in the output SINR of the MWF-RTF in (7.37) and the
output SINR of the MWF-IR in (7.55), by using the substitutions

a = Γ2 − 2Γ, b = νΓ2 − 2Γ, (7.66)

the expression in (7.65) can be written as

1 + a

1 + b
≤ 1 +Ka

1 +Kb
. (7.67)

Since 0 ≤ Γ ≤ 1 (cf. (7.15)) and ν ≥ 1, we can show that

a ≥ 0, b ≥ 0, a ≤ b. (7.68)

Using (7.68) and the fact that 0 ≤ K ≤ 1 (cf. (7.35)), the inequality in (7.67) holds
and hence, the output SINR of the presented algorithms is related as

SINRout
MWF−IR ≤ SINRout

MWF−RTF ≤ SINRout
MWF (7.69)

7.6.4 Signal-to-Noise Ratio

The performance comparison for the output SNR of the binaural MWF, MWF-
RTF and MWF-IR can be derived from the performance comparison for the output
SIR and the output SINR in Sections 7.6.2 and 7.6.3. Using the definitions in (2.87),
(2.90) and (2.93), it can be shown that

1

SNRout
=

1

SINRout
− 1

SIRout
. (7.70)

Hence, using (7.60) and (7.69), the output SNR of the binaural MWF is always
larger than or equal to the output SNR of the MWF-RTF, which itself is always
larger than or equal to the output SNR of the MWF-IR, i.e.,

SNRout
MWF−IR ≤ SNRout

MWF−RTF ≤ SNRout
MWF (7.71)

In summary, using the relations of the speech distortion, the output SIR and the
output SINR in (7.57), (7.60) and (7.69), we can now conclude that for the speech
distortion and the output SINR the binaural MWF shows the best performance
compared to the MWF-RTF and the MWF-IR, while the MWF-RTF outperforms
the MWF-IR. Although the RTF constraint in the MWF-RTF leads to a better
suppression of the interfering source compared to the binaural MWF, the overall
noise reduction performance, comprising the suppression of the interference compo-
nent and the background noise, is degraded. In addition, the complete suppression
of the interfering source in the MWF-IR leads to a degradation of the overall noise
reduction performance compared to the binaural MWF and the MWF-RTF. Fur-
thermore, using the relations of the output SIR and output SNR in (7.60) and
(7.71), we can conclude that the more the interfering source is suppressed, the less
suppression of the background noise can be achieved.
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7.7 Objective performance evaluation

In this section we validate the analytical expressions derived in Section 7.3, 7.4,
7.5 and 7.6 using ATFs measured on a binaural hearing aid in a reverberant office
environment.

7.7.1 Simulation setup and algorithm parameters

The performance of the binaural MWF, MWF-RTF and MWF-IR was evaluated
using measured binaural Behind-The-Ear Impulse Responses (BTE-IRs) from [108]
at a sampling frequency of 16 kHz (cf. Section 2.6). The ATFs A and B of the
speech source and the interfering source were calculated from the BTE-IRs mea-
sured in the reverberant office environment. The PSDs of the speech source and
the interfering source Ps and Pi were calculated from two different speech signals
(Welch method using FFT size of 512 and Hann window). The PSD of the back-
ground noise Φn was equal to the PSD of speech-shaped noise. For the background
noise a cylindrically isotropic noise field was assumed and the spatial coherence
matrix Γ was calculated according to (3.72). The global input SNR and the global
input SIR, averaged over all frequencies, were both equal to 0 dB. The trade-off
parameter µ was set to 1 for all algorithms.

7.7.2 Performance measures

For the objective validation we calculate global performance measures by averaging
the logarithmic values of the speech distortion in (2.96), the output SIR in (2.90),
the output SINR in (2.93), and the output SNR in (2.87) over all frequencies. In
order to evaluate the binaural cue preservation performance, we calculate the ILD
and ITD error, averaged over all frequencies for the speech and the interfering
source, i.e. [73],

∆ILD =
1

K

K∑
k=1

∣∣ILDout(ωk)− ILDin(ωk)
∣∣ , (7.72)

∆ITD =
1

K

K∑
k=1

∣∣ITDout(ωk)− ITDin(ωk)
∣∣ , (7.73)

with ωk denoting the k-th frequency and K the total number of frequencies.

7.7.3 Results

In this section we evaluate the performance of the binaural MWF, MWF-RTF
and MWF-IR in the office environment for different microphone configurations.
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The desired speech source was located at −35◦ and the position of the interfering
source was varied between −90◦ and 90◦, where the interfering source position
at −35◦ was not considered. In the first experiment, the performance for M = 3
microphones was evaluated for all performance measures and in the second exper-
iment the performance for the global SD, global output SIR, global output SINR
and global output SNR was evaluated for different number of microphones.

7.7.3.1 Performance for M = 3

In the first experiment we evaluate the performance of the binaural MWF, MWF-
RTF and MWF-IR for M = 3 microphones, i.e. two microphones on the left
hearing aid and one microphone on the right hearing aid.
The global SD and the global output SIR are depicted in Figures 7.1a-7.1b. The
global output SIR of the MWF-IR is not depicted since it is equal to infinity. As
shown in the theoretical analysis in Sections 7.3 - 7.6, the binaural MWF introduces
the lowest amount of speech distortion compared to the MWF-RTF and the MWF-
IR, cf. (7.57). While the global SD of the MWF-RTF is only slightly larger than for
the binaural MWF, the global SD of the MWF-IR is significantly larger, especially
for interfering source positions close to the speech source position. The global
output SIR of both the binaural MWF and the MWF-RTF increases for interfering
source positions further away from the speech source position. Furthermore, it
can be observed that the global output SIR of the MWF-RTF is significantly
larger than the global output SIR of the binaural MWF, especially for interfering
source positions far away from the speech source position. The global output SIR
difference ranges from 1 dB for an interfering source at −40◦ up to 7 dB for an
interfering source at 50◦.
The global output SINR and the global output SNR are depicted in Figures 7.1c-
7.1d. The relationships between the algorithms are very similar to the results for
the global SD. While the global output SINR and the global output SNR for
the binaural MWF and the MWF-RTF are very similar and slightly decrease for
interfering source positions close to the speech source position, the global output
SINR and the global output SNR for the MWF-IR is significantly lower, especially
for interfering source positions close to the speech source position. The difference
in global output SINR between the binaural MWF and the MWF-IR ranges from
0.5 dB for an interfering source at 45◦ up to 3.5 dB for an interfering source at
−40◦. The difference in global output SNR ranges from 0.5 dB for an interfering
source at 45◦ up to 4.5 dB for an interfering source at −40◦.
The ILD and ITD errors for the speech and the interfering source are depicted in
Figure 7.2. The ILD and ITD error for the MWF-IR are not depicted since the
interfering source is completely suppressed. On the one hand, for the speech source
the MWF-RTF introduces a small ILD error (up to 2dB) and a very small ITD
error (up to 0.05ms), depending on the position of the interfering source, while
the binaural MWF and the MWF-IR perfectly preserve the ILD and the ITD
of the speech source. On the other hand, for the interfering source the binaural
MWF introduces a large ILD error (up to 17 dB), especially for interfering source



122 noise reduction and cue preservation for interfering sources

positions far away from the speech source position. The ITD error of the binaural
MWF varies around 0.2 ms for all interfering source positions. The MWF-RTF
perfectly preserves the binaural cues of the interfering source.
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Figure 7.1: Global SD, output SIR, output SINR and output SNR for the binaural MWF,
MWF-RTF and MWF-IR for a speech source at −35◦ and different positions
of the interfering source for M = 3 microphones.
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Figure 7.2: Global ILD and ITD error for the speech source and the interfering source
for the binaural MWF, MWF-RTF and MWF-IR for a speech source at −35◦

and different positions of the interfering source for M = 3 microphones.
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7.7.3.2 Performance for a different number of microphones

In the second experiment, we evaluate the performance of the binaural MWF,
MWF-RTF and MWF-IR using M = 2 microphones, i.e. one microphone on the
left hearing aid and one microphone on the right hearing aid, M = 3 microphones,
i.e. two microphones on the left hearing aid and one microphone on the right hear-
ing aid, M = 4 microphones, i.e. two microphones on the left hearing aid and two
microphones on the right hearing aid and M = 5 microphones, i.e. three micro-
phones on the left hearing aid and two microphones on the right hearing aid.
The performance measures for a different number of microphones are depicted in
Figure 7.3 (global SD), Figure 7.4 (global output SIR), Figure 7.5 (global out-
put SINR) and Figure 7.6 (global output SNR). For the binaural MWF and the
MWF-RTF the global output SIR (Figure 7.4) increases for an increasing num-
ber of microphones, while the performance difference between the binaural MWF
and the MWF-RTF is rather independent of the number of microphones. For all
algorithms and interfering source positions, the amount of speech distortion (Fig-
ure 7.3) decreases and the global output SINR (Figure 7.5) and the global output
SNR (Figure 7.6) increase for an increasing number of microphones. Especially for
M = 2, the performance of the MWF-IR is significantly worse than the perfor-
mance of the binaural MWF and the MWF-RTF. This can be explained by the
fact that for the MWF-RTF one constraint is imposed, leaving 2M − 1 degrees of
freedom (cf. (7.22)), whereas for the MWF-IR two constraints are imposed, leaving
2M − 2 degrees of freedom (cf. (7.39) and (7.40)). This has a severe impact on the
overall performance, especially for a small number of microphones. ForM = 2, the
difference in global output SINR between the binaural MWF and the MWF-IR
ranges from 1 dB for an interfering source at 45◦ up to 5dB for an interfering
source at −40◦. The difference in global output SNR ranges from 1dB for an in-
terfering source at 45◦ up to 6.5 dB for an interfering source at −40◦. It can also
be observed that for an increasing number of microphones the performance of all
3 algorithms becomes more similar, since the impact of the additional constraints
in the MWF-RTF and the MWF-IR on the overall performance decreases.
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(b) SD, M = 3
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(c) SD, M = 4
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Figure 7.3: Global SD for the binaural MWF, MWF-RTF and MWF-IR for a speech
source at −35◦ and different positions of the interfering source using different
number of microphones.
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(b) output SIR, M = 3
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(c) output SIR, M = 4
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Figure 7.4: Global output SIR for the binaural MWF, MWF-RTF and MWF-IR for a
speech source at −35◦ and different positions of the interfering source using
different number of microphones.
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(a) output SINR, M = 2
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(b) output SINR, M = 3
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(c) output SINR, M = 4
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Figure 7.5: Global output SINR for the binaural MWF, MWF-RTF and MWF-IR for a
speech source at −35◦ and different positions of the interfering source using
different number of microphones.

−80 −60 −40 −20 0 20 40 60 80
−6

−3

0

3

6

Azimuth

S
N

R
 [d

B
]

 

 

MWF
MWF−RTF
MWF−IR

(a) output SNR, M = 2
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(b) output SNR, M = 3
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(c) output SNR, M = 4
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Figure 7.6: Global output SNR for the binaural MWF, MWF-RTF and MWF-IR for a
speech source at −35◦ and different positions of the interfering source using
different number of microphones.
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7.8 Relation of the BLCMV to the binaural MWF, MWF-RTF and
MWF-IR

In [75] the Binaural Linearly Constrained Minimum Variance (BLCMV) beam-
former has been proposed, which aims to minimize the overall noise output power
of the left and the right hearing aid subject to two constraints, namely preserving
the desired speech component and partially suppressing the directional interfer-
ence component. The optimization criteria for the left and the right hearing aid
are given by

min
W0

WH
0 RvW0 subject to CHW0 = b0, (7.74)

min
W1

WH
1 RvW1 subject to CHW1 = b1, (7.75)

with

C =
[
A B

]
, b0 =

[
A∗0

τ∗0B
∗
0

]
, b1 =

[
A∗1

τ∗1B
∗
1

]
. (7.76)

The (complex-valued) parameters τ0 and τ1 are the interference rejection parame-
ters for the left and the right hearing aid which can in principle be freely chosen.
Note that the optimization criteria in (7.74) and (7.75) can also be written in terms
of the RTF vectors of the speech source and the interfering source. However, for
the sake of readability we will use the ATF formulation for the following discussion.
The filters minimizing (7.74) and (7.75) can be computed as [75]

WBLCMV,0 = R−1
v C

[
CHR−1

v C
]−1

b0, (7.77)

WBLCMV,1 = R−1
v C

[
CHR−1

v C
]−1

b1. (7.78)

Due to the linear constraints on the speech component and the directional inter-
ference, the output RTFs of the speech source and the interfering source can be
easily computed and are equal to

RTF out
x =

WH
0 A

WH
1 A

=
A0

A1
, (7.79)

RTF out
u =

WH
0 B

WH
1 B

=
τ0B0

τ1B1
. (7.80)

Hence, the RTF of the speech source is always preserved and the RTF of the
interfering source is preserved if τ0 = τ1. Since the performance of the BLCMV
beamformer in terms of overall noise reduction and binaural cue preservation of
the interfering source highly depends on the choice of the interference rejection
parameters τ0 and τ1, in [85] we extended the analysis of the monaural LCMV
beamformer in [138] to the BLCMV beamformer. The BLCMV filter vectors in
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(7.77) and (7.78) can be written as the weighted sum of two spatial sub-filters W̄0

and W̄1, i.e.,

WBLCMV,0 = A∗0W̄0 + τ∗0B
∗
0W̄1, (7.81)

WBLCMV,1 = A∗1W̄0 + τ∗1B
∗
1W̄1, (7.82)

with [
W̄0 W̄1

]−1
= R−1

v C
[
CHR−1

v C
]−1

. (7.83)

Using (7.2)-(7.5) and

[
CHR−1

v C
]−1

=

[
σa σab

σ∗ab σb

]−1

=
1

σaσb − |σab|2

[
σb −σab
−σ∗ab σa

]
, (7.84)

the spatial sub-filters W̄0 and W̄1 can be written as

W̄0 =
R−1

v Aσb −R−1
v Bσ∗ab

σaσb − |σab|2
=

Σ

1− Σ

R−1
v Aσb −R−1

v Bσ∗ab
|σab|2

, (7.85)

W̄1 =
−R−1

v Aσab + R−1
v Bσa

σaσb − |σab|2
= − Σ

1− Σ

R−1
v Aσab −R−1

v Bσa
|σab|2

, (7.86)

and hence, the filters in (7.81) and (7.82) are equal to

WBLCMV,0 =
1

1− Σ

[
A∗0
σa

(
R−1

v A− σ∗ab
σb

R−1
v B

)
+
τ∗0B

∗
0

σb

(
R−1

v B− σab
σa

R−1
v A

)]
,

(7.87)

WBLCMV,1 =
1

1− Σ

[
A∗1
σa

(
R−1

v A− σ∗ab
σb

R−1
v B

)
+
τ∗1B

∗
1

σb

(
R−1

v B− σab
σa

R−1
v A

)]
.

(7.88)

Substituting (7.81) and (7.82) in (2.91) and (2.92), the output SINR at the left
and the right hearing aid is equal to

SINRout
0 =

Ps|A0|2

|A0|2h0 + |τ0|2|B0|2h1 + 2<{τ∗0A0B∗0h01}
, (7.89)

SINRout
1 =

Ps|A1|2

|A1|2h0 + |τ1|2|B1|2h1 + 2<{τ∗1A1B∗1h01}
, (7.90)

with (cf. Appendix D.3)

h01 = W̄H
0 RvW̄1 = − σab

(σaσb − |σab|2)
, (7.91)

h0 = W̄H
0 RvW̄0 =

σb
(σaσb − |σab|2)

, (7.92)

h1 = W̄H
1 RvW̄1 =

σa
(σaσb − |σab|2)

. (7.93)
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The interference rejection parameters τmax
0 and τmax

1 , maximizing the output SINR
at the left and the right hearing aid can be computed by setting the derivative of
(7.89) with respect to τ0, and (7.90) with respect to τ1, respectively, equal to 0,
yielding

τmax
0 = −A0h01

B0h1
=
A0σab
B0σa

, (7.94)

τmax
1 = −A1h01

B1h1
=
A1σab
B1σa

, (7.95)

similar to the expressions given in [138]. Since the binaural MVDR beamformer
maximizes the SINR in the left and the right hearing aid [139], substituting (7.94)
and (7.95) in (7.81) and (7.82) will result in the binaural MVDR beamformer in
Section 3.1, i.e.,

WBLCMV,0 [τ0 = τmax
0 ] = A∗0W̄0 +

A∗0σ
∗
ab

σa
W̄1 = WMVDR,0, (7.96)

WBLCMV,1 [τ1 = τmax
1 ] = A∗1W̄0 +

A∗1σ
∗
ab

σa
W̄1 = WMVDR,1. (7.97)

As already shown in Section 3.1, the binaural MVDR beamformer however does not
preserve the RTF of the interfering source. To determine the interference rejection
parameters that maximize the output SINR and preserve the RTF of the interfering
source, we maximize the binaural output SINR in (2.93) subject to the constraint
that τ = τ0 = τ1. Substituting (7.81) and (7.82) in (2.93), the binaural output
SINR is equal to

SINRout =
Ps|A0|2 + Ps|A1|2

(|A0|2 + |A1|2)h0 + |τ |2(|B0|2 + |B1|2)h1 + 2<{τ∗(A0B∗0 +A1B∗1)h01}
,

(7.98)

with τ = τ0 = τ1. Setting the derivative of (7.98) with respect to τ equal to 0, the
trade-off parameter τmax, maximizing the binaural output SINR, is equal to

τmax = − (A0B
∗
0 +A1B

∗
1)h01

(|B0|2 + |B1|2)h1
=

(A0B
∗
0 +A1B

∗
1)σab

(|B0|2 + |B1|2)σa
. (7.99)

It can be shown that by using the parameter τmax in the BLCMV beamformer in
(7.87) and (7.88), the resulting filter is equal to the MWF-RTF for the special case
of µ = 0, i.e. (cf. Appendix D.4),

WMWF−RTF,0 [µ = 0] = WBLCMV,0 [τ0 = τmax] , (7.100)
WMWF−RTF,1 [µ = 0] = WBLCMV,1 [τ1 = τmax] . (7.101)

Hence, for µ = 0 the MWF-RTF is a special case of the BLCMV beamformer,
maximizing the binaural output SINR. This also implies that for the special case
of µ = 0, the MWF-RTF also perfectly preserves the RTF of the interfering source.
Furthermore, we will now show that the MWF-IR in Section 7.5 can be decomposed
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into the BLCMV beamformer with τ0 = τ1 = 0, i.e. enforcing complete suppression
of the interfering source, and a single-channel Wiener postfilter applied to the
output SINR of the BLCMV beamformer. Setting τ0 = τ1 = 0, the filter vectors
in (7.87) and (7.88) are equal to

WBLCMV,0 [τ0 = 0] =
A∗0

(1− Σ)σa

(
R−1

v A−R−1
v B

σ∗ab
σb

)
, (7.102)

WBLCMV,1 [τ1 = 0] =
A∗1

(1− Σ)σa

(
R−1

v A−R−1
v B

σ∗ab
σb

)
. (7.103)

Using (7.102) and (7.103) and the filter vectors for the MWF-IR in (7.44) and
(7.45), the MWF-IR can be written as (cf. Appendix D.5)

WMWF−IR,0 =
ρ(1− Σ)

µ+ ρ(1− Σ)
WBLCMV,0 [τ0 = 0] , (7.104)

WMWF−IR,1 =
ρ(1− Σ)

µ+ ρ(1− Σ)
WBLCMV,1 [τ1 = 0] , (7.105)

with ρ(1−Σ), the output SINR of the BLCMV beamformer with τ0 = τ1 = 0 [87].
Hence, similarly as for the binaural MWF and the binaural MVDR beamformer,
the MWF-IR and the BLCMV beamformer with τ0 = τ1 = 0 yield the same output
SIR, SINR and SNR, while the MWF-IR yields a larger global SINR and SNR at
the expense of speech distortion.

7.9 Conclusion

In this chapter we have proposed two extensions of the binaural MWF, aiming to
either preserve the RTF of the interfering source (MWF-RTF) or to completely
suppress the interfering source (MWF-IR). It has been shown theoretically and
experimentally that for the MWF-RTF the performance in speech distortion, out-
put SINR and output SNR is lower but comparable to the performance of the
binaural MWF, while the output SIR is larger. The MWF-IR achieves the largest
SIR at the expense of an increased speech distortion and decreased output SINR
and output SNR. For the MWF-RTF, the binaural cues of the interfering source
are preserved, but the binaural cues of the speech source are slightly distorted, de-
pending on the position of the interfering source. Furthermore, it has been shown
that the performance for the binaural MWF and the MWF-RTF is rather inde-
pendent of the position of the interfering source, whereas the performance of the
MWF-IR highly depends on the position of the interfering source, especially if a
small number of microphones is used. If the number of microphones is increased,
the performance of the binaural MWF, MWF-RTF and MWF-IR increases and
the performance difference between the algorithms becomes smaller.
Furthermore, the proposed algorithms have been related to the BLCMV beam-
former. We have shown that the MWF-IR can be decomposed into a BLCMV
beamformer with the interference rejection parameter τ = 0 and a single-channel
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Wiener postfilter. In addition, we have shown that for the special case of the MWF-
RTF with the trade-off parameter µ = 0, the MWF-RTF is equal to the BLCMV
beamformer with the interference rejection parameter τ = τmax, maximizing the
binaural output SINR.



8
CONCLUSIONS AND FURTHER
RESEARCH

In this chapter we summarize the main conclusions of this thesis and we list some
suggestions for further research.

8.1 Conclusions

In this thesis we developed several novel algorithms that incorporate binaural cue
preservation into noise reduction algorithms for binaural hearing aids for different
acoustic scenarios. We compared these algorithms to existing state-of-the-art noise
reduction techniques in a theoretical context, in simulation studies as well as in
subjective listening tests. In Chapter 4 and Chapter 5, we proposed several algo-
rithms combining noise reduction and binaural cue preservation for diffuse noise
field scenarios, for which the psychoacoustically optimal trade-off between noise re-
duction and binaural cue preservation has been determined based on the interaural
coherence discrimination ability of the human auditory system. These algorithms
have been subjectively evaluated in Chapter 6, showing that the proposed algo-
rithms always improve the spatial impression of the output signal and can in some
cases even increase the speech intelligibility compared to state-of-the art binaural
noise reduction algorithms. In Chapter 7 we proposed several algorithms, combin-
ing noise reduction and binaural cue preservation for scenarios with an interfering
source. In addition to preserving the binaural cues of the speech source, perfect
preservation of the binaural cues or complete rejection of the interfering source,
have been imposed by adding linear constraints to the binaural MWF cost func-
tion. These extensions of the binaural MWF have been thoroughly compared in a
theoretical study, showing that a very similar noise reduction performance as for
the binaural MWF can be obtained if the binaural cues of the interfering source
are preserved, and that complete rejection of the interfering source leads to a de-
graded noise reduction performance compared to the binaural MWF. Furthermore,
the relations of the proposed algorithms to the recently proposed BLCMV beam-
former haven been mathematically analysed. A chapter-by-chapter conclusion will
be provided in the following.

131
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In Chapter 3 we provided a detailed overview of existing binaural noise reduction
algorithms. Based on previous work, we analysed the advantages and the disad-
vantages of these algorithms in a scenario with a single speech source in a diffuse
noise field and a scenario with a single speech source and an additional interfering
source. For this purpose, we extended the theoretical analysis of the binaural cue
preservation performance of these algorithms to the case of diffuse noise fields, i.e.
we analysed the impact of the algorithms on the interaural coherence of the speech
and the noise component. We showed that a previously proposed extension of the
binaural MWF, the binaural MWF with ITF preservation (MWF-ITF), is not suit-
able for diffuse noise fields and that for another extension of the binaural MWF, the
binaural MWF with partial noise estimation (MWF-N), the performance in diffuse
noise fields highly depends on the selection of a trade-off parameter. Based on this
analysis, in Chapters 4, 5 and 7 we proposed several extensions and modifications
of binaural noise reduction algorithms in order to overcome the disadvantages of
these existing approaches.

In order to achieve a better trade-off between noise reduction and interaural coher-
ence preservation in diffuse noise fields, in Chapter 4 we proposed an extension
of the binaural MWF, namely the MWF-IC, by adding an additional term aim-
ing to specifically preserve the interaural coherence of the noise component. We
showed that for the MWF-IC a substantial trade-off between interaural coherence
preservation and output SNR exists. Hence, we furthermore proposed to control
the amount of interaural coherence preservation based on the interaural coherence
discrimination ability of the human auditory system. We first defined frequency-
dependent upper and lower boundaries for the magnitude squared coherence of
the output noise component in order to maintain the spatial impression of the dif-
fuse noise field. Considering these boundaries, we proposed different procedures to
determine the trade-off parameter, such that an optimal trade-off between spatial
awareness preservation and noise reduction performance is obtained. Extensive ex-
perimental results showed that incorporating these psychoacoustically motivated
magnitude squared coherence boundaries into the MWF-IC yields a controllable
interaural coherence preservation without significantly degrading the output SNR
compared to the binaural MWF and the MWF-ITF, while retaining the spatial
separation between the output speech and noise components. This was confirmed
by the results of the subjective listening tests in Chapter 6, where it was shown
that the MWF-IC is able to improve speech intelligibility and spatial awareness
compared to existing binaural noise reduction techniques.

In order to determine a psychoacoustically optimised trade-off between noise re-
duction and interaural coherence preservation for the MWF-N, in Chapter 5 we
further investigated the performance of the MWF-N in diffuse noise fields. Since
for the MWF-IC no closed-form solution exists, such that one needs to resort to it-
erative optimization techniques, we proposed to preserve the interaural coherence
of the noise component using the binaural MWF-N, for which a closed-form solu-
tion exists, hence significantly reducing the computational complexity compared
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to the MWF-IC. Furthermore, as a special case of the MWF-N, we proposed
the binaural MVDR beamformer with partial noise estimation (MVDR-N). For
both the MWF-N and the MVDR-N beamformer, the amount of interaural coher-
ence preservation has been determined based on the psychoacoustically motivated
magnitude squared coherence boundaries proposed in Chapter 4. It was shown
that for the MVDR-N beamformer even a closed-form expression for the trade-off
parameter, yielding a desired magnitude squared coherence for the output noise
component can be derived. In order to additionally exploit the time-varying power
spectral densities of the speech and the noise component in the MVDR-N beam-
former, we also proposed to apply a single-channel Wiener postfilter at the output
of the MVDR-N beamformer. Extensive simulation results showed that both the
MWF-N and the MWF-IC are able to preserve the interaural coherence of the
output noise component, where generally the MWF-IC shows a better noise re-
duction performance. Further simulation results showed that the MWF-N and the
MVDR-N beamformer with postfilter show a very similar performance in terms
of noise reduction, speech distortion and binaural cue preservation. The results of
the subjective listening tests in Chapter 6 showed that the MVDR-N beamformer
always achieves a better spatial quality compared to the binaural MVDR beam-
former and the MWF-IC. Furthermore, for the anechoic scenario a very similar
speech intelligibility as for the binaural MVDR beamformer was obtained, whereas
for the reverberant cafeteria scenario a slight decrease in speech intelligibility com-
pared to the binaural MVDR beamformer was observed.

In Chapter 6, we subjectively evaluated the binaural MVDR beamformer and
the algorithms proposed in Chapter 4 and 5 in terms of speech intelligibility and
spatial quality in an anechoic and a cafeteria environment. In order to evaluate
the algorithm performance in terms of speech intelligibility, we used the Oldenburg
Sentence test (OLSA) to measure the Speech Reception Threshold (SRT) at 50%
speech intelligiblity with 15 normal hearing participants for different trade-offs
between noise reduction and IC preservation. For the anechoic scenario, no sta-
tistically significant SRT difference between the binaural MVDR beamformer and
both the MVDR-N beamformer and the MWF-IC was observed. For the cafeteria
scenario, the MWF-IC achieved a statistically significant improvement in SRT, and
the MVDR-N beamformer showed a statistically significant degradation in SRT,
compared to the binaural MVDR beamformer. Relating the speech intelligibility
results to the iSNR improvement and the MSC error indicates that the better
performance of the MWF-IC compared to the MVDR-N beamformer is due to the
better noise reduction capabilities of the MWF-IC. Furthermore, we showed that
the impact of the different MSC boundaries on speech intelligibility was rather low
for the MWF-IC but rather high for the MVDR-N beamformer.
In order to evaluate the spatial quality of the proposed algorithms, we conducted
a MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) test with 11
normal hearing participants, using the same trade-offs between noise reduction and
IC preservation as for the speech intelligibility test. The results of the MUSHRA
test showed that for both spatial scenarios (anechoic and cafeteria) the MVDR-N
beamformer and the MWF-IC were able to achieve a significant improvement in
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terms of spatial quality compared to the binaural MVDR beamformer. Contrary
to the speech intelligibility test, for both algorithms the impact of the considered
different MSC boundaries on spatial quality was rather low and not significant.
While the MWF-IC outperformed the MVDR-N beamformer in terms of speech
intelligibility, the MVDR-N beamformer showed a better performance in terms of
spatial quality even though the MSC error for the noise component is very similar
for both algorithms.

Since in addition to diffuse noise also directional interfering sources may be present,
in Chapter 7 we combined binaural noise reduction and binaural cue preservation
for an acoustic scenario with an additional interfering source. Since previously pro-
posed extensions of the binaural MWF are not able to impose perfect binaural cue
preservation for both the speech source and the interfering source, we proposed two
extensions of the binaural MWF, which in addition to minimizing the overall noise
output power aim to either preserve the binaural cues of the interfering source or to
completely suppress the interfering source. The first extension, denoted as MWF-
RTF, aims to preserve the binaural cues of the interfering source by adding an RTF
preservation constraint to the binaural MWF cost function. Instead of preserving
the RTF of the interfering source, one could also aim to completely suppress the
interfering source to avoid the presence of a residual interference component with
distorted binaural cues in the output signal. Hence, the second extension, denoted
as MWF-IR, aims to completely suppress the interfering source by adding an in-
terference rejection constraint to the binaural MWF cost function. Since for both
extensions the impact of these linear constraints on speech distortion, noise re-
duction and binaural cue preservation performance is different, we provided an
extensive theoretical analysis and comparison of the performance of the binaural
MWF, MWF-RTF and MWF-IR. The theoretical analysis was validated by ex-
periments using measured ATFs of a binaural hearing aid setup, showing that the
performance of the binaural MWF, MWF-RTF and MWF-IR highly depends on
the position of the interfering source and the number of microphones. Further-
more, simulation results show that the MWF-RTF achieves a better suppression
of the interfering source and a very similar overall noise reduction performance
as the binaural MWF, while preserving the binaural cues of both the speech and
interfering source. For the MWF-IR, the complete suppression of the interfering
source leads to a degradation of the overall noise reduction performance compared
to the binaural MWF and the MWF-RTF. In addition, the proposed algorithms
have been related to the BLCMV beamformer, showing that the MWF-IR can be
decomposed into a special case of the BLCMV beamformer and a single-channel
Wiener postfilter. In addition, we have shown that for a special case of the MWF-
RTF, the MWF-RTF is equal to the BLCMV beamformer with the interference
rejection parameter maximizing the binaural output SINR.
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8.2 Suggestions for further research

Modifications and possible combinations of the MWF-ITF, MWF-IC
and MWF-N for scenarios with interfering sources

In Chapter 3 we have shown for a scenario with an interfering source that the
MWF-ITF exhibits the same output SINR as the binaural MWF and preserves
the binaural cues of the interfering source only at the expense of distorting the
binaural cues of the speech source, depending on the trade-off parameter δ and
the input SINR. Contrary to [73], where the trade-off parameter δ was fixed and
frequency-independent, this trade-off parameter could be determined based on psy-
choacoustic properties, e.g., the ILD and ITD discrimination ability of the human
auditory system, in order to achieve a psychoacoustically optimised trade-off be-
tween preserving the binaural cues of the speech source and the interfering source.
Furthermore, if the STFT coefficients can assumed to be sparse, i.e. one source
is dominant in each time-frequency bin, a time-varying and frequency-dependent
trade-off parameter δ could be determined based on the information which source
is dominant in the respective time-frequency bin. The trade-off parameter δ can
then be determined using the analytical solutions for the output ILD and ITD
for the speech source and the interfering source. For reverberant scenarios, where
the sparsity assumption is usually violated, the concept of reliable ILD and ITD
cues can be applied. In time-frequency bins with a large MSC, the ILD and ITD
of the respective dominant source should be preserved, whereas in time-frequency
bins with a lower MSC, MSC preservation could be achieved, e.g., by using the
MWF-IC or the MWF-N.
In addition, we have shown in Chapter 3 that the MWF-N is also suitable for
scenarios with an interfering source but the trade-off between noise reduction and
binaural cue preservation highly depends on the trade-off parameter η. For the
MWF-N this trade-off could be determined by first defining either how much
ILD/ITD distortion of the interfering source or how much loss in noise reduction
can be tolerated. Based on these boundaries, the trade-off parameter can then be
determined using the analytical solutions for the MWF-N. The tolerable error for
the ILD and ITD cues can then be determined, similarly as for the diffuse noise
scenarios, using the ILD and ITD discrimination ability of the human auditory
system.

Setting the trade-off between noise reduction and IC preservation based
on models of binaural speech intelligibility

In this thesis the trade-off between noise reduction and IC preservation was deter-
mined based on the IC discrimination ability of the human auditory system. An-
other possibility is to determine the trade-off parameters in the MWF-N/MVDR-N
and the MWF-IC based on the output of a model that aims to predict binaural
speech intelligibility, e.g. [20, 99, 101]. These models usually exploit the ILD, ITD
and IC cues of the speech and the noise component and the (better ear) SINR.
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Since for the MVDR-N a closed-form expression for these quantities is available, the
trade-off parameter could be determined analytically such that the combination of
the output SINR, ILD, ITD and IC maximizes the binaural speech intelligibility
according to the model output. For the MWF-IC and the MWF-N the optimal
trade-off parameter could be determined using an exhaustive search method.

Estimation of the correlation matrices and the speech source RTF and
DOA in diffuse noise fields

For all proposed algorithms which are based on the binaural MWF, an estimate of
the correlation matrices of the speech and the noise component is required. While
in this thesis we typically used batch processing, for an online implementation the
correlation matrices would need to be estimated adaptively, e.g., based on voice
activity detection mechanism or the SPP. Especially for diffuse noise fields, the
SPP-based SNR estimator used in Chapter 5 [29, 125] can also be exploited to
adaptively estimate the correlation matrices of the speech and the noise compo-
nent. Furthermore, binaural noise reduction techniques that explicitly assume a
diffuse noise field to estimate the input SNR, e.g., [68, 70] can be used to estimate
the noise correlation matrix during speech presence, similarly as in [140]. The trade-
off parameters in the MWF-IC and the MWF-N could then be determined based
on these time-varying estimates of the correlation matrices, possibly resulting in a
better trade-off between noise reduction and preservation of the short-term IC. If
the decomposition of the binaural MWF, MWF-ITF and MWF-N into a binaural
MVDR beamformer and a single-channel Wiener postfilter is used, an estimate
of the RTF of the speech source is required, for which several RTF estimation
techniques, e.g., [47, 135, 137, 141] could be used. Alternatively, as done in Chap-
ters 5 and 6, instead of using the (reverberant) RTF of the speech source, also
the anechoic RTF could be used, requiring a DOA estimator. Based on this DOA
estimate, either measurements of the anechoic ATFs or HRTF models [142] can
then be used in the MVDR beamformer.

Estimation of the correlation matrices and the RTF of all sources for
scenarios with interfering sources and possible extensions

For the algorithms that have been proposed for scenarios with an interfering source
in Chapter 7, i.e. the MWF-RTF and the MWF-IR, estimation errors have been
disregarded in order to analyse the full potential of the proposed algorithms. In
an online implementation, in addition to an adaptive estimate of the correlation
matrices of the speech and the noise component, an estimate of the RTF of the
interfering source is required. While for the estimation of the (background) noise
correlation matrix the SPP-based estimator [29, 125] could still be applied, it can
not be used to distinguish the speech source from the interfering source. To this end
a binaural scene analyser, e.g., [143] providing a time-frequency map with proba-
bilities of the activity of the sources, estimates of the number of active sources and
estimates of the DOA, could be exploited. This time-frequency map can then be
used to estimate the RTFs of all directional sources and the correlation matrices
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of the speech component, the interference components and the background noise.
Furthermore, the output of the binaural scene analyser can be combined with RTF
estimation techniques in order to increase the performance of these techniques.
As already mentioned in Section 7.1, the extension of the MWF-RTF and the
MWF-IR to scenarios with multiple sources is straightforward. In addition, for
both the MWF-RTF and the MWF-IR, the preservation of the IC of the back-
ground noise component has not been considered. Preservation of the IC of the
background noise component can be taken into account by adding the IC preserva-
tion term of the MWF-IC to the MWF-RTF and MWF-IR cost function, or using
the MWF-N as the basic cost function instead of the binaural MWF.

Robustness considerations in the presence of estimation errors

If estimators for the time-varying correlation matrices, the RTFs or the DOAs
are used, in general estimation errors occur. These estimation errors may have
a significant impact on the noise reduction and binaural cue preservation perfor-
mance of the algorithms.
If the DOA estimate of the speech source is erroneous, the performance of the bin-
aural MVDR beamformer deteriorates since the beamformer steers in the wrong
direction. Especially if the width of the beam towards the desired speech source is
narrow, small DOA errors may have a large influence on the performance. Hence,
adding robustness constraints to the binaural MVDR beamformer in the case of
steering errors as, e.g., in [144], could be considered. In general, adding robustness
constraints leads to a degraded noise reduction performance, such that a careful
tuning of trade-off parameters is again necessary. Furthermore, additional robust-
ness constraints may have an impact on the binaural cues of the speech and the
noise components, what needs to be taken into account in the design of the robust
beamformer.
For the proposed techniques in Chapter 7, i.e. the MWF-RTF and the MWF-IR,
especially RTF estimation errors for the interfering source may have a substantial
impact on the noise reduction and binaural cue preservation performance of the
algorithms, as briefly discussed in [75]. In order to increase the robustness of the
binaural MWF-based algorithms, the interference rejection parameter, used in the
BLCMV beamformer, could also be used in the binaural MWF-based techniques,
more particularly in the MWF-IR. In the MWF-IR, the null-steering constraint
could then be replaced by the partial interference rejection constraint used in the
BLCMV beamformer. Increasing the interference rejection parameter possibly re-
sults in an increased robustness to estimation errors but also in a decreased noise
reduction performance. Furthermore, in order to evaluate the impact of RTF esti-
mation errors on the noise reduction and binaural cue preservation of the proposed
algorithms in an analytical framework, the analytical solution for the estimation
errors of different RTF estimation techniques in [136] could be exploited. Based on
this analysis, the (frequency-dependent) interference rejection parameter could be
determined such that an optimal performance in terms of robustness to estimation
errors, noise reduction and binaural cue preservation can be obtained.
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A.1 Binaural MVDR beamformer

The cost function for the binaural MVDR beamformer in (3.3) is equal to

min
W

WHR̃vW subject to WHC = b. (A.1)

Using the method of Lagrange multipliers, we define the Lagrangian of the cost
function in (A.1) as

L(W) =WHR̃vW + (WHC− b)λ. (A.2)

The gradient with respect to W is equal to

∇L(W) = 2R̃vW + Cλ. (A.3)

Setting the gradient equal to 0, the filter minimizing (A.1) is equal to

W = −1

2
R̃
−1

v Cλ. (A.4)

Substituting (A.4) in the constraint in (A.1), the Lagrange multiplier is equal
to

−1

2
λH = b

(
CHR̃

−1

v C
)−1

. (A.5)

Substituting (A.5) in (A.4) the solution of (A.1) is equal to

W = R̃
−1

v C
(
CHR̃

−1

v C
)−1

bH . (A.6)

A.2 Binaural MWF

The cost function of the binaural MWF in (3.19) is equal to

JMWF(W) = WHRW−WHrx − rHx W + Φx,0 + Φx,1, (A.7)
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for which the gradient with respect to W is equal to

∇JMWF(W) = 2RW− 2rx. (A.8)

Setting the gradient equal to 0, the filter vector minimizing (A.7) is equal to

W = R−1rx. (A.9)

A.3 Relation between the MWF and the MVDR beamformer

Using the rank-1 speech correlation matrix Rx in (2.14), by applying the matrix
inversion lemma to R̃y in (3.20) the inverse of R̃y can be written as

R̃
−1

y = (Rx + µRv)−1 =
1

µ

[
R−1

v −
PsR−1

v AAHR−1
v

µ+ ρ

]
, (A.10)

with ρ defined in (3.14). The filter vector for the left hearing aid in (3.22) can then
be written as

WMWF,0 = (Rx + µRv)−1Rxe0 =
1

µ

[
PsR−1

v AA∗0 −
PsR−1

v AA∗0ρ
µ+ ρ

]
=

ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗0, (A.11)

i.e. it can be decomposed into the MVDR beamformer and a single-channel Wiener
postfilter. Applying similar steps for the MWF filter vector in the right hearing
aid in (3.23), the filter vector is equal to

WMWF,1 =
ρ

µ+ ρ

R−1
v A

AHR−1
v A

A∗1. (A.12)

A.4 MWF-N

The cost function of the MWF-N for the left hearing aid in (3.44) is equal to

JMWF−N,0(W0) =WH
0 RxW0 −WH

0 Rxe0 − eT0 RxW0 + Φx,0+

µWH
0 RvW0 − µηWH

0 Rve0 − µηeT0 RvW0 + µη2Φv,0, (A.13)

for which the gradient with respect to W0 is equal to

∇JMWF−N,0(W0) = 2RxW0 − 2Rxe0 + µ (2RvW0 − 2ηRve0) . (A.14)

Setting the gradient equal to 0, the filter vector minimizing (A.13) is equal to

WMWF−N,0 = (Rx + µRv)
−1

(Rx + µηRv) e0. (A.15)
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This filter vector can be written as

WMWF−N,0 = (Rx + µRv)
−1 Rxe0 + (Rx + µRv)

−1
(Rx + µRv −Rx) e0η,

= (Rx + µRv)
−1 Rxe0 + e0η − (Rx + µRv)

−1 Rxe0η,

= (1− η)WMWF,0 + ηe0. (A.16)

Applying similar steps for the cost function for the right hearing aid in (3.45) the
filter vector is equal to

WMWF−N,1 = (1− η)WMWF,1 + ηe1. (A.17)
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In this appendix, we derive the gradient for the cost function JMWF−IC(W) in
(4.5). We first decompose the 2M -dimensional complex-valued vector W into its
real and imaginary parts, which are denoted by WR and WI and define the 4M -
dimensional real-valued filter vector W̃ as

W̃ =

[
WR

WI

]
=


W0R

W1R

W0I

W1I

 . (B.1)

The cost function in (4.5) can now be written as

JMWF−IC(W̃) = JMWF(W̃) + λJIC(W̃). (B.2)

Using (3.19), the cost function JMWF(W̃) can be written as

JMWF(W̃) =
(
WHRW

)
− 2

(
WHrx

)
R

+ Φx,0, (B.3)

= W̃T R̃RW̃ − 2 W̃T r̃x,R + Φx,1, (B.4)

with Φx = Φx,0 + Φx,1.

R̃R =

[
RR −RI

RI RR

]
, r̃x,R =

[
rx,R

rx,I

]
. (B.5)

The gradient of JMWF(W̃) in (B.4) with respect to W̃ is then equal to

∇JMWF(W̃) =
(
R̃R + R̃T

R

)
W̃ − 2 r̃x,R. (B.6)

The cost function JIC(W) in (4.3) can be written as

JIC(W̃) =

[ (
WHR01

v W
)
R√

(WHR00
v W) (WHR11

v W)
− αR

]2

+

[ (
WHR01

v W
)
I√

(WHR00
v W) (WHR11

v W)
− αI

]2

, (B.7)
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with α = ICdes
v and

R01
v =

[
02M Rv

02M 02M

]
, R00

v =

[
Rv 02M

02M 02M

]
, R11

v =

[
02M 02M

02M Rv

]
. (B.8)

Hence, using (B.1) and (B.7), the cost function JIC(W̃) can be written as

JIC(W̃) =

 W̃T R̃01
v,RW̃√(

W̃T R̃00
v,RW̃

)(
W̃T R̃11

v,RW̃
) − αR


2

+

 W̃T R̃01
v,IW̃√(

W̃T R̃00
v,RW̃

)(
W̃T R̃11

v,RW̃
) − αI


2

, (B.9)

where the first part is denoted as JIC,R(W̃) and the second part is denoted as
JIC,I(W̃) and

R̃01
v,R =

[
R01

v,R −R01
v,I

R01
v,I R01

v,R

]
, R̃00

v,R =

[
R00

v,R −R00
v,I

R00
v,I R00

v,R

]
,

R̃01
v,I =

[
R01

v,I R01
v,R

−R01
v,R R01

v,I

]
, R̃11

v,R =

[
R11

v,R −R11
v,I

R11
v,I R11

v,R

]
.

To simplify the notation, we define

Ã = R̃01
v,R, B̃ = R̃00

v,R, C̃ = R̃11
v,R, D =

(W̃T ÃW̃)

(W̃T B̃W̃)(W̃T C̃W̃)
.

(B.10)

The gradient of JIC,R(W̃) is then equal to

∇JIC,R(W̃) = D (2D − αR)


(
Ã+ÃT

)
W̃

W̃T ÃW̃
− 1

2

(
B̃+B̃T

)
W̃

W̃T B̃W̃
− 1

2

(
C̃+C̃T

)
W̃

W̃T C̃W̃

 .
(B.11)

The gradient of JIC,I(W̃) can be computed similarly as in (B.11) by setting Ã =

R̃01
v,I and αR = αI . The gradient of the overall cost function can then be calculated

by combining (B.6) and (B.11), i.e.,

∇JMWF−IC(W̃) =∇JMWF(W̃) + λ
(
∇JIC,R(W̃) +∇JIC,I(W̃)

)
. (B.12)
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C.1 Output IC of the noise component for the MWF-N

The output IC of the noise component for the MWF-N can be calculated as

ICout
v =

E{Zv0Z
∗
v1}√

(E{|Zv0|2}) (E{|Zv1|2})
, (C.1)

with Zv0 = WH
MWF−N,0V and Zv1 = WH

MWF−N,1V. Using the MWF-N filter
vectors in (5.4) and (5.5), we obtain

E{Zv0Z
∗
v1} =WH

MWF−N,0RvWMWF−N,1

=|1− η|2WH
MWF,0RvWMWF,1 +|η|2Φv,01 +2<{η∗(1− η)}WH

MWF,0Rve1,

(C.2)

E{|Zv0|2} =WH
MWF−N,0RvWMWF−N,0

=|1− η|2WH
MWF,0RvWMWF,0 + |η|2Φv,0 + 2<{η∗(1− η)}WH

MWF,0Rve0,

(C.3)

E{|Zv1|2} =WH
MWF−N,1RvWMWF−N,1

=|1− η|2WH
MWF,1RvWMWF,1 + |η|2Φv,1 + 2<{η∗(1− η)}WH

MWF,1Rve1.

(C.4)

Using (3.24) and (3.25), the output CPSD of the noise component in (C.2) can be
written as

E{Zv0Z
∗
v1} = |1− η|2Φx,01

ρ

(µ+ ρ)
2 + |η|2Φv,01 + 2<{η∗(1− η)} 1

µ+ ρ
Φx,01

= ψΦx,01 + |η|2Φv,01, (C.5)
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with

ψ = |1− η|2 ρ

(µ+ ρ)2
+ 2<{η∗(1− η)} 1

(µ+ ρ)
. (C.6)

Similarly the output PSD of the noise component in the left and the right hearing
aid can be computed from (C.3) and (C.4) as

E{|Zv0|2} = ψΦx,0 + |η|2Φv,0, (C.7)

E{|Zv1|2} = ψΦx,1 + |η|2Φv,1. (C.8)

Hence, the output IC of the noise component for the MWF-N in (C.1) is equal
to

ICout
v =

ψΦx,01 + |η|2Φv,01√
(ψΦx,0 + |η|2Φv,0)(ψΦx,1 + |η|2Φv,1)

. (C.9)

C.2 Trade-off parameter for the MWF-N for a special case.

Using the assumption of a diffuse noise field, i.e. using (2.16), and assuming that
A0 = A1, corresponding to the scenario of a speech source in front of the listener
and assuming a symmetric head, the output IC of the noise component for the
MWF-N in (5.12) can be written as

ICout
v =

ψΦx + |η|2ΦnIC
in
v

ψΦx + |η|2Φn
, (C.10)

with Φx = Φx,0 = Φx,1 and Φn = Φn,0 = Φn,1. In order to obtain a closed-form
expression for the trade-off parameter η, yielding a desired output IC for the noise
component, the expression in (C.10) has to be solved for ICout

v = ICdes
v . Since for

the special cases η = 0 the output IC of the noise component is equal to 1, and for
η = 1 the output IC of the noise component is equal to the real-valued input IC, for
any real-valued desired IC between 1 and IC in

v , a real-valued trade-off parameter
η with 0 ≤ η ≤ 1, solving (C.10), can be obtained. Setting ICout

v = ICdes
v , the

expression in (C.10) can be written as

ψ + η2 IC
des
v − IC in

v

ICdes
v − 1

Φn

Φx
= 0, (C.11)

which, using (5.13), can further be written as

η2 (2µ+ ρ+ a)− η2µ− ρ = 0, (C.12)

with

a =
IC in

v − ICdes
v

ICdes
v − 1

Φn (µ+ ρ)
2

Φx
. (C.13)
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Hence, the closed-form expression for η with 0 ≤ η ≤ 1 is then equal to

η =
µ+

√
(µ+ ρ)2 + aρ

2µ+ ρ+ a
. (C.14)

C.3 MVDR-N

The cost function for the binaural MVDR-N beamformer for the left hearing aid
in (5.17) is equal to

min
W0

WH
0 RvW0 − η∗WH

0 Rve0 − ηeT0 RvW0 + |η|2|V0|2

subject to WH
0 A = A0. (C.15)

Using the method of Lagrange multiplier, we define the Lagrangian of the cost
function in (C.15) as

L(W0) =WH
0 RvW0 − η∗WH

0 Rve0 − ηeT0 RvW0 + |η|2|V0|2 + λ(WH
0 A−A0).

(C.16)

The gradient with respect to W0 is equal to

∇L(W0) = 2RvW0 − 2η∗Rve0 + λA. (C.17)

Setting the gradient equal to 0, the filter minimizing (C.15) is equal to

W0 = R−1
v

(
η∗Rve0 −

λ

2
A
)
. (C.18)

Substituting (C.18) in the constraint in (C.15), the Lagrange multiplier is equal
to

−λ
∗

2
=

(1− η∗)A∗0
AHR−1

v A
. (C.19)

Substituting (C.19) in (C.18), the solution to (C.15) is equal to

W0 = (1− η∗) R−1
v A

AHR−1
v A

A∗0 + η∗e0 (C.20)

= (1− η∗)WMVDR,0 + η∗e0. (C.21)

Applying similar steps for the cost function for the right hearing aid in (5.18), the
filter vector is equal to

W1 = (1− η∗) R−1
v A

AHR−1
v A

A∗1 + η∗e1 (C.22)

= (1− η∗)WMVDR,1 + η∗e1. (C.23)
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D.1 Performance of the binaural MWF

d.1.1 Output PSD of the speech component and SD of the binaural MWF

Using (3.24) and (3.25), the response of the binaural MWF to the ATF of the
speech source is equal to

WH
MWF,0A =

A0ρ

µ+ ρ
, WH

MWF,1A =
A1ρ

µ+ ρ
. (D.1)

Plugging in (D.1) into (2.77) and (2.78), the sum of the output PSDs in the left
and the right hearing aid of the speech component can be calculated as

PSDout
x = PSDout

x,0 + PSDout
x,1 =

ρ2

(µ+ ρ)2
Ps

(
|A0|2 + |A1|2

)
. (D.2)

Plugging in (D.2) into (2.96), the SD of the binaural MWF can then be calculated
as

SDMWF =
(µ+ ρ)2

ρ2
. (D.3)

d.1.2 Output PSD of the interference component and output SIR of the binaural
MWF

Using (3.24) and (3.25), the response to the ATF of the interfering source is equal
to

WH
MWF,0B =

PsA0σab
µ+ ρ

, WH
MWF,1B =

PsA1σab
µ+ ρ

. (D.4)
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Plugging in (D.4) into (2.79) and (2.80), the sum of the output PSDs of the
interference component in the left and the right hearing aid can then be calculated
as

PSDout
u = PSDout

u,0 + PSDout
u,1 =

PiPs|σab|2

(µ+ ρ)
2 Ps(|A0|2 + |A1|2). (D.5)

Substituting (D.2) and (D.5) in (2.90), the output SIR of the binaural MWF is
equal to

SIRout
MWF =

Psσ
2
a

Pi|σab|2
. (D.6)

D.2 Performance of the MWF-RTF

d.2.1 MWF-RTF filter decomposition

The MWF-RTF filter in (7.25) is equal to

WMWF−RTF = R−1rx −
R−1CCHR−1rx

CHR−1C
. (D.7)

Using (2.18), (2.19), (7.8), (3.20) and (7.24) the complex-valued scalar CHR−1rx

is equal to

CHR−1rx =
[
BHR̃

−1

y α∗BHR̃
−1

y

] [PsAA∗0
PsAA∗1

]
,

= Psλ
∗
ab (A0 + αA1)

∗
. (D.8)

Furthermore, using (7.9), (3.20) and (7.24) the denominator of the second term in
(D.7) is equal to

CHR−1C = λb
(
1 + |α|2

)
. (D.9)

Hence using (3.21), (D.8) and (D.9) the stacked filter vector in (D.7) can be written
as

WMWF−RTF = WMWF −
Ps (A0 + αA1)

∗
λ∗ab

(1 + |α|2)λb

[
R̃
−1

y B

αR̃
−1

y B

]
. (D.10)

By using (7.10), (7.11) and (7.12) it can be shown that

λ∗ab
λb

=
σa
σab

Γ, (D.11)
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and hence, the MWF-RTF filter for the left and the right hearing aid are equal
to

WMWF−RTF,0 = WMWF,0 − κ R̃−1
y B, (D.12)

WMWF−RTF,1 = WMWF,1 − ακ R̃−1
y B, (D.13)

with

κ =
Ps (A0 + αA1)

∗
σa

(1 + |α|2)σab
Γ. (D.14)

d.2.2 Output PSD of the speech component, output RTF of the speech source and
speech distortion of the MWF-RTF

Using (7.12), (D.1), (D.12) and (D.13) the response of the MWF-RTF to the ATF
of the speech source is equal to

WH
MWF−RTF,0A =

ρ

µ+ ρ
(A0 − ΓAv) , (D.15)

WH
MWF−RTF,1A =

ρ

µ+ ρ
(A1 − α∗ΓAv) , (D.16)

with

Av =
(A0 + αA1)

(1 + |α|2)
. (D.17)

Substituting (D.15) and (D.16) in (2.50), the output RTF of the speech source is
equal to

RTF out
x =

A0

A1

1− Γ Av

A0

1− α∗Γ Av

A1

. (D.18)

Substituting (D.15) in (2.77), the output PSD of the speech component in the left
hearing aid can be calculated as

PSDout
x,0 =

Psρ
2

(µ+ ρ)2

[
|A0|2 + Γ2 |Av|2 − 2Γ<{AvA

∗
0}

]
. (D.19)

Similarly, by substituting (D.16) in (2.78), the output PSD of the speech compo-
nent in the right hearing aid can be calculated as

PSDout
x,1 =

Psρ
2

(µ+ ρ)2

[
|A1|2 + Γ2|α|2 |Av|2 − 2Γ<{α∗AvA

∗
1}

]
, (D.20)
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and hence the sum of the output PSDs of the speech component in the left and
the right hearing aid can be written as

PSDout
x = PSDout

x,0 + PSDout
x,1 =

Psρ
2

(µ+ ρ)2

[
|A0|2 + |A1|2 + Γ2(1 + |α|2) |Av|2−

2Γ<
{

(A0 + αA1)
∗
Av

}]
. (D.21)

The expression in (D.21) can then further be simplified to

PSDout
x =

ρ2

(µ+ ρ)2
Ps

(
|A0|2 + |A1|2

) [
1 + Γ2K − 2ΓK

]
, (D.22)

with

K =
|A0 + αA1|2

(1 + |α|2)(|A0|2 + |A1|2)
. (D.23)

Substituting (D.22) in (2.96), the speech distortion of the MWF-RTF can then be
calculated as

SDMWF−RTF =
(µ+ ρ)2

ρ2

1

(1 + Γ2K − 2ΓK)
. (D.24)

d.2.3 Output PSD of the interference component and output SIR of the MWF-
RTF

Using (7.12), (D.4), (D.11) and (D.12), the response of the MWF-RTF to the ATF
of the interfering source in the left hearing aid is equal to

WH
MWF−RTF,0B =

Psσab
µ+ ρ

α

(
A0α

∗ −A1

1 + |α|2

)
. (D.25)

Due to the RTF constraint in the MWF-RTF cost function in (7.22), the response
to the ATF of the interfering source in the right hearing aid can be calculated
as

WH
MWF−RTF,1B =−

WH
MWF−RTF,0B

α
(D.26)

=− Psσab
µ+ ρ

(
A0α

∗ −A1

1 + |α|2

)
. (D.27)

Substituting (D.25) and (D.27) in (2.79) and (2.80), the sum of the output PSDs of
the interference component in the left and the right hearing aid can be calculated
as

PSDout
u = PSDout

u,0 + PSDout
u,1 =

PiP
2
s |σab|2

(µ+ ρ)
2

|A0α
∗ −A1|2

1 + |α|2
, (D.28)
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which, using (D.23), can be written as

PSDout
u =

PiP
2
s |σab|2

(µ+ ρ)
2 (|A0|2 + |A1|2) (1−K) . (D.29)

Substituting (D.22) and (D.29) in (2.90), the output SIR of the MWF-RTF is
equal to

SIRout
MWF−RTF =

Psσ
2
a

Pi|σab|2

(
1 + Γ2K − 2ΓK

)
1−K

. (D.30)

d.2.4 Output PSD of the overall noise component and output SINR of the MWF-
RTF

Using (3.20) and (3.22), the MWF-RTF filter in (D.12) can be written as

WMWF−RTF,0 = R̃
−1

y (rx,0 − κB) . (D.31)

Substituting (D.31) in (2.83), the output PSD of the overall noise component in
the left hearing aid can be computed as

PSDout
v,0 =

(
rHx,0 − κ∗B

H
)

E (rx,0 − κB) , (D.32)

with

E = R̃
−1

y RvR̃
−1

y , (D.33)

Using (A.10), the expression in (D.33) can be written as

E =
1

µ2

[
R−1

v −R−1
v AAHR−1

v

(
Ps(ρ+ 2µ)

(µ+ ρ)2

)]
. (D.34)

Using (D.34) in (D.32) and exploiting (2.18), (7.2), (7.3) and (7.4), the output PSD
of the overall noise component in the left hearing aid can be written as

PSDout
v,0 =

P 2
s |A0|2σa
µ2

(
1− σaPs(ρ+ 2µ)

(µ+ ρ)2

)
−2<

{
PsA0κσab

µ2

(
1− σaPs(ρ+ 2µ)

(µ+ ρ)2

)}
+

|κ|2

µ2

(
σb − |σab|2

(
Ps(ρ+ 2µ)

(µ+ ρ)2

))
. (D.35)

It can be shown that

1

µ2

(
1− σaPs(ρ+ 2µ)

(µ+ ρ)2

)
=

1

(µ+ ρ)
2 . (D.36)
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Hence, using (7.5), (D.14) and (D.36), the output PSD in (D.35) can be written
as

PSDout
v,0 =

Psρ|A0|2

(µ+ ρ)
2 − PsρΓ

2<{A0(A0 + αA1)∗}
(1 + |α|2)(µ+ ρ)2

+

PsρΓ2 |A0 + αA1|2

(1 + |α|2)
2

(
1

µ2Σ
− ρ2 + 2µρ

µ2(µ+ ρ)2

)
. (D.37)

Similarly, the output PSD of the noise component in the right hearing aid can be
written as

PSDout
v,1 =

Psρ|A1|2

(µ+ ρ)
2 − PsρΓ

2<{A1α(A0 + αA1)∗}
(1 + |α|2)(µ+ ρ)2

+

PsρΓ2|α|2 |A0 + αA1|2

(1 + |α|2)
2

(
1

µ2Σ
− ρ2 + 2µρ

µ2(µ+ ρ)2

)
. (D.38)

The sum of the output PSDs of the overall noise component in the left and the
right hearing aid is then equal to

PSDout
v = PSDout

v,0 + PSDout
v,1 =

Psρ

(µ+ ρ)2

(
|A0|2 + |A1|2

) [
1 + νΓ2K − 2ΓK

]
,

(D.39)

with

ν =
(µ+ ρ)

2

µ2Σ
− ρ2 + 2µρ

µ2
. (D.40)

Substituting (D.22) and (D.39) in (2.93), the output SINR of the MWF-RTF is
equal to

SINRout
MWF−RTF = ρ

1 + Γ2K − 2ΓK

1 + νΓ2K − 2ΓK
. (D.41)

D.3 BLCMV sub-filters

h01 = W̄H
0 RvW̄1 =

1

(σaσb − |σab|2)2

(
AHσb −BHσab

)
Rv (−Aσab + Bσa)

=
1

(σaσb − |σab|2)2

(
−σbσabσa + σbσaσab + |σab|2σab − σabσaσb

)
= − σab

(σaσb − |σab|2)
(D.42)
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h0 = W̄H
0 RvW̄0 =

1

(σaσb − |σab|2)2

(
AHσb −BHσab

)
Rv (Aσb −Bσ∗ab)

=
1

(σaσb − |σab|2)2

(
σ2
bσa − σb|σab|2 − σb|σab|2 + σb|σab|2

)
=

σb
(σaσb − |σab|2)

(D.43)

h1 = W̄H
1 RvW̄1 =

1

(σaσb − |σab|2)2

(
−AHσ∗ab + BHσa

)
Rv (−Aσab + Bσa)

=
1

(σaσb − |σab|2)2

(
|σab|2σa − |σab|2σa − |σab|2σa + σbσ

2
a

)
=

σa
(σaσb − |σab|2)

(D.44)

D.4 Equivalence between BLCMV and MWF-RTF

Rewriting τmax in (7.99) as

τmax =
A0B

∗
0 +A1B

∗
1

(1 + |α|2) |B0|2
, (D.45)

and substituting in (7.87), the BLVMC filter vector for the left hearing aid is equal
to

WBLCMV,0 [τ0 = τmax] =
R−1

v A
(1− Σ)σa

[
A∗0 +

(
A∗1α

∗ −A∗0|α|2
)

Σ

1 + |α|2

]
+

ΣR−1
v B

(1− Σ)σab

[
−A∗0 +

A∗0|α|2 −A∗1α∗

1 + |α|2

]
=

R−1
v A

(1− Σ)σa

[
A∗0 +

(
A∗1α

∗ −A∗0|α|2
)

Σ

1 + |α|2

]
−

ΣR−1
v B

(1− Σ)σab

(A0 +A1α)
∗

1 + |α|2
. (D.46)

Substituting (D.45) in (7.88), the BLVMC filter vector for the right hearing aid is
equal to

WBLCMV,1 [τ1 = τmax] =
R−1

v A
(1− Σ)σa

[
A∗1 +

(A∗0α−A∗1) Σ

1 + |α|2

]
−

α
ΣR−1

v B
(1− Σ)σab

(A0 +A1α)
∗

1 + |α|2
. (D.47)
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Applying the matrix inversion lemma to the MWF-RTF filter vector for the left
hearing aid in (D.12) and using (7.14), the filter vector can be written as

WMWF−RTF,0 =
PsA

∗
0

µ+ ρ
R−1

v A− κ

µ

[
R−1

v B− Psσab
µ+ ρ

R−1
v A

]
,

=
PsA

∗
0

µ+ ρ
R−1

v A− Σκ̃

µ+ ρ (1− Σ)

[
R−1

v B− Psσab
µ+ ρ

R−1
v A

]
, (D.48)

with

κ̃ =
Ps (A0 + αA1)

∗
σa

(1 + |α|2)σab
. (D.49)

The MWF-RTF filter vector for the right hearing aid in (D.13) can similarly be
written as

WMWF−RTF,1 =
PsA

∗
1

µ+ ρ
R−1

v A− Σκ̃α

µ+ ρ (1− Σ)

[
R−1

v B− Psσab
µ+ ρ

R−1
v A

]
. (D.50)

Setting µ→ 0 in (D.48), the filter is equal to

WMWF−RTF,0[µ = 0] =
A∗0
σa

R−1
v A− Σκ0

ρ (1− Σ)

[
R−1

v B− σab
σa

R−1
v A

]
=
A∗0
σa

R−1
v A− (A0 + αA1)

∗

(1 + |α|2)σab

Σ

(1− Σ)

[
R−1

v B− σab
σa

R−1
v A

]
=

R−1
v A
σa

[
A∗0 +

(A0 + αA1)
∗

(1 + |α|2)

Σ

(1− Σ)

]
−

(A0 + αA1)
∗

(1 + |α|2)σab

ΣR−1
v B

(1− Σ)

=
R−1

v A
(1− Σ)σa

[
A∗0 +

(
A∗1α

∗ −A∗0|α|2
)

Σ

1 + |α|2

]
−

ΣR−1
v B

(1− Σ)σab

(A0 +A1α)
∗

1 + |α|2
. (D.51)

Applying similar steps to the MWF-RTF filter vector of the right hearing aid in
(D.48), the filter is equal to

WMWF−RTF,1[µ = 0] =
R−1

v A
σa

[
A∗1 + α

(A0 + αA1)
∗

(1 + |α|2)

Σ

(1− Σ)

]
−

α
(A0 + αA1)

∗

(1 + |α|2)σab

Σ

(1− Σ)
R−1

v B

=
R−1

v A
(1− Σ)σa

[
A∗1 +

(A∗0α−A∗1) Σ

1 + |α|2

]
−

α
ΣR−1

v B
(1− Σ)σab

(A0 +A1α)
∗

1 + |α|2
. (D.52)
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Comparing (D.51) and (D.52) to (D.46) and (D.47), it can now be shown that

WMWF−RTF,0 [µ = 0] = WBLCMV,0 [τ0 = τmax] , (D.53)
WMWF−RTF,1 [µ = 0] = WBLCMV,1 [τ1 = τmax] . (D.54)

D.5 Equivalence between BLCMV and MWF-IR

Applying the matrix inversion lemma in (A.10) to the filter vector for the left
hearing aid of the MWF-IR in (7.44), the filter vector can be written as

WMWF−IR,0 =
PsA

∗
0

µ+ ρ
R−1

v A− Γ

µ

σaPsA
∗
0

σab

[
R−1

v B− Psσab
µ+ ρ

R−1
v A

]
, (D.55)

which, using (7.14) and (7.5), can further be written as

WMWF−IR,0 =
PsA

∗
0

µ+ ρ
R−1

v A− Σ

µ+ ρ(1− Σ)

σaPsA
∗
0

σab

[
R−1

v B− Psσab
µ+ ρ

R−1
v A

]
=
PsA

∗
0

µ+ ρ
R−1

v A
[
1− Σρ

µ+ ρ(1− Σ)

]
− Σ

µ+ ρ(1− Σ)

PsσaA
∗
0

σab
R−1

v B

=
PsA

∗
0

µ+ ρ(1− Σ)

[
R−1

v A− Σσa
σab

R−1
v B

]
. (D.56)

Noting that for the special case τ0 = τ1 = 0, the output SINR for the BLCMV
beamformer is equal to ρ(1 − Σ) [87], the filter vector in D.56 can be written
as

WMWF−IR,0 =
ρ(1− Σ)

µ+ ρ(1− Σ)

A∗0
(1− Σ)σa

[
R−1

v A− Σσa
σab

R−1
v B

]
(D.57)

=
ρ(1− Σ)

µ+ ρ(1− Σ)

A∗0
(1− Σ)σa

[
R−1

v A− σ∗ab
σb

R−1
v B

]
,

which, using (7.102), is equal to

WMWF−IR,0 =
ρ(1− Σ)

µ+ ρ(1− Σ)
WBLCMV,0 [τ0 = 0] . (D.58)

Applying similar steps to the filter vector for the left hearing aid of the MWF-IR
in (7.45), the filter vector can be written as

WMWF−IR,1 =
ρ(1− Σ)

µ+ ρ(1− Σ)
WBLCMV,1 [τ1 = 0] . (D.59)
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