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ABSTRACT

In many hands-free speech communication applications such as teleconferencing or
voice-controlled applications, the recorded microphone signals do not only contain
the desired speech signal, but also attenuated and delayed copies of the desired
speech signal due to reverberation as well as additive background noise. Reverber-
ation and background noise cause a signal degradation which can impair speech
intelligibility and decrease the performance for many signal processing techniques.

Acoustic multi-channel equalization techniques, which aim at inverting or reshaping
the measured or estimated room impulse responses between the speech source and
the microphone array, comprise an attractive approach to speech dereverberation
since in theory perfect dereverberation can be achieved. However in practice, such
techniques suffer from several drawbacks, such as uncontrolled perceptual effects,
sensitivity to perturbations in the measured or estimated room impulse responses,
and background noise amplification. The aim of this thesis is to tackle these draw-
backs by designing perceptually advantageous and robust acoustic multi-channel
equalization techniques for speech dereverberation as well as for joint dereverbera-
tion and noise reduction.

First, in order to control the perceptual speech quality, we propose the perceptually
advantageous partial multi-channel equalization technique based on the multiple-
input/output inverse theorem (PMINT), which aims not only at suppressing the late
reflections but also at controlling the early reflections. Simulation results show that
the proposed PMINT technique results in a better perceptual speech quality than
state-of-the-art acoustic multi-channel equalization techniques, such as the multiple-
input/output inverse theorem (MINT), channel shortening (CS), and relaxed multi-
channel least-squares (RMCLS).

Second, in order to increase the robustness of all considered acoustic multi-channel
equalization techniques against room impulse response perturbations, i.e., of the
MINT, CS, RMCLS, and PMINT techniques, we propose several methods. On the
one hand, we propose signal-independent methods, i.e., decreasing the reshaping fil-
ter length to improve the conditioning of the optimization criteria or incorporating
(automatic) regularization to reduce the energy of distortions due to room impulse
response perturbations. On the other hand, we propose a signal-dependent method ,
i.e., using a sparsity-promoting penalty function to promote sparsity in the output
speech signal and reduce artifacts generated by non-robust techniques. All proposed
methods are validated using instrumental performance measures and subjective lis-
tening tests, which show that the regularized and sparsity-promoting extensions
of the PMINT technique yield the best dereverberation performance in compari-
son to the robust extensions of state-of-the-art acoustic multi-channel equalization
techniques.
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Finally, in order to achieve joint dereverberation and noise reduction we propose
two techniques based on robust acoustic multi-channel equalization. The first tech-
nique, namely regularized PMINT for joint dereverberation and noise reduction
(RP-DNR), can be seen as an extension of the regularized PMINT technique that
explicitly takes the noise statistics into account. The second technique, namely multi-
channel Wiener filter for joint dereverberation and noise reduction (MWF-DNR),
in addition takes the speech statistics into account and uses the dereverberated out-
put signal of the regularized PMINT technique as the reference signal for the multi-
channel Wiener filter. In addition to the regularization parameter used in the regu-
larized PMINT technique, a weighting parameter is introduced in the RP-DNR and
MWF-DNR techniques to trade off between dereverberation and noise reduction.
To determine the regularization and weighting parameters, we propose automatic
non-intrusive procedures based on the L-hypersurface and the L-curve. Simulation
results show that the RP-DNR technique maintains the high dereverberation per-
formance of the regularized PMINT technique while improving the noise reduction
performance. Furthermore, simulation results show that the MWF-DNR technique
yields a significantly better noise reduction performance than the RP-DNR tech-
nique at the expense of a worse dereverberation performance, depending on the
amount of estimation errors in the speech correlation matrix.
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ZUSAMMENFASSUNG

Die Mikrofonsignale vieler Freichsprechanwendungen, beispielsweise im Bereich Tele-
konferenz oder Sprachsteuerung, beinhalten nicht nur das gewünschte Sprachsignal,
sondern auch Nachhall sowie additives Hintergrundrauschen. Dieser Nachhall und
das Hintergrundrauschen führen zu Signalverschlechterungen, welche die Sprachver-
ständlichkeit sowie die Leistungsfähigkeit verschiedener Algorithmen zur Signalver-
arbeitung beeinträchtigen.

Ein attraktiver Ansatz Mikrofonsignale zu enthallen stellen mehrkanalige akusti-
sche Entzerrungsverfahren dar, da diese, zumindest theoretisch, eine perfekte Ent-
hallung erreichen können. Diese Verfahren zielen auf eine Invertierung oder An-
gleichung der gemessenen oder geschätzten Raumimpulsantworten ab. In der prak-
tischen Anwendung dieser Verfahren ergeben sich jedoch verschiedene Probleme.
Dazu zählen beispielsweise die Erzeugung unkontrollierter wahrnehmbarer Arte-
fakte, eine hohe Anfälligkeit gegenüber Abweichungen der gemessenen oder geschät-
zten Raumimpulsantworten, sowie eine Verstärkung des Hintergrundrauschens. Der
Schwerpunkt der folgenden Arbeit stellt das Lösen dieser Probleme dar. Dazu wer-
den verschiedene akustische Mehrkanal-Entzerrungsverfahren sowohl zur Sprach-
enthallung als auch zur gleichzeitigen Enthallung und Rauschunterdrückung ent-
wickelt, die sich robust verhalten sowie wahrnehmungsbasierte Vorteile bieten.

Um die wahrgenommene Sprachqualität zu steuern, wird zunächst ein unter den Ge-
sichtspunkten der Wahrnehmung vorteilhafter partieller mehrkanaliger Entzerrungs-
ansatz vorgeschlagen (bezeichnet als PMINT), der auf dem so-genannten „multiple-
input/output inverse theorem“ (MINT) basiert. Dieser Ansatz versucht gleichzeitig
die späten Raumreflexionen zu unterdrücken und die frühen Raumreflexionen zu
kontrollieren. Simulationsergebnisse zeigen, dass der vorgeschlagene PMINT-Ansatz
eine bessere Sprachqualität als bisherige Mehrkanal-Entzerrungsverfahren liefert,
die auf MINT, dem sogenannten „channel shortening“ (CS) oder dem sogenannten
„relaxed multi-channel least-squares“ (RMCLS) Ansatz basieren.

Um die Robustheit der betrachteten akustischen Mehrkanal-Entzerrungsverfahren,
beispielsweise MINT, PMINT, CS oder RMCLS, gegenüber Abweichungen der
Raumimpulsantworten zu verbessern, werden verschiedene Ansätze vorgestellt. Zu
diesem Zweck werden zunächst signalunabhängige Methoden betrachtet. Dazu zäh-
len eine Verringerung der Länge des Angleichungsfilters um die Konditionierung
des Optimierungskriteriums zu verbessern sowie die Einbeziehung einer (automa-
tischen) Regularisierung um die Signalverzerrungen zu reduzieren. Anschließend
werden signalabhängige Methoden betrachtet. Dazu zählen die Verwendung einer
Straffunktion, die dünnbesetzte Ausgangssprachsignale fördert und dadurch Arte-
fakte verringert, die durch Algorithmen mit geringer Robustheit erzeugt werden.
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Die vorgeschlagenen signalunabhängigen und signalabhängigen Methoden werden
mittels geeigneter Leistungsmaße sowie subjektiver Hörtests evaluiert. Die Ergeb-
nisse zeigen, dass der PMINT-Ansatz die beste Enthallungsleistung im Vergleich
zu den robusten Erweiterungen bisheriger akustischer Mehrkanal-Entzerrungsver-
fahren bietet, wenn der PMINT-Ansatz mit der vorgeschlagenen Straffunktion und
Regularisierung erweitert wird.

Um kombinierte Enthallung und Störgeräuschunterdrückung zu erreichen, werden
basierend auf robusten akustischen Mehrkanal-Entzerrungsverfahren zwei Algorith-
men vorgestellt. Der erste Algorithmus, welcher als regularisiertes PMINT zur gleich-
zeitigen Enthallung und Störgeräuschunterdrückung (RP-DNR) bezeichnet wird,
kann als eine Erweiterung des regularisiertem PMINT Algorithmus betrachtet wer-
den, welche die Statistik des Störgeräusches explizit berücksichtigt. Der zweite Al-
gorithmus, bezeichnet als mehrkanaliges Wiener Filter zur gleichzeitigen Enthal-
lung und Störgeräuschunterdrückung (MWF-DNR), berücksichtigt zusätzlich die
Statistik des Sprachsignals und verwendet das enthallte Ausgangssignal des regu-
larisierten PMINT Algorithmus als Referenzsignal für das mehrkanaligen Wiener
Filter. Zusätzlich zu dem Regularisierungsparameter, welcher im regularisierten
PMINT verwendet wird, wird für die RP-DNR und MWF-DNR Algorithmen ein
Gewichtungsparameter eingeführt, welcher eine Gewichtung zwischen Enthallung
und Störgeräuschunterdrückung ermöglicht. Zur Bestimmung beider Parameter wer-
den automatische Verfahren basierend auf L-Hyperflächen und L-Kurven vorgestellt.
Die Simulationsergebnisse zeigen, dass der RP-DNR Algorithmus denselben Grad an
Enthallung wie der regularisierte PMINT Algorithmus erreicht und gleichzeitig die
Störgeräuschunterdrückung verbessert. Zusätzlich zeigen die Ergebnisse, dass der
MWF-DNR Algorithmus, abhängig von dem Grad der Schätzfehler in der Sprach-
korrelationsmatrix, eine signifikant bessere Störgeräuschunterdrückung auf Kosten
einer schlechteren Enthallungsleistung aufweist.
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GLOSSARY

Acronyms and abbreviations

ADMM alternating direction method of multipliers
AIR acoustic impulse response
BSI blind system identification
CAPZ common-acoustical-poles-and-zeros
CD cepstral distance
CS channel shortening
DRR direct-to-reverberant ratio
DTFT discrete-time Fourier transform
EDC energy decay curve
EIR equalized impulse response
FIR finite impulse response
fwSSNR frequency-weighted segmental signal-to-noise ratio
GSC generalized sidelobe canceller
IDTFT inverse discrete-time Fourier transform
IIR infinite impulse response
ISTFT inverse short-time Fourier transform
L-CS channel shortening using a shorter reshaping filter length
L-MINT multiple-input/output inverse theorem using a shorter reshap-

ing filter length
L-PMINT partial multi-channel equalization based on the multiple-

input/output inverse theorem using a shorter reshaping filter
length

L-RMCLS relaxed multi-channel least-squares using a shorter reshaping
filter length

MINT multiple-input/output inverse theorem
MVDR minimum variance distortionless response
MUSHRA multiple stimuli with hidden reference and anchor
MWF multi-channel Wiener filter
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MWF-DNR multi-channel Wiener filter for joint dereverberation and noise
reduction

NPM normalized projection misalignment
PESQ perceptual evaluation of speech quality
PMINT partial multi-channel equalization based on the multiple-

input/output inverse theorem
PSD power spectral density
R-CS regularized channel shortening
RIR room impulse response
RMCLS relaxed multi-channel least-squares
R-MINT regularized multiple-input/output inverse theorem
RP-DNR regularized partial multi-channel equalization based on the

multiple-input/output inverse theorem for joint dereverbera-
tion and noise reduction

R-PMINT regularized partial multi-channel equalization based on the
multiple-input/output inverse theorem

R-RMCLS regularized relaxed multi-channel least-squares
SCLS single-channel least-squares
S-CS sparsity-promoting channel shortening
SIR speech-to-interference ratio
S-MINT sparsity-promoting multiple-input/output inverse theorem
SNR signal-to-noise ratio
S-PMINT sparsity-promoting partial multi-channel equalization based on

the multiple-input/output inverse theorem
S-RMCLS sparsity-promoting relaxed multi-channel least-squares
SRNR signal-to-reverberation-and-noise ratio
SSI supervised system identification
STFT short-time Fourier transform

Mathematical notation

a scalar a
a vector a

La length of vector a

A matrix A

â estimate of scalar a
â estimate of vector a
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Â estimate of matrix A

a∗ complex conjugate of scalar a
aT transpose of vector a

AT transpose of matrix A

AH conjugate transpose of matrix A

A−1 inverse of matrix A

A+ pseudo-inverse of matrix A

a(i) i-th element of vector a

a(k) value of vector a at iteration index k
σA(i) i-th singular value of matrix A

χ
A

condition number of matrix A

diag{a} square diagonal matrix with vector a on the diagonal

x(n) discrete-time sequence at discrete-time index n
X(ω) discrete-time Fourier transform of x(n) at angular frequency ω
X(t, f) short-time Fourier transform of x(n) at time frame index t and

frequency bin index f
Px(ω) power spectral density of x(n)

Rx(n) auto-correlation matrix of vector x(n)

Rxy(n) cross-correlation matrix of vectors x(n) and y(n)

∗ convolution operator
E expected value operator
Ψ short-time Fourier transform operator
ΨH inverse short-time Fourier transform operator
d·e ceiling operator
{·}′ first-order derivative
{·}′′ second-order derivative
| · | magnitude
‖ · ‖0 l0-norm
‖ · ‖1 l1-norm
‖ · ‖2 l2-norm
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Fixed symbols

n discrete-time index
ω angular frequency
t time frame index
f frequency bin index
m microphone index
M number of microphones
T60 reverberation time
fs sampling frequency
Le desired window length in number of samples
Ld desired window length in ms

hm(n) room impulse response between the source and the m-th mic-
rophone

he,m(n) direct path and early reflections of the room impulse response
between the source and the m-th microphone

hr,m(n) late reflections of the room impulse response between the
source and the m-th microphone

wm(n) filter applied to the m-th microphone
c(n) equalized impulse response
s(n) clean speech signal
xm(n) reverberant speech component in the m-th microphone signal
xe,m(n) early reverberation component in the m-th microphone signal
xr,m(n) late reverberation component in the m-th microphone signal
vm(n) noise component in the m-th microphone signal
ym(n) m-th microphone signal
z(n) output signal
zx(n) speech component in the output signal
zv(n) noise component in the output signal
ze,x(n) early reverberation component in the output signal
zr,x(n) late reverberation component in the output signal

hm m-th room impulse response vector
ĥm m-th perturbed room impulse response vector
em perturbation of the m-th room impulse response vector
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wm m-th filter vector
xm(n) m-th reverberant speech component vector
vm(n) m-th noise component vector
ym(n) m-th received signal vector
h stacked room impulse response vector
w stacked filter vector
c equalized impulse response vector
ĉ perturbed equalized impulse response vector
ct target equalized impulse response vector
s(n) clean speech vector
x(n) stacked reverberant speech component vector
v(n) stacked noise component vector
y(n) stacked microphone signal vector
z(n) output signal vector
Hm convolution matrix of the m-th room impulse response
H stacked multi-channel convolution matrix
Ĥ perturbed stacked multi-channel convolution matrix
E stacked multi-channel convolution matrix of the perturbations
W least-squares weighting matrix
WR relaxed multi-channel least-squares weighting matrix
Wd channel shortening desired weighting matrix
Wu channel shortening undesired weighting matrix
I identity matrix

κ curvature of a parametric surface
εc least-squares dereverberation error energy
εr channel shortening dereverberation error energy
εe distortion energy
εs sparsity measure
εx speech distortion
εv output noise power
δ regularization parameter for regularized techniques
η weighting parameter for sparsity-promoting techniques
ρ penalty parameter for alternating direction method of multi-

pliers
µ weighting parameter for joint dereverberation and noise reduc-

tion techniques
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Lo optimal reshaping filter length
δo optimal regularization parameter
δa automatic regularization parameter
ηo optimal weighting parameter
ρo optimal penalty parameter

JLS least-squares cost function
JM multiple-input/output inverse theorem cost function
JCS channel shortening cost function
JR relaxed multi-channel least-squares cost function
JP partial multi-channel equalization based on the multiple-

input/output inverse theorem cost function
JR-LS regularized least-squares cost function
JR-M regularized multiple-input/output inverse theorem cost func-

tion
JR-CS regularized channel shortening cost function
JR-R regularized relaxed multi-channel least-squares cost function
JR-P regularized partial multi-channel equalization based on the

multiple-input/output inverse theorem cost function
JS-LS sparsity-promoting least-squares cost function
JS-CS sparsity-promoting channel shortening cost function
JRP-DNR regularized partial multi-channel equalization based on the

multiple-input/output inverse theorem for joint dereverbera-
tion and noise reduction cost function

JMWF-DNR multi-channel Wiener filter for joint dereverberation and noise
reduction cost function

fsp sparsity-promoting penalty function
f0
sp l0-norm sparsity-promoting penalty function
f1
sp l1-norm sparsity-promoting penalty function
fw,1sp weighted l1-norm sparsity-promoting penalty function
LS-LS augmented Lagrangian for sparsity-promoting least-squares op-

timization
LS-CS augmented Lagrangian for sparsity-promoting channel shorten-

ing optimization

wLS least-squares reshaping filter
wM multiple-input/output inverse theorem reshaping filter
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wCS channel shortening reshaping filter
wR relaxed multi-channel least-squares reshaping filter
wP partial multi-channel equalization based on the multiple-

input/output inverse theorem reshaping filter
wR-LS regularized least-squares reshaping filter
wR-M regularized multiple-input/output inverse theorem reshaping

filter
wR-R regularized relaxed multi-channel least-squares reshaping filter
wR-P regularized partial multi-channel equalization based on the

multiple-input/output inverse theorem reshaping filter
wS-LS sparsity-promoting least-squares reshaping filter
wS-M sparsity-promoting multiple-input/output inverse theorem re-

shaping filter
wS-R sparsity-promoting relaxed multi-channel least-squares reshap-

ing filter
wS-P sparsity-promoting partial multi-channel equalization based on

the multiple-input/output inverse theorem reshaping filter
wRP-DNR regularized partial multi-channel equalization based on the

multiple-input/output inverse theorem for joint dereverbera-
tion and noise reduction filter

wMWF-DNR multi-channel Wiener filter for joint dereverberation and noise
reduction
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1
INTRODUCTION

1.1 Motivation

The rapid rise of powerful portable smart devices such as smartphones, tablets, and
smartwatches, has resulted in a vastly expanding market for hands-free speech com-
munication interfaces. Such interfaces are being deployed in a wide range of applica-
tions such as assisted living technologies, car interior communication systems, and
consumer electronics devices. Furthermore, computer hardware and networks have
been dramatically evolving in the last years, giving rise to multimedia applications
such as hands-free teleconferencing, which allows people who are geographically
dispersed to hold conferences by sending and receiving audio and video data over
networks. The work presented in this thesis is motivated by the continuously and
rapidly growing demand for high-quality hands-free communication in such a wide
range of applications.
In hands-free communication, speech is acquired by a single microphone or multiple
microphones placed at a distance from the speaker in an adverse acoustic environ-
ment. As is schematically illustrated in Fig. 1.1 for a multi-microphone setup, the
received microphone signals contain not only the desired speech signal, but also
other interferences such as reverberation and background noise [1].
Reverberation arises whenever sound is produced in an enclosed space and the
acoustic waves coming from the sound source are reflected by the walls and other
surrounding objects. While carefully controlled and moderate reverberation may be
desirable [2], severe reverberation yields a degradation in speech intelligibility [3–5].
Moreover, since reverberation alters the characteristics of the speech signal, the
performance of acoustic source localization techniques and automatic speech recog-
nition systems rapidly degrades with increasing reverberation levels [6–9].
Background noise arises, e.g., due to other speakers, passing traffic, or electronic
appliances. When its level is comparable or larger than the speech level, listening
comfort and speech intelligibility are significantly degraded [3,4]. Furthermore, the
performance of acoustic source localization techniques and automatic speech recog-
nition systems also rapidly degrades with increasing background noise levels [1].
Therefore, reverberation and background noise cause a signal degradation which can
impair speech intelligibility and which decrease the performance for many signal pro-
cessing techniques. Noise reduction techniques have been widely investigated in the
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Fig. 1.1: Schematic illustration of a typical acoustic scenario in hands-free speech commu-
nication applications.

literature, and several significant contributions and robust solutions have already
been proposed [10–19]. On the other hand, dereverberation as well as joint dere-
verberation and noise reduction has received much less attention until recently [20].
The main difference between reverberation and noise is that reverberation depends
on the desired speech signal whereas noise is usually assumed to be independent
from the desired speech signal. As a result, the wide range of effective noise re-
duction techniques that have been developed so far cannot be readily applied to
speech dereverberation. Furthermore, modeling the convolutive nature of reverber-
ation is significantly more complex than modeling the additive combination of the
speech and noise signals, posing a challenge in developing effective dereverberation
techniques, both from a theoretical perspective as well as from a computational
complexity and numerical precision perspective. Although a significant progress has
been made in the last years in the field of dereverberation as indicated by the large
number of contributions in a recent international challenge [21], robust and percep-
tually advantageous solutions for dereverberation and for joint dereverberation and
noise reduction remain to be established.
The objective of this thesis is to investigate, develop, and evaluate robust and per-
ceptually advantageous speech dereverberation techniques based on acoustic
multi-channel equalization, as well as to effectively integrate them with noise
reduction in order to achieve joint dereverberation and noise reduction.

1.2 Reverberation in an enclosure

Since dereverberation is the central topic of this thesis, in this section some insights
on the qualitative and quantitative aspects of reverberation are provided.

Reverberation is the collection of reflected sounds from walls and objects within an
enclosure. As is schematically illustrated in Fig. 1.2, the recorded microphone signal
in a reverberant environment consists of the direct path signal and multiple delayed
and attenuated versions, referred to as reverberation. Reverberation can be divided
into two components: early reverberation and late reverberation.
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Fig. 1.2: Schematic illustration of reverberation in an enclosure.

Early reverberation refers to the reflected signals arriving at the microphone imme-
diately after the direct path signal, typically considered to be within 1–50 ms [22].
As the source-microphone geometry changes, also the early reverberation changes,
providing insights about the volume of the enclosure and about the position of the
source within the enclosure [23–25]. Psychoacoustically, early reverberation is per-
ceived to reinforce the direct path signal and has been shown to have a positive
effect on speech intelligibility [5,22,26,27]. However, early reverberation also causes
coloration, which can degrade the quality of the recorded speech signal [22].
Late reverberation refers to the reflected signals arriving at the microphone after the
early reverberation, typically considered to be 50 ms after the direct path signal [22].
Late reverberation is the main cause of speech intelligibility degradation [3–5], par-
ticularly for non-native speakers [3] and for the hearing-impaired [4, 28].

The acoustic path between the source and the microphone can be described by
the acoustic impulse response (AIR), which can, e.g., be measured by exciting the
acoustic environment with an impulsive sound. While AIR is used to refer to an
acoustic impulse response in general, the acoustic context is commonly limited to
be within a room. Hence, in the following we will refer to the impulse response as
a room impulse response (RIR). Similarly to the recorded microphone signal, the
RIR can be divided into three components: i) direct path, ii) early reflections, and
iii) late reflections. Fig. 1.3 shows an example of a measured RIR, indicating the
direct path, early reflections, and late reflections. As can be observed, the direct
path propagation from the source to the microphone initially yields a period of
zero amplitude (or nearly-zero due to the discrete sampling of the RIR), which is
referred to as the RIR delay. The delay depends on the source-microphone distance,
the sampling frequency, and the speed of sound. Furthermore, the early reflections
of an RIR are typically considered to be well-separated and distinct impulses with a
large amplitude, whereas the late reflections have a significantly smaller amplitude
and a diffuse-like nature.

Room impulse responses can be modeled using all-zero, all-pole, or pole-zero mod-
els [29–33]. The most commonly used all-zero model, i.e., the finite impulse re-
sponse (FIR) filter model, can achieve a high degree of accuracy, with the drawback
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Fig. 1.3: An exemplary room impulse response (reverberation time T60 ≈ 450 ms and
direct-to-reverberant ratio DRR = 0 dB.

that the model order is high for long RIRs [29]. It should be noted that since RIRs
are typically several thousand samples long (depending on the acoustic environ-
ment), the likelihood that RIRs share near-common zeroes tends to be high [34]. In
order to decrease the model order, the all-pole model, i.e., the infinite impulse re-
sponse (IIR) filter model, has also been investigated in [30]. However, since acoustic
systems generally are mixed-phase systems [35–37], a stable all-pole model can only
model the minimum-phase component of the acoustic system. In order to model
all components, pole-zero models such as the common-acoustical-poles-and-zeros
(CAPZ) model have been investigated [31,32]. The estimation of the model parame-
ters in the CAPZ model however requires non-linear optimization procedures, which
might lead to instability issues and convergence to local minima. Instead of exactly
modeling the RIR, also statistical descriptions of the RIR characteristics in terms
of quantities such as source-microphone distance or volume of the enclosure have
been investigated [38–40].

Reverberation in an enclosure is generally quantified using the reverberation time.
The reverberation time T60, originally introduced by W. C. Sabine [22], is defined
as the time taken by the reverberant energy to decay by 60 dB once the direct path
signal has been interrupted. Since the reverberation time is invariant to changes
in the source-microphone geometry whereas the RIR highly depends on the source-
microphone geometry, a commonly-used quantity which reflects the spatial depen-
dence of the RIR is the direct-to-reverberant ratio (DRR), defined as the ratio of
the energy of the direct path of the RIR to the energy of the reflections [20].

1.3 Overview of speech enhancement techniques

With the continuously growing demand for high-quality hands-free communication,
speech enhancement techniques aiming at dereverberation and at joint dereverber-
ation and noise reduction have become indispensable. In the last decades, several
single- as well as multi-channel techniques have been proposed, with multi-channel
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techniques being generally preferred since they enable to exploit both the spectro-
temporal and the spatial characteristics of the received microphone signals.
Dereverberation techniques can be divided into many categories, such as single- and
multi-channel techniques, complete and partial dereverberation techniques, or blind
and non-blind techniques. We categorize existing dereverberation techniques into

i) spectral enhancement (single- and multi-channel techniques),
ii) beamforming and multi-channel Wiener filtering (multi-channel techniques),
iii) blind probabilistic modeling-based (single- and multi-channel techniques), and
iv) acoustic channel equalization (single- and multi-channel techniques).

This categorization is not meant to be exclusive and techniques from different cate-
gories share common assumptions, models, and processing. In this section a coarse
overview of several spectral enhancement, beamforming and multi-channel Wiener
filtering, and probabilistic modeling-based techniques is provided. This overview is
by no means self-contained covering all speech enhancement techniques proposed in
the past decades, but it provides a general description of the different approaches
that have been proposed to achieve dereverberation as well as joint dereverberation
and noise reduction. A summary of other existing speech enhancement techniques
can be found, e.g., in [20,40]. Since acoustic channel equalization is the central topic
of this thesis, a more detailed overview of techniques belonging to this category is
provided in Section 1.4.

i) Spectral enhancement

Spectral enhancement techniques traditionally refer to single-channel techniques
and have been widely investigated for several decades for the enhancement of noisy
speech signals [41–43]. One of the first proposed spectral enhancement techniques
is spectral subtraction [44,45], which subtracts an estimate of the noise magnitude
from the noisy speech magnitude. In order to improve the quality of the processed
speech signal, i.e., reduce speech distortion or residual noise, several modifications
to the traditional spectral subtraction technique have been proposed, such as over-
subtracting estimates of the noise spectrum and spectral flooring [46], non-linear
spectral subtraction [47, 48], or the incorporation of psychoacoustically motivated
over-subtraction parameters [49]. A significant drawback of spectral subtraction is
the random variation of the estimated noise spectrum, often giving rise to disturbing
artifacts known as musical noise.
A theoretically more solid and advanced approach to spectral enhancement is the
derivation of statistically optimal clean speech estimators, which are based on statis-
tical models for the speech and noise signals and a perceptually relevant distortion
measure to be minimized. A wide range of estimators have been investigated for the
enhancement of noisy speech, differing in the statistical models used for the speech
and noise signals and in the distortion measure they minimize, e.g., in [50–56].
These techniques achieve noise reduction by applying a (typically) real-valued time-
frequency-dependent gain function to the time-frequency representation of the noisy
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speech signal. The gain function is computed based on an estimate of the speech
and noise power spectral density (PSD).
Spectral enhancement techniques can be adapted to achieve dereverberation, as long
as an estimate of the reverberation PSD can be obtained. The first single-channel
dereverberation technique based on spectral enhancement was proposed in [57]. This
technique relies on statistical room acoustics and models the room impulse response
as an independent and identically distributed white Gaussian noise sequence with
an exponentially decaying variance [39]. Based on this model, an estimate of the
late reverberation PSD is obtained. This technique was extended to multiple micro-
phones in [58, 59], where it is experimentally validated that by exploiting multiple
microphones, a better dereverberation performance can be obtained. Statistically
optimal estimators for dereverberation have also been investigated [40], and sev-
eral single- and multi-channel techniques for estimating the late reverberation PSD
using statistical room acoustics have been proposed, e.g., in [40,60–62].
Spectral enhancement techniques have also been extended to achieve joint derever-
beration and noise reduction, e.g., in [40, 63]. Fig. 1.4 presents a schematic rep-
resentation of single-channel spectral enhancement for joint dereverberation and
noise reduction. As illustrated, first a time-frequency representation of the received
reverberant and noisy signal is computed using an analysis filter bank. Based on
estimates of the noise and the late reverberation PSDs, a spectral gain function
is designed and applied to the received signal spectrum. The time-domain output
speech signal is then obtained by using a synthesis filter bank.
Spectral enhancement techniques are amongst the most computationally efficient
techniques suitable for real-time processing, however, particular care must be taken
when implementing them such that the arising speech distortion and musical noise
are controlled. Furthermore, by applying a (typically) real-valued gain function,
these techniques are not able to perfectly recover the dereverberated and denoised
speech signal.

Time-frequency
analysis

Gain
function

Time-frequency
synthesis

Noise PSD
estimatior

Late reverberation PSD
estimator

y(n) z(n)

Fig. 1.4: Schematic illustration of single-channel spectral enhancement for joint derever-
beration and noise reduction. y(n) denotes the received microphone signal and
z(n) denotes the output speech signal.
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ii) Beamforming and multi-channel Wiener filtering

Multi-channel beamforming techniques for noise reduction have been extensively
investigated in the literature, aiming to design filters which spatially focus on the
speech source and suppress the background noise not coming from the same direction
as the speech source [19,64–69]. Typical fixed beamforming techniques include delay-
and-sum beamforming [64], differential microphone arrays [65, 66], minimum vari-
ance distortionless response (MVDR) beamformers [68,69], and frequency-invariant
beamformers [67]. To increase the noise reduction performance of fixed beamform-
ers, also adaptive beamforming techniques have been widely investigated, typically
implemented in a Generalized Sidelobe Canceller (GSC) structure [70–72]. As is
schematically illustrated in Fig. 1.5, the GSC consists of a fixed beamformer, cre-
ating a so-called desired reference signal, a blocking matrix, creating a so-called
interference reference signal, and an adaptive filter aiming to suppress the resid-
ual interference in the desired reference signal. Fixed and adaptive beamforming
techniques have been originally investigated for the enhancement of noisy speech.
While the dereverberation performance of fixed beamformers is limited, adaptive
beamforming techniques cannot be straightforwardly used for dereverberation.
Nevertheless, GSC-like structures have also been tailored to enhance reverberant
and noisy speech [73–79]. In [73] the delay-and-sum beamformer has been used
as a fixed beamformer to generate the desired reference signal. In addition, the
delay-and-subtract beamformer has been used as a blocking matrix to cancel the
direct speech component and generate a reference interference signal (containing
reverberation and noise). Alternatively, it has been proposed in [74,75] to compute
the blocking matrix using blind source separation, aiming to cancel both the direct
and early reverberation component. A slightly different approach is taken in [76–78],
where it is assumed that the spatial coherence matrix of the late reverberation can
be modeled as a scaled diffuse sound field, which holds for frequencies above the
Schroeder frequency [38]. Based on this model, a maximum likelihood estimate of
the late reverberation PSD at the output of the blocking matrix is derived. The

Fixed
beamformer

Blocking
matrix

Adaptive
filtering

∑y1(n)
y2(n)

yM (n)
:

Interference
reference signal

...

−

Desired reference signal +
z(n)

Fig. 1.5: Schematic illustration of the Generalized Sidelobe Canceller structure for multi-
channel speech enhancement. ym(n) denotes them-th received microphone signal,
m = 1, 2, . . . ,M , with M the number of microphones, and z(n) denotes the
output speech signal.
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estimated late reverberation PSD is used in a spectral filter to suppress the late
reverberant power at the output of a fixed MVDR beamformer.
Other techniques to joint dereverberation and noise reduction directly combine fixed
beamformers and the previously described single-channel spectral filters [63,80], as
is schematically illustrated in Fig. 1.6. Such techniques consist of two stages, where
in the first stage a fixed beamformer, e.g., delay-and-sum or MVDR beamformer, is
used to suppress some reverberation and background noise, and in the second stage
a single-channel spectral postfilter is applied to suppress the residual reverberation
and noise at the beamformer output.
A very related class of multi-channel speech enhancement techniques is based on
the multi-channel Wiener filter (MWF) [81–87], which can be decomposed into an
MVDR beamformer and a single-channel spectral postfilter. The MWF computes
the minimum mean square error estimate of a reference signal. The estimation of
several reference signals has been considered, e.g., the clean speech signal [81,82,87],
the reverberant speech component at an arbitrarily chosen microphone [83, 85, 86],
or a spatially pre-processed reference speech signal [84].
Due to possible microphone mismatches and estimation errors in the direction-of-
arrival of the speech source, GSC-based techniques can cause distortion of the de-
sired speech signal. Furthermore, due to the spectral filtering involved in MWF-
based techniques, a trade-off arises between speech distortion and reverberation
and noise reduction, which should be carefully controlled. Similarly as the spectral
enhancement techniques, also beamforming and MWF-based techniques are not able
to perfectly recover the dereverberated and denoised speech signal.

iii) Blind probabilistic modeling-based

A recent category of dereverberation techniques are blind probabilistic modeling-
based techniques [88–98], which use statistical models to represent the unknown
clean speech signal and the unknown room impulse responses. Using the received
microphone signals, the parameters of the assumed statistical models for the clean
speech signal and for the room impulse responses are then blindly estimated.
Blind probabilistic modeling-based techniques generally operate in the frequency-
domain and model the acoustic transfer function as an auto-regressive process [91,
94, 95]. Alternatively, the acoustic transfer function has been modeled using the
convolutive transfer approximation [93, 97, 98]. In addition, the clean speech spec-
tral coefficients have been modeled using a Gaussian distribution [91], a Laplacian

Fixed
beamformer

Spectral
postfilter

y1(n)
y2(n)

yM (n)
:

z(n)

Fig. 1.6: Schematic illustration of two-stage techniques for joint dereverberation and noise
reduction. ym(n) denotes the m-th received microphone signal, m = 1, 2, . . . ,M ,
with M the number of microphones, and z(n) denotes the output speech signal.
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distribution [95], or an all-pole model [94]. In [96, 98] it has been shown that by
modeling the clean speech spectral coefficients using sparse circular priors, a better
dereverberation performance can be achieved.
Furthermore, by also modeling the noise spectral coefficients, blind probabilistic
modeling-based techniques have been successfully extended to achieve joint derever-
beration and noise reduction [99,100].
Clearly, these techniques fundamentally rely on realistic statistical models to de-
scribe the underlying speech process and acoustic transfer functions, hence, the
choice of these models is of crucial importance to the dereverberation and noise
reduction performance. Moreover, such techniques typically employ iterative pro-
cedures to blindly estimate the model parameters, which can in general be com-
putationally complex. Similarly as the previously presented techniques, also blind
probabilistic modeling-based techniques are not able to perfectly recover the dere-
verberated and denoised speech signal.

1.4 Acoustic channel equalization

In general the previously presented dereverberation techniques offer the potential
to achieve a good dereverberation performance. However, they can never achieve a
perfect dereverberation performance, i.e., exactly recover the clean speech signal or
the early reverberation component. On the other hand, acoustic channel equalization
techniques, which aim at inverting or reshaping the RIRs between the speech source
and the microphones, can in theory achieve perfect dereverberation performance.
Motivated by this potential, this thesis deals with acoustic channel equalization for
dereverberation as well as for joint dereverberation and noise reduction.

Speech dereverberation using acoustic channel equalization can be considered to be
a two-stage approach. As is schematically illustrated in Fig. 1.7 for a multi-channel
scenario, in the first stage the RIRs are measured or estimated using supervised
system identification (SSI) methods [101] or blind system identification (BSI) meth-
ods [102–107]. Using the measured or estimated RIRs, in the second stage equal-

Equalization
filters

Measuring or
identifying the RIRs

y1(n)
y2(n)

yM (n)
:

. . .

z(n)

Fig. 1.7: Schematic illustration of acoustic multi-channel equalization techniques for
dereverberation. ym(n) denotes the m-th received microphone signal, m =
1, 2, . . . ,M , with M the number of microphones, and z(n) denotes the output
speech signal.
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ization filters aiming to invert or partially reshape the RIRs are applied to the
microphone signals, such that the output speech signal is equal to the clean speech
signal or to the early reverberation component in one of the microphone signals.
As already mentioned, acoustic channel equalization comprises an attractive ap-
proach to speech dereverberation, since in theory perfect dereverberation can be
achieved. As will be described in the following, in practice however, such techniques
suffer from a number of drawbacks, i.e.,

i) the measured or estimated RIRs are generally perturbed from the true RIRs
due to temperature variations [108], spatial mismatch in the source-micropho-
ne geometry [109], or due to the sensitivity of SSI or BSI methods to interfering
noise [110, 111]. Acoustic channel equalization techniques can be very sensi-
tive to such perturbations, failing to achieve dereverberation and leading to
additional distortions in the output speech signal,

ii) the so-called partial equalization techniques, which aim at partially reshaping
the RIRs such that only the late reverberation is suppressed, may lead to
undesired perceptual effects, and

iii) acoustic channel equalization techniques design dereverberation filters without
taking the presence of the background noise into account, which may lead to
noise amplification.

The aim of this thesis is to deal with all these drawbacks by designing robust
and perceptually advantageous acoustic multi-channel equalization tech-
niques for speech dereverberation as well as for joint dereverberation and
noise reduction.

In the past decades, several equalization techniques have been investigated, which
can be classified into single-channel and multi-channel techniques, fixed and adap-
tive versions, time-domain and frequency-domain implementations, and complete
equalization techniques aiming to recover the clean speech signal as well as partial
equalization techniques aiming to recover the early reverberation component in one
of the microphone signals. In the following, an overview of several proposed equaliza-
tion techniques is presented. For the sake of clarity, we categorize acoustic channel
equalization techniques into single-channel and multi-channel techniques.

Single-channel equalization

Single-channel equalization techniques aim at designing an inverse filter, such that
the effect of a single RIR is inverted and the (possibly delayed) clean speech sig-
nal is recovered. Although this may seem straightforward, designing an inverse fil-
ter is quite challenging in practice. Since acoustic transfer functions are generally
mixed-phase systems [35–37], a stable and causal inverse filter does not exist. As a
result, approximate time-domain inverse filtering techniques such as single-channel
least-squares (SCLS) [112] and homomorphic inverse filtering [112, 113] have been
investigated. In the SCLS technique, the least-squares error between the response
of the system, i.e., the convolution of the RIR and the filter, and a desired response
is minimized. In homomorphic inverse filtering, the RIR is first decomposed into
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a minimum-phase component and a maximum-phase component. An exact time-
domain inverse filter is designed for the minimum-phase component, whereas the
maximum-phase component is only approximately inverted using truncation. In a
comparative study between the SCLS and homomorphic inverse filtering techniques
in [112], it has been concluded that the SCLS technique yields a better derever-
beration performance. However, this technique still results in several drawbacks in
practice. In order to achieve a good dereverberation performance, the SCLS inverse
filter needs to be several thousand samples long, resulting in a computationally
complex and often infeasible inverse filter design [114]. Furthermore, independently
of the inverse filter length, the least-squares error between the response of the sys-
tem and the desired response remains larger than 0, since a perfect inverse filter
cannot be designed. Most importantly, the SCLS technique is sensitive to RIR per-
turbations, failing to achieve dereverberation and resulting in annoying distortions
even in the presence of moderate RIR perturbation levels [37, 114]. In [37] we have
proposed a novel single-channel equalization technique which i) resolves the com-
putational complexity issues associated with the inverse filter design by operating
in the frequency-domain, ii) alleviates the stability issues by incorporating regular-
ization, and iii) partly suppresses the pre-echoes in the output speech signal which
arise due to the acausality of the inverse filter by using a single-channel spectral
enhancement scheme based on [115, 116]. Nevertheless, this technique still remains
quite sensitive to RIR perturbations.

Multi-channel equalization

Although the RIRs are non-minimum phase, it has been shown that using multiple
microphones it is possible to perfectly invert an acoustic system [36,117]. Under the
condition that the RIRs do not share any common zeros, perfect dereverberation
can be achieved based on the time-domain multiple-input/output inverse theorem
(MINT) [36]. Unlike the single-channel case, the length of the dereverberation filters
is similar to the length of the RIRs, resulting in a computationally feasible inverse
filter design. However, these inverse filters have been shown to be very sensitive to
even moderate RIR perturbation levels [109,114].
Several techniques have been proposed to improve the robustness of the MINT
technique as well as to further increase the computational efficiency of the inverse
filter design. With the aim of reducing the energy of the inverse filters, and hence,
increasing the robustness of the MINT technique against RIR perturbations, the
incorporation of regularization has been investigated in [108]. With the aim of de-
signing approximate inverse filters which are less sensitive to near-common zeroes,
in [118] adaptive time-domain multi-channel equalization techniques have been pro-
posed, where the inverse filters are iteratively computed using a similar cost function
as for the MINT technique. Such techniques however suffer from slow convergence,
and methods to improve the convergence rate have been investigated in [119, 120].
In order to further increase the computational efficiency of the inverse filter de-
sign, frequency-domain multi-channel inverse filtering techniques have been pro-
posed in [121,122], where in [122] the Karhunen-Loéve transform domain has been
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considered. Furthermore, in [123] multi-channel inversion using decimated and over-
sampled subbands has been investigated, where the RIRs are decomposed into equiv-
alent subband filters prior to inversion. Such approaches improve the robustness of
the MINT technique against RIR perturbations and result in a computationally
more efficient filter design procedure. However, acoustic multi-channel equalization
using the MINT technique or its adaptive and subband versions nevertheless re-
mains rather sensitive to RIR perturbations.
Another possibility to increase the robustness against RIR perturbations is to relax
the constraints on the inverse filter design by using so-called partial equalization
techniques. Since early reflections tend to improve speech intelligibility [5,22,26,27]
and late reflections are the major cause of speech intelligibility degradation [3–5],
the objective of such techniques is to relax the constraints on the filter design by
suppressing only the late reflections.
The first partial equalization technique proposed in the context of speech dereverber-
ation is the channel shortening (CS) technique [124,125]. The CS technique uses an
energy-based optimization criterion, designing a reshaping filter which maximizes
the energy of the direct path and early reflections of the response of the system,
while minimizing the energy of the late reflections. Instead of using an energy ratio
optimization criterion, the relaxed multi-channel least-squares (RMCLS) technique
proposed in [111,125] uses a weighted least-squares optimization criterion to achieve
partial equalization. The RMCLS technique aims at setting the late reflections of
the response of the system to zero, while not imposing any constraints on the early
reflections. As is experimentally validated in [111, 125], relaxing the constraints on
the reshaping filter design by aiming at suppressing only the late reflections can
yield a significant increase in robustness against RIR perturbations. However, by
not imposing any constraints on the remaining early reflections, the CS and RMCLS
techniques may lead to undesired perceptual effects [126].
Other than sensitivity to RIR perturbations and uncontrolled perceptual effects, an-
other drawback of acoustic multi-channel equalization techniques is their sensitivity
to background noise. In contrast to the previously presented spectral enhancement,
beamforming and multi-channel Wiener filtering, and blind probabilistic modeling-
based techniques which have been successfully extended to achieve joint derever-
beration and noise reduction, joint dereverberation and noise reduction based on
acoustic multi-channel equalization remains an unexplored area. More importantly,
acoustic multi-channel equalization filters have traditionally been designed without
taking the presence of the background noise into account, which often results in a
significant noise amplification.

1.5 Outline of the thesis and main contributions

Motivated by the potential to achieve a perfect dereverberation performance, this
thesis deals with acoustic multi-channel equalization techniques. As already men-
tioned, these techniques suffer from several drawbacks in practice, i.e., i) sensitivity
to RIR perturbations, ii) uncontrolled perceptual effects, and iii) background noise
amplification. In this thesis all these problems will be dealt with by proposing ro-
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bust and perceptually advantageous acoustic multi-channel equalization
techniques for speech dereverberation as well as for joint dereverberation
and noise reduction.
The main contributions of this thesis are threefold. First, we have developed
a perceptually advantageous partial acoustic multi-channel equalization tech-
nique which aims at not only suppressing the late reflections but also at control-
ling the early reflections. Second, we have derived several signal-independent
and signal-dependent methods to increase the robustness of equalization
techniques against RIR perturbations, i.e., by decreasing the reshaping filter
length, by using (automatic) regularization, and by incorporating sparsity-
promoting penalty functions. We have extensively evaluated all proposed
techniques using instrumental performance measures and the most promising tech-
niques are compared in a subjective listening test. Third, we have effectively inte-
grated the dereverberation and noise reduction tasks using robust acoustic
multi-channel equalization.

In the remainder of this section a chapter by chapter overview of this thesis is
presented, summarizing the main contributions. Additionally, references to the pub-
lications that have been produced in the context of this thesis are provided. A
schematic overview of the thesis is given in Fig. 1.8.

In Chapter 2 we describe the general signal processing aspects associated with
multi-channel speech enhancement systems. We present time-domain and frequency-
domain signal models and mathematically formulate the objective of dereverbera-
tion, noise reduction, as well as joint dereverberation and noise reduction. Further-
more, we provide an overview of the typically arising perturbations for measured or
estimated RIRs. Finally, we present the instrumental performance measures used
in this thesis to assess the dereverberation, noise reduction, as well as joint derever-
beration and noise reduction performance.

In Chapter 3 we propose a least-squares perceptually advantageous acoustic
multi-channel equalization technique, referred to as the PMINT technique, which
aims at suppressing the late reflections while preserving the early reflections. Fur-
thermore, we derive a generalized framework for least-squares equalization tech-
niques, i.e., for the MINT, RMCLS, and PMINT techniques. In addition, we present
simulation results to evaluate the dereverberation performance of the proposed
PMINT technique and state-of-the-art acoustic multi-channel equalization tech-
niques. These results illustrate the importance of preserving the early reflections to
improve the perceptual speech quality as well as the necessity to further increase the
robustness of all considered acoustic multi-channel equalization techniques against
RIR perturbations. Publications related to this chapter are [126–129].

In Chapters 4, 5, and 6 we propose several signal-independent and signal-depen-
dent methods to increase the robustness of the PMINT technique and state-of-the-
art acoustic multi-channel equalization techniques, i.e., MINT, CS, and RMCLS,
against RIR perturbations.
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Fig. 1.8: Schematic overview of the thesis.

• In Chapter 4 we propose a signal-independent method to increase the robust-
ness of equalization techniques by decreasing the reshaping filter length,
aiming to improve the conditioning of the optimization criteria. We derive an-
alytical expressions showing that using shorter reshaping filters increases the
robustness of the MINT, CS, RMCLS, and PMINT techniques against RIR
perturbations, which are validated using simulation results. The publication
related to this chapter is [130].

• In Chapter 5 we propose another signal-independent method to increase the
robustness of equalization techniques by using regularization, aiming to
reduce the energy of distortions due to RIR perturbations. Furthermore, we
propose and investigate an automatic non-intrusive procedure for determining
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the regularization parameter. Simulation results validate that incorporating
regularization significantly increases the dereverberation performance of the
MINT, CS, RMCLS, and PMINT techniques in the presence of RIR perturba-
tions. Moreover, it is shown that the proposed non-intrusive procedure for de-
termining an automatic regularization parameter yields a similar performance
as the optimal intrusively determined regularization parameter. Publications
related to this chapter are [126,127,131,132].

• In Chapter 6 we propose a signal-dependent method to increase the robust-
ness of equalization techniques by using sparsity-promoting penalty func-
tions, aiming to promote sparsity in the output speech signal and reduce
artifacts generated by non-robust techniques. We investigate several sparsity-
promoting penalty functions and present insights on the advantages of us-
ing such penalty functions for speech dereverberation. Furthermore, we estab-
lish iterative optimization procedures for computing the sparsity-promoting
dereverberation filters. Simulation results validate that incorporating sparsity-
promoting penalty functions enables to increase the robustness of the MINT,
CS, RMCLS, and PMINT techniques against RIR perturbations. Publications
related to this chapter are [133,134].

In Chapter 7 we compare the performance of all proposed robust extensions of
acoustic multi-channel equalization techniques (Chapters 4, 5, and 6) for several
acoustic scenarios, both using instrumental performance measures as well as using
subjective listening tests. Instrumental performance measures show that the regu-
larized and sparsity-promoting RMCLS and PMINT techniques achieve the highest
dereverberation performance. The subjective listening test shows that the robust ex-
tensions of the PMINT technique are generally preferred over the robust extensions
of the RMCLS technique, with the sparsity-promoting PMINT technique yielding
the best perceptual speech quality for low RIR perturbation levels and the regu-
larized PMINT technique yielding the best perceptual speech quality for high RIR
perturbation levels. The publication related to this chapter is [135].

Based on the previously developed robust acoustic multi-channel equalization tech-
niques, in Chapter 8 we propose two techniques for joint dereverberation and
noise reduction. The first technique directly extends the regularized equaliza-
tion techniques by incorporating the noise statistics into the reshaping filter design.
In addition to the regularization parameter, a weighting parameter is introduced
which enables to trade off between dereverberation and noise reduction. The sec-
ond technique is based on the MWF, where the dereverberated reference signal
for the MWF is generated using regularized equalization techniques. Also for the
MWF-based technique, an additional weighting parameter is introduced which now
enables to trade off between speech distortion and noise reduction. In addition,
we propose automatic non-intrusive procedures for determining the regularization
and weighting parameters for both techniques. Extensive simulations validate the
importance of incorporating the noise statistics into the reshaping filter design to
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achieve joint dereverberation and noise reduction. Publications related to this chap-
ter are [136–138].

Chapter 9 summarizes the main contributions of the thesis and presents sugges-
tions for further research.



2
PROBLEM FORMULATION AND
INSTRUMENTAL PERFORMANCE
MEASURES

In this chapter the general notation, the time and frequency domain signal models,
and the instrumental performance measures used in the remainder of the thesis are
presented.
Section 2.1 describes the general time and frequency domain models for speech
signals recorded in a reverberant and noisy environment. Furthermore, the typical
multi-channel speech enhancement configuration is presented and the objective of
dereverberation, noise reduction, as well as joint dereverberation and noise reduction
is mathematically formulated. Section 2.2 provides an overview of the typical per-
turbations that arise when measuring or estimating room impulse responses (RIR).
Furthermore, a description of how RIR perturbations will be simulated in the re-
mainder of this thesis is provided. Section 2.3 presents the instrumental performance
measures used to assess the dereverberation performance, the noise reduction per-
formance, as well as the joint dereverberation and noise reduction performance of
the techniques proposed in this thesis.

2.1 Problem formulation

2.1.1 Time domain signal model

Consider the acoustic scenario depicted in Fig. 1.1, consisting of a single speech
source,M microphones, and background noise. Each microphone signal ym(n), m =
1, . . . , M , at discrete time index n, consists of a filtered version of the clean speech
signal s(n) and a noise component vm(n), i.e.,

ym(n) = hm(n) ∗ s(n) + vm(n) = xm(n) + vm(n), (2.1)

where hm(n) denotes the room impulse response (RIR) between the speech source
and the m-th microphone, xm(n) denotes the reverberant speech component at the
m-th microphone, and ∗ denotes convolution. As described in Section 1.2, the RIR
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hm(n) consists of a direct path and early reflections component he,m(n) and a late
reflections component hr,m(n), i.e.,

hm(n) = he,m(n) + hr,m(n). (2.2)

Using (2.2), the received microphone signal in (2.1) can be written as

ym(n) = he,m(n) ∗ s(n)︸ ︷︷ ︸
xe,m(n)

+hr,m(n) ∗ s(n)︸ ︷︷ ︸
xr,m(n)

+ vm(n), (2.3)

with xe,m(n) the early reverberation speech component and xr,m(n) the late rever-
beration speech component at the m-th microphone.
In the remainder of this thesis it is assumed that the RIRs are time-invariant. This is
a commonly used assumption in several dereverberation techniques and is appropri-
ate for acoustic scenarios where the source-microphone geometry does not rapidly
vary and the environmental conditions are fixed. It should be noted however that
there are many applications where the source-microphone geometry rapidly changes,
e.g., due to a moving talker, or the environmental conditions change, e.g., due to
the opening and closing of doors and windows. Nevertheless, acoustic multi-channel
equalization techniques can in principle be extended to equalize time-varying RIRs,
as long as the time-varying RIRs can be accurately estimated and tracked by system
identification techniques (which is currently not possible by state-of-the-art system
identification techniques).
Using a finite impulse response (FIR) filter model, the m-th RIR hm can be written
as

hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , (2.4)

with Lh the RIR length. Using (2.4), the convolution in (2.1) is computed as

xm(n) =

Lh−1∑

i=0

hm(i)s(n− i). (2.5)

The noise component vm(n) in (2.1) is assumed to be uncorrelated with the speech
component xm(n) and can consist of directional interferences (e.g., fans, electronic
appliances, or other speakers), spatially diffuse noise which can be commonly found
in an office or a car environment [66, 139], and microphone self-noise. The noise
may not only be detrimental to speech intelligibility, but it may also severely af-
fect the performance of supervised system identification (SSI) and blind system
identification (BSI) methods, as will be shown in Section 2.2.

2.1.2 Time domain speech enhancement

Fig. 2.1 depicts the typical filter-and-sum structure used for multi-channel speech
enhancement. Applying filters wm(n) to the received microphone signals, the output
speech signal z(n) is given by

z(n) =

M∑

m=1

ym(n) ∗ wm(n). (2.6)
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Fig. 2.1: Schematic illustration of a typical time domain multi-channel speech enhancement
system.

Using (2.1), the output speech signal can be written as

z(n) =

M∑

m=1

xm(n) ∗ wm(n)

︸ ︷︷ ︸
zx(n)

+

M∑

m=1

vm(n) ∗ wm(n)

︸ ︷︷ ︸
zv(n)

, (2.7)

with zx(n) the output speech component and zv(n) the output noise component.
Similarly, the early reverberation output speech component ze,x(n) and the late
reverberation output speech component zr,x(n) are defined as

ze,x(n) =

M∑

m=1

xe,m(n) ∗ wm(n), (2.8)

zr,x(n) =

M∑

m=1

xr,m(n) ∗ wm(n). (2.9)

Writing the speech component xm(n) in (2.7) in terms of the clean speech signal
and the RIR, the output speech component zx(n) can also be expressed as

zx(n) =

M∑

m=1

s(n) ∗ hm(n) ∗ wm(n) (2.10)

= s(n) ∗
M∑

m=1

hm(n) ∗ wm(n)

︸ ︷︷ ︸
c(n)

, (2.11)

where c(n) is referred to as the equalized impulse response (EIR) between the clean
speech signal s(n) and the output speech component zx(n). The equalized impulse
response c(n) can be used to describe the dereverberation performance of the speech
enhancement system. For example, complete dereverberation is achieved if c(n) is
equal to a (possibly delayed) impulse, whereas partial dereverberation is achieved
if c(n) contains only early reflections.
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Because FIR filters are inherently stable, in this thesis we will consider time-invariant
FIR filters wm of length Lw, i.e.,

wm = [wm(0) wm(1) . . . wm(Lw − 1)]T . (2.12)

Considering the Lw–dimensional received signal vector ym(n), i.e.,

ym(n) = [ym(n) ym(n− 1) . . . ym(n− Lw + 1)]T , (2.13)

and theMLw–dimensional stacked filter vector w and stacked received signal vector
y(n), i.e.,

w = [wT
1 wT

2 . . . wT
M ]T , (2.14)

y(n) = [yT1 (n) yT2 (n) . . . yTM (n)]T , (2.15)

the output speech signal z(n) can be expressed as

z(n) =

M∑

m=1

wT
mym(n) = wTy(n). (2.16)

Defining the stacked reverberant speech vector x(n) and the stacked noise vector
v(n) similarly as in (2.13) and (2.15), i.e.,

xm(n) = [xm(n) xm(n− 1) . . . xm(n− Lw + 1)]T , (2.17)

x(n) = [xT1 (n) xT2 (n) . . . xTM (n)]T , (2.18)

and

vm(n) = [vm(n) vm(n− 1) . . . vm(n− Lw + 1)]T , (2.19)

v(n) = [vT1 (n) vT2 (n) . . . vTM (n)]T , (2.20)

the output speech signal z(n) can be written as

z(n) =

M∑

m=1

wT
mxm(n) +

M∑

m=1

wT
mvm(n) (2.21)

= wTx(n)︸ ︷︷ ︸
zx(n)

+ wTv(n)︸ ︷︷ ︸
zv(n)

. (2.22)

Using the clean speech vector s(n) of length Lc = Lh + Lw − 1, i.e.,

s(n) = [s(n) s(n− 1) . . . s(n− Lc − 1)]T , (2.23)
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and the Lc × MLw–dimensional multi-channel convolution matrix H, i.e., H =
[H1 H2 . . . HM ], with

Hm =




hm(0) 0 · · · 0

hm(1) hm(0)
. . .

...
... hm(1)

. . . 0

hm(Lh − 1)
...

. . . hm(0)

0 hm(Lh − 1)
. . . hm(1)

...
. . . . . .

...
0 · · · 0 hm(Lh − 1)




, (2.24)

the stacked reverberant speech vector x(n) can also be expressed as

x(n) = HT s(n). (2.25)

Substituting (2.25) in (2.22), the output speech signal can be further written as

z(n) = wTHT
︸ ︷︷ ︸

cT

s(n) + wTv(n), (2.26)

with c = [c(0) c(1) . . . c(Lc−1)]T the equalized impulse response in vector notation,
i.e.,

c = Hw. (2.27)

The filter w can now be designed based on different objectives, i.e., i) aiming only
at dereverberation, ii) aiming only at noise reduction, or iii) aiming at joint dere-
verberation and noise reduction.

i) The objective of complete dereverberation techniques is to design an inverse
filter w such that the equalized impulse response c is equal to a (possibly
delayed) impulse and the output speech component zx(n) is equal to the (pos-
sibly delayed) clean speech signal s(n). The objective of partial dereverberation
techniques is to design a reshaping filter w such that the equalized impulse
response c contains only early reflections and the output speech component
zx(n) contains only early reverberation. It should be noted that designing fil-
ters which aim only at speech dereverberation and do not take the background
noise into account can result in noise amplification (cf. Section 8.4.3).

ii) The objective of noise reduction techniques is to design a filter w such that the
power of the output noise component zv(n) is minimized (or ideally set to 0),
while taking into account speech distortion. Several effective multi-microphone
noise reduction techniques have been developed over the past decades [10–19],
which however may not dereverberate the output speech signal.

iii) The objective of joint dereverberation and noise reduction techniques is to
design a filter w which yields a dereverberated equalized impulse response c
as well as minimizes the power of the output noise component zv(n).
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While the noise reduction task has been extensively investigated, dereverberation
and the effective integration of dereverberation and noise reduction has received
much less attention until recently. In this thesis, Chapters 3-7 focus on developing ro-
bust and perceptually advantageous acoustic multi-channel equalization techniques
for speech dereverberation, while Chapter 8 focuses on the effective integration of
the developed dereverberation techniques with noise reduction.

2.1.3 Frequency domain representation

Most techniques discussed in this thesis will be based on the time domain signal
model presented in Sections 2.1.1 and 2.1.2. However, in Chapter 6 and Appendix B
also a frequency domain signal model will be used.
For completeness, in the following we briefly review the definitions of the discrete-
time Fourier transform (DTFT), inverse discrete-time Fourier transform (IDTFT),
short-time Fourier transform (STFT), and inverse short-time Fourier transform
(ISTFT), cf. e.g., [140,141].

Discrete-time Fourier transform: The DTFT B(ω) of the discrete-time signal
b(n) is defined as

B(ω) =

∞∑

n=−∞
b(n)e−jnω, (2.28)

with ω the angular frequency (−π < ω ≤ π) and j the imaginary unit, i.e., j2 = −1.
Inverse discrete-time Fourier transform: The discrete-time signal b(n) can
be recovered from B(ω) using the IDTFT, defined as

b(n) =
1

2π

∫ π

−π
B(ω)ejnωdω. (2.29)

Short-time Fourier transform: In practice, the continuous spectrum in (2.28)
is approximated using the STFT, where frames of the discrete-time signal b(n) are
weighted by an analysis window wSTFT(n) and transformed as

B(t, f) =

N−1∑

n=0

w
STFT

(n)b(tR+ n)e
−j2πfn

N , (2.30)

with t the time frame index, f the frequency bin index, N the frame size, and R
the frame shift.
Inverse short-time Fourier transform: The ISTFT is defined as

b(n) =
∑

t

N−1∑

f=0

wISTFT(n− tR)B(t, f)e
j2πf(n−tR)

N , (2.31)

with wISTFT(n) a synthesis window such that the perfect overlap-add constraint is
satisfied.
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Using the DTFT, the signal model in (2.1) can be written in the frequency domain
as

Ym(ω) = Hm(ω)S(ω) + Vm(ω) = Xm(ω) + Vm(ω), (2.32)

with Ym(ω), Hm(ω), S(ω), Vm(ω), and Xm(ω) the DTFTs of ym(n), hm(n), s(n),
vm(n), and xm(n), respectively. Defining the M–dimensional vector y(ω) as

y(ω) = [Y1(ω) Y2(ω) . . . YM (ω)]T , (2.33)

and defining theM–dimensional vectors h(ω), x(ω), and v(ω) similarly as in (2.33),
the frequency domain signal model in (2.32) can be written in vector notation as

y(ω) = h(ω)S(ω) + v(ω) = x(ω) + v(ω). (2.34)

Furthermore, using the M–dimensional filter vector w(ω), i.e.,

w(ω) = [W1(ω) W2(ω) . . . WM (ω)]T , (2.35)

with Wm(ω) the DTFT of wm(n), the output speech signal Z(ω) can be expressed
as

Z(ω) = wT (ω)y(ω) = wT (ω)h(ω)︸ ︷︷ ︸
C(ω)

S(ω) + wT (ω)v(ω), (2.36)

with C(ω) the DTFT of the equalized impulse response. For convenience, (2.36) is
typically written as [142]

Z(ω) = wH(ω)y(ω) =

M∑

m=1

W ∗m(ω)Ym(ω), (2.37)

with {·}∗ denoting the complex conjugate and {·}H denoting the complex conjugate
transpose.
In practical speech enhancement systems operating in the frequency domain, the
continuous frequency spectrum in (2.37) is approximated using the short-time Fou-
rier transform. Using the filter STFT coefficients Wm(f) and the microphone signal
STFT coefficients Ym(t, f) defined similarly as in (2.30), the output speech signal
STFT coefficients Z(t, f) are given by

Z(t, f) =

M∑

m=1

W ∗m(f)Ym(t, f) = wH(f)y(t, f), (2.38)

with w(f) and y(t, f) theM–dimensional vectors of the filter and microphone signal
STFT coefficients.1

1 Note that time-invariant filters are assumed in this thesis, hence, the filter STFT coefficients
Wm(f) are independent of the time frame index t.
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2.2 Room impulse response perturbations

As described in Section 1.5, one of the objectives of this thesis is to derive acoustic
multi-channel equalization techniques which are robust against RIR perturbations.
In this section we will provide some insights on the reasons why such perturbations
arise when estimating or measuring RIRs. We distinguish between perturbations
arising due to the sensitivity of SSI or BSI methods to interfering noise, and pertur-
bations arising due to spatial mismatch in the source-microphone geometry.

2.2.1 Supervised system identification (SSI)

In order to avoid cumbersome notation, note that only in this section the vec-
tors ym(n), xm(n), and vm(n) will refer to Ly–dimensional vectors instead of the
Lw–dimensional vectors defined in Section 2.1 (where it is typically assumed that
Ly � Lw), i.e.,

ym(n) = [ym(n) ym(n− 1) . . . ym(n− Ly + 1)]T , (2.39)

and xm(n) and vm(n) defined similarly.
Supervised system identification refers to estimating the RIRs using knowledge of
both the clean speech signal s(n) and the microphone signal ym(n). When the clean
speech signal is available, the estimation of the RIRs can be done individually for
each RIR hm using a standard least-squares approach [101].
The m-th received signal vector ym(n) can be expressed as

ym(n) = S(n)hm + vm(n), (2.40)

with ym(n), xm(n), vm(n) defined as in (2.39), hm defined as in (2.4), and S(n)
the Ly × Lh–dimensional matrix

S(n) =




s(n) s(n− 1) · · · s(n− Lh + 1)

s(n− 1) s(n− 2) · · · s(n− Lh)
...

...
. . .

...
s(n− Ly + 1) s(n− Ly) · · · s(n− Lh − Ly + 2)



. (2.41)

Using (2.40), the RIR hm can be computed by minimizing the least-squares cost
function [101,111]

J = ‖S(n)hm − ym(n)‖22, (2.42)

resulting in the least-squares estimate2

ĥm =
[
ST (n)S(n)

]−1
ST (n)ym(n). (2.43)

2 Note that in order for the matrix ST (n)S(n) to be invertible, the matrix S(n) should be a full
column-rank matrix.



2.2 room impulse response perturbations 25

The least-squares estimate in (2.43) can be expressed as

ĥm =
[
ST (n)S(n)

]−1
ST (n)xm(n) +

[
ST (n)S(n)

]−1
ST (n)vm(n) (2.44)

= hm +
[
ST (n)S(n)

]−1
ST (n)vm(n)︸ ︷︷ ︸

em

, (2.45)

which shows that the background noise vm(n) causes the least-squares RIR estimate
ĥm to differ from the true RIR hm by em =

[
ST (n)S(n)

]−1
ST (n)vm(n). Hence,

the background noise vm(n) affects the performance of least-squares supervised
system identification methods, particularly at low input signal-to-noise ratios and
when the number of the available data samples Ly is small. Several approaches to
increase the robustness of SSI methods against noise have been investigated, e.g.,
in [143,144]. In addition, based on different assumptions about the matrix S(n) and
the noise vm(n), models for the perturbations em arising from supervised system
identification methods can be derived. For example, in [111] it is assumed that the
noise is uncorrelated microphone self-noise and the perturbations em are modeled as
a spatially white Gaussian noise sequence with a long-term average speech spectrum.

2.2.2 Blind system identification (BSI)

In order to avoid cumbersome notation, note that only in this section the vector
ym(n) will refer to an Lh–dimensional vector instead of the Lw–dimensional vector
defined in (2.13), i.e.,

ym(n) = [ym(n) ym(n− 1) . . . ym(n− Lh + 1)]T . (2.46)

Commonly used methods for blind multi-channel system identification are based on
second-order statistics [102–107]. Such methods can in theory identify the RIRs up
to a scaling factor if the RIRs do not share any common zeros and the clean speech
signal has a full-rank covariance matrix [102]. One of the first methods proposed
for BSI in the context of acoustic channels is the multi-channel least mean squares
method [102]. This method is based on the so-called cross-relation error Cr(n),
defined as

Cr(n) =

M−1∑

i=1

M∑

m=i+1

[
yTi (n)ĥm − yTm(n)ĥi

]2
, (2.47)

with ym(n) defined in (2.46) and ĥm = [ĥm(0) ĥm(1) . . . ĥm(Lh − 1)]T denoting
the estimate of the m-th RIR hm. The estimate ĥ = [ĥ1 ĥ2 . . . ĥM ]T of the stacked
RIR vector h = [h1 h2 . . . hM ]T is then computed by minimizing the expected
value of the cross-relation error in (2.47), subject to the constraint that the trivial
solution, i.e., ĥ = 0 is avoided. This minimization problem is equivalent to solving

R(n)ĥ = 0, (2.48)
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with the MLh ×MLh–dimensional matrix R(n) defined as

R(n) =




∑
m6=1 Rym(n) −Ry2y1

(n) · · · −RyMy1
(n)

−Ry1y2
(n)

∑
m 6=2 Rym(n) · · · −RyMy2

(n)
...

...
. . .

...
−Ry1yM (n) −Ry2yM (n) · · ·

∑
m 6=M Rym(n)



, (2.49)

where Rym(n) denotes the Lh × Lh–dimensional auto-correlation matrix of the
m-th received signal vector and Rymyi(n) denotes the Lh × Lh–dimensional cross-
correlation matrix between the m-th and i-th received signal vectors. The expres-
sion in (2.48) represents the basic system of equations that different second-order
statistics-based BSI methods aim to solve in a robust and efficient manner. In the
absence of background noise, the null space of the matrix R(n) is of dimension 1 and
is spanned by the stacked true RIR vector h. In this case, the stacked RIR vector h
can be perfectly estimated using the eigenvalue decomposition of the matrix R(n)
and identifying h as the eigenvector corresponding to the eigenvalue which is equal
to 0. To avoid the computation of the eigenvalue decomposition, more efficient adap-
tive methods can be employed [102, 103]. However, in the presence of background
noise this property does not hold anymore and adaptive BSI methods are known to
misconverge [110]. While more robust BSI methods addressing the misconvergence
problem in the presence of background noise have been proposed, e.g., in [104–107],
the sensitivity and misconvergence of BSI methods remains an issue, often yielding
RIR estimates ĥm that differ from the true RIRs hm, i.e.,

ĥm = hm + em, (2.50)

with em = [em(0) em(1) . . . em(Lh − 1)]T the vector of RIR perturbations for the
m-th channel. The perturbations em(n) highly depend on the acoustic system (i.e.,
the actual RIRs and background noise level) and the BSI method used to estimate
the RIRs. However, models have been developed to systematically describe these
perturbations. For example, in [145] a statistical model has been developed to char-
acterize the perturbations em(n) when using the robust multi-channel frequency do-
main least mean squares method proposed in [106]. When no assumption about the
used BSI method is made, the perturbations are generally assumed to be a spatially
white Gaussian noise sequence proportional to the true RIR coefficients [146, 147],
i.e.,

em(n) = vwm(n)hm(n), (2.51)

with vwm(n) an uncorrelated white Gaussian noise sequence with zero mean and a
variance that depends on the energy of the RIR perturbations.

2.2.3 Spatial mismatch

Even when the RIRs can be correctly estimated or exactly measured, in the case of
a spatial mismatch, e.g., due to the source moving slightly or due to the microphone
array being slightly displaced, the RIRs used in equalization techniques for designing
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dereverberation filters can differ largely from the true RIRs. In [109] the robustness
of equalization filters with respect to changing source or microphone positions has
been theoretically analyzed. A frequency-dependent error term for the degradation
arising in the equalized impulse response due to spatial mismatch has been derived,
showing that even small changes in the source-microphone geometry of a few tenths
of the acoustic wavelength can cause large degradation in the equalized impulse re-
sponse. This analysis has been used in [148,149] to derive a model that characterizes
the perturbations arising due to spatial mismatch. For details on the perturbations
arising due to spatial mismatch, the reader is referred to [109,148,149].

Summarizing, when estimating or measuring RIRs, perturbations are likely to arise
due to the sensitivity of SSI and BSI methods to interfering noise, as well as due
to possible spatial mismatch in the source-microphone geometry. In this thesis we
will present several methods to increase the robustness of acoustic multi-channel
equalization techniques against these RIR perturbations. Increasing the robustness
of SSI or BSI methods will not be considered in this thesis.
In the presented simulation results, RIR perturbations will be simulated by adding
scaled white Gaussian noise to the true RIRs (cf. (2.51)) using the procedure pro-
posed in [147]. However, it should be noted that the proposed techniques are not
particularly tailored towards any specific type of perturbation, and hence, they can
also be used when other kinds of RIR perturbations occur.
To quantify the level of RIR perturbations, we will use the normalized projection
misalignment (NPM) measure [150], defined as

NPM = 10 log10

∥∥∥hm − hTmĥm
ĥTmĥm

ĥm

∥∥∥
2

2

‖hm‖22
. (2.52)

The normalization factor hTmĥm

ĥTmĥm
in (2.52) is used such that the accuracy of the RIR

estimate is evaluated independently of any scaling of the RIR (since a scaling fac-
tor is not important for the dereverberation performance of acoustic multi-channel
equalization techniques). In [107], the reported NPM values achieved by state-of-
the-art BSI methods (for relatively short RIRs) in the presence of additive noise
range between −10 dB and −20 dB.

2.3 Instrumental performance measures

In this section we present the instrumental performance measures used to assess the
dereverberation performance, the noise reduction performance, as well as the joint
dereverberation and noise reduction performance of the techniques proposed in this
thesis.
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2.3.1 Dereverberation

Several instrumental performance measures for evaluating the dereverberation per-
formance of speech enhancement techniques have been proposed (cf. [20] and the
references therein). When the effect of a dereverberation technique can be repre-
sented by a linear filter and the equalized impulse response c(n) can be computed,
channel-based measures operating on the equalized impulse response can be used.
When the effect of a dereverberation technique cannot be represented by a linear
filter and the equalized impulse response c(n) cannot be computed, signal-based
measures operating on the output speech signal are typically used. Since acoustic
multi-channel equalization techniques design and apply linear filters and the equal-
ized impulse response c(n) can be directly computed, channel-based measures will
be used to evaluate the reverberant energy suppression and the reverberant energy
decay rate. However, since channel-based measures do not necessarily correlate well
with the perceptual quality of the output speech signal [151, 152], in addition we
will also consider signal-based performance measures.

Channel-based measures

The reverberant energy suppression is evaluated using the direct-to-reverberant ratio
(DRR) improvement [20] between the equalized impulse response c(n) and the input
RIR, generally chosen to be the first RIR h1(n). The DRR improvement, i.e., ∆DRR,
is defined as

∆DRR = oDRR− iDRR, (2.53)

with

oDRR = 10 log10

nd−1∑
n=0

c2(n)

Lc−1∑
n=nd

c2(n)

, iDRR = 10 log10

nd−1∑
n=0

h2
1(n)

Lh−1∑
n=nd

h2
1(n)

, (2.54)

where the first nd samples of the EIR and RIR represent the direct-path propagation
and the remaining samples represent reflections. Although the DRR improvement
exactly describes the reverberant energy suppression, it cannot be solely used to
evaluate the dereverberation performance of dereverberation techniques, since it
does not provide any insights on the reverberant energy decay rate. As an extreme
scenario, consider the case where the reverberant samples of the equalized impulse
response are time-reversed, i.e., the nd-th sample becomes the Lc-the sample, the
(nd+1)-th sample becomes the (Lc−1)-th sample, and so on. Although the DRR of
the original and time-reversed equalized impulse responses are the same, the decay
rate patterns will be very different.
To evaluate the reverberant energy decay rate, the energy decay curve (EDC) [20]
of the EIR c(n) is compared to the energy decay curve of the input RIR, generally
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chosen to be the first RIR h1(n). The EDC of the equalized impulse response is
computed as

EDCc(n) =
1

‖c‖22

Lc−1∑

i=n

c2(i), n = 0, 1, . . . , Lc − 1, (2.55)

and the EDC of the first RIR is computed as

EDCh1
(n) =

1

‖h1‖22

Lh−1∑

i=n

h2
1(i), n = 0, 1, . . . , Lh − 1. (2.56)

Signal-based measures

In [151,152] it has been shown that instrumental performance measures relying on
auditory models, such as the perceptual evaluation of speech quality (PESQ) mea-
sure [153], exhibit the highest correlation with subjective listening tests when evalu-
ating the perceptual quality of dereverberation techniques. Furthermore, in [152] it
has also been shown that the cepstral distance (CD) measure [154], which estimates
the log-spectral distance between two spectra, exhibits a high correlation with sub-
jective listening tests when evaluating the perceived amount of reverberation for a
wide range of state-of-the-art dereverberation techniques.
In this thesis, both the PESQ and CD measures will be used as signal-based per-
formance measures. Both measures are intrusive measures, comparing the output
speech signal with a reference desired signal (usually the original clean speech signal
s(n) or the early reverberation speech component in the first microphone xe,1(n)).
The improvement in PESQ, i.e., ∆PESQ, is computed as the difference between
the PESQ score of the output speech component zx(n) and the PESQ score of
the reverberant microphone signal x1(n). Note that the PESQ score is limited in
the range from 1 to 4.5, with a PESQ score of 1 indicating the lowest perceptual
speech quality and a PESQ score of 4.5 indicating the highest quality. Similarly,
the improvement in CD, i.e., ∆CD, is computed as the difference between the CD
of the output speech component zx(n) and the CD of the reverberant microphone
signal x1(n). Note that the CD measure is limited in the range from 0 dB to 10 dB
as in [155], with a CD of 0 dB indicating that the desired and enhanced spectra
are the same and a CD of 10 dB indicating a large difference between the desired
and enhanced spectra. Hence, a higher PESQ score and a lower cepstral distance
indicate an improvement in perceptual speech quality.

2.3.2 Noise reduction

Although this thesis mainly deals with acoustic multi-channel equalization tech-
niques for speech dereverberation, for which the previously discussed instrumental
performance measures can be used, in Chapter 8 joint dereverberation and noise
reduction techniques are proposed. In order to evaluate the noise reduction perfor-
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mance of these techniques, the broadband noise reduction factor ψNR [18] is used,
defined as

ψNR = 10 log10

E{v2
1(n)}

E{z2
v(n)}

, (2.57)

with v1(n) the noise component in the first microphone and zv(n) the output noise
component defined in (2.7).

2.3.3 Joint dereverberation and noise reduction

The joint dereverberation and noise reduction performance of the techniques dis-
cussed in Chapter 8 is evaluated in terms of the broadband signal-to-reverberation-
and-noise ratio (SRNR) measure. The SRNR improvement, i.e., ∆SRNR, between
the output speech signal z(n) and the input signal, generally chosen to be the first
microphone signal y1(n), is defined as

∆SRNR = oSRNR− iSRNR, (2.58)

with

oSRNR = 10 log10

E{z2
e,x(n)}

E{z2
r,x(n)}+ E{z2

v(n)}
, (2.59)

iSRNR = 10 log10

E{x2
e,1(n)}

E{x2
r,1(n)}+ E{v2

1(n)}
, (2.60)

where xe,1(n) and xr,1(n) denote the early and late reverberation speech components
in the first microphone signal and ze,x(n) and zr,x(n) denote the early and late
reverberation output speech components, defined in (2.8) and (2.9).
In addition, in order to evaluate the overall perceptual quality of the dereverber-
ated and denoised signal, the frequency-weighted segmental signal-to-noise-ratio
(fwSSNR) measure [155] is used. Similarly as the PESQ and CD measures, the
fwSSNR measure is also an intrusive measure comparing the output speech signal
with a reference desired signal (usually the original clean speech signal s(n) or the
early reverberation speech component in the first microphone xe,1(n)). The fwSSNR
improvement, i.e., ∆fwSSNR, is computed as the difference between the fwSSNR of
the output speech signal z(n) and the fwSSNR of the first microphone signal y1(n).

2.4 Summary

In this chapter, the signal model for speech signals recorded in a reverberant and
noisy environment has been presented. The typical configuration for multi-channel
speech enhancement has been described in the time and frequency domain. In ad-
dition, the objective of dereverberation, noise reduction, as well as of joint dere-
verberation and noise reduction has been mathematically formulated. Furthermore,
we discussed some fundamental assumptions about the RIRs and the enhancement
filters, i.e., the RIRs and the enhancement filters are modeled as time-invariant FIR
filters and the RIRs do not share any common zeroes.
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Since the remainder of this thesis primarily deals with increasing the robustness
of acoustic multi-channel equalization techniques against RIR perturbations, the
reasons why these perturbations arise when estimating or measuring RIRs have
been briefly discussed. We have distinguished between perturbations arising due to
the sensitivity of SSI or BSI methods to interfering noise, as well as perturbations
arising due to spatial mismatch in the source-microphone geometry. Furthermore,
we have presented the model used in this thesis to simulate RIR perturbations,
i.e., the RIR perturbations are modeled as spatially white Gaussian noise sequence
proportional to the true RIR coefficients.
Finally, we have presented the instrumental performance measures used to assess
the dereverberation, noise reduction, as well as the joint dereverberation and noise
reduction performance of speech enhancement techniques. The dereverberation per-
formance is evaluated using the DRR and EDC channel-based measures as well as
the PESQ and CD signal-based measures. The noise reduction performance is eval-
uated using the noise reduction factor. Finally, the joint dereverberation and noise
reduction performance is evaluated using the SRNR and fwSSNR measures.





3
PARTIAL MULTI-CHANNEL EQUALIZATION
BASED ON THE MULTIPLE-INPUT/OUTPUT
INVERSE THEOREM

In this chapter acoustic multi-channel equalization techniques for speech dereverber-
ation are discussed. Assuming that estimates of the room impulse responses (RIRs)
between the speech source and the microphones are available, these techniques de-
sign equalization filters aiming to reshape the available RIRs such that complete or
partial dereverberation is achieved.
A widely known acoustic multi-channel equalization technique that aims at com-
plete dereverberation is the multiple-input/output inverse theorem (MINT) tech-
nique. However, the MINT technique is known to be highly sensitive to RIR per-
turbations. In order to increase the robustness against RIR perturbations, partial
multi-channel equalization techniques such as channel shortening (CS) and relaxed
multi-channel least-squares (RMCLS) have been proposed, which aim to partially
equalize the RIRs by suppressing only the late reflections. It has been experimen-
tally validated that partial equalization techniques can yield a significant increase
in robustness compared to complete equalization using the MINT technique. How-
ever, by not imposing any constraints on the early part of the equalized impulse
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response (EIR), the CS and RMCLS techniques may lead to undesired perceptual
effects. In this chapter, we hence propose a perceptually advantageous partial acous-
tic multi-channel equalization technique. Furthermore, a generalized framework for
least-squares equalization techniques is established.
In Section 3.1, the optimization criteria of state-of-the-art acoustic multi-channel
equalization techniques (MINT, CS, and RMCLS) are mathematically formulated
and the resulting reshaping filters are derived. In Section 3.2, we propose a percep-
tually advantageous partial multi-channel equalization technique based on MINT
(PMINT), which aims to both suppress the late reflections in the equalized impulse
response as well as directly control the early reflections. In Section 3.3, a generalized
framework for all considered least-squares acoustic multi-channel equalization tech-
niques, i.e., MINT, RMCLS, and PMINT, is established, which enables to analyze
the properties of the resulting reshaping filters. Based on this analysis it is shown
that all considered least-squares equalization techniques yield reshaping filters which
lie in the subspace spanned by the solutions maximizing the channel shortening op-
timization criterion. Using instrumental performance measures, simulation results
in Section 3.4 illustrate the importance of controlling the early reflections in the
equalized impulse response in order to preserve the perceptual speech quality. Fur-
thermore, it is shown that all considered equalization techniques, i.e., MINT, CS,
RMCLS, and PMINT, are sensitive to RIR perturbations, either yielding a low
dereverberation performance or entirely failing to achieve dereverberation. Several
methods to increase the robustness of the considered acoustic multi-channel equal-
ization techniques against RIR perturbations will be proposed in Chapters 4, 5,
and 6.

3.1 Acoustic multi-channel equalization techniques

Acoustic multi-channel equalization techniques typically disregard the presence of
background noise and design reshaping filters aiming only at speech dereverberation.
Assuming that v(n) = 0 in (2.26), the output speech signal is given by

z(n) = wTHT
︸ ︷︷ ︸

cT

s(n), (3.1)

with w the MLw–dimensional reshaping filter vector, cf. (2.14), H the Lc ×MLw–
dimensional multi-channel convolution matrix of the true RIRs, cf. (2.24), s(n) the
Lc–dimensional clean speech vector, cf. (2.23), and c the Lc–dimensional equalized
impulse response between the clean speech signal and the output speech signal which
is equal to

c = Hw. (3.2)

Acoustic multi-channel equalization techniques aim at speech dereverberation by
designing reshaping filters based on different design objectives for the equalized
impulse response. However, as discussed in Section 2.2, the available (measured or
estimated) RIRs ĥm typically differ from the true RIRs hm(n), i.e.,

ĥm(n) = hm(n) + em(n), (3.3)
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with em(n) the perturbations arising due to the sensitivity of supervised or blind
system identification methods to interfering noise [101, 110], or due to spatial mis-
match [109]. Hence, instead of using the true convolution matrix H, acoustic multi-
channel equalization techniques typically design reshaping filters using the per-
turbed convolution matrix Ĥ, constructed from the perturbed RIRs ĥm(n), i.e.,

Ĥ = H + E, (3.4)

with E the multi-channel convolution matrix of the RIR perturbations. Designing
equalization filters to reshape the estimated equalized impulse response ĉ, with

ĉ = Ĥw, (3.5)

does not necessarily result in a correctly reshaped true equalized impulse response
c. Hence, acoustic multi-channel equalization techniques that are robust against
RIR perturbations are required in practice. In the following, the design objectives of
existing equalization techniques, namely MINT [36], CS [124,125], and RMCLS [111,
125], are reviewed.

Multiple-input/output inverse theorem (MINT)

The objective of the MINT technique is to invert the acoustic system up to a delay
τ , such that the output speech signal is a delayed version of the clean speech signal.
To this purpose, an inverse filter w is designed such that

Ĥw = d, (3.6)

with d the target equalized impulse response defined as a delayed impulse, i.e.,

d = [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T . (3.7)

The delay τ is typically incorporated to relax the causality constraints on the inverse
filter design [156]. The MINT filter is then computed by minimizing the least-squares
cost function

JM = ‖Ĥw − d‖22. (3.8)

As shown in [36], assuming that
• the perturbed RIRs do not share any common zeros in the z-plane, and

• Lw ≥
⌈
Lh−1
M−1

⌉
, where d·e denotes the ceiling operation,

the MINT filter that minimizes the least-squares cost function in (3.8) is equal to

wM = Ĥ+d, (3.9)

with {·}+ denoting the Moore-Penrose pseudo-inverse. Since the perturbed multi-
channel convolution matrix is assumed to be a full row-rank matrix [157], its pseudo-
inverse can be computed as

Ĥ+ = ĤT (ĤĤT )−1. (3.10)
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When the true RIRs are available, i.e., Ĥ = H, the equalized impulse response c is
equal to the target equalized impulse response d and the MINT technique achieves
perfect acoustic system inversion, i.e.,

c = HwM = d. (3.11)

However, in the presence of RIR perturbations, i.e., Ĥ 6= H, the equalized impulse
response

c = HwM = HĤ+d, (3.12)

not only differs from the target response d, but usually yields large distortions in
the output speech signal [111,125,126].

Partial multi-channel equalization techniques

Whereas the MINT technique is very sensitive to RIR perturbations, partial multi-
channel equalization techniques such as CS and RMCLS have been shown to be
more robust against RIR perturbations [111, 124, 125]. These techniques aim at
suppressing only the late reflections, while imposing no constraints on the early
reflections, which however may lead to undesired perceptual effects as shown in
Section 3.4.
Channel shortening (CS): The CS technique has been extensively investigated in
the context of digital communication applications [158] and in the past decade it
has been applied to acoustic channel equalization in [124, 125]. The shortening of
the acoustic channel is achieved by designing a reshaping filter which maximizes
the energy in the first samples of the equalized impulse response, corresponding to
the direct path and early reflections, while minimizing the energy in the remaining
samples, corresponding to the late reflections. This optimization problem can be
expressed as the maximization of the generalized Rayleigh quotient

JCS =
‖Wdĉ‖22
‖Wuĉ‖22

=
‖WdĤw‖22
‖WuĤw‖22

=
wT ĤTWT

d WdĤw

wT ĤTWT
u WuĤw

, (3.13)

with Wd and Wu being Lc × Lc–dimensional diagonal weighting matrices of the
desired and undesired part of the equalized impulse response, i.e.,

Wd = diag{[0 . . . 0︸ ︷︷ ︸
τ

1 . . . 1︸ ︷︷ ︸
Le

0 . . . 0]}, (3.14)

Wu = diag{[1 . . . 1︸ ︷︷ ︸
τ

0 . . . 0︸ ︷︷ ︸
Le

1 . . . 1]}, (3.15)

where Le denotes the length of the desired direct path and early reflections in
number of samples (typically set to correspond to at most 50 ms). Defining the
MLw ×MLw–dimensional positive semi-definite matrices D̂ and Û as

D̂ = ĤTWT
d WdĤ, (3.16)

Û = ĤTWT
u WuĤ, (3.17)
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the CS optimization problem in (3.13) can be expressed as the maximization of the
generalized Rayleigh quotient

JCS =
wT D̂w

wT Ûw
. (3.18)

Maximizing (3.18) is equivalent to solving the generalized eigenvalue problem

D̂w = λÛw, (3.19)

where the optimal reshaping filter wCS is the generalized eigenvector corresponding
to the largest generalized eigenvalue λmax, i.e.,

D̂wCS = λmaxÛwCS . (3.20)

It should be noted that designing the reshaping filter using such an energy-based
optimization criterion imposes no other, e.g., perceptually relevant, constraints on
the early reflections of the equalized impulse response, which may lead to undesired
perceptual effects (cf. Section 3.4.2). Furthermore, when the used reshaping filter
length is Lw ≥

⌈
Lh−1
M−1

⌉
, multiple solutions to (3.20) exist (cf. Section 3.3), where

each of these solutions will lead to a perceptually different output speech signal [125].
Out of these multiple solutions, in [125] it has been proposed to use the generalized
eigenvector yielding the minimum l2-norm equalized impulse response, since it has
been observed that this eigenvector yields the best perceptual speech quality. How-
ever, it should be noted that this selection criterion was based on informal listening
tests for perfectly known RIRs, which is generally not the case in practice.
Relaxed multi-channel least-squares (RMCLS): The RMCLS technique achieves
partial channel equalization by introducing a diagonal weighting matrix WR in the
least-squares cost function in (3.8), i.e., the RMCLS cost function is defined as

JR = ‖WR(Ĥw − d)‖22, (3.21)

with WR equal to

WR = diag{[1 . . . 1︸ ︷︷ ︸
τ

1 0 . . . 0︸ ︷︷ ︸
Le

1 . . . 1]}. (3.22)

By using the weighting matrix WR , the RMCLS cost function in (3.21) aims at
setting the samples of the EIR corresponding to the delay τ and to the late reflections
equal to 0, while the early reflections are not in any way constrained. Similarly to
the MINT filter in (3.9), the RMCLS filter minimizing (3.21) can be computed as

wR = (WRĤ)+(WRd). (3.23)

It has been shown in [111,125,126] that relaxing the constraints on the reshaping fil-
ter design by using the weighting matrix WR yields an increase in robustness against
RIR perturbations in terms of suppression of the late reflections. However, similarly
as the CS technique, by not imposing any constraints on the early reflections in the
equalized impulse response, the RMCLS technique may lead to undesired perceptual
effects (cf. Section 3.4.2).
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3.2 Partial multi-channel equalization based on the multiple-input/out-
put inverse theorem (PMINT)

In order to directly control the perceptual quality of the output speech signal by
controlling both the early and late reflections of the equalized impulse response, we
propose the PMINT technique, where the first part (i.e., the direct path and early
reflections) of one of the available RIRs is used as the target equalized impulse
response in (3.6), i.e.,

Ĥw = ĥe,p, (3.24)

with
ĥe,p = [0 . . . 0︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Le − 1)︸ ︷︷ ︸
Le

0 . . . 0]T , (3.25)

and p ∈ {1, . . . , M}. Without loss of generality, also other target equalized impulse
responses could be used instead of (3.25), as long as they are perceptually close to
the true RIRs. Similarly to (3.8), the least-squares cost function to be minimized in
the PMINT technique is defined as

JP = ‖Ĥw − ĥe,p‖22. (3.26)

Assuming that the same conditions as for the MINT technique are satisfied (cf.
Section 3.1), the reshaping filter minimizing the PMINT cost function in (3.26) can
be computed as

wP = Ĥ+ĥe,p. (3.27)

As an illustrative example, Fig. 3.1 depicts the equalized impulse responses obtained
using the MINT, CS, RMCLS, and PMINT techniques when the true RIRs are
known, i.e., Ĥ = H. The delay τ is set to correspond to 11.25 ms and the length
of the direct path and early reflections Le is set to correspond to 50 ms. When the
true RIRs are known, all acoustic multi-channel equalization techniques are able
to achieve perfect suppression of the late reflections, hence, the depicted equalized
impulse responses have been cut after 80 ms and the late reflections (which are
zero for all considered techniques) have not been shown. As expected, the MINT
technique (Fig. 3.1a) yields a delayed impulse. Furthermore, as can be observed in
Figs. 3.1b and 3.1c, the CS and RMCLS techniques yield early reflections that do
not exhibit the naturally decaying pattern of a room impulse response, typically
resulting in an unnatural coloration and decreased perceptual quality of the output
speech signal. By using the direct path and early reflections of one of the available
RIRs as the target response, the equalized impulse response resulting from the
PMINT technique shown in Fig. 3.1d resembles a typical RIR and preserves the
perceptual speech quality of the output speech signal (cf. Section 3.4.2).
However, given the similarity of the MINT and PMINT filters in (3.9) and (3.27),
the PMINT technique is expected to inherit the sensitivity of the MINT technique
to RIR perturbations, as will also be experimentally validated in Section 3.4.3. In-
creasing the robustness of the PMINT technique against RIR perturbations will be
discussed in the following chapters.
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Fig. 3.1: Exemplary equalized impulse response when the true room impulse responses are
known obtained using the (a) MINT technique, (b) CS technique, (c) RMCLS
technique, and (d) PMINT technique. The delay is set to τ = 90, corresponding
to 11.25 ms, and the desired window length is set to Le = 400, corresponding to
50 ms. The considered acoustic system is the same as in Section 3.4.1.

3.3 Generalized framework for least-squares acoustic multi-channel
equalization techniques and their relation to channel shortening

In this section, a generalized framework for all previously presented least-squares
equalization techniques, i.e., MINT, RMCLS, and PMINT, is established. A theo-
retical analysis based on the Rouché-Capelli theorem is provided to determine the
properties, i.e., existence and uniqueness, of the solution(s) for each least-squares
cost function. Using this analysis it is shown that all considered least-squares equal-
ization techniques yield reshaping filters which lie in the subspace spanned by the
multiple channel shortening solutions.

Least-squares equalization techniques

The objective of all presented least-squares equalization techniques in Sections 3.1
and 3.2, i.e., MINT, RMCLS, and PMINT, can be expressed in a unified manner as

WĤw = Wct, (3.28)
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with W a diagonal weighting matrix and ct the target equalized impulse response.
Depending on the definition of the weighting matrix W and the target equalized
impulse response ct, the objective of all considered least-squares techniques can be
derived. Using W = I, with I the Lc×Lc–dimensional identity matrix, and ct = d,
the objective of the MINT technique is derived. Using W = WR and ct = d, the
objective of the RMCLS technique is derived. Finally, using W = I and ct = ĥe,p,
the objective of the PMINT technique is derived. Hence, the cost function of all
considered least-squares techniques can be represented in a unified manner as

JLS = ‖W(Ĥw − ct)‖22, (3.29)

and the least-squares filter minimizing (3.29) can be computed as

wLS = (WĤ)+(Wct). (3.30)

In the following, the Rouché-Capelli theorem is used to establish the existence and
uniqueness of solutions to (3.29) for the different definitions of the weighting matrix
W and the target equalized impulse response ct.

Rouché-Capelli theorem [159]: Consider the system of equations Aq = b,
where the matrix A has dimensions u× v. Such a system has a solution if and only
if the rank of the coefficient matrix A is equal to the rank of the augmented matrix
[A|b]. If a solution exists and rank(A) = v, this solution is unique, otherwise there
are an infinite number of solutions.

Assuming that the reshaping filter length is Lw ≥
⌈
Lh−1
M−1

⌉
and the matrix Ĥ is

a full row-rank matrix, Table 3.1 summarizes the rank of the coefficient and aug-
mented matrix for each considered least-squares technique.1 Since for all considered
definitions of W and ct the rank of the coefficient matrix is equal to the rank of
the augmented matrix, the system of equations in (3.28) is always solvable.
For the MINT and PMINT techniques, we need to distinguish among the following
two cases:

Table 3.1: Rank of the coefficient and augmented matrix for least-squares equalization
techniques.

Technique Aq = b rank(A) rank([A|b])

MINT Ĥw = d Lc Lc

RMCLS WRĤw = WRd Lc − Le + 1 Lc − Le + 1

PMINT Ĥw = ĥe,p Lc Lc

1 Note that while the reshaping filter length Lw ≥
⌈
Lh−1
M−1

⌉
will be mostly considered in this thesis,

in Chapter 4 we will also consider the reshaping filter length Lw <
⌈
Lh−1
M−1

⌉
.
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i) if Lc = MLw, i.e., Ĥ is a square matrix, and hence rank(Ĥ) = Lc = MLw,
there is a unique solution to (3.28);

ii) otherwise if Lc < MLw, i.e., Ĥ is a fat matrix, there are an infinite number of
solutions and the reshaping filter in (3.30) is the minimum-norm solution [160].

For the RMCLS technique there is always an infinite number of solutions since the
number of columns in WRĤ is always greater than its rank, i.e.,MLw > Lc−Le+1.
The reshaping filter in (3.30) is the minimum-norm solution [160].
Since the system of equations in (3.28) is solvable for all considered least-squares
equalization techniques, the reshaping filter w

LS
results in an estimated equalized

impulse response ĉ
LS

= Ĥw
LS

with non-zero samples in the direct path and early
reflections and zero samples in the late reflections, i.e.,

ĉ
LS

= [0 . . . 0︸ ︷︷ ︸
τ

ĉ
LS

(0) ĉ
LS

(1) . . . ĉ
LS

(Le − 1)︸ ︷︷ ︸
Le

0 . . . 0]T . (3.31)

Note that for the MINT technique ĉ
LS

(0) 6= 0, whereas all remaining samples in the
estimated equalized impulse response are equal to 0.

Relation to the channel shortening technique

As shown in [125], when the used reshaping filter length is Lw ≥
⌈
Lh−1
M−1

⌉
, the CS

maximization problem in (3.18) can be reformulated as finding a reshaping filter w
which belongs to the null space of Û but does not belong to the null space of D̂,
i.e., 




wT D̂w 6= 0

wT Ûw = 0
, (3.32)

such that the generalized Rayleigh quotient in (3.18) is maximized to∞. The system
of equations in (3.32) can be rewritten as





wT (D̂ + Û)w 6= 0

wT Ûw = 0
. (3.33)

The matrix D̂ + Û is equal to

D̂ + Û = ĤTWT
d WdĤ + ĤTWT

u WuĤ (3.34)

= ĤT (WT
d Wd + WT

u Wu)Ĥ (3.35)

= ĤT Ĥ, (3.36)

which is a positive semi-definite matrix. Since the convolution matrix Ĥ is assumed
to be a full row-rank matrix with rank(Ĥ) = Lc, also rank(D̂+Û) = rank(ĤT Ĥ) =
Lc. Exploiting the relationship between the rank and the dimension of the null space
of a matrix [160], the dimension of the null space of D̂ + Û is equal to

dim[null space(D̂ + Û)] = MLw − Lc. (3.37)
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In addition, since rank(Û) = rank(Ĥ) − Le = Lc − Le, the dimension of the null
space of Û is equal to

dim[null space(Û)] = MLw − (Lc − Le). (3.38)

Since the matrices D̂+Û, D̂, and Û are positive semi-definite matrices, the vectors
belonging to the null space of D̂ + Û also belong to the null space of D̂ and to the
null space of Û, i.e.,

wT (D̂ + Û)w = 0⇒ wT D̂w = −wT Ûw⇒ wT D̂w = 0 and wT Ûw = 0. (3.39)

Since every vector in the null space of D̂ + Û also belongs to the null space of Û,
there must be [MLw − (Lc −Le)]− [MLw −Lc] = Le linearly independent vectors
that belong to the null space of Û but do not belong to the null space of D̂ + Û.
Hence, the number of linearly independent vectors satisfying (3.33) and therefore
maximizing the generalized Rayleigh quotient in (3.18) to ∞ is equal to Le.
Applying the desired and undesired weighting matrices of the CS technique (cf.
(3.14) and (3.15)) to the least-squares estimated equalized impulse response ĉ

LS

in (3.31) yields
W

d
ĉLS 6= 0 and Wu ĉLS = 0. (3.40)

Based on (3.40), it can be said that the least-squares reshaping filter wLS satisfies
the system of equations in (3.33), i.e.,





wT
LS

(D̂ + Û)wLS 6= 0

wT
LS

ÛwLS = 0
. (3.41)

Therefore, all solutions wLS of the least-squares equalization techniques lie in the
subspace spanned by the channel shortening solutions, i.e.,

wLS = SCSα, (3.42)

with SCS = [w1
CS

w2
CS

. . . wLe
CS

] the MLw × Le–dimensional matrix whose columns
are the Le channel shortening solutions and α an Le–dimensional linear combination
vector. Since all least-squares reshaping filters lie in the subspace spanned by the
channel shortening solutions, it can be said that this subspace offers the potential
to achieve a high dereverberation performance, both in terms of reverberant energy
suppression and perceptual speech quality preservation. We have investigated the
use of this subspace to derive more robust and perceptually advantageous reshaping
filters in [128, 129], where the multiple CS solutions are combined to achieve the
least-squares optimization criteria. While all methods proposed in this thesis to
increase the robustness of equalization techniques can be directly incorporated into
the techniques proposed in [128, 129], in this thesis we have limited the discussion
to the basic channel shortening and least-squares techniques.

3.4 Simulations

In this section, the dereverberation performance of the acoustic multi-channel equal-
ization techniques presented in Sections 3.1 and 3.2 is investigated. In Section 3.4.1
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the considered acoustic system and the used algorithmic settings are introduced. Sec-
tion 3.4.2 investigates the performance of the partial acoustic multi-channel equal-
ization techniques, i.e., CS, RMCLS, and PMINT, when the true RIRs are known.
Section 3.4.3 investigates the performance of all considered acoustic multi-channel
equalization techniques, i.e., MINT, CS, RMCLS, and PMINT, in the presence of
RIR perturbations.

3.4.1 Acoustic system and algorithmic settings

We have considered an acoustic scenario with a single speech source and M = 4
omni-directional microphones. The source-microphone distance is 3 m and the dis-
tance between the microphones is 5 cm. Room impulse responses from the MARDY
database [161] have been used, where the room reverberation time is T60 ≈ 450 ms
and the direct-to-reverberant ratio is DRR = 0 dB. The RIRs have been measured
using the swept-sine technique [162] and the length of the RIRs has been set to
Lh = 3600 at a sampling frequency fs = 8 kHz. For illustration, Fig. 3.2 depicts
the RIR between the source and the first microphone. To generate the reverberant
signals, 10 sentences (approximately 17 s long) from the HINT database [163] have
been convolved with the measured RIRs.
In order to simulate RIR perturbations, the measured RIRs are perturbed by
adding scaled white noise as described in Section 2.2. The considered normalized
projection misalignment (NPM) values between the true and the perturbed RIRs
are (cf. (2.52))

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (3.43)

For all considered acoustic multi-channel equalization techniques, the used reshaping
filter length is Lw =

⌈
Lh−1
M−1

⌉
= 1200, the delay is arbitrarily set to τ = 90, and the

performance for several desired window lengths Ld ranging from 10 ms to 50 ms is
investigated, i.e.,

Ld =
Le × 1000

fs
∈ {10 ms, 20 ms, 30 ms, 40 ms, 50 ms}. (3.44)
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Fig. 3.2: The true room impulse response between the speech source and the first micro-
phone.
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The target equalized impulse response for the PMINT technique in (3.25) is set to
the direct path and the early reflections of the perturbed RIR of the first micro-
phone, i.e., ĥe,1. Furthermore, the CS reshaping filter is selected as the generalized
eigenvector yielding the smallest l2-norm estimated equalized impulse response as
proposed in [125].

Using the instrumental performance measures described in Section 2.3, the derever-
beration performance is evaluated in terms of the reverberant energy suppression
and the perceptual speech quality improvement. The reverberant energy suppres-
sion is evaluated using the direct-to-reverberant ratio improvement (∆DRR) be-
tween the equalized impulse response c and the true RIR h1 (cf. (2.53)), as well
as the energy decay curve (EDC) of the equalized impulse response c (cf. (2.55)).
The improvement in perceptual speech quality is evaluated using the improvement
in PESQ [153] (∆PESQ) and in cepstral distance [154] (∆CD) between the output
speech signal z(n) and the reverberant microphone signal x1(n). The reference signal
employed for the PESQ and cepstral distance measures is xe,1(n) = s(n) ∗ he,1(n),
i.e., the clean speech signal convolved with the direct path and early reflections of
the first RIR (which changes as the desired window length Ld changes).

3.4.2 Performance of partial acoustic multi-channel equalization techniques when
the true RIRs are known

In this section, the performance of the considered partial equalization techniques,
i.e., CS, RMCLS, and PMINT, is investigated when the true RIRs are known.2
Based on the theoretical discussion in Section 3.3, all considered techniques per-
fectly achieve their design objective when the true RIRs are known, i.e., perfect
suppression of the late reflections. However, the aim of this section is to provide
more insights on the importance of preserving the direct path and early reflections
for perceptual speech quality preservation as well as to provide a baseline of what
perfect dereverberation performance means in terms of measures such as ∆DRR,
EDC, ∆PESQ, and ∆CD.
To evaluate the reverberant energy suppression, Fig. 3.3a depicts the direct-to-
reverberant ratio improvement for the CS, RMCLS, and PMINT techniques. It
can be observed that the PMINT technique achieves the highest ∆DRR for all
considered desired window lengths, outperforming the CS and RMCLS techniques.
By not controlling the early reflections in the equalized impulse response, the CS
and RMCLS techniques seem to introduce additional energy in the first Le sam-
ples (cf. Figs. 3.1b and 3.1c), which is accounted for as reverberant energy in the
DRR computation, hence, decreasing the resulting ∆DRR. Furthermore, as the de-
sired window length increases, the CS and RMCLS techniques worsen the DRR in
comparison to the reverberant microphone signal, whereas the PMINT technique
achieves an improvement for all considered desired window lengths.

2 Note that the MINT technique is not considered in this simulation, since it perfectly recovers the
(delayed) clean speech signal when the true RIRs are known.
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Fig. 3.3: Performance of the CS, RMCLS, and PMINT techniques for known true RIRs
in terms of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms,
(c) ∆PESQ, and (d) ∆CD.

To evaluate the decay rate of the reverberant energy, Fig. 3.3b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the CS, RMCLS, and PMINT techniques for the desired
window length Ld = 50 ms. Since all acoustic multi-channel equalization techniques
perfectly suppress the late reflections when the true RIRs are known, they all result
in the reverberant energy decaying to −∞ after 50 ms.
To evaluate the perceptual speech quality, Fig. 3.3c illustrates the PESQ score im-
provement for all considered partial multi-channel equalization techniques. Since the
PMINT technique perfectly recovers the reference signal when the true RIRs are
known, the performance it achieves represents the upper boundary of the achievable
performance in terms of ∆PESQ. As expected, the ∆PESQ values for the PMINT
technique decrease as the desired window length increases, since the microphone sig-
nal becomes more similar to the reference signal. Furthermore, the CS and RMCLS
techniques achieve a worse PESQ score improvement compared to the PMINT tech-
nique, particularly for increasing desired window lengths. As the desired window
length increases, more early reflections are left uncontrolled in the CS and RMCLS
techniques, causing as a result the drop in perceptual speech quality.
Similar conclusions can be derived based on the cepstral distance improvement de-
picted in Fig. 3.3d, where again the performance of the PMINT technique represents
the upper boundary of the achievable performance in terms of ∆CD, whereas the
CS and RMCLS techniques result in a significantly worse performance.
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Summarizing, preserving the early reflections as in the proposed PMINT technique
is advantageous in order to achieve a high dereverberation performance, both in
terms of reverberant energy suppression and perceptual speech quality improvement.
However, one should realize that the results presented above have been obtained for
perfectly known RIRs, which is typically not the case in practice. In the presence of
RIR perturbations, the sensitivity of equalization techniques to RIR perturbations
needs to be taken into account.

3.4.3 Performance of acoustic multi-channel equalization techniques in the pres-
ence of RIR perturbations

In this section, the performance of all considered acoustic multi-channel equalization
techniques, i.e., MINT, CS, RMCLS, and PMINT, is investigated in the presence of
RIR perturbations for the NPM values given in (3.43). The presented performance
measures are averaged over all considered NPM values.
To evaluate the reverberant energy suppression, Fig. 3.4a depicts the direct-to-
reverberant ratio improvement for the MINT, CS, RMCLS, and PMINT techniques.
It should be noted that the MINT technique is independent of the desired window
length Ld, however, in order to be able to compare the performance of the MINT
technique to partial equalization techniques which depend on the desired window
length Ld, the performance of the MINT technique is presented on the same plot.
It can be observed that by relaxing the constraints on the reshaping filter design,
the RMCLS technique is the most robust technique, yielding the highest ∆DRR
for all considered desired window lengths. However, the RMCLS technique only
slightly improves the DRR in comparison to the true RIR h1 for the desired win-
dow length Ld = 10 ms. For increasing desired window lengths, negative ∆DRR
values are obtained. Furthermore, as expected, the MINT technique fails to achieve
dereverberation and decreases the DRR in comparison to the true RIR h1 by ap-
proximately 17 dB. Moreover, the PMINT technique seems to inherit the sensitivity
of the MINT technique to RIR perturbations, also failing to achieve dereverberation
for all considered desired window lengths. Although the CS technique relaxes the
constraints on the reshaping filter design by using an energy-based optimization
criterion, it also fails to achieve dereverberation in this scenario. It should how-
ever be noted that out of the multiple CS solutions, reshaping filters yielding a
significantly better ∆DRR than the one resulting in the minimum l2-norm equal-
ized impulse response (depicted here) could be found. As mentioned in Section 3.1,
selecting the reshaping filter as the one yielding the minimum l2-norm equalized
impulse response was proposed in [125] based on observations for perfectly known
RIRs. Clearly, different selection criteria should be investigated in the presence of
RIR perturbations.
To evaluate the decay rate of the reverberant energy, Fig. 3.4b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the MINT, CS, RMCLS, and PMINT techniques for the
desired window length Ld = 50 ms. Similar conclusions as for the ∆DRR analysis
can be derived, i.e., the RMCLS technique is the most robust technique yielding
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a faster decay rate of the reverberant energy in comparison to the true RIR h1,
whereas the MINT, CS, and PMINT techniques introduce additional distortions in
the output speech signal.
To evaluate the perceptual speech quality improvement, Figs. 3.4c and 3.4d illus-
trate the PESQ score and cepstral distance improvement achieved by the MINT, CS,
RMCLS, and PMINT techniques. Similarly as for the reverberant energy suppres-
sion analysis, it can be observed that while the MINT, CS, and PMINT techniques
significantly decrease the perceptual speech quality in comparison to the reverber-
ant microphone signal x1(n), the RMCLS technique is the most robust technique.
However, it can be observed that the RMCLS technique does not significantly im-
prove the perceptual speech quality, yielding a similar or slightly better PESQ score
and cepstral distance than the reverberant microphone signal x1(n).
Summarizing these simulation results, it can be said that the MINT, CS, and
PMINT techniques are very sensitive to RIR perturbations and typically fail to
achieve dereverberation. The RMCLS technique is more robust, however, its derever-
beration performance in terms of direct-to-reverberant-ratio and perceptual speech
quality improvement is not satisfactory. Hence, in the following chapters, several
methods to increase the robustness of all considered acoustic multi-channel equal-
ization techniques will be proposed.
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Fig. 3.4: Performance of the MINT, CS, RMCLS, and PMINT techniques in terms of
(a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms, (c) ∆PESQ, and
(d) ∆CD (averaged over several NPMs).
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3.5 Summary

In this chapter an overview of existing acoustic multi-channel equalization tech-
niques, i.e., MINT, CS, and RMCLS, has been provided and a novel partial multi-
channel equalization technique based on MINT, i.e., PMINT, has been proposed.
The proposed PMINT technique aims to simultaneously suppress the late reflections
in the equalized impulse response and directly control the early reflections in order
to preserve the perceptual speech quality.
In addition, we have established a generalized framework for least-squares acoustic
multi-channel equalization techniques, i.e., for the MINT, RMCLS, and PMINT
techniques. Within this framework, we showed that least-squares equalization tech-
niques yield reshaping filters that lie in the subspace spanned by the multiple solu-
tions maximizing the channel shortening cost function.
Simulation results have shown that if the true RIRs are known, all techniques yield a
perfect reverberant tail suppression, with the PMINT technique yielding the highest
perceptual speech quality. Furthermore, it has been shown that in the presence of
RIR perturbations, the MINT, CS, and PMINT techniques fail to achieve derever-
beration and introduce additional distortions in the output speech signal, whereas
the RMCLS technique is more robust against RIR perturbations. Nevertheless, the
dereverberation performance of the RMCLS technique in the presence of RIR per-
turbations is not satisfactory. Increasing the robustness of all considered acoustic
multi-channel equalization techniques against RIR perturbations will be discussed
in the following chapters.



4
ACOUSTIC MULTI-CHANNEL EQUALIZATION
USING SHORTER RESHAPING FILTERS

As shown in Chapter 3, acoustic multi-channel equalization techniques are based
on least-squares and generalized eigenvalue optimization criteria, which are also
used in a wide range of other applications, such as data fitting and modeling using
differential equations. Over the last decades, the sensitivity of least-squares and gen-
eralized eigenvalue solutions has become a well investigated topic in linear algebra.
It has been shown that the sensitivity of least-squares solutions to perturbations
can be evaluated by the so-called condition number of the matrix being inverted.
Furthermore, it has been shown that for generalized eigenvalue solutions, infinite
generalized eigenvalues are more sensitive to perturbations than finite generalized
eigenvalues.
As shown in Chapter 3, when the true room impulse responses (RIRs) are known,
acoustic multi-channel equalization techniques can achieve perfect dereverberation
when the reshaping filter is long enough. However, since in practice the available
RIRs usually differ from the true RIRs, this choice of the reshaping filter length may
not be optimal. In this chapter we propose to increase the robustness of acoustic
multi-channel equalization techniques by using shorter reshaping filters, such that
better conditioned optimization criteria are obtained.
In Section 4.1 we derive a mathematical link between the reshaping filter length and
the condition number of the (weighted) multi-channel convolution matrix, hence,
the sensitivity of the least-squares equalization techniques to RIR perturbations.
We show that shorter reshaping filters than conventionally used yield a smaller con-
dition number, i.e., a higher robustness against RIR perturbations. Furthermore,
in Section 4.2 it is analytically shown that shorter reshaping filters in the channel
shortening technique are also more robust against RIR perturbations, since they

This chapter is partly based on:
[130] I. Kodrasi and S. Doclo, “The effect of inverse filter length on the robustness of acoustic

multichannel equalization,” in Proc. European Signal Processing Conference, Bucharest,
Romania, Aug. 2012.
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result in a better conditioned optimization criterion with finite generalized eigen-
values. Using instrumental performance measures, simulation results in Section 4.3
validate that decreasing the reshaping filter length in all considered acoustic multi-
channel equalization techniques, i.e., MINT, CS, RMCLS, and PMINT, increases
the robustness against RIR perturbations. Furthermore, it is shown that out of all
considered techniques, the RMCLS and PMINT techniques using shorter reshaping
filters result in the highest dereverberation performance, both in terms of rever-
berant energy suppression and perceptual speech quality improvement. Clearly, a
positive by-product of using shorter reshaping filters is the reduction in the compu-
tational complexity of the filter design.

4.1 Reshaping filter length in least-squares equalization techniques

As described in Section 3.3, the least-squares reshaping filters can be computed as

wLS = (WĤ)+(Wct), (4.1)

with W a Lc × Lc–dimensional technique-dependent weighting matrix, cf. Sec-
tion 3.3, Ĥ the Lc ×MLw–dimensional perturbed multi-channel convolution ma-
trix, cf. (3.4), and ct the Lc–dimensional target equalized impulse response, cf. Sec-
tion 3.3. In the following, the Wedin theorem is used to evaluate the sensitivity of the
least-squares reshaping filters wLS to perturbations in the (weighted) multi-channel
convolution matrix WĤ.

Wedin theorem [164]: Consider the system of equations Aq = b, where the
matrix A has dimensions u × v and rank r ≤ min{u, v}. Let A be perturbed to
A + ∆A. The pseudo-inverse solution q = A+b is then perturbed to q + ∆q =
(A+∆A)+b, where ∆q is the deviation between the true and the perturbed solution.
The condition number χ

A
of the matrix A is defined as

χ
A

=
‖A‖2
‖A+‖2

=
σA(1)

σA(r)
, (4.2)

with σA(i) the i-th singular value of the matrix A, ordered such that σA(1) ≥
σA(2) ≥ · · · ≥ σA(r) > 0. Using χ

A
and defining the variable ξ as

ξ =
‖∆A‖2
‖A‖2

, (4.3)

the norm of the deviation between the true and the perturbed solution is bounded by

‖∆q‖2 ≤
χ

A
ξ‖q‖2

1− χ
A
ξ

+ ‖(AAT )+b‖2‖A‖2, (4.4)

where it is assumed that χ
A
ξ < 1.

The inequality in (4.4) shows that a large condition number χ
A

results in a high
sensitivity of least-squares solutions to perturbations in the data [164]. Hence, as
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a measure of the sensitivity of the least-squares reshaping filter in (4.1) to pertur-
bations in WĤ, the condition number of WĤ can be used. In the following, it is
shown that by using shorter reshaping filters than conventionally used, the condition
number of WĤ can be decreased.

For clarity of presentation, in the following the notation summarized in Table 4.1
will be used. Reshaping filters in acoustic multi-channel equalization techniques are
typically designed using the filter length Lt, i.e., based on the pt × qt–dimensional
matrix WtĤt with fewer or the same number of rows than columns, i.e., pt ≤ qt.
Furthermore, the rank of the matrix WtĤt is rt ≤ pt. However, reshaping filters
can also be designed using a shorter filter length Ls < Lt, i.e., based on the ps× qs–
dimensional matrix WsĤs. Considering that Ls <

⌈
Lh−1
M−1

⌉
, which implies that

Ls <
Lh−1
M−1 , the matrix WsĤs is a tall matrix with fewer columns than rows, i.e.,

qs < ps, since
(M − 1)Ls < Lh − 1⇒MLs︸ ︷︷ ︸

qs

< Lh + Ls − 1︸ ︷︷ ︸
ps

. (4.5)

Furthermore, the matrix WsĤs is a full column-rank matrix, i.e., rank(WsĤs) =

rs = qs. As is schematically illustrated in Fig. 4.1, the matrix WsĤs is a sub-
matrix of WtĤt, constructed by deleting Lt − Ls rows and M(Lt − Ls) columns

Table 4.1: Notation for different reshaping filter lengths and the corresponding least-
squares matrices.

Variable Denotes

Lt =
⌈
Lh−1
M−1

⌉
Reshaping filter length conventionally used in acoustic

multi-channel equalization techniques
WtĤt Least-squares matrix when the used reshaping

filter length is Lt
pt = Lh + Lt − 1 Number of rows in WtĤt

qt = MLt Number of columns in WtĤt

rt ≤ pt Rank of WtĤt

Ls < Lt Reshaping filter length that is smaller than Lt
WsĤs Least-squares matrix when the used reshaping

filter length is Ls
ps = Lh + Ls − 1 Number of rows in WsĤs

qs = MLs Number of columns in WsĤs

rs = qs Rank of WsĤs
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WtĤt

WsĤs

qt

pt

qs

ps

M(Lt − Ls)

Lt − Ls

Fig. 4.1: Schematic illustration of the construction of the ps × qs–dimensional sub-matrix
WsĤs from the pt × qt–dimensional matrix WtĤt.

from WtĤt. Aiming at establishing a relation between the condition numbers of
the matrices WsĤs and WtĤt, with

χ
WsĤs

=
σWsĤs

(1)

σWsĤs
(rs)

, (4.6)

χ
WtĤt

=
σWtĤt

(1)

σWtĤt
(rt)

, (4.7)

we consider the following interlacing inequalities between the singular values of a
matrix and its sub-matrices.

Interlacing inequalities [165]: Given a matrix A of dimensions u × v and a
sub-matrix B obtained by deleting l rows and/or l columns from A, the singular
values of A and B interlace as

σA(i) ≥ σB(i) ≥ σA(i+ l) i = 1, . . . , min{u− l, v − l}. (4.8)

Based on the interlacing inequalities in (4.8), in Appendix A we have derived the
following inequalities relating the largest and smallest non-zero singular values of
WtĤt and WsĤs:

σWtĤt
(1) ≥ σWsĤs

(1), (4.9)

σWsĤs
(rs) ≥ σWtĤt

(rt). (4.10)

It readily follows from (4.9) and (4.10) that the condition number of WsĤs is
smaller or equal than the condition number of WtĤt, i.e.,

χ
WsĤs

=
σWsĤs

(1)

σWsĤs
(rs)

≤
σWtĤt

(1)

σWtĤt
(rt)

= χ
WtĤt

. (4.11)
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Therefore, using a shorter reshaping filter than conventionally used in least-squares
equalization techniques can result (and based on simulation results it generally does)
in a lower condition number of the matrix being inverted.1

Fig. 4.2 depicts the singular values of an exemplary matrix WtĤt for the PMINT
technique (i.e., Wt = I) and for the RMCLS technique (i.e., Wt = W

R
), con-

structed using the reshaping filter length Lt = 1200. The used acoustic system is the
same as the one described in Section 3.4.1, withM = 4 microphones and Lh = 3600.
Furthermore, the singular values of two sub-matrices WsĤs, constructed using
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Fig. 4.2: Singular values of an exemplary matrix WtĤt (Lt = 1200) and of two sub-
matrices WsĤs (Ls = 800 and Ls = 500) for the (a) PMINT technique (i.e.,
Wt = I) and (b) RMCLS technique (i.e., Wt = WR and Ld = 50 ms). The
largest and smallest non-zero singular values of each matrix are explicitly denoted.
The considered acoustic system is the same as in Section 3.4.1.

1 It should be noted that decreasing the reshaping filter length to improve the conditioning of the
least-squares optimization criterion differs from the truncated singular value decomposition ap-
proach we proposed in [127], where the singular values of the (weighted) multi-channel convolution
matrix smaller than a given threshold are directly set equal to zero.
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Ls = 800 and Ls = 500, are also depicted. The largest and smallest non-zero singu-
lar values of each matrix are marked in order to illustrate the inequalities presented
in (4.9) and (4.10). Using these singular values, the computed condition numbers
of the different matrices are presented in Table 4.2, where it can be observed that
using a shorter reshaping filter than conventionally used decreases the condition
number of the (weighted) multi-channel convolution matrix for the least-squares
equalization techniques.
Using a shorter reshaping filter can be considered as a method of regularizing the
least-squares solution, yielding a trade-off between dereverberation accuracy when
the true RIRs are available and robustness in the presence of RIR perturbations.
Designing shorter reshaping filters is not only desirable to increase the robustness of
least-squares equalization techniques against RIR perturbations, but also because
of the lower computational complexity of the filter design.

4.2 Reshaping filter length in the channel shortening technique

The analysis presented in Section 4.1 relating the reshaping filter length to the con-
dition number of WĤ, and hence, to the robustness of the reshaping filters against
RIR perturbations, can be applied only to the least-squares equalization techniques,
i.e., MINT, RMCLS, and PMINT. In the following we show that decreasing the re-
shaping filter length is however also advantageous to increase the robustness of the
channel shortening technique.
As presented in Section 3.1, the channel shortening optimization criterion is a gen-
eralized eigenvalue problem, and the perturbation theory for eigenvalue problems
is a well investigated topic in linear algebra [160, 166]. As shown in (3.20), the
channel shortening reshaping filter can be computed as the generalized eigenvec-
tor corresponding to the maximum generalized eigenvalue λmax of the generalized
eigenvalue problem

D̂wCS = λmaxÛwCS . (4.12)

Furthermore, it was shown in Section 3.3 that when the used reshaping filter length
is Lw ≥

⌈
Lh−1
M−1

⌉
, the maximum generalized eigenvalue in (4.12) is λmax = ∞.

Table 4.2: Condition number of an exemplary matrix WtĤt (Lt = 1200) and of two sub-
matrices WsĤs (Ls = 800 and Ls = 500) for the PMINT technique (i.e.,
Wt = I) and the RMCLS technique (i.e., Wt = WR and Ld = 50 ms). The
considered acoustic system is the same as in Section 3.4.1.

Reshaping filter length PMINT RMCLS

Lt = 1200 χ
WtĤt

= 5× 106 χ
WtĤt

= 3× 105

Ls = 800 χ
WsĤs

= 7× 103 χ
WsĤs

= 1× 104

Ls = 500 χ
WsĤs

= 2× 103 χ
WsĤs

= 2× 103
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It has been shown in [166] that infinite generalized eigenvalues arising from the
common null spaces of the involved matrices (i.e., D̂ and Û) are extremely sensi-
tive to small perturbations in the data. Hence, the generalized eigenvalue problem
in (4.12) is highly ill-conditioned and the generalized eigenvector wCS associated
with λmax =∞ is very sensitive to perturbations in D̂ and Û. As will be shown
in the following, decreasing the reshaping filter length in the channel shortening
technique yields a better conditioned generalized eigenvalue optimization criterion
with λmax < ∞, which significantly decreases the sensitivity of the reshaping filter
to perturbations in D̂ and Û.
Using a shorter reshaping filter of length Ls, the qs × qs–dimensional matrices D̂s

and Ûs are constructed similarly as in (3.16) and (3.17), i.e.,

D̂s = ĤT
s WT

dsWdsĤs, (4.13)

Ûs = ĤT
s WT

usWusĤs, (4.14)

with Ĥs the ps × qs–dimensional multi-channel convolution matrix and Wds and
Wus the ps × ps–dimensional desired and undesired weighting matrices defined as
in (3.14) and (3.15). As described in Section 4.1, the multi-channel convolution
matrix Ĥs is a full column-rank matrix of rank qs, hence the matrices D̂s+ Ûs and
Ûs are also full column-rank matrices. Following similar arguments as in Section 3.3,
since

rank(D̂s + Ûs) = qs, (4.15)

rank(Ûs) = qs, (4.16)

the null space of the matrices D̂s + Ûs and Ûs is empty, i.e.,

dim[null space(D̂s + Ûs)] = 0, (4.17)

dim[null space(Ûs)] = 0. (4.18)

Therefore, the generalized eigenvalue problem

D̂swCS = λmaxsÛswCS (4.19)

does not have infinite generalized eigenvalues, i.e., λmaxs <∞.
Table 4.3 presents the maximum generalized eigenvalue for exemplary matrices D̂s

and Ûs constructed using the shorter reshaping filter lengths Ls = 800 and Ls = 500.
The used acoustic system is the same as the one described in Section 3.4.1, with
M = 4 microphones and Lh = 3600. It can be observed that decreasing the reshap-
ing filter length in the channel shortening technique results in finite generalized
eigenvalues.
Hence, decreasing the reshaping filter length in the channel shortening technique
improves the conditioning of the optimization criterion, yielding generalized eigen-
vectors that are less sensitive to perturbations in D̂s and Ûs. It should be noted
that when the used reshaping filter length is Ls <

⌈
Lh−1
M−1

⌉
, the least-squares equal-

ization techniques do not yield reshaping filters that satisfy the channel shortening
optimization criterion, i.e., the analysis in Section 3.3 does not apply.
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Table 4.3: Maximum generalized eigenvalue for channel shortening exemplary matrices D̂s

and Ûs constructed Ls = 800 and Ls = 500. The considered acoustic system is
the same as in Section 3.4.1 and the desired window length is Ld = 50 ms.

Reshaping filter length λmaxs

Ls = 800 1× 105

Ls = 500 7× 103

4.3 Simulations

In this section, we investigate the dereverberation performance of all considered
equalization techniques when using shorter reshaping filters than conventionally
used. In Section 4.3.1 the considered acoustic system and the used algorithmic set-
tings are introduced. Section 4.3.2 investigates the robustness increase of acoustic
multi-channel equalization techniques when using shorter reshaping filters. In Sec-
tion 4.3.3 the performance of the robust extensions of the considered techniques is
extensively compared.

4.3.1 Acoustic system and algorithmic settings

We have considered the same acoustic scenario as in Section 3.4.1, i.e., a single speech
source and M = 4 omni-directional microphones. The source-microphone distance
is 3 m and the distance between the microphones is 5 cm. Room impulse responses
from the MARDY database [161] have been used, where the room reverberation
time is T60 ≈ 450 ms and the direct-to-reverberant ratio is DRR = 0 dB. The RIRs
have been measured using the swept-sine technique [162] and the length of the RIRs
has been set to Lh = 3600 at a sampling frequency fs = 8 kHz.
Similarly as in Section 3.4, in order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as described in Section 2.2. The
considered normalized projection misalignment (NPM) values between the true and
the perturbed RIRs are (cf. (2.52))

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (4.20)

For all considered acoustic multi-channel equalization techniques, the conventionally
used reshaping filter length is Lt =

⌈
Lh−1
M−1

⌉
= 1200, the delay is set to τ = 90, and

the performance for several desired window lengths Ld ranging from 10 ms to 50 ms
is investigated, i.e.,

Ld ∈ {10 ms, 20 ms, 30 ms, 40 ms, 50 ms}. (4.21)

The target equalized impulse response for the PMINT technique is set to the direct
path and the early reflections of the perturbed RIR of the first microphone, i.e., ĥe,1.
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Furthermore, when the used reshaping filter length is Lt, the channel shortening
reshaping filter is selected as the generalized eigenvector yielding the minimum
l2-norm estimated equalized impulse response as proposed in [125].

Using the instrumental performance measures described in Section 2.3, the derever-
beration performance is evaluated in terms of the reverberant energy suppression
and the perceptual speech quality improvement. The reverberant energy suppres-
sion is evaluated using the direct-to-reverberant ratio improvement (∆DRR) be-
tween the equalized impulse response c and the true RIR h1 (cf. (2.53)), as well
as the energy decay curve (EDC) of the equalized impulse response c (cf. (2.55)).
The improvement in perceptual speech quality is evaluated using the improvement
in PESQ [153] (∆PESQ) and in cepstral distance [154] (∆CD) between the output
speech signal z(n) and the reverberant microphone signal x1(n). The reference signal
employed for the PESQ and cepstral distance measures is xe,1(n) = s(n) ∗ he,1(n),
i.e., the clean speech signal convolved with the direct path and early reflections of
the first RIR (which changes as the desired window length Ld changes).

In order to evaluate the effectiveness of using shorter reshaping filters for the consid-
ered acoustic multi-channel equalization techniques, we investigate the performance
for several filter lengths Ls, i.e.,

Ls ∈ {500, 600, . . . , 1100, 1200}. (4.22)

The optimal filter length Lo is determined to be the filter length yielding the highest
perceptual speech quality in terms of the PESQ score. It should be noted that the
computation of the PESQ score for determining the optimal filter length is an
intrusive procedure that is not applicable in practice, since knowledge of the clean
speech signal and of the true RIRs is required to compute the reference signal
and the equalized impulse response c = Hw. In addition, it should be noted that
although the MINT technique is independent of the desired window length Ld, we
determine an optimal filter length in the MINT technique for each desired window
length Ld by changing the reference signal in the PESQ computation, such that
the MINT technique can be compared to partial equalization techniques (which are
dependent on the desired window length Ld).

4.3.2 Robustness increase of acoustic multi-channel equalization techniques when
using shorter reshaping filters

In this section, the performance of all considered acoustic multi-channel equalization
techniques when using the conventional reshaping filter length Lt is compared to the
performance when using the optimal shorter reshaping filter length Lo. We consider
an exemplary scenario with NPM = −33 dB. For the sake of clarity, we will refer to
the equalization techniques using the shorter reshaping filter length Lo as L-MINT,
L-CS, L-RMCLS, and L-PMINT.
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Robustness increase of the MINT technique

Fig. 4.3 depicts the performance of the MINT and L-MINT techniques in terms of
∆DRR, EDC, ∆PESQ, and ∆CD. For completeness, the used optimal reshaping
filter lengths are presented in Table 4.4. Since acoustic system inversion based on
the MINT technique is very sensitive to RIR perturbations, the optimal reshaping
filter length as illustrated in Table 4.4 is small, i.e., Lo = 500.
As shown by the ∆DRR values depicted in Fig. 4.3a, using the L-MINT technique
significantly increases the ∆DRR in comparison to using the MINT technique. While
the conventionally used reshaping filter length worsens the DRR in comparison to
the true RIR h1, using a shorter reshaping filter yields an improvement of approxi-
mately 5 dB.
To evaluate the reverberant energy decay rate, Fig. 4.3b shows the energy decay
curve of the true RIR h1 and the energy decay curve of the equalized impulse re-
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Fig. 4.3: Performance of the MINT and L-MINT techniques in terms of (a) ∆DRR,
(b) EDC, (c) ∆PESQ, and (d) ∆CD (NPM = −33 dB).

Table 4.4: Optimal reshaping filter length for the L-MINT technique for several desired
window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal reshaping filter length Lo 500 500 500 500 500
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sponse c obtained using the MINT (Lt = 1200) and L-MINT (Ls = 500) techniques.
It can be observed that while the reverberant energy decays faster when using the
L-MINT technique, it is nevertheless generally decaying at a slower rate than the
reverberant energy in the true RIR h1.
To evaluate the perceptual speech quality, Figs. 4.3c and 4.3d depict the ∆PESQ
and ∆CD values achieved by the MINT and L-MINT techniques. It can be observed
that using the L-MINT technique yields a better overall perceptual speech quality
than using the MINT technique. However, as can be seen by the negative ∆PESQ
values and the approximately zero ∆CD values, the overall perceptual speech quality
is still not improved in comparison to the reverberant microphone signal x1(n).
Therefore as expected from the theoretical analysis in Section 4.1, these simulation
results validate that using a shorter reshaping filter than conventionally used in the
least-squares MINT technique is advantageous to increase the robustness against
RIR perturbations. However, acoustic system inversion using the L-MINT technique
nevertheless remains sensitive even to moderate RIR perturbation levels, yielding
a slow reverberant energy decay rate and a worse overall perceptual speech quality
than the reverberant microphone signal. Hence, using a shorter reshaping filter is
not sufficient to make the MINT technique robust against RIR perturbations.

Robustness increase of the CS technique

Fig. 4.4 depicts the performance of the CS and L-CS techniques in terms of ∆DRR,
EDC, ∆PESQ, and ∆CD. The used optimal reshaping filter lengths are presented
in Table 4.5. Since the optimal filter length depends on the acoustic system, the
desired window length, and the level of RIR perturbations, no general statement
about the value of the optimal filter length can be made. However, it can be observed
that the optimal reshaping filter lengths for the CS technique are smaller than the
conventionally used filter length Lt and larger than the optimal reshaping filter
lengths for the MINT technique, since by design partial channel equalization is
typically more robust than channel inversion using the MINT technique.2

As shown in Fig. 4.4a, using a shorter reshaping filter than conventionally used in
the CS technique significantly increases the ∆DRR values, particularly for short
desired window lengths Ld. As the desired window length increases, the ∆DRR
obtained using the L-CS technique decreases, since additional energy is introduced
which is accounted for as reverberant energy in the DRR calculation (cf. (2.54)).
To evaluate the reverberant energy decay rate, Fig. 4.4b depicts the energy decay
curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the CS (Lt = 1200) and L-CS (Ls = 800) techniques
for the desired window length Ld = 50 ms. As expected, the CS technique fails to

2 The better performance of the CS technique in comparison to the MINT technique is not apparent
here. However, as described in Section 3.4.3, selecting the generalized eigenvector as the one yield-
ing the minimum l2-norm equalized impulse response for the CS technique does not yield the best
performance in the presence of RIR perturbations, i.e., significantly better performing generalized
eigenvectors can be found.
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Fig. 4.4: Performance of the CS and L-CS techniques in terms of (a) ∆DRR, (b) EDC
for the desired window length Ld = 50 ms, (c) ∆PESQ, and (d) ∆CD (NPM =
−33 dB).

Table 4.5: Optimal reshaping filter length for the L-CS technique for several desired win-
dow lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal reshaping filter length Lo 900 1000 1100 700 800

achieve dereverberation, whereas the L-CS technique yields a significant increase in
robustness against RIR perturbations, with the reverberant energy decaying at a
much faster rate than the reverberant energy in the true RIR h1. The high direct-to-
reverberant ratio improvement and the faster reverberant energy decay rate achieved
by the L-CS technique is also reflected in the overall perceptual speech quality
improvement as measured by ∆PESQ and ∆CD, depicted in Figs. 4.4c and 4.4d. It
can be observed that while the CS technique fails to improve the perceptual speech
quality for all considered desired window lengths, the L-CS technique results in a
significant improvement in comparison to the reverberant microphone signal x1(n).
As expected, the ∆PESQ values for the L-CS technique decrease with increasing
desired window length and the ∆CD values increase, since more early reflections
are left uncontrolled.
Therefore as expected from the theoretical analysis in Section 4.2, these simulation
results demonstrate that using a shorter reshaping filter than conventionally used in
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the CS technique is advantageous and significantly increases the robustness against
RIR perturbations.

Robustness increase of the RMCLS technique

Fig. 4.5 depicts the performance of the RMCLS and L-RMCLS techniques in terms
of ∆DRR, EDC, ∆PESQ, and ∆CD. The used optimal reshaping filter lengths are
presented in Table 4.6, where it can be observed that for all considered desired win-
dow lengths, the optimal reshaping filter length Ls is smaller than the conventionally
used reshaping filter length Lt.
Since the RMCLS technique is significantly more robust than the MINT and CS
techniques (cf. Section 3.4.3), it can be observed in Fig. 4.5a that the DRR improve-
ment obtained when a shorter filter is used in the RMCLS technique is less than the
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Fig. 4.5: Performance of the RMCLS and L-RMCLS techniques in terms of (a) ∆DRR,
(b) EDC for the desired window length Ld = 50 ms, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 4.6: Optimal reshaping filter length for the L-RMCLS technique for several desired
window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal reshaping filter length Lo 900 600 700 600 600
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improvement obtained when a shorter filter is used in the MINT or CS techniques.
Nevertheless, for increasing desired window lengths, an improvement in ∆DRR of
up to 5 dB is obtained when using the L-RMCLS technique instead of the RMCLS
technique.
To evaluate the reverberant energy decay rate, Fig. 4.5b depicts the energy decay
curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the RMCLS (Lt = 1200) and L-RMCLS (Ls = 600)
techniques for the desired window length Ld = 50 ms. It can be observed that for
the L-RMCLS technique the reverberant energy decays at a slower rate than for the
RMCLS technique. This can be explained by the fact that the optimal reshaping
filter length is being chosen as the one yielding the highest PESQ score. Since the
RMCLS technique using the conventional filter length Lt yields a fast reverberant
energy decay rate but not a high perceptual speech quality improvement, a shorter
reshaping filter which yields a better perceptual speech quality results in a slower
reverberant energy decay rate. The latter is illustrated in Figs. 4.5c and 4.5d, which
show that the L-RMCLS technique yields a better overall perceptual speech quality
than the RMCLS technique, significantly improving the obtained ∆PESQ and ∆CD
values for all desired window lengths Ld.
Therefore as expected from the theoretical analysis in Section 4.1, these simulation
results demonstrate that using a shorter reshaping filter than conventionally used
in the weighted least-squares RMCLS technique is advantageous and increases the
robustness against RIR perturbations.

Robustness increase of the PMINT technique

Fig. 4.6 depicts the performance of the PMINT and L-PMINT techniques in terms
of ∆DRR, EDC, ∆PESQ, and ∆CD. The used optimal reshaping filter lengths are
presented in Table 4.7, where it can be observed that for all considered desired win-
dow lengths, the optimal reshaping filter length Ls is smaller than the conventionally
used reshaping filter length Lt.
Similarly as for the MINT and CS techniques, it can be observed in Figs. 4.6a
and 4.6b that using a shorter reshaping filter than conventionally used in the PMINT
technique results in a significant improvement in reverberant energy suppression,
both in terms of a higher direct-to-reverberant ratio improvement and a faster
decay rate of the reverberant energy.
Furthermore, the ∆PESQ and ∆CD values depicted in Figs. 4.6c and 4.6d confirm
that using the PMINT technique fails to improve the overall perceptual speech qual-
ity in comparison to the reverberant microphone signal, whereas using the L-PMINT
technique yields a significantly better performance, with an improvement of approx-
imately 0.7 in PESQ score and 1.5 dB in cepstral distance for all considered desired
window lengths.
Hence, as expected from the theoretical analysis in Section 4.1, decreasing the re-
shaping filter length in the least-squares PMINT technique results in a significant
increase in robustness against RIR perturbations, both in terms of reverberant en-
ergy suppression and perceptual speech quality improvement.



4.3 simulations 63

10 20 30 40 50

−15

−10

−5

0

5

10

Desired window length Ld [ms]

∆
D

R
R

[d
B

]
PMINT L-PMINT

(a)

0 100 200 300 400

0

−10

−20

−30

Time [ms]

E
D

C
[d

B
]

PMINT L-PMINT h1

(b)

10 20 30 40 50

−0.5

−0.25

0

0.25

0.5

0.75

Desired window length Ld [ms]

∆
P

E
SQ

PMINT L-PMINT

(c)

10 20 30 40 50
−2

−1

0

1

2

Desired window length Ld [ms]

∆
C

D
[d

B
]

PMINT L-PMINT

(d)

Fig. 4.6: Performance of the PMINT and L-PMINT techniques in terms of (a) ∆DRR,
(b) EDC for the desired window length Ld = 50 ms, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 4.7: Optimal reshaping filter length for the L-PMINT technique for several desired
window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal reshaping filter length Lo 600 600 600 600 600

4.3.3 Comparison of robust acoustic multi-channel equalization techniques

The simulation results in Section 4.3.2 have shown that for all considered equaliza-
tion techniques, shorter reshaping filters than conventionally used yield a significant
increase in robustness in the presence of RIR perturbations. In this section, the per-
formance of acoustic multi-channel equalization techniques using optimal shorter
reshaping filters is extensively compared for all considered NPM values in (4.20).
Similarly as in Section 3.4.3, the presented performance measures are averaged over
all considered NPM values.
To compare the reverberant energy suppression, Figs. 4.7a and 4.7b depict the DRR
improvement and the energy decay curve obtained by all equalization techniques
when shorter reshaping filters are used. It can be observed in Fig. 4.7a that for short
desired window lengths (i.e., Ld = 10 ms), partial equalization techniques achieve
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Fig. 4.7: Performance of the L-MINT, L-CS, L-RMCLS, and L-PMINT techniques in terms
of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms, (c) ∆PESQ,
and (d) ∆CD (averaged over several NPM values).

the highest ∆DRR and outperform the L-MINT technique. As the desired window
length increases, due to the additional energy introduced in the early reflections by
partial equalization techniques, the L-MINT technique results in a higher ∆DRR.
However, as can be seen from the energy decay curves presented in Fig. 4.7b, the
L-MINT technique yields the slowest decay rate of the reverberant energy, whereas
the partial equalization techniques are significantly more robust. Among the partial
equalization techniques, it can be observed that due to its energy-based optimization
criterion, the L-CS technique results in the worst DRR improvement but the fastest
decay rate of the late reverberant energy. On the other hand, the L-RMCLS and
L-PMINT techniques result in a good performance in terms of both performance
measures, with the L-PMINT technique yielding a better DRR improvement but a
slower reverberant energy decay rate than the L-RMCLS technique.
To compare the overall perceptual speech quality improvement, Figs. 4.7c and 4.7d
depict the PESQ score and cepstral distance improvement obtained by all consid-
ered techniques. As expected from the previously presented simulation results, the
L-MINT technique fails to improve the perceptual speech quality in terms of both
perceptual measures. Furthermore, among the partial acoustic multi-channel equal-
ization techniques, the L-CS technique yields the highest improvement in terms of
PESQ but the lowest improvement in terms of cepstral distance, which is a some-
what contradictory result.
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To better understand the difference arising between these two perceptual measures
for the L-CS technique, Fig. 4.8 depicts the spectrograms of the reference signal
xe,1(n), reverberant microphone signal x1(n), output speech signal z(n) obtained
using the CS technique (Lt = 1200), and output speech signal z(n) obtained using
the L-CS technique (Ls = 800) for an exemplary scenario with NPM = −33 dB and
Ld = 50 ms. While the L-CS technique suppresses the reverberant energy, it can be
observed in Fig. 4.8d that also frequency components of the desired speech signal
are suppressed. Furthermore, an audible high-energy tone appears at approximately
1.7 kHz. These distortions are clearly not reflected in the high PESQ score improve-
ment achieved by the L-CS technique but are reflected in the low cepstral distance
improvement. Hence, it can be said that the L-CS technique achieves reverberant
energy suppression but introduces additional audible artifacts and distortions in the
output speech signal.
On the other hand, the L-RMCLS and L-PMINT techniques yield a significantly
better performance in terms of both perceptual quality measures (cf. Figs. 4.7c
and 4.7d), with the L-RMCLS technique yielding a better perceptual speech quality
for short desired window lengths and the L-PMINT technique yielding a better
perceptual speech quality for longer desired window lengths.
Summarizing these simulations results, out of the considered robust extensions of
acoustic multi-channel equalization techniques, the L-RMCLS and L-PMINT tech-
niques result in the highest dereverberation performance, both in terms of reverber-
ant energy suppression and perceptual speech quality improvement.

4.4 Summary

In this chapter we have investigated the effect of the reshaping filter length on the
robustness of acoustic multi-channel equalization techniques against RIR pertur-
bations. The condition number of the (weighted) multi-channel convolution matrix
has been used to evaluate the sensitivity of the least-squares equalization techniques
to RIR perturbations. We have analytically shown that using shorter reshaping fil-
ters than conventionally used results in a lower condition number, and hence, in
an increased robustness against RIR perturbations. Furthermore, we have also an-
alytically shown that shorter reshaping filters in the channel shortening technique
are less sensitive to RIR perturbations, since they result in a better conditioned
optimization criterion with finite generalized eigenvalues.
The presented simulation results have validated that decreasing the reshaping filter
length in all considered acoustic multi-channel equalization techniques yields a sig-
nificantly better dereverberation performance in the presence of RIR perturbations.
Furthermore, it has been shown that out of the considered techniques, the RMCLS
and PMINT techniques using shorter reshaping filters result in the best dereverber-
ation performance, both in terms of reverberant energy suppression and perceptual
speech quality improvement. The advantage of building upon the RMCLS technique
to increase the robustness against RIR perturbations lies in its relaxed optimization
criterion, whereas the advantage of building upon the PMINT technique lies in its
direct control of the early reflections of the equalized impulse response.
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Fig. 4.8: Spectrograms of the (a) reference signal, (b) reverberant microphone signal,
(c) output speech signal obtained using the CS technique (Lt = 1200), and (d) out-
put speech signal obtained using the L-CS technique (Ls = 800) (Ld = 50 ms
and NPM = −33 dB).

It should however be noted that the optimal reshaping filter length has been de-
termined intrusively. An automatic non-intrusive procedure for determining the
reshaping filter length remains a topic for future investigation.



5
REGULARIZED ACOUSTIC MULTI-CHANNEL
EQUALIZATION

As shown in Chapter 3, although acoustic multi-channel equalization techniques can
in theory achieve perfect dereverberation, in practice they are sensitive to room im-
pulse response (RIR) perturbations. Whereas in Chapter 4 we have shown that the
robustness of acoustic multi-channel equalization techniques against RIR perturba-
tions can be increased by using shorter reshaping filters, in this chapter we propose
to increase the robustness by incorporating the energy of distortions arising due to
RIR perturbations in the different optimization criteria, such that this energy is
reduced. The distortion energy term is scaled by a regularization parameter, which
enables to trade off between the dereverberation error energy and the distortion en-
ergy. In general, the optimal regularization parameter yielding the best performance
needs to be determined intrusively (i.e., using knowledge of the true RIRs), limiting
the practical applicability of the regularized equalization techniques. Therefore, in
this chapter we also propose and investigate an automatic non-intrusive procedure
for determining the regularization parameter based on the L-curve.
Section 5.1 establishes the general framework for incorporating regularization in
acoustic multi-channel equalization techniques, i.e., in the MINT, CS, RMCLS, and
PMINT techniques. The regularized least-squares and channel shortening reshaping
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filters are discussed in Section 5.2. In Section 5.3 it is proposed to automatically
determine the regularization parameter as the point of maximum curvature of the
parametric plot of the distortion energy versus the dereverberation error energy. The
proposed automatic procedure is only applicable to the regularized least-squares
techniques. Insights on why this procedure cannot be used for the regularized chan-
nel shortening technique are provided in Section 5.4. By means of instrumental
performance measures, simulation results in Section 5.5 show that incorporating
regularization in the considered acoustic multi-channel equalization techniques sig-
nificantly increases the robustness against RIR perturbations. It is shown that the
intrusively regularized PMINT technique outperforms all considered intrusively reg-
ularized multi-channel equalization techniques in terms of overall perceptual speech
quality improvement. Finally, it is shown that the automatically determined non-
intrusive regularization parameter in regularized PMINT leads to a similar perfor-
mance as the intrusively determined optimal regularization parameter, making the
regularized PMINT technique a robust, perceptually advantageous, and practically
applicable multi-channel equalization technique for speech dereverberation.

5.1 Incorporating regularization in acoustic multi-channel equalization

As discussed in Section 2.1.2, acoustic multi-channel equalization techniques typi-
cally disregard the presence of background noise and design reshaping filters aiming
only at speech dereverberation. Assuming that v(n) = 0 in (2.26), the output signal
of the speech enhancement system is given by

z(n) = wTHT
︸ ︷︷ ︸

cT

s(n), (5.1)

with w the MLw–dimensional reshaping filter vector, cf. (2.14), H the Lc ×MLw–
dimensional multi-channel convolution matrix of the true RIRs, cf. (2.24), s(n) the
Lc–dimensional clean speech vector, cf. (2.23), and c the Lc–dimensional equalized
impulse response between the clean speech signal and the output speech signal,
cf. (2.27). Since the multi-channel convolution matrix of the true RIRs is typically
not available, acoustic multi-channel equalization techniques design reshaping filters
using the perturbed convolution matrix

Ĥ = H + E, (5.2)

with E the convolution matrix of the RIR perturbations. When reshaping filters
are designed using the perturbed convolution matrix Ĥ, the true equalized impulse
response can be written as

c = Hw = (Ĥ−E)w = Ĥw −Ew. (5.3)

When the reshaping filter length is Lw ≥
⌈
Lh−1
M−1

⌉
, equalization techniques achieve

their design objectives for the perturbed full row-rank matrix Ĥ (cf. Section 3.3).
Hence, when using the least-squares or the channel shortening reshaping filters de-
rived in Chapter 3, the first term in (5.3) represents the (weighted) target equalized
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impulse response cf. (3.28), whereas the second term represents distortions due to
RIR perturbations. Considering the RIR perturbations to be random fluctuations
from the true RIRs, the mean distortion energy in the true equalized impulse re-
sponse is given by

E{‖Ew‖22} = wTE{ETE}w, (5.4)

with E the expected value operator. In order to reduce the mean distortion energy in
the true equalized impulse response and thereby increase the robustness of acoustic
multi-channel equalization techniques, in this chapter we propose to add the mean
distortion energy term in (5.4) to the least-squares and channel shortening cost
functions JLS and JCS defined in (3.29) and (3.18).
The matrix E{ETE} in (5.4) obviously depends on the energy and the type of
RIR perturbations, e.g., perturbations arising due to microphone position devia-
tions [109], or perturbations arising due to supervised or blind system identification
methods [101,110]. While models have been developed to characterize different types
of perturbations as described in Section 2.2, the exact matrix E{ETE} is typically
not known in practice. To account for inaccuracies in modeling E{ETE}, we propose
to introduce a parameter δ and use

E{ETE} = δRe, (5.5)

with Re constructed based on a perturbation model (e.g., as proposed in [145,
148]) and assumed to be a full-rank matrix. When no knowledge about the type
of perturbations is available, they can be assumed to be spatially and temporally
white, i.e., Re = I, with I being the MLw ×MLw–dimensional identity matrix.
Incorporating the term in (5.5) with Re = I in the MINT technique has already been
investigated in [108], where it has been experimentally validated that a significant
robustness increase against RIR perturbations can be obtained. In this chapter, we
investigate the effectiveness of incorporating this term to increase the robustness
of partial multi-channel equalization techniques, i.e., the CS, RMCLS, and PMINT
techniques.

Incorporating the term in (5.5) in the least-squares cost function JLS in (3.29) yields

JR-LS = JLS + δwTRew (5.6)

= ‖W(Ĥw − ct)‖22︸ ︷︷ ︸
εc

+δwTRew︸ ︷︷ ︸
εe

, (5.7)

where εc denotes the dereverberation error energy for the least-squares techniques,
εe denotes the distortion energy due to RIR perturbations, and the parameter δ can
be viewed as a regularization parameter providing a trade-off between both terms.
Hence, the cost function in (5.7) is referred to as the regularized least-squares cost
function.
In order to incorporate the distortion energy in the channel shortening technique, the
generalized Rayleigh quotient maximization problem in (3.18) is first reformulated
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in terms of a generalized Rayleigh quotient minimization problem, such that the
channel shortening cost function to be minimized can be written as

Jmin
CS

=
wT Ûw

wT D̂w
. (5.8)

Using (5.8), the proposed regularized channel shortening cost function JR-CS can be
written as

JR-CS = Jmin
CS

+ δwTRew (5.9)

=
wT Ûw

wT D̂w︸ ︷︷ ︸
εr

+δwTRew︸ ︷︷ ︸
εe

, (5.10)

where εr denotes the dereverberation error energy for the channel shortening tech-
nique.

5.2 Regularized acoustic multi-channel equalization reshaping filters

In this section, the regularized least-squares and channel shortening reshaping filters
will be derived and discussed. Furthermore, analytical insights about the impact of
the regularization parameter in the regularized least-squares reshaping filter will be
provided.

Regularized least-squares reshaping filter

To compute the regularized least-squares reshaping filter minimizing (5.7), the gra-
dient of the cost function JR-LS with respect to w is set to 0, i.e.,

∂JR-LS

∂w
= 2(WĤ)T (WĤ)w − 2(WĤ)T (Wct) + 2δRew = 0, (5.11)

yielding the regularized least-squares reshaping filter

wR-LS = [(WĤ)T (WĤ) + δRe]
−1(WĤ)T (Wct). (5.12)

Since the matrix Re is assumed to be a full-rank matrix, the matrix [(WĤ)T (WĤ)+
δRe] is an invertible matrix. For completeness, Tables 5.1 and 5.2 summarize the
regularized least-squares cost functions and reshaping filters for the considered reg-
ularized least-squares techniques, i.e., for the different definitions of the weighting
matrix W and the target equalized impulse response ct discussed in Section 3.3.
As the regularization parameter δ approaches 0, i.e., disregarding the RIR per-
turbations, the regularized least-squares reshaping filter in (5.12) is equal to the
minimum-norm least-squares reshaping filter in (3.30), i.e.,

lim
δ→0

wR-LS = wLS . (5.13)
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Table 5.1: Regularized least-squares cost function for different regularized least-squares
techniques.

Technique Cost function

R-MINT JR-M = ‖Ĥw − d‖22 + δwTRew

R-RMCLS JR-R = ‖WR(Ĥw − d)‖22 + δwTRew

R-PMINT JR-P = ‖Ĥw − ĥe,p‖22 + δwTRew

Table 5.2: Regularized least-squares reshaping filter for different regularized least-squares
techniques.

Technique Reshaping filter

R-MINT wR-M = (ĤT Ĥ + δRe)
−1ĤTd

R-RMCLS wR-R = [(WRĤ)T (WRĤ) + δRe]
−1(WRĤ)T (WRd)

R-PMINT wR-P = (ĤT Ĥ + δRe)
−1ĤT ĥe,p

While the limit in (5.13) is rather intuitive, it is not straightforward to directly
deduce it by comparing the regularized least-squares and the least-squares reshap-
ing filters in (5.12) and (3.30), since the matrix (WĤ)T (WĤ) is not invertible for
Lw ≥

⌈
Lh−1
M−1

⌉
. In the following, the equality in (5.13) is analytically derived and the

presented derivations are further used in Section 5.3 to provide a better understand-
ing of the influence of the regularization parameter in the regularized least-squares
techniques.

Consider the joint diagonalization [167] of the positive (semi-)definite symmetric
matrices (WĤ)T (WĤ) and Re, i.e.,

{
(WĤ)T (WĤ) = QΛQT ,

Re = QΓQT ,

(5.14)

(5.15)

with Q being anMLw×MLw–dimensional invertible but not necessarily orthogonal
matrix and Λ and Γ being MLw ×MLw–dimensional diagonal matrices, i.e.,

Λ = diag{[λ(1) λ(2) . . . λ(r) 0 . . . 0]}, (5.16)
Γ = diag{[γ(1) γ(2) . . . γ(MLw)]}, (5.17)

where

λ(1) ≥ λ(2) ≥ · · · ≥ λ(r) > 0, (5.18)
γ(1) ≥ γ(2) ≥ · · · ≥ γ(MLw) > 0, (5.19)
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and
r = rank[(WĤ)T (WĤ)] = rank(WĤ). (5.20)

Using (5.14), the matrix WĤ can be expressed as

WĤ =
√

ΛQT , (5.21)

with
√

Λ = diag{[
√
λ(1)

√
λ(2) . . .

√
λ(r) 0 . . . 0]}. Using (5.14), (5.15), and

(5.21), the regularized least-squares reshaping filter in (5.12) can be written as

wR-LS = (QΛQT + δQΓQT )−1Q
√

Λ(Wct) (5.22)

= [Q(Λ + δΓ)QT ]−1Q
√

Λ(Wct) (5.23)

= Q−T (Λ + δΓ)−1
√

Λ(Wct). (5.24)

Expressing the matrix/vector product in (5.24) as a summation, the regularized
least-squares reshaping filter can be further expressed as

wR-LS =

r∑

i=1

√
λ(i)(Wct)i
λ(i) + δγ(i)

q̄i, (5.25)

where q̄i denotes the transpose of the i-th row of Q−1 and (Wct)i denotes the i-th
element of the vector Wct.
Similarly, using (5.21), the least-squares reshaping filter in (3.30) can be expressed
as

wLS = (
√

ΛQT )+(Wct) (5.26)

= Q−T (
√

Λ)+(Wct) (5.27)

=

r∑

i=1

(Wct)i√
λ(i)

q̄i. (5.28)

Comparing (5.25) and (5.28), it is now clear that the regularized least-squares so-
lution is equal to the minimum-norm least-squares solution as the regularization
parameter δ approaches 0, i.e.,

lim
δ→0

wR-LS =

r∑

i=1

lim
δ→0

√
λ(i)(Wct)i
λ(i) + δγ(i)

q̄i =

r∑

i=1

(Wct)i√
λ(i)

q̄i = wLS . (5.29)

Therefore as expected, when disregarding the RIR perturbations by using a small
value for the regularization parameter δ, the regularized least-squares techniques
result in a similar performance as the least-squares techniques, i.e., they typically
fail to achieve dereverberation.

Regularized channel shortening reshaping filter

Unfortunately, no analytical solution minimizing the regularized channel shortening
cost function in (5.10) is available. Hence, we have resorted to an iterative optimiza-
tion procedure to minimize this non-linear cost function, for which we have used the
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MATLAB function fminunc [168]. In order to improve the numerical robustness and
the convergence speed of the optimization procedure, the gradient and the Hessian
of the regularized channel shortening cost function, i.e.,

∂JR-CS

∂w
= 2

[
(wT D̂w)Ûw − (wT Ûw)D̂w

(wT D̂w)2
+ δRew

]
, (5.30)

∂2JR-CS

∂w2
= 2

[
(wT D̂w)Û− (wT Ûw)D̂ + 2(ÛwwT D̂− D̂wwT Û)

(wT D̂w)2

− 4
[(wT D̂w)Ûw − (wT Ûw)D̂w]wT D̂

(wT D̂w)3
+ δRe

]
,

(5.31)

can be provided. There is however no guarantee that the optimization procedure
will converge to the global minimum of the regularized channel shortening cost func-
tion instead of a local minimum. Nevertheless, the simulation results in Section 5.5
show that also when using a numerical optimization procedure to compute the reg-
ularized channel shortening reshaping filter, a significant increase in robustness in
the presence of RIR perturbations can be obtained.

5.3 Automatic procedure for determining the regularization parameter
in regularized least-squares techniques

Increasing the regularization parameter δ in the regularized least-squares cost func-
tion in (5.7) or the regularized channel shortening cost function in (5.10) on the one
hand is supposed to yield a lower distortion energy εe, but on the other hand is sup-
posed to yield a higher dereverberation error energy εc or εr, i.e., a larger deviation
between the (weighted) target equalized impulse response and the (weighted) esti-
mated equalized impulse response. The actual dereverberation performance, i.e., the
deviation of the (weighted) target equalized impulse response from the (weighted)
true equalized impulse response, clearly depends on both terms (cf. (5.3)), i.e., ide-
ally both terms should be equal to zero. Hence, due to the arising trade-off between
the dereverberation error energy and the distortion energy, the use of an optimal
regularization parameter is important. However, the optimal value of the regulariza-
tion parameter δ yielding the best performance depends on many factors such as the
acoustic system, the RIR perturbations, and the used equalization technique. While
in simulations the optimal regularization parameter can be intrusively determined,
i.e., exploiting the known true RIRs (cf. Section 5.5.1), an automatic non-intrusive
procedure is required in practice. In this section, such an automatic procedure for
determining the regularization parameter in regularized least-squares techniques is
proposed.

The dereverberation error energy εc and the distortion energy εe for the regularized
least-squares reshaping filter are given by

εc = ‖W(ĤwR-LS − ct)‖22 (5.32)

= wT
R-LS

(WĤ)T (WĤ)wR-LS − 2wT
R-LS

(WĤ)T (Wct) + (Wct)
T (Wct), (5.33)
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and
εe = wT

R-LS
RewR-LS . (5.34)

Using the joint diagonalization from (5.14) and the regularized least-squares reshap-
ing filter from (5.24), the first term of the dereverberation error energy in (5.33) can
be expressed as

wT
R-LS

(WĤ)T (WĤ)wR-LS = (Wct)
TΛ2(Λ + δΓ)−2(Wct). (5.35)

Similarly, using (5.21) and (5.24), the second term of the dereverberation error
energy in (5.33) can be expressed as

− 2wT
R-LS

(WĤ)T (Wct) = −2(Wct)
TΛ(Λ + δΓ)−1(Wct). (5.36)

Substituting (5.35) and (5.36) in (5.33), the dereverberation error energy can be
written as

εc = (Wct)
T [Λ2(Λ + δΓ)−2 − 2Λ(Λ + δΓ)−1 + I](Wct) (5.37)

=

r∑

i=1

δ2γ2(i)(Wct)
2
i

[λ(i) + δγ2(i)]2
. (5.38)

Similarly, using the joint diagonalization in (5.15) and the regularized least-squares
reshaping filter in (5.24), the distortion energy can be expressed as

εe = (Wct)
TΛ2Γ(Λ + δΓ)−1(Wct) (5.39)

=

r∑

i=1

λ2(i)γ(i)(Wct)
2
i

λ(i) + δγ(i)
. (5.40)

It is now straightforward to see that increasing the regularization parameter δ in-
creases the dereverberation error energy εc in (5.38) but decreases the distortion
energy εe in (5.40). Furthermore, as expected it can be observed that as the regu-
larization parameter approaches 0, the dereverberation error energy in (5.38) also
approaches 0 whereas the distortion energy is equal to

∑r
i=1 λ(i)γ(i)(Wct)i. An ap-

propriate regularization parameter should hence incorporate knowledge about both
εc and εe, such that both terms are small.
In order to automatically compute a regularization parameter for regularized least-
squares problems, it has been proposed in [169,170] to use a parametric plot of the
trade-off quantities for several values of the regularization parameter. Because of
the arising trade-off, this plot has an L-shape with the corner (i.e., the point of max-
imum curvature) located where the regularized least-squares solution changes from
being dominated by over-regularization to being dominated by under-regularization.
We therefore propose to automatically determine the regularization parameter in
regularized least-squares techniques as the one maximizing the curvature of the
parametric plot of the distortion energy εe versus the dereverberation error energy
εc. As is experimentally validated in Section 5.5, such a regularization parameter
also leads to a nearly-optimal performance compared to an intrusively determined
regularization parameter.
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Fig. 5.1 depicts an exemplary L-curve obtained using the regularized PMINT tech-
nique with regularization parameter values ranging from 10−9 to 10−1. The used
acoustic system is the same as the one described in Section 3.4.1, with M = 4
microphones and Lh = 3600. As illustrated in this figure, increasing the value of
the regularization parameter δ decreases the distortion energy εe but increases the
dereverberation error energy εc. At the point of maximum curvature, i.e., δ = 10−5

in the depicted example, both εc and εe are small.
The curvature κ of the parametric plot of the distortion energy versus the derever-
beration error energy can be analytically computed as [171]

κ =
ε′cε
′′
e − ε′′c ε′e

(ε′c + ε′e)
3
2

, (5.41)

with {·}′ and {·}′′ denoting the first- and second-order derivatives with respect to
δ. The computation of the first- and second-order derivatives using the expressions
for εc and εe in (5.38) and (5.40) yields

ε′c =

r∑

i=1

2δλ(i)γ2(i)(Wct)
2
i

[λ(i) + δγ(i)]3
, (5.42)

ε′′c =

r∑

i=1

2λ2(i)γ2(i)(Wct)
2
i

[λ(i) + δγ(i)]4
, (5.43)

ε′e =

r∑

i=1

−λ2(i)γ2(i)(Wct)
2
i

[λ(i) + δγ(i)]2
, (5.44)

ε′′e =

r∑

i=1

2λ2(i)γ3(i)(Wct)
2
i

[λ(i) + δγ3(i)]3
. (5.45)

Substituting these first- and second-order derivatives in the analytical curvature
expression in (5.41), the curvature κ can be analytically expressed as a function
of the regularization parameter δ. Hence, a one-dimensional iterative optimization
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Fig. 5.1: Exemplary L-curve obtained using the regularized PMINT technique with the reg-
ularization parameter values ranging from 10−9 to 10−1. The considered acoustic
system is the same as in Section 3.4.1
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procedure can then be used to determine the parameter that maximizes the cur-
vature. However, as can be seen from the presented first- and second-order deriva-
tives in (5.42) to (5.45), analytically computing the curvature involves the com-
putation of the joint diagonalization of the (typically large-dimensional) matrices
(WĤ)T (WĤ) and Re, and the manipulation of the diagonal elements λ(i) and
γ(i). Using an iterative optimization procedure to maximize the curvature not only
results in a high computational complexity, but is also prone to numerical errors.
Unfortunately, standard numerical procedures to compute the diagonal elements
λ(i) and γ(i), particularly the ones close to 0, do not seem to exhibit sufficient
numerical accuracy.
Therefore, in this work the triangle method, which is a numerically robust geometric
procedure, is used to compute the point of maximum curvature [172]. In this method
the regularized least-squares filter is computed for a discrete set of regularization
parameters δ and the discrete L-curve is generated. Once the discrete L-curve is
generated, the points corresponding to the maximum distortion energy and the
maximum dereverberation error energy (i.e., δ = 10−9 and δ = 10−1 in the depicted
exemplary L-curve in Fig. 5.1) are considered to be fixed vertexes of a triangle.
Different triangles are then formed with the third vertex being any of the remaining
points on the discrete L-curve. For each formed triangle it is first determined whether
this part of the curve has an L-shape or an inverted L-shape. If an L-shape is
found, the angle at the corresponding vertex is computed. If this angle is sufficiently
small (to guarantee that the curve is sufficiently sharp at that point), then the vertex
is a candidate to be the point of maximum curvature, otherwise it is disregarded. Out
of all possible candidate points, the vertex yielding the smallest angle is selected as
the point of maximum curvature (i.e., δ = 10−5 in the depicted exemplary L-curve
in Fig. 5.1).

5.4 Non-applicability of the automatic procedure to the regularized
channel shortening technique

The automatic procedure for determining the regularization parameter proposed in
Section 5.3 implicitly relies on the fact that the dereverberation error energy and
the distortion energy are strictly monotonically increasing and strictly monotoni-
cally decreasing functions of the regularization parameter δ. Only in this case it
is meaningful to discuss the arising trade-off and to compute the automatic regu-
larization parameter as the point of maximum curvature of the parametric plot of
the distortion energy versus the dereverberation error energy. For regularized least-
squares techniques, it can be shown that the dereverberation error energy εc and
the distortion energy εe are strictly monotonically increasing and strictly monoton-
ically decreasing functions of the regularization parameter δ, since the first-order
derivatives derived in (5.42) and (5.44) are positive and negative, i.e.,

ε′c > 0, (5.46)
ε′e < 0. (5.47)
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Since for the regularized channel shortening technique no analytical solution can
be found, and furthermore, there is no guarantee that the iterative optimization
procedure converges to the global minimum instead of a local one, it cannot be
proven that the iterative optimization procedure yields dereverberation error and
distortion energies εr and εe that are strictly monotonically increasing and decreas-
ing functions of the regularization parameter δ. Hence, an automatic procedure
for determining the regularization parameter in the regularized channel shortening
technique remains a topic for future investigation.

5.5 Simulations

In this section, we investigate the dereverberation performance of all considered
equalization techniques when incorporating regularization. In Section 5.5.1 the con-
sidered acoustic system and the used algorithmic settings are introduced.
Section 5.5.2 investigates the robustness increase of the considered acoustic multi-
channel equalization techniques when incorporating an optimal intrusively deter-
mined regularization parameter. In Section 5.5.3 the performance of the intrusively
regularized acoustic multi-channel equalization techniques is extensively compared.
Finally, in Section 5.5.4 the performance of the automatic non-intrusively regular-
ized PMINT technique is compared to the performance of the optimal intrusively
regularized counterpart.

5.5.1 Acoustic system and algorithmic settings

We have considered the same acoustic system as in Section 3.4.1, i.e., a single speech
source and M = 4 omni-directional microphones. The source-microphone distance
is 3 m and the distance between the microphones is 5 cm. Room impulse responses
from the MARDY database [161] have been used, where the room reverberation
time is T60 ≈ 450 ms and the direct-to-reverberant ratio is DRR = 0 dB. The RIRs
have been measured using the swept-sine technique [162] and the length of the RIRs
has been set to Lh = 3600 at a sampling frequency fs = 8 kHz.
Similarly as in Section 3.4, in order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as described in Section 2.2. The
considered normalized projection misalignment (NPM) values between the true and
the perturbed RIRs are (cf. (2.52))

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (5.48)

For all considered techniques the reshaping filter length is Lw =
⌈
Lh−1
M−1

⌉
= 1200,

the delay is set to τ = 90, and the performance for several desired window lengths
Ld ranging from 10 ms to 50 ms is investigated, i.e.,

Ld ∈ {10 ms, 20 ms, 30 ms, 40 ms, 50 ms}. (5.49)

The target equalized impulse response for the PMINT and regularized PMINT
techniques is set to the direct path and early reflections of the perturbed RIR of
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the first microphone, i.e., ĥe,1. Furthermore, the channel shortening reshaping filter
is selected as the generalized eigenvector yielding the minimum l2-norm estimated
equalized impulse response as proposed in [125].

Using the instrumental performance measures described in Section 2.3, the derever-
beration performance is evaluated in terms of the reverberant energy suppression
and the perceptual speech quality improvement. The reverberant energy suppres-
sion is evaluated using the direct-to-reverberant ratio improvement (∆DRR) be-
tween the equalized impulse response c and the true RIR h1 (cf. (2.53)), as well
as the energy decay curve (EDC) of the equalized impulse response c (cf. (2.55)).
The improvement in perceptual speech quality is evaluated using the improvement
in PESQ [153] (∆PESQ) and in cepstral distance [154] (∆CD) between the output
speech signal z(n) and the reverberant microphone signal x1(n). The reference signal
employed for the PESQ and cepstral distance measures is xe,1(n) = s(n) ∗ he,1(n),
i.e., the clean speech signal convolved with the direct path and early reflections of
the first RIR (which changes as the desired window length Ld changes).

In order to evaluate the effectiveness of incorporating regularization in the consid-
ered equalization techniques, we investigate the performance for several regulariza-
tion parameters δ, i.e.,

δ = {10−7, 10−6, . . . , 10−1, 1, 3, 5, 7, 10}. (5.50)

For the perturbation matrix in (5.5) we have assumed that Re = I. Similarly as
in Section 4.3 for determining the optimal reshaping filter length, the optimal regu-
larization parameter δo has been determined as the parameter yielding the highest
perceptual speech quality in terms of the PESQ score. It should be noted that the
computation of the PESQ score for determining the optimal regularization param-
eter is an intrusive procedure which is not applicable in practice, since knowledge
of the clean speech signal and of the true RIRs is required to compute the ref-
erence signal and the equalized impulse response c = Hw. In Section 5.5.4, the
performance when using the automatic non-intrusive procedure for determining the
regularization parameter proposed in Section 5.3 will be investigated. In addition,
it should be noted that although the MINT technique is independent of the desired
window length Ld, we determine an optimal regularization parameter in the MINT
technique for each desired window length Ld by changing the reference signal in
the PESQ computation, such that the MINT technique can be compared to partial
equalization techniques (which are dependent on the desired window length Ld).

Since for the regularized channel shortening technique an iterative optimization
procedure should be used, a termination criterion needs to be imposed. In our im-
plementation, the termination criterion is either the number of iterations exceeding
100 or the relative change in the solution norm dropping below 10−5. Furthermore,
since it cannot be guaranteed that the iterative optimization procedure proposed
in Section 5.2 converges to the global minimum of the regularized channel short-
ening cost function, the initialization of this procedure may influence the resulting
reshaping filter. We have hence investigated three different initializations w

init
, i.e.,
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i) winit = [1 0 . . . 0]T , i.e., the filter yielding the first microphone signal,
ii) w

init
is randomly initialized with normally distributed coefficients,

iii) w
init

= wCS , i.e., the channel shortening reshaping filter (δ = 0) is used to
initialize the iterative optimization procedure.

In all simulations we observed a significant difference in performance for the differ-
ent initializations of the iterative optimization procedure. Therefore, it appears that
the iterative optimization procedure for computing the regularized channel short-
ening reshaping filter typically converges to local minima. However, using the first
initialization, i.e., winit = [1 0 . . . 0]T , always resulted in the highest performance,
hence, the following simulation results are generated using this initialization.

5.5.2 Robustness increase of acoustic multi-channel equalization when incorporat-
ing regularization

In this section, the performance of all considered (non-regularized) acoustic multi-
channel equalization techniques is compared to the performance of their regularized
extensions using the intrusively determined regularization parameter δo. We con-
sider an exemplary scenario with NPM = −33 dB.

Robustness increase of the MINT technique

Fig. 5.2 depicts the performance of the MINT and the optimally regularized MINT
techniques in terms of ∆DRR, EDC, ∆PESQ, and ∆CD. For completeness, the
used optimal regularization parameters are presented in Table 5.3.
As shown by the ∆DRR values depicted in Fig. 5.2a, incorporating regularization
in the MINT technique significantly improves the reverberant energy suppression.
It can be observed that when the desired window length is between 10 ms and
40 ms, the DRR improves by approximately 15 dB in comparison to the true RIR
h1, whereas when the desired window length is 50 ms, the DRR improves by ap-
proximately 5 dB. Although the regularized MINT technique is independent of the
desired window length, this difference arises because of intrusively determining the
regularization parameter as the one maximizing the PESQ score, with the reference
signal xe,1(n) being different for each desired window length Ld. As the desired win-
dow length changes, also the reference signal for determining the optimal regular-
ization parameter changes, which can result in a different regularization parameter
for the regularized MINT technique, and hence, in a different reshaping filter.
To evaluate the decay rate of the reverberant energy, Fig. 5.2b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the MINT and the optimally regularized MINT techniques
for the desired window length Ld = 50 ms. While as expected the MINT technique
fails to achieve dereverberation and results in a slower decay rate of the reverberant
energy than for the true RIR h1, the optimally regularized MINT technique yields
a better performance, resulting in a slight improvement in comparison to h1.
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Fig. 5.2: Performance of the MINT and the optimally regularized MINT techniques in
terms of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms,
(c) ∆PESQ, and (d) ∆CD (NPM = −33 dB).

Table 5.3: Optimal regularization parameter for the regularized MINT technique for sev-
eral desired window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal regularization parameter δo 10−4 10−4 10−4 10−4 10−1

The improvement in direct-to-reverberant ratio and reverberant energy decay rate
achieved by the optimally regularized MINT technique is also reflected in the signif-
icant overall perceptual speech quality improvement, as measured by the ∆PESQ
and ∆CD values presented in Figs. 5.2c and 5.2d. It can be observed that while
the MINT technique worsens the PESQ score and the cepstral distance in compar-
ison to the reverberant microphone signal x1(n), the regularized MINT technique
achieves a significantly better performance.
In summary, incorporating regularization in the MINT technique yields a signif-
icantly higher robustness against RIR perturbations, confirming the observations
in [108]. Nevertheless, acoustic system inversion using the regularized MINT tech-
nique remains quite sensitive to RIR perturbations and does not yield a satisfactory
performance in terms of the decay rate of the reverberant energy (as illustrated in
Fig. 5.2b).
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Robustness increase of the CS technique

Fig. 5.3 depicts the performance of the CS and the optimally regularized CS tech-
niques in terms of ∆DRR, EDC, ∆PESQ, and ∆CD. The used optimal regulariza-
tion parameters are presented in Table 5.4.
As illustrated in Fig. 5.3a, the optimally regularized CS technique achieves a signif-
icantly higher ∆DRR than the CS technique, particularly for short desired window
lengths. As the desired window length increases, the ∆DRR obtained using the
regularized CS technique decreases, since additional energy is introduced which is
accounted for as reverberant energy in the DRR computation (cf. (2.54)).
To evaluate the decay rate of the reverberant energy, Fig. 5.3b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the CS and the optimally regularized CS techniques for
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Fig. 5.3: Performance of the CS and the optimally regularized CS techniques in terms of
(a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 5.4: Optimal regularization parameter for the regularized CS technique for several
desired window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal regularization parameter δo 10−1 10−4 10−4 10−1 10−2
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the desired window length Ld = 50 ms. It can be observed that while the CS
technique fails to achieve dereverberation, the regularized CS technique results in
a significantly better performance, with the reverberant energy decaying at a much
faster rate than the reverberant energy in the true RIR h1.
The improvement in direct-to-reverberant ratio and reverberant energy decay rate
achieved by the optimally regularized CS technique is also reflected in the overall
perceptual speech quality improvement as measured by the ∆PESQ and ∆CD values
presented in Figs. 5.3c and 5.3d. It can be observed that the CS technique fails
to improve the perceptual speech quality for all desired window lengths, whereas
the regularized CS technique yields a significant improvement in comparison to
the reverberant microphone signal x1(n). As expected, the ∆PESQ values for the
regularized CS technique decrease with increasing desired window length whereas
the ∆CD values increase, since more early reflections are left uncontrolled.
In summary, incorporating regularization in the CS technique significantly increases
the robustness in the presence of RIR perturbations, resulting in a high reverberant
energy suppression and perceptual speech quality improvement.

Robustness increase of the RMCLS technique

Fig. 5.4 depicts the performance of the RMCLS and the optimally regularized
RMCLS techniques in terms of ∆DRR, EDC, ∆PESQ, and ∆CD. The used op-
timal regularization parameters are presented in Table 5.5.
Since the RMCLS technique is significantly more robust than the MINT and CS tech-
niques, it can be observed in Fig. 5.4a that the DRR improvement obtained when
incorporating regularization in the RMCLS technique is less than the improvement
obtained when incorporating regularization in the MINT or CS techniques. Never-
theless, an improvement in ∆DRR of up to 8 dB is obtained when regularization
is incorporated in the RMCLS technique. Most importantly, the optimally regular-
ized RMCLS technique improves the DRR in comparison to the true RIR h1 for all
considered desired window lengths, which is not the case for the RMCLS technique.
To evaluate the decay rate of the reverberant energy, Fig. 5.4b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized im-
pulse response c obtained using the RMCLS and the optimally regularized RMCLS
techniques for the desired window length Ld = 50 ms. It can be observed that the
optimally regularized RMCLS technique yields a significantly faster decay rate of
the reverberant energy than in the true RIR h1, with the performance being similar
to the performance of the RMCLS technique.
Furthermore, as depicted in Figs. 5.4c and 5.4d, the regularized RMCLS technique
yields a significantly better perceptual speech quality than the RMCLS technique,
improving the obtained ∆PESQ and ∆CD values for all desired window lengths.
In summary, incorporating regularization in the RMCLS technique further increases
the robustness in the presence of RIR perturbations, resulting in a high reverberant
energy suppression and a particularly significant improvement in perceptual speech
quality.
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Fig. 5.4: Performance of the RMCLS and the optimally regularized RMCLS techniques
in terms of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms,
(c) ∆PESQ, and (d) ∆CD (NPM = −33 dB).

Table 5.5: Optimal regularization parameter for the regularized RMCLS technique for sev-
eral desired window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal regularization parameter δo 10−5 10−5 10−5 10−4 10−4

Robustness increase of the PMINT technique

Fig. 5.5 depicts the performance of the PMINT and the optimally regularized
PMINT techniques in terms of ∆DRR, EDC, ∆PESQ, and ∆CD. The used op-
timal regularization parameters are presented in Table 5.6.
Similarly as for the MINT and CS techniques, it can be observed in Figs. 5.5a
and 5.5b that incorporating regularization in the PMINT technique results in a sig-
nificantly higher DRR and a faster reverberant energy decay rate. Fig. 5.5a shows
that while the PMINT technique worsens the DRR in comparison to the true RIR h1,
the optimally regularized PMINT technique yields a high improvement, in particular
for short desired window lengths. As the desired window length increases, additional
energy is introduced in the equalized impulse response, which is accounted for as
reverberant energy in the DRR computation (cf. (2.54)). Furthermore, Fig. 5.5b
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Fig. 5.5: Performance of the PMINT and the optimally regularized PMINT techniques
in terms of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms,
(c) ∆PESQ, and (d) ∆CD (NPM = −33 dB).

Table 5.6: Optimal regularization parameter for the regularized PMINT technique for sev-
eral desired window lengths (NPM = −33 dB).

Desired window length Ld [ms] 10 20 30 40 50

Optimal regularization parameter δo 10−5 10−5 10−5 10−5 10−5

shows that while the PMINT technique results in a slower decay rate of the rever-
berant energy than in the true RIR h1, the regularized PMINT technique yields a
significantly better performance.
Similarly as for the other equalization techniques, incorporating regularization in the
PMINT technique improves the perceptual speech quality, as shown by the ∆PESQ
and ∆CD values depicted in Figs. 5.5c and 5.5d. It can be observed that while
the PMINT technique fails to improve the perceptual speech quality in compari-
son to the reverberant microphone signal x1(n), the optimally regularized PMINT
technique yields a significantly better performance, with an improvement of ap-
proximately 1.5 in PESQ and 2.5 dB in cepstral distance for all considered desired
window lengths.
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In summary, incorporating regularization in the PMINT technique results in a signif-
icant increase in robustness against RIR perturbations, both in terms of reverberant
energy suppression and perceptual speech quality improvement.

5.5.3 Comparison of robust acoustic multi-channel equalization techniques

The simulation results in Section 5.5.2 have shown that incorporating regulariza-
tion in all considered acoustic multi-channel equalization techniques yields a signif-
icant increase in robustness in the presence of RIR perturbations. In this section,
the performance of the optimally regularized equalization techniques is extensively
compared for the NPM values in (5.48). Similarly as in Section 3.4.3, the presented
performance measures are averaged over all considered NPM values.
To compare the reverberant energy suppression, Figs. 5.6a and 5.6b depict the DRR
improvement and the energy decay curve obtained by the regularized techniques. It
can be observed that the optimally regularized MINT technique typically achieves
the highest DRR improvement (only not for Ld = 10 ms). This is to be expected
since the regularized MINT technique aims at optimizing the DRR by using a de-
layed impulse as the target equalized impulse response. However, since inverting
an acoustic system is not as robust as partially reshaping it (cf. Section 3.4.3),
the decay rate of the reverberant energy for the optimally regularized MINT tech-
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Fig. 5.6: Performance of the optimally regularized MINT, CS, RMCLS, and PMINT tech-
niques in terms of (a) ∆DRR, (b) EDC for the desired window length Ld = 50 ms,
(c) ∆PESQ, and (d) ∆CD (averaged over several NPM values).
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nique is significantly slower than for the optimally regularized partial multi-channel
equalization techniques. Among the regularized partial multi-channel equalization
techniques, the regularized CS technique yields the worst DRR improvement but the
fastest reverberant energy decay rate. On the other hand, the regularized RMCLS
and PMINT techniques result in a similarly high performance in terms of both mea-
sures, with the regularized RMCLS technique yielding a slightly faster reverberant
energy decay rate.
To compare the overall perceptual speech quality, Figs. 5.6c and 5.6d depict the
PESQ score and cepstral distance improvement obtained by the considered opti-
mally regularized techniques. It is important to note that all regularized techniques
improve the perceptual speech quality for all desired window lengths when compared
to the reverberant microphone signal x1(n). It can be observed that the regularized
MINT and CS techniques result in the lowest PESQ score and cepstral distance
improvement. On the other hand, the regularized RMCLS and regularized PMINT
techniques result in a significantly better perceptual speech quality improvement.
It can be observed that for the short desired window lengths of 10 ms and 20 ms,
the perceptual speech quality improvement obtained by both techniques is similar.
However, as the desired window length increases, the regularized PMINT technique
yields a higher perceptual speech quality, since more early reflections are left uncon-
trolled in the regularized RMCLS technique.
In summary, these simulation results demonstrate that the optimally regularized
PMINT technique is a robust and perceptually advantageous equalization tech-
nique, typically outperforming the other considered techniques in terms of percep-
tual speech quality. The high performance improvement obtained for the PMINT
technique when regularization is incorporated can be explained by the significantly
larger reverberant tail suppression. The remaining advantage lies in the direct con-
trol of the early reflections.

5.5.4 Automatic regularization parameter in the regularized PMINT technique

The simulation results in Section 5.5.3 have shown that the regularized PMINT
technique yields a high dereverberation performance in the presence of RIR per-
turbations. However, the regularization parameter has been determined intrusively
exploiting the known clean speech signal and the known true RIRs, which is in-
applicable in practice. In this section we investigate the performance difference
for the regularized PMINT technique when using the non-intrusive and practically
applicable procedure for determining the regularization parameter δa proposed in
Section 5.3 instead of the optimal intrusively determined regularization parameter
δo. Similarly as before, the NPM values in (5.48) are considered and the presented
performance measures are averaged over all considered NPM values.
For the automatic procedure, the regularized PMINT reshaping filter is computed
for the set of regularization parameters in (5.50). The dereverberation error energy
and the distortion energy for each regularization parameter are then computed us-
ing (5.33) and (5.34). As described in Section 5.3 the discrete L-curve is constructed
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and the regularization parameter δa corresponding to the point of maximum curva-
ture is determined using the triangle method [172].
To compare the reverberant energy suppression, Figs. 5.7a and 5.7b depict the DRR
improvement and the energy decay curve obtained by the regularized PMINT tech-
nique with regularization parameters δo and δa. As illustrated, hardly any difference
can be observed in these performance measures when using the optimal or the auto-
matic regularization parameter. As shown in Fig. 5.7a, the automatically determined
and practically applicable regularization parameter δa yields a high improvement
in direct-to-reverberant ratio, particularly for short desired window lengths. Fur-
thermore, as shown in Fig. 5.7b, this parameter also results in a significantly faster
decay rate of the reverberant energy than in the true RIR h1.
To compare the perceptual speech quality, Figs. 5.7c and 5.7d depict the PESQ score
and cepstral distance improvement obtained by the regularized PMINT technique
with regularization parameters δo and δa. It can be observed that the automati-
cally determined regularization parameter δa yields a very similar perceptual speech
quality improvement as using the intrusively determined regularization parameter
δo for longer desired window lengths. For short desired window lengths, using δa
results in a loss of approximately less than 0.5 in PESQ score and approximately
less than 0.5 dB in cepstral distance. It should be noted that the proposed auto-
matic procedure for determining the regularization parameter is solely based on the
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Fig. 5.7: Performance of the regularized PMINT technique using the optimal and the au-
tomatic regularization parameters δo and δa in terms of (a) ∆DRR, (b) EDC for
the desired window length Ld = 50 ms, (c) ∆PESQ, and (d) ∆CD (averaged over
several NPM values).
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dereverberation error and distortion energy considerations, without directly taking
into account perceptual criteria. Hence, achieving such a similar perceptual speech
quality using this parameter as compared to the intrusively determined parameter
which maximizes the PESQ score can be considered quite a good result.
Summarizing, the presented results show that incorporating the automatic regular-
ization parameter in the regularized PMINT technique leads to a nearly-optimal
performance, making the regularized PMINT technique not only a robust and per-
ceptually advantageous equalization technique, but practically applicable as well.

5.6 Summary

In this chapter we have proposed to increase the robustness of acoustic multi-channel
equalization techniques by incorporating regularization, such that the energy of
distortions due to RIR perturbations is controlled. In addition, we have proposed
an automatic non-intrusive procedure for determining the regularization parameter
based on the L-curve.
Extensive simulation results have shown that incorporating regularization in all
considered acoustic multi-channel equalization techniques, i.e., MINT, CS, RMCLS,
and PMINT, yields a significantly better dereverberation performance in the pres-
ence of RIR perturbations. It has been shown that out of the considered regularized
techniques, the regularized RMCLS and PMINT techniques result in the highest
dereverberation performance, both in terms of reverberant energy suppression and
perceptual speech quality improvement. The regularized RMCLS technique yields
a slightly better reverberant energy suppression, whereas the regularized PMINT
technique results in a higher perceptual speech quality improvement. The advan-
tage of building upon the RMCLS technique to increase the robustness against RIR
perturbations lies in its relaxed optimization criterion, whereas the advantage of
building upon the PMINT technique lies in its direct control of the early reflections.
Furthermore, it has been experimentally validated that the automatic non-intrusive
regularization parameter in the regularized PMINT technique leads to a similar per-
formance as the intrusively determined optimal regularization parameter, making
the regularized PMINT technique a robust, perceptually advantageous, and practi-
cally applicable multi-channel equalization technique for speech dereverberation.



6
SPARSITY-PROMOTING ACOUSTIC
MULTI-CHANNEL EQUALIZATION

In Chapters 4 and 5 we have proposed to increase the robustness of acoustic multi-
channel equalization techniques against room impulse response (RIR) perturbations
either by decreasing the reshaping filter length or by incorporating regularization,
which are both signal-independent methods. In this chapter, we propose a signal-
dependent method to increase the robustness by enforcing the output speech sig-
nal to exhibit characteristics of a clean speech signal. While in principle any well-
defined measure that distinguishes clean and reverberant speech can be used, we
propose to exploit the observation that clean speech is more sparse than reverber-
ant speech in the time-frequency domain. Based on this observation, the presented
least-squares and channel shortening cost functions are extended with a sparsity-
promoting penalty function, which aims at obtaining a reshaping filter that sparsifies
the time-frequency representation of the resulting output speech signal. Similarly as
for the distortion energy in Chapter 5, the sparsity-promoting penalty function is
scaled by a weighting parameter, which enables to trade off between dereverberation
error energy and sparsity of the resulting output speech signal.
Section 6.1 discusses the sparse nature of clean speech signals in the short-time
Fourier transform (STFT) domain and the effects of reverberation on the statis-
tics of the STFT coefficients. In Section 6.2 the general framework for incorporat-
ing a sparsity-promoting penalty function in acoustic multi-channel equalization
techniques is established. Furthermore, several commonly used sparsity-promoting
penalty functions (l0-norm, l1-norm, and weighted l1-norm) are introduced, and in-
sights on the advantages of using these penalty functions for speech dereverberation

This chapter is partly based on:
[133] I. Kodrasi, A. Jukić, and S. Doclo, “Robust sparsity-promoting acoustic multi-channel equal-

ization for speech dereverberation,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, Shanghai, China, Mar. 2016.

[134] I. Kodrasi and S. Doclo, “Robust acoustic multi-channel equalization for speech derever-
beration using signal-dependent penalty functions,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2016, manuscript submitted for publication.
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are provided. The iterative algorithms used to compute the sparsity-promoting least-
squares and channel shortening reshaping filters are presented in Section 6.3. By
means of instrumental performance measures, simulation results in Section 6.4 show
that incorporating a sparsity-promoting penalty function in the considered acous-
tic multi-channel equalization techniques, i.e., MINT, CS, RMCLS, and PMINT,
increases the robustness against RIR perturbations. Furthermore, it is shown that
out of the considered sparsity-promoting penalty functions, the weighted l1-norm
is advantageous in order to preserve the spectro-temporal structure of speech sig-
nals and to achieve speech dereverberation. Finally, it is experimentally validated
that the weighted l1-norm sparsity-promoting RMCLS and PMINT techniques are
computationally tractable and robust techniques, yielding a high dereverberation
performance, both in terms of reverberant energy suppression and perceptual speech
quality improvement.

6.1 Sparsity of speech signals

Clean speech signals are known to be sparse in the STFT domain [173]. This means
that speech is present only in some time frames, and in these time frames only some
frequency bins have significant energy while many frequency bins have (nearly) no
energy. Sparsity in the STFT domain arises due to pauses between phonemes and
due to formant transitions in voiced sounds. Supported by empirical observations,
e.g., in [174–177], it is therefore widely accepted that the clean speech STFT co-
efficients can be statistically modeled using sparse priors. Furthermore, empirical
observations, e.g., in [173,175], have shown that when clean speech is corrupted by
reverberation (and noise), the STFT coefficients of the mixture are less sparse than
the STFT coefficients of the clean speech signal. To illustrate the fact that clean
speech is more sparse than reverberant speech in the STFT domain, Figs. 6.1a
and 6.1b depict exemplary spectrograms of clean and reverberant speech signals.
Due to the spectro-temporal smearing effect of reverberation, the speech pauses
between phonemes and the formant transitions in vowels are filled by reverberant
energy, making the reverberant spectrogram less sparse than the clean speech spec-
trogram.
Exploiting the sparse nature of clean speech signals has proven to be beneficial in
many speech enhancement techniques, such as in under-determined blind source
separation [173,178–180], adaptive beamforming [175], and single- or multi-channel
dereverberation [95,96,181,182]. In the context of dereverberation, in [181] a proba-
bilistic modeling-based single-channel technique has been proposed, where derever-
beration is achieved using an iterative algorithm to compute a filter that yields a
sparse output speech signal in the STFT domain. In [182] a blind multi-channel
speech dereverberation technique has been investigated, which jointly estimates the
clean speech signal and the RIRs, exploiting the sparse nature of the clean speech
STFT coefficients and a statistical reverberation model for the RIRs. Furthermore,
in [96] it has been shown that the dereverberation performance of the conventional
probabilistic modeling-based multi-channel linear prediction technique [91] can be
improved by modeling the dereverberated speech signal using a sparse prior.
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Fig. 6.1: Exemplary spectrograms of (a) clean speech and (b) reverberant speech. The
STFT is computed using a 32 ms Hamming window with 50 % overlap between
successive frames (T60 ≈ 610 ms).

Given the successful exploitation of the sparse nature of clean speech in several
speech enhancement techniques, in this chapter we propose a signal-dependent
method to increase the robustness of acoustic multi-channel equalization techniques,
taking into account the sparsity of the output speech signal STFT coefficients in
the reshaping filter design.

6.2 Incorporating sparsity-promoting penalty functions in acoustic
multi-channel equalization

In this section, we discuss how sparsity-promoting penalty functions can be incor-
porated in acoustic multi-channel equalization techniques. Section 6.2.1 establishes
the general framework for extending the equalization cost functions with a sparsity-
promoting penalty function. In addition, Section 6.2.2 introduces several commonly
used sparsity-promoting penalty functions and provides insights on the advantages
of using these penalty functions for speech dereverberation.

6.2.1 Sparsity-promoting acoustic multi-channel equalization cost functions

As discussed in Section 2.1.2, acoustic multi-channel equalization techniques typi-
cally disregard the presence of background noise and design reshaping filters aiming
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only at speech dereverberation. Assuming that v(n) = 0 in (2.26), the output signal
of the speech enhancement system is given by

z(n) = wTx(n) = wTHT
︸ ︷︷ ︸

cT

s(n), (6.1)

with w the MLw–dimensional reshaping filter vector, cf. (2.14), x(n) the
MLw-dimensional vector of the microphone signals, cf. (2.17), H the Lc ×MLw–
dimensional multi-channel convolution matrix of the true RIRs, cf. (2.24), s(n) the
Lc-dimensional clean speech vector, cf. (2.23), and c the Lc–dimensional equalized
impulse response between the clean speech signal and the output speech signal,
cf. (2.27). In order to incorporate the output speech signal in the reshaping filter
design, we consider the Lz–dimensional output signal vector z(n), i.e.,

z(n) = [z(n) z(n− 1) . . . z(n− Lz + 1)]T . (6.2)

Based on (6.1), the output signal vector can be written as

z(n) = X(n)w, (6.3)

where X(n) is the Lz ×MLw–dimensional multi-channel convolution matrix of the
microphone signals, i.e.,

X(n) = [X1(n) X2(n) . . . XM (n)], (6.4)

with the Lz × Lw–dimensional convolution matrix Xm(n) equal to

Xm(n) =




xm(n) xm(n− 1) · · · xm(n− Lw + 1)

xm(n− 1) xm(n− 2) · · · xm(n− Lw)
...

...
. . .

...
xm(n− Lz + 1) xm(n− Lz) · · · xm(n− Lw − Lz + 2)



. (6.5)

For notational convenience, the time index n is omitted when possible in the re-
mainder of this chapter.
Since clean speech can be considered to be more sparse than reverberant speech
in the time-frequency domain [173], the STFT is used to obtain a time-frequency
representation of the output speech signal. The STFT coefficients of the output
speech signal are computed as (cf. Section 2.1.3)

Z(t, f) =

N−1∑

n=0

wSTFT(n)z(tR+ n)e
−j2πfn

N , (6.6)

with t = 0, 1, . . . , T − 1, the time frame index and T the total number of time
frames, f = 0, 1, . . . , N−1, the frequency bin index andN the frame size, w

STFT
(n)

the STFT analysis window, and R the frame shift. Similarly as in [179, 180], we
define the STFT operator Ψ ∈ CLz̃×Lz , which transforms the Lz–dimensional time
domain vector z into the Lz̃–dimensional time-frequency domain vector z̃ consisting
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of all STFT coefficients Z(t, f) (i.e., z̃ denotes the stacked vector of all columns of
the spectrogram of z), i.e.,

z̃ = Ψz = ΨXw, (6.7)

with

z̃ = [Z(0, 0) . . . Z(0, N − 1) . . . Z(T − 1, 0) . . . Z(T − 1, N − 1)]T (6.8)

= [Z̃(0) . . . Z̃(Lz̃ − 1)]T , (6.9)

and Lz̃ = T ×N being the total number of STFT coefficients. Using a tight STFT
analysis window w

STFT
(n), i.e., the same window can be used as a synthesis win-

dow such that the perfect overlap-add constraint is satisfied, the inverse short-time
Fourier transform (ISTFT) operator ΨH ∈ CLz×Lz̃ is such that

ΨHΨ = I, (6.10)

with I the Lz × Lz–dimensional identity matrix.

In order to sparsify the STFT coefficients of the output speech signal, we propose
to incorporate a sparsity-promoting penalty function fsp(z̃) in the least-squares
and channel shortening cost functions defined in (3.29) and (3.18). As it will be
experimentally validated in Section 6.4.2, incorporating sparsity-promoting penalty
functions increases the robustness of equalization techniques against RIR perturba-
tions.
The proposed sparsity-promoting least-squares cost function JS-LS is defined as

JS-LS = JLS + ηfsp(z̃) (6.11)

= ‖W(Ĥw − ct)‖22︸ ︷︷ ︸
εc

+η fsp(ΨXw)︸ ︷︷ ︸
εs

, (6.12)

where εc denotes the least-squares dereverberation error energy as in (5.7), εs de-
notes the sparsity measure of the STFT representation of the output speech signal,
and η is a weighting parameter providing a trade-off between the two terms.
Furthermore, in order to incorporate a sparsity-promoting penalty function in the
channel shortening cost function, the channel shortening maximization problem
in (3.18) is first reformulated as a generalized Rayleigh quotient minimization prob-
lem as in (5.8). The proposed sparsity-promoting channel shortening cost function
JS-CS is then defined as

JS-CS = Jmin
CS

+ ηfsp(z̃) (6.13)

=
wT Ûw

wT D̂w︸ ︷︷ ︸
εr

+η fsp(ΨXw)︸ ︷︷ ︸
εs

, (6.14)

where εr denotes the channel shortening dereverberation error energy as in (5.10).
In the following section, several sparsity-promoting penalty functions fsp(z̃) are
presented and discussed.
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6.2.2 Sparsity-promoting penalty functions

In the presence of reverberation, the pauses between phonemes and the formant
transitions in voiced sounds, i.e., the (nearly) zero energy STFT coefficients of the
clean speech signal, are filled with reverberant energy (cf. Figs. 6.1a and 6.1b). In
addition, in the presence of RIR perturbations, non-robust acoustic multi-channel
equalization techniques introduce additional distortions (i.e., additional non-zero
STFT coefficients) in the output speech signal (cf., e.g., Fig. 4.8c). In order to
increase the robustness of acoustic multi-channel equalization techniques against
RIR perturbations and obtain an output speech signal that better resembles a clean
speech signal, one possibility is to minimize the number of non-zero coefficients in
z̃, which can be achieved by using an l0-norm1 penalty function, i.e.,

f0
sp(z̃) = ‖z̃‖0 = |i : z̃(i) 6= 0|. (6.15)

However, the l0-norm in (6.15) is non-convex and it is well known that optimization
problems with non-convex penalty functions are typically hard (if not impossible)
to solve, particularly for large scale problems [183]. In addition, iterative methods
proposed to solve such optimization problems are not guaranteed to converge to the
global minimum, but only to a local minimum [184].
A common alternative to the l0-norm is the l1-norm, i.e.,

f1
sp(z̃) = ‖z̃‖1 =

Lz̃−1∑

i=0

|z̃(i)|, (6.16)

which differs from the l0-norm by penalizing larger coefficients of z̃ more than smaller
coefficients. The l1-norm can be viewed as a convex relaxation of the l0-norm, and
efficient methods have been proposed to solve optimization problems with l1-norm
penalty functions [185, 186]. Furthermore, it has been shown that under certain
conditions, replacing the l0-norm by the l1-norm provides the solution to the original
l0-norm optimization problem [187,188]. In practice however, the l1-norm relaxation
is very often used when these conditions are not satisfied, typically resulting in a
solution which does not optimize the original l0-norm optimization problem, but
nevertheless provides smaller l0-norm values.
To counteract the magnitude dependency of the l1-norm, i.e., to better mimic the
l0-norm, the weighted l1-norm penalty function has been proposed [189], which
selectively penalizes the coefficients of z̃ based on a weighting vector u, i.e.,

fw,1sp (z̃) = ‖diag{u}z̃‖1 =

Lz̃−1∑

i=0

|u(i)z̃(i)|, (6.17)

with u an Lz̃–dimensional vector of positive scalar weights, i.e., u(i) > 0, i =
0, 1, . . . , Lz̃− 1. Using u(i) = 1, i = 0, 1, . . . , Lz̃− 1, yields the standard l1-norm

1 Note that the l0-norm is not a norm in the mathematical sense, since it does not satisfy all the
norm properties.
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penalty function in (6.16). To counteract the magnitude dependency of the l1-norm
and to promote the same sparsity structure in the output signal which is present
in the desired signal, it has been proposed in [189] to select the weighting vector
such that it has small values on the non-zero locations of the desired signal and
significantly larger values elsewhere. Replacing the l1-norm by a weighted l1-norm
has been shown to enhance sparsity and improve the performance in sparse signal
recovery applications [189, 190]. In the context of speech dereverberation, it would
hence be desirable to select the weights to be inversely proportional to the magnitude
of the STFT coefficients of the clean speech signal, i.e.,

u(i) =
1

|s̃(i)|
, i = 0, 1, . . . , Lz̃ − 1, (6.18)

with s̃(i) the STFT coefficients of the clean speech signal computed as in (6.7).
Using these weights results in penalizing more, and hence, decreasing more the
coefficients of z̃ corresponding to the small STFT coefficients of the clean speech
signal. However, since the clean speech signal is not available, we propose to use
any of the reverberant microphone signals and compute the weights as

u(i) =
1

|x̃p(i)|+ ζ
, i = 0, 1, . . . , Lz̃ − 1, (6.19)

where x̃p(i) are the STFT coefficients of the p-th microphone signal computed as
in (6.7) with p ∈ {1, . . . , M} and ζ > 0 is a small positive scalar to avoid divi-
sion by 0. As is experimentally validated in Section 6.4, incorporating the weighted
l1-norm penalty function in (6.17) using the weights in (6.19) yields a better dere-
verberation performance than incorporating the l0- or l1-norm penalty functions.
As is experimentally validated in Section 6.4.3, the advantage of using the weighted
l1-norm instead of the l0- or l1-norm lies in the fact that appropriate weights as
in (6.19) ensure that the spectro-temporal structure of a typical speech signal is
preserved.

6.3 Sparsity-promoting acoustic multi-channel equalization reshaping
filters

Since no closed-form solution is available for the cost functions in (6.12) and (6.14)
which incorporate sparsity-promoting penalty functions, iterative optimization al-
gorithms are required, which can be computationally expensive. As a result, there
has been much research in the development of efficient iterative optimization algo-
rithms for solving convex as well as non-convex optimization problems. We have
chosen to use the alternating direction method of multipliers (ADMM), since it is a
well-suited algorithm for solving large-scale optimization problems of the form (6.12)
and (6.14) [191,192]. The ADMM algorithm was originally proposed in [193] and has
been successfully applied to a large number of statistical problems such as sparse
signal recovery [194] and image processing [195, 196]. As described in [191], the
ADMM algorithm can be considered to be a decomposition-coordination procedure,
in which the optimization of simple local sub-problems is coordinated to optimize
a more complex global problem.
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6.3.1 Sparsity-promoting least-squares reshaping filter

Within the ADMM framework, the minimization of the sparsity-promoting least-
squares cost function in (6.12) is reformulated as

min
w

[
‖W(Ĥw − ct)‖22 + ηfsp(ã)

]
subject to ΨXw = ã, (6.20)

with ã an auxiliary variable which is introduced such that the optimization prob-
lem in (6.12) can be split into simpler sub-problems. In order to solve (6.20), the
augmented Lagrangian is formed, i.e.,

LS-LS(w, ã,γ) = ‖W(Ĥw−ct)‖22+ηfsp(ã)+γH(ΨXw−ã)+
ρ

2
‖ΨXw−ã‖22, (6.21)

with γ the Lz̃–dimensional vector of Lagrangian multipliers and ρ > 0 a penalty
parameter. As the penalty parameter approaches ∞, i.e., ρ→∞, it is ensured that
the variable ΨXw converges to the auxiliary variable ã. In each iteration of the
ADMM algorithm, the values of the variables w and ã are updated by minimizing
the augmented Lagrangian in (6.21) with respect to w and ã. The advantage of
using the ADMM algorithm is that the minimization over the variables w and ã is
done in an alternating manner, which allows the problem to be easily decomposed
and solved.
Using the scaled dual variable

λ =
γ

ρ
, (6.22)

the augmented Lagrangian in (6.21) is equal to

LS-LS(w, ã,λ) = ‖W(Ĥw− ct)‖22 + ηfsp(ã) +
ρ

2
‖ΨXw− ã +λ‖22 −

ρ

2
‖λ‖22. (6.23)

While (6.21) and (6.23) are equivalent, the augmented Lagrangian in (6.23) is of-
ten used within the ADMM framework for convenience, since it results in shorter
expressions for the ADMM update rules. Using (6.23), the ADMM update rules for
the sparsity-promoting least-squares techniques can be expressed as [191]

w(k+1) = arg min
w

[
‖W(Ĥw − ct)‖22 +

ρ

2
‖ΨXw − ã(k) + λ(k)‖22

]
, (6.24)

ã(k+1) = arg min
ã

[
ηfsp(ã) +

ρ

2
‖ΨXw(k+1) − ã + λ(k)‖22

]
, (6.25)

λ(k+1) = λ(k) + ΨXw(k+1) − ã(k+1), (6.26)

where {·}(k) denotes the variable in the k-th iteration and the update rule in (6.26)
is the dual variable update rule used for coordination [191]. Hence, the original
minimization problem in (6.12) is decomposed into simpler sub-problems which are
solved in an alternating fashion using the update rules in (6.24), (6.25), and (6.26)
until a convergence criterion is satisfied or a maximum number of iterations is
exceeded.
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Sparsity-promoting filter update rule

In order to derive the update rule for the least-squares reshaping filter in (6.24), the
gradient of the cost function with respect to w is set to 0, i.e.,

2ĤTWTWĤw + ρXTXw − 2ĤTWTWct − ρXTΨH(ã(k) − λ(k)) = 0, (6.27)

yielding the sparsity-promoting reshaping filter update rule

w(k+1)
S-LS

= (2ĤTWTWĤ + ρXTX︸ ︷︷ ︸
C

)−1[ 2ĤTWTWct︸ ︷︷ ︸
b1

+ρXTΨH(ã(k) − λ(k))︸ ︷︷ ︸
b

(k)
2

]

(6.28)

= C−1[b1 + ρb
(k)
2 ], (6.29)

where the variables C, b1, and b2 are introduced to simplify the notation and to
show that only the variable b2 is iteration-dependent. Although (6.29) requires a
matrix inversion in each iteration of the ADMM algorithm, the matrix C remains
fixed throughout the optimization procedure, such that the filter update can be
efficiently computed by, e.g., storing the LU factorization of C and using forward
and backward substitution in each iteration. Similarly, also the vector b1 remains
fixed throughout the optimization procedure, such that it needs to be computed
only once.
For completeness, Table 6.1 summarizes the sparsity-promoting least-squares filter
update rules for the considered sparsity-promoting least-squares techniques, i.e., for
the different definitions of the weighting matrix W and the target equalized impulse
response ct introduced in Section 3.3.

Auxiliary variable update rule

The update rule for the auxiliary variable in (6.25) depends on the used sparsity-
promoting penalty function. To simplify the notation, we define the variable

b(k) = ΨXw(k+1) + Λ(k). (6.30)

Table 6.1: Sparsity-promoting least-squares reshaping filter update rules for different
sparsity-promoting least-squares techniques.

Sparsity-
promoting
technique

Filter update rule

S-MINT w(k+1)
S-M =(2ĤT Ĥ + ρXTX)−1

[
2ĤTd + ρXTΨH(ã(k) − λ(k))

]
S-RMCLS w(k+1)

S-R =(2ĤTWT
RWRĤ+ρXTX)−1

[
2ĤTWT

RWRd+ρXTΨH(ã(k)−λ(k))
]

S-PMINT w(k+1)
S-P =(2ĤT Ĥ + ρXTX)−1

[
2ĤT ĥe,p + ρXTΨH(ã(k) − λ(k))

]
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Substituting (6.30) in (6.25), the auxiliary variable update rule can be written as

ã(k+1) = arg min
ã

[
ηfsp(ã) +

ρ

2
‖b(k) − ã‖22

]
. (6.31)

The solution of the optimization problem in (6.31) is the proximal mapping of the
sparsity-promoting penalty function [197]. The proximal mapping for the l0-, l1-, and
weighted l1-norm penalty functions exists in closed form [185, 197], which enables
to efficiently compute the auxiliary variable update rule in each iteration of the
ADMM algorithm. The proximal mapping for these penalty functions is presented
in the following.

• f0
sp (l0-norm)

The proximal mapping for the l0-norm penalty function is the component-wise
hard-thresholding map, i.e.,

ã(i)(k+1) =





0 if |b(i)(k)| ≤ η
ρ ,

b(i)(k) otherwise.
(6.32)

Hard-thresholding uses a non-linear operator to reduce the l0-norm of ã in each
iteration of the ADMM algorithm by changing all but the largest elements (i.e.,
larger than η

ρ ) to 0.

• f1
sp (l1-norm)

The proximal mapping for the l1-norm penalty function is the component-wise
soft-thresholding map, i.e.,

ã(i)(k+1) =





0 if |b(i)(k)| ≤ η
ρ ,{

|b(i)(k)| − η
ρ

}
b(i)(k)

|b(i)(k)| otherwise.
(6.33)

Soft-thresholding reduces the l1-norm of ã in each iteration of the ADMM
algorithm by subtracting η

ρ from the absolute value of every element of ã.

• fw,1sp (weighted l1-norm)
The proximal mapping for the weighted l1-norm penalty function is similar
to the soft-thresholding in (6.33), with the only difference consisting in the
multiplication of the soft threshold with the weights in u, i.e.,

ã(i)(k+1) =





0 if |b(i)(k)| ≤ η
ρu(i),{

|b(i)(k)| − η
ρu(i)

}
b(i)(k)

|b(i)(k)| otherwise.
(6.34)

Hence, weighted soft-thresholding reduces the l1-norm of ã in each iteration of
the ADMM algorithm by subtracting η

ρu(i) from the absolute value of every
element of ã.

Fig. 6.2 provides a schematic illustration of the difference between hard-thresholding,
soft-thresholding, and weighted soft-thresholding for exemplary values η

ρ = 1 and
u(i) = 2.
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Fig. 6.2: Exemplary illustration of the proximal mappings for the l0-norm, l1-norm, and
weighted l1-norm ( η

ρ
= 1 and u(i) = 2).

Summarizing, using the reshaping filter update rule in (6.28), the auxiliary variable
update rule in (6.32), (6.33), or (6.34) depending on the used sparsity-promoting
penalty function, and the dual variable update rule in (6.26) until a termination
criterion is satisfied, the sparsity-promoting least-squares reshaping filter can be
computed. The initialization and termination criterion used for the ADMM algo-
rithm will be discussed in Section 6.4.1.

6.3.2 Sparsity-promoting channel shortening reshaping filter

Similarly as for the sparsity-promoting least-squares cost function, the minimization
of the sparsity-promoting channel shortening cost function in (6.14) is reformulated
within the ADMM framework as

min
w

[
wT Ûw

wT D̂w
+ ηfsp(ã)

]
subject to ΨXw = ã, (6.35)

with ã an auxiliary variable. The augmented Lagrangian of (6.35) now is equal to

LS-CS(w, ã,γ) =
wT Ûw

wT D̂w
+ ηfsp(ã) + γH(ΨXw − ã) +

ρ

2
‖ΨXw − ã‖22, (6.36)

with γ the Lz̃–dimensional vector of Lagrangian multipliers and ρ > 0 a penalty
parameter. Rewriting the augmented Lagrangian in (6.36) in terms of the scaled
dual variable

λ =
γ

ρ
(6.37)

yields

LS-CS(w, ã,λ) =
wT Ûw

wT D̂w
+ ηfsp(ã) +

ρ

2
‖ΨXw − ã + λ‖22 −

ρ

2
‖λ‖22. (6.38)
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Based on (6.38) the update rules for the sparsity-promoting channel shortening
technique are given by:

w(k+1) = arg min
w

[
wT Ûw

wT D̂w
+
ρ

2
‖ΨXw − ã(k) + Λ(k)‖22

]
, (6.39)

ã(k+1) = arg min
ã

[
ηfsp(ã) +

ρ

2
‖ΨXw(k+1) − ã + Λ(k)‖22

]
, (6.40)

Λ(k+1) = Λ(k) + ΨXw(k+1) − ã(k+1). (6.41)

As can be observed, the update rule for the auxiliary variable in (6.40) and the dual
variable in (6.41) are the same as the update rule for the auxiliary variable in (6.25)
and the dual variable in (6.26). The only difference between the update rules for
the sparsity-promoting least-squares and channel shortening techniques consists in
the reshaping filter update rule in (6.24) and (6.39). Unfortunately, no analytical
solution minimizing (6.39) is available and therefore we have resorted to an iterative
optimization procedure for minimizing this non-linear cost function, for which we
have used the MATLAB function fminunc [168]. In order to improve the numerical
robustness and the convergence speed, the gradient of (6.39) with respect to w, i.e.,

2
Ûw(wT D̂w)− 2(wT Ûw)D̂w

(wT D̂w)2
+ ρXTXw − 2ρXTΨH [ã(k) −Λ(k)], (6.42)

can be provided to the iterative optimization procedure. It should be noted that
using an iterative optimization procedure to compute the filter update within each
iteration of the ADMM algorithm results in a large computational complexity. Re-
ducing the computational complexity for computing the sparsity-promoting channel
shortening reshaping filter remains a topic for future investigation.

6.4 Simulations

In this section, we investigate the dereverberation performance of the sparsity-
promoting least-squares and channel shortening equalization techniques. In Sec-
tion 6.4.1 the considered acoustic system and the used algorithmic settings are
introduced. In Section 6.4.2 the robustness increase of the considered acoustic multi-
channel equalization techniques when incorporating different sparsity-promoting
penalty functions is investigated. In Section 6.4.4 the performance of the weighted
l1-norm sparsity-promoting acoustic multi-channel equalization techniques is exten-
sively compared.

6.4.1 Acoustic system and algorithmic settings

We have considered an acoustic system with a single speech source andM = 4 omni-
directional microphones. The source-microphone distance is 2 m and the distance
between the microphones is 4 cm. The room reverberation time is T60 ≈ 360 ms and
the direct-to-reverberant ratio is DRR = 5 dB [198]. The RIRs have been measured



6.4 simulations 101

using the swept-sine technique [162] and the length of the RIRs has been set to
Lh = 2880 at a sampling frequency fs = 8 kHz. To generate the reverberant signals,
10 sentences (approximately 17 s long) from the HINT database [163] have been
convolved with the measured RIRs.2

Similarly as in Section 3.4, in order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as described in Section 2.2. The
considered normalized projection misalignment (NPM) values between the true and
the perturbed RIRs are (cf. (2.52))

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (6.43)

For all considered techniques, the reshaping filter length is Lw =
⌈
Lh−1
M−1

⌉
= 960, the

delay is set to τ = 90, and the desired window length is Ld = 10 ms.3 The target
equalized impulse response for the PMINT and the sparsity-promoting PMINT
techniques is set to the direct path and early reflections of the perturbed RIR of
the first microphone, i.e., ĥe,1. Furthermore, the channel shortening reshaping filter
is selected as the generalized eigenvector yielding the minimum l2-norm estimated
equalized impulse response as proposed in [125].
In order to reduce the computational complexity of the reshaping filter design, the
sparsity-promoting reshaping filters are computed using only the first 2 sentences
of the microphone signals (approximately 3 s long). However, the complete out-
put speech signal has been used for the evaluation. The STFT is computed using
a 32 ms Hamming window with 50 % overlap between successive frames. The to-
tal number of time frames is T = 208, the frame size is N = 256, and hence,
Lz̃ = T × N = 26832. For the weighted l1-norm penalty function, the weighting
vector u in (6.19) is generated using the first microphone signal, i.e., p = 1, and
ζ = 10−8. Furthermore, for the ADMM algorithm a termination criterion needs to
be imposed. In our implementation, the termination criterion is either the number
of iterations exceeding a given maximum number of iterations or the relative change
in the solution norm dropping below a given tolerance, i.e.,

k + 1 > kmax or
‖w(k+1) −w(k)‖2

‖w(k)‖2
< εw, (6.44)

with kmax = 150 and εw = 10−3.
Furthermore, since using the l0-norm penalty function yields a non-convex optimiza-
tion problem, the initialization of the ADMM algorithm may influence the resulting
reshaping filter. Hence, we have investigated three different initializations of the
filter w, i.e.,

2 The considered acoustic system is different than in the previous chapters, with lower reverberation
time, and hence, shorter RIRs. Shorter RIRs have been used in these simulation results due to the
high computational complexity of the sparsity-promoting channel shortening technique. In Chap-
ter 7, the performance of the sparsity-promoting RMCLS and PMINT techniques is investigated
for higher reverberation times.

3 The desired window length has been limited to one value due to the high computational complexity
of the sparsity-promoting channel shortening technique.
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i) w(1) = [1 0 . . . 0]T , i.e., the filter yielding the first microphone signal,
ii) w(1) is randomly initialized with normally distributed coefficients,
iii) w(1) = wLS or w(1) = wCS , i.e., initialization with the according reshaping

filter resulting from the least-squares or channel shortening equalization tech-
niques.

In all simulations we observed that using the first filter initialization, i.e., w(1) =
[1 0 . . . 0]T , results in the best performance, and hence, the following simulation
results have been generated using this filter initialization.

Using the instrumental performance measures described in Section 2.3, the derever-
beration performance is evaluated in terms of the reverberant energy suppression
and the perceptual speech quality improvement. The reverberant energy suppres-
sion is evaluated using the direct-to-reverberant ratio improvement (∆DRR) be-
tween the equalized impulse response c and the true RIR h1 (cf. (2.53)), as well
as the energy decay curve (EDC) of the equalized impulse response c (cf. (2.55)).
The improvement in perceptual speech quality is evaluated using the improvement
in PESQ [153] (∆PESQ) and in cepstral distance [154] (∆CD) between the output
speech signal z(n) and the reverberant microphone signal x1(n). The reference signal
employed for the PESQ and cepstral distance measures is xe,1(n) = s(n) ∗ he,1(n),
i.e., the clean speech signal convolved with the direct path and early reflections of
the first RIR.

In order to evaluate the effectiveness of incorporating a sparsity-promoting penalty
function for increasing the robustness of acoustic multi-channel equalization tech-
niques, we investigate the performance for several weighting and penalty parameters
η and ρ, i.e.,

η = {10−7, 10−6, 10−5, 10−4}, (6.45)

ρ = {10−7, 10−6, . . . , 10−1}. (6.46)

Similarly as in Chapters 4 and 5 for determining the optimal reshaping filter length
and the optimal regularization parameter, in this chapter the optimal weighting
and penalty parameters ηo and ρo are determined as the ones yielding the highest
perceptual speech quality in terms of the PESQ score. It should be noted that the
computation of the PESQ score for determining the optimal regularization param-
eter is an intrusive procedure which is not applicable in practice, since knowledge
of the clean speech signal and the true RIRs is required to compute the reference
signal and the equalized impulse response c = Hw.

6.4.2 Robustness increase of acoustic multi-channel equalization techniques when
incorporating sparsity-promoting penalty functions

In this section, the performance of all considered acoustic multi-channel equalization
techniques is compared to the performance of their sparsity-promoting counterparts
with different penalty functions. An exemplary scenario with NPM = −33 dB is
considered.
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Robustness increase of the MINT technique

Fig. 6.3 depicts the performance of the MINT and sparsity-promoting MINT tech-
niques with different penalty functions in terms of ∆DRR, EDC, ∆PESQ, and ∆CD.
For completeness, the used optimal weighting and penalty parameters are presented
in Table 6.2.
The ∆DRR values presented in Fig. 6.3a show that, as expected, the MINT tech-
nique fails to suppress the reverberant energy, worsening the DRR by approximately
20 dB in comparison to the true RIR h1. Furthermore, it can be observed that the
l0- and l1-norm sparsity-promoting MINT techniques fail to achieve dereverberation
and result in a lower DRR than the true RIR h1. Since acoustic system inversion
using the MINT technique is very sensitive to RIR perturbations, incorporating
an l0- or l1-norm penalty function which does not necessarily preserve the spectro-
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Fig. 6.3: Performance of the MINT and sparsity-promoting MINT techniques with dif-
ferent penalty functions in terms of (a) ∆DRR, (b) EDC, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 6.2: Optimal parameters for the sparsity-promoting MINT technique with different
penalty functions (NPM = −33 dB).

Parameter l0-norm l1-norm wl1-norm

ηo 10−4 10−5 10−4

ρo 10−6 10−5 10−1
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temporal structure of the speech signal is not sufficient to increase the robustness
of the MINT technique. On the other hand, by sparsifying the STFT representa-
tion of the output speech signal and preserving its spectro-temporal structure using
the weighted l1-norm sparsity-promoting MINT technique, the reverberant energy
suppression significantly increases.
To evaluate the reverberant energy decay rate, Fig. 6.3b depicts the energy decay
curve of the true RIR h1 and the energy decay curve of the equalized impulse re-
sponse c obtained using the MINT and the sparsity-promoting MINT techniques
with different penalty functions. As expected, the MINT technique fails to achieve
dereverberation and results in a slower decay rate of the reverberant energy than in
the true RIR h1. Furthermore, also the l0- and l1-norm sparsity-promoting MINT
techniques fail to achieve dereverberation, yielding a similar decay rate of the re-
verberant energy as the MINT technique. On the other hand, using the weighted
l1-norm sparsity-promoting MINT technique increases the robustness and slightly
improves the decay rate of the reverberant energy in comparison to the true RIR
h1.
The higher reverberant energy suppression achieved by the weighted l1-norm spar-
sity-promoting MINT technique is also reflected in the higher perceptual speech
quality improvement, as shown by the ∆PESQ and ∆CD values depicted in Figs.
6.3c and 6.3d.
Summarizing, since acoustic system inversion using the MINT technique is very
sensitive to RIR perturbations, using the l0- or l1-norm sparsity-promoting penalty
functions does not suffice to achieve dereverberation. On the other hand, incorpo-
rating the weighted l1-norm penalty function in the MINT technique yields a signifi-
cant increase in robustness in the presence of RIR perturbations. However, acoustic
system inversion using the weighted l1-norm sparsity-promoting MINT technique
nevertheless remains sensitive to RIR perturbations and does not yield a satisfactory
dereverberation performance in terms of the decay rate of the reverberant energy
(as illustrated in Fig. 6.3b).

Robustness increase of the CS technique

Fig. 6.4 depicts the performance of the CS and sparsity-promoting CS techniques
with different penalty functions in terms of ∆DRR, EDC, ∆PESQ, and ∆CD. For
completeness, the used optimal weighting and penalty parameters are presented in
Table 6.3.
The ∆DRR values presented in Fig. 6.4a show that all proposed sparsity-promoting
penalty functions are able to increase the robustness of the CS technique against RIR
perturbations and yield a large DRR improvement in comparison to the true RIR h1.
Hence, unlike for the MINT technique, the incorporation of an l0- or l1-norm penalty
function improves the robustness for the CS technique. This can be explained by
the fact that the CS technique, aiming at partial equalization, is in principle more
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Fig. 6.4: Performance of the CS and sparsity-promoting CS techniques with differ-
ent penalty functions in terms of (a) ∆DRR, (b) EDC, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 6.3: Optimal parameters for the sparsity-promoting CS technique with different
penalty functions (NPM = −33 dB).

Parameter l0-norm l1-norm wl1-norm

ηo 10−7 10−4 10−5

ρo 10−1 10−1 10−1

robust than the MINT technique, aiming at complete equalization.4 Furthermore,
it can be observed that out of the proposed penalty functions, the weighted l1-norm
penalty function yields the best ∆DRR.
To evaluate the reverberant energy decay rate, Fig. 6.4b depicts the energy decay
curve of the true RIR h1 and the energy decay curve of the equalized impulse
response c obtained using the CS and the sparsity-promoting CS technique with
different penalty functions. It can be observed that any sparsity-promoting penalty

4 The better performance of the CS technique in comparison to the MINT technique is not apparent
here. However, as described in Section 3.4.3, selecting the generalized eigenvector as the one yield-
ing the minimum l2-norm equalized impulse response for the CS technique does not yield the best
performance in the presence of RIR perturbations, i.e., significantly better performing generalized
eigenvectors can be found.
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function results in a faster decay rate of the reverberant energy than in h1. Fur-
thermore, the weighted l1-norm penalty function yields the best performance and
results in the fastest reverberant energy decay rate.
The improvement in direct-to-reverberant ratio and reverberant energy decay rate
achieved by the sparsity-promoting CS techniques is also reflected in the overall per-
ceptual speech quality improvement as evaluated by the ∆PESQ and ∆CDmeasures
depicted in Figs. 6.4c and 6.4d. It can be observed that the weighted l1-norm penalty
function results in the best performance in terms of both measures. The higher
perceptual speech quality improvement achieved when using the weighted l1-norm
penalty function arises due to the better preservation of the spectro-temporal struc-
ture of the speech signal (cf. Section 6.4.3).
In summary, incorporating the weighted l1-norm penalty function in the CS tech-
nique significantly improves the performance, both in terms of reverberant energy
suppression and perceptual speech quality improvement. However, it should be
noted that due to the iterative optimization procedure used in each iteration of the
ADMM algorithm for computing the filter update in (6.39), the sparsity-promoting
CS technique has a very large computational complexity.

Robustness increase of the RMCLS technique

Fig. 6.5 depicts the performance of the RMCLS and sparsity-promoting RMCLS
techniques with different penalty functions in terms of ∆DRR, EDC, ∆PESQ, and
∆CD. The used optimal weighting and penalty parameters are presented in Ta-
ble 6.4.
The ∆DRR values presented in Fig. 6.5a show that, similarly as for the CS technique,
all proposed sparsity-promoting penalty functions increase the robustness of the
RMCLS technique against RIR perturbations and yield a significantly larger ∆DRR
than the RMCLS technique. Furthermore, it can be observed that the weighted
l1-norm penalty function results in a similar ∆DRR as the l0-norm, whereas a
slightly lower performance is obtained when using the l1-norm.
To evaluate the decay rate of the reverberant energy, Fig. 6.5b depicts the energy
decay curve of the true RIR h1 and the energy decay curve of the equalized im-
pulse response c obtained using the RMCLS and the sparsity-promoting RMCLS
techniques with different penalty functions. It can be observed that for all penalty
functions, the sparsity-promoting RMCLS technique results in a slower decay rate
of the reverberant energy than the RMCLS technique. This can be explained by
the fact that the optimal weighting and penalty parameters are being chosen as the
ones yielding the highest perceptual speech quality. Since the RMCLS technique
yields a fast reverberant energy decay rate but a low perceptual speech quality (cf.
Section 3.4.3), the incorporation of a sparsity-promoting penalty function results
in a slightly slower reverberant energy decay rate but a better perceptual speech
quality.
The latter is confirmed by the ∆PESQ values presented in Fig. 6.5c, which show
that incorporating a sparsity-promoting penalty function in the RMCLS technique
significantly improves the perceptual speech quality. Furthermore, it can be observed
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Fig. 6.5: Performance of the RMCLS and sparsity-promoting RMCLS techniques with
different penalty functions in terms of (a) ∆DRR, (b) EDC, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 6.4: Optimal parameters for the sparsity-promoting RMCLS technique with different
penalty functions (NPM = −33 dB).

Parameter l0-norm l1-norm wl1-norm

ηo 10−4 10−5 10−6

ρo 10−3 10−4 10−4

that the l0- and weighted l1- norm penalty functions yield a similar perceptual
speech quality improvement, whereas a lower performance is obtained when using
the l1-norm penalty function. In addition, the ∆CD values presented in Fig. 6.5d
also show that incorporating a sparsity-promoting penalty function in the RMCLS
technique improves the perceptual speech quality, with the weighted l1-norm penalty
function yielding the best performance.
In summary, incorporating sparsity-promoting penalty functions in the RMCLS
technique significantly increases the robustness against RIR perturbations. Incorpo-
rating an l0- or weighted l1-norm penalty function yields a similar performance, out-
performing the l1-norm penalty function. Since the l0-norm is non-convex and hence,
there is no guarantee that the global minimum of the l0-norm sparsity-promoting
RMCLS cost function is reached, in the following we will only consider the weighted
l1-norm sparsity-promoting RMCLS technique.



108 sparsity-promoting acoustic multi-channel equalization

Robustness increase of the PMINT technique

Fig. 6.6 depicts the performance of the PMINT and sparsity-promoting PMINT
techniques with different penalty functions in terms of ∆DRR, EDC, ∆PESQ, and
∆CD. For completeness, the used optimal weighting and penalty parameters are
presented in Table 6.5.
Similarly as for the CS and the RMCLS techniques, the ∆DRR values and the
EDCs depicted in Figs. 6.6a and 6.6b show that all proposed penalty functions
increase the robustness of the PMINT technique, yielding a larger ∆DRR and a
faster reverberant energy decay rate. Moreover, it can be observed that using the
weighted l1-norm penalty function results in the largest DRR improvement and
fastest decay rate of the reverberant energy.
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Fig. 6.6: Performance of the PMINT and sparsity-promoting PMINT techniques with
different penalty functions in terms of (a) ∆DRR, (b) EDC, (c) ∆PESQ, and
(d) ∆CD (NPM = −33 dB).

Table 6.5: Optimal parameters for the sparsity-promoting PMINT technique with different
penalty functions (NPM = −33 dB).

Parameter l0-norm l1-norm wl1-norm

ηo 10−4 10−5 10−6

ρo 10−2 10−2 10−3
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The higher reverberant energy suppression achieved by the weighted l1-norm spar-
sity-promoting PMINT technique is also reflected in the higher perceptual speech
quality improvement, as shown by the ∆PESQ and ∆CD values depicted in Figs.
6.6c and 6.6d.
In summary, incorporating sparsity-promoting penalty functions in the PMINT tech-
nique increases the robustness against RIR perturbations, with the weighted l1-norm
outperforming the l0- and l1-norm penalty functions in terms of reverberant energy
suppression and perceptual speech quality improvement.

It should be noted that the performance of the weighted l1-norm sparsity-promoting
techniques obviously depends on the used weighting vector u. When no prior infor-
mation is available about the sparsity structure of the desired signal, the iteratively
re-weighted l1-norm minimization technique [189] can be used, where the weights
are updated in each iteration based on the magnitude of the solution from the previ-
ous iteration. For the relatively low reverberation time considered in the simulation
results in this chapter, the weights in (6.19) are a rather good approximation of the
sparsity structure of the clean speech signal, and hence, iteratively updating the
weighting vector does not bring any significant performance improvements.

6.4.3 Discussion

The previously presented results have shown that incorporating a sparsity-promot-
ing penalty function can significantly increase the robustness of acoustic multi-
channel equalization techniques against RIR perturbations. It has been validated
that the weighted l1-norm penalty function consistently outperforms the l1-norm
and the l0-norm penalty functions in terms of reverberant energy suppression and
perceptual speech quality improvement (except for the RMCLS technique, where a
similar performance to the l0-norm penalty function is obtained), where the l1-norm
and the l0-norm penalty functions may even completely fail to achieve dereverber-
ation (as for the MINT technique). These results can be even better illustrated by
analyzing the spectrograms of the output speech signals for the different considered
penalty functions.
Figs. 6.7a and 6.7b depict the spectrograms of the clean speech and reverberant
speech signals for the considered acoustic system. Furthermore, Fig. 6.8 depicts
exemplary spectrograms of the output speech signal obtained using the RMCLS
and the sparsity-promoting RMCLS techniques with l0-norm, l1-norm, and weighted
l1-norm penalty functions.
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Fig. 6.7: Spectrograms of the (a) clean speech signal and (b) reverberant microphone signal
for the considered acoustic system (T60 ≈ 360 ms).
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Fig. 6.8: Exemplary spectrograms of the output speech signal obtained using the
(a) RMCLS technique, (b) l0-norm sparsity-promoting RMCLS technique,
(c) l1-norm sparsity-promoting RMCLS technique, and (d) weighted l1-norm
sparsity-promoting RMCLS technique (NPM = −33 dB).
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It can be observed in Fig. 6.8a that due to its sensitivity to RIR perturbations,
using the RMCLS technique introduces energy in time-frequency bins where the
clean speech signal, and even the reverberant speech signal, does not have any en-
ergy. As shown in Figs. 6.8b, 6.8c, and 6.8d, incorporating a sparsity-promoting
penalty clearly yields a sparser spectrogram and effectively decreases the energy in
these bins. However, Figs. 6.8b and 6.8c also show that while the l0- and l1-norm
penalty functions yield a sparser spectrogram, particularly for the lower frequen-
cies, the higher frequencies, above approximately 2 kHz, still contain a significant
amount of energy. Since the l0-norm is non-convex, the l0-norm sparsity-promoting
RMCLS reshaping filter does not necessarily correspond to the global minimum of
the sparsity-promoting cost function. Furthermore, the l1-norm sparsity-promoting
RMCLS reshaping filter is magnitude-dependent and hence concentrates on sparsi-
fying the time-frequency bins with the largest magnitude. On the other hand, as
shown in Fig. 6.8d, the weighted l1-norm penalty function mainly concentrates on
sparsifying the time-frequency bins where the clean speech signal does not have any
energy, hence, preserving the spectro-temporal structure of a typical clean speech
signal and achieving dereverberation.

6.4.4 Comparison of the weighted l1-norm sparsity-promoting acoustic multi-
channel equalization techniques

The simulation results in Section 6.4.2 have shown that for all considered acoustic
multi-channel equalization techniques, the weighted l1-norm penalty function results
in a significant increase in robustness against RIR perturbations. In this section the
performance of all considered weighted l1-norm sparsity-promoting techniques is
extensively compared for the NPM values in (6.43). Similarly as in Section 3.4.3,
the presented performance measures are averaged over all considered NPM values.
To compare the reverberant energy suppression, Figs. 6.9a and 6.9b depict the
DRR improvement and the energy decay curve obtained by the weighted l1-norm
sparsity-promoting techniques. It can be observed that all techniques achieve a
similar performance in terms of DRR improvement, with the sparsity-promoting
RMCLS technique yielding the highest ∆DRR. However, the ∆DRR achieved by
all techniques differs by at most 2 dB, which can be considered to be rather in-
significant. On the other hand, the decay rate of the reverberant energy depicted in
Fig. 6.9b shows more significant differences between the different sparsity-promoting
techniques. Since complete equalization using MINT is very sensitive to RIR per-
turbations, the sparsity-promoting MINT technique yields the slowest reverberant
energy decay rate. Due to its energy-based optimization criterion, the sparsity-
promoting CS technique yields the highest performance, significantly improving
the reverberant energy decay rate in comparison to the true RIR h1. However, also
the sparsity-promoting RMCLS and PMINT techniques yield a faster decay rate of
the reverberant energy in comparison to the true RIR h1.
To compare the perceptual speech quality, Figs. 6.9c and 6.9d depict the PESQ
score and cepstral distance improvement obtained by all considered techniques. It
can be observed in Fig. 6.9c that the ∆PESQ achieved by all techniques is similar,
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Fig. 6.9: Performance of the weighted l1-norm sparsity-promoting MINT, CS, RMCLS,
and PMINT techniques in terms of (a) ∆DRR, (b) EDC, (c) ∆PESQ, and
(d) ∆CD (averaged over several NPM values).

with the sparsity-promoting PMINT technique yielding the best performance. This
is to be expected since the sparsity-promoting PMINT technique aims at preserv-
ing the direct path and early reflections of the resulting equalized impulse response.
Furthermore, Fig. 6.9d also shows that the ∆CD achieved by all techniques is simi-
lar, with the sparsity-promoting CS technique yielding the best performance. How-
ever, also the sparsity-promoting RMCLS and PMINT techniques result in a good
performance, decreasing the cepstral distance in comparison to the reverberant mi-
crophone signal. As expected, the sparsity-promoting MINT technique yields the
worst performance, nevertheless decreasing the cepstral distance in comparison to
the reverberant microphone signal.
From these results it can be concluded that the sparsity-promoting partial equal-
ization techniques yield a high performance in terms of reverberant energy sup-
pression and perceptual speech quality improvement. While the weighted l1-norm
sparsity-promoting CS and RMCLS techniques yield the highest reverberant energy
suppression in terms of DRR and EDC, the weighted l1-norm sparsity-promoting
PMINT technique results in the highest perceptual speech quality improvement in
terms of PESQ. However, it should be realized that the computational complexity
of the sparsity-promoting CS technique is impractically high.
It should be noted that the proposed sparsity-promoting techniques significantly
increase the robustness against RIR perturbations only exploiting well known char-
acteristics of clean speech signals, without relying on additional knowledge about
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the structure of the RIR perturbations (as the regularized techniques proposed in
Chapter 5), which can be considered to be a very good result.

6.5 Summary

In this chapter, we have proposed to increase the robustness of acoustic multi-
channel equalization techniques against RIR perturbations using a sparsity-promot-
ing penalty function to promote sparsity in the output speech signal and reduce
artifacts generated by non-robust techniques. The least-squares and channel short-
ening cost functions have been extended with different sparsity-promoting penalty
functions, for which iterative algorithms based on the alternating direction method
of multipliers have been derived.
Extensive simulation results have shown that incorporating the weighted l1-norm
penalty function in all considered acoustic multi-channel equalization techniques,
i.e., MINT, CS, RMCLS, and PMINT, yields a significantly better dereverberation
performance in the presence of RIR perturbations. It has been shown that out of
the considered techniques, the sparsity-promoting RMCLS and PMINT techniques
are computationally tractable techniques which result in the highest dereverberation
performance, both in terms of reverberant energy suppression and perceptual speech
quality improvement.
It should however be noted that the optimal weighting and penalty parameters
for incorporating a sparsity-promoting penalty function have been determined in-
trusively. An automatic non-intrusive procedure for determining these parameters
remains a topic for future investigation.



7
OBJECTIVE AND SUBJECTIVE EVALUATION
OF ROBUST ACOUSTIC MULTI-CHANNEL
EQUALIZATION TECHNIQUES

In Chapters 4, 5, and 6 we have proposed several signal-independent and signal-
dependent methods to increase the robustness of acoustic multi-channel equaliza-
tion techniques against room impulse response (RIR) perturbations, i.e., using a
shorter reshaping filter length to make the optimization criteria better conditioned,
incorporating regularization to reduce the energy of distortions due to RIR per-
turbations, and incorporating a sparsity-promoting penalty function to sparsify the
output speech signal and reduce artifacts generated by non-robust techniques. Simu-
lation results using instrumental performance measures in Chapters 4, 5, and 6 have
shown that all three methods are effective in increasing the robustness of the con-
sidered equalization techniques, i.e., MINT, CS, RMCLS, and PMINT. However, it
has also been experimentally validated that complete equalization using the robust
extensions of the MINT technique nevertheless remains sensitive to RIR perturba-
tions and does not yield a satisfactory dereverberation performance. Furthermore,
it has been experimentally validated that the robust extensions of the CS technique
either yield a low perceptual speech quality (the CS technique using shorter reshap-
ing filters and the regularized CS technique) or are computationally very complex
(the sparsity-promoting CS technique). On the other hand, the robust extensions of
the RMCLS and PMINT techniques appear to achieve a high dereverberation per-
formance, both in terms of reverberant energy suppression and perceptual speech
quality improvement. Aiming to determine the most effective method for increasing
robustness and the most perceptually advantageous techniques, in this chapter we
compare all robust extensions of the RMCLS and PMINT techniques using instru-
mental performance measures for several acoustic scenarios, i.e., for several acoustic

This chapter is partly based on:
[135] I. Kodrasi, B. Cauchi, S. Goetze, and S. Doclo, “Objective and subjective evaluation of

robust acoustic multi-channel equalization,” Journal of the Audio Engineering Society, 2016,
manuscript submitted for publication.
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systems and RIR perturbations levels. Since instrumental performance measures do
not necessarily correlate well with human perception, we have also conducted a
subjective listening test, evaluating the overall speech quality.
In Section 7.1 the considered acoustic systems and the used algorithmic settings are
introduced. By means of instrumental performance measures, simulation results in
Section 7.2 show that the regularized RMCLS and PMINT techniques yield the high-
est dereverberation performance, while for some acoustic scenarios, the performance
of the sparsity-promoting RMCLS and PMINT techniques is also comparable. The
listening test results in Section 7.3 show that the robust extensions of the PMINT
technique typically yield a better perceptual speech quality than the robust exten-
sions of the RMCLS technique. While the sparsity-promoting PMINT technique
yields the best perceptual speech quality when the level of RIR perturbations is
low, the regularized PMINT technique yields the best perceptual speech quality
when the level of RIR perturbations is high.

7.1 Acoustic systems and algorithmic settings

We have considered two different acoustic systems with a single speech source and
M = 4 omni-directional microphones.1 For each acoustic system, Table 7.1 presents
the room reverberation time T60, the direct-to-reverberant ratio DRR, the source-
microphone distance dsm, the inter-microphone distance dim , and the length of the
room impulse responses Lh at a sampling frequency fs = 8 kHz. To generate the
reverberant signals, 10 sentences (approximately 17s) from the HINT database [163]
have been convolved with the measured RIRs.
Similarly as in Section 3.4, in order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as described in Section 2.2. The
considered normalized projection misalignment (NPM) values between the true and
the perturbed RIRs are (cf. (2.52))

NPM1 = −33 dB and NPM2 = −15 dB. (7.1)

The following robust extensions of the RMCLS and PMINT techniques are investi-
gated:

Table 7.1: Characteristics of the considered acoustic systems.

Acoustic system T60 [ms] DRR [dB] dsm [m] dim [m] Lh

S1 450 0 3 0.05 3600

S2 610 −2 2 0.04 4880

1 Note that the first considered acoustic system is the same as in Chapters 3, 4, and 5.
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i) L-RMCLS: the RMCLS technique using a shorter reshaping filter length, cf.
Section 4.1,

ii) R-RMCLS: the regularized RMCLS technique, cf. Section 5.2,
iii) S-RMCLS: the weighted l1-norm sparsity-promoting RMCLS technique, cf.

Section 6.3,
iv) L-PMINT: the PMINT technique using a shorter reshaping filter length, cf.

Section 4.1,
v) R-PMINT: the regularized PMINT technique, cf. Section 5.2,
vi) S-PMINT: the weighted l1-norm sparsity-promoting PMINT technique, cf.

Section 6.3.
For all considered techniques, the conventionally used reshaping filter length is Lt =⌈
Lh−1
M−1

⌉
= 1200 for the first acoustic system and Lt =

⌈
Lh−1
M−1

⌉
= 1627 for the second

acoustic system. Furthermore, the delay is set to τ = 90 and the performance for
the desired window length Ld = 10 ms is investigated. The target equalized impulse
response for the robust extensions of the PMINT technique is set to the direct path
and the early reflections of the perturbed RIR of the first microphone, i.e., ĥe,1.
The considered reshaping filter lengths Ls for the L-RMCLS and L-PMINT tech-
niques, the considered regularization parameters δ for the R-RMCLS and R-PMINT
techniques, and the considered weighting and penalty parameters η and ρ for the
S-RMCLS and S-PMINT techniques are

Ls ∈ {500, 600, . . . , Lt}, (7.2)

δ ∈ {10−7, 10−6, . . . , 10−1, 1, 3, 5, 7, 10}, (7.3)

η ∈ {10−7, 10−6, 10−5, 10−4}, (7.4)

ρ ∈ {10−7, 10−6, . . . , 10−1}. (7.5)

Similarly as in Chapters 4, 5, and 6, the optimal reshaping filter length Lo for the
L-RMCLS and L-PMINT techniques, the optimal regularization parameter δo for
the R-RMCLS and R-PMINT techniques, and the optimal weighting and penalty
parameters ηo and ρo for the S-RMCLS and S-PMINT techniques are determined
intrusively as the ones maximizing the PESQ score.

7.2 Objective evaluation

Using the instrumental performance measures described in Section 2.3, the derever-
beration performance is evaluated in terms of the reverberant energy suppression
and the perceptual speech quality improvement. The reverberant energy suppression
is evaluated using the direct-to-reverberant ratio improvement (∆DRR) between the
equalized impulse response c and the true RIR h1 (cf. (2.53)). The perceptual speech
quality improvement is evaluated using the improvement in PESQ [153] (∆PESQ)
and in cepstral distance [154] (∆CD) between the output speech signal z(n) and the
reverberant microphone signal x1(n). The reference signal employed for the PESQ
and cepstral distance measures is xe,1(n) = s(n) ∗ he,1(n), i.e., the clean speech
signal convolved with the direct path and the early reflections of the first RIR.
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Fig. 7.1 presents the DRR improvement for the considered acoustic systems and
NPM values. The following conclusions can be drawn by comparing the presented
DRR improvement values:

i) The robust extensions of the RMCLS technique generally yield a similar or
higher DRR improvement than the robust extensions of the PMINT tech-
nique (except for the R-PMINT technique outperforming the R-RMCLS tech-
nique for S1-NPM2 and the L-PMINT technique outperforming the L-RMCLS
technique for S2-NPM2).

ii) The R-RMCLS technique typically yields the highest DRR improvement for
the considered scenarios (except for the scenario S1-NPM2 where the
S-RMCLS technique yields the highest DRR improvement).

iii) The R-PMINT and S-PMINT techniques result in a similar DRR improve-
ment.

iv) The L-RMCLS and L-PMINT techniques yield the lowest DRR improvement
out of all proposed robust extensions This is not surprising since these tech-
niques simply use a shorter reshaping filter, without explicitly taking into
account the structure of the RIR perturbations or the characteristics of the
output speech signal.

v) The performance of all considered techniques is generally higher for the first
acoustic system than for the second acoustic system. This may be explained
by the higher reverberation time of the second acoustic system, leading to a
larger number of perturbed RIR taps to be reshaped, and hence, an increased
sensitivity of all considered techniques to RIR perturbations.

In order to evaluate the perceptual speech quality obtained by the robust exten-
sions of the RMCLS and PMINT techniques, Figs. 7.2a and 7.2b depict the ∆PESQ
and ∆CD values for the considered scenarios. Both instrumental perceptual quality
measures show that the regularized techniques yield a similar or higher perceptual
speech quality than the other proposed robust extensions, with the R-RMCLS tech-
nique yielding a slightly higher PESQ score than the R-PMINT technique and the
R-PMINT technique yielding a slightly lower cepstral distance than the R-RMCLS
technique. However, for the second acoustic system (i.e., for the scenarios S2-NPM1
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Fig. 7.1: The DRR improvement obtained using the robust extensions of the RMCLS and
PMINT techniques.
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Fig. 7.2: Performance of the robust extensions of the RMCLS and PMINT techniques in
terms of (a) ∆PESQ and (b) ∆CD.

and S2-NPM2), also the performance of the S-RMCLS and S-PMINT techniques is
comparable to the performance of the R-RMCLS and R-PMINT techniques.
Summarizing these simulation results, based on instrumental performance mea-
sures it can be said that the regularized RMCLS and PMINT techniques yield
the highest performance in terms of reverberant energy suppression and/or percep-
tual speech quality improvement. In addition, for certain scenarios, the sparsity-
promoting RMCLS and PMINT techniques also appear to yield a comparable per-
formance.

7.3 Subjective evaluation

Since instrumental performance measures do not necessarily correlate well with hu-
man perception, especially in the context of speech dereverberation, we have also
compared the proposed robust extensions using a subjective listening test, eval-
uating the overall speech quality. The subjective evaluation is based on a multi
stimulus test with hidden reference and anchor (MUSHRA) using the specifications
in [199]. The same scenarios described in Section 7.1 are considered, i.e., 2 acoustic
systems and 2 NPM values. The subjective evaluation is conducted for the reverber-
ant microphone signal x1(n) and for the output speech signals obtained using the
L-RMCLS, R-RMCLS, S-RMCLS, L-PMINT, R-PMINT, and S-PMINT techniques.
In addition to these signals, a hidden reference and an anchor are presented to the
subjects. The hidden reference is xe,1(n), i.e., the clean speech signal convolved
with the direct path and the early reflections of the true RIR. The anchor is the
low-pass filtered microphone signal x1(n) (cut-off frequency of 3 kHz). The signals
are diotically presented to the subjects through headphones (Sennheiser HDA 200)
at a sampling frequency fs = 8 kHz (using an RME Fireface UFX sound card),
with all signals normalized in amplitude.
A total of 13 self-reported normal-hearing subjects who are familiar with speech
processing participated in the listening test. The subjects evaluated 2 sentences (ap-
proximately 4 s long) for each considered scenario in terms of the attribute “overall
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speech quality” on a scale from 0 to 100. Prior to the actual measurements, the
subjects were trained to familiarize themselves with the task and the signals under
test. Furthermore, they could adjust the sound volume to a comfortable level. The
order of presentation of signals and scenarios were randomized between all subjects.
The obtained MUSHRA scores are summarized in Fig. 7.3, where the scores for
the different considered scenarios are individually plotted for clarity of presentation.
For all considered scenarios, it can generally be observed that the rating variability
between subjects (as shown by the whiskers in each boxplot) is rather large. This
is commonly the case for subjective listening tests evaluating the overall speech
quality achieved by dereverberation algorithms, cf. e.g., [63,200]. Since the artifacts
and distortions produced by different techniques are quite different, these artifacts
and distortions may be differently judged by different listeners and the perception
of these distortions by different subjects is also rather different.
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Fig. 7.3: MUSHRA scores for the anchor, reverberant microphone signal x1(n), and output
speech signals obtained using the robust extensions of the RMCLS and PMINT
techniques for (a) acoustic system 1 and NPM1 = −33 dB (S1-NPM1), (b) acous-
tic system 2 and NPM1 = −33 dB (S2-NPM1), (c) acoustic system 1 and NPM2 =
−15 dB (S1-NPM2), and (d) acoustic system 2 and NPM2 = −15 dB (S2-NPM2).
The scores of the hidden reference, close to 100 with small variance, are not dis-
played. On each box, the central mark is the median, the edges of the box are the
25-th and 75-th percentiles, and the whiskers extend to 1.5 times the interquartile
range from the median.
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For the moderate RIR perturbation level NPM1 = −33 dB, Figs. 7.3a and 7.3b
show that the S-PMINT technique yields the highest perceptual speech quality.
Furthermore, it can be observed that all proposed techniques typically improve
the perceptual speech quality in comparison to the reverberant microphone sig-
nal (except for the L-RMCLS technique yielding a worse perceptual speech quality
than the reverberant microphone signal for the second acoustic system and the
L-PMINT technique yielding a similar perceptual speech quality as the reverberant
microphone signal for the second acoustic system). In addition, the robust exten-
sions of the PMINT technique result in a better perceptual speech quality than
the robust extensions of the RMCLS technique. Finally, it can be observed that
the sparsity-promoting techniques yield the best perceptual speech quality, whereas
the techniques using a shorter reshaping filter length result in the worst perceptual
speech quality.
As the RIR perturbation level increases to NPM2 = −15 dB, Figs. 7.3c and 7.3d
show that the R-PMINT technique yields the best perceptual speech quality. In
addition, it can be observed that while for the first acoustic system all techniques
improve the perceptual speech quality in comparison to the reverberant microphone
signal, for the second acoustic system, the L-RMCLS, S-RMCLS, and S-PMINT
techniques yield a worse perceptual speech quality than the reverberant microphone
signal. In addition, it can be seen that the robust extensions of the PMINT tech-
nique result in a similar or slightly better perceptual speech quality than the robust
extensions of the RMCLS technique (except for the L-PMINT technique yielding a
worse perceptual speech quality than the L-RMCLS technique for the first acoustic
system). Moreover, it is shown that the regularized techniques yield the best percep-
tual speech quality, whereas the sparsity-promoting techniques generally result in
the worst perceptual speech quality (except for the L-RMCLS technique yielding a
worse perceptual speech quality than the S-RMCLS technique for the second acous-
tic system). Finally, it can be observed that the perceptual speech quality achieved
by all techniques is better for the first acoustic system than for the second one. This
may be explained by the higher reverberation time of the second acoustic system,
leading to a larger number of perturbed RIR taps to be reshaped, and hence, an
increased sensitivity of all considered techniques to RIR perturbations.
In summary, in all considered scenarios the trends remain similar, i.e., the robust ex-
tensions of the PMINT technique yield a similar or better perceptual speech quality
than the robust extensions of the RMCLS technique. Furthermore, the sparsity-
promoting PMINT technique results in the best perceptual speech quality for mod-
erate RIR perturbation levels, whereas the regularized PMINT technique results in
the best perceptual speech quality for high RIR perturbation levels.
To determine whether the previously discussed results are statistically significant,
a statistical analysis is conducted. Since the data is normally distributed as shown
by Shapiro-Wilk tests [201], a repeated measures analysis of variance (ANOVA)
with the factor “technique” is performed for the different considered scenarios. As
summarized in Table 7.2, the statistical analysis shows a significant influence of the
factor “technique” for all considered scenarios. To determine the sources of signifi-
cance, post-hoc tests (with Bonferroni-Holm corrections [202]) using student’s t-test
are separately conducted for each scenario. The obtained results are presented in



122 evaluation of robust equalization techniques

Table 7.2: ANOVA results for the different considered acoustic scenarios.

Scenario ANOVA result

Acoustic system 1 and NPM1 = −33 dB (S1-NPM1) F (7, 84) = 22.3, p < 0.001

Acoustic system 2 and NPM1 = −33 dB (S2-NPM1) F (7, 84) = 35.1, p < 0.001

Acoustic system 1 and NPM2 = −15 dB (S1-NPM2) F (7, 84) = 20.2, p < 0.001

Acoustic system 2 and NPM2 = −15 dB (S2-NPM2) F (7, 84) = 13.5, p < 0.001

Tables 7.3-7.6, with the ticks representing a statistically significant difference, i.e.,
p < 0.05, and the crosses representing no statistically significant difference, i.e.,
p ≥ 0.05. The presented results are obviously symmetric across the diagonal since
such entries correspond to the same pair comparison.
Table 7.3 shows that for the first acoustic system and the moderate RIR pertur-
bation level NPM1 = −33 dB, only the S-PMINT technique yields a statistically
significant improvement in comparison to the reverberant microphone signal. Fur-
thermore, it can be observed that the S-PMINT technique is statistically significant
better than most other techniques (except for the S-RMCLS and R-PMINT tech-
niques). After the S-PMINT technique, the R-PMINT technique appears to yield
the most statistically significant improvements in comparison to other techniques.
Table 7.4 shows that for the second acoustic system and the moderate RIR pertur-
bation level NPM1 = −33 dB, only the R-PMINT and S-PMINT techniques yield a
statistically significant improvement in comparison to the reverberant microphone
signal. Furthermore, it can be observed that the R-PMINT and S-PMINT tech-
niques are statistically significant better than all other techniques. In addition, the
robust extensions of the PMINT technique are statistically significant better than
the robust extensions of the RMCLS technique, i.e., the L-PMINT technique is sta-
tistically significant better than the L-RMCLS technique, the R-PMINT technique
is statistically significant better than the R-RMCLS technique, and the S-PMINT
technique is statistically significant better than the S-RMCLS technique.
Table 7.5 shows that for the first acoustic system and the high RIR perturbation
level NPM2 = −15 dB, only the R-RMCLS and R-PMINT techniques are statisti-
cally significant better than the reverberant microphone signal. Furthermore, it can
be observed that the R-RMCLS and R-PMINT techniques are statistically signifi-
cant better than all other techniques.
Finally, Table 7.6 shows that for the second acoustic system and the high RIR per-
turbation level NPM2 = −15 dB, only the R-PMINT technique is statistically sig-
nificant better than the reverberant microphone signal. Furthermore, the R-PMINT
technique is also statistically significant better than the L-RMCLS and S-PMINT
techniques. In addition, the R-RMCLS, S-RMCLS, and L-PMINT techniques ap-
pear to be similar and only statistically significant better than the L-RMCLS tech-
nique.
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Table 7.3: Overview of the student’s t-test results for acoustic system 1 and NPM1 =
−33 dB (S1-NPM1). The ticks represent a statistically significant difference,
i.e., p < 0.05, and the crosses represent no statistically significant difference,
i.e., p ≥ 0.05.

Anchor x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

Anchor 8 8 4 4 4 4 4

x1(n) 8 8 8 8 8 8 4

L-RMCLS 8 8 8 8 8 4 4

R-RMCLS 4 8 8 8 8 8 4

S-RMCLS 4 8 8 8 4 8 8

L-PMINT 4 8 8 8 4 4 4

R-PMINT 4 8 4 8 8 4 8

S-PMINT 4 4 4 4 8 4 8

Table 7.4: Overview of the student’s t-test results for acoustic system 2 and NPM1 =
−33 dB (S2-NPM1). The ticks represent a statistically significant difference,
i.e., p < 0.05, and the crosses represent no statistically significant difference,
i.e., p ≥ 0.05.

Anchor x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

Anchor 8 8 8 4 8 4 4

x1(n) 8 4 8 8 8 4 4

L-RMCLS 8 4 4 4 4 4 4

R-RMCLS 8 8 4 8 8 4 4

S-RMCLS 4 8 4 8 8 4 4

L-PMINT 8 8 4 8 8 4 4

R-PMINT 4 4 4 4 4 4 8

S-PMINT 4 4 4 4 4 4 8

Table 7.5: Overview of the student’s t-test results for acoustic system 1 and NPM2 =
−15 dB (S1-NPM2). The ticks represent a statistically significant difference,
i.e., p < 0.05, and the crosses represent no statistically significant difference,
i.e., p ≥ 0.05.

Anchor x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

Anchor 8 4 4 8 8 4 4

x1(n) 8 8 4 8 8 4 8

L-RMCLS 4 8 4 8 8 4 8

R-RMCLS 4 4 4 4 4 8 4

S-RMCLS 8 8 8 4 8 4 8

L-PMINT 8 8 8 4 8 4 8

R-PMINT 4 4 4 8 4 4 4

S-PMINT 4 8 8 4 8 8 4



124 evaluation of robust equalization techniques

Table 7.6: Overview of the student’s t-test results for acoustic system 2 and NPM2 =
−15 dB (S2-NPM2). The ticks represent a statistically significant difference,
i.e., p < 0.05, and the crosses represent no statistically significant difference,
i.e., p ≥ 0.05.

Anchor x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

Anchor 4 8 4 4 4 4 8

x1(n) 4 4 8 8 8 4 8

L-RMCLS 8 4 4 4 4 4 8

R-RMCLS 4 8 4 8 8 8 8

S-RMCLS 4 8 4 8 8 8 8

L-PMINT 4 8 4 8 8 8 8

R-PMINT 4 4 4 8 8 8 4

S-PMINT 8 8 8 8 8 8 4

In summary, these results confirm the benefit of using the robust extensions of
the PMINT technique to improve the perceptual speech quality over the reverber-
ant microphone signal x1(n), with the S-PMINT or R-PMINT techniques the only
techniques that yield a statistically significant improvement over the reverberant
microphone signal for all considered scenarios.

Although a full correlation analysis between objective and subjective results is be-
yond the scope of this thesis, it can be said that the objective evaluation based on
instrumental performance measures in Section 7.2 provided a good indication about
the performance of the different techniques, i.e., it indicated that the regularized and
sparsity-promoting techniques generally outperform the techniques using a shorter
reshaping filter length. Furthermore, the objective evaluation results showed that
the performance of the considered techniques for the first acoustic system is typically
better than for the second acoustic system. Similar conclusions were also deduced
from the subjective listening test results. However, the perceptual advantage of the
S-PMINT technique over the R-PMINT technique for low RIR perturbation levels
as well as the fact that not all techniques improve the perceptual speech quality
in comparison to the reverberant microphone signal could have not been directly
deduced from the objective evaluation. Therefore, it should be noted that while
objective performance measures are a valuable tool when designing speech derever-
beration techniques, the impact of acoustic multi-channel equalization techniques
can only be truly assessed using subjective listening tests.

7.4 Summary

The objective of this chapter was to determine the most effective method for in-
creasing the robustness of acoustic multi-channel equalization techniques against
RIR perturbations as well as to determine the most perceptually advantageous
technique. To this end, we conducted an objective and subjective evaluation of all
robust extensions of the RMCLS and PMINT techniques proposed in the previous
chapters for different scenarios, i.e., for different acoustic systems and NPM values.
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Objective evaluation results based on instrumental performance measures showed
that the regularized RMCLS and the regularized PMINT techniques typically yield
the best reverberant energy suppression and/or perceptual speech quality improve-
ment. Furthermore, they showed that the sparsity-promoting techniques yield a
comparable performance for some scenarios, whereas the techniques using a shorter
reshaping filter length yield the lowest performance improvement.
These trends were to a certain extent confirmed by the subjective evaluation results
based on MUSHRA. In addition, the subjective listening test also showed that
the robust extensions of the PMINT technique are generally preferred over the
robust extensions of the RMCLS technique (although the statistical significance
criterion was not always satisfied). Furthermore, it was shown that the sparsity-
promoting or regularized PMINT techniques are the only techniques that yield
a statistically significant improvement over the reverberant microphone signal for
all considered scenarios. While the sparsity-promoting PMINT technique is the
preferred technique when the level of RIR perturbations is low, the regularized
PMINT technique is the preferred technique when the level of RIR perturbations
is high. Given the robustness and perceptual advantages of the regularized PMINT
technique as confirmed by the subjective listening test, in the following chapter
dealing with joint dereverberation and noise reduction we will only consider the
regularized PMINT technique.
It should be noted that although we did not conduct a formal correlation analysis
between the objective and subjective evaluation results, it was observed that while
objective performance measures provide useful insights on the performance of dere-
verberation techniques, the impact of acoustic multi-channel equalization techniques
can only be truly assessed using subjective listening tests.
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JOINT DEREVERBERATION AND NOISE
REDUCTION BASED ON ROBUST ACOUSTIC
MULTI-CHANNEL EQUALIZATION

As shown in Chapter 7, robust acoustic multi-channel equalization techniques such
as the regularized partial multi-channel equalization technique based on the multiple-
input/ output inverse theorem (R-PMINT), are able to achieve a high dereverbera-
tion performance in the presence of room impulse response perturbations. However,
although the R-PMINT technique is able to achieve a high dereverberation perfor-
mance, it may lead to amplification of the background noise since the actual noise
statistics are not taken into account in the reshaping filter design. In this chapter
we investigate the effective integration of the dereverberation and noise reduction
tasks based on acoustic multi-channel equalization.
In Section 8.1 we propose two time domain techniques aiming at joint dereverbera-
tion and noise reduction based on acoustic multi-channel equalization. The first tech-
nique, namely R-PMINT for joint dereverberation and noise reduction (RP-DNR),
extends the R-PMINT technique by explicitly taking the noise statistics into ac-
count. In addition to the regularization parameter used in the R-PMINT technique,
the RP-DNR technique introduces another weighting parameter to trade off between
dereverberation and noise reduction. The second technique, namely multi-channel
Wiener filter (MWF) for joint dereverberation and noise reduction (MWF-DNR),
takes both the speech and the noise statistics into account and uses the R-PMINT
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[136] I. Kodrasi and S. Doclo, “Joint dereverberation and noise reduction based on acoustic mul-

tichannel equalization,” in Proc. International Workshop on Acoustic Echo and Noise Con-
trol, Antibes, France, Sep. 2014, pp. 139–143.

[137] I. Kodrasi and S. Doclo, “Incorporating the noise statistics in acoustic multi-channel equal-
ization,” in Proc. AES International Conference on Dereverberation and Reverberation of
Audio, Music, and Speech, Leuven, Belgium, Feb. 2016.

[138] I. Kodrasi and S. Doclo, “Joint dereverberation and noise reduction based on acoustic multi-
channel equalization,” IEEE/ACM Transactions on Audio, Speech, and Language Process-
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filter to compute a dereverberated reference signal for the MWF. The MWF-DNR
technique also introduces an additional weighting parameter, which now provides a
trade-off between speech distortion and noise reduction. In Section 8.2, theoretical
insights on the difference between the proposed RP-DNR and MWF-DNR tech-
niques are provided. In Section 8.3, we propose automatic non-intrusive procedures
for determining the regularization and weighting parameters in the RP-DNR and
MWF-DNR techniques. By means of instrumental performance measures, simula-
tion results in Section 8.4 demonstrate that the RP-DNR technique maintains the
high dereverberation performance of the R-PMINT technique while improving the
noise reduction performance. Furthermore, it is shown that the MWF-DNR tech-
nique yields a significantly better noise reduction performance than the RP-DNR
technique, at the expense of a worse dereverberation performance.

8.1 Joint dereverberation and noise reduction techniques

As already mentioned in Section 1.1, other than reverberation, background noise
is another commonly present source of interference in typical hands-free communi-
cation applications. Background noise arises, e.g., due to other speakers, passing
traffic, or electronic appliances. For example, the interference of traffic noise with
the use of a telephone on a busy street or the interference of a music source with
holding a conference call is probably well known to everyone. When the level of the
background noise is comparable or larger than the speech level, listening comfort
and speech intelligibility are significantly degraded [3, 4]. Furthermore, the perfor-
mance of acoustic source localization techniques and automatic speech recognition
systems also rapidly degrades with increasing background noise levels [1].
When not neglecting the background noise, as done in the previous chapters, the
output speech signal of the multi-channel speech enhancement system in Fig. 2.1 is
given by

z(n) = wTx(n) + wTv(n) = wTHT
︸ ︷︷ ︸

cT

s(n) + wTv(n), (8.1)

with w the MLw–dimensional reshaping filter vector, cf. (2.14), x(n)
the MLw-dimensional vector of the reverberant speech component, cf. (2.17), v(n)
the MLw-dimensional vector of the noise component, cf. (2.19), H the Lc ×MLw–
dimensional multi-channel convolution matrix of the true RIRs, cf. (2.24), s(n) the
Lc–dimensional clean speech vector, cf. (2.23), and c the Lc–dimensional equalized
impulse response between the clean speech signal and the output speech signal,
cf. (2.27). The acoustic multi-channel equalization techniques discussed in the pre-
vious chapters perform speech dereverberation by designing a reshaping filter w that
aims to minimize the error between the equalized impulse response (EIR) c in (8.1)
and a target EIR ct. Since the background noise v(n) is completely disregarded, the
output noise power is not controlled and may even be amplified compared to the
noise power in the microphone signals (cf. Section 8.4.3).



8.1 joint dereverberation and noise reduction techniques 129

In the following, the MLw ×MLw–dimensional correlation matrices of the rever-
berant speech component x(n), noise component v(n), and microphone signal y(n)
are defined as

Rx(n) = E{x(n)xT (n)}, (8.2)

Rv(n) = E{v(n)vT (n)}, (8.3)

Ry(n) = E{y(n)yT (n)}, (8.4)

with E denoting the expected value operator. Since the reverberant speech compo-
nent x(n) can be written as (cf. (8.1))

x(n) = HT s(n), (8.5)

the reverberant speech component correlation matrix Rx(n) can also be expressed
as

Rx(n) = HTRs(n)H, (8.6)
with Rs(n) the Lc × Lc–dimensional clean speech correlation matrix, i.e.,

Rs(n) = E{s(n)sT (n)}. (8.7)

Assuming that the speech and the noise components are uncorrelated, the micro-
phone signal correlation matrix Ry(n) can be written as

Ry(n) = Rx(n) + Rv(n). (8.8)

In order to simultaneously achieve dereverberation and reduce the output noise
power εv, with

εv = E{[wTv(n)]2} = wTRv(n)w, (8.9)
in the following sections two novel techniques are proposed, namely R-PMINT for
joint dereverberation and noise reduction, which takes the noise statistics into ac-
count, and multi-channel Wiener filter for joint dereverberation and noise reduction,
which takes both the speech and the noise statistics into account. In principle, the
proposed techniques can be used to extend any acoustic multi-channel equalization
technique that is robust against RIR perturbations and yields a high dereverbera-
tion performance. Considering the high and robust dereverberation performance of
the R-PMINT technique (as validated in Chapter 7), the techniques proposed in
this chapter are discussed as extensions of the R-PMINT technique.
For conciseness, the time index n will be omitted when possible in the remainder of
this chapter.

8.1.1 R-PMINT for joint dereverberation and noise reduction (RP-DNR)

As discussed in Section 5.2, the R-PMINT cost function and reshaping filter are
given by (cf. Tables 5.1 and 5.2)

JR-P = ‖Ĥw − ĥe,p‖22︸ ︷︷ ︸
εc

+δwTRew︸ ︷︷ ︸
εe

, (8.10)

wR-P = (ĤT Ĥ + δRe)
−1ĤT ĥe,p, (8.11)
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with Ĥ the Lc ×MLw–dimensional multi-channel convolution matrix of the per-
turbed RIRs, cf. (3.4), ĥe,p the direct path and early reflections of the p-th per-
turbed RIR, cf. (3.25), Re the matrix modeling the RIR perturbations, cf. (5.5),
εc the dereverberation error energy, cf. (5.7), εe the distortion energy due to RIR
perturbations, cf. (5.7), and δ the regularization parameter controlling the trade-off
between these two terms.
Aiming at controlling the dereverberation error energy εc, the distortion energy εe,
as well as the output noise power εv, we propose to extend the R-PMINT cost
function in (8.10) by taking the actual noise statistics explicitly into account. The
R-PMINT cost function for joint dereverberation and noise reduction (RP-DNR) is
then defined as

JRP-DNR = JR-P + µεv (8.12)

= ‖Ĥw − ĥe,p‖22︸ ︷︷ ︸
εc

+δwTRew︸ ︷︷ ︸
εe

+µwTRvw︸ ︷︷ ︸
εv

, (8.13)

with δ a regularization parameter determining the weight given to the distortion
energy and µ an additional weighting parameter determining the weight given to the
output noise power. In order to compute the filter minimizing (8.13), the gradient
of the RP-DNR cost function with respect to w is set equal to 0, i.e.,

∂JRP-DNR

∂w
= 2ĤT Ĥw − 2ĤT ĥe,p + 2δRew + µRvw = 0, (8.14)

yielding the RP-DNR filter

wRP-DNR = (ĤT Ĥ + δRe + µRv)−1ĤT ĥe,p. (8.15)

Clearly, the dereverberation and noise reduction performance of the RP-DNR filter
in (8.15) depend on the regularization and weighting parameters δ and µ. Increas-
ing the regularization parameter δ results in a higher suppression of the distortion
energy at the expense of a higher dereverberation error energy and a larger out-
put noise power, whereas increasing the weighting parameter µ results in a bet-
ter noise reduction performance at the expense of a worse dereverberation perfor-
mance (which simultaneously depends on the dereverberation error energy and the
distortion energy). While in simulations the optimal values for the parameters δ and
µ can be intrusively determined, i.e., using knowledge of the true RIRs and of the
true noise statistics, in practice an automatic non-intrusive procedure is required.
In Section 8.3 a novel procedure based on the L-hypersurface is proposed for the
joint automatic computation of both parameters.

8.1.2 Multi-channel Wiener filter for joint dereverberation and noise reduction
(MWF-DNR)

The RP-DNR technique proposed in Section 8.1.1 aims at joint dereverberation
and noise reduction by considering only the perturbed RIRs and the noise statistics.
Taking also the speech statistics into account, we propose a second technique to
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achieve joint dereverberation and noise reduction by minimizing the mean-square
error between the output speech signal and a dereverberated reference signal s

ref
,

i.e.,
J = E{(wTy − s

ref
)2}. (8.16)

The cost function in (8.16) is the well known MWF cost function [81–87], where
the reference signal for the MWF is the dereverberated speech signal. The estima-
tion of several reference signals has been considered for the MWF, e.g., the clean
speech signal [81,82,87], the reverberant speech component at an arbitrarily chosen
microphone [83,85,86], or a spatially pre-processed reference speech signal [84]. For
example, in [87] it has been proposed to use the frequency domain MWF to esti-
mate the output of a superdirective beamformer, such that joint dereverberation
and noise reduction is achieved. This technique will be discussed in more detail in
Appendix B, where we will also highlight its differences compared with the technique
proposed in this section.
Considering the high and robust dereverberation performance of the R-PMINT
technique, we propose to use the R-PMINT filter to generate the dereverberated
reference signal in (8.16), i.e.,

s
ref

= wT
R-P

x ≈ ĥTe,ps. (8.17)

Assuming that the speech and the noise components are uncorrelated, the cost
function in (8.16) can be decomposed as

J = E{(wTx−wT
R-P

x)2}︸ ︷︷ ︸
εx

+ E{(wTv)2}︸ ︷︷ ︸
εv

, (8.18)

with εx denoting the speech distortion, which now refers to the deviation of the
output speech component from the dereverberated reference signal wT

R-P
x. Similarly

as in the speech distortion weighted MWF [85], where a weighting parameter µ has
been introduced to trade off between speech distortion and noise reduction, the cost
function of the proposed multi-channel Wiener filter for joint dereverberation and
noise reduction (MWF-DNR) is defined as

JMWF-DNR = E{(wTx−wT
R-P

x)2}︸ ︷︷ ︸
εx

+µ E{(wTv)2}︸ ︷︷ ︸
εv

. (8.19)

In order to compute the filter minimizing (8.19), the gradient of the MWF-DNR
cost function with respect to w is set equal to 0, i.e.,

∂JMWF-DNR

∂w
= 2Rxw − 2RxwR-P + 2µRvw = 0, (8.20)

yielding the MWF-DNR filter

wMWF-DNR = (Rx + µRv)−1RxwR-P . (8.21)

Substituting the R-PMINT filter from (8.11) in (8.21), the MWF-DNR filter can
be written as

wMWF-DNR = (Rx + µRv)−1Rx(ĤT Ĥ + δRe)−1ĤT ct, (8.22)
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which explicitly shows the dependency of the MWF-DNR filter on the regularization
and weighting parameters δ and µ. Clearly, the dereverberation and noise reduction
performance of the MWF-DNR filter in (8.22) depends on both parameters. The
regularization parameter δ affects the dereverberation performance of the R-PMINT
filter wR-P , hence, also the reference signal wT

R-P
x for the MWF-DNR technique. The

weighting parameter µ affects the speech distortion εx (hence, the dereverberation
performance of the MWF-DNR filter) as well as the noise reduction performance.
While in simulations the optimal values for the parameters δ and µ can be intrusively
determined, i.e., using knowledge of the true RIRs and of the true speech and
noise statistics, in practice an automatic non-intrusive procedure is required. In
Section 8.3 we propose to automatically determine the regularization and weighting
parameters δ and µ using two decoupled optimization procedures based on the
L-curve method proposed in Section 5.3.

8.2 Insights on the RP-DNR and MWF-DNR techniques

As already mentioned, the performance of the RP-DNR and MWF-DNR techniques
depends on the regularization and weighting parameters δ and µ. In this section,
analytical insights on the RP-DNR and MWF-DNR techniques for several settings
of the regularization and weighting parameters are provided. We distinguish between
the following three cases:

i) both the regularization and the weighting parameters are different from 0, i.e.,
taking into account both the RIR perturbations and the background noise,

ii) the regularization parameter is different from 0 whereas the weighting param-
eter approaches 0, i.e., disregarding only the background noise, and

iii) both the regularization and the weighting parameter approach 0, i.e., disre-
garding both the RIR perturbations and the background noise.

Case i) δ 6= 0 and µ 6= 0. When taking into account both the RIR perturbations and
the background noise, the main difference between the RP-DNR and MWF-DNR
filters in (8.15) and (8.22) consists in the fact that the MWF-DNR filter uses the
true reverberant speech component correlation matrix Rx, which implicitly depends
on the true convolution matrix H and on the clean speech correlation matrix Rs,
whereas the RP-DNR filter uses only the perturbed convolution matrix Ĥ. Substi-
tuting (8.6) in (8.22), the MWF-DNR filter can be written as

wMWF-DNR = (HTRsH + µRv)−1HTRsH(ĤT Ĥ + δRe)−1ĤT ĥe,p. (8.23)

As can be seen in (8.23), unlike the RP-DNR filter, the MWF-DNR filter indirectly
incorporates knowledge of the true convolution matrix H and the clean speech cor-
relation matrix Rs. It can be shown that only when assuming that i) the clean
speech signal is uncorrelated, ii) the true RIRs are available, and iii) the regulariza-
tion parameter δ approaches 0, i.e., δ → 0, the RP-DNR and MWF-DNR filters are
equivalent.
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First, assuming that the clean speech signal is uncorrelated, i.e., Rs = σ2
sI, with σ2

s

the clean speech variance, the MWF-DNR filter is equal to

wMWF-DNR = (HTH +
µ

σ2
s

Rv)−1HTH(ĤT Ĥ + δRe)−1ĤT ĥe,p. (8.24)

Hence, even for an uncorrelated clean speech signal (which is generally not the case
in practice), the MWF-DNR filter in (8.24) differs from the RP-DNR filter in (8.15)
by indirectly incorporating the true HTH.
Second, assuming that the true RIRs are available, i.e., Ĥ = H, the RP-DNR filter
in (8.15) and the MWF-DNR filter in (8.24) can be written as

wRP-DNR = (HTH + δRe + µRv)−1HThe,p, (8.25)

wMWF-DNR = (HTH +
µ

σ2
s

Rv)−1HTH(HTH + δRe)−1HThe,p. (8.26)

Finally, assuming that the regularization parameter δ approaches 0, i.e., δ → 0, the
RP-DNR filter in (8.25) and the MWF-DNR filter in (8.26) can be written as

wRP-DNR = (HTH + µRv)−1HThe,p, (8.27)

wMWF-DNR = (HTH +
µ

σ2
s

Rv)−1HThe,p, (8.28)

where (8.28) is derived from (8.26) using limδ→0(HTH + δRe)−1HThe,p = H+he,p
(cf. Section 5.2). Comparing (8.27) and (8.28), it can be observed that under the
assumptions of an uncorrelated clean speech signal, knowledge of the true RIRs, and
δ → 0, the RP-DNR and MWF-DNR filters are equivalent (up to the scaling of the
weighting parameter µ by the clean speech variance σ2

s). However, obviously in prac-
tice the clean speech signal is correlated, i.e., Rs 6= σ2

sI, and most importantly, the
true RIRs are not known. Hence, as is experimentally validated in Section 8.4.4, by
incorporating the true speech statistics Rx in the MWF-DNR technique, the noise
reduction and the overall joint dereverberation and noise reduction performance is
significantly improved in comparison to the RP-DNR technique. The importance of
incorporating the true correlation matrix Rx is further validated in Section 8.4.4 by
the performance degradation of the MWF-DNR technique in the presence of speech
correlation matrix estimation errors.
Case ii) δ 6= 0 and µ → 0. As the weighting parameter µ approaches 0, i.e., disre-
garding the background noise but taking into account the RIR perturbations, the
RP-DNR filter in (8.15) is equal to the R-PMINT filter in (8.11), i.e.,

lim
µ→0

wRP-DNR = wR-P . (8.29)

Hence, using a small value for the weighting parameter µ in the RP-DNR technique
will result in a similar performance as the R-PMINT technique.
Similarly, assuming a full-rank reverberant speech component correlation matrix
Rx, as the weighting parameter µ approaches 0, the MWF-DNR filter in (8.22) is
also equal to the R-PMINT filter in (8.11), i.e.,

lim
µ→0

wMWF-DNR = wR-P . (8.30)
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However, the reverberant speech component correlation matrix Rx in (8.6) is typ-
ically ill-conditioned, due to the commonly-occurring rank deficiency of the clean
speech correlation matrix Rs and due to the fact that the multi-channel convolution
matrix H is a full row-rank matrix. For a rank-deficient Rx

lim
µ→0

wMWF-DNR = R+
x RxwR-P (8.31)

= [wR-P(0) wR-P(1) . . . wR-P(r − 1) 0 . . . 0]T , (8.32)

with r the rank of the reverberant speech component correlation matrix Rx.
Hence, when disregarding the background noise but taking into account the RIR
perturbations, the RP-DNR filter results in a similar performance as the R-PMINT
filter, whereas the MWF-DNR filter yields a slightly different performance from the
R-PMINT filter assuming Rx is rank-deficient.
Case iii) δ → 0 and µ→ 0. As discussed in Case ii), as the weighting parameter µ
approaches 0, the RP-DNR filter in (8.15) is equal to the R-PMINT filter in (8.11).
Furthermore, it was shown in Section 5.2 that as the regularization parameter δ
approaches 0, the R-PMINT filter is equal to the PMINT filter. Therefore, as the
regularization and weighting parameters δ and µ approach 0, i.e., disregarding the
RIR perturbations and the background noise, the RP-DNR filter in (8.15) is equal
to the PMINT filter in (3.27), i.e.,

lim
δ→0
µ→0

wRP-DNR = wP . (8.33)

Hence, using small values for the regularization and the weighting parameters in the
RP-DNR technique will result in a similar performance as the PMINT technique,
i.e., a high sensitivity to RIR perturbations and noise amplification.
Similarly, assuming a full-rank speech correlation matrix Rx, as the regularization
and weighting parameters δ and µ approach 0, the MWF-DNR filter in (8.22) is
also equal to the PMINT filter in (3.27), i.e.,

lim
δ→0
µ→0

wMWF-DNR = wP , (8.34)

whereas for a rank-deficient speech correlation matrix Rx of rank r, the minimum
l2-norm MWF-DNR filter is equal to the first r coefficients of the PMINT filter, i.e.,

lim
δ→0
µ→0

wMWF-DNR = R+
x RxwP (8.35)

= [wP(0) wP(1) . . . wP(r − 1) 0 . . . 0]T . (8.36)

Hence, when disregarding both the RIR perturbations and the background noise,
the RP-DNR filter results in a similar performance as the PMINT filter, whereas
the MWF-DNR filter yields a slightly different performance from the PMINT filter
assuming Rx is rank-deficient.
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8.3 Automatic regularization and weighting parameters

The optimal value of the regularization and weighting parameters in the RP-DNR
and MWF-DNR techniques depends on the acoustic system, the RIR perturbations,
the background noise, as well as on what is more important for the considered ap-
plication, i.e., dereverberation or noise reduction. While in simulations these param-
eters can be determined intrusively, i.e., using knowledge of the true RIRs and of
the speech and noise statistics, in practice an automatic non-intrusive procedure is
required. In Section 5.3 an automatic non-intrusive procedure based on the L-curve
has been proposed for determining the regularization parameter in the R-PMINT
technique. In Section 8.3.2 we extend this procedure to the automatic computation
of the regularization and weighting parameters in the MWF-DNR technique. Fur-
thermore, in Section 8.3.1 a novel procedure based on the L-hypersurface is proposed
for the joint automatic computation of both parameters in the RP-DNR technique.

8.3.1 Automatic regularization and weighting parameters in the RP-DNR tech-
nique

Different regularization and weighting parameters δ and µ obviously result in dif-
ferent RP-DNR filters in (8.15), yielding different dereverberation error energy εc,
distortion energy εe, and output noise power εv, with

εc = ‖ĤwRP-DNR − ct‖22, (8.37)

εe = wT
RP-DNR

RewRP-DNR , (8.38)

εv = wT
RP-DNR

RvwRP-DNR . (8.39)

Similarly as for the regularization parameter in the R-PMINT technique, appropri-
ate parameters δ and µ in the RP-DNR technique should incorporate knowledge
about the dereverberation error energy, the distortion energy, and the output noise
power, such that all three terms are low. Motivated by the simplicity and the appli-
cability of the L-curve for regularizing least-squares techniques [170], the so-called
L-hypersurface has been proposed in [203] as a multi-parameter generalization of
the L-curve. Hence, similarly to the L-curve procedure where the optimal parameter
is computed as the point of maximum curvature, we propose to compute the reg-
ularization and weighting parameters δ and µ as the point of maximum Gaussian
curvature of the L-hypersurface, obtained by plotting the output noise power εv
versus the dereverberation error energy εc and the distortion energy εe for several
parameters δ and µ.
Fig. 8.1 depicts an exemplary L-hypersurface obtained by plotting εv versus εc and
εe for several regularization and weighting parameters δ and µ for the RP-DNR tech-
nique. The point of maximum Gaussian curvature of the L-hypersurface is also de-
picted. Although the Gaussian curvature of a surface can be analytically computed,
numerical inaccuracies due to the manipulation of typically large-dimensional ma-
trices can occur when maximizing the curvature [204] (cf. Section 5.3), such that
a numerically stable algorithm is required. In this chapter, the minimum distance
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Fig. 8.1: Exemplary parametric surface of the output noise power εv versus the derever-
beration error energy εc and the distortion energy εe for the RP-DNR technique,
with the regularization and weighting parameters δ and µ ranging from 10−7 to
10.

method proposed in [204] will be used to compute the point of maximum Gaussian
curvature.

8.3.2 Automatic regularization and weighting parameter in the MWF-DNR tech-
nique

Also for the MWF-DNR technique, different regularization and weighting parame-
ters δ and µ result in different MWF-DNR filters in (8.22), yielding different dere-
verberation error energy εc, distortion energy εe, speech distortion εx, and output
noise power εv. To automatically determine the regularization and weighting pa-
rameters δ and µ for the MWF-DNR technique, we propose to use two decoupled
optimization procedures based on the L-curve as described in the following.

In order to obtain a dereverberated reference signal wT
R-P

x, first the parameter δ
is automatically computed using the L-curve procedure proposed in Section 5.3 for
determining the regularization parameter in the R-PMINT technique.
Second, for the determined regularization parameter δ, i.e., for a fixed filter wR-P ,
changing the weighting parameter µ in the MWF-DNR technique yields a different
speech distortion εx and output noise power εv, i.e.,

εx = wT
MWF-DNR

RxwMWF-DNR − 2wT
MWF-DNR

RxwR-P + wT
R-P

RxwR-P , (8.40)

εv = wT
MWF-DNR

RvwMWF-DNR , (8.41)

with (8.40) derived by expanding εx = E{(wTx − wT
R-P

x)2} from (8.18). An ap-
propriate weighting parameter µ in the MWF-DNR technique should incorporate
knowledge about both the speech distortion and the output noise power, such that
both terms are small. Fig. 8.2 depicts an exemplary parametric plot of the output
noise power versus the speech distortion for a set of parameters µ. This paramet-
ric plot has an L-shape, with the point of maximum curvature, i.e., the corner of
the L-curve, located where the MWF-DNR filter changes from being dominated by
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Fig. 8.2: Exemplary parametric plot of the output noise power εv versus the speech distor-
tion εx for the MWF-DNR technique, with the weighting parameter µ ranging
from 10−7 to 10.

large speech distortion to being dominated by large output noise power. Hence, we
propose to compute the weighting parameter µ in the MWF-DNR technique as the
point of maximum curvature of this parametric plot (i.e., µ = 10−1 in the depicted
example). Similarly as for the computation of the regularization parameter in the
R-PMINT technique, the curvature of the parametric plot of εv versus εx can be
analytically computed and a one-dimensional optimization routine can be used to
maximize the curvature. However, numerical problems can occur due to the ma-
nipulation of the typically large-dimensional matrices Rx and Rv. Therefore, as in
Chapter 5, in this chapter the numerically stable triangle method proposed in [172]
will be used to determine the point of maximum curvature of the L-curve.

8.4 Simulations

In this section we investigate the dereverberation and noise reduction performance of
the proposed RP-DNR and MWF-DNR techniques. In Section 8.4.1 the considered
acoustic system and the used algorithmic settings are introduced. In Section 8.4.2
the influence of the regularization and weighting parameters on the performance
of the RP-DNR and MWF-DNR techniques is investigated. In Section 8.4.3, the
automatically parametrized RP-DNR and MWF-DNR techniques are compared to
acoustic multi-channel equalization techniques, i.e., to the PMINT and the auto-
matically regularized PMINT technique. Finally, in Section 8.4.4 the performance of
the automatically parametrized RP-DNR and MWF-DNR techniques is extensively
investigated for different noise levels, RIR perturbations, and correlation matrix
estimation errors.

8.4.1 Acoustic system and algorithmic settings

We have considered an acoustic system with a single speech source and M = 4
omni-directional microphones. The speech source is placed in broadside direction at
a distance of 2 m from the microphone array. The distance between the microphones
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is 4 cm, the room reverberation time is T60 ≈ 610 ms, and the direct-to-reverberant
ratio is DRR = −2 dB [198]. The RIRs have been measured using the swept-sine
technique [162] and the length of the RIRs has been set to Lh = 4880 at a sampling
frequency fs = 8 kHz.
To generate the reverberant speech components, 10 sentences from the HINT data-
base [163] have been convolved with the measured RIRs. The noise consists of a
directional interference and spatially diffuse noise. The interference is located in
endfire direction at a distance of 2 m from the microphones. The spatially diffuse
noise is simulated using [139]. The broadband input speech-to-diffuse noise ratio is
set to 10 dB and the broadband input speech-to-interference ratio (SIR) is varied
between −5 dB and 10 dB. The speech-plus-noise signal is approximately 17 s long
and is preceded by a 7 s long noise-only signal, which is not taken into account
during the evaluation.
Similarly as in Section 3.4, in order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as described in Section 2.2. The
considered normalized projection misalignment (NPM) values between the true and
the perturbed RIRs are (cf. (2.52))

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (8.42)

For all considered techniques, the reshaping filter length is Lw =
⌈
Lh−1
M−1

⌉
= 1672,

the delay is set to τ = 90, and the performance for the desired window length
Ld = 10 ms is investigated. Furthermore, the target equalized impulse response for
the PMINT, R-PMINT, RP-DNR, and MWF-DNR techniques is set to the direct
path and early reflections of the perturbed RIR of the first microphone, i.e., ĥe,1.
Similarly as in Section 5.5, for the distortion energy term in the R-PMINT and
RP-DNR techniques we have assumed that Re = I.
Furthermore, the speech and noise correlation matrices are computed as follows:

i) perfectly estimated from the speech and noise signals in order to evaluate
the full potential of the proposed techniques by avoiding correlation matrix
estimation errors (Sections 8.4.2 and 8.4.3), i.e.,

Rx =
1

L

L∑

l=1

xlx
T
l , Rv =

1

L

L∑

l=1

vlv
T
l , (8.43)

with L denoting the number of available speech-plus-noise signal vectors.
ii) erroneously estimated as Rx = Ry−Rv, with Ry estimated during the speech-

plus-noise period and Rv estimated during the noise-only period in order to
achieve a more realistic evaluation of the proposed techniques (Section 8.4.4),
i.e.,

Ry =
1

L

L∑

l=1

yly
T
l , Rv =

1

Lv

Lv∑

l=1

vlv
T
l , Rx = Ry −Rv, (8.44)

with Lv denoting the number of available noise-only signal vectors. Due to
the fact that the speech and noise signals are not perfectly uncorrelated and
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the noise is nonstationary, computing the speech correlation matrix as Rx =
Ry − Rv may not yield a positive semi-definite matrix, particularly at low
input SIR. The estimated Rx is therefore forced to be a positive semi-definite
matrix by computing its eigenvalue decomposition and setting the negative
eigenvalues equal to 0.

Using the instrumental performance measures described in Section 2.3, the dere-
verberation performance is evaluated in terms of the reverberant energy suppres-
sion and the perceptual speech quality improvement. The reverberant energy sup-
pression is evaluated using the direct-to-reverberant ratio improvement (∆DRR)
between the equalized impulse response c and the true RIR h1 (cf. (2.53)). The
improvement in perceptual speech quality is evaluated using the improvement in
PESQ [153] (∆PESQ) between the output speech component zx(n) and the rever-
berant speech component x1(n). The reference signal employed for the PESQmeasure
is xe,1(n) = s(n) ∗ he,1(n), i.e., the clean speech signal convolved with the direct
path and early reflections of the first RIR. Furthermore, the noise reduction per-
formance is evaluated in terms of the noise reduction factor ψNR , (cf. (2.57)). The
joint dereverberation and noise reduction performance is evaluated in terms of the
improvement in signal-to-reverberation-and-noise ratio (∆SRNR) between the out-
put speech signal z(n) and the first microphone signal y1(n) (cf. (2.58)). In order
to evaluate the improvement in overall perceptual quality, we use the improvement
in frequency-weighted segmental SNR (∆fwSSNR) [155] between the output speech
signal z(n) and the first microphone signal y1(n), with xe,1(n) as the reference
signal.

8.4.2 Influence of the regularization and weighting parameters on the performance
of the RP-DNR and MWF-DNR techniques

In this section, the influence of the regularization and weighting parameters δ and
µ on the performance of the RP-DNR and MWF-DNR techniques is investigated
for an exemplary scenario of SIR = 0 dB and NPM = −33 dB. The considered
regularization and weighting parameter values are

δ ∈ {10−7, 10−6, . . . , 10−1, 1, 3, 5, 7, 10}, (8.45)

µ ∈ {10−7, 10−6, . . . , 10−1, 1, 3, 5, 7, 10}, (8.46)

and the speech and noise correlation matrices are perfectly estimated from the
speech and noise signals as in (8.43).

Figs. 8.3a and 8.3b depict the DRR improvement and the noise reduction factor
for the RP-DNR technique. It can be observed that for small values of the regu-
larization and weighting parameters δ and µ (e.g., δ = 10−7 and µ = 10−7), the
dereverberation performance is high whereas the background noise is amplified. As
expected, since the RIR perturbation level is relatively low, i.e., NPM = −33 dB,
also the optimal value of the regularization parameter δ required for a high dere-
verberation performance is small (e.g., δ = 10−7). In addition, a small value of the
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Fig. 8.3: Performance of the RP-DNR technique for different regularization and weighting
parameters δ and µ in terms of (a) ∆DRR and (b) ψNR . The circles denote
the automatically determined regularization and weighting parameters (NPM =
−33 dB, SIR = 0 dB).

weighting parameter µ (e.g., µ = 10−7), i.e., (almost) disregarding the background
noise, leads to noise amplification. Furthermore, it can be observed in Fig. 8.3a
that for a fixed value of the weighting parameter µ (e.g., µ = 10−5), increasing the
regularization parameter δ initially yields a slight increase in ∆DRR (not visible
in Fig. 8.3a), however, as the regularization parameter δ is increased beyond 10−5,
the ∆DRR values decrease. This is to be expected since as already mentioned, for
a relatively low RIR perturbation level, i.e., NPM = −33 dB, the optimal value
of the regularization parameter δ required for a high dereverberation performance
is small. Furthermore, it can be observed in Fig. 8.3b that for a fixed value of the
weighting parameter µ (e.g., µ = 10−5), increasing the regularization parameter δ
also increases the noise reduction factor. This can be explained by the fact that
for increasing values of the regularization parameter δ the energy of the resulting
RP-DNR filter decreases (since δI is used as the regularization term), which results
in a smaller output noise power. As expected, for a fixed value of the regularization
parameter δ (e.g., δ = 10−5), increasing the weighting parameter µ results in a
trade-off between dereverberation and noise reduction performance, as can be seen
by the decrease in DRR improvement and the increase in noise reduction factor.
However, for large values of the regularization parameter δ (e.g., δ = 1), increasing
the weighting parameter µ hardly has any effect on the dereverberation or the noise
reduction performance, since the resulting RP-DNR filter has very low energy.
For the considered scenario, the procedure proposed in Section 8.3.1 for automat-
ically determining the regularization and weighting parameters based on the L-
hypersurface yields δ = 10−3 and µ = 3, which are denoted by the circles in
Figs. 8.3a and 8.3b. While it is not possible to judge upon the optimality of a set
of parameters, it can be observed that the automatic procedure yields parameters
which result in a reasonable trade-off between dereverberation and noise reduction
performance. This is also confirmed in Section 8.4.4 for other NPM and SIR values.

Figs. 8.4a and 8.4b depict the DRR improvement and the noise reduction factor
for the MWF-DNR technique. Similarly as for the RP-DNR technique, it can be
observed that for small values of the regularization and weighting parameters δ and
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Fig. 8.4: Performance of the MWF-DNR technique for different regularization and weight-
ing parameters δ and µ in terms of (a) ∆DRR and (b) ψNR . The circles denote
the automatically determined regularization and weighting parameters (NPM =
−33 dB, SIR = 0 dB).

µ (e.g., δ = 10−7 and µ = 10−7), the dereverberation performance is high whereas
the background noise is amplified. Furthermore, it can be observed in Fig. 8.4a
that for a fixed value of the weighting parameter µ (e.g., µ = 10−5), increasing the
regularization parameter δ initially yields a slight increase in ∆DRR (not visible
in Fig. 8.3a), however, as the regularization parameter δ is increased beyond 10−4,
the ∆DRR values decrease. This is to be expected since as already mentioned, for
a relatively low RIR perturbation level, i.e., NPM = −33 dB, the optimal value of
the regularization parameter δ required for a high dereverberation performance is
small. Again similarly as for the RP-DNR technique, Fig. 8.4b shows that for a fixed
value of the weighting parameter µ (e.g., µ = 10−5), increasing the regularization
parameter δ also increases the noise reduction factor. Furthermore, as expected,
for a fixed value of the regularization parameter δ (e.g., δ = 10−5), increasing
the weighting parameter µ results in a trade-off between dereverberation and noise
reduction performance, as illustrated by the decrease in DRR improvement and the
increase in noise reduction factor.
For the considered example, the procedure proposed in Section 5.3 for automati-
cally determining the regularization parameter δ in the R-PMINT technique yields
δ = 10−3. Using this R-PMINT filter, the procedure proposed in Section 8.3.2 for
automatically determining the weighting parameter µ in the MWF-DNR technique
yields µ = 10−1. These parameter values are denoted by the circles in Figs. 8.4a
and 8.4b. It can be observed that the two decoupled L-curve procedures for automat-
ically determining the regularization and weighting parameters in the MWF-DNR
technique yield parameters which result in a reasonable trade-off between derever-
beration and noise reduction performance. This is also confirmed in Section 8.4.4
for other NPM and SIR values.

As shown by these simulation results, taking the RIR perturbations and the back-
ground noise into account by using appropriate regularization and weighting param-
eters is important to achieve joint dereverberation and noise reduction.
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8.4.3 Comparison of the automatically parametrized RP-DNR and MWF-DNR
techniques to acoustic multi-channel equalization

To further illustrate the importance of taking the noise statistics into account,
in this section the performance of the automatically parametrized RP-DNR and
MWF-DNR techniques is compared to the performance of the PMINT and the
automatically regularized PMINT techniques, which do not take the actual noise
statistics into account.1 The considered input SIRs are

SIR ∈ {0 dB, 5 dB}, (8.47)

and the presented performance measures for each SIR are averaged over the different
NPM values in (8.42). Furthermore, the speech and noise correlation matrices for
the RP-DNR and MWF-DNR techniques are perfectly estimated as in (8.43).
Tables 8.1 and 8.2 present the obtained ∆DRR, ∆PESQ, ψ

NR
, ∆SRNR, and

∆fwSSNR values for SIR = 0 dB and SIR = 5 dB. As shown by the negative
∆DRR and ∆PESQ values, as expected, the PMINT technique fails to achieve dere-
verberation, introducing additional distortions in the output speech signal. On the
other hand, by taking the RIR perturbations into account, the R-PMINT technique
achieves a high reverberant energy suppression (∆DRR = 9.37 dB) and perceptual
speech quality improvement (∆PESQ = 0.61). Furthermore, the proposed RP-DNR
and MWF-DNR techniques achieve a very similar dereverberation performance as
the R-PMINT technique. Although one would expect the dereverberation perfor-
mance of the RP-DNR and MWF-DNR techniques to be worse than the derever-
beration performance of the R-PMINT technique, the dereverberation performance
is very similar. This occurs due to the automatic computation of the regularization

Table 8.1: Performance of the PMINT technique, automatically regularized R-PMINT
technique, and automatically parametrized RP-DNR and MWF-DNR tech-
niques (averaged over several NPM values; SIR = 0 dB). For each performance
measure, the best performance is highlighted.

Measure PMINT R-PMINT RP-DNR MWF-DNR

∆DRR [dB] −10.26 9.37 9.33 9.23

∆PESQ −0.38 0.61 0.60 0.60

ψ
NR

[dB] −28.54 1.60 4.46 11.79

∆SRNR [dB] −12.06 2.13 3.78 7.18

∆fwSSNR [dB] −1.80 1.03 1.16 2.82

1 Note than in the regularized PMINT technique the matrix Re can also be interpreted as a noise
correlation matrix. However, we have assumed Re = I, which does not correspond to the actual
noise statistics.
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Table 8.2: Performance of the PMINT technique, automatically regularized R-PMINT
technique, and automatically parametrized RP-DNR and MWF-DNR tech-
niques (averaged over several NPM values; SIR = 5 dB). For each performance
measure, the best performance is highlighted.

Measure PMINT R-PMINT RP-DNR MWF-DNR

∆DRR [dB] −10.28 9.37 9.37 9.28

∆PESQ −0.38 0.61 0.61 0.61

ψ
NR

[dB] −27.98 1.47 2.25 8.86

∆SRNR [dB] −10.09 2.25 2.56 4.98

∆fwSSNR [dB] −2.76 1.49 1.57 2.84

parameter in the R-PMINT technique, which does not yield the optimal dereverber-
ation performance one would obtain by intrusively determining the regularization
parameter. Furthermore, as expected and as illustrated by the negative noise reduc-
tion factor, the PMINT technique leads to a very large noise amplification. Due to
the decrease of the filter energy by incorporating a regularization parameter, the
R-PMINT technique slightly reduces the noise by 1.60 dB for SIR = 0 dB and by
1.47 dB for SIR = 5 dB. However, by taking the actual noise statistics explicitly
into account, the proposed RP-DNR technique improves the noise reduction fac-
tor to 4.46 dB for SIR = 0 dB and to 2.56 dB for SIR = 5 dB. By additionally
taking the speech statistics into account the proposed MWF-DNR technique yields
an even larger noise reduction factor of 11.79 dB for SIR = 0 dB and of 8.86 dB
for SIR = 5 dB. The better joint dereverberation and noise reduction performance
of the proposed RP-DNR and MWF-DNR techniques in comparison to acoustic
multi-channel equalization techniques is also illustrated by the higher ∆SRNR and
∆fwSSNR values presented in Tables 8.1and 8.2, where the MWF-DNR technique
outperforms the RP-DNR technique in terms of both instrumental measures.
Summarizing these results, it can be said that the noise statistics should be taken
into account in order to avoid noise amplification and to achieve joint dereverbera-
tion and noise reduction. By additionally taking the speech statistics into account,
an overall better performance can be achieved.

8.4.4 Performance of the automatically parametrized RP-DNR and MWF-DNR
techniques

In this section the performance of the automatically parametrized RP-DNR and
MWF-DNR techniques is extensively investigated for different noise levels, RIR
perturbation levels, and correlation matrix estimation errors. The considered input
SIRs are

SIR ∈ {−5 dB, −2.5 dB, . . . , 10 dB}, (8.48)
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and the presented performance measures for each SIR are averaged over the different
NPM values in (8.42). The performance of the proposed RP-DNR and MWF-DNR
techniques is investigated both for perfectly estimated correlation matrices, cf. (8.43),
as well as for erroneously estimated correlation matrices, cf. (8.44).

Fig. 8.5 depicts the performance of the automatically parametrized RP-DNR and
MWF-DNR techniques for perfectly estimated speech and noise correlation matrices.
As shown by the ∆DRR and ∆PESQ values in Figs. 8.5a and 8.5b, the dereverber-
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Fig. 8.5: Performance of the automatically parametrized RP-DNR and MWF-DNR tech-
niques in terms of (a) ∆DRR, (b) ∆PESQ, (c) ψNR , (d) ∆SRNR, and
(e) ∆fwSSNR (averaged over several NPM values, perfectly estimated correlation
matrices).
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ation performance of both techniques is very similar and almost independent of the
SIR, with the RP-DNR technique yielding a slightly better performance at low input
SIRs. However, as shown by the noise reduction factor in Fig. 8.5c, the MWF-DNR
technique achieves a significantly better noise reduction performance, with the per-
formance difference decreasing for increasing input SIR. The similar dereverberation
performance but better noise reduction performance of the MWF-DNR technique is
reflected in the higher ∆SRNR and ∆fwSSNR values achieved by the MWF-DNR
technique, as depicted in Figs. 8.5d and 8.5e. Hence, it can be said that by taking
the true speech statistics into account, the MWF-DNR technique outperforms the
RP-DNR technique since it yields a similarly high dereverberation performance but
a significantly better noise reduction performance.

Fig. 8.6 depicts the performance of the automatically parametrized RP-DNR and
MWF-DNR techniques for erroneously estimated correlation matrices. Since the
RP-DNR technique only requires the noise correlation matrix and since estimating
Rv from a long enough noise-only period (for the considered spatially stationary
noise scenario) does not yield a significantly different estimate than for the previous
simulation, the performance of the RP-DNR technique in terms of all performance
measures is very similar as in Fig. 8.5. However, as shown in Figs. 8.6a and 8.6b, the
dereverberation performance of the MWF-DNR technique is significantly lower than
when using perfectly estimated correlation matrices. Due to the fact that the speech
and noise signals are not perfectly uncorrelated, estimation errors occur in the esti-
mate of the speech correlation matrix Rx = Ry −Rv, especially at low input SIRs.
These estimation errors result in a worse dereverberated reference signal RxwR-P

for the MWF-DNR technique, hence, significantly decreasing the dereverberation
performance. However, the noise reduction performance of the MWF-DNR tech-
nique is still significantly better than the performance of the RP-DNR technique,
as depicted in Fig. 8.6c. As depicted in Figs. 8.6d and 8.6e, the better noise reduc-
tion performance of the MWF-DNR technique also results in higher ∆SRNR and
∆fwSSNR values.
It should be noted that the noise reduction and the joint dereverberation and noise
reduction performance of the MWF-DNR technique for erroneously estimated cor-
relation matrices is better than for perfectly estimated correlation matrices (cf.
Figs. 8.5 and 8.6), which may seem surprising at first. However, this can be explained
by the automatic computation of the weighting parameter µ in the MWF-DNR tech-
nique, which for erroneously estimated correlation matrices yields a larger weighting
parameter µ, hence a better noise reduction and a better joint dereverberation and
noise reduction performance at the expense of a significantly worse dereverberation
performance.
Summarizing, when the speech and noise correlation matrices can be accurately
estimated, the MWF-DNR technique outperforms the RP-DNR technique since it
yields a similarly high dereverberation performance at a significantly better noise
reduction performance. However, when the correlation matrices are prone to esti-
mation errors, the RP-DNR technique yields a significantly better dereverberation
performance but a worse noise reduction performance than the MWF-DNR tech-
nique. Hence, the technique to be used should be chosen depending on what is more
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Fig. 8.6: Performance of the automatically parametrized RP-DNR and MWF-DNR tech-
niques in terms of (a) ∆DRR, (b) ∆PESQ, (c) ψNR , (d) ∆SRNR, and
(e) ∆fwSSNR (averaged over several NPM values, erroneously estimated corre-
lation matrices).

important for the application under consideration, i.e., dereverberation or noise
reduction performance.

8.5 Summary

In this chapter we have proposed two time domain techniques for joint derever-
beration and noise reduction based on robust acoustic multi-channel equalization
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techniques. The RP-DNR technique can be seen as an extension of the R-PMINT
technique by explicitly taking the noise statistics into account. The MWF-DNR
technique in addition takes the speech statistics into account and uses the dere-
verberated output speech signal of the R-PMINT technique as the reference signal
for the MWF. In addition, we have proposed an automatic non-intrusive procedure
based on the L-hypersurface for determining the regularization and weighting pa-
rameters in the RP-DNR technique, whereas two decoupled procedures based on the
L-curve were used for automatically determining the regularization and weighting
parameters in the MWF-DNR technique.
Extensive simulation results have shown that the RP-DNR technique maintains
the high dereverberation performance of the R-PMINT technique while improv-
ing the noise reduction performance. Furthermore, it has been shown that the
MWF-DNR technique yields a significantly better noise reduction performance than
the RP-DNR technique at the expense of a worse dereverberation performance, de-
pending on the amount of estimation errors in the speech correlation matrix.





9
CONCLUSION AND FURTHER RESEARCH

In this chapter we summarize the main contributions of this thesis and provide
directions for further research.

9.1 Conclusion

In many hands-free speech communication applications such as teleconferencing or
voice-controlled applications, the recorded microphone signals do not only contain
the desired speech signal, but also attenuated and delayed copies of the desired
speech signal due to reverberation as well as additive background noise. Reverber-
ation and background noise cause a signal degradation which can impair speech
intelligibility and which decreases the performance for many signal processing tech-
niques.

The main objective of this thesis was to develop and optimally combine robust
and perceptually advantageous speech dereverberation algorithms with noise re-
duction algorithms. Given that acoustic multi-channel equalization techniques for
speech dereverberation offer the potential to achieve perfect dereverberation per-
formance, these techniques were the central topic of this thesis. Since acoustic
multi-channel equalization techniques require measured or estimated room impulse
responses (RIRs) to be available, we investigated methods to increase the robust-
ness of multi-channel equalization techniques against RIR perturbations. On the
one hand, we proposed signal-independent methods, i.e., decreasing the reshaping
filter length to improve the conditioning of the optimization criteria or incorpo-
rating regularization to reduce the energy of distortions due to RIR perturbations.
On the other hand, we proposed a signal-dependent method, i.e., using a sparsity-
promoting penalty function to sparsify the output speech signal and reduce artifacts
generated by non-robust techniques. All proposed methods have been validated us-
ing instrumental performance measures and subjective listening tests. In addition,
we proposed techniques to achieve joint dereverberation and noise reduction based
on robust acoustic multi-channel equalization.

In Chapter 3 we reviewed state-of-the-art acoustic multi-channel equalization tech-
niques, i.e., the multiple-input/output inverse theorem (MINT), channel shorten-
ing (CS), and relaxed multi-channel least-squares (RMCLS) techniques. In addition,

149
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we proposed a least-squares perceptually advantageous equalization technique, i.e.,
the partial multi-channel equalization technique based on the multiple-input/output
inverse theorem (PMINT), which aims to simultaneously preserve the perceptual
speech quality and suppress the late reverberation. The PMINT technique preserves
the perceptual speech quality by setting the early reflections of the target equal-
ized impulse response equal to the early reflections of one of the available RIRs.
In addition, similarly as in other state-of-the-art least-squares techniques, the late
reverberation is suppressed by setting the late reflections of the target equalized
impulse response equal to zero. Furthermore, we established a generalized frame-
work for least-squares equalization techniques, i.e., MINT, RMCLS, and PMINT,
which enabled to analyze the properties (existence and uniqueness) of the resulting
reshaping filters. Based on this generalized framework, we analytically showed that
least-squares techniques yield reshaping filters which lie in the subspace spanned by
the multiple channel shortening solutions. Simulation results illustrated the impor-
tance of preserving the early reflections in order to improve the perceptual speech
quality (e.g., for perfectly estimated RIRs with reverberation time T60 ≈ 450 ms
and the length of early reflections set to Ld = 10 ms, the RMCLS technique yields
∆PESQ = 1.5, whereas the PMINT technique yields ∆PESQ = 2.3). Furthermore,
these results highlighted the necessity to increase the robustness of all considered
acoustic multi-channel equalization techniques against RIR perturbations (e.g., for
perturbed RIRs with T60 ≈ 450 ms, Ld = 10 ms, and several perturbation levels,
the RMCLS technique yields on average ∆DRR = 3.7 dB and ∆PESQ = −0.1,
whereas the PMINT technique yields on average ∆DRR = −16.6 dB and ∆PESQ
= −0.3).

Methods to increase the robustness of acoustic multi-channel equalization tech-
niques against RIR perturbations were proposed in Chapters 4, 5, and 6.

In order to improve the conditioning of the optimization criteria, in Chapter 4
we proposed to increase the robustness of equalization techniques by decreasing
the reshaping filter length. We derived a mathematical link between the reshaping
filter length and the condition number of the (weighted) multi-channel convolu-
tion matrix, showing that shorter reshaping filters than conventionally used yield a
smaller condition number, i.e., a higher robustness of the least-squares equalization
techniques against RIR perturbations. Furthermore, we analytically showed that
shorter reshaping filters in the channel shortening technique are also more robust
against RIR perturbations, since they result in a better conditioned generalized
eigenvalue optimization criterion with finite generalized eigenvalues. The presented
simulation results validated the theoretical derivations, i.e., decreasing the reshap-
ing filter length increases the robustness of the MINT, CS, RMCLS, and PMINT
techniques, yielding a better dereverberation performance in the presence of RIR
perturbations (e.g., for perturbed RIRs with T60 ≈ 450 ms, Ld = 10 ms, and several
perturbation levels, using shorter reshaping filters in RMCLS improves the ∆DRR
by 4.2 dB and the ∆PESQ by 0.6, whereas using shorter reshaping filters in PMINT
improves the ∆DRR by 23.4 dB and the ∆PESQ by 0.7). The advantage of using
shorter reshaping filters is two-fold. First, the computational complexity of the re-
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shaping filter design is decreased. Second, this is an effective method for increasing
robustness which does not require any prior knowledge of the structure of the RIR
perturbations. However, since this method does not incorporate any information
about the RIR perturbations, clearly also its performance is rather limited.

To directly incorporate knowledge about the structure of the RIR perturbations,
in Chapter 5 we proposed to increase the robustness of equalization techniques by
using regularization such that the energy of distortions due to RIR perturbations
is reduced. While the regularized least-squares reshaping filters were analytically
derived, an iterative optimization procedure was used to compute the regularized
channel shortening reshaping filter. Using the joint diagonalization of the (weighted)
convolution matrix and of the matrix modeling the RIR perturbations, we analyzed
the impact of regularization on the regularized least-squares reshaping filters. Fur-
thermore, we proposed to automatically and non-intrusively determine the regular-
ization parameter as the point of maximum curvature of the L-curve, obtained by
plotting the distortion energy versus the dereverberation error energy for several
regularization parameters. Although the curvature of the L-curve was analytically
derived, we used the robust triangle method to maximize the curvature in order
to avoid numerical inaccuracies. Simulation results showed that regularization sig-
nificantly increases the dereverberation performance of the MINT, CS, RMCLS,
and PMINT techniques (e.g., for perturbed RIRs with T60 ≈ 450 ms, Ld = 10 ms,
and several perturbation levels, incorporating intrusive regularization in RMCLS
improves the ∆DRR by 10.8 dB and the ∆PESQ by 1.3, whereas incorporating in-
trusive regularization in PMINT improves the ∆DRR by 26.8 dB and the ∆PESQ
by 1.3). Furthermore, the automatic non-intrusive procedure for determining the
regularization parameter proved to be very effective, yielding a similar reverberant
energy suppression and perceptual speech quality improvement as the intrusively de-
termined regularization parameter. As a result, regularized equalization techniques
can be considered to be robust and practically applicable equalization techniques
for speech dereverberation.

While both methods proposed in Chapters 4 and 5 are signal-independent meth-
ods, in Chapter 6 we proposed a signal-dependent method, i.e., increase the ro-
bustness of equalization techniques by using a sparsity-promoting penalty function
to sparsify the output speech signal and reduce artifacts generated by non-robust
techniques. We extended the least-squares and channel shortening cost functions
with different sparsity-promoting penalty functions, i.e., l0-norm, l1-norm, and the
weighted l1-norm. Furthermore, iterative algorithms based on the alternating di-
rection method of multipliers were derived to compute the sparsity-promoting re-
shaping filters. Simulation results showed that incorporating the weighted l1-norm
sparsity-promoting penalty function significantly increases the robustness of the
MINT, CS, RMCLS, and PMINT techniques against RIR perturbations (e.g., for
perturbed RIRs with T60 ≈ 360 ms, Ld = 10 ms, and the perturbation level NPM
= −33 dB, incorporating the weighted l1-norm penalty function in RMCLS im-
proves the ∆DRR by 8.6 dB and the ∆PESQ by 0.5, whereas incorporating the
weighted l1-norm penalty function in PMINT improves the ∆DRR by 22.7 dB and
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the ∆PESQ by 1.2). The advantage of sparsity-promoting equalization techniques
lies in the fact that they exploit well-established characteristics of clean speech sig-
nals, without requiring prior information about the RIR perturbations. However,
since the incorporation of sparsity-promoting penalty functions requires iterative al-
gorithms for the reshaping filter design, these techniques are computationally more
complex than the previously proposed techniques.

The simulation results in Chapters 4, 5, and 6 showed that the proposed robust
extensions of the RMCLS and PMINT techniques outperform the proposed robust
extensions of the MINT and CS techniques. The advantage of building upon the
RMCLS technique lies in its relaxation of the constraints on the reshaping filter
design, whereas the advantage of building upon the PMINT technique lies in its di-
rect control of the early reflections. In order to determine the most effective method
for increasing the robustness of acoustic multi-channel equalization techniques as
well as to determine the most perceptually advantageous technique, in Chapter 7
we conducted a subjective evaluation of all robust extensions of the RMCLS and
PMINT techniques for different scenarios, i.e., for different acoustic systems and
RIR perturbation levels. The subjective listening test showed that the robust ex-
tensions of the PMINT technique are generally preferred over the robust extensions
of the RMCLS technique. Furthermore, it was shown that the sparsity-promoting
PMINT or the regularized PMINT techniques are the only techniques that yield a
statistically significant improvement over the reverberant microphone signal for all
considered scenarios, with the sparsity-promoting PMINT technique yielding the
best perceptual speech quality for moderate RIR perturbation levels and the regu-
larized PMINT technique yielding the best perceptual speech quality for high RIR
perturbation levels.

Finally, in Chapter 8 we proposed two techniques for joint dereverberation and noise
reduction, namely the regularized PMINT technique for joint dereverberation and
noise reduction (RP-DNR) and the multi-channel Wiener filter (MWF) for joint
dereverberation and noise reduction (MWF-DNR). The RP-DNR technique can
be seen as an extension of the R-PMINT technique by explicitly taking the noise
statistics into account. The MWF-DNR technique in addition takes the speech
statistics into account and uses the dereverberated output signal of the R-PMINT
technique as the reference signal for the MWF. In addition, we have proposed an
automatic non-intrusive procedure based on the L-hypersurface for determining the
regularization and weighting parameters in the RP-DNR technique, whereas two
decoupled procedures based on the L-curve were used to automatically determine
the regularization and weighting parameters in the MWF-DNR technique. Exten-
sive simulation results have shown that the RP-DNR technique maintains the high
dereverberation performance of the R-PMINT technique while improving the noise
reduction performance (e.g., for perturbed RIRs with T60 ≈ 610 ms, Ld = 10 ms,
several perturbation levels, and a signal-to-interference ratio of 0 dB, the R-PMINT
technique yields a ∆DRR of 9.4 dB and a noise reduction factor of 1.6 dB, whereas
the RP-DNR technique yields a ∆DRR of 9.3 dB and a noise reduction factor of
4.5 dB). Furthermore, it has been shown that the MWF-DNR technique yields a
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significantly better noise reduction performance than the RP-DNR technique at
the expense of a worse dereverberation performance, depending on the amount of
estimation errors in the speech correlation matrix (e.g., for perturbed RIRs with
T60 ≈ 610 ms, Ld = 10 ms, several perturbation levels, a signal-to-interference
ratio of 0 dB, and erroneously estimated correlation matrices, the RP-DNR tech-
nique yields a ∆DRR of 9.4 dB and a noise reduction factor of 4.4 dB, whereas
the MWF-DNR technique yields a ∆DRR of 3.4 dB and a noise reduction factor of
15.9 dB).

9.2 Suggestions for further research

In this thesis several time-domain methods have been proposed to increase the
robustness of acoustic multi-channel equalization against RIR perturbations, i.e.,
i) decreasing the reshaping filter length, ii) incorporating regularization, and iii) in-
corporating sparsity-promoting penalty functions. As already mentioned, the pro-
posed robust extensions of acoustic multi-channel equalization techniques have dif-
ferent advantages. Using a shorter reshaping filter length is effective in increasing
the robustness without requiring any prior information about the RIR perturba-
tion structure. If prior information about the RIR perturbation structure can be
included, a better performance can be achieved. Hence, using regularization is more
effective since knowledge about the RIR perturbation structure is incorporated. If
this knowledge is not available, the regularized techniques would presumably not
achieve such a high performance. Furthermore, using sparsity-promoting penalty
functions is advantageous because well known characteristics of clean speech signals
are exploited and no prior knowledge about the acoustic scenario is needed. Given
the advantages of the individual techniques, investigating methods that optimally
combine all three proposed techniques would be interesting and would offer the po-
tential to increase the robustness of acoustic multi-channel equalization techniques
even further.

The effectiveness of using shorter reshaping filters was validated by intrusively deter-
mining the optimal reshaping filter length. Similarly, the effectiveness of incorporat-
ing sparsity-promoting penalty functions was validated by intrusively determining
the optimal weighting and penalty parameters. Intrusively determining these param-
eters is however not possible in practice, since knowledge of the true RIRs and of
the clean speech signal is required. In future research it should be investigated how
sensitive the performance of the proposed techniques is on these parameters. Fur-
thermore, alternative procedures should be investigated, automatically determining
the reshaping filter length and the weighting and penalty parameters using a non-
intrusive approach. One possible approach would be to use non-intrusive dereverber-
ation performance measures, such as a blind signal-based direct-to-reverberant ratio
estimator [205–207] or the non-intrusive speech-to-reverberation modulation energy
ratio measure [208]. Another alternative to automatically determine the reshaping
filter length would be to adapt the L-curve method, e.g., using the condition num-
ber of the least-squares matrix and the dereverberation error energy as the trade-off
quantities for the L-curve.
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Furthermore, although the proposed robust acoustic multi-channel equalization tech-
niques are computationally feasible techniques (particularly using shorter reshaping
filters), the computational complexity nevertheless remains quite high (particularly
incorporating sparsity-promoting penalty functions). It would be interesting to in-
vestigate methods that reduce the computational complexity of these techniques
without degrading their performance and possibly even further increase their robust-
ness. Instead of working in the time-domain, one approach would be to design the
proposed reshaping filters using decimated and oversampled subbands as in [123],
where the fullband RIRs are decomposed into equivalent subband filters prior to
equalization.

Moreover, it would be useful to investigate and compare the performance of the
different proposed techniques in the presence of more realistic RIR perturbations
arising due to spatial mismatch or blind and supervised system identification meth-
ods. Although in the presented simulation results in this thesis it was validated that
the regularized techniques generally outperform the other proposed robust tech-
niques, we expect that this is not necessarily the case when the RIR perturbation
structure cannot be well approximated.

Finally, in order to further improve the performance of acoustic multi-channel equal-
ization in realistic acoustic scenarios, the robustness of system identification meth-
ods needs to be significantly improved, such that better RIR estimates can be
delivered to acoustic multi-channel equalization techniques. If the robustness of sys-
tem identification methods improves, one can exploit the full potential of acoustic
multi-channel equalization techniques.



A
INTERLACING INEQUALITIES FOR SHORTER
RESHAPING FILTERS IN LEAST-SQUARES
EQUALIZATION TECHNIQUES

Aiming at establishing a relation between the condition numbers of the matrices
WsĤs and WtĤt, with

χ
WsĤs

=
σWsĤs

(1)

σWsĤs
(rs)

, (A.1)

χ
WtĤt

=
σWtĤt

(1)

σWtĤt
(rt)

, (A.2)

we consider the following interlacing inequalities between the singular values of a
matrix and its sub-matrices.

Interlacing inequalities [165]: Given a matrix A of dimensions u × v and a
sub-matrix B obtained by deleting l rows and/or l columns from A, the singular
values of A and B interlace as

σA(i) ≥ σB(i) ≥ σA(i+ l) i = 1, . . . , min{u− l, v − l}. (A.3)

In order to construct the matrix WsĤs, we first create an intermediate [pt − (Lt −
Ls)] × [qt − (Lt − Ls)]–dimensional sub-matrix T by deleting Lt − Ls rows and
Lt −Ls columns from WtĤt. The interlacing inequalities in (A.3) for the matrices
WtĤt and T can be written as

σWtĤt
(i) ≥ σT(i) ≥ σWtĤt

[i+ (Lt−Ls)], i = 1, . . . , rt− (Lt−Ls), . . . , pt− (Lt−Ls).
(A.4)

Using (A.4), the following inequalities between the singular values of the matrices
WtĤt and T hold:

σWtĤt
(1) ≥ σT(1), (A.5)

σT[rt − (Lt − Ls)] ≥ σWtĤt
(rt). (A.6)
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In order to construct the matrix WsĤs, (M −1)(Lt−Ls) columns are now deleted
from the matrix T. The interlacing inequalities in (A.3) for the matrices T and
WsĤs can be written as

σT(i) ≥ σWsĤs
(i) ≥ σT[i+ (M − 1)(Lt − Ls)], i = 1, . . . , rs. (A.7)

Using (A.7), the following inequalities between the singular values of the matrices
T and WsĤs hold:

σT(1) ≥ σWsĤs
(1), (A.8)

σWsĤs
(rs) ≥ σT[rs + (M − 1)(Lt − Ls)]. (A.9)

The index of the singular value in the right hand side of (A.9) can be written as

rs+(M−1)(Lt−Ls) = MLs+(M−1)(Lt−Ls) = MLt−(Lt−Ls) ≥ rt−(Lt−Ls),
(A.10)

with the inequality in (A.10) clearly holding since the number of columns in WtĤt

is greater or equal than its rank, i.e.,

qt = MLt ≥ pt ≥ rt. (A.11)

Based on (A.10) and the fact that the singular values of a matrix are sorted in
descending order, one can write

σT[rs + (M − 1)(Lt − Ls)] ≥ σT[rt − (Lt − Ls)]. (A.12)

Using (A.12), the inequality in (A.9) can also be written as

σWsĤs
(rs) ≥ σT[rt − (Lt − Ls)]. (A.13)

Finally, combining (A.5), (A.6), (A.8), and (A.13) the following inequalities relat-
ing the largest and smallest non-zero singular values of WtĤt and WsĤs can be
established:

σWtĤt
(1) ≥ σWsĤs

(1), (A.14)

σWsĤs
(rs) ≥ σWtĤt

(rt). (A.15)

It readily follows from (A.14) and (A.15) that the condition number of WsĤs is
smaller or equal than the condition number of WtĤt, i.e.,

χ
WsĤs

=
σWsĤs

(1)

σWsĤs
(rs)

≤
σWtĤt

(1)

σWtĤt
(rt)

= χ
WtĤt

. (A.16)



B
FREQUENCY DOMAIN ONE- AND
TWO-STAGE TECHNIQUES FOR JOINT
DEREVERBERATION AND NOISE
REDUCTION

In [87], a frequency domain two-stage beamforming technique for joint dereverber-
ation and noise reduction has been proposed. In the first stage, a superdirective
beamformer is applied to generate a dereverberated signal, whereas in the second
stage this dereverberated signal is used as a reference signal for a frequency domain
MWF. Although this two-stage beamforming technique appears to be very similar
to the MWF-DNR technique proposed in Section 8.1.2, three main differences arise,
i.e.,

i) the MWF-DNR technique generates the dereverberated reference signal for
the MWF using the R-PMINT filter, whereas the two-stage beamforming
technique in [87] uses a superdirective beamformer,

ii) the MWF-DNR technique is a time domain technique, whereas the two-stage
beamforming technique in [87] is a frequency domain technique, and

iii) the MWF-DNR technique is a one-stage technique applying a single filter to
achieve joint dereverberation and noise reduction, whereas the beamforming
technique in [87] is a two-stage technique applying two different filters.

Due to the substantial differences in i) and ii), a detailed performance comparison of
the MWF-DNR technique and the two-stage beamforming technique is beyond the
scope of this thesis. The difference in i) represents a substantial difference since de-
signing acoustic multi-channel equalization filters in the frequency domain is of lim-
ited use in practice, since a set of optimal equalization filters in the frequency domain
is only constrained to be stable, but not necessarily causal or finite [209, 210]. Fur-
thermore, the difference in ii) also represents a substantial difference since acoustic
multi-channel equalization techniques are non-blind techniques relying on measured
or estimated RIRs to achieve dereverberation, whereas superdirective beamforming
is a blind technique typically only requiring knowledge of the direction of arrival of
the speech source. In this appendix, we will focus on the difference in iii), i.e., using
a one-stage versus a two-stage implementation, which is relevant both for the time
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domain MWF-DNR technique as well as for the frequency domain beamforming
technique in [87].
The proposed one-stage MWF-DNR technique can be reformulated as a two-stage
technique, where in the first stage dereverberation filters are applied to generate a
dereverberated signal and in the second stage this dereverberated signal is used as
the reference signal for the MWF. Similarly, the two-stage beamforming technique
in [87] can be reformulated as a one-stage technique, where a single frequency do-
main filter is designed to achieve joint dereverberation and noise reduction. In this
appendix we present the frequency domain technique proposed in [87] and show how
this two-stage technique can be reformulated as a one-stage technique. Furthermore,
we show that when the filter used to generate the dereverberated reference signal
is invertible, the one-stage and the two-stage techniques are equivalent. However,
when the filter used to generate the dereverberated reference signal is non-invertible,
using a one-stage technique is advantageous and yields a higher narrowband output
signal-to-noise ratio (SNR) than using a two-stage technique.
In Section B.1 the two-stage beamforming technique is presented, whereas in Sec-
tion B.2 this technique is reformulated as a one-stage technique. In Section B.3 the
narrowband output SNR of the one-stage and the two-stage techniques is analyti-
cally derived and compared.

B.1 Two-stage technique for joint dereverberation and noise reduction

As presented in Section 2.1.3, the time domain signal model in (2.1) can be written
in the frequency domain as

Ym(ω) = S(ω)Hm(ω)︸ ︷︷ ︸
Xm(ω)

+Vm(ω), (B.1)

where Ym(ω), S(ω), Hm(ω), Xm(ω), and Vm(ω) denote the discrete-time Fourier
transforms of ym(n), s(n), hm(n), xm(n), and vm(n), respectively, at angular fre-
quency ω.
In the two-stage beamforming technique in [87] depicted in Fig. B.1, first dereverber-
ation filters Gm(ω) are applied to the received microphone signals followed by noise

...

G∗
1(ω) O∗

1(ω)
Y1(ω) Ȳ1(ω)

G∗
2(ω) O∗

2(ω)
Y2(ω) Ȳ2(ω)
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Fig. B.1: Acoustic system configuration for the two-stage beamforming technique for joint
dereverberation and noise reduction.
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reduction filters Om(ω). Applying the dereverberation filters Gm(ω), the filtered
microphone signals Ȳm(ω) after the first stage are given by

Ȳm(ω) = G∗m(ω)Ym(ω) = G∗m(ω)Xm(ω)︸ ︷︷ ︸
X̄m(ω)

+G∗m(ω)Vm(ω)︸ ︷︷ ︸
V̄m(ω)

, (B.2)

with X̄m(ω) and V̄m(ω) the filtered speech and noise components. The dereverbera-
tion filters Gm(ω) are designed such that the dereverberated reference signal Sr(ω)
is given by the sum of the filtered speech components, i.e.,

Sr(ω) =

M∑

m=1

X̄m(ω) =

M∑

m=1

G∗m(ω)Xm(ω). (B.3)

While superdirective beamforming has been used in [87] to design the dereverber-
ation filters Gm(ω), in principle any frequency domain dereverberation technique
can be used to design these filters.
In the second-stage noise reduction filters Om(w) are applied, such that the output
speech signal Z(ω) is given by the sum of the filtered microphone signals, i.e.,

Z(ω) =

M∑

m=1

O∗m(ω)Ȳm(ω) =

M∑

m=1

O∗m(ω)X̄m(ω) +

M∑

m=1

O∗m(ω)V̄m(ω). (B.4)

In vector notation, the M–dimensional stacked vector of the microphone signals
y(ω) can be expressed as

y(ω) = x(ω) + v(ω), (B.5)

with
y(ω) = [Y1(ω) Y2(ω) . . . YM (ω)]T , (B.6)

and x(ω) and v(ω) similarly defined. Using the diagonal matrix G(ω) consisting of
the dereverberation filter coefficients, i.e.,

G(ω) = diag{g(ω)} =




G1(ω) 0 · · · 0

0 G2(ω) · · · 0
...

...
. . .

...
0 0 · · · GM (ω)



, (B.7)

with g(ω) = [G1(ω) G2(ω) . . . GM (ω)]T , the output signal vector of the derever-
beration stage can be expressed as

ȳ(ω) = GH(ω)y(ω) = GH(ω)x(ω)︸ ︷︷ ︸
x̄(ω)

+ GH(ω)v(ω)︸ ︷︷ ︸
v̄(ω)

, (B.8)

with ȳ(ω), x̄(ω), and v̄(ω) the M–dimensional stacked vectors of the filtered mi-
crophone signals, filtered speech components, and filtered noise components defined
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similarly as in (B.6). Furthermore, using the stackedM–dimensional noise reduction
filter vector o(ω), i.e.,

o(ω) = [O1(ω) O2(ω) . . . OM (ω)]T , (B.9)

the output speech signal can be written in vector notation as

Z(ω) = oH(ω)ȳ(ω) = oH(ω)x̄(ω) + oH(ω)v̄(ω). (B.10)

In [87], the MWF has been used to design the noise reduction filter vector o(ω)
such that the minimum mean-square error between the output speech signal Z(ω)
and the dereverberated reference signal Sr(ω) is minimized. The cost function of
the frequency domain MWF used for the second stage is defined as

E{|Z(ω)− Sr(ω)|2} = E{|oH(ω)ȳ(ω)− Sr(ω)|2}, (B.11)

where the reference signal Sr(ω) can be expressed in vector notation as

S
r
(ω) = βT x̄(ω), (B.12)

with β = [1 1 . . . 1]T . Assuming that the filtered speech and noise components
x̄(ω) and v̄(ω) are uncorrelated and introducing a weighting parameter µ to trade
off between speech distortion and noise reduction, the cost function of the speech-
distortion weighting MWF used in the second stage to achieve noise reduction and
estimate the dereverberated reference signal Sr(ω) is defined as

JSII(ω) = E{|oH(ω)x̄(ω)− βT x̄(ω)|2}+ µE{|oH(ω)v̄(ω)|2}. (B.13)

The MWF o(ω) minimizing (B.13) is then equal to

o(ω) = [Rx̄(ω) + µRv̄(ω)]−1Rx̄(ω)β, (B.14)

with Rx̄(ω) and Rv̄(ω) the correlation matrices of the speech and noise components
after the first dereverberation stage, i.e.,

Rx̄(ω) = E{x̄(ω)x̄H(ω)}, (B.15)

Rv̄(ω) = E{v̄(ω)v̄H(ω)}. (B.16)

Summarizing, the two-stage beamforming technique proposed in [87] applies G(ω)
in the first stage to create a dereverberated reference signal and uses the MWF
in (B.14) in the second stage to suppress the noise and estimate the dereverberated
reference signal. The overall filter w

II
(ω) applied to the received microphone signals

y(ω) in this two-stage technique is given by

w
II

(ω) = G(ω)o(ω) = G(ω)[Rx̄(ω) + µRv̄(ω)]−1Rx̄(ω)β. (B.17)
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B.2 One-stage technique for joint dereverberation and noise reduction

Similarly as the time domain MWF-DNR technique proposed in Section 8.1.2, the
two-stage frequency domain technique in Section B.1 can also be reformulated as a
one-stage technique.
Fig. B.2 depicts a schematic representation of the one-stage counterpart of the
technique discussed in Section B.1, where a single filter w(ω) is applied to the
received microphone signals, i.e.,

Z(ω) = wH(ω)y(ω) = wH(ω)x(ω) + wH(ω)v(ω), (B.18)

with
w(ω) = [W1(ω) W2(ω) . . .WM (ω)]T . (B.19)

In order to minimize the mean-square error between the output speech signal and
the dereverberated reference signal in (B.12), the one-stage frequency domain MWF
cost function is defined as

E{|Z(ω)− Sr(ω)|2} = E{|wH(ω)y(ω)− Sr(ω)|2}, (B.20)

where the reference signal Sr(ω) can be expressed in terms of the reverberant signal
component x(ω) as

Sr(ω) = βT x̄(ω) = βTGH(ω)︸ ︷︷ ︸
gH(ω)

x(ω). (B.21)

Similarly as before, assuming that the speech and noise components x(ω) and v(ω)
are uncorrelated and introducing a weighting parameter µ, the speech distortion
weighted MWF cost function for the one-stage frequency domain technique can be
written as

J
I
(ω) = E{|wH(ω)x(ω)− gH(ω)x(ω)|2}+ µE{|wH(ω)v(ω)|2}. (B.22)

Minimizing (B.22) yields the one-stage MWF

wI(ω) = [Rx(ω) + µRv(ω)]−1Rx(ω)g(ω), (B.23)
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Fig. B.2: Acoustic system configuration for the one-stage reformulation of the two-stage
beamforming technique for joint dereverberation and noise reduction.
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where Rx(ω) and Rv(ω) are the received speech and noise correlation matrices, i.e.,

Rx(ω) = E{x(ω)xH(ω)}, (B.24)

Rv(ω) = E{v(ω)vH(ω)}, (B.25)

with Rv(ω) assumed to be a full-rank matrix. Note that the filtered speech and noise
correlation matrices Rx̄(ω) and Rv̄(ω) in the two-stage technique in Section B.1 can
be expressed in terms of the received speech and noise correlation matrices Rx(ω)
and Rv(ω) as

Rx̄(ω) = GH(ω)Rx(ω)G(ω), (B.26)

Rv̄(ω) = GH(ω)Rv(ω)G(ω). (B.27)

B.3 Analytical comparison of the one-stage and two-stage techniques

In this section we analytically derive and compare the performance of the one-stage
filter wI(ω) and the two-stage filter wII(ω) in terms of the narrowband output
SNR (oSNR), with

oSNR(ω) =
wH(ω)Rx(ω)w(ω)

wH(ω)Rv(ω)w(ω)
. (B.28)

Narrowband output SNR of the one-stage filter

Assuming a single speech source (cf. (B.1)), the speech correlation matrix in (B.24)
is a rank-1 matrix, i.e.,

Rx(ω) = Ps(ω)h(ω)hH(ω), (B.29)
with Ps(ω) = E{|S(ω)|2} the power spectral density of the clean speech signal
and h(ω) = [H1(ω) H2(ω) . . . HM (ω)]T the vector of acoustic transfer functions
between the speech source and the microphones. Using (B.29), the one-stage filter
in (B.23) can be expressed as

w
I
(ω) = [Ps(ω)h(ω)hH(ω) + µRv(ω)]−1Ps(ω)h(ω)hH(ω)g(ω). (B.30)

Using the matrix inversion lemma [211], the one-stage filter in (B.30) can be ex-
pressed as

wI(ω) =
Ps(ω)hH(ω)g(ω)

µ+ Ps(ω)hH(ω)R−1
v (ω)h(ω)︸ ︷︷ ︸

Φ
I
(ω)

R−1
v (ω)h(ω), (B.31)

with ΦI(ω) a complex-valued scalar. Substituting (B.31) in (B.28), the narrowband
output SNR of the one-stage filter is equal to

oSNRI(ω) =
wH

I
(ω)Rx(ω)w

I
(ω)

wH
I

(ω)Rv(ω)wI(ω)
(B.32)

=
|ΦI(ω)|2hH(ω)R−1

v (ω)Ps(ω)h(ω)hH(ω)R−1
v (ω)h(ω)

|ΦI(ω)|2hH(ω)R−1
v (ω)Rv(ω)R−1

v (ω)h(ω)
(B.33)

= Ps(ω)hH(ω)R−1
v (ω)h(ω). (B.34)
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As can be seen in (B.34), the narrowband output SNR of the one-stage filter is
independent of the scalar Φ

I
(ω). Furthermore, the narrowband output SNR in (B.34)

is the maximum generalized eigenvalue of the generalized eigenvalue problem

Rx(ω)w(ω) = λ(ω)Rv(ω)w(ω). (B.35)

Therefore, the one-stage filter w
I
(ω) is the generalized eigenvector associated with

the maximum generalized eigenvalue.

Narrowband output SNR of the two-stage filter

In order to derive the narrowband output SNR of the two-stage filter, we first
express the filtered speech correlation matrix Rx̄(ω) in (B.26) as a rank-1 matrix.
Substituting (B.29) in (B.26), Rx̄(ω) can be expressed as

Rx̄(ω) = Ps(ω) GH(ω)h(ω)︸ ︷︷ ︸
h̄(ω)

hH(ω)G(ω)︸ ︷︷ ︸
h̄H(ω)

, (B.36)

with h̄(ω) denoting the vector of acoustic transfer functions filtered by the dere-
verberation filter coefficients Gm(ω). Similarly as for the one-stage filter, using the
matrix inversion lemma, the two-stage filter can be written as

w
II

(ω) =
Ps(ω)h̄H(ω)β

µ+ Ps(ω)h̄H(ω)R−1
v̄ (ω)h̄(ω)︸ ︷︷ ︸

Φ
II

(ω)

G(ω)R−1
v̄ (ω)h̄(ω), (B.37)

with Φ
II

(ω) a complex-valued scalar. Substituting (B.27) in (B.37), the two-stage
filter can be expressed as

w
II

(ω) = Φ
II

(ω) G(ω)[G(ω)HRv(ω)G(ω)]−1h̄(ω). (B.38)

Furthermore, using h̄(ω) = GH(ω)h(ω) in (B.38), the two-stage filter can finally be
written as

w
II

(ω) = Φ
II

(ω)G(ω)[GH(ω)Rv(ω)G(ω)]−1GH(ω)h(ω). (B.39)

and the narrowband output SNR for the two-stage filter oSNRII(ω) can be derived
by substituting wII(ω) in (B.28).

Relation between the one- and two-stage filters and their narrowband output SNRs

For an invertible matrix G(ω), the two-stage filter in (B.39) simplifies to

w
II

(ω) = Φ
II

(ω)R−1
v (ω)h(ω). (B.40)

In addition, since Φ
II

(ω) = Φ
I
(ω) for an invertible matrix G(ω), the one-stage and

two-stage filters are equivalent and the one-stage and two-stage narrowband output
SNRs are equal, i.e.,

oSNR
I
(ω) = oSNR

II
(ω). (B.41)
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However, depending on the dereverberation filter G(ω) used to generate the dere-
verberated reference signal, a stable inverse dereverberation filter G−1(ω) does not
necessarily exist. Consider as an illustrative example using the matched filter to
achieve dereverberation as in [81], i.e.,

g(ω) =
h(ω)

‖h(ω)‖22
. (B.42)

Since acoustic transfer functions are mixed phase functions [35–37], with zeros clus-
tering near the unit circle [34], it is highly likely that the zeros of the acoustic
transfer functions will cause some of the matched filter coefficients in (B.42) to be
0, i.e., Gm(ω) = 0. Clearly, in such a case the filter matrix G(ω) is not invertible,
such that

w
II

(ω) = Φ
II

(ω)G(ω)[GH(ω)Rv(ω)G(ω)]−1GH(ω)h(ω) (B.43)
6= Φ(ω)w

I
(ω), (B.44)

with Φ(ω) an arbitrary scaling constant.1 Since w
I
(ω) is the generalized eigenvector

yielding the maximum value of the generalized Rayleigh quotient in (B.28), i.e., the
maximum narrowband output SNR, any other vector not equal to (a scaled version
of) w

I
(ω) will result in a smaller value of the generalized Rayleigh quotient. Hence,

for a non-invertible matrix G(ω),

oSNR
II

(ω) < oSNR
I
(ω), (B.45)

i.e., the narrowband output SNR of the two-stage technique is smaller than the nar-
rowband output SNR of the one-stage technique. Intuitively, the inequality in (B.45)
is to be expected. Using a non-invertible dereverberation filter in the first stage im-
plies disregarding one or more microphone signals in a given frequency bin (since
the microphone signal is multiplied by zero). Hence, the MWF in this case will op-
erate on fewer microphones, decreasing the spatial diversity, and as a result yielding
a lower narrowband output SNR.
Summarizing, it can be said that the two-stage frequency domain technique in [87]
is equivalent to applying a one-stage frequency domain MWF if and only if the filter
used to generate the reference signal is invertible. For a non-invertible filter, using
a one-stage filter is more advantageous since it yields a higher narrowband output
SNR than the two-stage filter.

1 Note that for a non-invertible matrix G(ω), also the filtered noise correlation matrix Rv̄(ω) is non-
invertible and in a practical implementation one would either use the pseudo-inverse or diagonal
loading.
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