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ABSTRACT

In many speech communication applications, such as hands-free telephony and hear-
ing aids, the microphones are located at a distance from the speaker. Therefore, in
addition to the desired speech signal, the microphone signals typically contain un-
desired reverberation and noise, caused by acoustic reflections and undesired sound
sources. Since these disturbances tend to degrade the quality of speech communica-
tion, decrease speech intelligibility and negatively affect speech recognition, efficient
dereverberation and denoising methods are required.

This thesis deals with blind dereverberation methods, not requiring any knowledge
about the room impulse responses between the speaker and the microphones. More
specifically, we propose a general framework for blind speech dereverberation based
on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech
signal in the time-frequency domain.

Firstly, we consider the noiseless case and propose batch speech dereverberation
methods based on the subband MCLP-based signal model and a general sparse
prior for the desired speech signal coefficients in the time-frequency domain. We
propose a single-output method using a variational representation of the sparse
prior that promotes sparsity of the desired speech signal coefficients across time and
estimate the prediction filter by maximizing the likelihood function using an itera-
tively reweighted least squares algorithm. We analytically show that the proposed
method generalizes the conventional MCLP-based dereverberation method based
on a time-varying Gaussian model. We also show that the proposed method can be
formulated as the minimization of the non-convex `p-norm of the desired speech sig-
nal coefficients. Furthermore, we propose a multiple-output extension using a group
sparse cost function, which promotes sparsity over time and takes into account
grouping of the coefficients across the channels. We use the non-convex mixed `p,2-
norm as the cost function and derive the corresponding iteratively reweighted least
squares algorithm. Simulations results show that the proposed sparse MCLP-based
methods with a non-convex sparsity-promoting cost function result in a better dere-
verberation performance than the conventional MCLP-based methods based on the
time-varying Gaussian model.

Secondly, we consider adaptive speech dereverberation methods which are suitable
for online processing and dynamic scenarios, e.g., when the desired speaker or the
microphones are moving. We first extend the proposed batch sparse MCLP-based
dereverberation methods to adaptive methods and derive the corresponding recur-
sive least squares algorithm. Since these adaptive dereverberation methods may
lead to overestimation of the undesired speech signal and hence distortions of the
desired speech signal, we propose to constrain the power of the estimated undesired
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speech signal, leading to constrained sparse MCLP for adaptive speech dereverbera-
tion. Moreover, we propose to reduce the computational complexity of the adaptive
methods by using a diagonal approximation. Simulation results show that the pro-
posed constrained sparse MCLP increases the robustness to the selection of the
forgetting factor and the filter length, which can be especially advantageous in dy-
namic scenarios when the filters need to adapt quickly or the optimal parameters
are not known.

Thirdly, we propose a general framework for speech dereverberation that includes
the subband MCLP-based signal model in the time-frequency domain and the wide-
band MCLP-based signal model in the time domain. More specifically, we formulate
different optimization problems for speech dereverberation using either the wide-
band or the subband signal model with a sparse analysis or synthesis prior for the
desired speech signal coefficients in the time-frequency domain. Moreover, we pro-
pose to incorporate the structure of the speech signal by exploiting neighborhood or
low-rank structure in the time-frequency domain. Simulation results show that all
proposed formulations result in a high dereverberation performance, with the wide-
band signal model with analysis sparsity leading to the best result. Furthermore,
it is shown that incorporating the speech structure enables to further improve the
performance of the proposed methods.

Finally, we consider the influence of additive noise and propose a framework for
sparsity-based joint dereverberation and denoising using the subband signal model.
More specifically, we propose a denoising method using a mixed-norm as the sparsity-
promoting cost function and imposing a bound for the noise energy. Furthermore,
we propose a joint dereverberation and denoising method by including the noise
term in the MCLP-based signal model and imposing a bound for the noise energy.
Simulation results show that the proposed joint method results in a significantly im-
proved performance for low SNRs compared to the group sparse MCLP-based dere-
verberation method. Furthermore, simulation results show that a good performance
can also be obtained using a two-stage procedure, combining sparse MCLP-based
dereverberation with sparsity-based denoising.
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ZUSAMMENFASSUNG

Bei vielen Anwendungen der Sprachkommunikation, wie z.B. bei der freihändigen
Telefonie und bei Hörgeräten, befinden sich die Mikrofone in einer gewissen Entfer-
nung zu dem Sprecher. Daher enthalten die Mikrofonsignale neben der gewünschten
Sprache auch aus unerwünschten Nachhall, welcher durch akustische Reflektionen
erzeugt wird, sowie aus unerwünschte Störgeräusche. Da diese Störungen dazu häu-
fig die Sprachqualität und Sprachverständlichkeit reduzieren und einen negativen
Effekt auf automatische Spracherkennung haben, sind Methoden zur Enthallung
und Störgeräuschunterdrückung notwendig.

Diese Thesis betrachtet Methoden zur blinden Enthallung, d.h. es wird kein Wis-
sen über die Raumimpulsantworten zwischen dem Sprecher und den Mikrofonen
vorausgesetzt. Genauer stellen wir ein generalisiertes Framework zur blinden En-
thallung vor, welches auf mehrkanaliger linearen Vorhersage (engl. multi-channel
linear prediction, MCLP) basiert und die Spärlichkeit des Sprachsignals im Zeit-
Frequenz-Bereich ausnutzt.

Als erstes nehmen wir an, dass kein Störgeräusch vorhanden ist und stellen
Methoden zur batchverarbeitenden Enthallung, basierend auf einem Teilband
MCLP-Signalmodell und der Spärlichkeitsannahme der Sprachkoeffizienten im Zeit-
Frequenz-Bereich vor. Wir stellen eine Methode mit einem Ausgangskanal vor, bei
der wir eine Variationsrepräsentation der Spärlichkeitsannahme der Sprachkoef-
fizienten über die Zeit benutzen und bei der wir das Vorhersagefilter schätzen indem
die Likelihood Funktion mittels eines iterativ neu gewichteten Kleinste-Quadrate
Algorithmus maximiert wird. Wir zeigen analytisch, dass die hier vorgestellte Meth-
ode die konventionelle auf MCLP basierende Methode zur Enthallung generalisiert,
welche auf einem zeitvariantem Gaussmodell basiert. Wir zeigen außerdem, dass die
vorgestellte Methode als Minimierung der nicht-konvexen `p-Norm der Sprachkoef-
fizienten formuliert werden kann. Des Weiteren stellen wir eine Erweiterung mit
mehrkanaligem Ausgang vor, bei der wir eine “group sparse” Kostenfunktion ver-
wenden, welche die Spärlichkeit der Sprachkoeffizienten über die Zeit einführt und
die die kanalübergreifende Gruppierung der Koeffizienten in Betracht zieht. Wir
benutzen die nicht-konvexe, gemischte `p,2-Norm als Kostenfunktion und leiten
den dazugehörigen iterativ neu gewichteten Kleinste-Quadrate Algorithmus her.
Simulationen zeigen, dass die hier vorgestellte MCLP-Methode in einer besseren
Enthallungs-Performance resultiert, als die konventionelle, auf zeitvariantem Gauss-
modell basierende MCLP-Methode.

Als zweites betrachten wir adaptive Methoden zur Enthallung von Sprache, welche
für die Echtzeitanwendungen sowie dynamische Szenarien geeignet sind, z.B. wenn
sich der gewünschte Sprecher oder die Mikrofone bewegen. Dabei erweitern wir
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zuerst die vorgestellte batchverarbeitende, auf Spärlichkeitsannahme und MCLP
basierende Enthallungs-Methode hin zu adaptiven Methoden und leiten den rekur-
siven Kleinste-Quadrate Algorithmus her. Da die resultierenden adaptiven Metho-
den dazu die Störgeräusche überschätzen könnten und somit zu Sprachverzerrungen
führen, schlagen wir eine Begrenzung der geschätzten Leistung der Störgeräusche
vor, was zur begrenzten, auf Spärlichkeit basierenden MCLP-Methode für adap-
tive Enthallung von Sprache führt. Des Weiteren schlagen wir vor die rechnerische
Komplexität der adaptiven Methoden zu reduzieren, indem eine diagonale Approx-
imation verwendet wird. Simulationen zeigen, dass die vorgestellte Methode die
Robustheit gegenüber der Auswahl der Gedächtnisfaktoren und der Filterlänge er-
höht, was gerade in dynamischen Szenarien vorteilhaft ist, in denen sich die Filter
schnell adaptieren müssen oder wenn die optimalen Parameter nicht bekannt sind.

Als drittes stellen wir ein generelles Framework zur Enthallung von Sprache vor,
das das auf Teilband-MCLP basierende Signalmodell im Zeit-Frequenz-Bereich und
das auf Breitband-MCLP basierende Signalmodell im Zeitbereich enthält. Genauer
formulieren wir verschiedene Optimierungsprobleme zur Enthallung von Sprache
indem entweder das Breitband- oder das Teilband-Signalmodell mit einer spärliche
Analysen- oder Synthesenannahme für die Sprachkoeffizienten im Zeit-Frequenz-
Bereich verwendet wird. Außerdem schlagen wir vor die Struktur des Sprachsig-
nals mit einzubeziehen, indem die Nachbarschafts- oder Niedrigrank-Struktur im
Zeit-Frequenz-Bereich ausgenutzt wird. Simulationen zeigen, dass alle vorgestell-
ten Formulierungen in einer hohen Enthallungs-Performance resultieren, wobei das
Breitband-Signalmodell mit Analysenspärlichkeit zur besten Performance führt. Des
Weiteren wird gezeigt, dass die Berücksichtigung der Strukturen im Sprachsignal zu
einer weiteren Verbesserung der Performance der vorgestellten Methoden führt.

Zuletzt ziehen wir den Einfluss von additivem Störgeräusch in Betracht und stellen
ein Framework zur gleichzeitigen Enthallung und Störgeräuschunterdrückung vor,
welches auf der Spärlichkeitsannahme basiert und das Teilband Signalmodell ver-
wendet. Genauer schlagen wir eine Methode zur Störgeräuschunterdrückung vor,
bei der eine gemischte Norm als Kostenfunktion für die Spärlichkeitseinführung be-
nutzt wird und die Leistung des Störgeräusches begrenzt wird. Außerdem stellen wir
eine Methode zur gleichzeitigen Enthallung und Störgeräuschunterdrückung vor, bei
der der Term des Störgeräusches in das MCLP-basierende Signalmodell inkludiert
wird und bei der ebenfalls die Leistung des Störgeräusches begrenzt wird. Simula-
tionen zeigen, dass die vorgeschlagene, gemeinsame Methode in einer signifikant
besseren Performance für niedrige SNRs resultiert, verglichen zur group sparse
MCLP-basierenden Methode zur Enthallung. Außerdem zeigen die Simulationen,
dass eine gute Performance erreicht werden kann, wenn die zweistufige Prozedur
benutzt wird, verglichen mit der MCLP-basierenden Methode zur Enthallung mit
auf Spärlichkeitsannahme basierender Störgeräuschunterdrückung.
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GLOSSARY

Acronyms and abbreviations

ADA adaptive
ADMM alternating direction method of multipliers
ATF acoustic transfer function
BSI blind system identification
cADA constrained adaptive
CAPZ common acoustical poles and zeros
CD cepstral distance
CGG complex generalized Gaussian
DNN deep neural network
DOA direction of arrival
DRR direct-to-reverberant ratio
EDC energy decay curve
EM expectation maximization
EVD eigenvalue decomposition
FIR finite impulse response
FISTA fast iterative shrinkage/thresholding algorithm
fwsSNR frequency-weighted segmental signal-to-noise ratio
GWPE generalized weighted prediction error
HOS higher-order statistics
IIR infinite impulse response
IRL1 iteratively reweighted `1-norm
IRLS iteratively reweighted least squares
IRS inverse repeated sequence
ISTA iterative shrinkage/thresholding algorithm
ISTFT inverse short-time Fourier transform
LASSO least absolute shrinkage and selection operator
LCMV linearly constrained minimum variance
LLR log-likelihood ratio
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LMS least mean squares
LP linear prediction
LS least-squares
MC multi-channel
MCLP multi-channel linear prediction
MDCT modified discrete cosine transform
MIMO multiple-input multiple-output
MINT multiple-input/output inverse theorem
ML maximum likelihood
MLS maximum length sequence
MVDR minimum variance distortionless response
MWF multi-channel Wiener filter
NLMS normalized least mean squares
NMF nonnegative matrix factorization
PD positive definite
PESQ perceptual evaluation of speech quality
PSD power spectral density
RETF relative early transfer function
RIR room impulse response
rIRLS regularized iteratively reweighted least squares
RLS recursive least squares
RSNR reverberant signal-to-noise ratio
SMCLP sparse multi-channel linear prediction
SNR signal-to-noise ratio
SOS second-order statistics
SSI supervised system identification
SRMR speech-to-reverberation modulation ratio
STFT short-time Fourier transform
TF time-frequency
TVG time-varying Gaussian
WPE weighted prediction error
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Notation

x scalar x
x vector x

Lx length of vector x

X matrix X

diag(x) diagonal matrix with x on the diagonal
X̃ convolution matrix
x∗ complex conjugate of the scalar x
xT transpose of the vector x

xH conjugate transpose of the vector x

XT transpose of the matrix X

XH conjugate transpose of the matrix X

X−1 inverse of the matrix X

X−H conjugate transpose of the inverse of the matrix X

x̂ estimated value of the scalar x
x̂ estimated value of the vector x

X̂ estimated value of the matrix X

x̂i estimated value of the vector x at the i-th iteration
X̂i estimated value of the matrix X at the i-th iteration
R the set of real numbers
R̄ the extended set of real numbers, i.e., R ∪ {−∞,+∞}
C the set of complex numbers

∗ convolution operator
d·e ceiling operator
δ(.) Kronecker delta function
ΨH time-frequency analysis operator, e.g., short-time Fourier trans-

form
Ψ time-frequency synthesis operator, e.g., inverse short-time

Fourier transform
p(.) prior distribution
L(.) likelihood function
E {.} mathematical expectation
NC(.;µz, λz) complex Gaussian distribution with mean µz and variance λz
ψ(.) scaling function for variational representation of a sparse prior
{·}′ derivative
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Γ(.) gamma function
| · | absolute value
‖ · ‖p lp-norm
‖ · ‖w,1 weighted l1-norm
‖ · ‖w,2 weighted l2-norm
‖ · ‖p,q lp,q-norm
‖ · ‖p,q;Φ lp,q;Φ-norm
‖ · ‖F Frobenius norm of a matrix
Lρ(.) augmented Lagrangian with parameter ρ
ρ penalty parameter for the augmented Lagrangian
proxρP (.) proximal operator of the function P (.) with parameter ρ

t discrete-time index
T number of time-domain samples
n time frame index
N number of time frames
k subband index
K number of subbands
m microphone index
M number of microphones
T60 reverberation time
fs sampling frequency
L

¯
h length of the time-domain RIR

¯
h

Linv

¯
h length of the inverse filter

¯
hinv
m in the time domain

L
¯
g length of the prediction filter

¯
g in the time domain

¯
τ prediction delay in the time domain
L

¯
h length of the convolutive ATF

¯
h in the subband domain

Lg length of the prediction filter g in the subband domain
τ prediction delay in the subband domain
i reweighting iteration index
I number of reweighting iterations
j ADMM iteration index
J number of ADMM iterations

¯
µ dual variable vector in the time domain for the ADMM algo-

rithm
µ dual variable vector in the subband domain for the ADMM

algorithm
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M dual variable matrix in the subband domain for the ADMM
algorithm

¯
s(t) clean speech signal in the time domain

¯
y
m

(t) m-th microphone signal in the time domain

¯
xm(t) reverberant speech signal at the m-th microphone in the time

domain

¯
vm(t) additive noise signal at the m-th microphone in the time do-

main

¯
dm(t) desired speech signal at the m-th microphone in the time do-

main

¯
hm(t) room impulse response between the source and the m-th mi-

crophone in the time domain

¯
hinv
m (t) inverse filter for the m-th microphone in the time domain

¯
g
m′,m

(t) prediction filter in the time domain, relating the m′-th and the
m-th microphone

¯
y
m

vector of the m-th microphone signal in the time domain

¯
xm vector of the reverberant speech signal at the m-th microphone

in the time domain

¯
vm vector of the additive noise signal at the m-th microphone in

the time domain

¯
dm vector of the desired speech signal at the m-th microphone in

the time domain

¯
g
m′,m

vector of the prediction filter in the time domain, relating the
m′-th and the m-th microphone

¯
g
m

vector of the multi-channel prediction filter for the m-th chan-
nel in the time domain

¯
Y matrix of the M -channel microphone signals in the time do-

main

¯
X matrix of the M -channel reverberant speech signal in the time

domain

¯
V matrix of the M -channel additive noise signal in the time do-

main

¯
D matrix of the M -channel desired speech signal in the time do-

main

¯
G matrix of the multiple-input multiple-output prediction filter

in the time domain
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¯
X̃m,

¯
τ convolution matrix of the reverberant speech signal at them-th

microphone delayed with
¯
τ samples in the time domain

¯
X̃

¯
τ multi-channel convolution matrix of the M -channel reverber-

ant speech signal delayed with
¯
τ samples in the time domain

s(k, n) clean speech signal in the time-frequency domain
ym(k, n) m-th microphone signal in the time-frequency domain
xm(k, n) reverberant speech signal at the m-th microphone in the time-

frequency domain
vm(k, n) additive noise signal at the m-th microphone in the time-

frequency domain
hm(k, n) acoustic transfer function between the source and the m-th

microphone in the time-frequency domain
dm(k, n) desired speech signal at the m-th microphone in the time-

frequency domain
gm′,m(k, n) prediction filter in the time-frequency domain, relating the m′-

th and the m-th microphone

ym(k) vector of the m-th microphone signal in the k-th subband
xm(k) vector of the reverberant speech signal at the m-th microphone

in the k-th subband
vm(k) vector of the additive noise signal at the m-th microphone in

the k-th subband
dm(k) vector of the desired speech signal at the m-th microphone in

the k-th subband
gm′,m(k) vector of the prediction filter for the m-th microphone in the

k-th subband
gm(k) vector of the multi-channel prediction filter for the m-th chan-

nel in the k-th subband
Y(k) matrix of the M -channel microphone signal in the k-th sub-

band
X(k) matrix of the M -channel reverberant speech signal in the k-th

subband
V(k) matrix of the M -channel additive noise signal in the k-th sub-

band
D(k) matrix of the M -channel desired speech signal in the k-th sub-

band
G(k) matrix of the multiple-input multiple-output prediction filter

in the k-th subband
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X̃m,τ (k) convolution matrix of the reverberant signal at the m-th mi-
crophone delayed with τ coefficients in the k-th subband

X̃τ (k) multi-channel convolution matrix of the M -channel reverber-
ant signal delayed with τ coefficients in the k-th subband

y(k, n) M -channel microphone signal in the time-frequency domain
x(k, n) M -channel reverberant speech signal in the time-frequency do-

main
v(k, n) M -channel additive noise signal in the time-frequency domain
d(k, n) M -channel desired speech signal at the n-th time frame in the

subband domain
G(k, n) multiple-input multiple-output prediction filter in the time-

frequency domain
x̃τ (k, n) buffer of the M -channel signal x(k, n) in the time-frequency

domain
σ2
d(k, n) M -channel power spectral density of the desired speech signal

in the time-frequency domain
σ2
r(k, n) M -channel power spectral density of the reverberant speech

signal in the time-frequency domain
σ2
u(k, n) M -channel power spectral density of the undesired speech sig-

nal in the time-frequency domain
β noise bound
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1
INTRODUCTION

1.1 Motivation

Speech is an effective means of communicating information and emotions between
humans and can also be conveniently used in human-computer interfaces to provide
a natural communicational channel [1–3]. Recent advances in computer hardware
have resulted in computationally powerful mobile and portable electronic devices,
which are nowadays commonly used for communication and as personal assistants.
Due to increasingly complex computer interfaces there has been a resurged inter-
est in speech-based human-computer interfaces, which can serve as a natural and
flexible means of interaction with various devices. Currently, speech communication
is highly important in various applications, such as hands-free telephony, assistive
listening devices, speech-based interfaces for computers and entertainment systems
in homes, workplaces and public venues. These applications require high-quality
speech communication which needs to take into account the specific requirements
imposed by the user, the environment and the application itself. The increased use
of speech communication in complex and diverse acoustic environments has resulted
in an increasing interest in the topic of speech signal processing [4–6]. In particular,
this thesis is motivated by the increased number of applications employing far-field
hands-free speech communication in reverberant environments.
Microphones placed at a distance from the speaker are commonly used, e.g., in
hands-free telephony, speech-controlled devices or hearing aids. While this gives
the user a relatively high degree of flexibility, microphones placed at a distance in,
e.g., an office or a living room, are very likely to capture a speech signal corrupted
with various undesired disturbances in addition to the desired speech signal, such
as reverberation and noise [4, 7]. Reverberation is naturally caused by reflections
of the sound waves against surfaces and objects within the room. Although a mod-
erate amount of reverberation can be beneficial, strong reverberation is typically
detrimental to speech communication, resulting in a decreased speech quality and
automatic speech recognition performance [8–11]. Additionally, the additive noise
caused by, e.g., other speakers or sound sources, can further reduce the effectiveness
of speech communication [8–10].

1



2 introduction

In order to reduce the detrimental influence of reverberation and noise on speech
communication, effective dereverberation and denoising methods need to be em-
ployed [12].
Speech denoising has been addressed in many contributions over the last decades,
and a number of single- and multi-channel denoising methods have been pro-
posed [4,6,13–21]. Typically, it is assumed that the additive noise is uncorrelated or
independent from the desired speech signal, which can be used to design the corre-
sponding estimators of the desired speech signal. Many proposed denoising methods
can provide a significant benefit when reverberation is relatively low and the noise is
dominant, e.g., when the speaker-microphone distance is small or the environment
is not highly reverberant. However, reverberation is typically highly correlated with
the desired speech signal, since it is a filtered version of the clean speech signal, and
it is widely recognized that dereverberation is still a greater challenge than denois-
ing [5, 22]. Hence, speech dereverberation has become a very active research topic
more recently [5, 22, 23], which could be attributed to the emergence of novel ap-
plications employing distant microphones, but also to the increased computational
capabilities of the deployed devices enabling to tackle the temporal dependencies
induced by reverberation.

1.2 Reverberation

In this section, we consider a scenario with a single speech source and multiple
microphones in a reverberant room, as illustrated in Fig. 1.1. The signal captured
by the microphones consists of a superposition of the direct speech signal and a
number of reflections [5]. The direct speech signal is equal to the clean speech source
signal, up to an attenuation and a propagation delay. The reflections of the speech
signal against the boundaries of the environment and possible objects constitute
reverberation. These reflections are essentially delayed and attenuated images of
the clean speech source signal, where the attenuation and the delay depend on the
acoustic properties of the reflecting surfaces in the environment and the equivalent
path between the source and the microphone. Reflections arriving from different
directions create a perceptual impression of spaciousness and lead to an impression
of the speaker positioned at a large distance from the microphone [5]. In some
applications, reverberation can be used to shape the perception of space and enhance
the listening experience, e.g., of music. However, this multi-path propagation of
sound, if not controlled, can often have detrimental effects on the efficiency of speech
communication [5].
When considering the influence of reverberation on the speech signal captured in a
room, reverberation is typically decomposed into early reflections and late reverber-
ation:

• Early reflections arrive at the microphone immediately after the direct speech
signal. The considered time window corresponding to the early reflections
is typically in the order of tens of milliseconds, with a typical value of
50 ms [5, 24]. These reflections commonly cause spectral coloration of the
speech signal [5, 24]. However, they can also be beneficial for speech intelli-
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Fig. 1.1: An illustration of reverberation in a room with a single speech source and a
microphone array.

gibility, since the early reflections can be perceptually integrated with the
direct speech signal, hence increasing the effective signal-to-noise ratio of the
desired speech signal [11,25–28]. Furthermore, the spatial information present
in the individual early reflections can be used to infer the geometry of the
room and perform source localization [29–32], or exploited to improve spatial
filtering [33–35].

• Late reverberation arrives at the microphone after the early reflections. As
opposed to the early reflections, which consists of spatially distinct reflections,
late reverberation typically arrives at the microphone approximately uniformly
from all directions [5]. It is widely accepted that the late reverberation in
general has a detrimental effect both on the performance of automatic speech
recognition systems [10,22] and speech quality and intelligibility [8,9,11,36,37],
with the effect augmented by age, hearing impairment, and for non-native
speakers [9,38–40]. This is especially noticeable in scenarios with microphones
placed at a relatively large distance from the speaker, when the energy of late
reverberation becomes comparable to or larger than the energy of the direct
speech signal and early reflections.

In the case of a static acoustic scenario, the multi-path sound propagation between
the source and the microphone can be characterized using the corresponding impulse
response. The acoustic impulse response between the source and the microphone in a
room is commonly referred to as the room impulse response (RIR) [5]. The structure
of an RIR is directly related to the previously discussed structure of reverberation,
i.e., an RIR can be decomposed into the direct path, early reflections and late
reverberation, as indicated in Fig. 1.2. The direct path of the RIR corresponds
to the attenuation of the direct speech signal and the propagation delay between
the speech source and the microphone. The early reflections of the RIR typically
consist of well-defined impulses with a relatively large amplitude [5], while the late
reverberation consists of many decaying and densely-spaced impulses, which are
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often modeled as being randomly distributed [5]. As the RIR depends both on the
room properties and the positions of the source and the microphone, it can change
significantly even for small perturbations of the source or the microphone positions
or due to thermal fluctuation [5,24,41]. Different RIR models have been considered
in the literature, depending on the application and the imposed constraints. A
commonly used representation of an RIR, also used in this thesis, is the finite impulse
response (FIR) model. However, alternative models, such as the infinite impulse
response (IIR) model, the common acoustical poles and zeros (CAPZ) model as
well as orthonormal basis functions have been considered in the literature [42–44].
Methods for measuring or estimating RIRs can be classified into two main cate-
gories: supervised system identification (SSI) and blind system identification (BSI).
SSI methods estimate the RIR using a known test source signal and the captured
microphone signal, e.g., using maximum length sequences (MLS) [45, 46], inverse
repeated sequences (IRS) [47], time-stretched pulses [48] or sine-sweeps [49,50]. Al-
ternatively, if the source signal and the captured microphone signal are available,
the RIR can be estimated, e.g., using least-squares (LS) regression [51–53]. On the
other hand, BSI methods aim to estimate the RIR using only the captured micro-
phone signals, and are typically based on second-order statistics (SOS) [54, 55] or
higher-order statistics (HOS) [56]. However, in many cases the estimated RIRs dif-
fer significantly from the actual RIRs, due to possible spatial mismatch, thermal
fluctuations, and sensitivity of currently available system identification methods to
additive noise.
The amount of reverberation in a room can be specified using the reverberation
time [5, 57]. The reverberation time T60 is the time required for the reverberant
energy to decay 60 dB after the sound source has been deactivated. Unlike the RIR,
the reverberation time depends only on the properties of the room, i.e., the room
geometry and the surface reflectivity [5]. In addition to the reverberation time T60,
the amount of reverberation for a certain source and microphone position can be
specified using the direct-to-reverberant ratio (DRR). The DRR is defined as the
ratio of the energy of the direct path component of the RIR and the energy of the
reverberant component of the RIR. Another relevant measure of reverberation is the
clarity index, defined as the ratio of the energy of the direct and early component
of the RIR and the energy of the late component of the RIR [5].

1.3 Overview of speech dereverberation methods

The aim of speech dereverberation is to obtain an estimate of the desired speech
signal, i.e., the direct speech signal with or without early reflections, by processing
the reverberant and noisy microphone signals. Depending on the application, a
suitable speech dereverberation method can be designed aiming to improve speech
quality, speech intelligibility or the performance of an automatic speech recognition
system. In the following section, we present an overview of the existing methods
proposed in the literature.
Given the variety of speech dereverberation methods that have been proposed in the
literature, different classifications of the proposed methods are possible. For example,
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Fig. 1.2: An example of a room impulse response consisting of the direct path, early reflec-
tions and late reverberation (reverberation time T60 ≈ 700 ms).

dereverberation methods could be classified into single-channel and multi-channel
methods, based on the number of microphone signals which are used. Alternatively,
dereverberation methods could be classified into blind and non-blind methods, de-
pending on whether some knowledge about the RIRs is assumed to be available or
not. Similarly, dereverberation methods could be classified based on the employed
signal model into reverberation cancellation, reverberation suppression, and direct
methods [58].
According to the type of processing, speech dereverberation methods can be clas-
sified into (i) spectral enhancement, (ii) combined spatial and spectral filtering,
(iii) indirect inverse filtering, and (iv) direct inverse filtering. Spectral enhancement
methods typically perform dereverberation by applying a real-valued gain to the
spectral coefficients of the microphone signal. Spatial filtering methods typically
perform dereverberation by combining signals from multiple microphones to exploit
spatial information. Indirect inverse filtering methods typically perform dereverber-
ation by using estimated or measured transfer functions between the speech source
and the microphones to design the inverse filters. Direct inverse filtering methods
typically perform dereverberation by exploiting properties of the speech signal to
design the inverse filters. In the following, we give an overview of different speech
dereverberation methods in these categories. A more detailed analysis of many dere-
verberation methods can be found in, e.g., in [5, 6, 52,53,58,59].

1.3.1 Spectral enhancement

Spectral enhancement methods typically exploit spectro-temporal information to
enhance a single-channel speech signal. The spectral coefficients of the desired speech
signal are commonly estimated by applying a (real-valued) gain to the spectral
coefficients of the microphone signal, aiming to suppress the undesired disturbance
in the captured signal. A block scheme of a typical spectral enhancement system is
depicted in Fig. 1.3.
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Fig. 1.3: A block scheme of a typical spectral enhancement system. y(t) denotes the ob-
served microphone signal and d̂(t) denotes the estimated desired speech signal.

Spectral enhancement has been traditionally employed for denoising, and many de-
noising methods have been proposed in the literature [16,19,60,61], typically requir-
ing an estimate of the noise power spectral density (PSD) [62–65] . Initially, spectral
enhancement was based on spectral subtraction [66], but several modifications of
the basic spectral subtraction have been proposed to reduce speech distortions and
musical noise [67]. More recently, optimal gain functions have been derived based
on statistical models for the speech and the noise coefficients [19,68–73].
Speech dereverberation using spectral enhancement typically uses the same gain
function as for denoising, with the late reverberant PSD used instead of the noise
PSD. Spectral enhancement-based speech dereverberation has been originally pro-
posed in [74], where an estimate of the late reverberant PSD has been obtained
using a temporal exponential decay model for the RIR [75] and consequently used
to compute the gain function. In [76], multiple microphone signals have been used
to obtain a spatially averaged amplitude spectrum for estimating the late reverber-
ant PSD. Statistically optimal gain functions and late reverberant PSD estimators
based on a statistical model of the RIR have been presented in [59,77,78]. Alterna-
tively, Bayesian dereverberation of power spectrograms based on an autoregressive
reverberation model has been considered in [79], while joint temporal and spectral
modeling based on non-negative models has been considered in [80]. Spectral en-
hancement for joint denoising and dereverberation based on a statistical model for
the late reverberant PSD has been considered in [59,81,82]. Similarly, probabilistic
models for speech and noise have been used to derive joint estimators for denoising
and dereverberation in [83–85]. In [86], the late reverberant PSD has been esti-
mated by linear prediction, by assuming a sparse predictor, and a sparse prior for
the speech PSD has been used in [87].
More recently, several spectral enhancement methods based on neural network-
based models have been proposed. While early contributions used shallow net-
works [88], recent contributions have been based on deep neural networks
(DNNs) [89]. Although a large amount of data and computational resources are
usually required for training the neural networks, processing using a trained model
requires much less resources and can be used in real-time applications [58, 90].
DNNs are typically trained to either directly estimate the desired speech coef-
ficients or a gain function [91]. Different DNN structures have been employed
for spectral enhancement, such as the autoencoder and the recurrent neural net-
works [92–95]. DNNs for joint dereverberation and denoising have also been consid-
ered in [90,96–98].
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Due to its simplicity, spectral enhancement is usually computationally inexpensive
and suitable for many applications. However, there is typically a tradeoff between
speech distortion and undesired signal suppression, and perfect dereverberation can
in general not be achieved using spectral enhancement.

1.3.2 Combined spatial and spectral filtering

In general, a combination of spatial and spectral filtering can be used to exploit
both spatial and spectro-temporal information for speech enhancement.
Spatial filtering, also referred to as beamforming, has been commonly employed for
denoising when multiple microphones are available [20, 99–103]. In beamforming,
the multi-channel input signals are linearly filtered and summed in such a way that
the desired speech signal is preserved in the output signal, while the background
noise is reduced. Beamformers can be signal independent, i.e., exploiting only the
geometry of the microphone array, or signal dependent, i.e., exploiting the statis-
tics of the microphone signals. A classical signal-independent beamformer is the
delay-and-sum beamformer, which applies delays to the microphone signals in or-
der to align the desired signal from a certain direction in all microphones before
summing them, thereby suppressing the incoherent disturbance [99]. Classical signal-
dependent beamformers are the minimum variance distortionless response (MVDR)
beamformer [100,104] and the more general linearly constrained minimum variance
(LCMV) beamformer [105]. While beamforming can be very effective for denoising
in the presence of directional interferences, it is typically less effective for diffuse
disturbances such as reverberation, especially when employing a small number of
microphones [5, 106].
Different combinations of spatial and spectral filtering have been proposed to reduce
reverberation. In [107], the late reverberant PSD for each channel has been estimated
using long-term linear prediction (LP) and spectral enhancement has been used to
reduce reverberation in each channel, followed by a delay-and-sum beamformer.
In [108], blind source separation has been used to obtain an estimate of the noise
and late reverberant PSD, which is used for dereverberation by performing spectral
enhancement of the averaged microphone signals. A two-stage beamformer has been
proposed in [109], where a signal-independent superdirective beamformer has been
used to reduce reverberation, followed by a signal-dependent beamformer to reduce
the residual noise.
Several methods employing a beamformer followed by spectral enhancement have
been used to improve the dereverberation performance of the beamformer, with
a block scheme of a typical system depicted in Fig. 1.4. In [82, 110–112], a fixed
beamformer has been combined with a stand-alone single-channel spectral enhance-
ment for suppressing residual noise and reverberation. An estimator of the late
reverberant PSD based on a temporal exponential decay RIR model has been used
in [82,110], while an estimator based on acoustic equalization has been used in [112].
Assuming that late reverberation is isotropic, maximum likelihood (ML) estima-
tors for the late reverberant PSD have been proposed in [113–115], which is sub-
sequently used to reduce reverberation using spectral enhancement at the output
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Fig. 1.4: A block scheme of a typical system combining spatial and spectral filtering. ym(t)
denotes the m-th observed microphone signal, m ∈ {1, . . . ,M}, and d̂(t) denotes
the estimated desired speech signal.

of an MVDR beamformer. Similarly, the late reverberant PSD has been estimated
using an eigenvalue decomposition (EVD) in [116], assuming that the late reverber-
ation is isotropic. Note that the considered combinations of an MVDR beamformer
and a single-channel spectral enhancement based on a Wiener filter can be seen as
variants of the multi-channel Wiener filter (MWF) [103, 117, 118]. Since the design
of the MVDR beamformer is based on an estimate of the direction of arrival (DOA)
or the relative early transfer functions (RETF) of the desired speech source, the
performance may suffer in the presence of estimation errors [116,119].
In addition to the DOA of the speech source, i.e., of the direct path signal, the
DOAs of the early reflections have been exploited in the LCMV beamformer in [33].
Similarly, different acoustic rake receivers, also exploiting early reflections, have
been proposed in [34]. A joint dereverberation and denoising method has been
proposed in [120], where estimation of both the acoustic transfer functions (ATFs)
and the source signal has been formulated in a probabilistic framework. Recently,
several beamforming methods based on neural networks have been proposed for
multi-channel speech enhancement for automatic speech recognition [121,122], with
the spatial and spectral filtering typically integrated and trained together with the
speech recognizer.
Methods combining spatial and spectral filtering are typically robust and computa-
tionally efficient. However, dereverberation performance of beamforming is typically
limited and its combination with spectral filtering results in an inherent tradeoff
between speech distortion and undesired signal suppression in the output signal.
Therefore, these methods are typically unable to perfectly recover the desired speech
signal.

1.3.3 Indirect inverse filtering

Indirect inverse filtering typically consists of two steps, as depicted in Fig 1.5. Firstly,
the RIRs or the ATFs between the speech source and the microphones need to be
identified, i.e., the RIRs or the ATFs between the source and the microphones are
estimated using supervised or blind system identification. Secondly, the estimates
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Fig. 1.5: A block scheme of a typical indirect inverse filtering system. ym(t) denotes the m-
th observed microphone signal, m ∈ {1, . . . ,M}, and d̂(t) denotes the estimated
desired speech signal.

are used to perform inverse filtering, i.e., acoustic channel equalization, to reshape
the transfer function in such a way that the influence of reverberation is either
reduced or completely removed.
Assuming that multiple microphones are available and the RIRs between the source
and the microphones do not share common zeros, perfect dereverberation can be
achieved using inverse filtering based on the multiple-input/output inverse theorem
(MINT) [123]. While this is theoretically appealing, numerous studies have demon-
strated the sensitivity of the inverse filters to RIR mismatch [5, 52, 53, 124, 125]. In
practice, there is typically a significant difference between the estimated or mea-
sured RIRs and the actual RIRs, due to either spatial mismatch or inaccuracy of
system identification. Therefore, a large body of research has been focused on in-
creasing the robustness of acoustic channel equalization, assuming that estimated
RIRs are available.
Inversion in subbands has been considered in [126–128], resulting in a reduced com-
putational complexity and increased robustness. In [129, 130], robustness has been
increased by using channel shortening for partial equalization, i.e., by not aiming
at perfect dereverberation but preserving the early reflections in the output sig-
nal. In [130,131], a robust design of inverse filters for partial equalization based on
weighted least squares has been proposed. In [132], a robust partial equalization
based on MINT has been proposed, improving the perceptual quality of partial
equalization. Robustness of several partial equalization methods with respect to the
mismatch of the RIRs has been increased by using shorter filter lengths [133], by
signal-independent regularization [125,134], and by signal-dependent regularization
using sparsity of the output speech signal [135,136]. In [137], joint dereverberation
and denoising based on multi-channel equalization has been proposed, by taking
into account the second-order statistics of the noise and the speech in the filter
design.
As an alternative to the two-step indirect inverse filtering, estimation of the trans-
fer functions and the desired speech signal has been formulated jointly. A joint
estimation of the subband convolutive ATFs, i.e., the subband analogues of the
RIRs, and the desired speech coefficients has been proposed in [138], which iterates
between the ATF identification and subband inverse filtering-based desired speech
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estimation. The likelihood function for the parameters is obtained using Gaussian
modeling, and the parameters are estimated using expectation-maximization (EM),
with a Kalman smoother used to solve a structured least-squares problem. An on-
line extension of [138] has been proposed in [139], using a recursive EM scheme and
the Kalman filter. A similar signal model has been used in [140], where we proposed
an iterative algorithm for estimating the subband convolutive ATFs and the speech
coefficients by using a sparse model for the speech coefficients and a Bayesian-based
cost function. However, since these methods perform indirect inverse filtering using
the current estimate of the convolutive ATFs, they can also be sensitive when the
estimation errors are large.
Inverse filtering can also be used for single-channel dereverberation, although perfect
dereverberation is in general not possible since the RIRs are generally mixed-phased,
and a causal stable inverse filter does not exist [123]. In [141], a least-squares re-
gression between the obtained and the desired response has been used to design an
approximate inverse filter. However, a very long inverse filter is required for satisfac-
tory performance, resulting in a high complexity, and sensitivity to RIR mismatch
remains a problem [142]. In [143], computational complexity has been reduced by
inverse filtering in the frequency domain and using spectral enhancement to reduce
the artifacts.
In general, methods based on inverse filtering typically exploit the complete infor-
mation about the transfer function between the speech source and the microphones
as captured by the RIRs. If multiple microphones are available, perfect derever-
beration can be achieved using indirect inverse filtering if the RIRs are perfectly
known (assuming the MINT conditions hold). However, when the measured or esti-
mated RIRs are perturbed with respect to the actual RIRs, the performance suffers,
even when using robust inverse filtering methods. Furthermore, time-domain inverse
filtering methods are typically not suitable for real-time applications, and simultane-
ous estimation of RIRs and robust acoustic equalization remains a difficult problem,
both due to the RIR fluctuations and the computational complexity of designing
the time-domain inverse filters.

1.3.4 Direct inverse filtering

Direct inverse filtering methods aim to achieve speech dereverberation without re-
quiring information about the transfer functions, such as RIRs or ATFs, between
the speech source and the microphones. The inverse filters are applied directly on
the microphone signals which are combined in such a way that the reverberation
is removed or suppressed, with a typical system depicted in Fig. 1.6. As opposed
to the indirect inverse filtering methods, the main advantage of the direct methods
is that the inverse filters are typically designed by exploiting the properties of the
speech signal and not using the transfer functions between the speech source and
the microphones.
Most methods from this class are based on multi-channel linear prediction
(MCLP) [144, 145]. More specifically, the multi-channel microphone signals are fil-
tered and summed to obtain an estimate of the undesired reverberant speech com-
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Fig. 1.6: A block scheme of a typical direct inverse filtering system. ym(t) denotes the m-
th observed microphone signal, m ∈ {1, . . . ,M}, and d̂(t) denotes the estimated
desired speech signal.

ponent at the reference microphone, which can then be subtracted to remove re-
verberation at the reference microphone. Based on MINT, it can be shown that
prediction filters that achieve perfect dereverberation do exist, and that they can
be indirectly computed from the RIRs and the MINT-based inverse filters. More-
over, perfect dereverberation is possible for multiple sources, as long as the number
of microphones is larger than the number of sources. While this ensures that such
prediction filters in theory exist, estimating them blindly, i.e., without using the
RIRs, can be a difficult task [146]. Since virtually no information about the transfer
functions is used, effective solutions typically exploit some information about the
desired speech signal [146,147].
Initially, the prediction filters were estimated by minimizing the energy of the output
signal, i.e., the prediction residual [107, 148–152]. However, since the energy mini-
mization criterion has been used for temporally white signals, this typically leads
to prediction filters that result in excessive equalization (whitening) of the speech
signal [144, 145]. Several strategies for reducing this effect have been proposed in
the literature [146]. In [148, 149], the microphone signals are first whitened using
an estimated whitening filter, and the prediction filters are then estimated from
the preprocessed microphone signals. In this way, the estimated prediction filters
would predict mainly the undesired reverberant signal. In [150], the average speech
characteristics are estimated from all microphones, and used to compensate for the
excessive whitening at the output of the prediction filters. In [107], in addition to
pre-whitening, a prediction delay has been introduced to preserve the short-term
speech correlation and to estimate only the late reverberation using MCLP. In [152],
time-varying speech characteristics and time-invariant prediction filters have been
jointly estimated, thereby obtaining the prediction filters which do not perform
excessive whitening, since they capture only the properties of the acoustic channel.
A somewhat different approach has been used in [153, 154]. More specifically, ML
estimation of the prediction filters has been formulated using a time-varying Gaus-
sian model for the desired speech signal. A pre-trained dictionary-based speech
model has been used to prevent excessive whitening in [153], while pre-whitening
and a prediction delay have been used with a simplified speech model in [154]. An
efficient subband variant of the latter approach, referred to as the weighted predic-
tion error (WPE) method, has been proposed in [154, 155]. More specifically, the
WPE method has been formulated using a delayed MCLP-based signal model and
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a locally Gaussian model for the coefficients of the desired speech signal in each
subband. An iterative optimization procedure has been derived for ML estimation
of the prediction filters.
Several methods extending WPE have been proposed in the literature [156–172],
e.g., by combining WPE with spatial and spectral filtering. An extension to multiple-
output speech dereverberation has been proposed in [161]. The proposed method has
been derived using a cost function that minimizes the inter-frame dependence of the
desired speech signal coefficients in each subband, resulting in an iterative optimiza-
tion algorithm for estimating the prediction filters. A single-output adaptive variant
of WPE based on recursive least squares has been proposed in [156], suitable for
dynamic acoustic scenarios. Similarly, a multiple-output adaptive variant has been
proposed in [163]. Similarly, adaptive variants using Kalman filter-based subband
processing have been proposed in [169,170]. In [166], a probabilistically formulated
combination of inverse filtering, beamforming and spectral enhancement has been
proposed, using a locally Gaussian model for the desired speech coefficients and a
probabilistic model for time-varying ATFs. The unknown parameters have been it-
eratively estimated using an expectation-maximization algorithm in each subband.
Furthermore, a combination of dereverberation and source separation has been pro-
posed in [157, 160, 173], where the prediction filters and demixing matrices are es-
timated jointly. Combined dereverberation and denoising has been considered by
joint estimation of the prediction filters and the denoised signal in a probabilistic
framework in [158,159,165,167,168], while combinations of WPE with independent
spatial and spectral filtering have been considered in [163,164].
Another relevant method for dereverberation and source separation using direct
inverse filtering has been proposed in [174] by exploiting non-gaussianity, non-
whiteness and non-stationarity of the speech signals. While allowing general source
models and different applications [175], this approach is typically computationally
complex.
In general, direct inverse filtering methods typically exploit properties of the speech
signal to design the dereverberation filters. Theoretically, using inverse filtering en-
sures that perfect dereverberation is possible when multiple microphones are avail-
able. Furthermore, by exploiting the speech signal properties, these methods al-
leviate the need for information about the transfer function between the speech
source and the microphones, as opposed to the indirect inverse filtering methods.
This is a large advantage over the indirect filtering methods, e.g., in scenarios when
the transfer functions are unknown, varying over time, or cannot be measured or
estimated.

1.4 Outline of the thesis and main contributions

This thesis deals with the problem of blind speech dereverberation by developing a
class of direct inverse filtering methods, i.e., inverse filtering methods not requiring
estimated or measured RIRs or ATFs. More specifically, we propose a general frame-
work for blind speech dereverberation using the MCLP-based signal model for the
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reverberant speech and exploiting sparsity of the speech signal in the time-frequency
(TF) domain.
The main contributions of this thesis can be summarized as follows. Firstly, we pro-
pose a probabilistic and deterministic formulation of sparsity-promoting MCLP in
the subband domain, generalizing existing single- and multi-output MCLP-based
dereverberation methods. Secondly, we propose a constrained sparse MCLP formu-
lation for adaptive speech dereverberation, increasing the robustness of the existing
adaptive methods. Thirdly, we propose a general framework for speech derever-
beration based on sparse MCLP by using either a wideband or a subband signal
model, exploiting sparsity of the speech signal in the TF domain and incorporating
additional structure of the speech signal. Finally, we propose a sparsity-based dere-
verberation and denoising method in a joint framework. A structured overview of
the thesis is given in Fig. 1.7.

In Chapter 2, we present wideband and subband signal models used for the multi-
channel reverberant signal. We introduce the notion of sparsity of a signal and
discuss sparsity of the speech signals in the TF domain, demonstrating the influence
of reverberation on TF sparsity. Furthermore, we define the instrumental measures
used to evaluate the performance of speech dereverberation methods.

In Chapter 3, we consider the noiseless case and propose a single-output batch
method for blind speech dereverberation based on sparse multi-channel linear pre-
diction using the subband signal model. We formulate the estimation of the pre-
diction filter using a sparse prior for the TF coefficients of the speech signal, and
present a general algorithm based on a variational representation of the sparse prior.
We show that the conventional MCLP-based dereverberation method is included as
a special case of the proposed method. The content of this chapter is related to the
work published in [176–178].

In Chapter 4, we extend the single-output method from Chapter 3 to a multiple-
output blind speech dereverberation method based on group sparse multi-channel
linear prediction. We formulate the optimization problem using a cost function
which promotes sparsity across time and takes into account grouping of the coef-
ficients across the microphones, generalizing the conventional single- and multiple-
output dereverberation methods. The content of this chapter is related to the work
published in [179].

In Chapter 5, we extend the batch methods from Chapters 3 and 4 to an adaptive
blind speech dereverberation method based on constrained sparse multi-channel lin-
ear prediction. The proposed adaptive method may in some cases lead to distortions
due to overestimation of the undesired speech signal. In order to prevent excessive
cancellation of the desired speech signal, we use an estimate of the late reverber-
ant PSD to constrain the estimated undesired speech signal, and thereby increase
the robustness of the adaptive dereverberation method. Furthermore, we propose a
diagonal approximation for reducing the computational complexity. The content of
this chapter is related to the work published in [180,181].
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Fig. 1.7: Structure of the thesis.
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Whereas in the previous chapters only the subband signal model was considered,
in Chapter 6 we propose a general framework for speech dereverberation using
MCLP-based signal models and exploiting sparsity in the TF domain. We formu-
late optimization problems using either the wideband or the subband signal model,
with a sparsity-promoting cost function and a general TF analysis operator. We
investigate different cost functions with and without exploiting the TF structure
of the speech signal. The content of this chapter is related to the work published
in [182,183].

Whereas in the previous chapters only the noiseless case was considered, in Chapter 7
we propose a method for joint dereverberation and denoising in the subband domain.
We formulate optimization problems for denoising and joint dereverberation and
denoising by exploiting sparsity of the speech signal and imposing a bound for
the energy of the noise component in the signal model, assuming that the noise
correlation matrix is known.

In Chapter 8, we summarize the main contributions of the thesis and discuss possible
topics for further research, i.e., extensions of the presented methods and possible
applications.





2
SIGNAL MODELS AND INSTRUMENTAL
PERFORMANCE MEASURES

In this chapter, we present wideband and subband signal models, discuss sparsity
of speech signals and define the instrumental measures used to evaluate the perfor-
mance of speech dereverberation methods.
In Section 2.1 we present the wideband signal model for a speech signal captured in a
reverberant enclosure, based on multi-channel linear prediction in the time domain.
Furthermore, we present a subband signal model, which is an approximation of
the wideband signal model with independent modeling applied in each subband.
In Section 2.2 we introduce the notion of sparsity of a signal and briefly discuss
the influence of reverberation on TF sparsity of speech signals. In Section 2.3 we
present the instrumental performance measures used to evaluate the performance
of the speech enhancement methods in the remainder of the thesis.

2.1 Signal models

2.1.1 Wideband signal model

We consider an acoustic scenario where a single static speech source in a reverberant
and noisy environment is captured by M microphones as given in Figure 2.1. Let

¯
s(t) denote the anechoic speech signal in the time domain, with t denoting the
discrete-time index. The time-domain signal

¯
y
m

(t) captured at them-th microphone,
m ∈ {1, . . . ,M}, can be modeled in the time domain as

¯
y
m

(t) =
¯
xm(t) +

¯
vm(t), (2.1)

where
¯
xm(t) is the reverberant speech signal observed at the m-th microphone and

¯
vm(t) is the additive noise signal observed at the m-th microphone. The reverberant
speech signal

¯
xm(t), without the additive noise signal

¯
vm(t), can be modeled in the

time domain as

¯
xm(t) =

L
¯
h−1∑
l=0

¯
hm(l)

¯
s(t− tm − l) =

¯
hm(t) ∗

¯
s(t− tm), (2.2)
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Fig. 2.1: The considered multi-channel system with a single static speech source and M
microphones in a reverberant and noisy environment.

where
¯
hm(t) denotes the FIR filter with length L

¯
h representing the RIR between

the speech source and the m-th microphone without the direct path delay, tm is
the delay of the direct path signal, and ∗ denotes the convolution operator. The
reverberant speech signal

¯
xm(t) can be further decomposed into a desired speech

signal
¯
dm(t) and an undesired speech signal

¯
um(t) as

¯
xm(t) =

¯
τ−1∑
l=0

¯
hm(l)

¯
s(t− tm − l)︸ ︷︷ ︸

¯
dm(t)

+

L
¯
h−

¯
τ−1∑

l=0
¯
hm(l +

¯
τ)

¯
s(t− tm −

¯
τ − l)︸ ︷︷ ︸

¯
um(t)

. (2.3)

The desired speech signal
¯
dm(t) is defined as the convolution of the delayed anechoic

speech signal
¯
s(t) with the early part of the m-th RIR

¯
hm, corresponding to the first

¯
τ samples. Therefore, the desired speech signal

¯
dm(t) consists of the direct speech

signal and the early reflections. The undesired speech signal
¯
um(t) consists of the

late reverberation and is defined as the convolution of the delayed anechoic speech
signal

¯
s(t) with the late part of the m-th RIR

¯
hm, corresponding to all samples

after
¯
τ .

When multiple microphones are available, i.e.,M > 1, the anechoic speech signal
¯
s(t)

can be obtained from the reverberant speech signals
¯
xm(t) under certain conditions.

More specifically, assuming that the RIRs
¯
hm do not share any common zeros in

the z-plane, the multiple-input/output inverse theorem (MINT) [123] states that
there exists a set of inverse filters

¯
hinv
m , m ∈ {1, . . . ,M}, such that the anechoic

speech signal
¯
s(t) can be recovered up to a delay tm by filtering and summing the

reverberant microphone signals
¯
xm(t), i.e.,

¯
s(t− tm) =

M∑
m=1

Linv

¯
h −1∑
l=0

¯
hinv
m (l)

¯
xm(t− l), (2.4)
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with Linv

¯
h ≥

⌈
L

¯
h−1

M−1

⌉
the length of the inverse filters, where d.e denotes the ceil-

ing operator. Using the expression for the anechoic speech signal
¯
s(t) in (2.4), the

undesired speech signal
¯
um(t) in (2.3) can be expressed as

¯
um(t) =

M∑
m′=1

L
¯
h−

¯
τ−1∑

l1=0

Linv

¯
h −1∑
l2=0

¯
hm(l1 +

¯
τ)

¯
hinv
m′ (l2)

¯
xm′ (t−¯

τ − (l1 + l2)) . (2.5)

The expression for the undesired speech signal in (2.5) can be rewritten as

¯
um(t) =

M∑
m′=1

L
¯
g−1∑
l=0

¯
xm′(t−¯

τ − l)
¯
g
m′,m

(l), (2.6)

i.e., the undesired speech signal
¯
um(t) at the m-th microphone can be expressed as

the sum of filtered delayed reverberant speech signals on all microphones. The filter
coefficients

¯
g
m′,m

(t) depend on the RIRs
¯
hm and the corresponding inverse filters

¯
hinv
m , and can be written as

¯
g
m′,m

(t) =

L
¯
h−

¯
τ−1∑

l1=0

Linv

¯
h −1∑
l2=0

¯
hm(l1 +

¯
τ)

¯
hinv
m′ (l2)δ (l1 + l2 − t) , (2.7)

where δ(.) is the Kronecker delta function, resulting in L
¯
g = L

¯
h + Linv

¯
h −

¯
τ − 1

coefficients for each filter
¯
g
m′,m

(t), i.e., the length of the prediction filter obtained
using (2.7) satisfies the following relation

L
¯
g ≥ L

¯
h +

⌈
L

¯
h − 1

M − 1

⌉
−

¯
τ − 1. (2.8)

Using the filters
¯
g
m,m′

from (2.7), the undesired speech signal can be compactly
written as

¯
um(t) =

M∑
m′=1¯

g
m′,m

(t) ∗
¯
xm′(t−¯

τ), (2.9)

such that the signal model for the reverberant speech signal in (2.3) can be rewritten
as

¯
xm(t) =

¯
dm(t) +

M∑
m′=1¯

g
m′,m

(t) ∗
¯
xm′(t−¯

τ). (2.10)

The filters
¯
g
m′,m

are typically referred to as the prediction filters, since they can
be used to predict the undesired speech signal

¯
um(t) at the m-th microphone. The

signal model in (2.10) is referred to as the multi-channel linear prediction (MCLP)
model, since it is based on predicting the undesired speech signal

¯
um(t) at the

current time by linear filtering of the delayed reverberant speech signal
¯
xm′(t − ¯

τ)
at all microphones. The signal model for the desired speech signal in (2.3) implies
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that perfect dereverberation up to a scaling and a direct path delay can be achieved
when

¯
τ = 1, i.e., the desired speech signal is equal to the anechoic speech signal

scaled with
¯
hm(0) and delayed for tm samples. When

¯
τ > 1, some early reflections

are preserved in the desired speech signal, i.e., the desired speech signal is equal to
the anechoic speech signal convolved with the first

¯
τ samples of the RIR

¯
hm and

delayed for tm.
If the true RIRs

¯
hm and the corresponding inverse filters

¯
hinv
m are perfectly known,

the prediction filters
¯
g
m′,m

can be computed using the expression in (2.7), which can
then be used to compute the undesired speech signal

¯
u(t). However, the algorithms

presented in this thesis do not assume any knowledge of the RIRs
¯
hm and aim to

estimate the prediction filters and the desired speech signal without exploiting the
RIRs, i.e., the expression in (2.7) only serves to ensure that such filters in theory
exist.
Assuming that a batch of T time-domain samples is available, the observed re-
verberant speech signal and the desired speech signal in the time domain can be
represented in vector form as

¯
xm = [

¯
xm(1),

¯
xm(2), . . . ,

¯
xm(T )]

T

¯
dm = [

¯
dm(1),

¯
dm(2), . . . ,

¯
dm(T )]

T
,

(2.11)

with .T denoting the transpose operator. The MCLP signal model in (2.10) can then
be written in vector form as

¯
xm =

¯
dm +

M∑
m′=1

˜
¯
Xm′,

¯
τ
¯
g
m′,m

, (2.12)

where ˜
¯
Xm′,

¯
τ ∈ RT×L¯

g is a convolution matrix of the time-domain signal
¯
xm′(t)

delayed for
¯
τ samples, i.e.,

˜
¯
Xm′,

¯
τ =



0 0 . . . 0
...

...
. . .

...

xm′(1) 0
. . .

...

xm′(2) xm′(1)
. . .

...
... xm′(2)

. . . 0
...

...
. . . xm′(1)

...
...

. . .
...

xm′(T −
¯
τ) . . . . . . xm′(T −

¯
τ − L

¯
g + 1)



, (2.13)
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and
¯
g
m′,m

∈ RL¯
g is the vector of the prediction filter relating the m′-th microphone

to the m-th microphone, i.e.,

¯
g
m′,m

=
[
¯
g
m′,m

(0),
¯
g
m′,m

(1), . . . ,
¯
g
m′,m

(L
¯
g − 1)

]T
. (2.14)

By defining the multi-channel convolution matrix ˜
¯
X

¯
τ ∈ RT×ML

¯
g and the multi-

channel prediction filter
¯
g
m
∈ RML

¯
g as

˜
¯
X

¯
τ =

[
˜
¯
X1,

¯
τ , . . . , ˜

¯
XM,

¯
τ

]
,

¯
g
m

=
[
¯
gT

1,m
, . . . ,

¯
gT
M,m

]T
,

(2.15)

the MCLP signal model for the m-th channel in (2.12) can be written as

¯
xm =

¯
dm + ˜

¯
X

¯
τ
¯
g
m
. (2.16)

The corresponding MCLP signal model for all M channels can be written in matrix
form as

¯
X =

¯
D + ˜

¯
X

¯
τ ¯
G, (2.17)

where the multi-channel reverberant speech matrix
¯
X ∈ RT×M , the multi-channel

desired speech matrix
¯
D ∈ RT×M , and the multiple-input multiple-output (MIMO)

prediction filter
¯
G ∈ RML

¯
g×M are defined as

¯
X = [

¯
x1, . . . , ¯

xM ]

¯
D = [

¯
d1, . . . , ¯

dM ]

¯
G =

[
¯
g

1
, . . . ,

¯
g
M

]
.

(2.18)

Finally, the MCLP-based signal model for the complete observed microphone signal
can be written as

¯
Y =

¯
D + ˜

¯
X

¯
τ ¯
G +

¯
V, (2.19)

where
¯
Y ∈ RT×M is the multi-channel microphone signal matrix, and

¯
V ∈ RT×M

is the multi-channel noise matrix.

2.1.2 Subband signal model

While the wideband signal model from the previous section holds perfectly when
the MINT conditions are fulfilled, the length of the prediction filter in (2.8) is
approximately proportional to the length of the time-domain RIRs which can be
prohibitively large, especially for large reverberation times.
In order to reduce the length of the filters, a similar model can be used in the
subband domain, e.g., in the short-time Fourier transform (STFT) domain [154,155]
or the polyphase filter bank domain [158]. Additionally, certain properties of the
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speech signal can be more naturally modeled and exploited in the TF domain, e.g.,
sparsity or TF structure. Without loss of generality, in this thesis we will consider
the subband model in the STFT domain.
Let s(k, n) ∈ C denote a coefficient of the anechoic speech signal in the STFT
domain, with k ∈ {1, . . . ,K} denoting the subband index and n ∈ {1, . . . , N}
denoting the time frame index. The signal observed at the m-th microphone, m ∈
{1, . . . ,M}, can be modeled in the STFT domain as

ym(k, n) = xm(k, n) + vm(k, n), (2.20)

where xm(k, n) ∈ C is the STFT coefficient of the reverberant speech signal observed
at the m-th microphone and vm(k, n) ∈ C is the STFT coefficient of the noise
signal observed at the m-th microphone. The time-domain signal model in (2.2)
can be approximated in the STFT domain using the convolutive transfer function
approximation [184–186], i.e., the reverberant speech signal xm(k, n) can be modeled
using a subband model in the STFT domain as

xm(k, n) =

Lh−1∑
l=0

hm(k, l)s(k, n− nm − l) = hm(k, n) ∗ s(k, n− nm), (2.21)

where hm(k, n) represents the (convolutive) ATF between the speech source and the
m-th microphone with length Lh time frames, nm is the delay of the direct path,
and ∗ denotes the convolution operator operating across time frames. The subband
model in (2.21) is practically very interesting because the time-domain convolution
in (2.2) is divided into a set of convolutions across time frames in the TF domain
in (2.21). This subband convolution model has been successfully used in various
acoustical signal processing applications [77, 139, 155, 184–186]. The advantage of
the subband model in (2.21) is that the convolutive ATFs in the TF domain are
much shorter than the RIRs in the time domain, i.e., Lh � L

¯
h. Consequently, the

subband model can be used to significantly reduce the computational complexity
due to shorter ATFs and possibility of independent processing in each subband.
As in the previous section, the reverberant speech signal xm(k, n) can be decom-
posed into a desired speech signal dm(k, n) and an undesired speech signal um(k, n)
as

xm(k, n) =

τ−1∑
l=0

hm(k, l)s(k, n− nm − l)︸ ︷︷ ︸
dm(k,n)

+

Lh−τ−1∑
l=0

hm(k, l + τ)s(k, n− nm − τ − l)︸ ︷︷ ︸
um(k,n)

.

(2.22)
The desired speech signal dm(k, n) consists of the direct signal and early reflections,
corresponding to the first τ coefficients of the ATF hm(k, n).
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Assuming that a batch of N time frames is available, the subband model in (2.21)
can be represented in the MCLP form similarly as for the wideband model in (2.12)
as

xm(k) = dm(k) +

M∑
m′=1

X̃m′,τ (k)gm′,m(k), (2.23)

where the vectors xm(k) and dm(k) are defined as

xm(k) = [xm(k, 1), xm(k, 2), . . . , xm(k,N)]
T
,

dm(k) = [dm(k, 1), dm(k, 2), . . . , dm(k,N)]
T
.

(2.24)

The matrix X̃m′,τ (k) ∈ CN×Lg is a convolution matrix of xm′(k, n) delayed for τ
time frames in the k-th subband, i.e.,

X̃m′,τ (k) =



0 0 . . . 0
...

...
. . .

...

xm′(k, 1) 0
. . .

...

xm′(k, 2) xm′(k, 1)
. . .

...
... xm′(k, 2)

. . . 0
...

...
. . . xm′(k, 1)

...
...

. . .
...

xm′(k,N − τ) . . . . . . xm′(k,N − τ − Lg + 1)



, (2.25)

and gm′,m(k) ∈ CLg is the vector form of the prediction filter relating the m′-th
channel to m-th channel in the k-th subband, i.e.,

gm′,m(k) = [gm′,m(k, 0), gm′,m(k, 1), . . . , gm′,m(k, Lg − 1)]
T
. (2.26)

Defining the multi-channel convolution matrix X̃τ (k) ∈ CN×MLg and the multi-
channel prediction filter gm(k) ∈ CMLg as

X̃τ (k) =
[
X̃1,τ (k), . . . , X̃M,τ (k)

]
gm(k) =

[
gT

1,m(k), . . . ,gT
M,m(k)

]T
,

(2.27)

the MCLP signal model for the m-th channel in the k-th subband can be written
compactly in a vector form as

xm(k) = dm(k) + X̃τ (k)gm(k). (2.28)

Similarly as for the wideband model in Section 2.1.1, if the true ATFs hm(k, n) and
the corresponding inverse ATFs hinv

m (k, n) in the k-th subband are perfectly known,
the prediction filters can be computed similarly as in (2.7). However, the algorithms
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presented in this thesis do not assume any knowledge of the ATFs hm(k, n) and aim
to estimate the prediction filters and the desired speech signal without exploiting
the ATFs.
The signal model for the desired speech signal in (2.22) implies that when τ = 1 the
desired speech signal is equal to the delayed anechoic speech signal coefficient scaled
with the complex-valued early ATF signal hm(k, 0). Since the scaling depends on
the subband index k, some coloration will typically be present in the desired speech
signal. When τ > 1, additional early reflections are also preserved in the desired
speech signal.
The corresponding MCLP signal model for all M channels can be written in matrix
form as

X(k) = D(k) + X̃τ (k)G(k), (2.29)

where the multi-channel reverberant speech matrix X(k) ∈ CN×M , the multi-
channel desired speech matrix D(k) ∈ CN×M , and the MIMO prediction filter
G(k) ∈ CMLg×M are defined as

X(k) = [x1(k), . . . ,xM (k)] ,

D(k) = [d1(k), . . . ,dM (k)] ,

G(k) = [g1(k), . . . ,gM (k)] .

(2.30)

Finally, the MCLP-based signal model for the complete observed microphone signal
in the k-th subband can be written as

Y(k) = D(k) + X̃τ (k)G(k) + V(k), (2.31)

where Y(k) ∈ CN×M is the multi-channel microphone signal matrix in the k-th
subband, and V(k) ∈ CN×M is the multi-channel noise matrix in the k-th subband.

2.2 Sparsity of speech signals

In this section we discuss sparsity of speech signals in the TF domain, its application
in speech signal processing and the influence of reverberation on TF sparsity.
In general, sparsity of a vector is related to the magnitude of its elements, e.g.,
a vector with many elements equal to zero is referred to as a sparse vector. In
other words, only a relatively small number of elements in a sparse vector have
a large magnitude. Note that the notion of sparsity can be extended to matrices
and other signals in general. Over the past two decades, sparse regularization has
become widely utilized to regularize different ill-posed problems in signal and image
processing and machine learning [187].
In the time domain speech signals typically do not exhibit a very high level of
sparsity. However, in the TF domain they typically have a sparse representation,
since the energy of most speech signals is dominantly contained in a relatively
small number of TF bins [188–190]. The observed sparsity of speech signals in
the TF domain can be attributed to the combined effects of their spectral shape,
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harmonic structure and speech pauses. In general, sparsity of audio signals can
be related to the sound production system and its resonances, and the temporal
activity of the production mechanism, which together result in harmonic structures
over frequencies and varying temporal structures [191]. In addition to the widely
used STFT, examples of other relevant TF transforms in the context of speech
signal processing include the modified discrete cosine transform (MDCT), or the
non-stationary Gabor transform [192].
In the context of speech and audio processing, sparsity in the TF domain has
been exploited in many different applications. A classical example is source sep-
aration [188, 189, 193–196], where it is typically assumed that the sources are ap-
proximately mutually disjoint in the TF domain, i.e., at each TF point only a single
source is dominant. Using this assumption, the mixing matrix can be estimated
and used to recover the source signals. Another example is sparsity-based denoising,
where assuming that the speech signal has a sparse TF representation, the desired
speech signal cam be recovered from the noisy observation [197–199]. Similarly,
sparsity has been extensively exploited in other applications, such as beamform-
ing [200,201], declipping and inpainting [202–205], and coding of speech and audio
signals [191,206,207].
Reverberation may have a significant influence on the sparsity of speech signals
in the TF domain. More specifically, the temporal smearing due to reverberation
influences the distribution of the speech energy in the TF domain. This results in a
decreased number of TF coefficients with very low energy, which effectively reduces
the sparsity of the speech signal captured at the microphone inside a reverberant
enclosure [189]. The influence of reverberation on the sparsity of the speech signal in
the STFT domain is illustrated in Fig. 2.2, which depicts spectrograms of anechoic
speech signal and reverberant speech signal in a reverberant enclosure with the
reverberation time of T60 ≈ 700 ms. By comparing the spectrograms of the clean
and the reverberant speech signal, it is clear that the reverberant signal exhibits a
lower level of sparsity. More specifically, smearing of the speech energy across speech
pauses between the phonemes results in a reduced sparsity in the STFT domain. The
distribution of the magnitude of the STFT coefficients of the corresponding anechoic
and reverberant speech signals is depicted in Fig. 2.3. From these histograms it is
evident that the number of TF coefficients that are very close to zero is reduced while
the number of non-zero coefficients is increased in the presence of reverberation. In
the remainder of this thesis, this difference in TF sparsity between the anechoic
speech signal and the observed reverberant microphone signal will be exploited in
an MCLP-based framework to achieve speech dereverberation.

2.3 Instrumental performance measures

In this section, we present several instrumental performance measures used to eval-
uate the performance of the speech enhancement algorithms in the remainder of the
thesis.
Different instrumental measures have been proposed to evaluate speech derever-
beration performance [5]. Typically, these instrumental measures are classified into



26 signal models and instrumental performance measures

0.5 1 1.5 2 2.5 3
0

2

4

6

8

t [s]

f
[k
H
z]

−80

−60

−40

−20

0

(a) Anechoic speech signal

0.5 1 1.5 2 2.5 3
0

2

4

6

8

t [s]

f
[k
H
z]

−80

−60

−40

−20

0

(b) Reverberant speech signal

Fig. 2.2: Influence of reverberation on sparsity of a speech signal in the STFT domain
illustrated using a spectrogram of (a) anechoic speech signal, and (b) reverberant
speech signal (T60 ≈ 700 ms).

channel-based measures and signal-based measures. Channel-based measures are
computed using the impulse response between the source signal and the received or
processed signal, e.g., the RIR or the equalized impulse response [5,52,53]. Typical
examples of channel-based measures are the direct-to-reverberant ratio (DRR) and
the energy-decay curve (EDC). These measures are especially useful for speech dere-
verberation based on equalization, where dereverberation is performed by shaping
the equalized impulse response [5,52,53]. On the other hand, signal-based measures
are computed directly using the speech signal under investigation [5,208]. Therefore,
signal-based measures are applicable in a wider range of scenarios, e.g., when the
impulse responses are not available, and provide a reasonable means of objective
evaluation [5]. These measures can be further divided into intrusive measures, requir-
ing a reference signal, and non-intrusive measures, not requiring a reference signal.
Intrusive measures are generally based on some measure of discrepancy between
the speech signal under investigation and the reference signal, which is typically
the anechoic speech signal or the direct signal with early reflections. Examples of
such measures are the signal-to-noise ratio (SNR)-based measures, cepstral distance
(CD) [209], the log-likelihood ratio (LLR) [209], and the perceptual evaluation of
speech quality (PESQ) measure [210,211]. Non-intrusive measures typically operate
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Fig. 2.3: Influence of reverberation on sparsity of a speech signal in the STFT domain
illustrated using a histogram of the magnitude spectrum of anechoic speech and
reverberant speech (T60 ≈ 700 ms): (a) full histogram, and (b) detail for small
magnitudes.

by first extracting relevant features from the speech signal under investigation and
passing them through a prediction model, which can be an analytical function or a
pre-trained model. Examples of such measures are the speech-to-reverberation mod-
ulation ratio (SRMR) measure [212] and its improved variant [213], non-intrusive
measures based on pre-trained machine-learning models [214], and others [215].
In this thesis, we will use the frequency-weighted segmental signal-to-noise ratio
(fwsSNR) [22,216] and the PESQ measure [210,211] to evaluate the performance of
speech enhancement methods, which can correlate well with the perceived amount of
reverberation and the perceptual quality of the speech signals. The fwsSNR measure
exhibits a high correlation with the perceived amount of reverberation [22], and a
relatively high correlation with the perceptual quality of speech signals [215, 217].
Although the PESQ measure was not designed for evaluating the perceptual quality
of dereverberation algorithms, it is commonly used since it exhibits a relatively high
correlation with the perceived amount of reverberation [215], and a high correlation
with the perceptual quality of speech signals [52,215,217,218].
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The fwsSNR measure is computed as described in [23, 219]. More specifically, let
x̂(k, n) denote the TF coefficients of the signal under investigation and x(k, n) the
TF coefficients of the reference signal. The fwsSNR is then computed as

fwsSNR =
1

N

N∑
n=1

clip35
−10 (fwsSNR(n)) , (2.32)

where clip35
−10(.) is a clipping operator limiting the value of each time frame between

-10 dB and 35 dB, i.e., clip35
−10(x) = max (min (x, 35) ,−10) and fwsSNR(n) is the

frequency-weighted segmental SNR computed for the n-th time frame as

fwsSNR(n) =
10∑K

k=1 f(k, n)

K∑
k=1

f(k, n) log10

|x(k, n)|2
(|x(k, n)| − |x̂(k, n)|)2 (2.33)

where f(k, n) is the weight for the k-th subband and n-th frame [219]. The weights
are computed using the magnitude spectrum of the reference signal as f(k, n) =
|x(k, n)|0.2 [23, 219].
The PESQ measure is computed as described in the wideband extension of ITU
P.862 [210,211]. The obtained values correspond to the mean opinion score (MOS)
assessing the quality of the speech signal under investigation. These values are
always between 1 and 4.5, with 1 corresponding to a bad perceptual quality and
4.5 corresponding to an excellent perceptual quality. A detailed description of the
mapping between the raw PESQ score, ranging between -0.5 and 4.5, and the PESQ
MOS can be found in [211].
Since both fwsSNR and PESQ are intrusive measures, they require a reference
signal which is typically selected as the clean speech signal observed at the reference
microphone. In the remainder of the thesis, we report the change of the fwsSNR
and PESQ values, ∆fwsSNR and ∆PESQ, computed as the difference between the
measure obtained for the output signal and the measure obtained for the input signal.
A positive value indicates an improvement relative to the input signal in terms of
the corresponding measure, while a negative value indicates a deterioration relative
to the input signal in terms of the corresponding measure.

2.4 Summary

In this chapter, we presented two signal models for the microphone signals of a
speech source observed in a reverberant enclosure. More specifically, we focused
on signal models based on multi-channel linear prediction, since these models will
be employed in the remainder of the thesis. We defined the wideband signal model,
employing time-domain RIRs, and the subband signal model, which is a widely used
and efficient approximation of the wideband signal model using convolutive ATFs.
The dereverberation methods proposed in the remainder of the thesis will mainly
exploit the sparsity of the speech signal. Therefore, we introduced the notion of spar-
sity, discussed sparsity of speech signals in the TF domain, and briefly reviewed its
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application in speech signal processing. Furthermore, we showed that reverberation
decreases the sparsity of speech signal in the TF domain.
Finally, we presented the instrumental measures that will be used to evaluate the
dereverberation performance, more specifically, signal-dependent intrusive fwsSNR
and PESQ measures.





3
SPARSE MULTI-CHANNEL LINEAR
PREDICTION FOR SPEECH
DEREVERBERATION

In this chapter, we consider the noiseless case and present a single-output batch
method for blind speech dereverberation based on sparse MCLP using the subband
signal model introduced in the previous chapter.
A subband MCLP-based method for blind speech dereverberation based on variance-
normalized delayed MCLP has been proposed in [154,155], referred to as weighted
prediction error (WPE). This method assumes an autoregressive model of the rever-
beration process, i.e., it is assumed that the reverberant speech signal at a certain
time can be predicted from the previous samples of the reverberant microphone
signals. The desired speech signal can then be estimated as the prediction error,
i.e., speech dereverberation boils down to estimating the parameters of the MCLP
model. An additional delay is typically introduced in the MCLP model in order to
prevent distortion of the short-time correlation of the speech signal, thereby only
suppressing late reverberation [107,154]. Conventionally, the complex-valued STFT
coefficients of the desired speech signal are modeled using a time-varying Gaussian
(TVG) model, under the assumption that the STFT coefficients can be modeled lo-
cally (i.e., in each TF bin) using a complex Gaussian distribution with an unknown
variance. Speech dereverberation using WPE is then performed by estimating the
unknown parameters of the MCLP and TVG models in a ML sense.

This chapter is partly based on:
[176] A. Jukić, S. Doclo, “Speech dereverberation using weighted prediction error with Laplacian

model of the desired signal,” in Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 5172–5176.

[177] A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, “Speech dereverberation with multi-
channel linear prediction and sparse priors for the desired signal,” in Proceedings of the
Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA),
Nancy, France, May 2014, pp. 23–26.

[178] A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, “Multi-channel linear prediction-
based speech dereverberation with sparse priors,” IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 23, no. 9, pp. 1509–1520, Sept. 2015.
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In this chapter, we aim to provide a different and more general view on MCLP-
based speech dereverberation in the STFT domain. Firstly, instead of assuming a
TVG model we consider a general sparse prior for the desired speech signal and use
ML estimation to estimate the parameters of the MCLP model [177]. The sparse
prior is formulated using a variational representation that is based on a locally
Gaussian model [220–222]. The used model for the desired speech signal can be
interpreted as a TVG model with an additional hyperprior on the unknown vari-
ance. To derive a practical algorithm, we focus on sparse priors in the family of
complex generalized Gaussian (CGG) distributions, resulting in an iterative sparse
MCLP-based speech dereverberation method. In the proposed framework, we show
that the conventional WPE method [154] can be considered as a special case based
on a prior that strongly promotes sparsity of the estimated speech signal. Secondly,
we reformulate the sparse MCLP-based method with CGG prior as an optimization
problem minimizing the `p-norm of the desired speech signal. Furthermore, we show
that the iterative algorithm for sparse MCLP with CGG prior is equivalent to an it-
eratively reweighted least-squares algorithm applied to `p-norm minimization [223],
with WPE being a special case. In the experimental section we evaluate the perfor-
mance of the conventional and the proposed methods for different acoustic scenarios
using several instrumental speech quality measures. The obtained results show that
the speech enhancement performance can be consistently improved using the pro-
posed methods. While the improvements are mild, these come with no additional
computational cost, and are consistent with the derived theoretical insights.
In Section 3.1 we mathematically formulate the considered problem of blind speech
dereverberation using MCLP in the STFT domain. The conventional method for
MCLP-based speech dereverberation based on a TVG model for the desired speech
signal is presented in Section 3.2. The proposed method using a general sparse
prior for the desired speech signal is presented in Section 3.3. In Section 3.4 both
the conventional and the proposed methods are reformulated as a minimization of
the `p-norm of the desired speech signal. The simulation results are presented in
Section 3.5.

3.1 Problem formulation

We consider an acoustic scenario with a single static speech source captured by M
microphones in a reverberant enclosure without the presence of additive noise. Given
a batch of N time frames, using the subband signal model in (2.28) and assuming an
arbitrarily chosen reference microphone ref ∈ {1, . . . ,M}, the MCLP-based signal
model for the reverberant microphone signal at the reference microphone in the k-th
subband can be written as

xref(k) = dref(k) + X̃τ (k)gref(k), (3.1)

where xref(k) ∈ CN is a vector of the STFT coefficients of the reference microphone
signal, dref(k) ∈ CN is a vector of the STFT coefficients of the desired speech signal
at the reference microphone, and X̃τ (k) ∈ CN×MLg and gref(k) ∈ CMLg are the
multi-channel convolution matrix and the multi-channel prediction filter defined
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in (2.27). The problem of blind speech dereverberation can now be formulated as
the blind estimation of the desired speech signal dref(k) using only the reverberant
observations xm(k), i.e., without using the ATFs between the speech source and the
microphones. As defined in (2.22), the desired speech signal dref(k) in (3.1) consists
of the direct signal and early reflections, which are known to be possibly beneficial
for speech intelligibility [27]. Using the signal model in (3.1) and given an estimate
ĝref(k) of the prediction filter, the desired speech signal in the k-th subband can be
estimated as

d̂ref(k) = xref(k)− X̃τ (k)ĝref(k) (3.2)

with (̂.) denoting the estimated value. In this case, the desired speech signal dref can
be interpreted as the prediction error of the delayed linear prediction model [154].
Dereverberation can be performed by estimating the multi-channel prediction filter
ĝref(k) for each subband k and applying (3.2). The enhanced time-domain signal is
then obtained by performing the inverse STFT on the obtained STFT coefficients
of the desired speech signal. Note that the MCLP signal is only valid if multiple
microphones are available, but it can nevertheless also be used for single-channel
dereverberation. A block scheme of an MCLP-based speech dereverberation system
is depicted in Fig. 3.1. In the remainder of this chapter each subband will be pro-
cessed independently and the index k will be omitted where possible for notational
convenience.
The prediction delay τ in the signal model (3.1) should ensure that the direct
speech signal in the reference microphone cannot be predicted using linear filtering
in (3.2), i.e., that subtracting the predicted undesired speech signal does not destroy
the short-time autocorrelation of the desired speech signal [107, 154]. If the inter-
microphone distances are relatively small, as is commonly the case for many speech
communication applications, the relative delays between the reference microphone
and the other microphones are rather small, i.e., in the order of milliseconds, for all
possible source positions. In this case, the required prediction delay only depends
on the short-term autocorrelation of the speech signal, which is typically on the
order of tens of milliseconds. A common practice for MCLP-based dereverberation
is hence to set the prediction delay in the range of 30 to 40 ms [107,154]. It has been
shown in [154] that with a suitable prediction delay and given enough time frames,
subtracting the undesired speech signal in (3.2) from the reference microphone signal
does not change the direct component, while possibly altering the early reflections.

3.2 Conventional MCLP-based dereverberation using TVG model

Several MCLP-based speech dereverberation methods have been proposed using
a TVG model for the desired signal [138, 154, 155, 162, 166]. More specifically, the
desired signal coefficient dref(k, n) in each TF bin is modeled as a zero-mean random
variable by means of a circular complex Gaussian distribution with an unknown and
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...

x1(k, n)

x2(k, n)

xM (k, n)

delay τ ĝ1,1(k)

delay τ ĝ2,1(k)

delay τ ĝM,1(k)

+

+− d̂1(k, n)

Fig. 3.1: A block scheme of an MCLP-based dereverberation system with the first micro-
phone selected as the reference, i.e., ref = 1.

time-varying variance. The probability density function for the desired signal can
then be written as

NC (dref(k, n); 0, λ(k, n)) =
1

πλ(k, n)
e−
|dref (k,n)|2
λ(k,n) , (3.3)

where the variance λ(k, n) is considered to be an unknown parameter that needs
to be estimated. The use of the TVG model is motivated by the fact that it can
model any signal with a time-varying power spectrum [146,154,162]. Since the TVG
model does not include any dependency across frequencies and since it is assumed
that the STFT coefficients are independent across time, the likelihood function for
all coefficients in a single subband (with the index k omitted) can be written as

L (dref ,λ) = L (gref ,λ) =

N∏
n=1

NC (dref (n) ; 0, λ(n)) , (3.4)

with λ = [λ(1), . . . , λ(N)]
T the vector of unknown variances and gref the prediction

filter. Note that the desired speech signal dref(n) in (3.4) depends on the prediction
filter gref as in (3.2). The assumption that the coefficients of the desired speech signal
are independent across time is a common simplification that has been successfully
employed in dereverberation, but also in other speech enhancements methods [19].
The prediction filter gref and the variances λ are estimated by maximizing the
likelihood in (3.4) with respect to the unknown parameters, i.e., minimizing the
negative log-likelihood by solving the following optimization problem

min
λ>0,gref

N∑
n=1

|dref(n)|2
λ(n)

+ log πλ(n). (3.5)

Since the joint minimization of (3.5) with respect to the prediction filter gref and
the variances λ can not be performed analytically, it was proposed in [154] to use
an alternating optimization procedure. The original problem in (3.5) is split into
two subproblems that can be solved more easily. The two subproblems are solved in
an alternating fashion and the whole procedure is repeated iteratively, alternating
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between minimization with respect to λ and gref . While this optimization procedure
results in simple update rules, there is no guarantee that the iterative procedure
will lead to the globally optimal solution (cf. Section 3.4).

estimation of λ: In the first step, the cost function in (3.5) is minimized
with respect to the variances λ, assuming that the prediction filter is fixed to the
value ĝi−1

ref from the previous iteration1. The estimate d̂i−1
ref can then be calculated

using (3.2) and the variance for the n-th time frame can be estimated as

λ̂i(n) = arg min
λ(n)>0

∣∣∣d̂i−1
ref (n)

∣∣∣2
λ(n)

+ log πλ(n). (3.6)

The solution to this optimization problem is given as λ̂i(n) =
∣∣∣d̂i−1

ref (n)
∣∣∣2, i.e.,

λ̂i =
∣∣∣d̂i−1

ref

∣∣∣2 , (3.7)

where the absolute value and the power are applied element-wise on the elements
of the vector. In practice, a small positive constant εmin is added to the estimated
variances to prevent division by zero.

estimation of g ref : In the second step, the cost function in (3.5) is minimized
with respect to the prediction filter gref , assuming that the variances are fixed to
the values λ̂i from the i-th iteration. A least-squares (LS) problem for estimating
the prediction filter is formulated as

ĝiref = arg min
gref

N∑
n=1

|dref(n)|2

λ̂i(n)
= arg min

gref

dH
ref

(
Λ̂i
)−1

dref , (3.8)

where Λ̂ = diag
(
λ̂
)

is a diagonal matrix with λ̂ on its diagonal. By substitut-

ing (3.2) into (3.8) and assuming that the matrix X̃τ has a full column rank, an
estimate ĝiref of the prediction filter can be computed as

ĝiref =

(
X̃

H

τ

(
Λ̂i
)−1

X̃τ

)−1

X̃
H

τ

(
Λ̂i
)−1

xref . (3.9)

This alternating procedure is repeated until a convergence criterion is satisfied or
a maximum number of iterations is exceeded. The iterative algorithm is typically
initialized by setting the initial estimate of the prediction filters to be zero, which

1 In the following (.)i denotes the estimated value in the i-th iteration.
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is equivalent to setting the initial estimate of the desired speech signal to the rever-
berant microphone signal, i.e.,

d̂0
ref = xref . (3.10)

Since the desired speech signal is estimated as the prediction error in the MCLP-
based signal model, the presented method is often referred to as the weighted pre-
diction error (WPE) method [154, 155]. The WPE method has been modified to
include pre-trained log-spectral priors in [162], and instead of using a TVG model
we have proposed to use a time-varying Laplacian model for the desired speech
signal in [176].

3.3 MCLP-based dereverberation using a general sparse prior

As discussed in Section 2.2, anechoic clean speech signals are naturally sparse in the
TF domain, and it is widely accepted that the STFT coefficients of speech signals can
be well modeled using sparse priors. This holds both locally, by observing the STFT
coefficients in a single TF bin [68, 224], as well as globally, when considering the
distribution of the STFT coefficients in a single subband [190]. Although the real and
imaginary parts of the complex-valued STFT coefficients are often assumed to be
independent to simplify computations, it has been observed that the distribution of
the complex-valued speech coefficients is actually approximately circular [225,226].
In this section the desired speech signal coefficients in a single subband are modeled
using a sparse circular prior, which is used to estimate the prediction filter in the
MCLP model in (3.2). The proposed prior can be interpreted as a generalization
of the TVG model (cf. Section 3.2), obtained by adding a hyperprior for the vari-
ances of the locally Gaussian model. A similar approach can be used with other
local models, e.g., the locally Laplacian model in [176]. In Section 3.3.1 we present
a convex representation of a general sparse prior, and use it for MCLP-based dere-
verberation in Section 3.3.2. In Section 3.3.3 we formulate dereverberation using a
complex generalized Gaussian distribution, and relate the proposed method to the
conventional method based on a TVG model in Section 3.3.4.

3.3.1 Convex representation of a sparse prior

Intuitively, a prior is considered to be sparse when it is super-Gaussian, i.e., it ex-
hibits a higher peak at the origin and heavier tails than the corresponding Gaussian
prior. Here, we consider a general circular sparse prior for a complex-valued random
variable z that can be represented as

p(z) = e−f(|z|). (3.11)

In general, p(.) can represent a proper sparse prior, e.g., a probability density, or
an improper (non-integrable) sparse prior. Formally, it can be shown that when
f ′(t)/t is decreasing on t ∈ (0,∞), with f ′(.) denoting the derivative of f(.), the
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prior will be super-Gaussian, i.e., sparse [220]. In this case, p(z) can be conveniently
represented as a maximization over scaled Gaussians with different variances, i.e.,

p(z) = max
λ>0
NC (z; 0, λ)ψ (λ) , (3.12)

where ψ(.) is a scaling function that can be interpreted as a hyperprior on the
variance λ [220,222]. This representation of a sparse prior is often referred to as the
convex variational type due to its roots in convex analysis. Obviously, the scaling
function ψ(.) in (3.12) is related to f(.) in (3.11), but the scaling function is typically
not required explicitly in practical algorithms. For completeness, the form of the
hyperprior ψ(.) for a given sparse prior p(.) is given in Appendix A.

3.3.2 Speech dereverberation using a general sparse prior

We now propose to model the STFT coefficients of the desired speech signal using
the circular sparse prior p (dref(n)) = e−f(|dref (n)|), with its convex representation
given as

p (dref(n)) = max
λ(n)>0

NC (dref(n); 0, λ(n))ψ (λ(n)) . (3.13)

This model can be interpreted as a generalization of the TVG model, with an
additional hyperprior on the variance λ(n) determined by the scaling function ψ(.).
Similarly as in the conventional method, the prediction filter gref can be estimated
by maximizing the likelihood formed using the model in (3.13). ML estimation of
the prediction filter results in the following optimization problem

max
gref

N∏
n=1

p (dref(n)) = max
gref

N∏
n=1

max
λ(n)>0

NC (dref(n); 0, λ(n))ψ (λ(n)) . (3.14)

The optimization problem in (3.14) is a probabilistic formulation of sparse MCLP.
Since maximizing the likelihood in (3.14) is equivalent to minimizing the negative
log-likelihood with respect to the prediction filter gref and the variances λ, the
optimization problem in (3.14) can be rewritten as

min
λ>0,gref

N∑
n=1

|dref(n)|2
λ(n)

+ log πλ(n)− logψ
(
λ(n)

)
, (3.15)

with dref(n) depending on gref as in (3.2). When compared with the optimization
problem in (3.5), the problem in (3.15) contains an additional term that depends
on the scaling function ψ(.). Proceeding similarly as in the previous section, the op-
timization can again be performed by applying an iterative optimization procedure
which alternates between minimization with respect to λ and minimization with
respect to gref .
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estimation of λ: Assuming that the prediction filter is fixed to ĝi−1
ref , the

variance at the n-th time frame can be obtained by solving the following problem

λ̂i(n) = arg min
λ(n)>0

∣∣∣d̂i−1
ref (n)

∣∣∣2
λ(n)

+ log πλ(n)− logψ (λ(n)) . (3.16)

For the general sparse prior in (3.11), the solution to (3.16) is equal to

λ̂i(n) =
2
∣∣∣d̂i−1

ref (n)
∣∣∣

f ′
(∣∣∣d̂i−1

ref (n)
∣∣∣) , (3.17)

with the details described in Appendix A.2. Note that although the optimization
problem in (3.16) includes the scaling function ψ(.), the optimal λ(n) for this sub-
problem in (3.17) depends only on f(.), so the scaling function ψ(.) does not need
to be explicitly known (cf. Appendix A.2).

estimation of g : Assuming that the variances λ are fixed to the value from
the i-th iteration, the same LS problem is obtained as in the conventional method,
with the solution given by (3.9).

3.3.3 Complex generalized Gaussian prior

As an example of a parametric sparse circular prior resulting in a practical algorithm,
in the remainder of this chapter we will consider the complex generalized Gaussian
(CGG) prior given as [227]

p(z) =
p

2πζΓ(2/p)
e
− |z|

p

ζp/2 , (3.18)

with the scale parameter ζ > 0, the shape parameter p ∈ (0, 2], and Γ(.) denoting
the Gamma function. The circular Gaussian distribution is obtained by setting the
shape parameter to p = 2, while smaller values of the shape parameter p result in
more sparse priors, i.e., priors with a higher peak at zero and heavier tails. This is
illustrated in the plot of the log-prior log p(z) in Fig. 3.2. Since the CGG prior can
be written in the form (3.11) with f(.) given as

f(|z|) =
|t|p
ζp/2

− log
p

2πζΓ(2/p)
, (3.19)

it can be represented using a convex representation in the form (3.12). Using (3.17)
and (3.19), the optimal value of λ(n) in the i-th iteration for a CGG prior for the
desired signal can be written

λ̂i(n) =
2ζp/2

p

∣∣∣d̂i−1
ref (n)

∣∣∣2−p . (3.20)
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Fig. 3.2: Logarithm of the CGG prior p(.) in (3.18) for different values of the shape pa-
rameter p with the scale parameter ζ selected such that the variance is 1. Note
that the plot only shows values on the real axis (i.e., the imaginary part of z is
0), and the prior is circular.

As can be seen in (3.20), the optimal λ̂i(n) depends on the shape and scaling
parameters of the CGG prior in (3.18). However, since the estimated prediction
filter ĝref computed using (3.9), and hence also the estimated desired speech signal
d̂ref computed using (3.2), is invariant to a scaling of the variances λ, the variance
estimate in (3.20) can be simplified to

λ̂i(n) =
∣∣∣d̂i−1

ref (n)
∣∣∣2−p , (3.21)

which depends only on the shape parameter p ∈ (0, 2] of the CGG prior. In practice,
a small positive constant εmin is added to the estimated variances to prevent division
by zero, i.e.,

λ̂i =

(∣∣∣d̂i−1
ref

∣∣∣2 + εmin

)1− p2
, (3.22)

Finally, the obtained iterative optimization procedure is summarized in Alg. 1.

3.3.4 Relation to the conventional method

It can be observed that the variance update in (3.7) for the conventional method
corresponds to setting the shape parameter p = 0 in the variance update for the
proposed method in (3.21). By comparing the optimization problem in (3.5) with
the proposed optimization problem in (3.15), it can be seen that the conventional
WPE method is obtained by setting the scaling function ψ(.) to a constant value
in the proposed method. Hence, the prior for the desired signal in the conventional
method, obtained in the proposed framework by setting the scaling function ψ(.)
in (3.12) to 1, is given by

p (dref(n)) = max
λ(n)>0

e−
|dref (n)|2
λ(n)

πλ(n)
=

e−1

π |dref(n)|2
∝ 1

|dref(n)|2
(3.23)
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Alg. 1 Iterative optimization algorithm for sparse MCLP with a CGG prior.

parameters: filter length Lg and prediction delay τ in (3.1), shape parameter
p in (3.18), regularization parameter εmin, maximum number of iterations I,
tolerance η

input: M -channel reverberant microphone signal coefficients X(k), ∀k
1: for each k do
2: i← 0
3: set d̂0

ref . initialization
4: repeat
5: i← i+ 1

6: λ̂i ←
(∣∣∣d̂i−1

ref

∣∣∣2 + εmin

)1− p2
. (3.22)

7: ĝiref ←
(

X̃
H

τ

(
Λ̂i
)−1

X̃τ

)−1

X̃
H

τ

(
Λ̂i
)−1

xref . (3.9)

8: d̂iref ← xref − X̃τ ĝ
i
ref . (3.2)

9: until i = I or ‖d̂
i
ref−d̂i−1

ref ‖
‖d̂i−1

ref ‖ < η

10: end for
output: estimated desired signal coefficients d̂ref(k) = d̂iref(k), ∀k

since the maximum is attained when λ(n) = |dref(n)|2. The obtained prior can also
be represented in the form (3.11) with

f(t) = log t2 + const. (3.24)

Since the prior in (3.23) is not integrable, it is not a probability density and therefore
it is an improper prior. More importantly, the prior in (3.23) used in the conventional
method hence strongly favors values of the desired signal that are close to the
origin, i.e., it is a strong sparse prior for the desired signal. This type of sparsity-
promoting prior, resulting in a logarithmic penalty as in (3.24), has been previously
used in various signal processing applications [221–223, 228]. This is an interesting
relation, since the conventional WPE method was originally derived with the TVG
model as the starting point, without explicitly enforcing sparsity on the estimated
desired speech signal. However, this interpretation highlights the underlying role
of the sparse prior (3.23) in estimating the desired speech signal, which turns out
to be much more effective than minimizing the output energy, corresponding to
a Gaussian assumption on the desired signal [154]. Although the flexibility of the
TVG model to accurately represent any time-varying signal has been marked as its
main advantage over the time-invariant Gaussian model, the actual reason for the
success of the TVG model in MCLP-based dereverberation is its sparsity-promoting
behavior when implemented in an ML estimation procedure.
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3.4 Reformulation as `p-norm minimization

In this section, we aim to provide a better understanding of the cost functions
underlying the proposed methods, and relating them to the general problem of
sparse recovery. More specifically, we reformulate the conventional WPE and the
proposed CGG-based methods for estimating the prediction filter ĝref in terms of an
`p-norm minimization problem. For a general prior p(.) and independent coefficients
dref(n) across time, the likelihood function of gref can be written as

L (gref) =

N∏
n=1

p (dref(n)) . (3.25)

Given a sparse prior p(.) in the form (3.11), the ML estimate of the prediction filter
ĝref can hence be obtained by minimizing the negative log-likelihood, i.e.,

ĝref = arg min
gref

N∑
n=1

f (|dref(n)|) . (3.26)

When p(.) is a CGG prior as in (3.18), this ML estimate can be obtained using (3.19)
as a solution of the following problem

min
gref

‖dref‖pp
subject to dref + X̃τgref = xref ,

(3.27)

where ‖.‖p is the `p-norm2 defined as

‖d‖p =

(
N∑
n=1

|d(n)|p
)1/p

(3.28)

The optimization problem in (3.27) is a deterministic formulation of sparse MCLP
with an `p-norm cost function. For the conventional method with the prior p(.)
given in (3.23), the ML estimate of the prediction filter is obtained using (3.24) by
solving the following optimization problem

min
gref

N∑
n=1

log |dref(n)|

subject to dref + X̃τgref = xref .

(3.29)

2 Note that for p < 1 the `p-norm is non-convex and it is actually not a norm, e.g., it does not
satisfy the triangle inequality.
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This logarithmic cost function is often used in signal processing problems as an
approximation of the `0-norm, counting the number of non-zero entries in a vec-
tor [223,228,229]. The `0-norm is related to the previously defined `p-norm through

‖d‖0 = lim
p→0

N∑
n=1

|d(n)|p , (3.30)

and the logarithmic penalty is related to the `0-norm through [228]

lim
p→0

1

p

N∑
n=1

(|d(n)|p − 1) =

N∑
n=1

log |d(n)| . (3.31)

Moreover, the set of local minima of the optimization problem in (3.29) corresponds
to the set of local minima of the optimization problem [228]

min
gref

‖dref‖0
subject to dref + X̃τgref = xref .

(3.32)

Furthermore, by expressing the desired speech signal using (3.2) as

dref = Ωu, (3.33)

with
Ω =

[
xref ,−X̃τ

]
, u =

[
1,gT

ref

]H
, (3.34)

where u is equivalent to the prediction filter gref , the optimization problem (3.27)
can be rewritten directly in terms of the prediction filter u as

min
u
‖Ωu‖pp subject to eT

1 u = 1, (3.35)

where e1 = [1, 0, . . . , 0]
T. Optimization problems in this form are addressed in the

context of the cosparse analysis problem [230–232]. In that context, the matrix Ω is
the analysis matrix that transforms the unknown variable (i.e., the prediction filter
u) to the domain where sparsity is enforced (i.e., the desired signal coefficients dref).
By solving the problem in (3.35), an estimate of the prediction filter û is computed
that results in a sparse prediction error, i.e., the desired speech signal d̂ref , with
sparsity quantified by means of the `p-norm. A similar optimization problem was
also considered in the context of sparse linear prediction in the time domain [207],
applied for modeling and coding of speech signals.
The analytically derived sparsity-promoting cost function can be easily interpreted
in the context of speech dereverberation. As demonstrated in Section 2.2, rever-
beration makes the observed microphone signal less sparse than the clean speech
signal in the STFT domain. Therefore, on the one hand it is reasonable to enforce
an estimate of the desired speech signal whose STFT coefficients are sparser than
the STFT coefficients of the reverberant recording. On the other hand, the direct
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path and early reflections should be preserved in the estimated desired speech sig-
nal, which is enforced by the MCLP signal model with the prediction delay in (3.1),
resulting in the optimization problem in (3.27).
In summary, both the conventional method as well as the proposed CGG-based
method can be interpreted as iterative optimization procedures that aim to solve
the sparse MCLP optimization problem in (3.27)/(3.35), corresponding to the pro-
posed CGG-based method for values of the shape parameter p ∈ (0, 2] and to the
conventional method when p = 0.

3.4.1 Iteratively reweighted LS for `p-norm minimization

It should be noted that the optimization problem in (3.35) is non-convex for p < 1
and that iterative optimization procedures can in general converge only to a local
minimum. However, even if reaching the global minimum cannot be guaranteed,
employing a non-convex cost function can often result in a sparser estimated signal
then when employing a convex cost function (e.g, for p ≥ 1) [223]. Several opti-
mization procedures for `p-norm minimization have been proposed in the literature.
Typically, the original non-convex problem is transformed into a series of appro-
priate convex problems which are easy to solve. Here, we employ the iteratively
reweighted LS (IRLS) algorithm for `p-norm minimization [223,228], and show that
the obtained method is in some cases equivalent to the conventional method and the
proposed method based on a CGG prior. More details about iteratively reweighted
procedures for non-convex minimization are given in Appendix B.1.
The basic idea in IRLS is to replace the `p-norm minimization problem in (3.35)
with a series of squared `2-norm minimization subproblems [223,231]. Each `2-norm
minimization subproblem can be easily solved, and the solution obtained in the
current iteration is used to modify the subproblem in the next iteration. More
specifically, the `p-norm cost function in (3.35) is replaced by a weighted `2-norm
cost function in the i-th iteration as [223]

ûi = arg min
u

uHΩHŴiΩu subject to eT
1 u = 1, (3.36)

where Ŵi = diag
(
ŵi
)
is a real-valued diagonal weighting matrix with the weight

vector
ŵi =

[
ŵi(1), . . . , ŵi(N)

]T (3.37)

on the diagonal. The LS optimization problem in (3.36) has a closed-form solution
for the prediction filter as

ûi =

(
eT

1

(
ΩHŴiΩ

)−1

e1

)−1 (
ΩHŴiΩ

)−1

e1, (3.38)

which is equivalent to estimating the prediction filter ĝiref in (3.9). The estimate of
the desired signal in the i-th iteration is given using (3.33) as d̂iref = Ωûi, which is
equivalent to the estimating the desired speech signal using (3.2).
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The weights ŵ(n) are updated in each iteration as

ŵi(n) =
∣∣∣d̂i−1

ref (n)
∣∣∣p−2

, (3.39)

such that the convex cost function in (3.36) is a first-order approximation of the non-
convex cost function in (3.35) (cf. Appendix B.1). By comparing the obtained update
for the weights in (3.39) with the variance update in (3.21), it can be seen that the
weights are equal to the inverse of the variances. The updates (3.38) and (3.39)
result in an iterative procedure for minimizing (3.35). Intuitively, a large weight
ŵ(n) promotes the desired signal coefficient at the n-th frame to have a relatively
small energy, corresponding to the sparsity-promoting behavior of the `p-norm. To
avoid division by zero in (3.39), the optimization problem is typically regularized
by adding a small positive value to the weights [223,231], i.e.,

ŵi(n) =

(∣∣∣d̂i−1
ref (n)

∣∣∣2 + εi
) p

2−1

, (3.40)

where the regularization parameter εi can in general be iteration dependent. When
the role of the regularization parameter is just to avoid division by zero, the proce-
dure is called unregularized IRLS [223], and it is equivalent to the iterative algorithm
for the proposed sparse MCLP with CGG prior in Alg. 1. Setting the regularization
parameter to a larger value can be used to make the linear system in (3.38) better
conditioned. In practice, a common regularization strategy where the regularization
parameter is initialized with a large value and then gradually decreased has been
shown to be effective in avoiding local minima for p < 1 [223]. In this case the pro-
cedure is called regularized IRLS, and this regularization strategy can be related to
Bayesian methods, with the regularization parameter having a similar role as the
posterior variance of the corresponding coefficient [221, 228, 233]. A number of dif-
ferent strategies for updating the regularization parameter in iteratively reweighted
algorithms have been investigated in [228].
The outline of the complete dereverberation method using the regularized IRLS
algorithm (rIRLS-p) for the optimization problem in (3.35) in each subband k is
given in Alg. 2. For each subband k the matrix Ω is first normalized with the maxi-
mum magnitude of the STFT coefficients of the reference microphone signal xref . In
this way, the values of the regularization parameter can be set independently of the
magnitudes of the coefficients in the given subband. The rIRLS-p algorithm for min-
imizing (3.35) is implemented similarly as in [223]. The updates (3.38) and (3.40)
are iterated until the relative change of the `2-norm of the output is smaller than a
tolerance or maximal number of iterations is exceeded. In that case, the regulariza-
tion parameter εi is reduced by a factor 10, and the tolerance parameter is updated
to
√
εi/100. Since p < 1 results in a non-convex problem in (3.35), initialization of

the algorithm may influence the final estimate. More details on the initialization
are given in Section 3.5.1.
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Alg. 2 Regularized IRLS algorithm for sparse MCLP with `p-norm cost function
(rIRLS-p). The parameter ε is initialized with a relatively large value and gradually
reduced. ‖x‖∞ denotes the maximum absolute value of the elements in x.

parameters: Filter length Lg and prediction delay τ in (3.1), shape parameter p
in (3.40), regularization parameters εinit, εmin, maximum number of reweighting
iterations I

input: M -channel reverberant microphone signal coefficients X(k), ∀k
1: for each k do
2: i← 0
3: Ω← construct using (3.34), normalize Ω← Ω/κ, with κ = ‖xref‖∞
4: set d̂0

ref , normalize d̂0
ref ← d̂0

ref/κ . initialization
5: ε1 ← εinit

6: repeat
7: i← i+ 1

8: ŵi ←
(∣∣∣d̂i−1

ref

∣∣∣2 + εi
) p

2−1

. (3.40)

9: ûi ←
(

eT
1

(
ΩHŴiΩ

)−1

e1

)−1 (
ΩHŴiΩ

)−1

e1 . (3.38)

10: d̂iref ← Ωûi . (3.33)

11: if ‖d̂
i
ref−d̂i−1

ref ‖
‖d̂i−1

ref ‖ <
√
εi

100 then

12: εi+1 ← εi/10
13: else
14: εi+1 ← εi

15: end if
16: until i = I or εi < εmin

17: d̂ref ← κd̂iref

18: end for
output: estimated desired signal coefficients d̂ref(k), ∀k

3.5 Simulations

In this section, the performance of the blind speech dereverberation methods based
on sparse MCLP presented in Sections 3.3 and 3.4 is investigated. More specifically,
we consider unregularized IRLS for sparse MCLP with CGG prior (IRLS-p) as
presented in Alg. 1, with the conventional WPE method being a special case for p =
0 (cf. Section 3.2), and regularized IRLS for sparse MCLP (rIRLS-p) as presented
in Alg. 2.
The considered acoustic scenario and the implementation details are outlined in
Section 3.5.1. The influence of the initialization and the iteration-wise performance
are investigated in Section 3.5.2. The influence of the filter length and the number
of microphones is investigated in Section 3.5.3. The influence of the filter length in
different acoustic scenarios is investigated in Section 3.5.4.
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3.5.1 Acoustic scenario and algorithmic setup

We consider several acoustic scenarios from the REVERB challenge [22, 23] with a
single speech source and omni-directional microphones placed at a distance of about
2 m from the source. The microphones are positioned on a circle with a radius of
10 cm, with a 45◦ angle between adjacent microphones and approximately 7.6 cm
distance between adjacent microphones. In Sections 3.5.2 and 3.5.4 a scenario with
M = 2 microphones is considered, while in Section 3.5.3 the number of microphones
is set to M ∈ {1, 2, 4}. Measured RIRs from the REVERB challenge have been
used [22,23], where the reverberation time is T60 ≈ {250, 600, 700}ms and the direct-
to-reverberant ratio is DRR ≈ {7,−2.4, 1.4} dB. The RIRs have been measured
using a maximum length sequence at a sampling frequency fs = 16 kHz. The
reverberant signals have been generated by convolving 10 speech samples (5 male
and 5 female speakers) from the TIMIT database [234] with an average length of
approximately 5.2 s with the measured RIRs.
The analysis and synthesis STFT is computed using a tight window based on a
64 ms Hamming window with a 16 ms window shift [235]. The prediction delay
in (3.1) is set to τ = 2 in all experiments. The IRLS-p method is implemented as
in Alg. 1, with the conventional WPE corresponding to the case with p = 0. The
variance estimate is regularized with the parameter εmin = 10−8 for all subbands
k. The rIRLS-p method for minimizing (3.35) is implemented as in Alg. 2 with the
initial value for the regularization parameter εinit = 0.1 and the minimum value of
the regularization parameter εmin = 10−8. The matrix Ω is normalized with the
maximum magnitude of the STFT coefficients of the reference microphone signal,
ensuring both that the regularization parameter εinit is relatively large compared
to the significant coefficients, and εmin is always much smaller than the significant
coefficients. Unless stated otherwise, the tolerance for the relative change of the `2-
norm of the estimated desired signal is set to η = 10−6 for the IRLS-p method. The
same final tolerance applies for the rIRLS-p method since εmin = 10−8 corresponds
to ηmin = 10−6 (cf. Alg. 2).
The dereverberation performance is evaluated in terms of the instrumental perfor-
mance measures described in Section 2.3. The reverberation reduction performance
is evaluated using the improvement in fwsSNR (∆fwsSNR) [22, 216] between the
processed output signal and the reverberant input signal. The perceptual speech
quality is evaluated using the improvement in PESQ (∆PESQ) [210, 211] between
the processed output signal and the reverberant input signal. The reference signal
used for the instrumental measures is the direct speech signal on the reference micro-
phone, obtained by convolving the anechoic speech signal with the direct component
of the corresponding RIR. The reported improvements of the instrumental measures
are obtained by averaging over all 10 speech samples.

3.5.2 Influence of initialization and iteration-wise performance

In this section, we investigate the influence of the initialization and the number
of iterations on the dereverberation performance of the considered methods for the
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scenario with T60 ≈ 700 ms. Since the problem in (3.35) is non-convex for p < 1, the
proposed methods may only converge to a local minimum, such that the final esti-
mate of the desired speech signal typically depends on the initialization d̂0

ref . On the
one hand, in sparse recovery the reweighting methods are typically initialized using
the least-squares solution d̂ref,`2 , i.e., by solving the optimization problem (3.35) for
p = 2. On the other hand, iterative dereverberation methods are typically initial-
ized using the reverberant microphone signal xref . In this experiment, we evaluate
the iteration-wise performance of IRLS-p and rIRLS-p for both initializations, i.e.,
d̂0

ref = d̂ref,`2 and d̂0
ref = xref . In all experiments the number of microphones is

fixed to M = 2, the filter length is set to Lg ∈ {5, 20, 40}, i.e., a relatively short
filter length (Lg = 5), a typically used filter length (Lg = 20), and a relatively
large filter length (Lg = 40). The shape parameter is set to p ∈ {0, 0.5, 1}. Note
that for p = 1 the optimization problem is convex and the initialization should not
have an influence on the estimated value at convergence, although may affect the
speed of convergence. The maximum number of reweighting iterations for IRLS-p
is set to I = 20. The maximum number of reweighting iterations for rIRLS-p is
set to I = 200, since it typically requires a larger number of iterations due to the
reduction update for the regularization parameter. To prevent early termination of
the algorithms, only the maximum number of iterations I is used as the stopping
criterion in Alg. 1 and Alg. 2 for the simulations in this section.
Improvements in terms of the considered performance measures obtained using the
IRLS-p method are depicted in Figs. 3.3–3.5. Firstly, we consider the results for a
relatively short filter length Lg = 5, depicted in Fig. 3.3. It can be observed that
all methods converge after I = 20 iterations for all values of the shape parameter p
and the type of initialization, and result in improvements in terms of ∆fwsSNR and
∆PESQ. Moreover, the largest relative improvements of the instrumental measures
are obtained in the first few iterations. It can also be observed that the initialization
has an influence on the performance, by comparing the obtained measures for i = 0,
with the `2 initialization performing better than the initialization with the micro-
phone signal. However, the performance difference between different initializations
is typically reduced already after a single iteration (i.e., at i = 1). Furthermore,
using p = 0.5 and p = 1 achieves the same performance at convergence independent
of the initialization, while p = 0 performs somewhat worse when initialized with the
microphone signal. Overall, the performance of the `2-initialized methods for differ-
ent shape parameters p is virtually identical in terms of ∆fwsSNR, while p = 0.5
performs slightly better than the others in terms of ∆PESQ. The performance of
the microphone-initialized methods with p = 0.5 and p = 1 is virtually identical in
terms of ∆fwsSNR, while p = 0.5 performs slightly better than the others in terms
of ∆PESQ.
Secondly, we consider the results for a typical filter length Lg = 20, depicted in
Fig. 3.4. Again, it can be observed that all methods converge after I = 20 iterations
for all values of the shape parameter p and types of initialization, and result in
considerably larger improvements in terms of ∆fwsSNR and ∆PESQ than for Lg =
5. The largest improvements of the instrumental measures are obtained within a
few iterations, and the initialization does not have a large influence on the initial
performance. On the one hand, at convergence, initialization does not affect the



48 sparse mclp for speech dereverberation

0 5 10 15 20
0

1

2

3

4

iteration, i

∆
fw

sS
N

R
[d

B
]

p = 0 (mic) p = 0.5 (mic) p = 1 (mic)

p = 0 (`2) p = 0.5 (`2) p = 1 (`2)

(a) ∆fwsSNR

0 5 10 15 20
0

0.1

0.2

0.3

iteration, i

∆
P

E
S
Q

p = 0 (mic) p = 0.5 (mic) p = 1 (mic)

p = 0 (`2) p = 0.5 (`2) p = 1 (`2)

(b) ∆PESQ

Fig. 3.3: Performance of the IRLS-p method with Lg = 5 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in the parentheses.
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Fig. 3.4: Performance of the IRLS-p method with Lg = 20 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in the parentheses.

methods with p = 0.5 and p = 1 in terms of ∆fwsSNR whereas `2 initialization
results in a small deterioration of the performance for p = 0.5 in terms of ∆PESQ.
On the other hand, for p = 0 at convergence the `2 initialization performs better in
terms of ∆fwsSNR and slightly worse in terms of ∆PESQ. Overall, p = 0 with `2
initialization and p = 0.5 with both initializations achieve the best performance in
terms of ∆fwsSNR, while p = 0.5 with microphone initialization achieves the best
performance in terms of ∆PESQ.
Thirdly, we consider the results for a relatively long filter length Lg = 40, depicted
in Fig. 3.5. As before, it can be observed that all methods converge after I = 20
iterations for all values of the shape parameter p and the type of initialization, and
result in similar best-case improvements in terms of ∆fwsSNR and ∆PESQ as for
Lg = 20. It can be observed that initialization has a significant influence on the
initial performance in terms of ∆fwsSNR, even possibly resulting in deterioration
with respect to the microphone signal for the `2 initialization, and the performance
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Fig. 3.5: Performance of the IRLS-p method with Lg = 40 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in the parentheses.

at convergence in terms of ∆PESQ. Overall, p = 0 and p = 0.5 with microphone
initialization achieve the best performance in terms of both ∆fwsSNR and ∆PESQ,
with the `2-initialized methods performing worse, especially in terms of ∆PESQ.
In conclusion, the results in Figs. 3.3–3.5 indicate that the (unregularized) IRLS-p
method can be substantially influenced by the used initialization. In many cases,
initialization with the coefficients of the microphone signal is preferred to `2 initial-
ization, especially for long filters (cf. Fig. 3.5). It should be noted that the `2-norm
solution (i.e., the LS solution) is in general not very effective for dereverberation,
since `2-norm minimization results in a minimum-energy estimate of the desired
speech signal with typically many small but non-zero coefficients. This effect can
especially be observed for i = 0 in Fig. 3.5, where the `2-norm solution results in
deterioration of the speech quality when compared to the microphone signal. There-
fore, in the following we will initialize the IRLS-p method with the coefficients of the
reference microphone signal. In addition, the values of the shape parameter p < 1
typically perform better than p = 1 due to a stronger enforcement of sparsity of
the desired signal coefficients (with the exception of relatively small differences in
case of short filters, cf. Fig. 3.3a). Overall, p = 0.5 performs better than p = 0, as
could be expected for the unregularized IRLS, since p = 0.5 results in a somewhat
less aggressive cost function than p = 0, which can help to avoid local minima.
Improvements in terms of the considered performance measures obtained using the
rIRLS-p method are depicted in Figs. 3.6–3.8. Firstly, we consider the results for a
relatively short filter length Lg = 5, depicted in Fig. 3.6. It can be observed that all
methods converge after about 100 iterations for all values of the shape parameter p,
and result in best-case improvements in terms of ∆fwsSNR and ∆PESQ comparable
to the one of the unregularized IRLS-p (cf. Fig. 3.3). Contrary to the unregularized
case, initialization has virtually no influence on the performance of rIRLS-p. This
can be attributed to the regularization strategy, which helps to avoid the local
minima [223], but also requires a much larger number of iterations. The method
with p = 1 shows a slightly better performance in terms of ∆fwsSNR, while p = 0
and p = 0.5 perform better in terms of ∆PESQ.
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Fig. 3.6: Performance of the rIRLS-p method with Lg = 5 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in parentheses.
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Fig. 3.7: Performance of the rIRLS-p method with Lg = 20 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in parentheses.

Secondly, we consider the results for Lg = 20, depicted in Fig. 3.7. Again, it can
be observed that all methods converge after about 100 iterations for all values of
the shape parameter p, and result in considerably larger improvements in terms of
∆fwsSNR and ∆PESQ than for Lg = 5. Also, rIRLS achieves a similar best-case
performance as the unregularized IRLS (cf. Fig. 3.4), independently of the used
initialization. In terms of both ∆fwsSNR and ∆PESQ, p = 0 and p = 0.5 perform
better than p = 1.
Thirdly, we consider the results for Lg = 40, depicted in Fig. 3.8. As before, it can
be observed that all methods converge after about 100 iterations for all values of
the shape parameter p, and result in lower improvements in terms of ∆fwsSNR and
∆PESQ than Lg = 20 and compared to unregularized IRLS (cf. Fig. 3.4).
In conclusion, the results in Figs. 3.6–3.8 indicate that the (regularized) rIRLS-
p leads to a similar performance independent of initialization, as opposed to the
(unregularized) IRLS-p method. As expected, rIRLS is less influenced by the shape
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Fig. 3.8: Performance of the rIRLS-p method with Lg = 40 for different initializations and
number of iterations in terms of ∆fwsSNR (left) and ∆PESQ (right). Initialization
is denoted with the label in parentheses.

parameter p < 1 due to the regularization strategy, with p < 1 performing better
than p = 1 due to a stronger enforcement of sparsity of the desired signal coefficients
(with the exception of relatively small differences in case of short filters, cf. Fig. 3.6a).
However, the consistency of rIRLS comes at the price of a much larger number of
iterations required to achieve convergence. Furthermore, in the case of relatively
long filters it achieves a somewhat lower performance than the IRLS-p method (cf.
Figs. 3.5b and 3.8b). Therefore, in time-constrained practical applications the IRLS-
p method with a suitably selected shape parameter is preferred over the rIRLS-p
method. Hence, in the remainder of this chapter we will consider only the IRLS-p
method.

3.5.3 Influence of filter length Lg and number of microphones M

In this section, we investigate the influence of the filter length Lg and the number
of microphones M on the dereverberation performance of the considered IRLS-p
method for the scenario with T60 ≈ 700 ms. The number of microphones is set
M ∈ {1, 2, 4}, the shape parameter is set to p ∈ {0, 0.5, 1}, and the filter length
Lg is varied to cover the total number of coefficients (MLg) between 5 and 80. In
all experiments the optimization is initialized using the coefficients of the reference
microphone signal (cf. Section 3.5.2). The maximum number of iterations is set to
I = 20, and the stopping criterion for Alg. 1 is set as described in Section 3.5.1.
Firstly, we consider the results for the setup with M = 1 microphone, depicted in
Fig. 3.9. It can be observed that the IRLS-p method results in improvements in
terms of ∆fwsSNR and ∆PESQ for all considered shape parameter values. This
shows that sparse linear prediction can also be used for single-channel dereverbera-
tion, although the MCLP-based signal model does not hold for M = 1. In general,
increasing the filter length Lg improves the dereverberation performance, although
the improvements for filter lengths larger than Lg = 50 seem to be marginal. More-
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Fig. 3.9: Performance of the IRLS-p method with M = 1 for different values of the filter
length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).
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Fig. 3.10: Performance of the IRLS-p method with M = 2 for different values of the filter
length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).

over, p = 0.5 performs best in terms of both measures across all values of the filter
length.
Secondly, we consider the results for the setup withM = 2 microphones, depicted in
Fig. 3.10. The dereverberation performance in terms of both ∆fwsSNR and ∆PESQ
depends significantly on the filter length, with the best results obtained with Lg
between 20 and 30 for p = 0 and p = 0.5, and Lg between 15 and 20 for p = 1.
Interestingly, the performance decreases as the filter length is further increased.
The performance also depends on the shape parameter p, with p = 0.5 consistently
performing better than the other two in terms of both measures and across all
filter lengths. It can also be observed that the best-case performance is significantly
higher than for the single-channel case (i.e., M = 1), with M = 2 resulting in an
improvement of approximately 5 dB in ∆fwsSNR and more than 1 point in ∆PESQ
over M = 1.
Thirdly, we consider the results for the setup with M = 4 microphones, depicted in
Fig. 3.11. Again, the dereverberation performance in terms of both ∆fwsSNR and
∆PESQ depends significantly on the filter length, with the best results obtained with
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Fig. 3.11: Performance of the IRLS-p method with M = 4 for different values of the filter
length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).

Lg between 8 and 12 for p = 0 and p = 0.5, and Lg between 5 and 10 for p = 1. As
before, the performance decreases for relatively large filter lengths. The performance
also depends on the shape parameter p, with p = 0.5 performing better than p = 0
and p = 1 in terms of both measures (except for large filter lengths). It can also
be observed that the best-case performance is somewhat higher than for M = 2,
with M = 4 resulting in an improvement of approximately 1 dB in ∆fwsSNR and
0.1 point in ∆PESQ over M = 2. This indicates that the performance improvement
is not proportional to the number of microphones, and increasing the number of
microphones further might only result in marginal improvements.
In summary, these results show that the dereverberation performance increases as
the number of microphones is increased, with a very large performance difference
between M = 1 and M = 2 and a much smaller difference between M = 2 and
M = 4, indicating marginal improvements for further increasing the number of
microphones. Overall, the shape parameter p = 0.5 performs better than p = 0
and p = 1 in terms of both performance measures. The differences between the
estimated desired speech signal when using M ∈ {1, 2, 4} microphones can also be
observed from the spectrograms of the corresponding signals depicted in Fig. 3.12.
By comparing the estimated desired speech signal with the microphone signal, it
can be observed that M = 1 results in some dereverberation. However, M = 2 and
M = 4 achieve result in much better dereverberation than M = 1, with a very
small difference between M = 2 and M = 4. Although the reverberation time is
fixed in this scenario, the optimal filter length highly depends on the number of
microphones as suggested with the expression in (2.8). For the used reverberation
time T60 ≈ 700 ms, this would correspond to theoretical length of the time-domain
prediction filter of approximately 1.4 s for M = 2 and approximately 900 ms for
M = 4. Since a subband model is used here, this would correspond to the length
of approximately 85 time frames for M = 2 and 55 frames for M = 4. However,
the experimentally observed optimal values are much lower than this. This can
be attributed to two effects: (i) the very late reverberation, corresponding to the
reverberant tail, can be difficult to predict, since it is not strongly structured and
resembles random noise, and (ii) for M > 1 and a fixed number of time frames N ,
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Fig. 3.12: Spectrograms of the microphone signal, direct speech signal and the desired
speech signal estimated using IRLS-p with p = 0.5 and using M ∈ {1, 2, 4}
microphones.
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very long filter lengths Lg would result in the desired signal obtained by solving the
optimization problem in (3.27) being equal to zero, independently of the considered
`p-norm. The first effect explains the marginal improvements for the single-channel
case (i.e., M = 1) for large filter lengths, and a similar behavior for M > 1 for filter
lengths slightly larger than the optimal filter length. The second effect explains why
large filter lengths result in a performance deterioration for M > 1, which can be
attributed to over-suppression of the speech signal. As a rule of thumb, it seems
that a simple heuristic can be used to determine a near-optimal filter length Lg for
a given number of microphones M by keeping the total number of coefficients MLg
constant. For the considered scenario and STFT setup the optimal performance is
obtained with approximately MLg ≈ 50, resulting in the filter length of 50, 25, and
12 coefficients for 1, 2, and 4 microphones, respectively. A similar observation has
been reported in the context of speech recognition in [164], where the word error
rate has been analyzed as a function of the filter length. Of course, the optimal filter
length depends on the application, scenario and algorithm setup.

3.5.4 Influence of filter length Lg for different acoustic scenarios

In this section, we investigate the influence of the filter length Lg on the dereverbera-
tion performance of the considered IRLS-p method for sparse MCLP-based derever-
beration for three different reverberation times, namely T60 ≈ {250, 600, 700} ms.
The number of microphones is fixed to M = 2, the considered shape parameter
values are p ∈ {0, 0.5, 1}, and the filter length Lg is varied between 3 and 40. In
all experiments the optimization is initialized using the coefficients of the reference
microphone signal. The maximum number of iterations is set to I = 20, and the
stopping criterion in Alg. 1 is set as described in Section 3.5.1.
Firstly, we consider the results for the scenario with T60 ≈ 250 ms, depicted in
Fig. 3.13. It can be observed that increasing the filter length initially results in an im-
proved performance in terms of ∆PESQ and in minor changes in terms of ∆fwsSNR.
Large filter lengths result in a decreasing performance in terms of ∆fwsSNR and a
stagnating or decreasing performance in terms of ∆PESQ. Furthermore, p = 0 and
p = 0.5 improve the performance over the microphone signal for all considered filter
lengths, while p = 1 even may result in a decreased performance for long filters,
especially visible in terms of ∆fwsSNR. Overall, the best performance is obtained
for p = 0.5 with Lg between 5 and 10 providing a reasonable tradeoff between the
improvements in ∆fwsSNR and ∆PESQ.
Secondly, we consider the results for the scenario with T60 ≈ 600 ms, depicted
in Fig. 3.14. Similar trends as for T60 ≈ 250 ms can be observed in the behavior
of the performance measures with respect to the filter length. More specifically,
increasing the filter length initially results in an improved performance for both
measures, until optimal performance is reached. Further increasing the filter length
results in a decreasing or stagnating performance. Overall, the best performance is
obtained for p = 0.5 with Lg between 15 and 25, providing significant improvements
in ∆fwsSNR and ∆PESQ.
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Fig. 3.13: Performance of the IRLS-p method with T60 ≈ 250 ms for different values of the
filter length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).
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Fig. 3.14: Performance of the IRLS-p method with T60 ≈ 600 ms for different values of the
filter length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).

Thirdly, we consider the results for the scenario with T60 ≈ 700 ms, depicted in
Fig. 3.15. Again, a similar trend as earlier can be observed, with the best perfor-
mance obtained for p = 0.5 with Lg between 20 and 30.
In summary, the filter length corresponding to the optimal performance highly de-
pends on the reverberation time, as expected. A simple heuristic for determining a
useful filter length for a given T60 with M = 2 would be to use Lg slightly larger
than half of the length corresponding to the reverberation time, which would cor-
respond to 7, 18, and 22 for the considered reverberation times. Again, the actual
optimal filter length depends on the application, scenario and algorithm setup.

3.6 Summary

In this chapter, we have presented a novel MCLP-based blind speech dereverbera-
tion method, based on a sparse prior for modeling the desired speech signal, with
a special emphasis on circular priors from the complex generalized Gaussian family.
We have estimated the prediction filter by iteratively maximizing the corresponding
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Fig. 3.15: Performance of the IRLS-p method with T60 ≈ 700 ms for different values of the
filter length Lg in terms of ∆fwsSNR (left) and ∆PESQ (right).

likelihood function, using a variational representation of the sparse prior. The pro-
posed signal model can be interpreted as a generalization of the TVG model, with
an additional hyperprior on the unknown variances. It has also been shown that the
underlying prior in the conventional WPE method strongly promotes sparsity of the
desired speech signal and can be obtained as a special case of the proposed method
with p = 0. The proposed method has also been reformulated as a constrained opti-
mization problem minimizing the `p-norm of the desired speech signal. Furthermore,
solving this optimization problem by an iteratively reweighted LS algorithm results
in a set of updates corresponding to the probabilistic formulation with a complex
generalized Gaussian prior.
The experimental results for various setups and acoustic scenarios show that the
speech enhancement performance can be consistently improved by the proposed
general method by selecting an appropriate value of the shape parameter p in the
sparsity-promoting cost function. While the improvements are mild compared to
the conventional WPE method, it is important to keep in mind that these come at
virtually no cost with just a minor modification of the weight/variance update. As
we have analytically shown using the `p-norm-based formulation, speech dereverber-
ation is achieved by exploiting the fact that the desired speech signal is more sparse
than the reverberant observations in the STFT domain. Furthermore, the high-
lighted role of sparsity-promoting cost functions also suggests that different cost
functions and optimization methods could be applied to achieve speech derever-
beration. These insights could be useful not only for the considered MCLP-based
dereverberation method but also for integration of MCLP-based dereverberation
with other speech enhancement methods, such as denoising and source separation.





4
GROUP SPARSE MULTI-CHANNEL LINEAR
PREDICTION FOR MULTIPLE-INPUT
MULTIPLE-OUTPUT DEREVERBERATION

In Chapter 3, a blind single-output speech dereverberation method based on sparse
MCLP has been proposed, estimating the desired speech signal at one of the mi-
crophones. However, in many applications it is beneficial to have a multi-channel
output signal which can be used for further processing, e.g., for source localization,
denoising or source separation.
In [161], a generalized WPE (GWPE) method for multiple-input multiple-output
(MIMO) dereverberation based on a time-varying multivariate complex Gaussian
model has been proposed. The estimation of the prediction filter in GWPE is for-
mulated as minimization of inter-frame dependence, quantified using a correlation
measure called Hadamard-Fischer mutual correlation.
In this chapter, we propose a principled way to obtain a multi-channel dereverber-
ated output signal based on the concept of group sparsity. More specifically, as a
multi-output extension of the sparse MCLP method from Chapter 3, we propose
to achieve MIMO speech dereverberation using group sparse MCLP, by promot-
ing sparsity across time and taking into account grouping of the coefficients across
the microphones. In Section 4.1, we formulate the general problem of blind MIMO
speech dereverberation using the subband signal model. In Section 4.2, we introduce
the concept of group sparsity and mixed norms, used to quantify structured spar-
sity. As a multi-channel extension of the `p-norm based optimization problem for
sparse MCLP from Chapter 3, in Section 4.1 we formulate a non-convex optimiza-
tion problem based on a mixed `p,2-norm, which is solved using an IRLS algorithm.
We show that the proposed formulation generalizes several existing methods. The
performance of the proposed method is evaluated in Section 4.4, where the obtained

This chapter is partly based on:
[179] A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, “Group sparsity for MIMO speech

dereverberation,” in Proceedings of the IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics (WASPAA), New Paltz, New York, USA, Oct. 2015.
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results show the advantage of the non-convex cost functions compared with the con-
vex cost function.

4.1 Problem formulation

Similarly as in Chapter 3, we consider an acoustic scenario with a single static
speech source captured by M microphones in a reverberant enclosure without the
presence of additive noise. While in Chapter 3 the goal was to estimate the desired
speech signal at one of the microphones, i.e., the reference microphone, here we aim
to jointly compute an M -channel output signal corresponding to the M -channel
desired speech signal at all microphones. This can be advantageous in many appli-
cations, since a multi-channel output signal can be used for further multi-channel
processing, e.g., for direction-of-arrival estimation [161], denoising [82, 110, 168], or
source separation [160, 189]. Using (2.29), the MCLP-based signal model for all M
reverberant microphone signals in the k-th subband can be written as

X(k) = D(k) + X̃τ (k)G(k), (4.1)

where X(k) ∈ CN×M is the multi-channel reverberant speech matrix, D(k) ∈ CN×M
is the multi-channel desired speech matrix, X̃τ (k) ∈ CN×MLg is the multi-channel
convolution matrix with delay τ , and G(k) ∈ CMLg×M is the MIMO prediction
filter. The problem of blind speech dereverberation can now be formulated as blind
estimation of the desiredM -channel speech matrix D(k) using only the reverberant
observations X(k), i.e., without using the ATFs between the speech source and the
microphones. Using the signal model in (4.1) and given an estimate Ĝ(k) of the
MIMO prediction filter, the desired speech signal can be estimated as

D̂(k) = X(k)− X̃τ (k)Ĝ(k). (4.2)

Similarly as in Chapter 3, the M -channel desired speech signal can be interpreted
as the multi-channel prediction error of the delayed linear prediction model [154].
MIMO dereverberation can be performed by estimating the MIMO prediction filter
G(k) for each subband k and applying (4.2). A block scheme of this MCLP-based
speech dereverberation system is depicted in Fig. 4.1. In the remainder of this
chapter each subband will be processed independently and the index k will be
omitted where possible for notational convenience.
In the following section we formulate speech dereverberation as an optimization
problem with a cost function promoting group-sparsity, and propose to solve it
using an IRLS algorithm. We start with defining mixed norms and briefly review
their relationship to group sparsity.

4.2 Group-sparse modeling

Sparse modeling has been extensively employed in many inverse problem, includ-
ing speech dereverberation. In many applications it is also possible to exploit
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Ĝ(k)

− d̂1(k, n)

− d̂2(k, n)

− d̂M (k, n)

Fig. 4.1: A block scheme of an MCLP-based MIMO dereverberation system.

additional structure of the desired signal. For example, in certain cases the de-
sired signal exhibits sparsity with a certain pattern, e.g., when the significant non-
zero coefficients naturally appear together in groups. This concept, typically re-
ferred to as group, joint, or block sparsity, has been used in signal processing and
machine learning [236–239]. Group structure is usually enforced by using mixed
norms [236,237,240] or probabilistic models [233,241].
Mixed norms generalize the usual matrix and vector norms [236, 237, 240, 242]. Let
dm(n) be the element in the n-th row and m-th column of the matrix D ∈ CN×M .
Let the elements of the n-th row of D be contained in a (column) vector d(n) as

d(n) = [d1(n), . . . , dM (n)]
T
, (4.3)

i.e., the vector d(n) ∈ CM contains the coefficients of the multi-channel desired
speech signal at the n-th time frame. Let p ∈ (0, 2] be a shape parameter and
Φ ∈ CM×M be a positive definite matrix. The mixed `p,2;Φ-norm of the matrix D
is then defined as

‖D‖p,2;Φ =

(
N∑
n=1

‖d(n)‖p2;Φ

) 1
p

, (4.4)

where

‖d(n)‖2;Φ =
(
dH(n)Φ−1d(n)

) 1
2

(4.5)

is the `2;Φ-norm of the vector d(n). In this context, each row of D, i.e., d(n),
represents a group. The role of the matrix Φ is to model the correlation structure
within the group, i.e., within the rows of D. When Φ is the identity matrix, i.e.,
Φ = I, we denote the corresponding norm as the mixed `p,2-norm.
Fig. 4.2 provides an illustration of the computation of a mixed norm for a given
matrix. In words, the mixed `p,2;Φ-norm of D is composed of the inner `2;Φ-norm
applied on each row of D in the first step, and the outer `p-norm applied on the
vector composed of the values obtained in the first step. Intuitively, the inner `2;Φ-
norm measures the weighted energy of the coefficients in each row, while the outer
`p-norm measures the number of rows with significant energies, i.e., the `p,2;Φ-norm
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Fig. 4.2: Illustration of computation of the mixed norm ‖D‖p,2;Φ.

of D provides a measure of group sparsity of the matrix D. Therefore, minimization
of (4.4) aims at estimating a matrix D that has a relatively small number of rows
with significant energy, in terms of the `2;Φ norm, and a relatively high number of
rows with small energy. Similarly as for the vector norms, for p < 1 in (4.4) the
obtained functional is not a norm since it is not convex. Nevertheless, we will still
refer to the `p,2;Φ-norm for p < 1 as a norm.
The defined mixed norm includes many matrix norms as a special case, e.g., the
`2,2-norm is the Frobenius norm of a matrix. A commonly used mixed norm is
the `1,2-norm, which is typically referred to as the group Lasso [236] or joint spar-
sity [243] penalty, and it is often used in sparse regression with the goal of keeping
or discarding entire groups (here rows) of elements in a matrix [242].

4.3 MIMO dereverberation using a group-sparse penalty

As a multi-channel extension of the `p-norm-based optimization problem in (3.27)
for estimating the prediction filter ĝref , in this section we propose to estimate the
prediction filter Ĝ for MIMO speech dereverberation by solving the optimization
problem based on a mixed norm, i.e.,

min
G

‖D‖pp,2;Φ

subject to D + X̃τG = X
(4.6)

for p ≤ 1. The motivation behind the proposed mixed norm cost function is to
estimate a a prediction filter Ĝ that results in some rows with significant energy
in D, and suppresses the coefficients in the remaining rows. For p = 1 and Φ = I
the cost function in (4.6) is the `1,2-norm as in group Lasso, with the groups being
defined across the M microphones. While for p = 1 the cost function in (4.6) is
convex, it is known that non-convex penalty functions, i.e., p < 1, can be more
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useful in enforcing sparsity [244], similarly as for the `p-norm-based cost function
used in Chapter 3.
The proposed cost function for MIMO speech dereverberation is motivated by the
following common assumptions. Firstly, as discussed in Section 2.2, reverberation
makes the TF coefficients of the microphone signals less sparse than the TF co-
efficients of the corresponding clean speech signal. Therefore, as already done in
Chapter 3, dereverberation can be achieved by estimating a prediction filter that
makes the estimate of the desired speech signal more sparse across time than the
microphone signal. Secondly, for a relatively small microphone array it is plausible
to assume that at a given time frame the speech signal is present or absent simul-
taneously at all microphones. This assumption is satisfied, e.g., when the relative
delay between the microphone signals is smaller than the frame shift of the TF
transform, which is virtually always true for relatively compact, non-distributed ar-
rays. Hence, MIMO dereverberation can be formulated as estimation of the MIMO
prediction filter using a cost function promoting group sparsity as in (4.6), with
the groups defined across the microphones and the matrix Φ capturing the spatial
correlation of the speech source between the microphones. The MIMO prediction
filter obtained by solving (4.6) hence aims to estimate the desired speech signal
matrix D that is more sparse than the reverberant speech matrix X, by simultane-
ously keeping or discarding the coefficients across the microphones. Therefore, the
undesired reverberation will be suppressed by enforcing sparsity over time, with the
spatial correlation, i.e., the group structure, being taken into account.

4.3.1 Non-convex minimization using IRLS

In Section 3.4.1, the `p-norm-based optimization problem in (3.27)/(3.35) has been
solved using the IRLS algorithm, and a similar approach can be used here to
solve (4.6). More specifically, the mixed `p,2;Φ-norm in (4.6) is approximated with a
convex weighted `2,2;Φ-norm. Therefore, in the i-th iteration of the IRLS algorithm
the non-convex `p-norm of the energies of the rows of D is replaced by a convex
weighted `2-norm, resulting in the following approximation of the cost function

‖D‖pp,2;Φ =

N∑
n=1

‖d(n)‖p2;Φ ≈
N∑
n=1

ŵi(n)‖d(n)‖22;Φ (4.7)

where ŵi(n) is the estimated weight for the n-th time frame n in the i-th iteration.
The quadratic approximation of the original cost function can then be written in
matrix form as

‖D‖pp,2;Φ ≈ tr
[
ŴiDΦ−TDH

]
, (4.8)

where Ŵi is a diagonal matrix with the weights ŵi(n) on its diagonal, and tr [.]
denotes the matrix trace operator. Similarly as in Section 3.4.1, the weights ŵi(n)
are selected such that the approximation in (4.7) is a first-order approximation
of the corresponding `p,2;Φ cost function (cf. Appendix B.1). Therefore, similarly
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to (3.40), the weights ŵi(n) in the i-th iteration are computed from the previous
estimate of the desired speech matrix D̂i−1 as

ŵi(n) =

(
1

M

∥∥∥d̂i−1(n)
∥∥∥2

2;Φ
+ εmin

) p
2−1

, (4.9)

where a small positive constant εmin is included in the weight update to prevent
division by zero. Given the weights ŵi(n) and using the convex approximation
in (4.8), the optimization problem in (4.6) in the i-th iteration can be rewritten as

Ĝi = arg min
G

tr
[
DHŴiDΦ−T

]
= arg min

G
tr

[(
X− X̃τG

)H
Ŵi

(
X− X̃τG

)
Φ−T

]
,

(4.10)

with the closed-form solution for the MIMO prediction filter in the i-th iteration
given as

Ĝi =
(
X̃

H

τ ŴiX̃τ

)−1

X̃
H

τ ŴiX. (4.11)

Note that the obtained solution for the prediction filter Ĝi does not depend on the
matrix Φ. Nevertheless, the choice of Φ affects the calculation of the weights ŵi(n)
in (4.9), and can therefore influence the final estimate of the prediction filter and
hence the dereverberation performance. To take the spatial (within-group) corre-
lation into account, the matrix Φ in the i-th iteration can be updated using the
estimate of the desired speech matrix D̂i as

Φ̂i =
1

N

N∑
n=1

ŵi(n)d̂i(n)
(
d̂i(n)

)H
=

1

N

(
D̂i
)T

Ŵi
(
D̂i
)∗
, (4.12)

with (.)∗ denoting the complex conjugate. This update can be obtained by minimiz-
ing the cost function in (4.10) with an additional additive term (N log det Φ), which
corresponds to a ML estimator of Φ when d(n) is modeled using a zero-mean com-
plex Gaussian distribution with covariance ŵ−1(n)Φ, as commonly used in group
sparse learning [233, 245]. In a practical implementation, a small diagonal loading
εΦ can be used to regularize the matrix Φ̂i. The complete algorithm for solving (4.6)
using IRLS is outlined in Alg. 3.

4.3.2 Relation to existing methods

The GWPE method in [161] was derived based on a locally Gaussian model for
the multi-channel desired signal, i.e., d(n) was modeled using a multivariate com-
plex Gaussian distribution with an unknown and time-varying covariance matrix.
The optimization problem for the MIMO prediction filter Ĝ was formulated using
a cost function based on the Hadamard-Fischer mutual correlation, which favors
temporally uncorrelated random vectors, i.e., the prediction filter was estimated by
decorrelating the vectors d(n) across time. In order to derive a practical algorithm,
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Alg. 3 Group sparse MCLP with a mixed `p,2;Φ-norm cost function using the IRLS
algorithm (gIRLS-p).

parameters: filter length Lg and prediction delay τ in (4.1), p in (4.6), regulariza-
tion parameters εmin, εΦ, maximum number of iterations I, tolerance η

input: M -channel reverberant microphone signal coefficients X(k), ∀k
1: for all k do
2: i← 0
3: D̂0 ← X, Φ̂0 ← I . initialization
4: repeat
5: i← i+ 1

6: ŵi(n)←
(

1
M

∥∥∥d̂i−1(n)
∥∥∥2

2;Φ̂i−1
+ εmin

) p
2−1

, ∀n . equation (4.9)

7: Ĝi ←
(
X̃

H

τ ŴiX̃τ

)−1

X̃
H

τ ŴiX . equation (4.11)

8: D̂i ← X− X̃τĜ
i . equation (4.2)

9: if Φ is estimated then
10: Φ̂i ← 1

N D̂(i)TŴiD̂(i)∗ + εΦI . equation (4.12)
11: end if
12: until i = I or ‖D̂

i−D̂i−1‖
F

‖D̂i−1‖
F

< η

13: end for
output: estimated desired M -channel signal coefficients D̂(k) = D̂i(k), ∀k

a suitable auxiliary majorizing function was derived, which is minimized using al-
ternating optimization. By comparing Alg. 3 with the updates in [161], it can be
seen that the GWPE method corresponds a special case of the proposed method
with p = 0, i.e., to the minimization of the `0,2;Φ-norm in (4.6). Therefore, similarly
as in Chapter 3, the success of the GWPE-based dereverberation can be attributed
to the sparsifying behavior of the underlying cost function used to estimate the
prediction filter Ĝ.
Furthermore, if an `p,p-norm would be used as the cost function in (4.6), the pro-
posed method would be decomposed into a multiple-input single-output method
from Chapter 3 applied M times to generate M outputs, with each microphone be-
ing selected as the reference microphone exactly once. This is a direct consequence
of ignoring the group structure when using the `p,p-norm, i.e.,

‖D‖pp =

N∑
n=1

M∑
m=1

|dm(n)|p, (4.13)

as the cost function. Since the signal model in (4.1) can then be decoupled into M
independent models, as in (2.28), this leads to independent estimation for the M
prediction filters.
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4.4 Simulations

In this section, the dereverberation performance of the proposed group sparse MCLP
method is investigated. More specifically, the performance for different values of the
shape parameter p and the number of microphonesM is compared, with and without
the presence of additive noise.
The considered acoustic scenario and the implementation details are outlined in
Section 4.4.1. The influence of the shape parameter p for an acoustic scenario with-
out the presence of additive noise is investigated in Section 4.4.2. The influence
of additive noise on the speech dereverberation performance is investigated in Sec-
tion 4.4.3.

4.4.1 Acoustic scenario and algorithmic setup

We consider an acoustic scenario with a single static speech source and M ∈ {2, 4}
omni-directional microphones placed at a distance of about 2 m from the source,
with the same array configuration as in Section 3.5. To generate the noisy reverber-
ant signals, recorded noise signal has been added to the reverberant speech signal
to achieve a desired signal-to-noise ratio (SNR) with respect to the direct speech
signal at the first microphone. The noise has been recorded in the same conditions
as the RIRs, and consists mainly of a stationary background noise caused by the
air conditioning system (cf. REVERB challenge [22,23]).
Similarly to the parameter setup for the single-output methods in Chapter 3, the
analysis and synthesis STFT is computed using a tight window based on a 64 ms
Hamming window with a 16 ms window shift. The prediction delay in (4.1) is set
to τ = 2 for all experiments, and the filter length is set to Lg = 25 for M = 2
microphones and Lg = 10 for M = 4 microphones. The filter length Lg is selected
as suggested by the results in Section 3.5.3. The proposed group sparse MCLP dere-
verberation method based on IRLS (gIRLS-p) is implemented as in Alg. 3, with the
conventional GWPE method corresponding to p = 0. The weights are regularized
with εmin = 10−8. The iterative algorithm is initialized with the microphone signal
coefficients. The tolerance for the relative change of the `2-norm of the estimated
desired signal is set to η = 10−6 and the maximum number of iterations is set to
I = 20.
The dereverberation performance is evaluated in terms of the instrumental mea-
sures described in Section 2.3, i.e., improvement in fwsSNR (∆fwsSNR) and PESQ
(∆PESQ). The reference signal used for the instrumental measures is the direct
speech signal at the microphone, obtained by convolving the anechoic speech signal
with the direct component of the corresponding RIR. The reported improvements
of the instrumental measures are obtained by averaging over all microphones and
speech samples.
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Fig. 4.3: Performance of the gIRLS-p method with M = 2 and Lg = 25 in terms of
∆fwsSNR and ∆PESQ. The correlation matrix Φ was fixed (Φ = I) or estimated
using (4.12) (Φ = est).

4.4.2 Influence of the shape parameter p in a noiseless scenario

In this section, we investigate the influence of the shape parameter p on the perfor-
mance of the proposed gIRLS-p speech dereverberation method. The shape parame-
ter is varied between p = 0 and p = 1, with p = 0 corresponding to the conventional
GWPE method and p = 1 corresponding to the convex group Lasso cost function.
Firstly, we consider the case with M = 2 microphones. Fig. 4.3 depicts the improve-
ment of the considered performance measures, either using a fixed within-group cor-
relation matrix (Φ = I) or an estimated within-group correlation matrix (Φ = est)
using (4.12). It can be observed that both performance measures exhibit a similar
trend for both correlation matrices. In general, the obtained improvements highly
depend on the shape parameter p. More specifically, the performance significantly
deteriorates as the cost function becomes closer to the convex case, i.e., as the shape
parameter p approaches 1. In general, smaller values of the shape parameter p, cor-
responding to non-convex cost functions which promote sparsity more aggressively,
result in a better performance. In particular, values of the shape parameter between
p = 0.25 and p = 0.5 achieve somewhat better performance than when using p = 0,
similarly as in the single-channel output case in Section 3.5.
In terms of reverberation suppression, as indicated by ∆fwsSNR, the estimated
correlation matrix Φ results in a better performance (about 1 dB) than the fixed
correlation matrix, whereas both correlation matrices achieve a similar perceptual
speech quality improvement, as indicated by ∆PESQ.
Secondly, we consider the case withM = 4 microphones, with Fig. 4.4 depicting the
improvements of the considered performance measures. Similarly as forM = 2, both
performance measures exhibit a similar trend for both correlation matrices, with the
obtained improvements highly depending on the shape parameter p. Again, the per-
formance significantly deteriorates as the cost function becomes closer to the convex
case, and the non-convex cost functions (for p < 1) result in a better performance.
The estimated correlation matrix Φ again results in better performance in terms
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Fig. 4.4: Performance of the gIRLS-p method with M = 4 and Lg = 10 in terms of
∆fwsSNR and ∆PESQ. The correlation matrix Φ was fixed (Φ = I) or estimated
using (4.12) (Φ = est).

of reverberation suppression, as indicated by ∆fwsSNR, with both correlation ma-
trices achieving a similar perceptual speech quality improvement, as indicated by
∆PESQ, except for p = 0.

4.4.3 Influence of noise

In this section, we investigate the influence of noise on the performance of the
proposed gIRLS-p dereverberation method. The input SNR is varied between 0 dB
and 40 dB, the shape parameter is set to p ∈ {0, 0.5, 1}, and both fixed and estimated
correlation matrices are considered.
Fig. 4.5 depicts the improvement of the considered performance measures forM = 2.
It can be observed that in all cases the method provides an improvement over the
microphone signal. However, the obtained improvements are considerably larger
for high SNRs, when the microphone signals are mainly corrupted by reverbera-
tion, and are significantly reduced for lower SNRs, when the microphone signals
are mainly corrupted by noise. Since the MCLP signal model does not explicitly
include the noise component, the improvements stem from dereverberation while
the noise component is typically not strongly affected. This is due to the fact that
the noise signal is typically less predictable than reverberation, such that the esti-
mated prediction filters capture almost exclusively reverberation. Similarly as for
the noiseless case in Section 4.4.2, p = 0.5 achieves the best performance for all SNR
values. The estimated correlation matrix Φ results in better performance in terms
of reverberation suppression, as indicated by ∆fwsSNR, than the fixed correlation
matrix, whereas both correlation matrices achieve similar perceptual speech quality
improvements, as indicated by ∆PESQ. Fig. 4.6 depicts the improvement of the
considered performance measures for M = 4. Again, it can be observed that in all
cases the method provides improvements over the microphone signal. Similarly as
for M = 2, the obtained improvements are considerably larger for high SNRs, and
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Fig. 4.5: Performance of the gIRLS-p method with M = 2 and Lg = 25 in terms of
∆fwsSNR (left) and ∆PESQ (right) for different SNRs. The correlation matrix
Φ was either fixed (top) or estimated using (4.12) (bottom).

are significantly reduced for lower SNRs, with p = 0.5 typically performing slightly
better or comparable to p = 0.

4.5 Summary

In this chapter, we have presented a novel formulation for MCLP-based MIMO
speech dereverberation using the concept of group sparsity. The dereverberation is
formulated as a non-convex optimization problem based on a mixed norm, which
takes into account group sparsity of the TF coefficients of the desired multi-channel
speech signal. Intuitively, the cost function promotes sparsity of the TF coefficients
across time frames while taking into account grouping across the microphones. The
optimization problem solved using the IRLS algorithm generalizes several previ-
ously proposed MCLP-based methods, including the single-output method from
Chapter 3.
The experimental results obtained for noiseless as well as noisy scenarios show that
speech enhancement performance can be improved by selecting an appropriate shape
of the group sparsity-promoting cost function. The results for the noiseless acoustic
scenario show that the speech enhancement performance, compared to the conven-
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Fig. 4.6: Performance of the gIRLS-p method with M = 4 and Lg = 10 in terms of
∆fwsSNR (left) and ∆PESQ (right) for different SNRs. The correlation matrix
Φ was either fixed (top) or estimated using (4.12) (bottom).

tional method, can be consistently improved in the proposed framework by selecting
an appropriate value of the shape parameter p and including the within-group cor-
relation. The experimental results for the noisy acoustic scenario show that the
performance is significantly reduced in low-SNR scenarios, since the used signal
model does not explicitly take noise into account. Nevertheless, MCLP-based dere-
verberation can lead to considerable improvements in moderate and high-SNR sce-
narios, such that it can be used as a preprocessor for further multi-channel signal
processing.



5
CONSTRAINED SPARSE MULTI-CHANNEL
LINEAR PREDICTION FOR ADAPTIVE
SPEECH DEREVERBERATION

In Chapter 4, a blind MIMO speech dereverberation method based on group sparse
MCLP has been proposed, aiming to estimate the multi-channel desired speech sig-
nal. The proposed method operates in batch mode, i.e., the MIMO prediction filter
is estimated by using the complete signal captured at the microphone and does
not change over time. While the simulation results show that the proposed method
performs well, it is based on the assumption of a static acoustic scenario. How-
ever, in many applications the source-microphone geometry is not fixed, e.g., if the
speaker or the microphone array (e.g., hearing aids) is moving inside the enclosure
or if multiple speakers are taking turns. Furthermore, for real-time applications
the microphone signals should be processed online, with latency requirements de-
pending on the application. Adaptive versions of MCLP-based dereverberation that
are suitable for online processing have been proposed in [156, 163] where the filter
updates are based on the recursive least squares (RLS) algorithm. However, since
these methods typically do not include additional knowledge about the undesired
speech signal, they may lead to a significant overestimation of the undesired signal
and severe distortions of the output signal.
In this chapter, we present an adaptive speech dereverberation method suitable for
online processing, based on the batch group sparse MCLP method considered in
Chapter 4. To prevent overestimation of the undesired signal, we propose to inte-
grate additional knowledge about the reverberant speech signal. More precisely, we
propose to constrain the power of the MCLP-based estimate of the undesired rever-

This chapter is partly based on:
[180] A. Jukić, Z. Wang, T. van Waterschoot, T. Gerkmann, S. Doclo, “Constrained multi-channel

linear prediction for adaptive speech dereverberation,” in Proceedings of the International
Workshop on Acoustic Signal Enhancement (IWAENC), Xi’an, China, Sept. 2016.

[181] A. Jukić, T. van Waterschoot, S. Doclo, “Adaptive speech dereverberation using constrained
sparse multi-channel linear prediction,” IEEE Signal Processing Letters, vol. 24, no. 1, pp.
101–105, Jan. 2017.
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berant signal using an estimate of the late reverberant power spectral density (PSD).
The resulting constrained optimization problem is solved using the alternating di-
rection method of multipliers (ADMM) algorithm [246], which can be implemented
efficiently as a variant of the RLS algorithm. Experimental results demonstrate the
advantages of the proposed constrained method when the prediction filter needs to
adapt quickly, e.g., for a moving source.
In Section 5.1, we formulate the problem of blind MIMO adaptive speech derever-
beration. In Section 5.2, we present an adaptive dereverberation method based on
group sparse MCLP proposed in Chapter 4. In Section 5.3, we propose a constrained
version of the adaptive algorithm by including a bound on the power of the esti-
mated undesired signal. In Section 5.4, we present a diagonal approximation which
can be used to significantly reduce computational complexity. Experimental results
for a moving source and alternating sources are presented in Section 5.5.

5.1 Problem formulation

We consider an acoustic scenario with a single speech source captured by M micro-
phones. As in (2.22), the m-th microphone signal xm(k, n) can be decomposed as
xm(k, n) = dm(k, n)+um(k, n), where dm(k, n) is the desired speech signal, consist-
ing of the direct signal and early reflections, and um(k, n) is the undesired speech
signal, consisting of late reflections. The multi-channel model at the n-th time frame
can be written as

x(n) = d(n) + u(n), (5.1)

where x(n) = [x1(n), . . . , xM (n)]
T is the multi-channel reverberant signal and d(n)

and u(n) are defined similarly. As shown in Section 2.1.2 and used in Section 4.2,
u(n) can be modeled using MCLP as the sum of filtered (delayed) microphone
signals, i.e.,

u(n) = GH(n)x̃τ (n), (5.2)

where G(n) = [g1(n), . . . ,gM (n)] ∈ CMLg×M denotes the MIMO prediction filter,
with gm(n) ∈ CMLg containing Lg taps per microphone, and x̃τ (n) ∈ CMLg is a
signal buffer defined as

x̃τ (n) = [x1(n− τ), . . . , x1(n− τ − Lg + 1), . . .

. . . , xM (n− τ), . . . , xM (n− τ − Lg + 1)]
T
. (5.3)

As opposed to Chapters 3 and 4, the prediction filter G(n) in the signal model
in (5.2) is not fixed for all frames, i.e., it can change over time. As discussed in
Section 3.1, the prediction delay τ ensures preservation of the short-time speech
correlation and early reflections in the desired speech signal.
The goal of blind speech dereverberation is to recover the multi-channel desired
speech signal d(n), which can be achieved by estimating the undesired speech signal
u(n) in (5.2) and subtracting it from the reverberant microphone signals x(n), i.e.,
the estimated desired speech signal is equal to the prediction error.
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5.2 Adaptive group sparse MCLP

Assuming that the MIMO prediction filter G(n) does not change over time, i.e.,
G(n) = G, a batch dereverberation method based on the signal model in (5.1) has
been derived in Chapter 4. More specifically, given a batch of N time frames, the
prediction filter G has been estimated by maximizing sparsity across time, which
has been formulated as minimizing the mixed `p,2-norm of the desired speech signal,
cf. (4.6). As shown in Section 4.3, the obtained non-convex optimization problem
can be solved using the IRLS algorithm by approximating the `p-norm using a
weighted `2-norm, cf. (4.7), i.e., the batch prediction filter can be estimated as

Ĝ = arg min
G

N∑
n=1

ŵ(n)‖d(n)‖22, (5.4)

where the weights ŵ(n) are set to obtain a first-order approximation of the `p-norm.
For a known d(n), the weights ŵ(n) can be set to the ideal weights

ŵ(n) =

(
1

M
‖d(n)‖22 + εmin

) p
2−1

, (5.5)

where εmin is a small positive regularization constant. As noted in Section 3.4.1, the
weights ŵ(n) put more emphasis on frames where the desired signal d(n) should
have a relatively small energy, and therefore mimic sparsity-promoting behavior of
the `p-norm. Since in practice the true d(n) is obviously not known, the weights
ŵ(n) are usually computed using the estimated d̂(n) from the previous iteration,
cf. (4.9). Alternatively, the weights can also be computed using the average PSD of
the desired speech signal, i.e.,

ŵ(n) =

(
1

M
‖σ̂d(n)‖22 + εmin

) p
2−1

, (5.6)

with σ̂2
d(n) = [σ̂2

d,1(n), . . . , σ̂2
d,M (n)]T containing the PSDs of the desired speech

signal in all microphones. Alg. 5 describes recursive PSD estimators, where the PSD
of the desired speech signal is estimated using an exponential decay model for the
late reverberation [74, 75, 77], which requires an estimate of the reverberation time
T60. Alternatively, other late reverberant PSD estimators could be employed [115,
116].
Similarly as in [163], an adaptive version of group sparse MCLP, estimating the
prediction filter G(n) for each time frame n, can be derived by incorporating an
exponential window in (5.4). This leads to the following optimization problem for
estimating the adaptive prediction filter G(n) at the n-th time frame

Ĝ(n) = arg min
G(n)

n∑
l=1

γn−lŵ(l) ‖d(l)‖22 , (5.7)
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where γ ∈ (0, 1] is the forgetting factor. The prediction filter Ĝ(n) in (5.7) can be
computed by solving the unconstrained optimization problem

Ĝ(n) = arg min
G(n)

F (G(n)) , (5.8)

with F : CMLg×M → R a quadratic cost function equal to

F (G(n)) = tr
[
GH(n)Q̂(n)G(n)

]
− 2<

{
tr
[
GH(n)R̂(n)

]}
, (5.9)

with the matrices Q̂(n) and R̂(n) defined as

Q̂(n) =

n∑
l=1

γn−lŵ(l)x̃τ (l)x̃Hτ (l), (5.10a)

R̂(n) =

n∑
l=1

γn−lŵ(l)x̃τ (l)xH(l). (5.10b)

The closed-form solution for the prediction filter in (5.8) can hence be written as

Ĝ(n) = Q̂−1(n)R̂(n). (5.11)

Since the matrices Q̂(n) and R̂(n) in (5.10) are rank-1 perturbations of γQ̂(n− 1)

and γR̂(n− 1), the matrix inversion lemma can be used to obtain a variant of the
recursive least squares (RLS) algorithm [247], as given in Alg. 4. The computational
complexity of Alg. 4 is quadratic in the number of prediction filter coefficients per
channel, with O

(
M2L2

g

)
operations.

Alg. 4 Adaptive group sparse MCLP-based speech dereverberation.
parameters: forgetting factor γ, shape parameter p, regularization parameter εmin

input: x(n), Ĝ(n− 1), Q̂−1(n− 1)
1: compute ŵ(n) . equation (5.6) and Alg. 5
2: k̂(n) = Q̂−1(n−1)x̃τ (n)

γ
ŵ(n)

+x̃Hτ (n)Q̂−1(n−1)x̃τ (n)

3: Ĝ(n) = Ĝ(n− 1) + k̂(n)
[
x(n)− ĜH(n− 1)x̃τ (n)

]H
4: Q̂−1(n) = 1

γ

[
I− k̂(n)x̃Hτ (n)

]
Q̂−1(n− 1)

5: û(n) = ĜH(n)x̃τ (n)

output: û(n), Ĝ(n), Q̂−1(n)

6: d̂(n) = x(n)− û(n)
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Alg. 5 Recursive PSD estimation. All operations applied element-wise.

parameters: smoothing constant α, duration of the early part Td (seconds) and
nd (frames), decay constant ∆ = 3 ln 10

T60/Td

input: x(n)

1: σ̂2
x(n) = α σ̂2

x(n− 1) + (1− α) |x(n)|2
2: σ̂2

r(n) = e−2∆ σ̂2
x(n− nd)

3: σ̂2
d(n) = α σ̂2

d(n− 1) + (1− α) max
(
|x(n)|2 − σ̂2

r(n), 0
)

output: σ̂r(n), σ̂d(n)

5.3 Constrained adaptive group sparse MCLP

For dynamic scenarios, e.g., with a moving speaker or multiple speakers taking turns,
the ATFs between the active speaker and the microphones inevitably vary over time.
In such a scenario, the variations in the ATFs should be tracked, and small values
of the forgetting factor γ are generally preferred for quick tracking. However, small
values of the forgetting factor result in a prediction error that approaches zero [247].
Since the output signal d̂(n) in (5.1) is equal to the prediction error, this may
result in overestimation of the undesired signal û(n) and excessive cancellation of
the speech signal [163]. Similarly, small values of the forgetting factor may lead to
ill-conditioning of the matrix Q̂(n) in (5.10), resulting in an unstable output [163].
To prevent overestimation of the undesired signal, we propose to incorporate prior
knowledge about the undesired reverberation. More specifically, we propose to con-
strain the power of the MCLP-based estimate of the undesired signal power by
an estimate of the PSD of the late reverberation based on the temporal exponen-
tial decay model, leading to the following optimization problem for estimating the
constrained prediction filter Ǧ(n)

Ǧ(n) = arg min
G(n)

F (G(n))

subject to
∣∣∣GH(n)x̃τ (n)

∣∣∣2 ≤ σ̂2
u(n).

(5.12)

The vector σ̂u(n) = [σ̂u,1(n), . . . , σ̂u,M (n)]
T contains the bounds for the undesired

speech signal power, and is defined as

σ̂u(n) = min (σ̂r(n), |x(n)|) (5.13)

with σ̂r(n) the late reverberant PSD estimate, e.g., estimated using Alg. 5. By
using the constrained optimization problem in (5.12) instead of the unconstrained
optimization problem in (5.8), we aim to prevent the excessive speech cancellation
for small values of the forgetting factor γ, while not significantly deteriorating the
performance for large values of the forgetting factor γ.
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The constrained optimization problem in (5.12) does not have a closed-form solution
such that we need to resort to an iterative algorithm. By introducing a splitting
variable z(n) ∈ CM [246], (5.12) can be rewritten as

min
G(n),z(n)

F (G(n)) + C (z(n))

subject to GH(n)x̃τ (n) = z(n),
(5.14)

where the inequality constraint in (5.12) is replaced with a convex barrier function
C : CM → R̄, which is defined as C (z(n)) = 0 when the constraint is satisfied, i.e.,
|zm(n)| ≤ σ̂u,m(n) for all m, and C (z(n)) = ∞ otherwise. Since F (.) and C(.) are
convex functions, the optimization problem in (5.14) can be solved efficiently by ap-
plying the ADMM algorithm [246] (cf. Appendix B.3). The augmented Lagrangian
for the optimization problem in (5.14) can be written as

Lρ (G(n), z(n),µ) = F (G(n)) + C (z(n)) +

+
ρ

2

∥∥∥GH(n)x̃τ (n)− z(n)− µ
∥∥∥2

2
− ρ

2
‖µ‖22 , (5.15)

where ρ is a penalty parameter and µ is the so-called dual variable [246]. The
ADMM algorithm proceeds by minimizing Lρ(.) alternately with respect to G(n)
and z(n) followed by an ascent over µ [248], i.e., in the j-th iteration we have

Ǧj(n)← arg min
G

F (G) +
ρ

2

∥∥∥GHx̃τ (n)−
(
žj−1(n) + µj−1

)∥∥∥2

2
, (5.16a)

žj(n)← arg min
z
C (z) +

ρ

2

∥∥∥z− ((Ǧj(n)
)H

x̃τ (n)− µj−1
)∥∥∥2

2
, (5.16b)

µj ←µj−1 + žj(n)−
(
Ǧj(n)

)H
x̃τ (n). (5.16c)

Since the function F (.) is quadratic, the constrained prediction filter Ǧj(n)
in (5.16a) can be computed using a closed-form expression, similarly to (5.11), as

Ǧj(n)← Q̌−1(n)Řj(n), (5.17)

where the matrices Q̌(n) and Řj(n) are defined as

Q̌(n) = Q̂(n) +
ρ

2
x̃τ (n)x̃Hτ (n), (5.18a)

Řj(n) = R̂(n) +
ρ

2
x̃τ (n)

(
žj−1(n) + µj−1

)H
. (5.18b)

Since the matrices Q̌(n) and Řj(n) in (5.18) are rank-1 perturbations of Q̂(n) and
R̂(n) in (5.10), the matrix inversion lemma can be used to obtain an RLS-like
algorithm for updating the constrained prediction filter Ǧj(n) [247]. Computing
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žj(n) in (5.16b) corresponds to a projection on the constraint set, i.e., clipping of
the magnitudes, and can be written element-wise as

žjm(n)← min

 σ̂u,m(n)∣∣∣ǔjm(n)− µj−1
m

∣∣∣ , 1
(ǔjm(n)− µj−1

m

)
, (5.19)

where ǔj(n) =
(
Ǧj(n)

)H
x̃τ (n) is the undesired signal estimated using linear filtering

with the constrained MIMO prediction filter Ǧj(n) at j-th iteration.
The complete iterative procedure of the ADMM algorithm for solving the con-
strained optimization problem in (5.12) is given in Alg. 6. The iterative updates
in the ADMM algorithm in Alg. 6 can be interpreted as an iterative correction of
the unconstrained filter Ĝ(n) to obtain a constrained filter Ǧ(n) which satisfies the
inequality constraint in (5.12). Note that the equality constraint in (5.14) will be
satisfied as the number of iterations becomes arbitrarily large, i.e., j → ∞ [246].
However, for a relatively small number of iterations, ǔj(n) and žj(n) will not nec-
essarily be equal, and only the latter will definitely satisfy the inequality constraint
in (5.12). Nevertheless, it is possible to use either ǔJ(n), or the splitting variable
žJ(n) as an estimate of the undesired signal for dereverberation, leading to two
variants of the dereverberation algorithm.
The complexity of Alg. 6 is quadratic and is dominated by the computation of the
gain vector ǩ(n) with O

(
M2L2

g

)
operations, equivalent to the computation of the

gain vector in Alg. 4, with the additional complexity of the iterative updates being
O
(
JM2Lg

)
.

Alg. 6 ADMM algorithm for the constrained problem in (5.12). Operations in step
7 are applied element-wise.
parameters: penalty parameter ρ, number of iterations J
input: x(n), Ĝ(n), û(n), Q̂−1(n) estimated using Alg. 4, σ̂r(n) estimated us-

ing Alg. 5
1: initialize: ž0(n) = 0,µ0(n) = 0

2: ǩ(n) = Q̂−1(n)x̃τ (n)
2
ρ+x̃Hτ (n)Q̂−1(n)x̃τ (n)

3: σ̂u(n) = min (σ̂r(n), |x(n)|)
4: for j = 1, . . . , J do
5: Ǧj(n)← Ĝ(n) + ǩ(n)

[
žj−1(n) + µj−1 − û(n)

]H
6: ǔj(n)←

(
Ǧj(n)

)H
x̃τ (n)

7: žj(n)← min
(

σ̂u(n)
|ǔj(n)−µj−1| , 1

) (
ǔj(n)− µj−1

)
8: µj ← µj−1 + žj(n)− ǔj(n)
9: end for

output: ǔJ(n), zJ(n)

10: d̂(n) = x(n)− ǔJ(n) . u-variant
11: d̂(n) = x(n)− žJ(n) . z-variant
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5.4 Complexity reduction using diagonal approximation

For some applications, the computational complexity of the obtained RLS-based
algorithms Algs. 4 and 6 may be prohibitively high, and a more efficient algorithm
should be used. A relatively straightforward way to reduce the computational com-
plexity would be to replace the RLS algorithm with an algorithm with linear com-
plexity, such as the least mean squares (LMS) algorithm or its normalized variant
(NLMS) [247]. However, in our initial experiments these algorithms did not perform
well, presumably since they use an instantaneous approximation of the correlation
matrix [247] and essentially do not exploit the temporal information for estimating
the correlation matrix.
By inspecting the unconstrained RLS algorithm in Alg. 4 and the constrained
ADMM algorithm in Alg. 6, it can be observed that the computation of the gain vec-
tors k̂(n) and ǩ(n), respectively, dominates the computational complexity. In both
cases, the number of operations required to compute the gain vector is quadratic
in the number of the prediction coefficients per channel, i.e., O

(
M2L2

g

)
, due to

the computation of the matrix-vector product Q̂−1(n)x̃τ (n) and the update of the
matrix Q̂−1(n).
In order to reduce the computational complexity, we propose to use a diagonal ap-
proximation of the matrix Q̂−1(n), i.e., to track only the vector q̂−1(n) ∈ CMLg , cor-
responding to the diagonal of the matrix Q̂−1(n), similarly as in frequency-domain
adaptive filtering [249, 250]. Based on the update for the matrix Q̂−1(n) in Alg. 4,
the vector q̂−1(n) can be updated as

q̂−1(n) =
1

γ

[
1− k̂(n)� x̃∗τ (n)

]
� q̂−1(n− 1), (5.20)

where 1 is an MLg-dimensional vector of ones, and � denotes element-wise multi-
plication. Using this diagonal approximation, the gain vector k̂(n) in Alg. 4 can be
computed as

k̂(n) =
q̂−1(n− 1)� x̃τ (n)

γ
w(n) + x̃Hτ (n) [q̂−1(n− 1)� x̃τ (n)]

. (5.21)

The gain vector ǩ(n) in Alg. 6 can be computed similarly to (5.21).
In effect, this diagonal approximation reduces the computational complexity of the
operations involving the matrix Q̂−1(n) from quadratic to linear, i.e., O (MLg).
Therefore, the overall complexity for the unconstrained Alg. 4 is reduced from
O
(
M2L2

g

)
to O

(
M2Lg

)
, while the overall complexity for the constrained Alg. 6

is reduced from O
(
M2L2

g

)
to O

(
JM2Lg

)
.

5.5 Simulations

In this section, the dereverberation performance of the proposed adaptive sparse
MCLP-based methods is investigated. More specifically, the performance of the
adaptive unconstrained method (denoted as ADA) given in Alg. 4, the two proposed
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variants of the constrained adaptive method (denoted as cADA-u and cADA-z) given
in Alg. 6, and their variants with the diagonal approximation is evaluated.
The considered acoustic scenarios and the implementation details are outlined in
Section 5.5.1. The influence of the forgetting factor on the performance of the con-
sidered methods is investigated in Section 5.5.2. The influence of the filter length
on the performance is investigated in Section 5.5.3. The performance using a real
recording of a moving speaker is investigated in Section 5.5.4.

5.5.1 Acoustic scenario and algorithmic setup

For the experimental results we consider two acoustic scenarios: a speech source
alternating between two positions (Sections 5.5.2 and 5.5.3) and a moving human
speaker (Section 5.5.4).
For the alternating speech source, we use the same setup from the REVERB chal-
lenge [22, 23] as used for simulations in Chapters 3 and 4. We use M ∈ {2, 4}
microphones with a source-microphone distance of approximately 2 m, where the
speech source is alternating between two positions located 45◦ to the left and 45◦ to
the right of the center of the array. The room has a reverberation time T60 ≈ 700 ms
and the sampling frequency is fs = 16 kHz. The clean speech consisted of 6 utter-
ances, and the microphone signal with a total length of approximately 27 s has been
generated by alternating the source position for each utterance.
For the moving speaker, we use a recording with M = 2 microphones, with the
distance between the microphones approximately 11 cm [139]. The signals have
been recorded in a room with T60 ≈ 750 ms and contain some background noise, at
a reverberant signal-to-noise ratio (RSNR)1 of approximately 20 dB (cf. [139]).
Similarly to the parameter setup for the batch method in Chapter 4, the analysis
and synthesis STFT is computed using a tight window based on a 64 ms Hamming
window with a 16 ms window shift. The prediction delay in (5.2) is set to τ = 2
for all experiments, and the filter length is set to Lg = 25 for M = 2 microphones
and Lg = 10 for M = 4 microphones. The PSDs of the desired speech signal and
the late reverberation are estimated using Alg. 5 with α = 0.65, Td = 50 ms, and
T60 is assumed to be known. For Alg. 6, the ADMM penalty parameter is set to
ρ = 103 and the number of iterations is J = 25. The weights are regularized with
εmin = 10−8 for subbands. The forgetting factor γ is varied between 0.75 and 0.999.
The estimate of the prediction filter Ĝ(n) is initialized with zeros and the matrix
Q̂−1(n) is initialized as the identity matrix. Before processing the signal under
investigation, an additional 5 s signal has been processed to reduce the influence of
initialization.
The dereverberation performance is evaluated in terms of the instrumental measures
described in Section 2.3, i.e., the improvement in fwsSNR (∆fwsSNR) and PESQ
(∆PESQ). For the simulated signals, the reference signal used for the instrumental

1 Reverberant signal-to-noise ratio is defined as the ratio of the power of the noiseless reverberant
signal and the power of the noise signal.
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measures is the direct speech signal at the first microphone, obtained by convolving
the anechoic speech signal with the direct component of the corresponding RIR. For
the recorded signals, the reference signal used for the instrumental measures is the
close-talking speech signal.

5.5.2 Influence of the forgetting factor γ and the shape parameter p

In this section, we investigate the influence of the forgetting factor γ and the shape
parameter p on the performance of the adaptive MCLP methods for the simulated
alternating speaker scenario.
Fig. 5.1 depicts the improvements the considered performance measures for the
adaptive MCLP methods (without the diagonal approximation) with M = 2 micro-
phones. On the one hand, the performance of the unconstrained ADA method de-
pends strongly on the forgetting factor γ, even resulting in a significant performance
degradation with respect to the microphone signal. This effect is very noticeable for
small values of the forgetting factor γ, due to overestimation of the undesired rever-
berant signal and excessive cancellation of the desired speech signal. It can also be
observed that ADA performs similarly for p = 0 and p = 0.5, with p = 1 resulting
in a decreased performance. On the other hand, although the constrained cADA-u
and cADA-z methods achieve a somewhat lower best-case performance than the op-
timally tuned ADA, both constrained methods are much more robust with respect
to the value of the forgetting factor γ and the shape parameter p. By comparing
cADA-u and cADA-z, it can be observed that the latter is more robust to the value
of the forgetting factor than the former, since the constraint in (5.12) is always
satisfied for the z-variant.
Fig. 5.2 depicts improvements of the considered performance measures for the adap-
tive MCLP methods using the diagonal approximation with M = 2 microphones.
In general, the diagonal approximation results in a decreased performance, in the
best case achieving approximately 1 dB less in ∆fwsSNR and 0.1 in ∆PESQ than
the adaptive methods without the approximation. Furthermore, the performance of
both unconstrained and the constrained methods depends on the forgetting factor.
As opposed to the methods without the diagonal approximation (cf. Fig. 5.1), it
can be observed that for small values of γ the constrained d-cADA-u and d-cADA-z
methods result in no improvement with respect to the microphone signal, whereas
the unconstrained d-ADA method results in deterioration.
Fig. 5.3 depicts the improvements of the considered performance measures for the
adaptive MCLP methods (without diagonal approximation) with M = 4 micro-
phones. Overall, the obtained performance with M = 4 is better than with M = 2.
Similarly as forM = 2, the performance of the unconstrained ADA method depends
strongly on the forgetting factor γ, with a significant performance degradation with
respect to the microphone signal for small values of the forgetting factor γ. Although
the constrained cADA-u and cADA-z methods achieve a somewhat lower best-case
performance than the optimally tuned ADA, both constrained methods are much
more robust with respect to the value of the forgetting factor γ.
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Fig. 5.1: Performance of the adaptive methods without diagonal approximation (ADA,
cADA-u, cADA-z) with M = 2 and Lg = 25 in terms of ∆fwsSNR (left) and
∆PESQ (right) for different values of the forgetting factor γ and shape parameter
p.
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Fig. 5.2: Performance of the adaptive methods with diagonal approximation (d-ADA,
d-cADA-u, d-cADA-z) with M = 2 and Lg = 25 in terms of ∆fwsSNR (left)
and ∆PESQ (right) for different values of the forgetting factor γ and shape pa-
rameter p.
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Fig. 5.3: Performance of the adaptive methods without the diagonal approximation (ADA,
cADA-u, cADA-z) with M = 4 and Lg = 10 in terms of ∆fwsSNR (left) and
∆PESQ (right) for different values of the forgetting factor γ and shape parameter
p.
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Table 5.1: Real-time factors of the adaptive algorithms.

ADA cADA d-ADA d-cADA
M = 2, Lg = 25 1.86 4.04 0.11 1.96
M = 4, Lg = 10 1.23 4.34 0.15 2.97

Fig. 5.4 depicts improvements of the considered performance measures for the adap-
tive MCLP methods using diagonal approximation with M = 4 microphones. Simi-
larly as for M = 2, the diagonal approximation results in a decreased performance,
in the best case achieving approximately 1 dB less in ∆fwsSNR and 0.1 in ∆PESQ
than the adaptive methods without the approximation. Also, it can be observed that
for small values of γ the constrained d-cADA-u and d-cADA-z methods result in no
improvement, whereas the unconstrained d-ADA method results in deterioration,
as for M = 2.
To investigate the relative computational complexity between the different adaptive
methods (with and without diagonal approximation), Table 5.1 contains the real-
time factors (RTFs) for the considered adaptive methods, measured on a Windows 7
machine with a 3.4 GHz CPU and algorithms running in MATLAB 2015b. It can be
observed that for the considered setup (i.e., number of microphonesM , filter length
Lg, and number of ADMM iterations J), the constrained methods have about two
times larger RTFs than the unconstrained ADA method. This is in line with the
expected computational complexity, which states that the RLS iteration in ADA (cf.
Alg. 4) and the ADMM algorithm in cADA (cf. Alg. 6) have the same complexity
for the considered setup. On the one hand, the diagonal approximation results in an
approximately ten times lower RTF than the the unconstrained ADA, which might
make a large difference in practice. On the other hand, the diagonal approximation
results in an approximately 1.5-2 times lower RTF than the constrained cADA
method. In this case, the overall RTF is mainly determined by the number of ADMM
iterations J in Alg. 6, and hence the RTF could be further linearly decreased by
decreasing the number of ADMM iterations. In our simulations (not depicted here),
we noticed that using a smaller number of iterations, e.g., around 10, typically did
not result in a significantly decreased performance.
In summary, the performance of the unconstrained ADA method strongly depends
on the value of the forgetting factor γ, even resulting in a large performance degra-
dation for small values of the forgetting factor. The constrained methods resolve
this issue at the expense of some performance degradation compared to the opti-
mally tuned ADA and a higher computational complexity. It has been observed
that the constrained c-ADA-z method is more robust with respect to the forgetting
factor than the c-ADA-u, since the inequality constraint in (5.12) is always satisfied
for the former. Furthermore, the diagonal approximation results in some perfor-
mance degradation for all considered methods, with the advantage of a significantly
reduced computational complexity.
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Fig. 5.4: Performance of the adaptive methods with diagonal approximation (d-ADA,
d-cADA-u, d-cADA-z) with M = 4 and Lg = 10 in terms of ∆fwsSNR (left)
and ∆PESQ (right) for different values of the forgetting factor γ and shape pa-
rameter p.



86 constrained sparse mclp for adaptive dereverberation

5.5.3 Influence of the filter length Lg

In this section, we investigate the influence of the filter length Lg and the forgetting
factor γ on the performance of the adaptive MCLP methods for simulated alternat-
ing speaker scenario. We have used M = 2 microphones and the shape parameter
is set to p = 0.
Fig. 5.5 depicts the improvements of the considered performance measures for the
adaptive MCLP methods without diagonal approximation. It can be observed that
the unconstrained ADA method becomes very sensitive to relatively small forget-
ting factors as the filter length Lg increases. More specifically, combining a large
Lg with a small γ results in significant distortions and possible instability of the
output. While cADA-u is less influenced by γ, the performance still drops for small
γ, especially for large Lg when the matrix Q̂(n) becomes ill-conditioned. Finally,
it can be observed that cADA-z is quite robust with respect to the filter length
and the forgetting factor, since the inequality constraint in (5.12) prevents overes-
timation and possible instability of the output. Overall, the best-case performance
of all methods is very similar in terms of ∆fwsSNR, while the constrained meth-
ods yield a somewhat lower ∆PESQ, with approximately 0.1 points lower best-case
performance.

5.5.4 Evaluation using a real recording

In this section, we investigate the performance of the adaptive methods using a
recording of a moving speaker with M = 2 microphones, containing some back-
ground noise (RSNR ≈ 20 dB). The speaker is naturally moving between different
locations in the room. The total length of the used recordings is approximately
42 s, where the speaker is first static and then starts moving around 8 s. The filter
length is set to Lg = 25, the shape parameter to p = 0, and the forgetting fac-
tor to γ ∈ {0.99, 0.85}. To illustrate the temporal dependency of the performance,
an excerpt of the frame-wise values of the fwsSNR (smoothed across 15 frames) is
shown in Fig. 5.6, while the overall PESQ values are shown in Table 5.2. On the
one hand, it can be observed both from fwsSNR and PESQ values that for a rela-
tively large forgetting factor γ = 0.99 all methods perform similarly. From Fig. 5.6
it can also be observed that all methods result in improvements compared to the
microphone signal for the static part and relatively small improvements for the dy-
namic part. On the other hand, for a relatively small forgetting factor γ = 0.85 the
unconstrained ADA method results in excessive speech cancellation due to overes-
timation of the undesired signal, resulting in an fwsSNR value of about 0 dB for
the complete signal and a significantly reduced PESQ value when compared to the
microphone signal. This is also illustrated in the spectrograms of the corresponding
signals with γ = 0.85 in Fig. 5.7. On the contrary, using the smaller forgetting factor
γ = 0.85 with the constrained methods results in a performance improvement for
the dynamic part, with cADA-z performing generally better than cADA-u in terms
of fwsSNR, and both achieving the same overall performance in terms of PESQ.
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Fig. 5.5: Performance of the adaptive methods without diagonal approximation (ADA,
cADA-u, cADA-z) with p = 0 for different values of the forgetting factor γ and
filter length Lg.

Table 5.2: Overall PESQ values for the microphone signal and the output signal obtained
using ADA, cADA-u and cADA-z for a moving speaker with different values of
the forgetting factor.

γ mic ADA cADA-u cADA-z
0.99 1.32 1.49 1.47 1.46
0.85 1.32 1.18 1.43 1.43
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Fig. 5.6: Smoothed fwsSNR for a moving speaker vs. time for the microphone signal and
the output signal obtained using ADA, cADA-u and cADA-z with γ = 0.99 (top)
and γ = 0.85 (bottom). The speaker starts walking around 8 s.

5.6 Summary

In this chapter, we have presented a novel adaptive formulation for group sparse
MCLP-based speech dereverberation. To prevent overestimation of the undesired
speech signal, leading to speech distortion, we have constrained the power of the
MCLP-based estimate of the undesired signal with an estimate of the late rever-
berant PSD. We have used a late reverberant PSD estimator based on a statistical
model requiring a T60 estimate, although other estimators could be readily em-
ployed. The obtained constrained optimization problem is solved using the ADMM
algorithm, resulting in an efficient implementation similar to the RLS algorithm.
Moreover, we have proposed a diagonal approximation to reduce the computational
complexity of the derived constrained and unconstrained adaptive methods.
The experimental results show that in comparison to the unconstrained ADA
method, both versions of the proposed constrained adaptive methods increase the ro-
bustness with respect to the forgetting factor and the filter length, with the cADA-z
variant outperforming the cADA-u variant. Hence, the proposed methods can be
used to improve the robustness and the performance of MCLP-based adaptive dere-
verberation in dynamic scenarios, e.g., when the prediction filters need to adapt
quickly and the optimal forgetting factor is not known. Furthermore, the evaluation
shows that the computational complexity can be significantly decreased by using the
diagonal approximation, however at the expense of some loss in the performance.
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Fig. 5.7: Spectrograms of the microphone signal (top) and the output signal obtained using
ADA, cADA-u and cADA-z with γ = 0.85. The speaker starts walking around
8 s.





6
GENERAL FRAMEWORK FOR
SPARSITY-BASED SPEECH
DEREVERBERATION

In this chapter, we present a general framework for blind speech dereverberation
based on the MCLP-based signal model and exploiting sparsity of the desired speech
signal in the TF domain. Whereas in Chapters 3, 4 and 5 we have considered a
subband MCLP-based signal model in the STFT domain, in this chapter we propose
a more general framework for blind speech dereverberation, either using a wideband
MCLP-based signal model in the time domain or a subband MCLP-based signal
model in the TF domain. We formulate several optimization problems, combining
either the wideband or the subband signal model with a sparse analysis or synthesis
prior to exploit sparsity of the speech signal coefficients. The obtained optimization
problems can again be solved using the ADMM algorithm.
The proposed framework supports general TF transforms by using corresponding
analysis/synthesis operators, e.g., the STFT, the ERBlet transform [251], or adap-
tive non-stationary Gabor transforms [192]. To promote sparsity, we will consider
the commonly used weighted `1- and `2-norm, although other sparsity-promoting
functions can be used in the proposed framework. In addition to locally computed
weights for the weighted norms, we also consider structured weights by using a
neighborhood in the TF domain or a low-rank approximation of the speech power
spectrogram.
The wideband and subband MCLP-based signal models are briefly reviewed in Sec-
tion 6.1, and analysis and synthesis sparsity are introduced in Section 6.2. Several

This chapter is partly based on:
[182] A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, “A general framework for multi-

channel speech dereverberation by exploiting sparsity,” in Proceedings of the AES 60th
Conference on DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech),
Leuven, Belgium, Feb. 2016.

[183] A. Jukić, T. van Waterschoot, T. Gerkmann, S. Doclo, “A general framework for incorpo-
rating time-frequency domain sparsity in multi-channel speech dereverberation,” Journal
of the Audio Engineering Society, vol. 65, no. 1/2, pp. 17–30, Jan./Feb. 2017.
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optimization problems combining both signal models with analysis or synthesis spar-
sity are formulated in Sections 6.2–6.5, followed by a discussion on the selection of
the sparsity-promoting cost function in Section 6.6. In Sections 6.7 and 6.8 we dis-
cuss the relation to existing methods and possible extensions. The performance of
the considered methods is evaluated in Section 6.9.

6.1 Problem formulation

We consider an acoustic scenario with a single static speech source captured by M
microphones in a reverberant enclosure without the presence of additive noise. As
discussed in Section 2.1.2, the subband MCLP-based signal model is given by

xref(k) = dref(k) + X̃τ (k)gref(k), (6.1)

with xref(k),dref(k) ∈ CN , X̃τ (k) ∈ CN×MLg , gref(k) ∈ CMLg , and ref denoting the
reference microphone, ref ∈ {1, . . . ,M}. As discussed in Section 2.1.1, the wideband
MCLP-based signal model can be written similarly as

¯
xref =

¯
dref + ˜

¯
X

¯
τ
¯
g

ref
, (6.2)

with
¯
xref , ¯

dref ∈ RT , ˜
¯
X

¯
τ ∈ RT×M¯

Lg , and
¯
g

ref
∈ RM¯

Lg .
As discussed in Section 2.1, the wideband model in (6.2) holds perfectly when the
MINT conditions are fulfilled. However, the time-domain prediction filter gref is
typically very long, such that dereverberation based on the wideband model in (6.2)
can be computationally demanding [154, 183]. In order to reduce the length of the
filters, a common approximation is to use the subband model in (6.1), as we have
done in Chapters 3–5.
In the following, we formulate blind speech dereverberation as estimation of the
desired speech signal at the reference microphone by using a sparsity promoting
cost function and either the wideband signal model in (6.2) or the subband signal
model in (6.1), assuming batch processing.

6.2 Analysis and synthesis sparsity

Given a batch of T time-domain samples, let Ψ ∈ CT×F , with F the number of
TF coefficients such that F > T , denote the overcomplete linear operator corre-
sponding to a TF transform. In general, many TF transforms of interest can be
represented with such an operator Ψ, e.g., the STFT, the Gabor transform, the
ERBlet transform and general adaptive linear transforms [192, 251, 252]. In the
following, we will use Ψ corresponding to the STFT, with N time frames and K
subbands and F = KN . Furthermore, for simplicity we assume that Ψ is a Parseval
tight frame [253], i.e., ΨΨH = I.
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Using the linear operator Ψ, the TF coefficients d of the time-domain signal
¯
d can

then be obtained by applying the analysis transform ΨH, while the time-domain
signal can be recovered by applying the synthesis transform Ψ, i.e,

d = ΨH

¯
d ∈ CKN , (6.3a)

¯
d = Ψd ∈ RT . (6.3b)

The vector d contains all TF coefficients of the time-domain signal
¯
d, i.e., its ele-

ments are the TF coefficients d(k, n). The subvectors of d are the vectors of coeffi-
cients for individual subbands d(k) ∈ CN , k ∈ {1, . . . ,K}.
Sparsity has been used in various inverse problems in signal processing and machine
learning, and has typically been used in the following two paradigms: synthesis
sparsity and analysis sparsity [254]. On the one hand, synthesis sparsity is based on
the assumption that a signal can be expressed as a linear combination of a relatively
small number of elements from a dictionary. In the considered scenario, this would
imply that the time-domain desired speech signal

¯
d can be represented as a sum

of scaled prototype functions contained in the columns of Ψ, corresponding to a
relatively small number of estimated TF coefficients, i.e.,

¯
d ≈ Ψd with a sparse d.

On the other hand, analysis sparsity is based on the assumption that a signal has a
sparse representation when a suitable analysis operator is applied. In the considered
scenario, this would imply that the estimated time-domain speech signal d has a
sparse STFT representation, i.e., that d = ΨH

¯
d is sparse. While both paradigms

assume sparsity of the TF coefficients, synthesis sparsity leads to estimation of the
TF coefficients, while analysis sparsity leads to estimation of the time-domain signal.
The paradigms are equivalent only if the analysis operator is equal to the inverse
of the synthesis operator [254]. In the considered case this is not fulfilled since
the STFT synthesis operator Ψ is overcomplete (i.e., redundant, since KN > T )
and thus not invertible, and hence the two paradigms differ. In this context, in
Chapters 3–5 we have used synthesis sparsity for MCLP-based dereverberation (cf.
Section 6.5).
In the remainder of this chapter, we present different formulations of MCLP-based
speech dereverberation exploiting sparsity in the TF domain. In Sections 6.3 and 6.4,
we first consider the wideband signal model in (6.2) with the analysis and synthe-
sis sparsity prior, respectively. In Section 6.5, we then consider the subband signal
model in (6.1) with the synthesis sparsity prior, which can be considered a general-
ization of the sparse MCLP method from Chapter 3.

6.3 Wideband model and analysis sparsity

In this section, we consider the wideband model in (6.2) in combination with the
analysis sparsity prior. This corresponds to estimating the desired speech signal

¯
dref in the time domain and enforcing its TF coefficients to be sparse in terms
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of the sparsity-promoting cost function P (.), leading to the following optimization
problem

min
¯
dref ,

¯
g

ref

P
(
ΨH

¯
dref

)
subject to

¯
dref +

¯
X̃

¯
τ
¯
g

ref
=

¯
xref ,

(6.4)

By applying the ADMM algorithm (cf. Appendix B.3), the obtained problem can
be solved using the following iterative updates

ˆ
¯
djref ← arg min

¯
d
P
(
ΨH

¯
d
)

+
ρ

2

∥∥∥
¯
d +

¯
X̃

¯
τ ˆ
¯
gj−1

ref
−

¯
xref +

¯
µj−1

∥∥∥2

2
, (6.5a)

ˆ
¯
gj

ref
← arg min

¯
g

∥∥∥ˆ
¯
djref +

¯
X̃

¯
τ
¯
g −

¯
xref +

¯
µj−1

∥∥∥2

2
, (6.5b)

¯
µj ←

¯
µj−1 + η

(
ˆ
¯
djref +

¯
X̃

¯
τ ˆ
¯
gj

ref
−

¯
xref

)
, (6.5c)

where ρ is the penalty parameter,
¯
µ is the dual variable and η is a parameter used

for faster convergence.
The update for the time-domain signal

¯
dref in (6.5a) corresponds to a generalized

Lasso problem [246] and can be efficiently solved using the ADMM algorithm, as
shown in Appendix B.4. The update for the filter

¯
g

ref
in (6.5b) is a LS problem

with closed-form solution given as

ˆ
¯
gj

ref
←
(

¯
X̃

T

¯
τ ¯
X̃

¯
τ

)−1

¯
X̃

T

¯
τ

(
¯
xref − ˆ

¯
djref −

¯
µj−1

)
= ˆ

¯
g

ref,`2
− ˆ

¯
gj

ref,iter
, (6.6)

where
ˆ
¯
g

ref,`2
=
(

¯
X̃

T

¯
τ ¯
X̃

¯
τ

)−1

¯
X̃

T

¯
τ ¯
xref , (6.7)

is an iteration-independent term, and

ˆ
¯
gj

ref,iter
=
(

¯
X̃

T

¯
τ ¯
X̃

¯
τ

)−1

¯
X̃

T

¯
τ

(
ˆ
¯
djref +

¯
µj−1

)
, (6.8)

is an iteration-dependent correction term. The iteration-independent term ˆ
¯
g

ref,`2
is equal to the closed-form solution when using the `2-norm as the cost function
in (6.4), i.e., P (.) = ‖.‖22. As shown in Section 3.5.2, filters obtained minimizing the
`2-norm typically do not perform very well for dereverberation. However, similarly
as in [255], the iteration-dependent term ˆ

¯
g

ref,iter
can be seen as a correction which

sparsifies the TF coefficients of the estimated of desired speech signal, which has
been shown in Chapter 3 to be crucial for MCLP-based dereverberation. Note that
the matrix

¯
X̃

T

¯
τ ¯
X̃

¯
τ is the same for all iterations, such that it only needs to be factored

once and its factorization can be used for solving the corresponding linear system in
the subsequent iterations [246]. Moreover, since

¯
X̃

¯
τ is a block-convolution matrix,

both
¯
X̃

T

¯
τ ¯
X̃

¯
τ and

¯
X̃

T

¯
τ ¯
xref can be obtained through multi-channel correlation. Addi-
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tionally, the block-Toeplitz structure of
¯
X̃

T

¯
τ ¯
X̃

¯
τ can be further exploited to design a

fast linear solver, similarly as in [255], but generalized to the multi-channel case.

6.4 Wideband model and synthesis sparsity

In this section, we consider the wideband model in (6.2) but now in combination
with the synthesis sparsity prior. This corresponds to estimating the desired speech
signal coefficients dref in the TF domain and enforcing them to be sparse in terms
of the cost function P (.), leading to the following optimization problem

min
dref ,

¯
g

ref

P (dref)

subject to Ψdref +
¯
X̃

¯
τ
¯
g

ref
=

¯
xref .

(6.9)

The desired speech signal in the time domain can then be obtained by performing
the inverse STFT of the estimated coefficients, i.e., ˆ

¯
dref = Ψd̂ref . By applying the

ADMM algorithm (cf. Appendix B.3), the obtained problem can be solved using
the following iterative updates

d̂jref ← arg min
d
P (d) +

ρ

2

∥∥∥Ψd +
¯
X̃

¯
τ ˆ
¯
gj−1

ref
−

¯
xref +

¯
µj−1

∥∥∥2

2
, (6.10a)

ˆ
¯
gj

ref
← arg min

¯
g

∥∥∥Ψd̂jref +
¯
X̃

¯
τ
¯
g −

¯
xref +

¯
µj−1

∥∥∥2

2
, (6.10b)

ˆ
¯
µj ←

¯
µj−1 + η

(
Ψd̂jref +

¯
X̃

¯
τ ˆ
¯
gj

ref
−

¯
xref

)
, (6.10c)

where ρ is the penalty parameter,
¯
µ is the dual variable and η is a parameter used

for faster convergence.
The update for the TF coefficients d̂ref in (6.10a) corresponds to a Lasso prob-
lem [256], and can be efficiently solved using the iterative shrinkage/thresholding
algorithm (ISTA), or using its fast variant (FISTA) [257], as shown in Appendix B.5.
Similarly as in (6.6), the update for the prediction filter

¯
g is a LS problem with

closed-form solution given as

ˆ
¯
gj

ref
←
(

¯
X̃

T

¯
τ ¯
X̃

¯
τ

)−1

¯
X̃

T

¯
τ

(
¯
xref −Ψd̂jref −

¯
µj−1

)
= ˆ

¯
g

ref,`2
− ˆ

¯
gj

ref,iter
, (6.11)

where ˆ
¯
g

ref,`2
is the same iteration-independent term as in (6.7), and

ˆ
¯
gj

ref,iter
=
(

¯
X̃

T

¯
τ ¯
X̃

¯
τ

)−1

¯
X̃

T

¯
τ

(
Ψdjref +

¯
µj−1

)
, (6.12)

is the iteration-dependent term.



96 general framework

6.5 Subband model

In this section, we consider the subband model in (6.1) in combination with the
synthesis prior. Similarly as in Section 6.4, we estimate the desired speech signal
coefficients dref in the TF domain and enforce them to be sparse in terms of the
cost function P (.). Since the subband model is independent across subbands and
assuming that the cost function P (.) is also separable, the speech signal coefficients
dref(k) can then be estimated for each subband k independently, leading to the
following optimization problem in the k-th subband

min
dref (k),gref (k)

P (dref(k))

subject to dref(k) + X̃τ (k)gref(k) = xref(k).
(6.13)

The desired speech signal in the time domain can then be obtained by performing
the inverse STFT of the estimated coefficients, i.e., ˆ

¯
dref = Ψd̂ref . Note that this

formulation is a generalization of the sparse MCLP based on `p-norm considered
in (3.27) to a general cost function P (.). By applying the ADMM algorithm (cf.
Appendix B.3), the obtained problem can be solved in each subband using the
following iterative updates

d̂jref(k)← arg min
d(k)

P (d(k)) +
ρ

2

∥∥∥d(k) + X̃τ (k)ĝj−1
ref (k)− xref(k) + µj−1(k)

∥∥∥2

2
, (6.14a)

ĝjref(k)← arg min
gref (k)

∥∥∥d̂jref(k) + X̃τ (k)gref(k)− xref(k) + µj−1(k)
∥∥∥2

2
, (6.14b)

µj(k)← µj−1(k) + η
(
d̂jref(k) + X̃τ (k)ĝjref(k)− xref(k)

)
, (6.14c)

where ρ is the penalty parameter, µ(k) is the dual variable and η is a parameter
used for faster convergence.
The update for the TF coefficients d̂ref(k) in the k-th subband in (6.14a) corresponds
to the proximal operator of the cost function P (.) (cf. Appendix B.2), and can be
written as

d̂jref(k)← proxρP

(
xref(k)− X̃τ (k)ĝj−1

ref (k)− µj−1(k)
)
, (6.15)

where proxρP (.) is the proximal operator of P (.) as defined in (B.14). Similarly as
in (6.6) and (6.11), the update for the prediction filter ĝref(k) in the k-th subband
is a LS problem with closed-form solution given as

ĝjref(k)←
(
X̃

H

τ (k)X̃τ (k)
)−1

X̃
H

τ (k)
(
xref(k)− d̂jref(k)− µj−1(k)

)
= ĝref,`2(k)− ĝjref,iter(k), (6.16)

where
ĝref,`2(k) =

(
X̃

H

τ (k)X̃τ (k)
)−1

X̃
H

τ (k)xref(k), (6.17)
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is the iteration-independent term, and

ĝjref,iter(k) =
(
X̃

H

τ (k)X̃τ (k)
)−1

X̃
H

τ (k)
(
d̂jref(k) + µj−1

)
, (6.18)

is the iteration-dependent term. Similarly as for the wideband model, the matrix
X̃

H

τ (k)X̃τ (k) only needs to be factored once and can be used to solve the correspond-
ing linear system in subsequent iterations. Note that this matrix is much smaller
than the corresponding matrix in the wideband model (since Lg � L

¯
g), and the

resulting iterations do not involve analysis and/or synthesis operators since all com-
putations are performed in the TF domain, resulting in a much lower computational
complexity.

6.6 Sparsity-promoting cost function

The presented dereverberation methods in Sections 6.3–6.5 enforce sparsity of the
TF coefficients in terms of the cost function P (.), i.e., P (dref) quantifies the level
of sparsity of the TF-domain coefficients dref . Hence, an appropriate sparsity-
promoting cost function P (.) needs to be selected. Frequently used cost functions
for enforcing sparsity include the convex `1-norm, the non-convex `p-norms with
p ∈ (0, 1) and the `0-norm, as already used in Chapters 3–5.
Although the proposed framework can be used with any sparsity-promoting func-
tion P (.), as long as its proximal operator proxρP (.) can be computed, cf. (B.14),
we confine ourselves to the weighted `1- and `2-norm, which are one of the most
commonly used sparsity-promoting cost functions [196, 198, 223, 229, 231, 242]. In
general, the weighted `1- and `2-norm have been shown to be more effective for
audio applications than their non-weighted counterparts, since they can be used to
approximate the non-convex `p-norms (cf. Appendix B.1).
In Chapter 3, we have considered the (squared) weighted `2-norm as cost function
P (.), i.e.,

P (dref) = ‖dref‖2ŵ,2 =
∑
k,n

ŵ(k, n) |dref(k, n)|2 , (6.19)

where ŵ is a vector of nonnegative weights. In addition, in this chapter we will
consider the weighted `1-norm as cost function P (.), i.e.,

P (dref) = ‖dref‖ŵ,1 =
∑
k,n

ŵ(k, n) |dref(k, n)| . (6.20)

The weights ŵ(k, n) are selected in such a way that the weighted `1 and `2-norms
simulate the behavior of a non-convex `p-norm [196,223,229] (cf. Appendix B.1).
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6.6.1 Proximal operator

The ADMM algorithms in Sections 6.3–6.5 rely on the proximal operator proxρP (.)
of the cost function P (.). The proximal operator for the weighted `1-norm in (6.20)
can be computed element-wise using soft thresholding as (cf. Appendix B.2)

proxρP (dref(k, n)) =

(
1− ρ−1ŵ(k, n)

|dref(k, n)|

)
+︸ ︷︷ ︸

real-valued gain

dref(k, n), (6.21)

where (G)+ = max (G, 0) [246]. In the context of speech enhancement, the proximal
operator in (6.21) can be interpreted as applying a real-valued gain to the complex-
valued coefficients in dref . As noted in [19], in speech enhancement a lower bound
Gmin on the gain is often introduced, i.e., (G)+ = max (G,Gmin), in order to prevent
suppression of small coefficients d(k, n) to exactly zero. As shown in Appendix B.2.1,
this corresponds to a cost function P (.) in the form of a Huber function [246], which
is quadratic for small magnitudes and equal to a scaled absolute value for large
magnitudes, where the transition point depends on the penalty parameter ρ, the
weight ŵ(k, n) and the lower bound Gmin. Similarly, the proximal operator for the
weighted `2-norm in (6.19) can be computed element-wise using shrinkage as

proxρP (dref(k, n)) =

(
1

1 + 2ρ−1ŵ(k, n)

)
+︸ ︷︷ ︸

real-valued gain

dref(k, n). (6.22)

Again, the real-valued gain can be bounded from below using a lower bound Gmin.
Estimating the sparse TF coefficients dref using the weighted norms in (6.19)
or (6.20) is an iterative two-step procedure. In the first step, the weights ŵ are
computed based on the previous estimate d̂ref of the desired speech signal in the
TF domain. In the second step, an optimization problem with the cost function
in (6.19) or (6.20) is solved, and consequently a new estimate of the TF coefficients
d̂ref is obtained. All previously presented ADMM-based methods will be employed
in such a reweighted procedure.

6.6.2 Weights

The weights ŵ(k, n) for the weighted norms in (6.19) and (6.20) are typically com-
puted locally, using a single TF coefficient, i.e., for the weighted `1-norm as

ŵ(k, n) =

(∣∣∣d̂ref(k, n)
∣∣∣2 + εmin

) p−1
2

, (6.23)
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and for the weighted `2-norm as, cf. (3.40),

ŵ(k, n) =

(∣∣∣d̂ref(k, n)
∣∣∣2 + εmin

) p
2−1

, (6.24)

where εmin is a small regularization constant to prevent division by zero.
However, computing the weights as in (6.23) or (6.24) does not take into account
the TF structure of a typical speech signal. We consider two approaches to take into
account this structure: TF neighborhoods and low-rank approximation. To take into
account the TF structure of the desired signal, the concept of neighborhoods for
shrinkage operators has been introduced in [242]. Here, we adopt this neighborhood
concept for computing the weights. Assuming that a neighborhood N (k, n) of the
coefficient dref(k, n) is defined, the corresponding weight ŵ(k, n) can be computed
by averaging across the neighborhood. For the weighted `1-norm, the weights can
be computed as

ŵ(k, n) =

 ∑
(k′,n′)∈N (k,n)

η(k′, n′)
∣∣∣d̂ref(k

′, n′)
∣∣∣2 + εmin


p−1

2

, (6.25)

where the coefficients of the neighborhood η(k′, n′) should sum to one. Similarly as
in [198,242], we will employ rectangular neighborhoods with equal weights. A similar
expression can be used for the weighted `2-norm. Intuitively, computing weights
using a neighborhood around each TF coefficient is similar to using smoothing for
estimating the PSD at the current TF point.
Alternatively, it is well known that speech spectrograms can be modeled well using a
low-rank approximation [258]. Similarly as in [259], the weights can then be obtained
by first computing a low-rank approximation P̂ of the power spectrogram, which
is a nonnegative matrix containing the squared magnitudes of the TF coefficients.
The weights for the weighted `1-norm can then be computed as

ŵ(k, n) = (p̂(k, n) + εmin)
p−1

2 , (6.26)

with a similar expression for the weighted `2-norm. The low-rank approximation P̂
can be computed, e.g., using nonnegative matrix approximation (NMF) [258,260].
The three different considered ways of computing weights for (6.20) and (6.19) are
illustrated in Fig. 6.1. For the illustration we use a 3 × 3 neighborhood for the
neighborhood weights and a rank-3 approximation for the low-rank NMF weights.

6.7 Extension to multiple outputs

In this section, we briefly outline how the ADMM-based algorithms in Sections 6.3–
6.5 can be extended to MIMO speech dereverberation. More specifically, instead of
estimating the desired speech signal at the reference microphone, we reformulate
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n

N (k, n)

(b) Neighborhood weight
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n

≈
×

|d̂ref |2 P̂

(c) NMF weight

Fig. 6.1: Computation of the weight ŵ(k, n) for the TF coefficient marked with a black
square (�): (a) locally computed weight, (b) weight computed using a neighbor-
hood with dimension 3 across time frames and subbands, and (c) weight computed
using an NMF-based low-rank approximation with rank equal to 3.

the problems to estimate the desired speech signal at all microphones, similarly as
in Chapter 4 for the subband model.
A multiple-output extension of the wideband signal model with analysis sparsity
in (6.4) leads to the following optimization problem

min
¯
D,

¯
G

P
(
ΨH

¯
D
)

subject to
¯
D +

¯
X̃

¯
τ ¯
G =

¯
X,

(6.27)

where
¯
D ∈ RT×M is the multi-channel desired speech component in the time domain,

and
¯
G ∈ RM¯

Lg×M is the MIMO prediction filter in the time domain. Similarly, a
multiple-output extension of the wideband signal model with synthesis sparsity
in (6.9) leads to the following optimization problem

min
D,

¯
G

P (D)

subject to ΨD +
¯
X̃

¯
τ ¯
G =

¯
X,

(6.28)

where D ∈ CKN×M are the TF coefficients of the multi-channel desired speech
component. As a generalization of the MIMO MCLP-based optimization problem
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in (4.6), a multiple-output extension of the subband model in (6.13) leads to the
following optimization problem

min
D(k),G(k)

P (D(k))

subject to D(k) + X̃τ (k)G(k) = X(k),
(6.29)

where D(k) ∈ CN×M are the TF coefficients of the multi-channel desired speech
signal in the k-th subband.
The extended MIMO formulations in (6.27)–(6.29) can again be solved using the
ADMM algorithm. For example, the subband MIMO dereverberation problem
in (6.29) can be solved using the following iterative updates

D̂j(k)← proxρP

(
X(k)− X̃τ (k)Ĝj−1(k)−Mj−1(k)

)
, (6.30a)

Ĝj(k)←
(
X̃

H

τ (k)X̃τ (k)
)−1

X̃
H

τ (k)
(
X(k)− D̂j(k)−Mj−1(k)

)
, (6.30b)

Mj(k)←Mj−1(k) + η
(
D̂j(k) + X̃τ (k)Ĝj(k)−X(k)

)
, (6.30c)

where M(k) is the dual variable.
Similarly as in Chapter 4, the cost function P (.) should promote sparsity across
the temporal dimension and take into account the group structure across the mi-
crophones. This can be achieved by using, e.g., a mixed `p,2-norm which can be
approximated in a reweighting procedure by a weighted `2,2-norm (as in Chap-
ter 4.3.1) or a weighted `1,2-norm, with their corresponding proximal operators
given in Appendix B.2.2.

6.8 Relation to existing methods

The wideband signal model has been employed for MCLP-based dereverberation in
the time-domain in [107,150,153,154], however without explicitly enforcing sparsity
of the TF coefficients of the desired speech signal. For example, in [107, 150] the
time-domain prediction filters have been estimated by minimizing the output energy,
which is equivalent to using the `2-norm of

¯
dref as the cost function, i.e.,

P (
¯
dref) = ‖

¯
dref‖22 =

T∑
t=1

|
¯
dref(t)|2 . (6.31)

Note that this is a special case of the formulation in (6.4), with the `2-norm as the
cost function and without the analysis operator ΨH. In this case, the closed-form
solution for the prediction filter is given as ˆ

¯
g

ref,`2
in (6.7). In [150], the prediction de-

lay
¯
τ has not been used, and it has been observed that the obtained prediction filter

typically results in excessive whitening of the speech signal, since it removes both
the effect of the reverberation but also the short-time correlation of the speech signal.
To compensate for the whitening, the output signal is post-processed using an esti-
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mated whitening filter. In [107], the microphone signals have been pre-whitened to
reduce the effect of the short-time correlation of the speech signal on the estimation
of the prediction filter for the MCLP-based signal model. However, the estimated
prediction filter has not been used to perform dereverberation using MCLP-based
inverse filtering, but to obtain an estimate of the late reverberation for spectral
subtraction-based dereverberation.
A different cost function has been used in [154]. More specifically, a time-varying
Gaussian model has been used for the desired speech signal in the time-domain,
and the time-domain prediction filter has been estimated by iterative maximization
of the likelihood function, similarly as in Chapter 3, with pre-whitening applied on
the microphone signals. It can be shown that the obtained optimization problem is
equivalent to using the weighted `2-norm as the cost function, i.e.,

P (
¯
dref) = ‖

¯
dref‖2ˆ

¯
w,2 =

T∑
t=1

ˆ
¯
w(t) |

¯
dref(t)|2 , (6.32)

with the pre-whitened microphone signals. This is a special case of the formulation
in (6.4), with the weighted `2-norm as the cost function and without the analysis op-
erator. For fixed weights, the obtained weighted least-squares optimization problem
has a closed-form solution for the prediction filter. In [154], the weights ˆ

¯
w(t) have

been computed from the previous estimate of the desired speech signal by averaging
the energy of the samples across a short frame centered at t [154]. When employed
in a reweighting procedure, this can be related to promoting sparsity of the frames
of the desired time-domain signal

¯
d, since the weights take into account the short-

term energy of the desired speech signal. Furthermore, a single reweighting iteration
has been used in the original contribution, and it has been reported that multiple
iterations do not always improve performance [154].
As mentioned throughout this chapter, the MCLP-based speech dereverberation
methods proposed in Chapters 3 and 4 can be considered a special case of the
subband model in (6.13) and (6.29). More specifically, the cost function for the
single-output method in Chapter 3 is equal to the weighted `2-norm, cf. (3.36),

P (dref(k)) = ‖dref(k)‖2ŵ(k),2 =
∑
n

ŵ(k, n) |dref(k, n)|2 , (6.33)

while the cost function for the multi-output method in Chapter 4 is equal to the
weighted `2,2;Φ norm, cf. (4.8). Furthermore, in Chapters 3 and 4, only local weights
have been considered.

6.9 Simulations

In this section, the dereverberation performance of the ADMM-based methods pro-
posed in Sections 6.2–6.5 is investigated. More specifically, we consider the ADMM
methods using the wideband model with analysis sparsity, the wideband model with
synthesis sparsity, and the subband signal model with the weighted `1-norm and
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`2-norm as the cost function. In addition, for the subband model with the weighted
`2-norm as cost function we also consider the IRLS algorithm from Chapter 3.
The considered acoustic scenario and the implementation details are outlined in
Section 6.9.1. The influence of the cost function and the penalty parameter on the
performance is investigated in Section 6.9.2. The influence of the weights on the
performance is investigated in Section 6.9.3. The wideband model is considered in
Section 6.9.4.

6.9.1 Acoustic scenario and algorithmic setup

We consider the same acoustic scenario from the REVERB challenge [22, 23] used
for the simulations in Chapters 3 and 4, i.e., a single speech source and M = 2
microphones placed at a distance of about 2 m from the source. The room has a
reverberation time T60 ≈ 700 ms and the sampling frequency is fs = 16 kHz. The
reverberant signals have been generated by convolving each of the 10 speech samples
(5 male and 5 female speakers) [234] with an average length of approximately 5.2 s
with the measured RIRs.
Similarly to the parameter setup for the simulations in Chapter 3, the analysis and
synthesis STFT is computed using a tight window based on a 64 ms Hamming
window with a 16 ms window shift. For the subband model in (6.1) the filter length
and the prediction delay are set to Lg = 25 and τ = 2. For the wideband model
in (6.2) the filter length and the prediction delay are set to

¯
Lg = 6400 and

¯
τ = 512,

i.e., corresponding to the filter length of 400 ms and the prediction delay of 32 ms,
as used for the subband model. The weights ŵ(k, n) used in the weighted norms are
computed either locally as in (6.23) or (6.24), using a rectangular neighborhood as
in (6.25), or using an NMF-based low-rank approximation as in (6.26). The weights
are regularized with εmin = 10−8. The low-rank approximation is computed using
NMF with Itakura-Saito divergence with multiplicative updates [261]. The number
of reweighting iterations I is varied in the experiments, while the maximum number
of ADMM iterations was set to J = 50 with η = 1.6. For the proximal operator used
in the wideband analysis method (cf. Appendix B.4), we set the penalty parameter
δ equal to the penalty parameter ρ of the ADMM algorithm for the wideband
analysis problem. For the LASSO problem used in the wideband synthesis method
(cf. Section 6.4), we used FISTA with the maximum number of iterations set to
50 with early stopping when the relative change of the estimate is smaller than
10−3 (cf. Appendix B.5). In all experiments we used the lower bound Gmin = 0.01
for the real-valued gain (cf. Section 6.6.1), with smaller values typically resulting in
more suppression of unwanted reverberation but also in stronger processing artifacts
due to the application of the proximal operator, and larger values resulting in less
reverberation suppression.
The dereverberation performance is evaluated in terms of the instrumental measures
described in Section 2.3, i.e., the improvement in fwsSNR (∆fwsSNR) and PESQ
(∆PESQ) [210,211] between the processed output signal and the reverberant input
signal. The reference signal used for the instrumental measures is the direct signal
on the reference microphone, obtained by convolving the anechoic speech signal
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with the direct component of the corresponding RIR. The reported improvements
of the instrumental measures are obtained by averaging over all speech samples.

6.9.2 Influence of the cost function and the penalty parameter

In this section, we investigate the influence of the sparsity-promoting cost function
P (.) and the penalty parameter ρ of the ADMM algorithm on the dereverberation
performance of the proposed methods. We consider the subband method using the
weighted `1-norm in (6.20), based on the ADMM algorithm in Section 6.5 (ADMM-
WL1-p), and the subband method using the weighted `2-norm in (6.19), either based
on the ADMM algorithm in Section 6.5 (ADMM-WL2-p) or the IRLS algorithm
from Section 3.3.3 (IRLS-p). For all methods the weights ŵ(k, n) are computed
locally as in (6.23) or (6.24). We consider two values of the shape parameter p ∈
{0, 0.5} and a suitable range of values for the penalty parameter ρ.
Firstly, the performance of the ADMM and the IRLS-based methods for a single
reweighting iteration, i.e., I = 1, is depicted in Fig. 6.2. It can be observed that all
considered methods result in improvements in terms of the instrumental measures.
The IRLS-based method, which does not dependent on the penalty parameter ρ,
results in large improvements, with p = 0.5 performing better than p = 0, as demon-
strated also in Section 3.5. The performance of the ADMM-based methods strongly
depends on the value of the penalty parameter ρ, for both types of the cost function
and values of the shape parameter p. Both ∆fwsSNR and ∆PESQ exhibit a similar
behavior, with the performance first increasing and then decreasing with the penalty
parameter ρ. This behavior can be explained by referring to the proximal operators
in (6.21) and (6.22). On the one hand, small values of the penalty parameter ρ result
in a relatively strong suppression of the TF coefficients and over-suppression of the
desired speech signal in each ADMM iteration. On the other hand, large values of
the penalty parameter result in a relatively weak suppression of the TF coefficients
and a relatively low suppression of the desired speech signal in each ADMM iter-
ation. It can also be observed that in general ADMM-WL1 performs better than
ADMM-WL2. The ADMM-WL2 method performs worse than the IRLS method
in terms of ∆fwsSNR and achieves a similar performance in terms of ∆PESQ for
both values of the shape parameter p. The ADMM-WL1 performs equally well as
the IRLS in terms of ∆fwsSNR and achieves a significantly better performance in
terms of ∆PESQ. Overall, the best performance using I = 1 reweighting iteration
is obtained using ADMM-WL1 with the shape parameter p = 0.5.
Secondly, the performance of the ADMM and the IRLS-based methods for I = 20
reweighting iterations is depicted in Fig. 6.3. It can be observed that all consid-
ered methods result in improvements in terms of the instrumental measures. The
IRLS-based method results in large improvements in both measures and performs
significantly better than with I = 1 reweighting iteration. As already observed for
I = 1, the performance of the ADMM-based methods again strongly depends on the
value of the penalty parameter ρ. Furthermore, ADMM-WL1 and the ADMM-WL2
now achieve almost the same performance in terms of both instrumental measures,
with p = 0.5 still performing better than p = 0. The similar best-case performance
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Fig. 6.2: Performance of the ADMM and IRLS-based methods with M = 2 and Lg = 25
using local weights and I = 1 reweighting iteration in terms of ∆fwsSNR (left)
and ∆PESQ (right), using the weighted `1-norm (top) and the weighted `2-norm
(bottom).

obtained using all methods can be attributed to the underlying cost function, since
both the weighted `1-norm and the weighted `2-norm aim to approximate the non-
convex `p-norm as a measure of sparsity. Overall, the best performance using I = 20
reweighting iteration is obtained using both the ADMM and the IRLS-based algo-
rithms with the shape parameter p = 0.5.

6.9.3 Influence of the structured weights

In this section, we investigate the influence of the structured weights used in the
reweighting iterations (cf. Section 6.6.2) on the dereverberation performance of the
proposed methods.
We consider the subband method using the weighted `1-norm based on the ADMM
algorithm (ADMM-WL1-p), since it in general perform comparable to or better than
the weighted `2-norm, and the subband method using the weighted `2-norm based
on the IRLS algorithm (IRLS-p). The neighborhood weights in (6.25) are computed
using a square-shaped neighborhood, with neighborhood sizes ranging between 3
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Fig. 6.3: Performance of the ADMM and IRLS-based methods with M = 2 and Lg = 25
using local weights and I = 20 reweighting iterations in terms of ∆fwsSNR (left)
and ∆PESQ (right), using the weighted `1-norm (top) and the weighted `2-norm
(bottom).

and 11. Note that the locally computed weights correspond to a neighborhood with
size 1. The low-rank approximation-based weights in (6.26) are computed using
NMF with a rank between 20 and 80. We consider two values of the shape parameter
p ∈ {0, 0.5}, and the penalty parameter ρ is set for the corresponding p to {10, 100}
for local weights and {30, 100} for structured weights. The number of reweighting
iterations has been set to I = 20.
Firstly, we consider the neighborhood-based weights, with the results depicted in
Fig. 6.4. It can be observed that the performance of the ADMM-WL1-p and the
IRLS-p method depends on the neighborhood size. For the IRLS-p method, the
neighborhood size of 3 leads to a better performance than the local weights (neigh-
borhood size of 1) in terms of both ∆fwsSNR and ∆PESQ, while larger neighbor-
hoods result in a large performance degradation. For the ADMM-WL-p method,
the neighborhood size has a similar influence, however with less performance degra-
dation as the neighborhood size increases. Relatively small neighborhoods result in
an improved performance, since including a neighborhood around the current TF
coefficient can be seen as a form of smoothing for estimating the PSD of the desired
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Fig. 6.4: Performance of the ADMM-WL1 and IRLS-based methods for p = 0 and p = 0.5
withM = 2 and Lg = 25 using neighborhood weights and local weights (loc) with
I = 20 reweighting iterations in terms of ∆fwsSNR (top) and ∆PESQ (bottom).

speech signal at the current TF point. However, increasing the neighborhood size
results in more smoothing, which is contradicting the actual goal of making the
output signal more sparse in the TF domain, and therefore results in a decreased
performance. Overall, the best performance using neighborhood weights is obtained
using the ADMM-WL1-p and the IRLS-p methods with the neighborhood size equal
to 3 and the shape parameter p = 0.5, with ADMM-WL1-p performing somewhat
better in terms of ∆PESQ (approximately 0.1 points).
Secondly, we consider the NMF-based weights, with the results depicted in Fig. 6.5.
It can be observed that the performance of both the ADMM and the IRLS-based
methods is relatively insensitive to the rank of the low-rank approximation for
ranks larger than 40, although a small decline in performance can be observed, as
expected from the low-rank model. Both the ADMM and the IRLS-based methods
benefit from the NMF weights, with performance improvements compared to the
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Fig. 6.5: Performance of the ADMM-WL1 and IRLS-based methods for p = 0 and p = 0.5
with M = 2 and Lg = 25 using NMF weights and the local weights (loc) with
I = 20 reweighting iterations in terms of ∆fwsSNR (top) and ∆PESQ (bottom).

local weights for all considered ranks. Overall, the best performance is achieved
using IRLS-p with p = 0.5 and rank 40, with the ADMM-WL1-p with p = 0.5 and
the IRLS-p with p = 0 with rank 20 performing slightly worse. Furthermore, the
best-case performance is considerably higher than when using the neighborhood
weights and the local weights (cf. Fig. 6.4).
In summary, structured weights can lead to considerable improvements for speech
dereverberation methods exploiting sparsity. The relatively simple neighborhood
weights, which include the local structure around each TF point, result in improve-
ments compared to the locally computed weights. The NMF weights, which include
modeling of the whole spectral and temporal profile, result in further improvements,
with the additional cost of computing the NMF-based low-rank approximation in
each reweighting iteration. In general, including additional structure, beyond spar-
sity, hence shows to be beneficial for the dereverberation performance.
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Fig. 6.6: Performance of the wideband analysis (WBA), wideband synthesis (WBS) and
subband (SB) ADMM-WL1 methods using local weights with I = 20 reweighting
iterations in terms of ∆fwsSNR (left) and ∆PESQ (right).

6.9.4 Comparison between subband and wideband methods

In this section, we investigate the performance differences between the wideband
methods and the subband method. We consider the formulation with the wideband
signal model and analysis sparsity (WBA) from Section 6.3, the wideband signal
model with synthesis sparsity (WBS) from Section 6.4, and the subband (SB) sig-
nal model from Section 6.5. In all cases we use the weighted `1-norm in (6.20) as
the cost function, i.e., the SB corresponds to the ADMM-WL1-p method investi-
gated in Section 6.9.3. The shape parameter has been set to p ∈ {0, 0.5}, and the
penalty parameter ρ for SB set as in the previous experiment (cf. Section 6.9.3),
for WBA set to {30, 300}, and for WBS set to {10, 100}. For all methods we used
I = 20 reweighting iterations, with the other implementation details outlined in
Section 6.9.1.
Firstly, we consider the WBA, WBS and SB methods using local weights in (6.23).
The obtained results are depicted in Fig. 6.6. It can be observed that both wideband
methods perform significantly better than the subband method in both ∆PESQ
and ∆fwsSNR, with the WBA method performing better than the WBS method.
Furthermore, the obtained performance of both wideband methods is better for
p = 0.5 than for p = 0, similarly as for the subband method.
Secondly, we consider the WBA, WBS and SB methods using neighborhood weights
in (6.25), with the neighborhood size equal to 3 (as suggested by the results in Sec-
tion 6.9.3). The obtained results are depicted in Fig. 6.7. Again, it can be observed
that both wideband methods perform better than the subband method in terms of
both ∆PESQ and ∆fwsSNR, with the WBA method performing better than the
WBS method, and the performance of both wideband methods being better for
p = 0.5 than for p = 0. However, the performance of the WBA and WBS methods
using neighborhood weights is in some cases lower than when using local weights,
e.g., for the WBS method in terms of both ∆fwsSNR and ∆PESQ.
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Fig. 6.7: Performance of the wideband analysis (WBA), wideband synthesis (WBS) and
subband (SB) ADMM-WL1 methods using neighborhood weights with I = 20
reweighting iterations in terms of ∆fwsSNR (left) and ∆PESQ (right).
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Fig. 6.8: Performance of the wideband analysis (WBA), wideband synthesis (WBS) and
subband (SB) ADMM-WL1 methods using NMF weights with I = 20 reweighting
iterations in terms of ∆fwsSNR (left) and ∆PESQ (right).

Thirdly, we consider the WBA, WBS and SB methods with NMF weights in (6.26),
with the rank equal to 20 (as suggested by the results in Section 6.9.3). The ob-
tained results are depicted in Fig. 6.8. Similarly as for the local and the neighbor-
hood weights, it can be observed that both wideband methods perform significantly
better than the subband method in terms of both ∆PESQ and ∆fwsSNR, with
the WBA method performing better than WBS method, and the performance of
both wideband methods being typically better for p = 0.5 than for p = 0, except for
WBA in terms of ∆PESQ. Overall, the WBA and WBS methods with NMF weights
achieve a better performance than when using local weights. The best performance
for p = 0 and p = 0.5 is obtained using the WBA method, with p = 0.5 performing
better in terms of ∆fwsSNR and p = 0 performing better in terms of ∆PESQ.
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6.9.5 Summary of the results

In this section, we summarize the results obtained using selected variants of sparse
MCLP, using the subband or the wideband signal model and using the IRLS or the
ADMM algorithm to minimize a weighted `1- or `2-norm with local or structured
weights. In all cases we used I = 20 reweighting iterations, and the ADMM penalty
parameter ρ has been set as described in the previous sections.
The obtained results are summarized in Table 6.1, including the dereverberation per-
formance in terms of the considered performance measures and the average RTFs.
It can be observed that the shape parameter p of the cost function improves the
performance of the subband methods (cf. M1 vs. M2), improving ∆fwsSNR and
∆PESQ by approximately 0.5 dB and 0.1 points, without increasing the computa-
tional complexity. Using the structured weights further improves the performance of
the subband methods, with the NMF weights (cf.M2 vs.M3) improving ∆fwsSNR
and ∆PESQ by approximately 0.5 dB and 0.2 points. However, the computational
complexity is also increased, since an NMF of the power spectrogram needs to be
computed at each iteration. Furthermore, similar performance can be obtained with
the IRLS and ADMM algorithms for the subband model (cf.M3 vs.M4), with the
latter having a larger computational complexity. It should also be pointed out that
a suitable value for the penalty parameter ρ for the ADMM algorithm needs to be
selected, as described in the previous sections. The wideband signal model with anal-
ysis sparsity offers some advantage over the subband signal model (cf.M2 vs.M5),
improving ∆fwsSNR and ∆PESQ by approximately 1 dB and 0.2 points. However,
the wideband method has a much higher computational complexity, due to the long
prediction filter (M

¯
Lg) and since the analysis and synthesis operators (i.e., ΨH and

Ψ) need to be applied in each iteration. The subband method has a shorter filter
(MLg) and the analysis and synthesis needs to be performed only once. Using the
structured weights improves the performance for the wideband method, with the
NMF weights (cf.M5 vs.M6) resulting in minor improvements in ∆fwsSNR and
∆PESQ, with approximately the same computational complexity. The observed im-
provements are however smaller than the ones for the subband method (cf.M2 vs.
M3). This can be attributed to the fact that using NMF weights with the subband
model includes information about the global structure of the speech signal (e.g.,
across subbands) in the estimation procedure.
Overall, the best performance is obtained using the wideband signal model with
analysis sparsity and NMF weights (M6), improving ∆fwsSNR and ∆PESQ by
approximately 1.7 dB and 0.4 points compared to the subband signal model with
local weights (M1). The differences can also be observed from the spectrograms of
the corresponding signals depicted in Fig. 6.9 (the differences were largest in the
shown frequencies up to 4 kHz). By comparing the estimated signals with the rever-
berant microphone signal, it can be observed that both the subband method M1

and the wideband methodM6 achieve a high level of dereverberation. However, it
can also be observed that M6 achieves better dereverberation, e.g., by removing
more reverberant energy in speech pauses or even between harmonics. Although
resulting in a better performance, the wideband methods are in general much more
computationally expensive than the subband methods [183], which makes the sub-
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Table 6.1: Summary of the results obtained with the selected variants of sparse MCLP with
different signal models, cost functions and iterative optimization algorithms in
terms of ∆fwsSNR and ∆PESQ and real-time factors.

model alg. cost P (.) weigh. ∆fwsSNR ∆PESQ RTF
M1 SB IRLS WL2-p = 0 loc 8.45 1.56 3
M2 SB IRLS WL2-p = 0.5 loc 9.04 1.72 3
M3 SB IRLS WL2-p = 0.5 nmf 9.78 1.91 7
M4 SB ADMM WL1-p = 0.5 nmf 9.76 1.89 15
M5 WBA ADMM WL1-p = 0.5 loc 10.04 1.92 76
M6 WBA ADMM WL1-p = 0.5 nmf 10.22 1.98 77

band processing more appealing for practical application. Nevertheless, using the
wideband methods offers more flexibility in the selection of the TF transform, and
could be used even when the subband model does not hold, e.g., if there is a strong
influence between adjacent bands in the TF domain.

6.10 Summary

In this chapter we have presented a general framework for multi-channel speech dere-
verberation exploiting sparsity of the speech signal in the time-frequency domain.
We have formulated MCLP-based speech dereverberation as an optimization prob-
lem with a general cost function aiming to promote sparsity of the desired speech
signal in the time-frequency domain. The presented framework enables to employ
either a wideband or a subband MCLP-based signal model, as well as an analysis or
a synthesis prior for the desired speech signal. While the discussion in this chapter
has been limited to sparsity in the STFT domain, other time-frequency transforms
could be easily adopted in this framework by using a suitable pair of analysis-
synthesis operators. We have shown that all resulting optimization problems can be
efficiently solved using the ADMM algorithm, and that different sparsity-promoting
cost functions can be employed by selecting an appropriate proximal operator.
Simulation results show that the proposed ADMM-based methods using the
weighted `1-norm as the sparsity-promoting cost function perform better than the
conventional IRLS-based method for a single reweighting iteration, and achieve a
similar performance for multiple reweighting iterations. In addition, we have shown
that using structured weights in the reweighting iterations can improve the derever-
beration performance of the sparsity-based methods.
In conclusion, even though the performance of the wideband methods is better than
the subband methods, the subband methods appear to be more relevant in practice,
since they achieve a very good dereverberation performance with a significantly
lower computational complexity than the wideband methods.
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Fig. 6.9: Spectrograms of the microphone signal, direct speech signal and the desired
speech signal estimated usingM1 andM6 (showing frequencies up to 4 kHz).





7
SPARSITY-BASED MULTI-CHANNEL
DEREVERBERATION AND DENOISING

In Chapters 3–6, we have considered different formulations of blind speech derever-
beration based on the MCLP-based signal model and sparsity of the speech signal
in the TF domain. However, the additive noise has not been explicitly taken into
account. Although the simulation results in Chapter 4 show that sparse MCLP-
based dereverberation is to some extent robust to additive noise, its performance is
substantially degraded when the noise is the dominant disturbance.
Sparsity in the TF domain has been often exploited for denoising of audio sig-
nals [197–199]. Typically, it is assumed that the desired signal has a sparse represen-
tation in the TF domain, as opposed to the undesired noise signal, and denoising is
formulated as an optimization problem with a sparsity-promoting cost function with
a wideband or a subband signal model [195,198,199]. Joint dereverberation and de-
noising based on MCLP has been considered in [158,159,165,167,168]. In [158,159],
a probabilistic formulation based on a locally Gaussian for the speech signal has
been used, leading to an iterative algorithm for ML parameter estimation. Simi-
larly, a locally Gaussian model and iterative ML estimation have been used in [165],
with a Kalman smoother used to solve a structured LS problem [262], and extended
to online processing in [167]. In [168], a similar probabilistic MCLP-based formula-
tion has been combined with a probabilistic diffuse noise model, aiming to reduce
a non-stationary noise while assuming that the spatial properties are known.
In this chapter, we extend sparse MCLP-based dereverberation methods from Chap-
ters 3 and 4 by taking into account the additive noise signal. We propose batch
subband methods for denoising and for joint dereverberation and denoising by ex-
ploiting sparsity of the speech signal. More specifically, the optimization problem
for denoising is formulated using a sparsity-promoting cost function with a subband
signal model and a constraint for the noise energy. The optimization problem for
joint dereverberation and denoising is formulated using a sparsity-promoting cost
function with a subband MCLP-based signal model for the microphone signal and
a constraint for the noise energy. Similarly as in the previous chapters, the obtained
optimization problems can be solved using the ADMM algorithm.
In Sections 7.1 and 7.2, we formulate the problem of joint dereverberation and
denoising and define the signal model for the noise. In Section 7.3, we formulate
MIMO speech denoising using the subband signal model and a sparsity-promoting
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cost function. In Section 7.4, we propose a joint method for dereverberation and
denoising, by including the noise term in the MCLP-based model and a bound for
the noise energy. The cost function is discussed in Section 7.5, and the performance
of the proposed methods is evaluated in Section 7.6.

7.1 Problem formulation

We consider an acoustic scenario with a single static speech source captured by M
microphones in a reverberant enclosure in the presence of additive noise. Given a
batch of N time frames, the signal model for the reverberant and noisy microphone
signal Y(k) ∈ CN×M in the k-th subband is given by, cf. (2.20),

Y(k) = X(k) + V(k), (7.1)

where X(k) ∈ CN×M is the reverberant speech matrix and V(k) ∈ CN×M is the
noise matrix. Since the signal model in (7.1) is used independently in each subband,
the subband index k will be omitted in the remainder of the chapter for notational
convenience.
Using the subband MCLP-based signal model for the reverberant signal in (2.31),
the signal model in (7.1) can be written as

Y = D + X̃τG + V, (7.2)

where D ∈ CN×M is the multi-channel desired speech signal matrix and X̃τG is
the MCLP-based multi-channel undesired reverberant signal, with the convolution
matrix X̃τ ∈ CN×MLg and the prediction filter G ∈ CMLg×M .
In the following, we formulate joint dereverberation and denoising as estimation of
the desired speech signal signal D without using any information about the ATFs,
but assuming the noise correlation matrix to be available. Similarly as in Chapter 6,
the optimization problem is formulated in terms of a general sparsity-promoting
cost function P (.), assuming batch processing.

7.2 Noise model

In this section, we briefly discuss the signal model for the additive noise. We assume
that the multi-channel noise signal is Gaussian, zero-mean, stationary, and indepen-
dent over time frames. More specifically, consider the multi-channel noise matrix
V ∈ CN×M and its corresponding correlation matrix ΦV ∈ CM×M , i.e.,

ΦV = E
{
v(n)vH(n)

}
, (7.3)

where E {.} is the mathematical expectation operator. Assuming the noise correla-
tion matrix ΦV is positive definite (PD), it can be decomposed as

ΦV = Φ
1/2
V Φ

H/2
V , (7.4)
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e.g., using the Cholesky decomposition [263]. The matrix Φ
1/2
V can then be used to

perform spatial decorrelation and normalization of the multi-channel noise signal
V. It can be easily shown that the matrix VΦ

−T/2
V contains independent identically

distributed Gaussian random variables, where each element of VΦ
−T/2
V is a zero-

mean complex Gaussian random variable with variance equal to one. Furthermore,

it can be shown that 2
∥∥∥VΦ

−T/2
V

∥∥∥2

F
has a χ2-distribution with 2MN degrees of

freedom. Therefore, using the properties of the χ2-distribution, it follows that the

expected value and the variance of the random variable
∥∥∥VΦ

−T/2
V

∥∥∥2

F
are both equal

to MN .
In order to perform denoising, an upper bound for the noise energy will be required.
Using the assumed noise model, a reasonable upper bound for the energy of the

(whitened) noise can be expressed using the expected value of
∥∥∥VΦ

−T/2
V

∥∥∥2

F
, i.e., as

∥∥∥VΦ
−T/2
V

∥∥∥2

F
≤MN. (7.5)

Alternatively, in order to increase the noise suppression, a larger value for the bound
has been proposed in [196] as a sum of the expected value and double the standard
deviation of the corresponding random variable, i.e., as∥∥∥VΦ

−T/2
V

∥∥∥2

F
≤MN + 2

√
MN. (7.6)

In this case, the bound on the right hand side of (7.6) implies that
∥∥∥VΦ

−T/2
V

∥∥∥2

F
will not exceed its mean by more than two standard deviations, which holds with
very high probability [196].
In the following we assume that the noise correlation matrix ΦV is known. In general,
the noise correlation matrix can be estimated from a noise-only segment of the input
signal Y or using a noise correlation matrix estimation method, e.g., [264].

7.3 Sparsity-based denoising

In this section, we formulate the problem of speech denoising using the subband
signal model in (7.1), a sparsity-promoting cost function P (.), and the noise model
considered in Section 7.2. More specifically, the reverberant speech signal X can be
estimated by solving the following optimization problem

min
X

P (X)

subject to
∥∥∥(Y −X) Φ

−T/2
V

∥∥∥2

F
≤ β,

(7.7)
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where β is an appropriate upper bound for the noise energy, e.g., as in (7.5). Similarly
as in Section 5.3, the optimization problem in (7.7) can be rewritten by introducing
a splitting variable Z ∈ CN×M as

min
D

P (X) + CV (Z)

subject to X = Z,
(7.8)

where the inequality constraint in (7.7) is replaced with a convex barrier function
CV : CN×M → R̄, which is defined as

CV (Z) =

 0, if
∥∥∥(Y − Z) Φ

−T/2
V

∥∥∥2

F
≤ β

+∞, otherwise
. (7.9)

The function CV (.) is an indicator function for the feasible set of the optimization
problem in (7.7). Since P (.) and CV (.) are convex functions, the optimization prob-
lem in (7.8) can be efficiently solved using the ADMM algorithm. The augmented
Lagrangian for the optimization problem in (7.8) can be written as

Lρ (X,Z,M) = P (X) + CV (Z) +
ρ

2
‖X− Z + M‖2F −

ρ

2
‖M‖2F , (7.10)

where ρ is a penalty parameter and M is the dual variable [246]. The ADMM
algorithm proceeds by minimizing Lρ(.) alternately with respect to X and Z followed
by an ascent over M [246], i.e., in the j-th iteration we have the following update
equations

X̂j ← proxρP

(
Ẑj−1 −Mj−1

)
, (7.11a)

Ẑj ← proxρCV

(
X̂j + Mj−1

)
, (7.11b)

Mj ←Mj−1 + η
(
X̂j − Ẑj

)
, (7.11c)

where η is a parameter for faster convergence. The update for the denoised signal
X̂ is obtained by computing the proximal operator of the cost function P (.), cf.
Section 7.5. The update for the splitting variable Ẑ is obtained by computing the
proximal operator of the barrier function CV (.) in (7.9). Since the function CV (.)
is an indicator function of the feasible set in (7.7), the corresponding proximal
operator proxρCV (.) is a projection on the feasible set, and is in fact independent of
the penalty parameter ρ. An iterative algorithm for computing proxρCV (.) can be
found in Appendix B.2.3.

7.4 Joint dereverberation and denoising

In this section, we extend the sparsity-based denoising method presented in Sec-
tion 7.3 to a joint dereverberation and denoising method, by integrating the additive
noise in the MCLP-based signal model.
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The subband signal model in (7.2) naturally leads to a formulation of joint denoising
and dereverberation as the following optimization problem

min
D,G,X

P (D)

subject to
∥∥∥(Y −X) Φ

−T/2
V

∥∥∥2

F
≤ β

D + X̃τG = X.

(7.12)

In this case, the reverberant speech X is obtained by denoising the microphone
signal Y, and the desired (dereverberated) speech signal is obtained by using MCLP-
based dereverberation from the estimated X, with denoising and dereverberation
performed jointly. However, the constraint in (7.12) is not linear since it includes a
product of the unknown convolution matrix X̃ and the prediction filter G, and joint
estimation of the unknowns in this case is somewhat involved and computationally
complex (cf. Appendix C).
Here we use an alternative MCLP-based signal model, which has also been used in
the literature [159]. Since X̃τ = Ỹτ −Ṽτ , the signal model in (7.2) can be rewritten
as

Y = D + ỸτG + Vf , (7.13)

where the filtered noise signal Vf is given by

Vf = V − ṼτG. (7.14)

The main difference between the signal model in (7.2) and the signal model in (7.13)
is that the prediction filter G in (7.13) is applied on the delayed microphone signal
Y, and not on the (unknown) delayed reverberant signal X as in (7.2).
By combining the sparsity-based optimization problem in (7.7) with the signal
model in (7.13) which includes both noise and reverberation, we obtain an opti-
mization problem for joint dereverberation and denoising as

min
D,G,Vf

P (D)

subject to D + ỸτG + Vf = Y∥∥∥VfΦ
−T/2
Vf

∥∥∥ ≤ β
(7.15)

where it is assumed that the noise correlation matrix ΦVf is known, and β is an
appropriate bound for the noise energy (cf. Section 7.2). Note that if β = 0, the noise
Vf is constrained to be zero, i.e., the noise is not considered and the optimization
problem becomes equal to the subband MCLP formulated in (6.29).
In the optimization problem in (7.15), the prediction filter for dereverberation is ap-
plied on the delayed (noisy and reverberant) microphone signal Y. In this case, the
dereverberated but noisy speech signal is obtained using MCLP-based dereverbera-
tion from the microphone signal Y, and the desired speech signal is then obtained
by further denoising, with dereverberation and denoising performed iteratively in a
joint optimization procedure. This corresponds to a processing structure composed
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of MCLP-based dereverberation followed by sparsity-based denoising. Similarly, a
structure consisting of MCLP-based dereverberation followed by denoising has been
used, e.g., in [159,163,164,265]. However, in [163,164,265], dereverberation and de-
noising have been performed independently, whereas in (7.15), dereverberation and
denoising are performed simultaneously, similarly to the probabilistic formulation
in [159].
The optimization problem for joint dereverberation and denoising in (7.15) can be
rewritten as

min
D,G,Vf

P (D) + CVf (Vf )

subject to D + ỸτG + Vf = Y,
(7.16)

where the inequality constraint in (7.15) is replaced with a barrier function CVf :
CN×M → R̄, which is defined as

CVf (Vf ) =

{
0, if ‖VfΦ

−T/2
Vf
‖2F ≤ β

+∞, otherwise
. (7.17)

Since P (.) and CVf (.) are convex functions, the optimization problem in (7.16) can
be efficiently solved using the ADMM algorithm. The augmented Lagrangian for
the optimization problem in (7.16) can be written as

Lρ (D,G,Vf ,M) = P (D) + CVf (Vf )

+
ρ

2
‖D + ỸτG + Vf −Y + M‖2F −

ρ

2
‖M‖2F (7.18)

where ρ is a penalty parameter, and M is the dual variable. Applying the ADMM
algorithm leads to the following iterative updates for the unknown variables

D̂j ← arg min
D

P (D) +
ρ

2

∥∥∥D− (Y − ỸτĜ
j−1 − V̂j−1

f −Mj−1
)∥∥∥2

F
, (7.19a)

Ĝj ← arg min
G

∥∥∥ỸτG−
(
Y − D̂j − V̂j−1

f −Mj−1
)∥∥∥2

F
, (7.19b)

V̂j
f ← arg min

Vf

CVf (Vf ) +
ρ

2

∥∥∥Vf −
(
Y − D̂j − ỸτĜ

j −Mj−1
)∥∥∥2

F
, (7.19c)

which are followed by an update for the dual variable M. The update for the desired
speech D̂ is obtained by computing the proximal operator of the cost function P (.),
cf. Section 7.5. The update for the prediction filter Ĝ is a LS problem with a closed-
form solution, similarly as in the ADMM-based dereverberation algorithm in (6.30b).
The update for the noise signal V̂f is obtained by computing the proximal operator
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of the barrier function CVf (.), cf. Appendix B.2.3. Finally, the iterative updates for
the ADMM algorithm are given by

D̂j ← proxρP

(
Y − ỸτĜ

j−1 − V̂j−1
f −Mj−1

)
, (7.20a)

Ĝj ←
(
Ỹ

H

τ Ỹτ

)−1

Ỹ
H

τ

(
Y − D̂j − V̂j−1

f −Mj−1
)
, (7.20b)

V̂j
f ← proxρCVf

(
Y − D̂j − ỸτĜ

j −Mj−1
)
, (7.20c)

Mj ←Mj−1 + η
(
D̂j + ỸτĜ

j + V̂j
f −Y

)
. (7.20d)

In the obtained algorithm, the matrix Ỹτ Ỹ
H
τ is the same for all iterations, such

that it only needs to be factored once and its factorization can be used for solving
the corresponding linear system in (7.20b) in the subsequent iterations. In contrast,
when employing the signal model in (7.2), a new linear system needs to be solved in
each iteration, resulting in a much higher complexity per iteration (cf. Appendix C).
Note that the estimated filtered noise signal V̂f depends on the estimated predic-
tion filter Ĝ, cf. (7.14). Assuming a noise segment is available, the noise correlation
matrix ΦVf can then be updated after computing the current estimate of the predic-
tion filter in (7.20b) by filtering the noise segment, e.g., as in (7.14), and estimating
the noise correlation matrix ΦVf . Alternatively, the noise correlation matrix ΦVf

could be related to the noise correlation matrix ΦV using (7.14). Also, since the
noise V is assumed to be stationary, the noise signal Vf will as well be station-
ary although temporally correlated. However, the expected value of ‖VfΦ

−T/2
Vf
‖2F

remains the same as discussed in Section 7.2.

7.5 Sparsity-promoting cost function

Similarly as in Section 6.6, the proposed algorithms in Sections 7.3 and 7.4 are
formulated in terms of a general sparsity-promoting cost function P (.). Since the
goal is to estimate a multi-channel speech signal (X̂ or D̂), the cost function P (.)
should promote sparsity over time and take into account the multi-channel structure,
as the group-sparse cost function used in Chapter 4. In this chapter, we confine
ourselves to the weighted `1,2-norm, i.e.,

P (D) =

N∑
n=1

ŵ(n)‖d(n)‖2, (7.21)

with the weights computed from the previous reweighting iteration as

ŵ(n) =

(
1

M
‖d̂(n)‖22 + εmin

) p−1
2

, (7.22)
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where p is the shape parameter and εmin is the regularization parameter. The prox-
imal operator for the weighted `1,2-norm in (7.21) can be computed element-wise
as (cf. Appendix B.2.2)

proxρP (dm(n)) =

(
1− ρ−1ŵ(n)

‖d(n)‖2

)
+

dm(n), (7.23)

which is referred to as block soft thresholding [248].

7.6 Simulations

In this section, the performance of the denoising and joint dereverberation and
denoising methods proposed in Sections 7.3 and 7.4 is evaluated. The considered
acoustic scenarios and the implementation details are outlined in Section 7.6.1. The
influence of the penalty parameter on the performance of the proposed sparsity-
based denoising method is investigated in Section 7.6.3. The influence of the penalty
parameter on the performance of the proposed sparsity-based joint dereverberation
and denoising method is investigated in Section 7.6.4. The performance of the pro-
posed joint dereverberation and denoising method and two-stage methods is com-
pared in Section 7.6.5.

7.6.1 Acoustic scenario and algorithmic setup

We consider the same acoustic scenario from the REVERB challenge [22, 23] used
for simulations in Chapter 4, i.e., a single speech source and M = 2 microphones
placed at a distance of about 2 m from the source. The room has a reverberation
time T60 ≈ 700 ms and the sampling frequency is fs = 16 kHz. The reverberant
signals have been generated by convolving each of the 10 speech samples (5 male
and 5 female speakers) [234] with an average length of approximately 5.2 s with the
measured RIRs. As in Chapter 4, the noisy reverberant signals have been generated
by adding noise to the reverberant signals to achieve a desired SNR with respect to
the direct speech signal at the first microphone.
Similarly to the parameter setup for the simulations in Chapter 4, the analysis and
synthesis STFT is computed using a tight window based on a 64 ms Hamming
window with 16 ms window shift. The prediction delay is set to τ = 2 in all exper-
iments, and the filter length is set to Lg = 25. The weights are regularized with
εmin = 10−8. The iterative algorithms are initialized by using the microphone signal
coefficients as the initial estimate of the desired speech signal. The shape parameter
for the weighted cost function is set to p = 0.5, cf. (7.22), the maximum number
of reweighting iterations is set to I = 20 for all methods, the maximum number of
ADMM iterations is set to J = 50, and the lower bound for the real-valued gain of
the proximal operator is set to Gmin = 0.01. The noise correlation matrices ΦV and
ΦVf are estimated on a noise-only segment of the signal.
The performance is evaluated in terms of the instrumental measures described in
Section 2.3, i.e., the improvement in fwsSNR (∆fwsSNR) and PESQ (∆PESQ). The
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Fig. 7.1: The energy of the spatially whitened noise ‖VΦ
−T/2
V ‖2F and its expected value

in each subband. The lines for all noise types are virtually identical and equal to
the expected value.

reference signal used for the instrumental measures is the direct speech signal at
the microphone, obtained by convolving the anechoic speech signal with the direct
signal of the corresponding RIR. The reported improvements of the instrumental
measures are obtained by averaging over all microphones and speech samples.

7.6.2 Validation of the noise model

In this section, we investigate the validity of the noise model from Section 7.2. More
specifically, we compute the value of the noise energy ‖VΦ

−T/2
V ‖2F in (7.5) and com-

pare it against its expected value MN . We consider three different types of station-
ary noise: Gaussian white noise (temporally and spatially uncorrelated), Gaussian
diffuse noise (temporally uncorrelated and spatially diffuse), and the recorded noise
described in Section 7.6.1.
The obtained results for the noise energy for different noise types are depicted in
Fig. 7.1. It can be observed that for all considered noise types and in all subbands

the value of
∥∥∥VΦ−T/2

∥∥∥2

F
is virtually identical to its expected value. As a practical

note, the matrix Φ
−T/2
V for spatial whitening is never explicitly computed. Instead,

we first compute the factor Φ
1/2
V from the Cholesky decomposition in (7.4), and

then instead use a linear solver to compute VΦ
−T/2
V . When Φ

−T/2
V is explicitly

computed using the matrix inverse, the value of ‖VΦ
−T/2
V ‖2F can differ significantly

from its expected value, especially at low frequencies for the diffuse and the recorded
noise. The reason for this is the ill-conditioning of the correlation matrix ΦV in low
frequencies for the diffuse and the recorded noise, which results in a numerically
problematic explicit computation of the inverse.
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7.6.3 Influence of the penalty parameter on the performance of sparsity-based de-
noising

In this section, we investigate the influence of the penalty parameter ρ of the ADMM
algorithm on the performance of the sparsity-based denoising method proposed in
Section 7.3. We consider the described setup with input SNRs between 0 dB and
40 dB. Based on the result from the previous section, the noise bound β is set to
its expected value MN .
The performance of the proposed denoising method in terms of the instrumental
measures is depicted in Fig. 7.2. It can be observed that the performance of the
ADMM-based denoising method strongly depends on the value of the penalty pa-
rameter ρ. Both ∆fwsSNR and ∆PESQ exhibit a similar behavior, with the perfor-
mance first increasing and then decreasing with the penalty parameter ρ for each
input SNR. Similarly as in Section 6.9.2, this can be related to the proximal operator
in (7.23), with small values of ρ resulting in a strong suppression, while large values
of ρ resulting in a weak suppression of the TF coefficients in each iteration. For
the considered algorithm setup, the value of the penalty parameter ρ = 103 works
well across the considered input SNRs. Furthermore, for a fixed penalty parameter
ρ, the obtained performance depends on the input SNR. On the one hand, it can
be observed that the proposed denoising method results in improvements over the
microphone signal for low input SNRs, when additive noise is the dominant distur-
bance. On the other hand, there are virtually no improvements for high input SNRs,
when reverberation is the dominant disturbance and the additive noise is very low.

7.6.4 Influence of the penalty parameter on the performance of sparsity-based joint
dereverberation and denoising

In this section, we investigate the influence of the penalty parameter ρ of the ADMM
algorithm on the performance of the sparsity-based dereverberation and denoising
method presented in Section 7.4. As in the previous section, we consider the de-
scribed setup with input SNRs between 0 dB and 40 dB, and the noise bound set
to its expected value MN .
The performance on the proposed joint dereverberation and denoising method in
terms of the instrumental measures is depicted in Fig. 7.3. Similarly as in the pre-
vious section, it can be observed that the performance of the joint denoising and
dereverberation method strongly depends on the value of the penalty parameter ρ.
Again, both measures exhibit a similar behavior, with the performance first increas-
ing and then decreasing with the penalty parameter ρ for each input SNR. For the
considered algorithm setup, the value of the penalty parameter ρ = 103 works well
across the considered input SNRs. Furthermore, for a fixed penalty parameter ρ,
the obtained performance in general depends on the input SNR. On the one hand,
it can be observed that the joint dereverberation and denoising method results in
improvements in terms of ∆fwsSNR that are similar across the input SNRs. On the
other hand, the improvements in terms of ∆PESQ are relatively small for low input
SNRs and relatively large for high input SNRs. This behavior can be explained by a
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Fig. 7.2: Performance of the proposed ADMM-based denoising method in terms of
∆fwsSNR (top) and ∆PESQ (bottom) for different input SNRs and values of
the penalty parameter ρ.
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Fig. 7.3: Performance of the proposed ADMM-based joint dereverberation and denoising
method in terms of ∆fwsSNR (top) and ∆PESQ (bottom) for different input
SNRs and values of the penalty parameter ρ.

combined effect of dereverberation and denoising, with the effect of denoising being
dominant for low input SNRs, as in the previous section (cf. Fig. 7.2), and the effect
of dereverberation being dominant for high input SNRs.

7.6.5 Comparison of sparsity-based dereverberation and denoising methods

In this section, we compare the performance of the proposed denoising and dere-
verberation methods with the MCLP-based dereverberation method from Chap-
ter 4, which does not take into account the additive noise. Furthermore, we com-
pare the performance of the proposed joint dereverberation and denoising method
with two different two-stage systems for dereverberation and denoising, consisting
of the MCLP-based dereverberation method and the proposed sparsity-based de-
noising method. The MCLP-based dereverberation is implemented as described in
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Section 4.4.1, with the identity within-group correlation matrix and I = 20 itera-
tions.
Firstly, we compare the performance of the MCLP-based dereverberation method
proposed in Chapter 4 (DER), the denoising method proposed in Section 7.3 (DEN),
and the joint denoising and dereverberation method proposed in Section 7.4 with
the correlation matrix ΦVf either updated in each iteration (JNTup) or fixed to ΦV

for all iterations (JNT). Using the results from the previous sections, the penalty
parameter ρ is set to 103 for DEN and JNTup, and a similar procedure is used to
set the penalty parameter ρ to 300 for JNT. The results for the four considered
methods are depicted in Fig. 7.4. It can be observed that all considered methods
result in improvements when compared to the microphone signal for the considered
input SNRs. As noted in Section 4.4.3, it can be observed that the DER method
performs very well for high input SNRs, as indicated by both ∆fwsSNR and ∆PESQ
values. However, the DER method results in very limited improvements over the
microphone signal for low SNRs. On the contrary, the DEN method results in im-
provements for low input SNRs, especially in terms of ∆fwsSNR, but virtually no
improvements are observed for high input SNRs. It can be further observed that the
proposed joint JNT and JNTup methods result in a combined effect of dereverber-
ation and denoising, resulting in improvements over the microphone signals for all
considered input SNRs. For low SNRs, the joint methods perform better than both
DER and DEN. As shown by the ∆PESQ, the performance of the joint methods
is slightly better than the performance of the DER method. However, as shown by
the ∆fwsSNR, the joint methods achieve a significantly better performance than
DER, which can be attributed to the integrated denoising. For high SNRs, the joint
methods perform much better than DEN, although worse than DER. Significant
improvements of the joint methods when compared to DER can be attributed to
the MCLP-based dereverberation integrated in the joint methods. However, perfor-
mance degradation of the joint methods when compared to DEN can be attributed
to the relative inaccuracy of estimation of the prediction filter in the joint methods.
This is likely influenced by the selected noise bound β and the setup of the iterative
algorithm, e.g., the number of iterations of the ADMM algorithm and the proximal
operator proxρCV (.) (cf. Appendix B.2.3). Reducing the noise bound β would result
in a decreased performance for low SNRs, due to less denoising, but in an increased
performance in high SNRs, due to a more accurate estimation of the prediction
filter. Furthermore, it can be observed that the JNT method in general performs
better than the JNTup method, indicating that the update of the noise correlation
matrix ΦVf is not required and can even somewhat degrade the performance in the
considered scenario.
Secondly, we compare the performance of the DER method for dereverberation and
three different methods for combined dereverberation and denoising. More specifi-
cally, we compare DER with the joint JNT method, a two-stage method consisting
of the MCLP-based dereverberation method followed by the proposed denoising
method (DER+DEN), and a two-stage method consisting of the proposed denoising
method followed by the MCLP-based dereverberation method (DEN+DER). The
penalty parameter for the denoising method in the two-stage methods has been se-
lected similarly as in the previous sections and is set to ρ = 103. The results for the
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Fig. 7.4: Performance of the dereverberation-only (DER), denoising (DEN), and joint dere-
verberation and denoising (JNT and JNTup) methods in terms of ∆fwsSNR (top)
and ∆PESQ (bottom) for different input SNRs.
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four considered methods are depicted in Fig. 7.5. It can be observed that all con-
sidered methods result in improvements when compared to the microphone signal
for the considered input SNRs. Furthermore, it can be observed that all methods
for combined dereverberation and denoising exhibit a similar pattern, with better
performance than DER for low input SNRs and comparable or worse performance
than DER for high input SNRs. By comparing the joint JNT method with its two-
stage counterpart DER+DEN, it can be observed that JNT performs somewhat
better in terms of ∆fwsSNR for low SNRs. However, DER+DEN performs better
than JNT in terms of ∆PESQ for high SNRs. Overall, all three combined meth-
ods result in a similar performance, with the two-stage methods performing better
than JNT for high input SNRs in terms of ∆PESQ. The joint method offers an im-
proved performance over DER for low input SNRs, and a competitive performance
in general. However, two-stage methods might be more appealing for practical ap-
plications, due to simpler estimation procedures and easier and more robust control
of each processing stage, e.g., for individual control of the amount of denoising or
dereverberation.

7.7 Summary

In this chapter we have considered combined denoising and dereverberation. We
have proposed a batch subband method for denoising based on an optimization prob-
lem with a sparsity-promoting cost function and a constraint for the noise energy.
Furthermore, we have also proposed a batch subband method for joint dereverber-
ation and denoising by including the noise term in the MCLP-based signal model
and imposing a constraint on the noise energy. We have shown that the resulting
optimization problems can be efficiently solved using the ADMM algorithm.
Simulation results show that the proposed joint dereverberation and denoising
method performs better than the MCLP-based dereverberation method proposed in
Chapter 4 for low input SNRs. Furthermore, we have shown that two-stage methods
for combined dereverberation and denoising result in a similar performance across
the considered input SNRs. In conclusion, even though the joint method offers con-
siderable improvements over MCLP-based dereverberation in low-SNR scenarios,
two-stage methods seem to be more relevant in practice due to a very good perfor-
mance, modularity and relative simplicity.
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Fig. 7.5: Performance of the the dereverberation-only (DER), joint dereverberation and
denoising (JNT), two-stage dereverberation and denoising (DER+DEN), and two-
stage denoising and dereverberation (DEN+DER) methods in terms of ∆fwsSNR
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8
CONCLUSION AND FURTHER RESEARCH

In this chapter, we provide a summary of the main contributions of the thesis in
Chapters 3–7 and discuss possible extensions and directions for further research
which could be envisaged as a follow-up to the work presented in this thesis.

8.1 Conclusion

Speech signals are often captured in reverberant and noisy enclosures with micro-
phones placed at a distance from the desired speech source. This is a common
scenario encountered in teleconferencing and hands-free communication systems,
smart home control assistants with a voice-based interface, and assistive listening
devices. Reverberation and noise present in the captured signals typically lead to
a reduced effectiveness of speech communication, e.g., resulting in reduced speech
quality, intelligibility, and automatic speech recognition performance.

In the context of this thesis, the main goal was to investigate and develop methods
for blind speech dereverberation based on sparse multi-channel linear prediction.
The proposed methods are relevant for many practical applications requiring speech
dereverberation since they do not require measured or estimated RIRs.

In Chapters 3 and 4, we proposed batch dereverberation methods based on sparse
MCLP and the subband signal model in the STFT domain. In Chapter 5, we pro-
posed an adaptive dereverberation method based on constrained sparse MCLP. In
Chapter 6, we proposed a general framework for dereverberation using wideband
and subband signal models and sparse modeling of the TF coefficients. In Chap-
ter 7, we proposed a joint dereverberation and denoising method based on sparse
modeling and investigated combined dereverberation and denoising.

In Chapter 3, we considered the noiseless case and proposed a batch speech dere-
verberation method based on the subband MCLP-based signal model and a general
sparse prior for the desired speech signal coefficients. We proposed to estimate the
multi-channel prediction filter using an iterative algorithm that maximizes the like-
lihood function, resulting in an IRLS algorithm. We analytically showed that the
variational representation of the sparse prior for the proposed signal model can be
interpreted as a generalization of the TVG model and that the underlying prior
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in the conventional WPE method strongly promotes sparsity of the desired speech
signal coefficients and can be obtained as a special case of the proposed framework.
We reformulated the estimation of the prediction filter as a minimization of the
non-convex `p-norm of the desired speech signal coefficients, for which a regularized
IRLS algorithm was derived. We evaluated the dereverberation performance of the
regularized and the unregularized IRLS algorithm and investigated the influence
of the initialization and the number of iterations on the performance. The simula-
tion results showed that the regularized IRLS algorithm leads to a more consistent
performance than the unregularized IRLS, i.e., depends less on the initialization
and the shape of the cost function, however at a price of a significantly larger num-
ber of iterations. Furthermore, we investigated the influence of the filter length,
the number of microphones, and the acoustic scenario on the dereverberation per-
formance. While the proposed MCLP-based dereverberation method can be used
with a single microphone, large improvements were observed when employing two
microphones and additional, albeit much smaller, improvements when using four
microphones. The simulations indicated that the optimal filter length depends on
the number of microphones used and the best performance for two microphones
was obtained when the filter length corresponds to approximately half of the rever-
beration time. Overall, the best performance among the considered methods was
obtained using the unregularized IRLS algorithm with a suitably selected shape
parameter of the cost function, with p = 0.5 in general performing better than the
conventional MCLP-based method (e.g., for T60 ≈ 700 ms, p = 0.5 consistently
improved ∆PESQ by 0.1). In addition to the simulation results, the proposed for-
mulation with a sparsity-promoting cost function gives a transparent entry point
for extensions and integration of MCLP-based dereverberation with other speech
enhancement methods.

In Chapter 4, we proposed a multiple-output extension of the subband MCLP-based
speech dereverberation method from Chapter 3 using a group sparse cost function.
The MIMO prediction filter was estimated by solving a non-convex optimization
problem using the IRLS algorithm, with the sparsity-promoting cost function taking
into account the grouping of the coefficients across the channels. Additionally, we
showed that the proposed method generalizes existing MCLP-based dereverberation
methods. We evaluated the dereverberation performance of the proposed method
and investigated the influence of the shape parameter of the cost function, the
number of microphones and the additive noise on the performance. The simulation
results for the noiseless scenario showed that the proposed method can be used
to improve the dereverberation performance compared to the conventional MCLP-
based method (e.g., for T60 ≈ 700 ms, p ∈ {0.25, 0.5} improved ∆PESQ by up to
0.2). The simulation results for the noisy scenario showed that while the method is
to some extent robust to noise, the performance is rather limited for the scenarios
with a relatively low SNR since the used signal model does not explicitly take
into account the additive noise. Nevertheless, significant improvements can still be
obtained in the moderate and high SNR scenarios, indicating that multiple-output
MCLP-based dereverberation can be used as an effective pre-processor for further
multi-channel signal processing, e.g., noise reduction.
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In Chapter 5, we extended the batch methods from the previous chapters and pro-
posed a constrained formulation for adaptive speech dereverberation based on group
sparse MCLP in the subband domain. In general, unconstrained adaptive methods
may lead to an overestimation of the undesired reverberant signal and distortions
of the desired speech signal at the output. To alleviate this issue, we proposed to
constrain the power of the MCLP-based undesired speech signal estimate using an
estimate of the late reverberant PSD. The constrained optimization problem was
solved using the ADMM algorithm, where exploiting the rank-1 updates leads to an
efficient RLS-like iterative algorithm. To reduce the computational complexity for
both the unconstrained and the constrained adaptive MCLP methods, we proposed
to use a diagonal approximation of the weighted correlation matrix, resulting in a
significantly reduced computational complexity (e.g., reducing the RTF by a factor
10 for the unconstrained method). The simulation results showed that the proposed
constrained MCLP method for adaptive dereverberation is more robust to the se-
lection of the parameters, such as the forgetting factor and the filter length, than
the unconstrained method (e.g., for T60 ≈ 700 ms with M = 2 and γ = 0.9, the
constrained method improved ∆PESQ by up to 0.3). Therefore, the constrained for-
mulation can be used to improve the performance of MCLP-based dereverberation
in dynamic scenarios when the optimal forgetting factor or the filter length are not
known.

In Chapter 6, we proposed a general framework for speech dereverberation using
MCLP-based signal models and exploiting sparsity of the speech signal in the TF
domain. More specifically, we proposed to formulate speech dereverberation by com-
bining either a wideband or a subband signal model with an analysis or synthesis
sparsity prior for the desired speech signal. All obtained optimization problems have
been solved using the ADMM algorithm, and support a general sparsity-promoting
function and a TF transform. Furthermore, we proposed to incorporate speech struc-
ture in the cost function through structured weights, using neighborhood and low-
rank NMF weights, and reviewed the existing methods in the context of the proposed
general framework. The simulation results showed that the ADMM-based method
with the subband signal model with multiple reweighting iterations performs simi-
larly as the IRLS-based method from Chapter 3, where the ADMM-based method
performs better for a single reweighting iteration. It was also shown that the wide-
band signal model leads to a better performance compared to the subband signal
model (e.g., for T60 ≈ 700 ms with M = 2 and local weights, ∆PESQ was im-
proved by 0.2 using the wideband model). Furthermore, it was demonstrated that
using structured weights can improve the performance both for the subband and
the wideband signal model, with the low-rank weights performing better than the
TF neighborhood (e.g., for T60 ≈ 700 ms withM = 2 and the subband signal model,
∆PESQ was improved by 0.1 using the neighborhood weights and by 0.2 using the
low-rank weights). Overall, the best performance was obtained using the wideband
signal model with analysis sparsity and low-rank weights, improving the ∆PESQ
by 0.4 compared to the conventional subband MCLP-based method. Finally, the
framework presented in this chapter constitutes a flexible and general formulation
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of MCLP-based dereverberation exploiting TF sparsity and offers many directions
for further research.

As opposed to the previous chapters, where only the noiseless case was considered, in
Chapter 7 we considered sparsity-based dereverberation and denoising. Firstly, we
proposed to formulate speech denoising by using a sparsity-promoting cost function
and by imposing a bound for the energy of the noise term. Secondly, we included the
additive noise in the MCLP-based signal model and formulated joint dereverberation
and denoising by combining sparse MCLP and imposing a bound for the noise energy.
The proposed joint method can be seen as an extension of the group sparse MCLP-
based dereverberation method from Chapter 4, taking into account additional noise
term in the signal model. Both for the sparsity-based denoising method and for the
joint dereverberation and denoising method, the obtained optimization problems
can be solved iteratively using the ADMM algorithm. The simulation results for a
reverberant and noisy scenario showed that the proposed joint dereverberation and
denoising method results in an improved enhancement performance for low and
moderate SNRs compared to MCLP-based dereverberation (e.g., for T60 ≈ 700 ms
withM = 2, ∆fwsSNR was improved by 4 dB). Furthermore, the simulation results
showed that in noisy conditions a good performance can be obtained by combining
sparse MCLP-based dereverberation with sparsity-based denoising in a two-stage
procedure, with the obtained performance similar to the joint method.

8.2 Further research directions

In the following, we summarize possible research directions for further improvements
and possible applications of the proposed dereverberation methods based on sparse
MCLP.

In Chapter 6, it was demonstrated that exploiting the additional structure of the
speech signal, e.g., using TF neighborhoods or a low-rank approximation, can be
beneficial for the dereverberation performance. Therefore, the additional structure
of the speech signal could be exploited for computing the weights for the reweight-
ing procedure or for the shrinkage operators. In general, temporal averaging for
computing the weights in the reweighting procedure reduces the dereverberation
performance, e.g., when using large neighborhoods in the TF domain. As an alter-
native to explicitly defining the neighborhood, an approach based on modulation
filtering could be employed for structured estimation [199]. More specifically, the
weight at each TF point could be obtained by computing the strength of the filtered
modulations, i.e., the weights are computed by filtering the modulation spectrum.
Furthermore, instead of manually selecting the neighborhoods in the TF domain, a
suitable modulation filter can be learned on a speech database [199]. Similarly, the
weights could be computed using instantaneous cepstral weighting, with the model
for the speech cepstral coefficients learned on a speech database [81]. In Chapter 6
we exploited the speech signal structure to compute the weights. However, the TF
structure of the speech signal, e.g., neighborhood, modulation, or harmonic struc-
ture, could be also used for structured proximal operators [199, 242]. Furthermore,
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sparsity of the desired speech signal in the TF domain could be further increased
by removing perceptually irrelevant components [266].

Although the STFT has been used in this thesis, the wideband methods proposed
in Chapter 6 can easily use alternative TF transforms. Alternatively, it might be
advantageous to use auditory-motivated transforms, e.g., the constant-Q transform
or the ERBlet transform [251], or in general adaptive linear TF transforms [192].
Furthermore, a combination of different transforms could be used to exploit different
types of structure of the desired speech signal. For example, sparse and low-rank
structure of the desired speech signal could be simultaneously exploited by using a
suitable dictionary [267], or a combination of different trained dictionaries for voiced
and unvoiced speech could be used.

Furthermore, the proposed wideband methods for dereverberation could be in-
tegrated with wideband methods for source separation [195, 196], and compu-
tational complexity could be reduced by using faster convex optimization algo-
rithms [231,268] and linear solvers which exploit the block-Toeplitz structure of the
involved matrices [255,269]. Similarly, it is expected that joint dereverberation and
denoising would benefit from including additional speech structure, either through
structured weights and shrinkage operators or a structured cost function. Further-
more, wideband formulations of the joint dereverberation and denoising method
may be worth investigating.

Adaptive or online processing is typically required for practical applications of
speech dereverberation. At the same time, the available computational resources are
often limited and the processing delay should be within a certain range. Therefore, a
practically relevant and an interesting topic for further research is complexity reduc-
tion for the adaptive algorithms. While large computational savings were achieved
with the diagonal approximation proposed in Chapter 5, the reduced computational
complexity simultaneously resulted in a decreased performance, and improving the
performance would be valuable for practical applications. For example, the per-
formance of the adaptive methods could benefit from exploiting additional speech
structure, e.g., by using the instantaneous cepstral weighting [81] for weight com-
putation. Moreover, the performance of the adaptive MCLP-based dereverberation
should be further investigated when using a low-delay filter-bank to minimize the
processing delay.

Since MIMO speech dereverberation can be performed using the proposed group
sparse MCLP-based methods, these could be easily applied for binaural dereverber-
ation. Furthermore, the MCLP-based signal model implies that the desired speech
signal in each channel contains a delayed and filtered direct path signal, with the
relative delays between the channels being preserved. In previous studies, it was
demonstrated that the accuracy of direction-of-arrival estimation can be improved
by using a MIMO MCLP-based dereverberation method [161]. Therefore, it would
certainly be interesting to evaluate the dereverberation performance and cue preser-
vation of the MCLP-based methods in a binaural scenario. Furthermore, integration
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of the proposed MCLP-based dereverberation methods with binaural denoising [270]
is an interesting and practically relevant topic for further research.



A
VARIATIONAL REPRESENTATION OF A
SPARSE PRIOR

A.1 Convex variational representation

In this appendix, we give an overview of the convex variational representation of a
sparse prior used in Chapter 3. Under certain conditions derived below, a circular
sparse prior p(z) = e−f(|z|) can be represented in the form (3.12) with a scaling
function ψ(.) as

p(z) = max
λ>0
NC (z; 0, λ)ψ (λ) , (A.1)

i.e., the value of p(.) at a fixed point z is obtained by maximizing the value of a
scaled Gaussian NC (z; 0, λ)ψ (λ) kernel centered at zero over the variance λ. This
variational representation of a sparse prior p(.) using a Gaussian kernel is often
referred to as the convex type of variational representation [220,271]. Alternatively,
an integral variational representation could be used, such as mixture of scaled Gaus-
sians [272]. The two representations are related, and in [220,271] it has been shown
that the convex representation can be used to represent a broader class of super-
Gaussian priors than the integral representation.
An illustration of the convex variational approximation is given in Fig. A.1, where
a CGG with p = 0.5 is approximated with a scaled Gaussian at several different
points. The variance of the depicted scaled Gaussians at a fixed point t is obtained
by maximization as in (A.1), and consequently both wider and narrower scaled
Gaussians attain a lower value of p(t) for a fixed t.
Assuming the circular symmetry of p(.), the analysis of the convex representation
in (A.1) can be restricted to the positive real-valued axis, similarly as in [220]. The
negative log-probability for t ∈ (0,∞) can then be written as

− log p(t) = inf
λ>0

t2

λ
− log

ψ(λ)

πλ
, (A.2)

By defining a function g(.) such that p(t) = e−g(t
2), i.e., f(t) = g(t2), it follows that

g(.) can be written as

g(t) = inf
λ>0

t

λ
− log

ψ(λ)

πλ
. (A.3)
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Fig. A.1: An example of a variational approximation of a sparse prior: the true sparse
CGG prior with p = 0.5 (solid line), and scaled Gaussians at points t ∈ {0.1, 1, 4}
(dotted lines).

This implies that g(.) is the concave conjugate of log ψ(λ)
πλ , which is possible if and

only if g(.) is closed, increasing and concave on (0,∞) [220], and in that case the
function g(.) and its concave conjugate g?(.) are related as [273]

g?(u) = inf
t
tu− g(t) (A.4a)

g(t) = inf
u
tu− g?(u) (A.4b)

implying that the scaling function ψ(.) can be expressed as

ψ(λ) = πλeg?(λ
−1). (A.5)

Note that since g′(t) = f ′(
√
t)

2
√
t
, the concavity requirement for g(.) is equivalent to

f ′(t)/t being monotonically decreasing on (0,∞) [221,222,273], which is character-
ization of a strongly super-Gaussian prior [220].
As an example, consider a CGG prior in (3.18) with p ∈ (0, 2). In this case, (3.19)
implies that the function g(.) is equal to

g(t) =
tp/2

ζp/2
− log

p

2πζΓ(2/p)
. (A.6)

Since the concave conjugate of t
p/2

p/2 is t
q/2
?

q/2 with 2
p+ 2

q = 1, and the concave conjugate
of ag(t)+b, a > 0, is ag?

(
u
a

)
−b, the concave conjugate of g(.) can be easily expressed

as

g?(u) =
(p

2

)1−q/2 ζq/2

q/2
uq/2 + log

p

2πζΓ(2/p)
, (A.7)
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resulting in the following scaling function ψ(.) for the CGG prior

ψ (λ) =
p

2ζΓ(2/p)
λe(

p
2 )

1−q/2 ζq/2
q/2

λ−q/2 . (A.8)

A.2 Variance estimation

In the variance estimation step in Chapter 3, an optimization problem had to be
solved to compute the optimal variance λ̂ in (3.16) as

λ̂ = arg min
λ>0

|d̂|2
λ

+ log πλ− logψ (λ) . (A.9)

Using (A.5), this optimization problem can be rewritten as

λ̂ = arg min
λ>0

t2

λ
− g?

(
λ−1

)
, (A.10)

for some t ≥ 0, with g?
(
λ−1

)
= logψ(λ) − log πλ. Since g?(.) is concave, the cost

function in the previous expression is strongly convex and the global minimum can
be easily found. Hence, the optimal variance λ̂ is equal to

λ̂ =
1

(g′?)
−1

(t2)
, (A.11)

where (g′?)
−1

(.) is the inverse function of g′?(.). Based on the results from convex
analysis, the following holds for the derivative g′(.) [220,273]

g′(t) = arg min
u
tu− g?(u) (A.12)

and the inverse of g′?(.) can be expressed using g′(.) as

(g′?)
−1

(t) = g′(t). (A.13)

Since f(t) = g(t2), the optimal variance λ̂ can hence be written as

λ̂ =
1

g′(t2)
=

2t

f ′(t)
, (A.14)

as has been used in (3.17).





B
OPTIMIZATION

In this appendix, we provide a brief overview of several optimization problems of in-
terest in the context of this thesis. In Section B.1, we discuss iteratively reweighted
methods for non-convex minimization employing `2- and `1-norm reweighting. In
Section B.2, we define the proximal operator and give examples of proximal op-
erators for several functions. In Section B.3, we provide a brief overview of the
alternating-direction method of multipliers (ADMM) algorithm. Two special opti-
mization problems are considered in Sections B.4 and B.5, namely the proximal
operator of the composition of the analysis operator ΨH and a convex cost function
P (.) and the LASSO problem, respectively.

B.1 Iteratively reweighted methods for non-convex minimization

Consider an optimization problem in the following form

min
x

‖Bx‖pp
subject to Ax = c,

(B.1)

where p ∈ (0, 1), x ∈ CN , y ∈ CM , A ∈ CM×N , B ∈ CK×N , and

‖x‖p =

(
N∑
n=1

|xn|p
) 1
p

, (B.2)

is the `p-norm. Note that ‖.‖p is not actually a norm for p < 1, since it is a non-
convex functional, but it is still commonly referred to as the `p-norm. Optimization
problems in the form (B.1) are often encountered, e.g., in sparse recovery, where x
is the desired signal, A is the measurement operator, c are the measurements, and
B is the analysis operator.
Many algorithms for non-convex optimization in the area of sparse recovery are
based on an iterative reweighting procedure [228]. The main idea is to replace the
non-convex problem in (B.1) with a series of convex problems which are easily solved.
The convex problems are typically obtained by selecting a convenient convex upper
bound for the original cost function, and these reweighting algorithms in general
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fall in the category of majorization-minimization algorithms [274]. A brief review of
iteratively reweighted least squares and iteratively reweighted `1-norm for `p-norm
minimization is given in the following.

b.1.1 Iteratively reweighted least squares

The main idea in IRLS is to substitute the non-convex `p-norm-based cost function
in (B.1) with a squared weighted `2-norm

‖x‖2w,2 =

N∑
n=1

wn |xn|2 . (B.3)

The role of the weights w is to mimic the non-convex behavior of the original cost
function. More specifically, the weights are computed in a such a way that the convex
cost function ‖.‖2w,2 is a first-order approximation of the original cost function ‖.‖pp
in (B.1).
Since the `p-norm is separable and circularly symmetric, the weights can be deter-
mined by analyzing the scalar case. Consider the first-order approximation of the
function |t|p, t ∈ R, p ∈ (0, 1), with a quadratic function ŵi|t|2 + const. at a fixed
point ti. In this case, the first-order approximation can be obtained by computing
the weight wi as

ŵi =
p

2

∣∣ti∣∣p−2
. (B.4)

Since the original cost function is concave, the obtained quadratic approximation is
an upper bound for the original cost function, i.e.,

|t|p ≤ ŵi|t|2 +
(

1− p

2

) (
ti
)p (B.5)

An example of quadratic upper bounds of a non-convex cost function for the scalar
case is given in Fig. B.1.
Applying IRLS on (B.1) results in the following convex optimization problem in the
i-th iteration

x̂i = arg min
x

‖Bx‖2ŵi,2

subject to Ax = c,
(B.6)

with the weights computed from the previous iteration as

ŵin =
(∣∣(Bx̂i−1

)
n

∣∣2 + εi
) p

2−1

, (B.7)
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Fig. B.1: Quadratic upper bounds for a non-convex scalar cost function: the true cost
function with p = 0.5 (solid line), and quadratic approximations at points ti ∈
{0.1, 1, 4} (dotted lines).

where εi is used for regularization. Note that the constant factor in (B.4) is dis-
regarded since it does not affect the solution of (B.6). The convex optimization
problem in (B.6) has a closed form solution given as

x̂i =
(
BHŴiB

)−1
(

A
(
BHŴiB

)−1

AH

)−1

b, (B.8)

with Ŵi = diag
(
ŵi
)
. The IRLS algorithm iterates between updating the

weights (B.7) and computing the solution (B.8). Note that the sparse recovery us-
ing the IRLS algorithm can be related to the convex variational representation of
a sparse prior with the Gaussian kernel (cf. Appendix A) [233]. More details about
the IRLS algorithm and its applications can be found, e.g., in [223,228].

b.1.2 Iteratively reweighted `1-norm minimization

The main idea in IRL1 is to substitute the non-convex `p-norm-based cost function
in (B.1) with a weighted `1-norm

‖x‖w,1 =

N∑
n=1

wn |xn| . (B.9)

As in IRLS, the role of the weights w is to mimic the non-convex behavior of
the original cost function, and they are computed in such a way that the convex
cost function ‖.‖2w,1 is a first-order approximation of the original cost function ‖.‖pp
in (B.1).
Consider the scalar real-valued case, i.e., the first-order approximation of the func-
tion |t|p, t ∈ R, p ∈ (0, 1), with the function ŵi|t|+ const. at a fixed point ti. In this
case, the first-order approximation can be obtained by computing the weight wi as

ŵi = p
∣∣ti∣∣p−1

. (B.10)
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Fig. B.2: Upper bounds for a non-convex scalar cost function: the true cost function with
p = 0.5 (solid line), and `1-norm approximations at points ti ∈ {0.1, 1, 4} (dotted
lines).

Since the original cost function is concave, the obtained approximation is an upper
bound for the original cost function, i.e.,

tp ≤ ŵi|t|+ (1− p)
(
ti
)p (B.11)

An example of the upper bounds for a non-convex cost function for the scalar case
is given in Fig. B.2.
Applying IRL1 on (B.1) results in the following convex optimization problem in the
i-th iteration

x̂i = arg min
x

‖Bx‖ŵi,1

subject to Ax = c,
(B.12)

with the weights computed from the previous iteration as

ŵin =
(∣∣(Bx̂i−1

)
n

∣∣2 + εi
) p−1

2

, (B.13)

where εi is used for regularization. Note that the constant factor in (B.10) is disre-
garded since it does not affect the solution of (B.12). The IRL1 algorithm iterates
between updating the weights (B.13) and computing the solution by solving (B.12).
The IRL1 algorithm can be seen as a non-smooth alternative to IRLS [274]. Note
that the sparse recovery using the IRLS algorithm can be related to the convex
variational representation of a sparse prior with the Laplacian kernel (similarly to
Appendix A) [176]. More details about the IRL1 algorithm and its applications can
be found, e.g., in [228,229].

B.2 Proximal operator

An important ingredient of many optimization algorithms, e.g. the proximal algo-
rithms and the ADMM, is the proximal operator [246,248]. The proximal operator
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proxρP (.) of a closed, proper, and convex function P (.) with the penalty parameter
ρ > 0 can be defined as

proxρP (v) = arg min
x
P (x) +

ρ

2
‖v − x‖22, (B.14)

For a fixed v, a unique minimizer proxρP (v) always exists since the function to
be minimized is strongly convex and not everywhere infinite [248]. The result of
applying a proximal operator is sometimes referred to as a proximal point, i.e.,
proxρP (v) is a proximal point of of v, since it is obtained as a compromise between
being close to v and minimizing the cost function P (.). Assuming that P (.) is an
indicator function of a closed convex set, the proximal operator is equal to the
Euclidean projection on that set, and the proximal operator proxρP (.) can be seen
as a generalization of a projection operator [246,248]. Among other interpretations,
idea of the proximal operator can also be related to Moreau-Yosida regularization
and modified gradient methods [248]. For some, relatively simple, functions P (.), the
proximal operator in (B.14) can be evaluated analytically and very efficiently [246,
248].
For example, consider a function P : C 7→ R defined as

P (x) = w |x|2 , (B.15)

with w > 0, i.e., P (.) is the scalar equivalent of the weighted squared `2-norm. In
this case, a simple closed-form solution for the proximal operator proxρP : C 7→ C
can be derived as

proxρw|.|2(v) = arg min
x
w|x|2 +

ρ

2
|x− v|2 =

1

1 + 2ρ−1w
· v, (B.16)

which is sometimes referred to as the shrinkage operator, since it shrinks the values
of v towards zero [242, 248]. Since the weighted `2-norm of a vector is separable,
the proximal point proxρ‖.‖2w,2

(v) can be computed by applying the scalar proximal
operator (B.16) on the elements of the vector v.
As another example, consider a function P : C 7→ R defined as

P (x) = w |x| , (B.17)

i.e., P (.) is the scalar equivalent of the weighted `1-norm. In this case, a simple
closed-form solution for the proximal operator proxρP : C 7→ C can be derived as

proxρw|.|(v) = arg min
x
w|x|+ ρ

2
|x− v|2 = max

(
1− ρ−1w

|v| , 0
)
· v, (B.18)

with w > 0, i.e., the proximal operator proxρP (.) is the soft thresholding opera-
tor with the threshold ρ−1w. Since the weighted `1-norm of a vector is separable,
the proximal point proxρ‖.‖w,1(v) can be computed by applying the scalar proximal
operator (B.18) on the elements of the vector v.
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b.2.1 Soft thresholding with a minimum gain and the corresponding cost function

In this appendix, analytical expression for the cost function corresponding to the
proximal operator in (6.21) with a lower bound on the gain is derived. Consider a
proximal operator proxρP : C 7→ C for a penalty function P : C 7→ R of a complex
scalar v ∈ C, defined as

proxρP (v) = max

(
1− ρ−1w

|v| , Gmin

)
· v, (B.19)

i.e., the proximal mapping is the soft thresholding with a lower bound Gmin on the
real-valued gain. The lower bound Gmin basically prevents the shrinkage of the non-
zero values to zero. Since the function proxρP (.) is circularly symmetric, the analysis
can be restricted to the positive part of the real axis, i.e., denoting the independent
variable as t, with t ∈ R, t > 0. As in [275], a function f(.) can be defined as
f(t) =

∫ t
0

proxρP (ξ) dξ, t > 0. For the given mapping in (B.19), the function f can
be written as

f (t) =

{
1
2Gmint

2, for t < ρ−1w
1−Gmin

1
2

(
t− ρ−1w

)2
+ 1

2
ρ−2w2Gmin

1−Gmin
, for t ≥ ρ−1w

1−Gmin

(B.20)

Following [275], the corresponding cost function can be obtained as

P (t) = ρf? (t)− ρt
2

2
, (B.21)

where f?(.) is the convex conjugate of f(.), i.e., [273]

f?(u) = sup
t
tu− f(t). (B.22)

By observing that f(.) is a convex continuous piecewise quadratic function, its
convex conjugate can be obtained using [276] as

f? (t) =

{
1
2

t2

Gmin
, for t < ρ−1wGmin

1−Gmin

ρ−1wt+ 1
2 t

2 − 1
2
ρ−2w2Gmin

1−Gmin
, for t ≥ ρ−1wGmin

1−Gmin

(B.23)

Finally, by combining with (B.21) the cost function can be written as

P (t) =

 ρ 1−Gmin

Gmin

t2

2 , for t < ρ−1wGmin

1−Gmin

wt− 1
2
ρ−1w2Gmin

1−Gmin
, for t ≥ ρ−1wGmin

1−Gmin

(B.24)

Without the minimum-gain bound, i.e., when Gmin = 0, the proximal operator
in (B.19) reduces to soft thresholding, and the cost function is a linear function
of t, corresponding to the weighted `1-norm. When Gmin > 0 the cost function is
quadratic for small values of t and linear for large values of t, i.e., P (.) has a form of
the Huber function [263]. The point of transition between the linear and quadratic
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Fig. B.3: Proximal operators (left) and the corresponding cost functions (right) on the real
axis with Gmin = {0, 0.2} and ρ = w = 10. For complex-valued inputs the proxi-
mal operator and the penalty function are extended using circular symmetry.

behavior depends on the parameters ρ and w, i.e., on the threshold of the soft-
thresholding operator. The inclusion of the lower-bound Gmin for the real-valued
gain can be interpreted as obtaining a smooth approximation of the `1-norm [248].
An illustration of the effect of the lower bound on the proximal operator and the
cost function is given in Fig. B.3.

b.2.2 Proximal operators for group-sparse penalties

In this appendix we briefly review proximal operators for two group sparse penalties.
More specifically, we give proximal operator for the weighted `2,2-norm and the
weighted `1,2-norm. For a matrix argument, the proximal mapping of a function
P : CN×M 7→ R can be defined analogously to (B.14) as

proxρP (V) = arg min
X

P (X) +
ρ

2
‖V −X‖2F . (B.25)

Firstly, we consider the weighted `2,2-norm, i.e.,

P (X) =

N∑
n=1

w(n)‖x(n)‖22, (B.26)

where x(n) ∈ CM contains the elements from the n-th row of X. The corresponding
proximal operator is given element-wise as

proxρP (vm(n)) =
1

1 + 2ρ−1w(n)
· vm(n) (B.27)
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Secondly, we consider the weighted `1,2-norm, i.e.,

P (X) =

N∑
n=1

w(n)‖x(n)‖2, (B.28)

which is well known as group LASSO or joint sparsity [242]. The corresponding
proximal operator is given element-wise as

proxρP (vm(n)) = max

(
1− ρ−1w(n)

‖v(n)‖2
, 0

)
· vm(n), (B.29)

and it is sometimes referred to as the block soft thresholding [248].

b.2.3 Proximal operator/projection on a weighted norm ball

In this appendix we briefly review the proximal operator of the function C :
CN×M 7→ R which has the following form

C(X) =

{
0, if ‖XB−Y‖2F ≤ β,
+∞, otherwise

, (B.30)

where B is a full-rank matrix. The function C(.) is an indicator function for the set
of all matrices X which satisfy the constraint ‖XB−Y‖2F ≤ β. The corresponding
proximal mapping is

proxρC (V) = arg min
X

C (X) +
ρ

2
‖V −X‖2F = arg min

X:‖XB−Y‖2F≤β
‖V −X‖2F (B.31)

which is a projection of the matrix V on the convex feasible set defined by the
constraint. Note that the projection does not depend on the penalty parameter ρ.
The projection can be computed by applying Lemma 2 from [196], resulting in the
following iterative updates

Tj ← 1

ν
Uj−1 + Pj−1B−Y (B.32a)

Uj ← ν

(
Tj − proxi‖.‖2

F
≤β

(
Tj
))

(B.32b)

Pj ← V −UjBH, (B.32c)

where 0 < ν < 2/‖BBH‖2. The mentioned lemma states that Pj converges to
proxC (V) linearly [196]. The proximal operator proxi‖.‖2

F
≤β

(.) of the indicator func-

tion of the set ‖X‖2F ≤ β is defined as

proxi‖.‖2
F
≤β

= arg min
X:‖X‖2F≤β

‖V −X‖2F = min

(
1,

√
β

‖V‖F

)
·V. (B.33)
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B.3 Alternating direction method of multipliers

In this appendix we present a brief overview of the ADMM algorithm. A detailed
overview of the ADMM algorithm and its applications can be found in [246]. The
ADMM algorithm is suitable for non-smooth convex optimization problems with
linear equality constraints in the following form

min
x,y

P (x) +Q (y)

subject to Ax + By = c.
(B.34)

The cost function in the optimization problem in (B.34) conveniently splits into the
const functions P (.) and Q(.), which depend on variables x and y, respectively. The
augmented Lagrangian for the constrained optimization problem in (B.34) can be
written as

Lρ (x,y,µ) = P (x) +Q (y) +
ρ

2
‖Ax + By − c + µ‖22 −

ρ

2
‖µ‖22 , (B.35)

where µ denotes the dual variable and ρ > 0 denotes a penalty parameter. The iter-
ative ADMM algorithm can be obtained by minimizing the augmented Lagrangian
Lρ in (B.35) alternately with respect to x and y, followed by a dual ascent over
µ [246]. This leads to the following updates

xj ← arg min
x
P (x) +

ρ

2

∥∥Ax + Byj−1 − c + µj−1
∥∥2

2
, (B.36a)

yj ← arg min
y
Q (y) +

ρ

2

∥∥Axj + By − c + µj−1
∥∥2

2
, (B.36b)

µj ← µj−1 + η
(
Axj + Byj − c

)
, (B.36c)

which are iteratively repeated, with j denoting the iteration index. The parameter
η ≥ 1 can be used for a faster convergence, and should be smaller than 1 +

√
5/2

for a convex cost function [231,277].
The convergence of the ADMM algorithm has been discussed, e.g., in [246]. For
example, assuming that P (.) and Q(.) are closed, proper, and convex real-valued
functions and the (non-augmented) Lagrangian has a saddle point, it can be shown
that as j →∞, the iterates xj ,yj approach feasibility, the objective P

(
xj
)
+Q

(
yj
)

approaches the optimal value, and the dual variable µj approaches the dual optimal
point [246]. It is known that the ADMM algorithm can be very slow to converge
to high accuracy, requiring many iterations. However, in many cases it converges
to modest accuracy already after a few tens of iterations, which is often enough for
practical applications [246, 255]. The penalty parameter ρ may have a large effect
on the convergence of the algorithm and typically depends on the particular choice
of P (.) and Q(.). Although selection of the penalty parameter ρ has been often
analyzed [246], its selection is in practice based on heuristics and is considered
to be a kind of dark art [32]. Hence, when using a limited number of iterations,
an appropriate value for the penalty parameter needs to be selected based on the
observed convergence of the performance criteria of interest.
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B.4 Proximal operator of the composition of an analysis operator and
a convex function

This appendix presents a brief overview of the optimization problem involved in
estimation of the time-domain signal in (6.5a), which has a special form of the
generalized LASSO [246]. Consider an optimization problem in the form

min
x

P
(
ΨH

¯
x
)

+
ρ

2

∥∥
¯
x−

¯
y
∥∥2

2
, (B.37)

where P (.) is a convex function, and
¯
x,

¯
y ∈ RT .

The minimizer of the cost function in (B.37) is equal to the proximal operator of
the composition of the analysis operator ΨH and the function P (.), i.e., the optimal

¯
x is equal to proxρ

P◦ΨH

(
¯
y
)
, with P ◦ΨH denoting the composition of the analysis

operator ΨH and the cost function P (.), i.e.,
(
P ◦ΨH

)
(
¯
x) = P

(
ΨH

¯
x
)
[278]. The

optimization problem in (B.37) can be rewritten as

min
¯
x,u

P (u) +
ρ

2

∥∥
¯
x−

¯
y
∥∥2

2

subject to ΨH

¯
x− u = 0,

(B.38)

where u ∈ CKN is the splitting variable, and the corresponding augmented La-
grangian Lρ is

Lρ (
¯
x,u,µ) = P (u) +

ρ

2

∥∥
¯
x−

¯
y
∥∥2

2
+
δ

2

∥∥ΨH

¯
x− u + µ

∥∥2

2
− δ

2
‖µ‖22 (B.39)

with the penalty parameter δ > 0. Applying the ADMM algorithm results in the
following iterative updates

¯
xj ← 1

ρ+ δ

(
ρ
¯
y + δΨ

(
uj−1 − µj−1

))
, (B.40a)

uj ← proxδP
(
ΨH

¯
xj + µj−1

)
, (B.40b)

µj ← µj−1 + η
(
ΨH

¯
xj − uj

)
, (B.40c)

where it is assumed that Ψ is a Parseval frame, i.e., ΨΨH = I.

B.5 Iterative shrinkage/thresholding algorithm

This appendix presents a brief overview of the optimization problem involved in
estimation of the TF coefficients in (6.10a), which has a form of the unconstrained
least absolute shrinkage and selection operator (LASSO) [256] or an `1-regularized
least squares problem [263]. Consider an optimization problem in the form

min
x
P (x) +

ρ

2

∥∥Ψx−
¯
y
∥∥2

2
, (B.41)
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where P (.) is a weighted `1-norm, x ∈ CKN , and
¯
y ∈ RT . Since there is no closed-

form solution for (B.41), the solution needs to be computed numerically [279].
In general, problems in the form (B.41) can be efficiently solved using proximal
algorithms if the proximal operator proxρP (.) of the cost function P (.) can be easily
computed. A simple and effective forward-backward algorithm for solving (B.41)
is the iterative shrinkage/thresholding algorithm (ISTA) [257]. The algorithm con-
sists of repeated application of the proximal operator of P (.), i.e., repeated shrink-
age/thresholding, on a sequence of vectors, i.e.,

xj ← proxνρP

(
xj−1 +

1

ν
ΨH

(
¯
y −Ψxj−1

))
, (B.42)

where ν = ‖ΨΨH‖2 is the maximum eigenvalue of ΨΨH, e.g., if Ψ is a Parseval
frame then ν = 1. While being a very simple first-order method, and therefore typ-
ically not very computationally expensive per iteration, ISTA converges relatively
slowly as the iterations progress [242,257]. An accelerated version of the algorithm,
namely fast ISTA (FISTA), has been proposed in [257] and consists of the following
iterations

xj ← proxνρP

(
zj−1 +

1

ν
ΨH

(
¯
y −Ψzj−1

))
, (B.43a)

bj ←
1 +

√
1 + 4 (bj−1)

2

2
(B.43b)

zj ← xj +
bj−1 − 1

bj
(
xj − xj−1

)
(B.43c)

As shown in [257], FISTA has an improved convergence rate while preserving the
simplicity of ISTA. The main difference is that the argument of the proximal oper-
ator proxρP (.) in FISTA is not a function of the previous point xj−1, but of a new
point zj−1 which is a specific linear combination of the two previous points xj−1

and xj−2.





C
JOINT DENOISING AND DEREVERBERATION

In this appendix, we formulate the problem of speech denoising using a subband
signal model in (7.2), a sparsity-promoting cost function P (.), and the noise model
considered in Section 7.2. More specifically, the desired speech component D can
be estimated by solving the following optimization problem

min
D,G,X

P (D)

subject to
∥∥∥(Y −X) Φ

−T/2
V

∥∥∥2

F
≤ β

D + X̃τG = X.

(C.1)

where it is assumed that the noise correlation matrix ΦV is known, and β is an
appropriate bound for the noise energy (cf. Section 7.2).
In the optimization problem in (C.1), the prediction filter for dereverberation is
applied on the uknown delayed reverberant signal X. In this case, denoising is
performed to estimate the reverberant but noiseless speech signal, which is fur-
ther dereverberated to obtain an estimate of the desired speech signal, with both
dereverberation and denoising performed iteratively in a joint optimization proce-
dure. This corresponds to a processing structure composed of denoising followed by
MCLP-based dereverberation, with the two blocks working jointly. However, since
both the unknown filter G and the unknown denoised signal X appear in the unde-
sired reverberant component X̃τG in (C.1), the equality constraint is not linear.
The optimization problem for joint denoising and dereverberation in (C.1) can be
rewritten as

min
X,G,D

P (D) + CV (X)

subject to D + X̃τG = X,
(C.2)

where the inequality constraint in (C.1) is replaced with a barrier function C :
CN×M → R, which is defined as

CV (X) =

{
0, if ‖ (Y −X) Φ

−T/2
V ‖2F ≤ β,

+∞, otherwise.
(C.3)
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To decouple the variables X and G, we introduce a splitting variable Z as

min
D,G,X,Z

P (D) + CV (X)

subject to D + Z̃τG = X

Z = X

(C.4)

The augmented Lagrangian for the optimization problem in (C.4) can be written as

Lρ (X,G,D,Z,M1,M2) = P (D) + CV (X)

+
ρ

2
‖D + Z̃τG−X + M1‖2F +

ρ

2
‖Z−X + M2‖2F

− ρ

2
‖M1‖2F −

ρ

2
‖M2‖2F , (C.5)

where ρ is a penalty parameter, and M1 and M2 are dual variables. Applying the
ADMM algorithm leads to iterative updates for the unknown variables.
The optimization problem for the desired speech signal component D can be written
as

D̂j ← arg min
D

P (D) +
ρ

2

∥∥∥D− (X̂j−1 − ˆ̃Zj−1
τ Ĝj−1 −Mj−1

1

)∥∥∥2

F
, (C.6)

which has a form of the proximal operator of P (.) (cf. B.2.2). The optimization
problem for the prediction filter G can be written as

Ĝj ← arg min
G

∥∥∥ ˆ̃Zj−1
τ G−

(
X̂j−1 − D̂j −Mj−1

1

)∥∥∥2

F
, (C.7)

which is a LS problem with a closed-form solution. The optimization problem for
the denoised reverberant signal X can be written as

X̂j ← arg min
X

CV (X)

+
ρ

2

∥∥∥X− (D̂j + ˆ̃Zj−1
τ Ĝj + Mj−1

1

)∥∥∥2

F

+
ρ

2

∥∥∥X− (Ẑj−1 + Mj−1
2

)∥∥∥2

F
, (C.8)

which has a form of the proximal operator proxρCV (.) of CV (.) (cf. Appendix B.2.3).
The optimization problem for the splitting variable Z can be written as

Ẑj ← arg min
Z

ρ

2

∥∥∥ ˆ̃ZτĜ
j −

(
X̂j − D̂j −Mj−1

1

)∥∥∥2

F

+
ρ

2

∥∥∥Z− (X̂j −Mj−1
2

)∥∥∥2

F
, (C.9)

which is a quadratic problem in terms of the elements of Z. Let z = vect (Z) ∈ CNM
be a vectorized version of the matrix Z, with vectors x and µ2 defined similarly, and



sparsity-based dereverberation and denoising 155

xm,dm,µ1,m denoting the m-th columns of the corresponding matrices. Then the
problem for the splitting variable Z can be rewritten in terms of its vectorization z
as

min
z

M∑
m=1

∥∥∥ ˆ̃Gj
m,τz−

(
x̂jm − d̂jm − µj−1

1,m

)∥∥∥2

2
+
∥∥∥z− (x̂j − µj−1

2

)∥∥∥2

2
(C.10)

where G̃m,τ is such a matrix that Z̃τgm = G̃m,τz, i.e., G̃m,τ is a block-convolution
matrix constructed using the vector gm. This results in the following quadratic
problem for estimating the vectorized splitting variable z

ẑj ← arg min
z

zHQj
zz− 2<

{
tr
[
zHrjz

]}
+ const., (C.11)

where the matrix Q̂j
z and the vector r̂jz are defined as

Q̂j
z = I +

M∑
m=1

(
ˆ̃Gj
m,τ

)H ˆ̃Gj
m,τ (C.12a)

r̂jz = x̂j − µj−1
2 +

M∑
m=1

(
ˆ̃Gj
m,τ

)H (
x̂jm − d̂jm − µj−1

1,m

)
. (C.12b)

The estimate of the vectorized splitting variable z at j-th ADMM iteration is finally
given as

ẑj ←
(
Qj
z

)−1
rjz, (C.13)

and the splitting variable Ẑj can be obtained by rearranging the elements of the
vector ẑj .
Finally, the complete iterative updates for the ADMM algorithm can be written as

D̂j ← proxρP

(
X̂j−1 − ˆ̃Zj−1

τ Ĝj−1 −Mj−1
1

)
(C.14a)

Ĝj ←
[(

ˆ̃Zj−1
τ

)H ˆ̃Zj−1
τ

]−1 (
ˆ̃Zj−1
τ

)H (
X̂j−1 − D̂j −Mj−1

1

)
(C.14b)

X̂j ← prox2ρ
CV

(
D̂j + ˆ̃Zj−1

τ Ĝj + Mj−1
1 + Ẑj−1 + Mj−1

2

2

)
, (C.14c)

Ẑj ← matr
(
ẑj
)
, with ẑj computed using (C.13) (C.14d)

Mj
1 ←Mj−1

1 + η
(
D̂j + ˆ̃ZjτĜ

j − X̂j
)
, (C.14e)

Mj
2 ←Mj−1

2 + η
(
Ẑj − X̂j

)
. (C.14f)

However, joint estimation of X, G and D using this algorithm comes with practical
difficulties. Firstly, the constraint in (C.1), obtained using the signal model in (7.2),
is not linear since it includes a product of the unknowns X and G. Secondly, the
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computational complexity of the algorithm is very high due to estimation of the
prediction filter G after denoising. More specifically, since G is estimated on the
denoised signal, accessed through the splitting variable Z, the matrix of the linear
system in (C.7)/(C.14b) has to be recomputed in each iteration j. Therefore, a
new linear system needs to be solved in each iteration, as opposed to the joint
algorithm in Section 7.4, where dereverberation is performed on the noisy signal
and the matrix of the linear system is fixed.
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