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ABSTRACT

Hands-free speech communication devices, typically equipped with multiple micro-
phones and loudspeakers, are used for a wide variety of applications, such as telecon-
ferencing, in-car communication and personal assistants. In addition to capturing
the desired speech from the user, the microphones pick up undesired interferences
such as background noise and acoustic echo due to the acoustic coupling between
the loudspeakers and the microphones. These interferences typically degrade speech
quality and intelligibility, and negatively a�ect the performance of automatic speech
recognition systems.

Acoustic echo control systems typically employ a combination of acoustic echo can-
cellation (AEC) and residual echo suppression (RES). An AEC system uses adaptive
�lters to compensate for the acoustic echo paths between the loudspeakers and the
microphones. When short AEC �lters are used to reduce computational complexity
and increase convergence speed, this may lead to a signi�cant amount of residual
echo, which is typically suppressed using a RES post�lter. To compute the spectral
weights of this post�lter, an accurate estimate of the power spectral density (PSD)
of the residual echo is required.

The main aim of this thesis is to achieve low-complexity acoustic echo cancellation
for multichannel systems by developing e�cient tap selection schemes for partially
updating the AEC �lters, and to develop model-based residual echo PSD estimators
for improved residual echo suppression.

First, we propose novel tap selection schemes which exploit input signal sparsity
across the dimensions of frequency, channels and time, leading to e�cient partial
updates of multichannel AEC �lters in the subband domain. In particular, the
proposed dynamic e�ort allocation scheme proportionately selects more �lter taps
for update in subbands and channels with larger magnitude tap-inputs while not
ignoring the �lters with smaller magnitude tap-inputs. Simulation results for both
synthetic as well as real-world multichannel input signals show that the proposed
tap selection scheme achieves similar echo cancellation performance compared to
updating all �lter taps at a signi�cantly reduced computational cost (about 28%).

Second, we propose novel signal-based methods to estimate the late residual echo
PSD in online mode. The late residual echo PSD is modeled using an in�nite im-
pulse response (IIR) �lter on the PSD of the loudspeaker signal, based on frequency-
dependent reverberation scaling and decay parameters. We propose several signal-
based methods based on output error and equation error to jointly estimate both
reverberation parameters by minimizing a single cost function in online mode. Simu-
lation results using both arti�cially generated as well as measured impulse responses
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show that the output error method minimizing the mean squared log error (MSLE)
cost function outperforms state-of-the-art o�ine and online methods in terms of
parameter estimation accuracy, late residual echo PSD estimation accuracy and
residual echo suppression performance.

Third, we propose a novel model for the early residual echo PSD and combine it
with the IIR �lter model for the late residual echo PSD to yield a novel model
for the residual echo PSD. In particular, we model the early residual echo PSD
using a moving average �lter on the PSD of the loudspeaker signal, based on a
frequency-dependent coupling factor. We propose signal-based methods based on
output error to jointly estimate all three model parameters, i.e., the coupling factor
and the reverberation scaling and decay parameters, by minimizing a single MSLE
cost function in online mode. Simulation results using both arti�cially generated as
well as measured impulse responses show that the proposed output error method
with the recursive prediction error algorithm outperforms state-of-the-art o�ine and
online parameter estimation methods in terms of parameter estimation accuracy and
residual echo PSD estimation accuracy. Compared to state-of-the-art RES methods,
the proposed method yields the best segmental speech-to-speech distortion ratio
score (about 2-5 dB better), while also yielding the best segmental residual echo
attenuation score (about 1-2 dB better).
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ZUSAMMENFASSUNG

Freisprecheinrichtungen, die in der Regel mit mehreren Mikrofonen und Lautsprech-
ern ausgestattet sind, werden für eine Vielzahl von Anwendungen eingesetzt, z. B.
für Telefonkonferenzen, Kommunikation im Auto und persönliche Assistenten. Die
Mikrofone nehmen dabei nicht nur die gewünschte Sprache des Benutzers auf, son-
dern auch unerwünschte Störungen wie Hintergrundgeräusche und Echos welche auf-
grund der akustischen Kopplung zwischen den Lautsprechern und den Mikrofonen
entstehen. Diese Störungen beeinträchtigen in der Regel sowohl die Sprachqualität
als auch die Sprachverständlichkeit und wirken sich negativ auf die Leistung von
automatischen Spracherkennungssystemen aus.

Systeme zur Reduktion akustischer Echos verwenden in der Regel eine Kombina-
tion aus akustischer Echokompensation (AEC) und Restechounterdrückung (RES).
Ein AEC-System verwendet adaptive Filter, um die akustischen Echowege zwis-
chen den Lautsprechern und Mikrofonen zu kompensieren. Wenn kurze AEC-Filter
verwendet werden, um die Rechenkomplexität zu reduzieren und die Konvergen-
zgeschwindigkeit zu erhöhen, kann dies zu einer erheblichen Menge an Reste-
chos führen, die normalerweise mit einem RES-Nach�lter unterdrückt werden. Um
die spektralen Gewichte dieses Nach�lters zu berechnen, ist daher eine genaue
Schätzung der spektralen Leistungsdichte (engl. � power spectral density �, PSD)
des Restechos erforderlich.

Das Hauptziel dieser Arbeit ist es, eine akustische Echokompensation mit geringer
Komplexität für Mehrkanalsysteme zu erreichen, indem neuartige Verfahren zur
teilweisen Aktualisierung der AEC-Filterkoe�zienten sowie modellbasierte PSD-
Schätzer für eine verbesserte Restechounterdrückung entwickelt werden.

Zunächst werden neuartige Auswahlverfahren für die AEC-Filterkoe�zienten
vorgeschlagen, welche ausnutzen, dass die wiedergegebenen Lautsprechersignale
über die Dimensionen Frequenz, Kanäle und Zeit oft dünn besetzt sind. Dies führt
zu e�zienten Teilaktualisierungen von Mehrkanal-AEC-Filtern im Teilbandbereich
(�sparse updates�). Das vorgeschlagene Verfahren zur dynamischen Verteilung des für
das Filter-Update verfügbaren Aufwands verwendet die Resourcen zwar hauptsäch-
lich in Bereichen groÿer Signalmagnituden, vermeidet es jedoch Bereiche mit gerin-
gen Signalmagnituden gänzlich zu vernachlässigen. Simulationsergebnisse für sowohl
synthetische als auch reale Mehrkanal-Eingangssignale zeigen, dass dieses Verfahren
bei deutlich reduzierten Kosten (ca. 28%) eine vergleichbare Güte der Echokompen-
sation wie die vollständige Aktualisierung der Filterkoe�zienten erzielt.

Zweitens werden neuartige signalbasierte Methoden zur PSD-Schätzung des späten
Restechos im Online-Modus vorgestellt. Das PSD des späten Restechos wird dabei
mit einem Filter mit unendlich langer Impulsantwort (IIR) bestimmt welches auf
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das PSD des Lautsprechersignals angewendet wird. Die Filterparameter werden
hierbei frequenzabhängig optimiert. Es werden mehrere signalbasierte Verfahren
zur Echtzeitschätzung der Parameter betrachtet, welche auf den Prinzipien des
Ausgangs- und des Gleichungsfehlers beruhen und die Parameter durch Minimierung
einer gemeinsamen Kostenfunktion bestimmen. Simulationsergebnisse, die sowohl
auf künstlich erzeugten als auch auf gemessenen Impulsantworten basieren, zeigen,
dass die Ausgangsfehlermethode, welche den mittleren quadratischen logarithmis-
chen Fehler (MSLE) minimiert deutlich bessere Ergebnisse erzielt als bisher bekan-
nte Verfahren. Hierbei wird die Güte der Parameterschätzung, die Genauigkeit der
PSD-Schätzung sowie das Verhalten des Gesamtsystems hinsichtlich der Unterdrück-
ung der Restechos zum Vergleich herangezogen.

Drittens wird ein neuartiges Modell für das PSD des frühen Restechos vorgeschla-
gen und mit dem IIR-Filter-Modell für das PSD des späten Restechos kombiniert.
Dabei entsteht ein neuartiges Modell für das PSD des gesamten Restechos. Hierbei
wird das PSD des frühen Restechos durch einen zeitlich gleitenden Mittelwert auf
dem PSD der Lausprechersignale dargestellt welcher durch einen Kopplungsfaktor
auf das zu schätzende PSD des frühen Restechos abgebildet wird. Weiter werden sig-
nalbasierte Methoden vorgeschlagen welche auf der Methode des Ausgangsfehlers
beruhen und nun alle drei Parameter des neuartigen Gesamtmodells gemeinsam
schätzen. Auch hier wird als Kostenfunktion der MSLE minimiert. Die Ergebnisse
der Simulationen zeigen, dass die Ausgangsfehlermethode, hinsichtlich Güte der
Parameterschätzung sowie der Genauigkeit der PSD-Schätzung auch hier deutlich
bessere Ergebnisse erzielt als vergleichbare bereits bekannte Verfahren. Im Vergle-
ich zu den momentan bekannten RES-Methoden liefert die vorgeschlagene Methode
den besten Wert für das segmentelle �Speech-to-Speech-Distortion Ratio� (ca. 2-5
dB besser) und erreicht gleichzeitig den besten Wert für die segmentelle Restecho-
Dämpfung (ca. 1-2 dB besser).
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GLOSSARY

Acronyms and abbreviations

3DM three-dimensional M-Max

AEC acoustic echo cancellation

AP a�ne projection

cXM center-clipping exclusive-maximum

DEA dynamic e�ort allocation

DNN deep neural network

EE equation error

ERE early residual echo

ERLE echo return loss enhancement

FEA �xed e�ort allocation

FFT fast Fourier transform

FIR �nite impulse response

FLMS fast least mean squares

IIPNLMS improved IPNLMS

IIR in�nite impulse response

IPMDF improved proportionate multidelay �ltering

IPNLMS improved proportionate normalized least mean squares

IR impulse response

LEM loudspeaker-enclosure-microphone

LRE late residual echo

LSD log spectral distance

MAEC multichannel acoustic echo cancellation

MDF multidelay �ltering

MSE mean squared error

MSLE mean squared log error

NEC network echo cancellation

NL non-linear

NLMS normalized least mean squares

OE output error
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PB-FDAF partitioned block frequency-domain adaptive �ltering

PLR pseudo-linear regression

PNLMS proportionate normalized least mean squares

PSD power spectral density

PUNLMS partial update normalized least mean squares

REA residual echo attenuation

RES residual echo suppression

RIR room impulse response

RLS recursive least squares

RPE recursive prediction error

SC-IPMDF sparseness-controlled IPMDF

SC-IPNLMS sparseness-controlled IPNLMS

SPU selective-partial-update

SPUNLMS selective-partial-update normalized least mean squares

SRER speech-to-residual echo ratio

SSDR speech-to-speech distortion ratio

STFT short-time Fourier transform

UFLMS unconstrained fast least mean squares

WOLA weighted overlap-add

XM exclusive-maximum

x



CONTENTS

1 Introduction 1
1.1 Acoustic scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Low-complexity acoustic echo cancellation . . . . . . . . . . . . . . . 4

1.2.1 Partial-update adaptive �ltering using tap selection schemes . 5
1.2.2 Frequency-domain and subband-domain processing . . . . . . 8

1.3 Residual echo suppression . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Residual echo due to �lter misalignment . . . . . . . . . . . . 10
1.3.2 Residual echo due to under-modeling of the echo path . . . . 11

1.4 Outline of the thesis and main contributions . . . . . . . . . . . . . . 12

2 E�cient multichannel acoustic echo cancellation using con-

strained tap selection schemes in the subband domain 17
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Tap selection schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 3D M-Max (3DM) scheme . . . . . . . . . . . . . . . . . . . . 24
2.4.2 SPU scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 1D M-Max schemes . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Simulations, results and discussion . . . . . . . . . . . . . . . . . . . 31
2.5.1 Signals and algorithmic parameters . . . . . . . . . . . . . . . 31
2.5.2 Performance measures . . . . . . . . . . . . . . . . . . . . . . 32
2.5.3 Sparsity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 Analysis of tap selection schemes for synthetic signals . . . . 36
2.5.5 Analysis of tap selection schemes for real-world signals . . . . 40

2.6 Computational e�ort . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Online estimation of reverberation parameters for late residual

echo suppression 45
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Signal model and AEC system . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Acoustic echo cancellation . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Residual echo suppression . . . . . . . . . . . . . . . . . . . . 49

3.4 Model for LRE PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Parameter estimation methods . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Output error method . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Equation error method . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Gradient-descent-based algorithms . . . . . . . . . . . . . . . . . . . 56
3.6.1 Algorithms for output error method . . . . . . . . . . . . . . 57
3.6.2 Algorithm for equation error method . . . . . . . . . . . . . . 59

xi



xii contents

3.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.2 Algorithmic parameters . . . . . . . . . . . . . . . . . . . . . 61
3.7.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Joint online estimation of early and late residual echo PSD for

residual echo suppression 71
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Signal model, AEC and post�lter systems . . . . . . . . . . . . . . . 73

4.3.1 Acoustic echo cancellation . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Residual echo suppression . . . . . . . . . . . . . . . . . . . . 75

4.4 Models for early and late residual echo PSD . . . . . . . . . . . . . . 77
4.4.1 Model for early residual echo PSD . . . . . . . . . . . . . . . 77
4.4.2 Model for late residual echo PSD . . . . . . . . . . . . . . . . 78

4.5 Parameter estimation methods . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 State-of-the-art methods . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Joint parameter estimation methods . . . . . . . . . . . . . . 80
4.5.3 Recursive prediction error (RPE) . . . . . . . . . . . . . . . . 83
4.5.4 Pseudo linear regression (PLR) . . . . . . . . . . . . . . . . . 83

4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.1 Acoustic conditions . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.2 Algorithmic parameters . . . . . . . . . . . . . . . . . . . . . 85
4.6.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 86
4.6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion and further research 93
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Further research directions . . . . . . . . . . . . . . . . . . . . . . . . 96

A Appendix for Chapter 3 99
a.1 Derivation of model for late residual echo PSD . . . . . . . . . . . . 99
a.2 Modi�ed version of PSD estimation method in [24] . . . . . . . . . . 101

B Appendix for Chapter 4 103
b.1 Original and modi�ed versions of Favrot's method . . . . . . . . . . 103
b.2 Coupling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

bibliography 105



LIST OF FIGURES

Fig. 1.1 A typical acoustic scenario in which a hands-free speech communica-
tion device is used, with desired speech from the user and undesired
interferences such as acoustic echo, reverberation and background
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fig. 1.2 An example of an impulse response (reverberation time T60 ≈ 500
ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Fig. 1.3 Schematic illustration of typical LEM and AEC systems, where
x(n), s(n), v(n), d(n), y(n), d̂(n), and e(n) denote the loudspeaker
signal, desired speech, background noise, acoustic echo, microphone
signal, estimated echo signal and the AEC error signal, respectively. 5

Fig. 1.4 Schematic illustration of a typical residual echo suppression (RES)
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1
INTRODUCTION

Hands-free speech communication devices have seen a steady rise in their availabil-
ity and use during the last few decades. Their popularity has been driven primar-
ily due to their ease-of-use, as speech is a highly natural and e�ective means of
communication, coupled with signi�cant improvements in hardware technology and
signal processing algorithms. Hands-free speech communication devices have been
deployed for a wide variety of applications, such as teleconferencing, in-car commu-
nication, assisted learning and as personal assistants. In particular, speech-enabled
consumer electronic devices, such as voice-controlled televisions, smartphones and
portable smartspeakers, have seen a huge boost in sales in recent years due to the
ubiquitousness of automatic speech recognition technology. They are used in a di-
verse range of physical and acoustic environments, which require them to cope with
speci�c and increasingly complex demands imposed by users, acoustic environments
and applications.

Speech-enabled communication devices are typically equipped with one or more
microphones and one or more loudspeakers. In the context of telephony the loud-
speakers play back the voice of the person on the other end of the call, while in
the context of voice-controlled devices the loudspeakers play back, e.g., a speech
prompt or music. In addition to capturing the desired speech from the user, the
microphones also pick up acoustic echo due to the acoustic coupling between the
loudspeakers and the microphones, and other undesired interferences such as back-
ground noise [1�5]. At increased levels, acoustic echo and background noise may de-
grade speech quality, speech intelligibility and the performance of automatic speech
recognition systems [5�8].

Acoustic echo control has been a popular area of research [1�4,9�14], where systems
aiming at eliminating acoustic echo typically employ a combination of acoustic echo
cancellation and residual echo suppression techniques. An acoustic echo cancellation
(AEC) system employs an adaptive �lter to compensate for the acoustic echo path
between the loudspeakers and microphones. When deploying such a system in a
highly reverberant environment, a very long AEC �lter with several thousand taps
is required to accurately model the echo path and e�ectively cancel the acoustic echo.
Using such a long �lter naturally results in large computational cost for updating
the �lter coe�cients and may also lead to slow �lter convergence [1, 10,15].

1
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In order to reduce the computational complexity of the �lter update, several ap-
proaches have been proposed. A popular approach is to reduce the e�ort for up-
dating the AEC �lter by focusing only on the most important �lter taps. Several
so-called tap selection schemes have been proposed for implementing such partial
updates of the AEC �lter [16�20]. A more straight-forward approach for reducing
computational complexity is to reduce the length of the AEC �lter. This, how-
ever, has the undesirable e�ect of the AEC �lter being incapable of modeling the
complete acoustic echo path, possibly leading to a signi�cant amount of residual
echo. Many residual echo suppression post�lters have been proposed, mostly imple-
mented as a spectral weighting in the subband domain [1,13,14,21,22]. To compute
the spectral weights, an accurate estimate of the power spectral density (PSD) of
the residual echo is required, for which several model-based methods have been
proposed [13,14,23,24].

The main objectives of this thesis are to investigate and develop tap selection

schemes for multichannel systems in order to achieve low-complexity acoustic
echo cancellation, and to improve model-based residual echo PSD estimators

in order to achieve e�ective residual echo suppression.

In this chapter, we present a general introduction to the problem, state-of-the art
solutions and an outline of the thesis. Section 1.1 presents the typical acoustic
scenario in which hands-free speech communication devices are deployed. Section
1.2 provides an overview of di�erent techniques that are commonly used to achieve
low-complexity acoustic echo cancellation. Section 1.3 provides an overview of state-
of-the-art residual echo suppression techniques. Section 1.4 presents the main con-
tributions and a chapter-by-chapter overview of the thesis.

1.1 Acoustic scenario

Fig. 1.1 illustrates a typical acoustic scenario in which hands-free speech communi-
cation devices are often used. The device is placed inside an enclosure, such as a
room or a car, and the user can interact with the device using their voice. Based
on the application, environment and the physical design of the device, the desired
speech from the user may become heavily corrupted by multiple undesired inter-
fering sources. This presents many challenges which need to be tackled in order to
achieve high-quality speech communication.

A major source of interference in such a scenario is the acoustic echo, which occurs
when the microphone picks up sound radiated by the loudspeaker and its re�ections
against the borders of the enclosure as well as against other objects [1, 2]. In the
context of telephony, the person on the other end of the call, referred to as the far-end
speaker, may become annoyed by listening to their own voice with a certain delay,
thereby hampering communication. For voice-controlled devices, acoustic echo may
cause the speech recognizer to transcribe the user commands incorrectly.

The acoustic echo path between the loudspeaker and the microphone inside this
loudspeaker-enclosure-microphone (LEM) system can be described by an impulse
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Fig. 1.1: A typical acoustic scenario in which a hands-free speech communication device
is used, with desired speech from the user and undesired interferences such as
acoustic echo, reverberation and background noise.

response (IR). Fig. 1.2 shows a typical IR of an LEM system, which is characterized
by the following three components [25]:

� direct path - initial peak corresponding to the direct sound, arriving at the
microphone at a delay depending on the distance between the loudspeaker
and the microphone,

� early re�ections - distinct impulses with relatively large amplitudes, dependent
on the geometry of the enclosure and the positioning of the device within the
enclosure, and

� late re�ections - densely-spaced impulses with relatively small amplitudes,
decaying in nature; also known as the reverberant part.

An important room acoustical metric is the reverberation time (T60), which is the
time it takes for sound energy to decay by 60 dB compared to the direct sound
component [25, 26]. The reverberation time typically depends on the geometry of
the enclosure and the re�ectivity of the surfaces [27], with larger enclosures typically
characterized by larger reverberation times. In [25] it has been shown that the T60
is generally frequency-dependent. A statistical reverberation model for an IR was
proposed in [28], which describes the late reverberant part of an IR as a realization
of a stochastic process that decays exponentially at a rate proportional to the T60.
In [26], statistical methods were introduced to calculate the reverberation time of
an enclosure irrespective of its geometry, while in [29], the T60 was estimated in a
frequency-independent manner via line-�tting on the energy decay curve of the IR.
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Fig. 1.2: An example of an impulse response (reverberation time T60 ≈ 500 ms)

1.2 Low-complexity acoustic echo cancellation

An AEC system employs an adaptive �lter to compensate for the acoustic echo
path between the loudspeaker and the microphone [1,2,9,10]. Fig. 1.3 illustrates an
AEC system, consisting of an adaptive �nite impulse response (FIR) �lter, which
takes the loudspeaker signal as input, and generates an estimate of the acoustic
echo signal. This estimated echo signal is subtracted from the microphone signal,
with the resulting signal referred to as the AEC error signal. The �lter coe�cients
are updated in order to minimize a cost function, e.g., the energy of the error signal.
From a signal processing perspective, this can be seen as a system identi�cation
problem, where the �lter aims at adaptively estimating the IR of the LEM system.
For a highly reverberant environment, with a T60 of several hundred milliseconds,
this would necessitate the use of a long FIR �lter with several thousand �lter taps
in order to e�ectively reduce the acoustic echo. This would result in large computa-
tional cost and large memory requirements for the �lter update, and may also lead
to slow �lter convergence [1,10,15]. Thus, a trade-o� exists between computational
cost and echo cancellation performance, such that the AEC �lter length should be
carefully chosen for AEC systems in challenging acoustic scenarios.

In order to update the adaptive �lter, many algorithms such as the normalized least
mean squares (NLMS), a�ne projection (AP) and recursive least squares (RLS)
have been proposed [1, 15]. These algorithms di�er in terms of the cost function
minimized, their �lter convergence and tracking behaviour, as well as their com-
putational complexity. On the one hand, the NLMS algorithm delivers the slowest
convergence and tracking performance among these algorithms, with the RLS algo-
rithm delivering the fastest initial convergence and the AP algorithm delivering the
fastest tracking performance, respectively [10]. On the other hand, the NLMS algo-
rithm has the lowest computational complexity and memory requirements among
these algorithms, while the AP and RLS algorithms have higher computational
complexity as well as large memory requirements [1].
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Fig. 1.3: Schematic illustration of typical LEM and AEC systems, where x(n), s(n), v(n),
d(n), y(n), d̂(n), and e(n) denote the loudspeaker signal, desired speech, back-
ground noise, acoustic echo, microphone signal, estimated echo signal and the
AEC error signal, respectively.

As the aim of this thesis is to achieve low-complexity AEC, we will only consider
the NLMS algorithm for updating the adaptive �lter. In order to further reduce
the computational complexity, in Section 1.2.1 we give an overview of adaptive al-
gorithms that employ tap selection schemes for partially updating the AEC �lter.
Section 1.2.2 presents an overview of frequency and subband-domain adaptive al-
gorithms which are often used to further reduce computational cost and to enable
frequency-selective �lter updates.

1.2.1 Partial-update adaptive �ltering using tap selection schemes

In order to reduce the computational complexity of the AEC �lter update, a number
of partial-update adaptive �ltering algorithms have been proposed [16�20, 30�32],
which save computations by updating only a �xed subsetM of allN �lter coe�cients
in each iteration. Most of these algorithms are variants of the NLMS algorithm and
use tap selection schemes based on di�erent criteria to determine which �lter taps
should be selected for update in each iteration. In Section 1.2.1.1, we discuss tap
selection schemes based on prede�ned schedules. In Sections 1.2.1.2 and 1.2.1.3, we
discuss tap selection schemes which exploit the sparsity present in the input signals
and the echo path, respectively, while in Section 1.2.1.4, we discuss tap selection
schemes for multichannel AEC systems.
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1.2.1.1 Schemes based on prede�ned schedules

A simple criterion for performing tap selection is to use a prede�ned scheduling
scheme. Notable examples are the sequential-block NLMS algorithm [16], which
updates the �lter coe�cients sequentially by updating a continuous block of M
coe�cients in each iteration, and the sequential NLMS algorithm [17], which updates
the �lter coe�cients periodically by updating each coe�cient only once every N

M
iterations. These algorithms have almost no computational overhead but su�er from
slow convergence as more iterations are needed to update all �lter coe�cients an
equal number of times.

1.2.1.2 Schemes based on exploiting the sparsity of the input signal

In contrast to prede�ned scheduling schemes, most partial-update algorithms use
tap selection schemes which exploit some underlying information about the acous-
tic environment, e.g., the sparsity present in the input loudspeaker signal. A signal
can be considered sparse if a large fraction of its energy is concentrated in a small
fraction of its samples. Since the loudspeaker signal is typically a speech or mu-
sic signal, it usually exhibits signi�cant sparsity across frequency, due to spectrally
coloured content, and across time, due to non-stationarity. One of the �rst proposed
algorithms which performs tap selection by exploiting input signal sparsity is the
max-NLMS algorithm [30], which updates the �lter coe�cient with the largest mag-
nitude tap-input, i.e., only 1 out of N �lter coe�cients is updated in each iteration.
The M-Max NLMS algorithm [18] extends this concept by updating the �lter co-
e�cients with the M largest magnitude tap-inputs in each iteration. For a given
M , this algorithm yields the closest possible performance compared to full-update
NLMS in terms of minimizing the squared a-posteriori error [18]. The selective-
block-update NLMS [32] and the selective-partial-update NLMS (SPUNLMS) [19]
algorithms extend the M-Max NLMS algorithm to coe�cient blocks in order to
reduce memory requirements. The SPUNLMS algorithm divides the N -tap adap-
tive �lter into U equal-sized blocks, ranks them according to the squared Euclidean
norm of their tap-inputs and updates all �lter coe�cients in the top U · M

N ranked
blocks in each iteration. Compared to prede�ned scheduling schemes, these tap se-
lection schemes have higher computational overhead but generally outperform them
in terms of convergence speed and AEC performance. Compared to the full-update
NLMS algorithm, they have lower computational complexity but usually su�er from
decreased convergence speed.

1.2.1.3 Schemes based on exploiting the sparsity of the impulse response

It was shown in [33] that using the full-update NLMS algorithm gives an unsatisfac-
tory performance when the echo path is sparse. Therefore, a whole family of partial-
update adaptive �ltering algorithms have been proposed for applications with sparse
IRs, such as network echo cancellation (NEC) [34�40]. When an IR is sparse, a small
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number of its samples contain the majority of its energy, and therefore contribute
the most to the echo signal. The proportionate NLMS (PNLMS) algorithm [35]
exploits the sparsity of the IR to perform tap selection by updating each �lter co-
e�cient with a step-size proportionate to its magnitude. This enables the larger
coe�cients to reach their optimal values in fewer number of iterations, resulting in
a faster initial reduction of the echo. The PNLMS algorithm has been shown to
outperform algorithms which use uniform step-sizes for all coe�cients, such as the
NLMS algorithm, for sparse system identi�cation but performs poorly for non-sparse
and/or time-varying systems. In order to tackle these problems, improved versions
of the PNLMS algorithm have been proposed. The improved PNLMS (IPNLMS)
algorithm [36] updates the coe�cients using a mix of the NLMS and PNLMS algo-
rithm in every iteration with the help of a single weighting factor. The sparseness-
controlled IPNLMS (SC-IPNLMS) algorithm [40] incorporates a sparsity metric to
compute this weighting factor. The improved IPNLMS (IIPNLMS) algorithm [37]
enables the amount of proportionate and non-proportionate update of each coe�-
cient to be controlled independently of each other, i.e., a di�erent weighting factor
for each coe�cient. Finally, the sparse partial-update NLMS algorithm [38] per-
forms tap selection by exploiting the sparsity of both the tap-inputs as well as the
echo path. In each iteration, it selects those M �lter taps for update which yield
the largest magnitude outputs.

Since acoustic IRs are not particularly sparse, in this thesis we will not consider any
tap selection schemes which exploit the sparsity of the echo path and instead only
focus on tap selection schemes which exploit input signal sparsity.

1.2.1.4 Schemes for multichannel acoustic echo cancellation

Many modern voice-controlled entertainment devices, such as surround-sound sys-
tems and smart TVs, are equipped with multiple microphones and loudspeakers in
order to deliver a higher-quality experience to the users. In order to compensate for
the acoustic coupling between each loudspeaker and each microphone, such devices
need to employ multichannel acoustic echo cancellation (MAEC), with a separate
adaptive FIR �lter used to estimate the IR between each loudspeaker-microphone
pair. This drives up the computational load by a multiplicative factor when using
the full-update NLMS algorithm.

For most applications, the loudspeaker signals are heavily correlated with each other.
For example, in the context of teleconferencing, the signals captured by the micro-
phones on the transmitting device are �ltered versions of the same sound source (the
far-end speaker). It has been shown that for such systems a non-uniqueness prob-
lem exists [41,42], i.e., the adaptive �lters are not able to uniquely identify the IRs
between the loudspeakers and microphones (of the receiving device). This by itself
would not be a major problem as long as the acoustic conditions in the transmission
room are �xed, as the multiple adaptive �lters would nevertheless work together to
minimize the acoustic echo. However, it has been shown that an abrupt change in
the characteristics of the loudspeaker signals, e.g., due to a change in the position
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of the transmitting device with respect to the far-end speaker, would require the
�lters to start the adaptation process afresh.

Even though the non-uniqueness problem is somewhat softened in practice due to
the so-called tail e�ect [42], it has been shown that the multichannel tap-input
covariance matrix is highly ill-conditioned due to the high coherence between the
input signals [42, 43], resulting in large �lter misalignment and slow convergence
speed [41�43]. To tackle this challenging problem, several techniques have been
proposed, aiming at decorrelating the input signals while not a�ecting their au-
dio quality. Potential solutions include using interleaving comb �lters [41], adding
spectrally-shaped random noise to the input signals [44], modulating the input sig-
nals [45], using time-varying all-pass �lters [46] and non-linear processing of the
input signals [2,42]. In addition, tap selection schemes have been proposed to specif-
ically tackle the misalignment problem for stereo (2-channel) AEC systems such as
the exclusive-maximum (XM) scheme [47�49] and the center-clipping XM (cXM)
scheme [50]. The XM scheme improves the condition number of the input covari-
ance matrix by prohibiting the selection of the same �lter tap index in both �lters for
update, and at the same time maximizes the squared Euclidean norm of the selected
tap-inputs in each iteration. The XM tap selection scheme was combined with non-
linear processing of the input signals to yield the XMNL-NLMS algorithm [47�49].
The cXMNL-NLMS algorithm [50] further improves the convergence speed by em-
ploying a center-clipping algorithm, which makes it more robust to the positioning
of the transmitting device with respect to the far-end speaker.

Even though tap selection schemes have been shown to alleviate the misalign-
ment problem for MAEC systems, our main motivation for developing tap selec-
tion schemes is to reduce the computational complexity compared to full update
algorithms.

1.2.2 Frequency-domain and subband-domain processing

In order to further reduce computational cost and allow for frequency-selective �lter
updates, frequency-domain and subband adaptive �lters have been proposed [51,52].
A comprehensive comparison of the advantages and disadvantages between time-
domain, frequency-domain and subband processing techniques in terms of compu-
tational complexity, performance and signal delay has been provided in [1].

Frequency-domain adaptive �ltering algorithms such as fast-LMS (FLMS) [53] and
unconstrained FLMS (UFLMS) [54] incorporate a block updating strategy, where
the input block length is typically chosen equal to the �lter length N . The convo-
lution, �ltering and adaptation operations are performed in the frequency domain
using the e�cient fast Fourier transform (FFT) [55], where the output is computed
once every N samples using the overlap-save method [15,51], thereby reducing com-
putational cost. This however introduces a delay of N samples between the input
and output signals, which may not be desirable for some applications. Therefore,
the multidelay �ltering (MDF) algorithm was proposed in [56], where the �lter is
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partitioned into U equal-sized blocks, thereby reducing the delay by a factor of U
compared to the FLMS algorithm. Tap selection schemes such as the M-Max and
SP schemes have been incorporated into the MDF algorithm to further reduce com-
plexity and improve convergence for NEC applications [57]. Additionally, algorithms
which exploit the sparsity of the echo path such as IPMDF [58] and SC-IPMDF [59]
have been proposed based on the MDF algorithm for NEC and AEC applications,
respectively.

In subband adaptive algorithms, the input (loudspeaker) signal and the microphone
signal are split into multiple frequency subbands using an analysis �lterbank [60],
e.g., using the short-time Fourier transform (STFT). In each subband, the echo
estimate is generated via convolution of the input signal and the subband adaptive
�lter, which is then subtracted from the microphone signal to yield the subband
error signal. The �lter adaptation is performed independently in each subband,
which allows for frequency-dependent step-size control. A synthesis �lterbank is then
used to reconstruct the error signal back into the time domain using the weighted
overlap-add (WOLA) method [1, 61].

In this thesis, subband processing using an FFT-based analysis �lterbank and in-
verse FFT synthesis �lterbank is considered, and the subband adaptive �lters used
for MAEC are updated using the subband NLMS algorithm. In order to further
reduce computational cost, di�erent tap selection schemes are implemented in the
subband domain which exploit the sparsity present in the multichannel input signals
across frequency, channels and time.

1.3 Residual echo suppression

In practice, the AEC �lter is typically unable to perfectly estimate the echo path,
resulting in residual echo due to the mismatch between the true and estimated echo
paths [1, 13]. As the main energy content of the IR of an LEM system is typically
concentrated in the �rst 50-100 ms [25,27], a short AEC �lter is often used in practice
in order to save computational cost and increase convergence speed. However, this
under-modeling of the echo path may result in a signi�cant amount of late residual
echo, especially in reverberant environments. Residual echo may also occur due to
sudden changes in the echo path, or due to non-linear echo components caused by
low-cost hardware.

In order to achieve high-quality speech communication, it is necessary to e�ectively
suppress the residual echo. Residual echo suppression (RES) is typically performed
by means of a subband-domain post�lter [1,13,14,21,22,62�67], as illustrated in Fig.
1.4. Although multi-frame post�lters have been proposed [68], most post�lters apply
a real-valued weight in each subband to attenuate the residual echo. In addition to
the residual echo, the post�lter may also be used to suppress other interferences
such as reverberation [14] and background noise [21,22]. In addition to the post�lter,
non-linear post-processing may further be applied [1]. The RES post�lter typically
requires an estimate for the PSD of the residual echo in order to compute the
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Fig. 1.4: Schematic illustration of a typical residual echo suppression (RES) system, where
e(n) and ẽ(n) denote the AEC error signal and its post�ltered version, respec-
tively.

spectral weights for each subband, which makes it necessary to accurately estimate
the residual echo PSD. In this thesis, we will only consider residual echo caused by
linear echo components, which can further be divided into early residual echo due to
the mismatch between the true and the estimated echo paths (�lter misalignment),
and late residual echo due to under-modeling of the echo path by a short AEC �lter.
In Sections 1.3.1 and 1.3.2, we present models and estimators for the PSD of the
early and late residual echo components, respectively.

1.3.1 Residual echo due to �lter misalignment

In [1], it is shown that the early residual echo PSD is related to the PSD of the loud-
speaker signal as well as the amount of �lter misalignment. It is proposed to model
the relationship between the PSD of the loudspeaker signal and the early residual
echo PSD using a single-tap real-valued frequency-dependent coupling factor, where
the coupling factor represents the squared magnitude of the �lter misalignment in
the subband domain. In [64], it is proposed to estimate the early residual echo PSD
by applying a coupling factor to the PSD of the estimated echo signal (instead of
the PSD of the loudspeaker signal), while in [65] two coupling factors are used to
separately estimate the PSD of the early residual echo due to linear and non-linear
echo components, respectively. In [69], a pure acoustic echo suppression system is
considered, i.e., without an AEC �lter, and a coupling factor is applied to the PSD
of the loudspeaker signal to directly estimate the acoustic echo PSD. In each of these
cases, the coupling factor is estimated only during periods of local speech absence,
i.e., when the microphone signal is dominated by the residual echo, by computing
a smoothed ratio between the PSD of the microphone signal and the PSD of the
loudspeaker signal (or the PSD of the estimated echo signal). A potential drawback
of using an estimator based on a model with a single parameter, such as a single-tap
coupling factor, is that it may not be completely successful in estimating the entire
residual echo due to �lter misalignment, as the misalignment may be spread over
all taps of the AEC �lter [1, 70,71].
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1.3.2 Residual echo due to under-modeling of the echo path

Several estimators have been proposed to estimate the PSD of the residual echo that
occurs due to the de�cient length of the AEC �lter [13, 14, 23]. These estimators
assume that the AEC �lter is able to compensate for the direct path and early
re�ections, but is not long enough to model the late re�ections, thereby leading
to late residual echo. A similar estimator has also been proposed in the context
of acoustic echo suppression (i.e., without an AEC �lter) [24]. The estimators in
[13, 14, 24] are based on the statistical reverberation model for an IR proposed
in [28], which describes the late reverberant part of an IR as a realization of a
stochastic process that decays exponentially at a rate proportional to the T60, while
the estimator in [23] is based on a similar statistical reverberation model for an
IR proposed in [72]. All estimators compute the PSD of the late residual echo
recursively and rely on two model parameters: the reverberation scaling parameter,
which is related to the initial power of the late residual echo, and the reverberation
decay parameter, which is related to the T60 of the IR. Both channel-based as well as
signal-based methods have been proposed to estimate these two model parameters.

Channel-based methods estimate the parameters from the estimated echo path,
i.e., the coe�cients of the converged AEC �lter [13, 14]. In [13], the reverberation
parameters are assumed to be frequency-independent and are estimated by applying
a direct �t to the log-envelope of the AEC �lter coe�cients. In [14], the reverberation
parameters are assumed to be frequency-dependent and are estimated in online
mode. First, a linear curve is �tted in each subband to an appropriately selected
portion of the energy decay curve of the AEC �lter coe�cients. The slope of this
line is then used to estimate the T60 and the reverberation decay parameter. The
reverberation scaling parameter is eventually estimated by extrapolating the energy
of the AEC �lter coe�cients using the estimated reverberation decay parameter.

In contrast to channel-based methods, signal-based methods estimate the reverbera-
tion parameters directly from the loudspeaker and residual echo signals. In [23], the
parameters are assumed to be frequency-dependent and estimated in o�ine mode
(i.e., batch processing). First, the reverberation decay parameter is estimated by
minimizing the mean squared log error (MSLE) between the AEC error PSD and
the estimated late residual echo PSD. The estimated reverberation decay parame-
ter is then used to estimate the reverberation scaling parameter by minimizing the
mean squared error (MSE) between the AEC error PSD and the estimated late
residual echo PSD. In [24], an online method exploiting higher-order-statistics has
been proposed to estimate the frequency-dependent parameters independently of
each other.

It is important to note that channel-based methods work better when longer AEC
�lters are used, as the AEC �lter coe�cients are more likely to successfully capture
the decay of the late reverberant part of the IR. Although signal-based methods
can in principle be used for any AEC �lter length, the AEC �lter should still be
long enough to compensate for the direct path and early re�ections, such that the
assumed reverberation model is valid. To the best of our knowledge, no signal-based
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methods have been proposed that jointly estimate both reverberation parameters
by minimizing a single cost function in online mode.

1.4 Outline of the thesis and main contributions

The main objectives of this thesis are to develop and evaluate low-complexity adap-
tive algorithms for multichannel acoustic echo cancellation (MAEC) and model-
based algorithms for residual echo suppression (RES). Throughout the thesis, we
consider subband processing using an FFT-based analysis �lterbank, where we use
subband adaptive �lters for MAEC which are updated using the subband NLMS
algorithm. Aiming at reducing the computational complexity of the �lter update in
MAEC systems, we focus on tap selection schemes which exploit the sparsity in the
multichannel input signals. Aiming at improving the RES performance, we focus on
model-based residual echo PSD estimators based on joint estimation of all model
parameters.

The main contributions of this thesis can be summarized as follows. First, we
propose novel tap selection schemes which exploit input signal sparsity

across the dimensions of frequency, channels and time, leading to e�cient
partial updates of adaptive MAEC �lters in the subband domain. In particular,
the proposed dynamic e�ort allocation scheme proportionately selects more �lter
taps for update in subbands and channels with larger magnitude tap-inputs while
not ignoring the �lters with smaller magnitude tap-inputs. Simulation results show
that the proposed tap selection scheme achieves almost identical echo cancellation
performance compared to updating all �lter taps at a signi�cantly reduced computa-
tional cost. Second, we propose novel signal-based methods to estimate the

late residual echo PSD in online mode. The late residual echo PSD is mod-
eled using an in�nite impulse response (IIR) �lter on the PSD of the loudspeaker
signal, based on frequency-dependent reverberation scaling and decay parameters.
We propose several signal-based methods based on output error and equation er-
ror to jointly estimate both reverberation parameters by minimizing a single cost
function in online mode. Simulation results show that the output error method
minimizing the MSLE cost function outperforms state-of-the-art o�ine and online
methods in terms of parameter estimation accuracy, late residual echo PSD estima-
tion accuracy and residual echo suppression performance. Third, we propose a

novel model combining early and late residual echo PSDs and propose

signal-based methods to jointly estimate all required model parameters

in online mode. We propose to model the early residual echo PSD using a moving
average �lter on the PSD of the loudspeaker signal, based on a frequency-dependent
coupling factor. The late residual echo PSD is again modeled using an IIR �lter
based on frequency-dependent reverberation scaling and decay parameters. We pro-
pose signal-based methods based on output error to jointly estimate all three model
parameters, i.e., the coupling factor and the reverberation scaling and decay pa-
rameters, by minimizing a single MSLE cost function in online mode. Simulation
results show that the proposed output error method with the recursive prediction
error algorithm outperforms state-of-the-art o�ine and online methods in terms of
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Chapter 2
Efficient MAEC using
tap selection schemes

Chapter 3
Online estimation
of reverberation

parameters for late RES

Chapter 4
Joint online estimation

of early and late residual
echo PSD for RES

Chapter 5
Conclusions and further research

Fig. 1.5: Structure of the thesis.

residual echo PSD estimation accuracy, maximizing residual echo suppression and
minimizing speech distortion.

In the remainder of this section, we provide a chapter-by-chapter overview of this
thesis, summarizing the content and the contributions of each chapter. A schematic
overview of the thesis is given in Fig. 1.5.

In Chapter 2, we start by analyzing the sparsity present in real-world multichan-
nel signals across the three dimensions of frequency, channels and time. Based on
this analysis, we develop tap selection schemes which exploit this sparsity for par-
tially updating the adaptive �lters of MAEC systems. We �rst investigate the three-
dimensional M-Max (3DM) scheme, which is an extension of the M-Max scheme
for the single-channel scenario to the multichannel scenario, and the SPU scheme,
which only selects taps in �lters with the largest magnitude tap-inputs. Since these
tap selection schemes are based on the M-Max criterion, they completely ignore the
�lters with the smallest magnitude tap-inputs for update. In order to overcome this
problem, we propose two novel tap selection schemes which do not ignore any �lters
for update. On the one hand, the �xed e�ort allocation (FEA) scheme selects a �xed
number of �lter taps in each subband and channel, thereby not exploiting signal
sparsity across frequency and channels. On the other hand, the dynamic e�ort allo-
cation (DEA) scheme exploits signal sparsity by dynamically allocating �lter taps in
a proportionate manner, i.e., more taps are selected in �lters with relatively larger
magnitude tap-inputs while the �lters with the smallest magnitude tap-inputs are
not completely ignored. Simulation results for speech and multichannel music sig-
nals show that the 3DM scheme and the proposed DEA scheme deliver the best echo
cancellation performance. These schemes achieve almost identical echo return loss
enhancement scores compared to full �lter update (about 1 dB worse), even when
only 20% of all �lter taps are updated in every frame. However, the 3DM scheme
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still requires about 94% of the total computational cost needed for full �lter update
when updating only 20% of all �lter taps, while the proposed DEA scheme requires
only about 28%, thereby signi�cantly saving computational cost. This chapter has
been published as a journal paper in the EURASIP Journal on Advances in Signal
Processing [73]. Another publication related to this chapter is [74].

In Chapter 3, we model the relationship between the PSD of the late residual echo
(caused by under-modeling of the echo path by the AEC �lter) and the PSD of
the loudspeaker signal using an IIR �lter with two frequency-dependent coe�cients,
namely the reverberation scaling and decay parameters. We propose two signal-
based methods (output error and equation error) to jointly estimate both coe�cients
of the IIR �lter by minimizing a single MSE or MSLE cost function in online mode.
These signal-based methods were originally proposed to estimate the coe�cients of
time-domain IIR �lters and we apply them to PSDs to estimate the reverberation
parameters. For the output error method, we use gradient-descent-based algorithms
such as recursive prediction error (RPE) and pseudo-linear regression (PLR) [75] to
jointly estimate both reverberation parameters. The proposed parameter estimation
methods are �rst evaluated in an idealistic setting using arti�cially generated IRs, no
�lter misalignment, no near-end speech and no background noise signals. Simulation
results show that the proposed output error method with the RPE algorithm when
minimizing the MSLE cost function outperforms all other proposed methods in
terms of estimation accuracy of the reverberation parameters as well as the late
residual echo PSD. This result is similar to the results obtained for o�ine processing.
The proposed methods are then compared with state-of-the-art o�ine and online
parameter estimation methods in a realistic setting using IRs measured in di�erent
rooms, a fully converged subband AEC �lter, near-end speech and background noise
signals. Simulation results show that the proposed output error method with the
RPE algorithm when minimizing the MSLE cost function outperforms state-of-the-
art methods, as well as all other proposed methods, in terms of estimation accuracy
of the reverberation time and the late residual echo PSD. Additionally, it yields the
best segmental speech-to-speech distortion ratio score (about 5-10 dB better than
most methods), while not losing too much in terms of the segmental residual echo
attenuation score (about 2-3 dB worse than most methods). This chapter has been
published as a journal paper in the IEEE/ACM Transactions on Audio, Speech and
Language Processing [78]. Another publication related to this chapter is [77].

Building upon the methods proposed in Chapter 3 for late residual echo suppres-
sion, in Chapter 4 we consider both late residual echo as well as early residual echo
(caused by �lter misalignment). We propose to model the relationship between the
PSD of the early residual echo and the PSD of the loudspeaker signal using a moving
average �lter with the same �lter length as the subband AEC �lter. Assuming that
the misalignment is spread evenly over all AEC �lter taps, we propose to model
the coe�cients of the moving average �lter using a frequency-dependent coupling
factor. This moving average �lter model for the early residual echo PSD can be
interpreted as extending the single-tap frequency-dependent coupling factor model
over all taps of the AEC �lter. The proposed moving average �lter model for the
early residual echo PSD is combined with the IIR �lter model for the late residual
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echo PSD in Chapter 3 to yield a new model for the residual echo PSD. We propose
signal-based methods to jointly estimate all three model parameters (both reverber-
ation parameters and the coupling factor) in online mode. In particular, based on
the results obtained in Chapter 3, we use the output error method with the RPE
and PLR algorithms and minimize a single MSLE cost function. The proposed meth-
ods estimating the three model parameters (3P) are extensions of the methods in
Chapter 3, which only estimate both reverberation parameters (2P). The proposed
3P methods are �rst compared with their simpli�ed 2P versions in an idealistic set-
ting using arti�cially generated IRs, no near-end speech and no background noise
signals. Simulation results show that the proposed 3P methods yield accurate esti-
mates for all three model parameters as well as the residual echo PSD, irrespective
of the amount of �lter misalignment, with the RPE algorithm performing better
than the PLR algorithm, while the 2P methods fail completely when high amounts
of �lter misalignment are present. The proposed 3P methods are then compared
with state-of-the-art o�ine and online parameter estimation methods in a realistic
setting using IRs measured in di�erent rooms, a pre-converged subband AEC �lter,
near-end speech and background noise signals. Simulation results show that the pro-
posed 3P method with the RPE algorithm outperforms all considered methods in
terms of estimation accuracy of the residual echo PSD and yields the best segmental
speech-to-speech distortion ratio score (about 2-5 dB better than other methods),
while also yielding the best segmental residual echo attenuation score (about 1-2 dB
better than other methods). This chapter has been submitted as a journal paper to
the IEEE/ACM Transactions on Audio, Speech and Language Processing [79].

In Chapter 5, we summarize the main contributions of the thesis and present
suggestions for further research.





2
EFFICIENT MULTICHANNEL ACOUSTIC
ECHO CANCELLATION USING
CONSTRAINED TAP SELECTION SCHEMES
IN THE SUBBAND DOMAIN

2.1 Abstract

Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech
communication and voice-enabled devices. AEC systems employ adaptive �lters to
estimate the acoustic echo paths between the loudspeakers and the microphone(s).
In applications involving surround sound, the computational complexity of an AEC
system may become demanding due to the multiple loudspeaker channels and the
necessity of using long �lters in reverberant environments. In order to reduce the
computational complexity, the approach of partially updating the AEC �lters is
considered in this paper. In particular, we investigate tap selection schemes which
exploit the sparsity present in the loudspeaker channels for partially updating sub-
band AEC �lters. The potential for exploiting signal sparsity across three dimen-
sions, namely time, frequency and channels, is analyzed. A thorough analysis of
di�erent state-of-the-art tap selection schemes is performed and insights about their
limitations are gained. A novel tap selection scheme is proposed which overcomes
these limitations by exploiting signal sparsity while not ignoring any �lters for up-
date in the di�erent subbands and channels. Extensive simulation results using both
arti�cial as well as real-world multichannel signals show that the proposed tap se-
lection scheme outperforms state-of-the-art tap selection schemes in terms of echo
cancellation performance. In addition, it yields almost identical echo cancellation
performance as compared to updating all �lter taps at a signi�cantly reduced com-
putational cost.

2.2 Introduction

Acoustic echo cancellation (AEC) [1, 2] is a key technology used in hands-free tele-
phony and voice-enabled systems. An AEC system consists of an adaptive �lter
which estimates the acoustic echo path between the loudspeaker and the micro-
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phone. Using this estimated echo path, an estimate of the acoustic echo signal is
generated which is then subtracted from the microphone signal. When multiple
loudspeakers are present, as is the case for surround-sound systems, Multichannel
Acoustic Echo Cancellation (MAEC) systems are required [41, 80�82]. These sys-
tems consist of multiple adaptive �lters dedicated to estimate the acoustic echo
paths between each loudspeaker and each microphone, i.e., one �lter per channel.
When employing time-domain MAEC systems in large and/or reverberant rooms,
very long �lters with several thousand taps may be required in order to achieve
e�ective echo cancellation. Using such long �lters requires large computational ef-
fort, both for updating the �lters as well as for generating the acoustic echo signal
estimates.

In order to reduce computational complexity of time-domain adaptive �lters, a
number of tap selection schemes [17�20,31,32,38,83] have been proposed for imple-
menting partial updates of the adaptive �lters. These schemes reduce complexity by
updating only a subset M of all N �lter taps in each iteration, where the subset is
chosen based on a tap selection criterion. Since speech and/or surround-sound enter-
tainment signals usually exhibit signi�cant sparsity across frequency (due to spec-
trally colored content), channels (due to di�erent content in the di�erent loudspeak-
ers) and time (due to non-stationary content), a number of tap selection schemes
have been proposed which exploit the sparsity present in the loudspeaker signals
for partially updating the �lters [18�20,31,32]. The M-Max [18,31] is a well-known
tap selection scheme which exploits signal sparsity by selecting the �lter taps corre-
sponding to the M largest magnitude tap-inputs in each iteration. For a given M ,
this scheme maximizes the energy of the update in each iteration and thereby gives
the closest possible performance to full �lter update in terms of minimizing the
mean squared error. Another tap selection scheme which exploits signal sparsity
is the selective-partial-update (SPU) [19] tap selection scheme, where the N -tap
adaptive �lter is �rst divided into B blocks, which are then ranked according to
the squared Euclidean norm of their respective tap-inputs. Based on this ranking,
in each iteration the top ⌊B · M

N ⌋ blocks, where ⌊·⌋ denotes the �ooring operation,
are selected to be updated. Many other schemes have been proposed which further
improve performance by exploiting the sparseness of the echo path [38, 83]. Since
sparseness of the echo path is more relevant for applications such as network echo
cancellation [2], and not particularly relevant for the considered AEC application
(as acoustic impulse responses are not particularly sparse), we will not consider such
approaches in this paper.

Apart from large computational complexity, MAEC systems also su�er from other
notable problems such as the misalignment problem [41�43]. Since in MAEC systems
the di�erent loudspeaker input signals are typically correlated with each other, the
input covariance matrix may be ill-conditioned, possibly resulting in a large �lter
misalignment and a slow convergence speed. It should be realized that the mis-
alignment problem is typically more severe in the context of speech communication
systems, since the loudspeaker signals are obtained by �ltering the same source
(far-end speaker), as compared to surround-sound systems, where the loudspeaker
signals may be independent of each other. The most common approach to tackle
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the misalignment problem is to decorrelate the tap-inputs, for which several tech-
niques have been proposed in literature [41, 42, 46]. Tap selection schemes such as
the exclusive-maximum (XM) [47�49] have also been proposed to speci�cally tackle
the misalignment problem for stereo AEC applications. The XM scheme improves
the conditioning of the tap-input covariance matrix via exclusive updates of the
two adaptive �lters, i.e., in each iteration the same �lter tap index is never selected
in both channels. In this paper, however, we do not aim to solve the misalignment
problem using tap selection schemes and do not claim to improve the misalignment
performance for highly coherent loudspeaker signals, i.e., our main motivation is
solely computational complexity reduction of MAEC systems.

As an alternative to time-domain adaptive �lters, frequency-domain and subband
adaptive �lters are frequently used as they enable more e�cient and frequency-
dependent �lter updates [1, 15, 51, 53, 56, 84]. Frequency-domain adaptive �lter-
ing algorithms, such as the fast least mean square (FLMS) [53], the partitioned
block frequency-domain adaptive �ltering (PB-FDAF) [84] and the multidelay block
frequency-domain adaptive �ltering (MDF) algorithm [56], are typically based on
the overlap-save method [15, 51] and use the fast Fourier transform (FFT) to e�-
ciently compute the required time-domain convolution and correlation operations.
In [57], the M-Max tap selection scheme has been proposed for frequency-domain
MDF algorithm. Alternatively, adaptive �ltering can be performed using subband
processing, where an analysis �lterbank transforms the time-domain signals into the
subband domain, the �lter adaptation and processing is performed independently
in each subband, and a synthesis �lterbank is used to reconstruct the time-domain
signals. In this paper, we will only consider subband adaptive �lters. More speci�-
cally, we will use the well-known weighted overlap-add (WOLA) method [1,61], i.e.,
using an FFT analysis �lterbank to transform the (windowed) time-domain signals
to the short-time Fourier transform (STFT) domain and an inverse FFT synthe-
sis �lterbank. Such a processing scheme provides a suitable compromise between
computational complexity and latency, and enables to achieve a suitable time and
frequency resolution.

In general, using a tap selection scheme may lead to a signi�cant amount of pro-
cessing overhead, primarily due to the required sorting e�ort. The computational
savings obtained due to partial �lter update are o�set (and may even be exceeded
in some cases) by the additional e�ort required for sorting. Compared to popular
sorting algorithms such as the QUICKSORT routine [85], a more e�cient fast run-
ning algorithm known as the SORTLINE routine [86] has been proposed for sorting
vectors which contain many elements in common with a pre-sorted vector from a
previous iteration, which is often the case with tap-input vectors from one iteration
to the next.

In this paper, we propose and investigate di�erent tap selection schemes in the sub-
band domain for constrained partial updates of subband MAEC �lters. Please note
that in such a framework, the tap selection schemes operate on the magnitudes of
the complex-valued STFT coe�cients. Also, we consider the subband AEC �lter
in each channel to be composed of a number of sub-�lters, i.e., one sub-�lter per
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subband. First, we extend the M-Max tap selection scheme proposed for complex-
valued loudspeaker signals in [57] to the multichannel scenario, thereby applying the
M-Max criterion across three dimensions, i.e., subbands, channels and �lter length.
Then, we present two new tap selection schemes which apply the M-Max criterion
independently in each sub-�lter across �lter length only. The �rst scheme selects the
same number of taps in each sub-�lter, while the second scheme exploits the sparsity
present in the loudspeaker signals across frequency and channels to select taps dy-
namically in the di�erent sub-�lters. Some preliminary results were obtained in [74]
which indicated that signal sparsity present in real-world multichannel entertain-
ment signals can be exploited to e�ciently update the MAEC �lters. The proposed
tap selection schemes are then compared to the SPU tap selection scheme [19] in
the subband domain1.

The remainder of the paper is organized as follows. The signal model is presented
in Section 2.3 and the di�erent tap selection schemes considered are presented in
Section 2.4. Section 2.5 presents a sparsity analysis for several synthetic and real-
world multichannel signals, and the echo cancellation performance obtained when
the di�erent tap selection schemes are used. Section 2.6 discusses the computational
e�ort required for the di�erent tap selection schemes and the computational savings
obtained when performing partial �lter updates.

2.3 Signal model

We consider a loudspeaker�enclosure�microphone (LEM) system with R loudspeak-
ers and a single microphone. The acoustic echo paths between the loudspeakers and
the microphone are assumed to be time-invariant, such that the echo contribution
from the rth loudspeaker at discrete time index n is given by

dr(n) =

Vr−1∑
v=0

hr(v) · xr(n− v), (2.1)

where xr denotes the rth input signal and hr denotes the impulse response corre-
sponding to the rth acoustic echo path, with Vr denoting its length. Considering
near-end speech signal s and near-end noise signal b, the microphone signal y is
given as

y(n) = s(n) + d(n) + b(n), (2.2)

where d(n) =
∑R

r=1 dr(n) denotes the total acoustic echo component.

For the subband-domain processing, an FFT analysis �lterbank of order NFFT is
used to transform the (windowed) time-domain signals into the STFT domain, with

1 It should be noted that the XM tap selection scheme [47�49] cannot be straightforwardly imple-
mented in the subband domain and extended to more than two channels.
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Fig. 2.1: Block diagram of the considered subband MAEC setup. Thin black arrows are
used for signals processed in the time domain, while solid white arrows are used
for signals processed in the subband domain.

the total number of subbands given by K = NFFT

2 + 1. The STFT coe�cient of the
r-th input signal in the k-th subband and ℓ-th frame is computed as

Xr(k, ℓ) =

NFFT−1∑
m=0

xr(ℓ · F +m) ·Wana(m) · e−j 2π
NFFT

km
, (2.3)

where j =
√
−1, F denotes the frameshift andWana denotes the analysis window. In

the remainder of the paper, the terms reference channels and reference spectra will
be used to refer to the loudspeaker signals and their corresponding STFT coe�cients,
respectively.

The subband MAEC system is depicted in Figure 2.1 and consists of R adaptive �l-
ters, i.e., one corresponding to each reference channel, where each �lter is composed
of K sub-�lters with L taps each. Thus, the total number of �lter taps is given as

N = L ·K ·R, (2.4)

i.e., L taps × K subbands × R channels.
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The sub-�lter for the kth subband in the rth channel is denoted as Ĥr(k, ℓ) and
consists of L complex-valued coe�cients

Ĥr(k, ℓ) =
[
Ĥ1

r (k, ℓ) . . . Ĥi
r(k, ℓ) . . . ĤL

r (k, ℓ)

]T
, (2.5)

where Ĥi
r(k, ℓ) denotes the i

th �lter tap and ·T denotes the transpose operator. The
tap-input vector to the sub-�lter Ĥr(k, ℓ) also consists of L complex-valued spectral
coe�cients and is given as

Xr(k, ℓ) =
[
Xr(k, ℓ) . . . Xr(k, ℓ− i+ 1) . . . Xr(k, ℓ− L+ 1)

]T
. (2.6)

The acoustic echo estimate for the rth channel is generated by �ltering the reference
spectrum Xr(k, ℓ) with the sub-�lter Ĥr(k, ℓ)

D̂r(k, ℓ) = XH
r (k, ℓ) Ĥr(k, ℓ), (2.7)

where ·H denotes the Hermitian operator. The total MAEC �lter output is given as

D̂(k, ℓ) =

R∑
r=1

D̂r(k, ℓ), (2.8)

with the residual echo equal to

E(k, ℓ) = Y (k, ℓ)− D̂(k, ℓ), (2.9)

where Y denotes the complex-valued spectrum of the microphone signal y, computed
similarly to (2.3).

In order to reduce the computational complexity of the MAEC �lter update in
every frame, we will consider a partial update of Ĥr(k, ℓ) by updating only a subset
Lr(k, ℓ) of all L �lter taps, where Lr(k, ℓ) is an integer and is determined using a tap
selection scheme (see Section 2.4). These tap selection schemes compute a vector

T r(k, ℓ) =
[
T 1
r (k, ℓ) . . . T i

r(k, ℓ) . . . TL
r (k, ℓ)

]T
, (2.10)

consisting of L binary-valued elements. If the element T i
r(k, ℓ) = 1, then the corre-

sponding �lter tap Ĥi
r(k, ℓ) is selected to be updated, otherwise it is not. Thus, the

sum of the elements of T r(k, ℓ) always satis�es

0 ≤
L∑

i=1

T i
r(k, ℓ) = Lr(k, ℓ) ≤ L. (2.11)



2.4 tap selection schemes 23

For updating Ĥr(k, ℓ), we use a variant of the normalized least mean squares
(NLMS) algorithm [15], incorporating a partial �lter update as shown below

Ĥr(k, ℓ+ 1) = Ĥr(k, ℓ) +

(
µ · E∗(k, ℓ)

N (k, ℓ) + ϵ

)
·
{
T r(k, ℓ)⊙Xr(k, ℓ)

}
, (2.12)

where µ denotes the (�xed) step-size, ∗ denotes the complex-conjugate operator and
⊙ denotes the element-wise multiplication operator. The step-size is normalized by
the sum of the regularization parameter ϵ and the multichannel tap-input power

N (k, ℓ) =

R∑
r=1

L−1∑
i=0

|Xr(k, ℓ− i)|2. (2.13)

From hereon, we will refer to (2.12) as the partial update NLMS (PUNLMS) algo-
rithm.

All tap selection schemes considered in this paper are based on the magnitudes of
the tap-input vector Xr(k, ℓ), i.e.,

X r(k, ℓ) =
[
|Xr(k, ℓ)| . . . |Xr(k, ℓ− i+ 1)| . . . |Xr(k, ℓ− L+ 1)|

]T
. (2.14)

By stacking the vector X r(k, ℓ) over all K subbands and R channels, we de�ne the
N -element vector

X(ℓ) =

[
X T

1 (1, ℓ) . . . X T
1 (K, ℓ) . . .

X T
r (1, ℓ) . . . X T

r (K, ℓ) . . .

X T
R(1, ℓ) . . . X T

R(K, ℓ)
]T
,

(2.15)

containing the magnitudes of all MAEC �lter tap-inputs. Similarly to (2.15), we
de�ne the N -element tap selection vector α(ℓ) by stacking the vector T r(k, ℓ) over
all K subbands and R channels.

2.4 Tap selection schemes

In this section, we investigate and propose di�erent tap selection schemes for de-
signing the tap selection vector α(ℓ). All tap selection schemes exploit sparsity in
X(ℓ) across one or more dimensions, i.e., frames, subbands and channels. A vector
is considered sparse if a small number of its elements contain a large proportion of
its energy. The terms temporal, spectral and spatial sparsity will be used to refer to
sparsity present across frames, subbands and channels, respectively. For all consid-
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ered schemes, we impose the constraint that in every frame exactly M taps across
all K ·R sub-�lters are selected to be updated, with

M = ⌊Q ·N⌋, (2.16)

where Q∈R is a design parameter, with 0 ≤ Q ≤ 1. Note that Q = 0 implies no
�lter update and Q = 1 implies full �lter update. This also means that exactly M
elements in the tap selection vector α(ℓ) are equal to 1, i.e.,

K∑
k=1

R∑
r=1

Lr(k, ℓ) =M. (2.17)

The �rst tap selection scheme we investigate is the 3D M-Max scheme, which applies
the M-Max criterion across the three dimensions of subbands, channels and �lter
length for selecting taps. Then we investigate the SPU scheme, which sorts the
K · R sub-�lters in each frame according to the squared Euclidean norm of their
respective tap-inputs and then selects all L taps in the top ⌊M

L ⌋ sub-�lters. Finally,
we present two 1D M-Max schemes which apply the M-Max criterion only across the
dimension of �lter length, with the �rst scheme selecting the same number of taps
in all sub-�lters and the second scheme dynamically selecting taps in each sub-�lter.

2.4.1 3D M-Max (3DM) scheme

The 3D M-Max tap selection scheme is an extension of the M-Max scheme pro-
posed for the single-channel scenario in [57] to the multichannel scenario. Using
this scheme, the �lter taps corresponding to the M largest magnitude tap-inputs
in every frame are selected to be updated by applying the M-Max criterion on the
vector X(ℓ). The resulting tap selection vector α(ℓ) can then be unstacked to obtain
the vectors T r(k, ℓ) corresponding to the K ·R sub-�lters. Implementing this scheme
requires sorting the N -element vector X(ℓ) in every frame which is done e�ciently
using the QUICKSORT routine, requiring comparisons in the order of O(N · log2N)
per frame.

As this scheme applies the M-Max criterion on the complete vector X(ℓ), it is able
to exploit the spectro-spatio-temporal sparsity that may be present in the multichan-
nel reference spectra, with the M selected taps distributed amongst the di�erent
sub-�lters in every frame. For reference spectra with signi�cant temporal, spatial
and spectral diversity/non-stationarity, it is highly likely that each of the N �lter
taps are eventually updated at some stage. However, if the reference spectra exhibit
stationarity and large spectral coloration and/or large inter-channel power di�er-
ence, the M taps may be selected in only a small subset of the K ·R sub-�lters in
every frame. This may result in the sub-�lters in certain subbands and/or channels
being completely ignored for a long time period, which may severely a�ect �lter con-
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vergence. This disadvantage of the 3DM scheme motivates us to look for schemes
which do not completely ignore these sub-�lters when allocating taps to be updated.

2.4.2 SPU scheme

In the SPU scheme [19], in each frame the K ·R sub-�lters are sorted according to
the squared Euclidean norm of their respective tap-inputs

ηr(k, ℓ) = ||X r(k, ℓ)||22 =

L−1∑
i=0

|Xr(k, ℓ− i)|2. (2.18)

All L taps in the top ⌊M
L ⌋ sub-�lters are then selected to be updated, while no taps

are selected in the remaining sub-�lters. Hence, this scheme exploits the sparsity
present in the multichannel reference spectra but su�ers from the same problem
as the 3DM scheme, i.e., it may completely ignore sub-�lters in certain subbands
and/or channels when the reference signals are spectrally coloured and stationary
and/or exhibit large inter-channel power di�erence.

2.4.3 1D M-Max schemes

In this section, we present two tap selection schemes which apply the M-Max crite-
rion only across the single dimension of �lter length, thereby exploiting the temporal
sparsity present in the multichannel reference spectra. Unlike the 3DM and SPU
schemes, these two schemes are designed to not completely ignore the sub-�lters with
small magnitude tap-inputs when allocating taps to be updated. In both schemes,
the M-Max criterion is applied on the L-element vector X r(k, ℓ) for selecting taps
in the sub-�lter Ĥr(k, ℓ), with the number of taps selected given as

Lr(k, ℓ) = ⌊ψr(k, ℓ) · L⌋, (2.19)

where ψr(k, ℓ) is computed using two di�erent criteria for the two schemes.

The �xed e�ort allocation (FEA) scheme selects the same number of �lter taps in
each sub-�lter, thereby not exploiting spectral and spatial sparsity. On the other
hand, the dynamic e�ort allocation (DEA) scheme selects �lter taps in each sub-�lter
dynamically, aiming to exploit spectro-spatial sparsity while not ignoring sub-�lters
with small magnitude tap-inputs. It should be noted that ψr(k, ℓ) needs to satisfy
the condition

0 ≤ ψr(k, ℓ) ≤ 1, (2.20)

as Lr(k, ℓ) obviously cannot be larger than L. The vector X r(k, ℓ) is sorted very
e�ciently using the SORTLINE routine, with the number of comparisons in the
order of O(log2 L) per frame.
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Substituting (2.16) and (2.19) into (2.17) gives

K∑
k=1

R∑
r=1

⌊ψr(k, ℓ) · L⌋ = ⌊Q ·N⌋. (2.21)

Assuming no rounding errors when computing the �ooring operation in (2.21), the
constraint in (2.16) can be reformulated as

K∑
k=1

R∑
r=1

ψr(k, ℓ) = Q ·K ·R. (2.22)

2.4.3.1 Fixed e�ort allocation (FEA)

In the FEA scheme, the same number of �lter taps are allocated to all K · R sub-
�lters in every frame, i.e.,

ψF
r (k, ℓ) = c, (2.23)

where the superscript F denotes the FEA scheme. Substituting (2.23) in (2.22) yields

c = Q. (2.24)

Thus, in each sub-�lter the �lter coe�cients corresponding to the ⌊Q · L⌋ largest
magnitude tap-inputs are selected to be updated in every frame. Due to the same
number of taps selected in all sub-�lters, this scheme does not exploit the spectral
and spatial sparsity present in the multichannel reference spectra.

2.4.3.2 Dynamic e�ort allocation (DEA)

In the DEA scheme, �lter taps are dynamically allocated to the di�erent sub-�lters
based on their respective tap-input content. We propose to allocate a larger num-
ber of taps in every frame to sub-�lters with relatively larger magnitude tap-inputs,
while not completely ignoring the sub-�lters with smaller magnitude tap-inputs.
Thus, the DEA scheme aims to combine the advantages of the 3DM and the FEA
schemes while avoiding their disadvantages, i.e., exploiting the spectro-spatial spar-
sity present in the multichannel reference spectra, while not ignoring the sub-�lters
with small magnitude tap-inputs.
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In general, in the DEA scheme the number of �lter taps allocated to the sub-�lter
for the kth subband in the rth channel is based on the corresponding tap-input
content, which can be quanti�ed by

ϕr(k, ℓ) = ||X r(k, ℓ)||pp =

L−1∑
i=0

|Xr(k, ℓ− i)|p, (2.25)

where || · ||p denotes the lp-norm for p > 0. Hence, sub-�lters with larger magnitude
tap-inputs will have larger values of ϕr(k, ℓ) as compared to sub-�lters with smaller
magnitude tap-inputs. Note that for simplicity, we have used p = 1. The factor
ψr(k, ℓ) in (2.19) is then computed as

ψG
r (k, ℓ) = min

{
f
(
ϕr(k, ℓ)

)
, 1
}
, (2.26)

where the superscript G denotes the generic form of the DEA scheme, the function
f(·) depends on the used tap allocation criterion and the minimum operator is
required to satisfy the condition in (2.20). The number of taps selected in the sub-
�lter Ĥr(k, ℓ) is �nally determined by substituting (2.26) in (2.19).

We propose to design the function f(·) based on the simple criterion that sub-�lters
with ϕr(k, ℓ) above a certain threshold ϕth(ℓ) get L �lter taps selected, while all
other sub-�lters get a number proportional to ϕr(k, ℓ), i.e.,

f
(
ϕr(k, ℓ)

)
=
ϕr(k, ℓ)

ϕth(ℓ)
. (2.27)

Choosing an appropriate value for the threshold ϕth(ℓ) is quite important. On the
one hand, choosing a low value could result in a large number of sub-�lters having L
taps updated, which potentially dilutes the extent to which spectro-spatial sparsity
is exploited for tap allocation. On the other hand, choosing a large value could result
in a large number of sub-�lters being completely ignored. Hence, we propose to use
the average value of ϕr(k, ℓ) across all subbands and channels, i.e.,

ϕth(ℓ) = ϕavg(ℓ) =
1

K ·R

K∑
k=1

R∑
r=1

ϕr(k, ℓ). (2.28)

However, when using the function in (2.27) with the threshold in (2.28), it cannot be
guaranteed that the constraint in (2.22) is satis�ed in every frame. Since min(a, 1) ≤
a for any real number a ∈ R, it can be easily shown that

K∑
k=1

R∑
r=1

ψG
r (k, ℓ) ≤

K∑
k=1

R∑
r=1

f
(
ϕr(k, ℓ)

)
≤ 1

ϕavg(ℓ)
·

K∑
k=1

R∑
r=1

ϕr(k, ℓ),

(2.29)
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Fig. 2.2: Exemplary function f
(
ϕr(k, ℓ)

)
and corresponding ψG

r (k, ℓ), plotted in sorted or-

der of highest to lowest values, along with di�erent criteria for modifying ψG
r (k, ℓ)

in case MG(ℓ) < Q ·K ·R.

such that

MG(ℓ) =

K∑
k=1

R∑
r=1

ψG
r (k, ℓ) ≤ K ·R. (2.30)

Thus, it is not guaranteed thatMG(ℓ) is equal to Q ·K ·R, and hence the constraint
in (2.22) may not always be satis�ed.

We will now distinguish 2 cases, i.e., MG(ℓ) < Q ·K ·R and MG(ℓ) > Q ·K ·R, and
discuss how to adjust the �lter tap allocation in order to satisfy the constraint.

� Case 1: MG(ℓ) < Q ·K ·R

Figure 2.2 shows an exemplary function f
(
ϕr(k, ℓ)

)
(black curve) and corre-

sponding ψG
r (k, ℓ) (blue curve) plotted for all K · R sub-�lters for the case

MG(ℓ) < Q ·K · R, sorted from largest to smallest value in terms of ϕr(k, ℓ).
Please note that the area under the black curve is equal to K · R, while the
area under the blue curve is equal to MG(ℓ). In order to satisfy the constraint
in (2.22), the surplus e�ort Q·K ·R−MG(ℓ) needs to be redistributed amongst
the sub-�lters for which ψG

r (k, ℓ) < 1. In order to do so, di�erent criteria can
be used for modifying ψG

r (k, ℓ):

� Trickle Down (TD): When using this criterion (red), the surplus e�ort is
redistributed via the trickle-down procedure, i.e., the sub-�lters are �lled
up in sorted order of ψG

r (k, ℓ). Allocating taps in this way respects the
spectro-spatial sparsity present in the tap-inputs, but would most likely
completely ignore sub-�lters with the smallest magnitude tap-inputs.



2.4 tap selection schemes 29

� Equal Income (EI): When using this criterion (orange), the same number
of taps are allocated in all sub-�lters for which ψG

r (k, ℓ) < 1. This has the
bene�cial e�ect that no sub-�lters are ignored, but has the detrimental
e�ect that the spectro-spatial sparsity present in the tap-inputs would
most likely not be exploited for tap allocation.

� Equal Bonus (EB): When using this criterion (green), the surplus e�ort
is redistributed equally amongst all sub-�lters for which ψG

r (k, ℓ) < 1.
Allocating taps in this way respects the spectro-spatial sparsity present
in the tap-inputs while making sure that all sub-�lters get a few taps
updated.

Since the EB criterion attains a balance between exploiting spectro-spatial
sparsity and not completely ignoring sub-�lters, we decide to use this criteria
in our proposed DEA scheme when MG(ℓ) < Q ·K ·R, i.e.,

ψD
r (k, ℓ) = {1− γ(ℓ)}+ γ(ℓ) · ψG

r (k, ℓ), (2.31)

where the superscript D denotes the proposed DEA scheme. The constant γ(ℓ)
can be computed by substituting (2.31) into (2.22), yielding

γ(ℓ) =
K ·R−Q ·K ·R
K ·R−MG(ℓ)

. (2.32)

Thus, each sub-�lter has a minimum of ⌊{1 − γ(ℓ)} · L⌋ taps selected in the
ℓth frame.

� Case 2: MG(ℓ) > Q ·K ·R

Similarly to Figure 2.2, Figure 2.3 shows an exemplary function f
(
ϕr(k, ℓ)

)
(black curve) and corresponding ψG

r (k, ℓ) (blue curve) for the case MG(ℓ) >
Q ·K · R. In order to satisfy the constraint, di�erent criteria can be used for
modifying ψG

r (k, ℓ):

� Tax the Poor (TP): When using this criterion (red), the constraint is
satis�ed by decreasing the number of taps allocated to sub-�lters with
the lowest ψG

r (k, ℓ). Such a scheme typically results in highly unequal tap
allocation, with all taps reserved for a small number of sub-�lters with
the largest magnitude tap-inputs.

� Tax the Rich (TR): When using this criterion (orange), the constraint is
satis�ed by decreasing the number of taps allocated to sub-�lters with the
highest ψG

r (k, ℓ). This scheme has the bene�cial e�ect that the majority
of sub-�lters are not ignored when allocating taps but has the detrimental
e�ect that the spectro-spatial sparsity present in the tap-inputs is most
likely not exploited for tap allocation.
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Fig. 2.3: Exemplary function f
(
ϕr(k, ℓ)

)
and corresponding ψG

r (k, ℓ), plotted in sorted or-

der of highest to lowest values, along with di�erent criteria for modifying ψG
r (k, ℓ)

in case MG(ℓ) > Q ·K ·R.

� Equal Tax (ET): When using this criterion (violet), the constraint is
satis�ed by decreasing the same number of taps from all K ·R sub-�lters.
At �rst, this looks like a fair way of subtracting taps as it respects the
spectro-spatial sparsity in the tap-inputs. However, it can be observed
that this criterion ignores sub-�lters with the smallest magnitude tap-
inputs, as it takes away any small number of taps that may have been
previously allocated to them.

� Proportionate Tax (PT): When using this criterion (green curve), the
constraint is satis�ed by uniformly scaling down the number of allocated
taps in the di�erent sub-�lters. Allocating taps in this way respects the
spectro-spatial sparsity present in the tap-inputs, while ensuring that
lesser number of taps are reduced from sub-�lters with smaller ψG

r (k, ℓ).

Since the PT criterion attains a good balance between exploiting spectro-
spatial sparsity and not completely ignoring sub-�lters, we decide to use this
criterion in our proposed DEA scheme when MG(ℓ) > Q ·K ·R, i.e.,

ψD
r (k, ℓ) = δ(ℓ) · ψG

r (k, ℓ), (2.33)

where the constant δ(ℓ) can be computed by substituting (2.33) into (2.22),
yielding

δ(ℓ) =
Q ·K ·R
MG(ℓ)

. (2.34)
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The proposed DEA scheme can thus be summarized as

ψD
r (k, ℓ) =


{1− γ(ℓ)}+ γ(ℓ) · ψG

r (k, ℓ), if MG(ℓ) < Q ·K ·R

δ(ℓ) · ψG
r (k, ℓ), if MG(ℓ) ≥ Q ·K ·R.

(2.35)

The number of taps selected to be updated in the sub-�lter Ĥr(k, ℓ) using the DEA
scheme is �nally determined by substituting (2.35) into (2.19).

2.5 Simulations, results and discussion

In this section, we present the reference signals and algorithmic parameters used,
as well as the di�erent metrics used to analyze signal sparsity, tap selection and
echo cancellation performance. We perform a sparsity analysis of the multichannel
reference signals, individually across the three dimensions of subbands, channels and
�lter length, as well as jointly across multiple dimensions. We then analyze the e�ect
of using the di�erent tap selection schemes on the echo cancellation performance
obtained for the di�erent types of reference signals used.

2.5.1 Signals and algorithmic parameters

In our simulations, we use time-domain reference signals at a sampling frequency of
fs = 16 kHz. The di�erent reference signals used can be divided into two categories:

� Synthetic signals

� Mono brown and white noise signals, i.e., signals whose power densities
change at the rate of -6 and 0 dB/octave, respectively

� Stereo white noise signal

� Real-world signals

� Mono speech signals (TIMIT database)

� Surround-sound movie signals (Dolby Digital 5.0 format)

� Surround-sound concert signals (Dolby Digital 5.0 format)

The acoustic impulse responses have been measured in a room with T60 ≈ 550
ms, with the microphone and the 5 loudspeakers placed on a circle of 3m radius.
The microphone was placed at a height of 1.2m, the centre (C) loudspeaker was
placed directly 0.85m below the microphone, the front left (FL) and right (FR)
loudspeakers were placed at the same height and 30o either side of the microphone,
and the side left (SL) and right (SR) loudspeakers were placed 0.4m above and 110o

either side of the microphone, respectively. The acoustic echo signal dr is obtained
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by convolving the reference signal xr with the corresponding impulse response hr
for Vr = 200 ms. We assume no near-end speech signal (s(n) = 0) and no additive
near-end noise signal (b(n) = 0) for our simulations. For the mono reference signals,
we use the impulse response corresponding to the C loudspeaker only, while for
the stereo white noise signal, we use the impulse responses corresponding to the FL
and FR channels. The time-domain signals have been transformed into the subband
domain using STFT processing with NFFT = 512 (i.e., K = 257) using a Hanning
window and an overlap of 75%. We use a �lter length L = 20 for the MAEC �lters,
which corresponds to NFFT · {1+0.25 ·(L−1)} samples or 184 ms. For updating the
MAEC �lters, a �xed step-size of µ = 0.1 and regularization parameter of ϵ = 10−60

have been used.

2.5.2 Performance measures

Here, we present the di�erent metrics used to analyze the sparsity present in the
reference spectra, to analyze the performance of the di�erent tap selection schemes
in exploiting signal sparsity and to measure echo cancellation performance.

2.5.2.1 Sparsity metric

To analyze the sparsity in the multichannel reference spectra across subbands,
channels and frames, di�erent metrics exist, such as the l0-norm, the l1-norm,
the Gini index [87] and the Hoyer metric [88]. For an N -element (non-zero)
vector u = [u0 . . . uN−1], where the elements are sorted in order of magnitude
|u0| ≤ . . . ≤ |uN−1|, the Gini index is de�ned as

g(u) = 1− 2 ·
N−1∑
j=0

(
N − j − 0.5

N

)
· |uj |∑N−1

i=0 |ui|
. (2.36)

On the one hand, for the extreme case where |u0| = . . . = |uN−1|, i.e., no sparsity in
u, g(u) = 0. On the other hand, for the extreme case where |u0| = . . . = |uN−2| = 0
and |uN−1| ̸= 0, i.e., very high sparsity in u, g(u) = 1− 1

N , which for a large value
of N is approximately equal to 1. Thus, the sparser the vector, the higher the Gini
index.

Furthermore, the Gini index exhibits the following properties:

� Limited range: 0 ≤ g(u) ≤ 1

� Scaling invariance: g(a · u) = g(u), ∀ a ∈ R

� Sensitivity to addition: g(a+ u) < g(u), ∀ a ∈ R, a > 0

� Cloning invariance: g(u) = g([u u]) = g([u u u])

� Sensitivity to zero-padding: g([u 0]) > g(u)
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The cloning invariance property allows a fair comparison of the sparsity of vectors
with di�erent number of elements. This is an important consideration, as we want
to compare the sparsity of the reference spectra across the di�erent dimensions
of subbands, channels and frames. Note that the oft-used Hoyer metric does not
exhibit this invariance and is hence not suited for comparing vectors with di�erent
number of elements.

2.5.2.2 Tap selection performance

In order to quantify the closeness of a tap selection scheme to full tap selection,
we use the so-called Closeness Measure [48, 49] which is de�ned as the ratio of the
energy of the M selected tap-inputs to the energy of all tap-inputs, i.e.,

ξ

(
α(ℓ),X(ℓ)

)
=

||α(ℓ)⊙X(ℓ)||22
||X(ℓ)||22

. (2.37)

For full �lter update, i.e., α(ℓ) = 1, we obviously obtain ξ = 1. For a given Q,
the 3DM scheme maximizes the Closeness Measure in every frame, as it selects the
M largest magnitude tap-inputs. The expectation and assumption is that the tap
selection scheme yielding the largest Closeness Measure also results in the small-
est di�erence in AEC performance compared to updating the �lters using full tap
selection.

2.5.2.3 Echo cancellation performance

The echo cancellation performance is evaluated using the echo return loss enhance-
ment (ERLE) [1], which is de�ned as

ERLE(n) = 10 · log10
E
[
d2(n)

]
E

[(
d(n)− d̂(n)

)2] , (2.38)

where d̂(n) is the time-domain signal corresponding to the total MAEC �lter output
D̂(k, ℓ) and E [·] denotes the statistical expectation operator. In practice, the ERLE
is computed by approximating the expectation operator with the current sample
value. The speed of convergence of the MAEC �lters is assessed using the t20 metric,
which is the time required for the ERLE to reach 20 dB.

2.5.3 Sparsity analysis

In this section, we present an example to illustrate the amount of sparsity typically
present in real-world multichannel spectra across subbands, channels and frames,
and also jointly across multiple dimensions. Figure 2.4 (a) depicts the waveform of a
10s segment from the soundtrack of a 5-channel movie signal, with the spectrograms
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Fig. 2.4: (a) Waveform of a 10s segment from the soundtrack of a 5-channel movie signal,
with di�erent channels distinguished by color; magnitude spectrogram of (b) cen-
tre (C), (c) front left (FL), (d) front right (FR), (e) side left (SL) and (f) side
right (SR) channels, respectively.

of the C, FL, FR, SL and SR channels shown in the subplots below. Each magnitude
spectrogram is composed of K = 257 subbands and T = 1247 frames. In this movie
signal, the centre channel contains the speech content, while the surround-sound
channels contain the background score.

From these spectrograms, we �rst analyze the sparsity across subbands (spectral
sparsity), across frames (temporal sparsity) and across channels (spatial sparsity).
The Gini index for spectral sparsity in each channel is computed in every frame on
a vector of K spectral coe�cients, as exemplarily shown in Figure 2.4 (b) for the
centre channel using the magenta box in frame 200. Similarly, the Gini index for
temporal sparsity in each channel is computed on a vector of T spectral coe�cients
in every subband, as shown using the blue box for subband 150. The Gini index for
spatial sparsity in each subband and frame is computed on a vector of R spectral
coe�cients, as exemplarily shown using the black boxes for the �rst subband in
frame 400. The Gini indices so obtained for spectral, temporal and spatial sparsity
are shown in Figure 2.5 (a), (b) and (c), respectively. It can be observed that the
multichannel reference spectra displays a fairly high amount of sparsity across all
the three dimensions individually, with Gini indices on average above 0.5 (except
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Fig. 2.5: Gini indices for a 10s segment from the soundtrack of a 5-channel movie signal; (a)
spectral sparsity in each channel and joint spectro-spatial sparsity, (b) temporal
sparsity in each channel and joint spatio-temporal sparsity, (c) spatial sparsity in
each subband and frame, (d) joint spectro-temporal sparsity in each channel and
joint spectro-spatio-temporal sparsity.

for temporal sparsity in the surround-sound channels). The centre channel displays
higher temporal sparsity as compared to the surround-sound channels as it con-
tains time-varying speech content, while the surround-sound channels contain the
background score, which varies slowly with time.

Additionally, we analyze the sparsity present in the spectra jointly across multiple
dimensions. In Figure 2.5 (a), the black curve displays the Gini index for the joint
spectro-spatial sparsity, computed in every frame on a vector with K · R spectral
coe�cients. Similarly, in Figure 2.5 (b), the black curve displays the Gini index for
the joint spatio-temporal sparsity, computed in every subband on a vector with R·T
spectral coe�cients. The Gini index for the joint spectro-temporal sparsity in each
channel is computed by processing the magnitude spectrogram of that channel and
is plotted in Figure 2.5 (d), along with the joint spectro-spatio-temporal sparsity
for all K · R · T coe�cients. From this �gure, it can be clearly observed that the
multichannel reference spectra exhibit even higher levels of sparsity when analyzed
across multiple dimensions, with Gini indices on average above 0.85. This provides
the motivation to exploit sparsity jointly across subbands, channels and frames for
the purpose of tap selection.

Figure 2.6 shows the Gini indices for the joint spectro-spatio-temporal sparsity for
the di�erent considered reference signals. The stereo white noise signal is chosen to
be spatially sparse, with an inter-channel broadband power ratio of 20 dB. Firstly,
it can be observed for the synthetic signals that the spectrally colored brown noise
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Fig. 2.6: Gini indices for joint spectro-spatio-temporal sparsity for di�erent reference sig-
nals.
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Fig. 2.7: Number of taps selected in each subband when using the 3DM, SPU, FEA and
DEA tap selection schemes for a mono brown noise signal (Q = 0.2).

signal and the stereo white noise signal are obviously more sparse than the mono
white noise signal. Secondly, it can be observed that typical real-world signals such
as mono speech and 5-channel movie and concert signals also display high amounts
of sparsity.

2.5.4 Analysis of tap selection schemes for synthetic signals

In this section, we analyze the e�ect of using the constrained tap selection schemes
from Section 2.4 (3DM, SPU, FEA and DEA) for synthetic signals.

2.5.4.1 E�ect of spectral coloration

For the di�erent tap selection schemes, Figure 2.7 shows the number of taps se-
lected in each subband when using a mono brown signal with Q = 0.2. For the
3DM and SPU schemes, a larger number of taps are selected in the low-frequency
subbands which contain the larger magnitude tap-inputs, while the high-frequency
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Fig. 2.8: E�ect of the inter-channel power ratio of a stereo white noise signal on the num-
ber of taps allocated to the sub-�lters in the �rst channel (as a fraction of M
taps allocated to both channels) when using the 3DM, SPU, FEA and DEA tap
selection schemes (Q = 0.2).

subbands with the smallest magnitude tap-inputs get no taps selected. Since the
FEA scheme does not exploit spectral sparsity, it allocates an equal number of
taps in all sub-�lters irrespective of the signal content. The proposed DEA scheme
achieves a balance by allocating more taps to sub-�lters with larger magnitude
tap-inputs (thereby exploiting spectral sparsity), while not completely ignoring the
sub-�lters with the smallest magnitude tap-inputs.

2.5.4.2 E�ect of inter-channel power ratio

We now consider a stereo white noise signal, where the broadband power of the
�rst and the second channel is denoted as λ1 and λ2, respectively. Figure 2.8 shows
the e�ect of the inter-channel power ratio λ2

λ1
on the number of taps selected in the

sub-�lters of the �rst channel (as a fraction of theM taps selected in both channels)
for the di�erent tap selection schemes with Q = 0.2. When using the 3DM and SPU
schemes, for λ1 > λ2, the sub-�lters in the �rst channel get the majority of the M
taps selected. Thus, both schemes are highly spatially selective, as hardly any taps
of the sub-�lters in the less dominant reference channel are updated (e.g., for the
SPU scheme when the inter-channel power ratio is larger than 5 dB and for the 3DM
scheme when the inter-channel power di�erence ratio is larger than 10 dB). Since
the FEA scheme does not exploit spatial sparsity, it allocates an equal number
of taps to the sub-�lters in the �rst and the second channel (i.e., M

2 taps each),
irrespective of the inter-channel power ratio. The proposed DEA scheme achieves a
balance by allocating more taps to the sub-�lters in the dominant reference channel
(thereby exploiting spatial sparsity), while not completely ignoring the channel with
the smaller magnitude tap-inputs.
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Fig. 2.9: Closeness Measure as a function of Q for mono brown, mono white and stereo
white noise signals for di�erent tap selection schemes.

2.5.4.3 Closeness measure

For di�erent values of Q, Figure 2.9 depicts the Closeness Measure ξ obtained when
using the di�erent tap selection schemes for mono brown, mono white and stereo
white noise signals. For the stereo white noise signal, an inter-channel power ratio
of 20 dB has been chosen. This �gure shows how close the di�erent tap selection
schemes are to full tap selection in terms of the energy of the selected tap-inputs. By
design, the 3DM scheme maximizes the Closeness Measure for a given Q, and hence
yields the highest values for each signal. For a highly sparse signal such as the mono
brown signal, a very high value for the Closeness Measure (≈ 1) is obtained for the
3DM scheme even when only 10% of the total �lter taps are selected (i.e., Q = 0.1).
This means that just 10% of the tap-inputs contain almost the entire energy. For
the least sparse mono white noise signal, low values of the Closeness Measure are
obtained for all schemes, especially for the SPU scheme. For example, for Q = 0.5, a
Closeness Measure of about 0.85 is obtained for the 3DM, FEA and DEA schemes,
whereas a Closeness Measure of about 0.6 is obtained for the SPU scheme. The
Closeness Measure values obtained for the stereo white signal for all schemes lie in
between those obtained for the more sparse mono brown noise signal and the less
sparse mono white noise signal, except for the FEA scheme, which yields the same
values as for the mono white noise signal. The SPU scheme gives high values for
highly sparse signals and very low values for signals with low amounts of sparsity,
while the proposed DEA scheme performs similarly to the 3DM scheme for highly
sparse signals and similarly to the FEA scheme for signals with low amounts of
sparsity.

2.5.4.4 ERLE and t20

As shown by the previous experiments, depending on the spectral coloration and
the inter-channel power ratio of the reference signals, each considered tap selection
scheme results in a di�erent distribution of the selected taps across subbands and
channels, and a di�erent Closeness Measure. Hence, it is to be expected that the
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Fig. 2.10: (a) ERLE convergence curves for full �lter update (Q = 1) and for di�erent tap
selection schemes (Q = 0.2), and (b) t20 values for di�erent values of Q (for
mono brown, mono white and stereo white noise signals).

tap selection schemes have an in�uence on the overall acoustic echo cancellation
performance, i.e., ERLE and speed of �lter convergence.

For mono brown, mono white and stereo white noise (inter-channel power ratio of
20 dB) signals, Figure 2.10 (a) shows the ERLE convergence curves for the 3DM,
SPU, FEA and DEA tap selection schemes (Q = 0.2), compared to full �lter update
(Q = 1). Figure 2.10 (b) shows the corresponding t20 values for di�erent values of
the parameter Q. It can be observed that for signals with a high amount of spectral
sparsity, such as the mono brown noise signal, the DEA scheme yields the best
echo cancellation performance, while the 3DM and SPU schemes yield the poorest
performance despite obtaining the highest values for the Closeness Measure. This is
due to the highly spectrally selective nature of the 3DM and SPU schemes (discussed
in Section 2.5.4.1), i.e., the sub-�lters with the smallest magnitude tap-inputs do
not have taps updated in every frame, resulting in very slow convergence of these
sub-�lters and thus negatively a�ecting the overall echo cancellation performance.
For the least sparse mono white noise signal, it can be observed that the 3DM,
FEA and DEA schemes yield similar echo cancellation performance, while the SPU
again yields the poorest performance. This may be due to the fact that the SPU
scheme is the only one which completely ignores entire subbands when updating the
�lters, while the other schemes may allocate a few taps to each subband when the
reference signal has a low amount of sparsity. For the spatially sparse stereo white
noise signal, the DEA scheme performs better than the FEA scheme, both in terms
of the converged ERLE value as well as the t20 values. For all considered signals,
the ERLE and t20 values obtained by the proposed DEA scheme for Q = 0.2 are
very similar to those obtained for full �lter update. Thus, the DEA scheme gives
very similar echo cancellation performance to full �lter update even when only 20%
of the total MAEC �lter taps are updated in every frame.
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Fig. 2.11: (a) ERLE curves obtained for full update (Q = 1) and for di�erent tap selection
schemes (Q = 0.2) for a 10s segment of a mono speech signal; (b) waveform of
the 10s segment of a mono speech signal.
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Fig. 2.12: (a) ERLE curves obtained for full update (Q = 1) and for di�erent tap selection
schemes (Q = 0.2) for a 30s segment of a 5-channel concert signal; (b) waveform
of the 30s segment of a 5-channel concert signal.

2.5.5 Analysis of tap selection schemes for real-world signals

Contrary to the synthetic (stationary) signals in the previous section, in this section
we investigate the e�ect of using constrained tap selection schemes on the echo
cancellation performance for (non-stationary) real-world signals.

For a mono speech signal, Figure 2.11 shows the ERLE curves obtained when the
MAEC �lters are updated using the di�erent tap selection schemes for Q = 0.2
and for full �lter update (Q = 1) for a period of 10s. For this signal, we �nd that
even when only 20% of all �lter taps are updated in every frame, both the 3DM
scheme and the proposed DEA scheme typically perform as well as full �lter update
in terms of ERLE, with the FEA scheme performing slightly worse (about 1-2 dB).
On the other hand, the SPU scheme performs signi�cantly worse, yielding about
7-8 dB deterioration in terms of ERLE.
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Fig. 2.13: Number of taps Lr(k, ℓ) updated in the di�erent sub-�lters in every frame for the
(a) centre, (b) front left, (c) front right, (d) side left and (e) side right channels
when using the DEA tap selection scheme for Q = 0.2 for a 30s segment of a
5-channel concert signal.

For a 5-channel concert signal, Figure 2.12 shows the ERLE curves obtained when
the MAEC �lters are updated using the di�erent tap selection schemes for Q = 0.2
and for full �lter update (Q = 1) for a period of 30s. For this signal, we �nd
that even when only 20% of all �lter taps are updated in every frame, both the
3DM scheme and the proposed DEA scheme perform almost identically to full �lter
update in terms of ERLE, with less than 1 dB deterioration, while the FEA scheme
leads to about 2-4 dB deterioration in terms of ERLE. The SPU scheme again
performs signi�cantly worse, yielding about 10-12 dB deterioration in ERLE. It can
be seen that around the 12s mark, all schemes witness a sudden drop in ERLE.
This is because the tap-input covariance matrix becomes ill-conditioned, leading to
an increase in misalignment. However, it can also be observed that even though the
FEA and DEA schemes have not been designed to tackle the misalignment problem,
they do not deteriorate the problem further.

Additionally, Figure 2.13 shows the number of taps Lr(k, ℓ) updated in the di�erent
sub-�lters in every frame using the DEA scheme for Q = 0.2. It can be observed that
the sub-�lters in each channel get a small number of taps selected in every frame,
where the number of taps updated across subbands depends on the spectral content
present in each channel. As the centre channel for this signal consists of only speech,
the tap allocation for the centre channel strongly resembles the spectrogram of a
speech signal. As the surround-sound channels are mainly dominated by background
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Table 2.1: Computational E�ort: Number of operations per frame for implementing the
di�erent tap selection schemes and for updating the MAEC �lters using the
PUNLMS algorithm

Ops 3DM SPU FEA DEA PUNLMS

# Adds KR 3KR 0 6KR+ 1 4QN+3KR−K

# Mults 0 2KR KR 3KR+ 2 4QN+2KR+3K

# Divs 0 0 0 2 K

# Comps N log2 N KR log2(KR) KR(2 log2 L+2) KR(2 log2 L+3)+1 0
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Fig. 2.14: Total computational e�ort required per frame for implementing the di�erent
tap selection schemes and for updating the MAEC �lters using the PUNLMS
algorithm as a function of Q. The numbers have been computed for K = 257,
R = 5 and L = 20 and have been plotted as a percentage of the e�ort required
for full �lter update.

score and low-frequency crowd noise but also contain some speech, this is re�ected
in how taps are allocated in the surround-sound channels.

2.6 Computational effort

When compared to full �lter update, implementing a tap selection scheme requires
some computational overhead, but still may result in signi�cant savings when up-
dating the MAEC �lters, as only a fraction Q of the total N �lter taps are updated
in every frame. The computational e�ort per frame for implementing the di�erent
tap selection schemes and for updating the MAEC �lters using the PUNLMS algo-
rithm is given in Table 2.1. The computations have been divided into four categories,
namely the number of additions (# Adds), multiplications (# Mults), divisions (#
Divs) and comparisons (# Comps). Please note that all complex operations have
been converted into an equivalent number of real operations, e.g. 1 complex multi-
plication has been counted as 4 real multiplications and 2 real additions.
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Figure 2.14 is an exemplary �gure depicting the total computational e�ort required
per frame for implementing tap selection and partial �lter update for di�erent values
of Q. The numbers have been computed for K = 257, R = 5 and L = 20, and by
assuming that the comparison, multiplication and division operations are 1, 4 and
15 times as computationally expensive as an addition operation, respectively. The
numbers have been plotted as a percentage of the computational e�ort required for
full �lter update, i.e., the e�ort required for updating the MAEC �lters using the
PUNLMS algorithm with Q = 1. For these assumed settings, it can be observed
that the total computational e�ort for the 3DM, SPU, FEA and DEA schemes is
smaller than full �lter update for Q < 0.27, Q < 0.95, Q < 0.96 and Q < 0.93,
respectively. Hence, the SPU, FEA and DEA schemes are almost always cheaper
than full �lter update. When only 20% of the MAEC �lter taps are updated in every
frame (Q = 0.2), the 3DM scheme requires 94%, while the SPU, FEA and DEA
schemes require about 28% of the total computational e�ort required for full �lter
update. Using the SPU and DEA schemes results in slightly larger computational
e�ort as compared to the FEA scheme due to the additional overhead required for
computing ηr(k, ℓ) in Equation (2.18) and ψD

r (k, ℓ) in Equation (2.35), respectively.

2.7 Conclusions

In this paper, di�erent tap selection schemes for constrained partial updates of sub-
band MAEC �lters have been compared. Real-world multichannel signals have been
analyzed and shown to be sparse across subbands (spectrally), channels (spatially)
and frames (temporally). This sparsity is then exploited by di�erent tap selection
schemes for updating the MAEC �lters. The MAEC system consists of a dedicated
subband AEC �lter for each loudspeaker channel, with each �lter composed of mul-
tiple sub-�lters, i.e., one sub-�lter per subband per channel. The �rst tap selection
scheme considered applied the well-known M-Max criterion on the multichannel in-
put spectra across all three dimensions, and is hence called the 3DM scheme. This
scheme jointly exploits the spectral, spatial and temporal sparsity in the input sig-
nals but typically results in some sub-�lters having no taps updated. In order to
avoid this problem, two new schemes have been presented which perform tap selec-
tion by applying the M-Max criterion only across �lter length (and thereby exploit
temporal sparsity for updating each sub-�lter) and do not completely ignore the
sub-�lters with the smallest magnitude tap-inputs. The FEA scheme allocates a
�xed number of taps to be updated in each sub-�lter per frame, while the proposed
DEA scheme exploits the joint spectro-spatial sparsity present in the input signals
for dynamically allocating the number of taps to be updated in the di�erent sub-
�lters. The new tap selection schemes have been compared to the state-of-the-art
SPU tap selection scheme in the subband domain, which displays similar properties
to the 3DM scheme. The proposed DEA scheme is designed such that it selects
more taps in the sub-�lters with larger magnitude tap-inputs (like the 3DM and
SPU schemes) while not completely ignoring the sub-�lters with smaller magnitude
tap-inputs (like the FEA scheme). Simulation results for speech and music signals
showed that in terms of ERLE and convergence speed, the 3DM and DEA schemes
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achieved almost identical echo cancellation performance compared to full �lter up-
date even when only 20% of the MAEC �lter taps were updated in every frame,
while the FEA and SPU schemes performed worse (about 2-4 dB and 10-12 dB de-
terioration in ERLE, respectively). The SPU, FEA and DEA tap selection schemes
have a reduced computational cost compared to full �lter update, while the 3DM
scheme does not necessarily lead to reduction in computational complexity. Hence,
in conclusion, the proposed DEA tap selection scheme yields almost identical echo
cancellation performance compared to updating all �lter taps at a signi�cantly re-
duced computational cost.





3
ONLINE ESTIMATION OF REVERBERATION
PARAMETERS FOR LATE RESIDUAL ECHO
SUPPRESSION

3.1 Abstract

In hands-free telephony and other distant-talk applications, often a short AEC
�lter is used to achieve fast convergence at low computational cost. As a result,
a signi�cant amount of late residual echo (LRE) may remain, especially in highly
reverberant environments. This LRE can be suppressed using a post�lter in the sub-
band domain, which requires an estimate of the power spectral density (PSD) of the
LRE. To estimate the LRE PSD, an exponentially decaying model with frequency-
dependent reverberation scaling and decay parameters has frequently been assumed.
State-of-the-art methods estimate both reverberation parameters independently of
each other, either in o�ine or in online mode. In this article, we propose two signal-
based methods (i.e., output error and equation error) to jointly estimate both re-
verberation parameters in online mode. The estimated parameters are then used to
generate an estimate for the LRE PSD, which is fed into a post�lter for the purpose
of late residual echo suppression. We derive several gradient-descent-based algo-
rithms to simultaneously update both reverberation parameters, minimizing either
the mean squared error or the mean squared log error cost function. The proposed
methods are compared with state-of-the-art methods in terms of the accuracy of
the estimated reverberation parameters and the corresponding LRE PSD estimate.
Extensive simulation results using both arti�cial as well as measured room impulse
responses show that the proposed output error method with mean squared log error
minimization outperforms state-of-the-art methods in all considered scenarios.

3.2 Introduction

Hands-free telephony and other distant-talk applications, such as voice-controlled
multimedia devices, are often used in large reverberant rooms, where the distance
between the desired (near-end) speaker and the microphone may be quite large.
Due to the acoustic coupling between the loudspeaker and the microphone, the
microphone signal is typically degraded by the acoustic echo of the far-end signal,

45
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which may signi�cantly reduce the quality and/or the intelligibility of the near-end
speaker. Acoustic echo cancellation (AEC) [1] is a key technology used in such sce-
narios, aimed at canceling the echo from the microphone signal. An AEC system
typically consists of an adaptive �lter [10,15] which estimates the acoustic echo path,
i.e., the room impulse response (RIR) between the loudspeaker and the microphone.
The adaptive �lter is used to generate an estimate of the acoustic echo signal, which
is subsequently subtracted from the microphone signal. The resulting signal is re-
ferred to as the AEC error signal and is composed of near-end speech, background
noise and usually some residual echo, as the AEC �lter is unable to completely
accurately estimate the RIR in practice (�lter misalignment). When deploying an
AEC system in a room with a large reverberation time (T60), a large �lter length
needs to be used in order to achieve good echo cancellation performance. However,
using a long �lter results in large computational cost for updating the �lter and
may also lead to slow �lter convergence [10, 15]. Hence, aiming at achieving fast
�lter convergence at low computational cost, in practice often a short AEC �lter is
used, which however results in a large amount of late residual echo (LRE).

In practice, a post�lter is often used in addition to the AEC �lter, aimed at suppress-
ing the residual echo and background noise while not distorting the near-end speech
signal. Although multi-frame post�lters have been proposed [68], most post�lters
are single-tap real-valued gains [14, 21, 22, 62�64, 66, 67]. To design the post�lter in
the subband domain, an accurate estimate of the power spectral density (PSD) of
the residual echo and background noise signals is required. A simple but frequently
used method to estimate the PSD of the residual echo signal is to apply a coupling
factor to the far-end signal PSD, where the coupling factor is estimated during pe-
riods of near-end speech absence [1]. However, since this method does not take into
account any temporal context and is unable to model the LRE PSD accurately, its
performance is quite poor, especially when using a short AEC �lter. Hence, several
other LRE PSD estimators have been proposed which are based on the statistical
reverberation model proposed in [28, 72], which assumes that the late reverberant
part of a RIR decays exponentially at a rate proportional to the T60. These PSD
estimators require estimates of two parameters: the reverberation decay parameter
(corresponding to the T60) and the reverberation scaling parameter (corresponding
to the initial power of the LRE).

To estimate both reverberation parameters, channel-based as well as signal-based
methods have been proposed. Channel-based methods [13,14] estimate the reverber-
ation parameters using the coe�cients of the converged AEC �lter, either assuming
frequency-dependent [14] or frequency-independent parameters [13]. Channel-based
methods are only e�ective if relatively long AEC �lters are used, which are able to
capture the decay of the late reverberant part of the RIR. Signal-based methods, on
the other hand, estimate the reverberation parameters directly from the far-end and
the residual echo signals [23, 24, 77]. In [23], a signal-based method was proposed
to estimate both reverberation parameters in o�ine mode (i.e., batch processing).
The reverberation scaling parameter was estimated by minimizing the mean squared
error (MSE) cost function, while the reverberation decay parameter was estimated
by minimizing the mean squared log error (MSLE) cost function. In [24], a pure
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acoustic echo suppression system, i.e., without an AEC �lter, was considered and
a recursive estimator for the (residual) echo PSD was used. A signal-based method
exploiting higher-order-statistics was proposed to estimate the initial power of the
(residual) echo and the reverberation decay parameter independently of each other
in online mode. Using the recursive estimator for the LRE PSD in [14], in [77] we
proposed two signal-based methods, namely an output error and an equation error
method, to jointly estimate both reverberation parameters in o�ine mode. These
methods, which were originally proposed to estimate the coe�cients of generic IIR
�lters in the time-domain [15,75,76], were applied on PSDs to jointly estimate both
reverberation parameters by minimizing either the MSE or the MSLE cost function.

Based on the work in [77], in this paper we propose methods to jointly estimate
both reverberation parameters in online mode. The estimated parameters are then
used to generate an estimate for the LRE PSD, which is fed into a post�lter for the
purpose of late residual echo suppression. We derive several gradient-descent-based
algorithms to simultaneously update both parameters, minimizing either the MSE
or the MSLE cost function. In particular, we propose to use the recursive prediction
error (RPE) and pseudo-linear regression (PLR) algorithms, which were derived for
time-domain recursive systems [75], to update the parameters for the output error
method. The di�erent signal-based methods (output/equation error), algorithms
(RPE/PLR) and cost functions (MSE/MSLE) are compared with state-of-the-art
signal-based methods [23, 24] in terms of accuracy of the reverberation parameter
estimates and the corresponding LRE PSD estimate, and in terms of the resulting
residual echo suppression and near-end speech distortion.

The paper is organized as follows. The signal model as well as some basic AEC and
post�ltering principles are presented in Section 3.3. The recursive estimator for the
LRE PSD, the di�erent proposed signal-based parameter estimation methods and
the gradient-descent-based algorithms to simultaneously update both parameters
are presented in Sections 3.4, 3.5 and 3.6, respectively. Section 3.7 presents the
simulation results comparing the performance of the proposed methods with state-
of-the-art methods using both arti�cially generated as well as measured RIRs.

3.3 Signal model and AEC system

Fig. 3.1 shows a loudspeaker-enclosure-microphone (LEM) system with the far-end
signal x, the acoustic echo signal d, the near-end speech signal s, the background
noise signal v and the microphone signal y. The RIR characterizing the acoustic echo
path between the loudspeaker and the microphone is denoted as h and assumed to
be time-invariant and of length Nh. The microphone signal at discrete-time sample
n is given as:

y(n) = s(n) + v(n) +

Nh−1∑
i=0

h(i) · x(n− i)︸ ︷︷ ︸
d(n)

. (3.1)
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Fig. 3.1: Acoustic echo cancellation (AEC) and residual echo suppression (RES) systems.

For the subband processing, a fast Fourier transform (FFT) �lterbank of order
NFFT is used to transform the (windowed) time-domain signals into the short-time
Fourier transform (STFT) domain, with the total number of subbands given by
K = NFFT

2 + 1. The complex-valued STFT coe�cients of the far-end signal x in
subband k and frame ℓ are computed as:

X(k, ℓ) =

NFFT−1∑
m=0

x(ℓ · F +m) ·Wana(m) · e−j 2π
NFFT

km
, (3.2)

where j =
√
−1, F denotes the frameshift and Wana denotes the analysis window.

Similarly to (3.2), the STFT coe�cients of s(n), v(n), d(n) and y(n) are denoted
as S(k, ℓ), V (k, ℓ), D(k, ℓ) and Y (k, ℓ), respectively.

The complete AEC system consists of two components: an (adaptive) AEC �lter
estimating the echo path and a residual echo suppression (RES) post�lter. Both
components will be explained in more detail in the following subsections.

3.3.1 Acoustic echo cancellation

To cancel the acoustic echo signal from the microphone signal, we consider a G-tap
subband AEC �lter Ĥ. The acoustic echo estimate is given as:

D̂(k, ℓ) = XH(k, ℓ) Ĥ(k), (3.3)

with

X(k, ℓ) =
[
X(k, ℓ) . . . X(k, ℓ−G+ 1)

]T
(3.4)
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the G-dimensional tap-input vector to the AEC �lter Ĥ:

Ĥ(k) =
[
Ĥ1(k) . . . ĤG(k)

]T
, (3.5)

where ·H denotes the Hermitian operator and ·T denotes the transpose operator.

The signal obtained after the acoustic echo estimate is subtracted from the micro-
phone signal is referred to as the AEC error signal:

E(k, ℓ) = Y (k, ℓ)− D̂(k, ℓ)

= S(k, ℓ) + V (k, ℓ) +
(
D(k, ℓ)− D̂(k, ℓ)

)
︸ ︷︷ ︸

R(k,ℓ)

, (3.6)

where R denotes the residual echo signal, which consists of the early residual echo
signal RE (due to �lter misalignment) and the LRE signal RL (due to the limited
length of the AEC �lter). In this paper, the �lter length G is chosen so as to
cover the direct path and the early re�ections of the RIR h, i.e., G = ⌊N

F ⌋, where
N corresponds to the length of the direct path and early re�ections in samples.
This means that the LRE signal RL is assumed to contain only late reverberation.
Additionally, we assume no �lter misalignment, i.e., RE = 0, such that the residual
echo signal only consists of the late residual echo signal, i.e., R = RL.

3.3.2 Residual echo suppression

Residual echo suppression can be performed in the subband domain by applying a
real-valued gainWRES to the AEC error signal E, as shown in Fig. 3.1. A frequently
used gain is the Wiener �lter [1], which is derived by assuming that the signals S,
RL and V are independent stationary stochastic processes, leading to:

WRES(k, ℓ) = 1− λrL(k, ℓ) + λv(k, ℓ)

λe(k, ℓ)
. (3.7)

Here, λrL , λv and λe denote the PSDs of the LRE, the background noise and the
AEC error signals, respectively, de�ned as λrL(k, ℓ) = E{|RL(k, ℓ)|2}, λv(k, ℓ) =
E{|V (k, ℓ)|2}, and λe(k, ℓ) = E{|E(k, ℓ)|2}, where E{·} denotes the statistical expec-
tation operator. In practice, the statistical expectation operator is approximated by
temporal averaging (assuming ergodicity), e.g.:

Φe(k, ℓ) = α · Φe(k, ℓ− 1) + (1− α) · |E(k, ℓ)|2, (3.8)

where Φe is an approximation of the PSD λe and α denotes the smoothing factor.
The quantities ΦrL , Φv and Φx are de�ned similarly as in (3.8) and are approxima-
tions of λrL , λv and λx, respectively. Please note that for an unobservable signal
such as rL, the quantity ΦrL itself needs to be estimated, with the estimate denoted
as Φ̂rL . In the remainder of the paper, we will use the term true PSD to refer to λa,
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a ∈ {e, rL, v, x}, the term PSD to refer to its approximation Φa, a ∈ {e, rL, v, x}
and the term PSD estimate to refer to its estimate for an unobservable signal Φ̂a,
a ∈ {rL, v}.

In order to control the aggressiveness of the residual echo suppression, we use the
following gain for the RES post�lter:

WRES(k, ℓ) = max

{
1− β ·

(
Φ̂rL(k, ℓ) + Φ̂v(k, ℓ)

Φe(k, ℓ)

)
, γ

}
(3.9)

with over-estimation factor β and spectral �oor γ. While the AEC error PSD Φe is
directly observable, the LRE PSD ΦrL and the background noise PSD Φv need to
be estimated. Many approaches have been proposed in literature for estimating the
background noise PSD [89�91]. In this paper, we assume that the background noise
is stationary and its PSD is known.

The processed AEC error signal is given as:

Ẽ(k, ℓ) =WRES(k, ℓ) · E(k, ℓ), (3.10)

which can be expressed as the sum of its individual components in a similar way to
(3.6):

Ẽ(k, ℓ) = S̃(k, ℓ) + Ṽ (k, ℓ) + R̃L(k, ℓ), (3.11)

where S̃, Ṽ and R̃L are obtained by multiplying S, V andRL with the RES post�lter,
similarly to (3.10). For the purpose of evaluation, these processed signals are then
synthesized to the time-domain using inverse STFT and overlap-add processing,
yielding the time-domain signals ẽ(n), s̃(n), ṽ(n) and r̃L(n), respectively.

3.4 Model for LRE PSD

In [28], an exponentially decaying model for the late reverberant part of a RIR was
proposed when the source-microphone distance is larger than the critical distance,
de�ned as the distance where the energy of the direct sound is equal to the energy
of all re�ections [25]. According to this model, the late reverberant part of a RIR
can be described as a realization of a stochastic process:

h(i) = wL(i) · e−ρ(i−N), N ≤ i < Nh, (3.12)

where Nh denotes the total length of the RIR in samples, wL is a zero-mean white
Gaussian noise process with variance σ2

L and ρ denotes the decay rate. The decay
rate is related to the T60 as:

ρ =
3 · ln 10
fs · T60

, (3.13)
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Fig. 3.2: Model for LRE PSD ΦrL as a function of far-end signal PSD Φx.

where fs denotes the sampling frequency in Hz. Although in (3.13) it is assumed
that the T60 is frequency-independent, it should be noted that in practice the T60
(and hence the decay rate ρ) is frequency-dependent [25].

As mentioned in Section 3.3.1, we assume that the AEC �lter is able to cancel the
direct sound component and the early re�ections, such that the LRE signal RL

contains only late reverberation. Based on the RIR model in (3.12), a recursive
expression for λrL can be derived (see Appendix A.1), i.e.:

λrL(k, ℓ) = A · λx(k, ℓ−G) +B · λrL(k, ℓ− 1), (3.14)

where A denotes the reverberation scaling parameter and B denotes the reverbera-
tion decay parameter. These parameters are related to the parameters σ2

L and ρ of
the RIR model in (3.12) as (see Appendix A.1):

A = σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
, (3.15)

B = e−2ρF . (3.16)

In this paper, we assume the reverberation parameters to be frequency-dependent,
such that similarly to (3.14), a recursive expression for ΦrL using frequency-
dependent parameters can be obtained as in [14]:

ΦrL(k, ℓ) = A(k) · Φx(k, ℓ−G) +B(k) · ΦrL(k, ℓ− 1), (3.17)

with the parameters A(k) and B(k) given as:

A(k) = σ2
L(k) ·

(
1− e−2ρ(k)F

1− e−2ρ(k)

)
, (3.18)

B(k) = e−2ρ(k)F . (3.19)

The expression in (3.17) relating the LRE PSD ΦrL to the far-end signal PSD Φx

is illustrated in Fig. 3.2 using the IIR �lter P{θ(k)}, where

θ(k) =
[
A(k) B(k)

]T
. (3.20)
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In the next section, we will present di�erent methods to estimate θ(k). It should
be noted that θ(k) is estimated during periods of near-end speech absence and
subsequently used to estimate the LRE PSD during periods of double-talk.

3.5 Parameter estimation methods

Several methods have been proposed in literature to estimate both reverberation
parameters A and B independently of each other. In [14], a channel-based method
was proposed using the converged AEC �lter coe�cients. In [23], a signal-based
method was proposed in o�ine mode (i.e., batch processing), where the parameter
A was estimated by minimizing an MSE cost function and the parameter B was
estimated by minimizing an MSLE cost function. In [24], an acoustic echo suppres-
sion setup without an AEC �lter (i.e., G = 0) was considered and a signal-based
method based on higher-order statistics was proposed to estimate both parameters
in online mode. For the purpose of fair comparison, we consider a slightly modi�ed
version of the method in [24] in order to estimate the LRE PSD for our considered
setup and compare this method with our proposed parameter estimation methods
(see Section 3.7). Since we assume a perfect AEC �lter (see Section 3.3.1), this mod-
i�cation simply corresponds to inserting a delay of G frames in the original method
in [24] (details presented in Appendix A.2).

To jointly estimate the parameters of generic IIR �lters in the time-domain, several
signal-based methods have been proposed [15, 75, 76, 92�94], either based on the
output error (OE) or the equation error (EE). In [77], we applied the OE and EE
methods on PSDs to jointly estimate both reverberation parameters in o�ine mode
(i.e., batch processing), minimizing either the MSE or the MSLE cost function.
Simulation results showed that the most accurate estimates for the reverberation
decay parameter B and the LRE PSD ΦrL were obtained using the OE method
minimizing the MSLE cost function, while the most accurate estimates for the
reverberation scaling parameter A were obtained using either the OE or the EE
method minimizing the MSE cost function.

Based on the o�ine methods from [77], in this paper we investigate the OE and EE
methods in online mode to jointly estimate both reverberation parameters A and B
during periods of near-end speech absence, where the parameters are simultaneously
updated in each frame using a gradient-descent-based algorithm (see Section 3.6).

The estimated parameters θ̂(k) are then fed into the IIR �lter P{θ̂(k, ℓ)} to estimate
the LRE PSD (also during double-talk), as illustrated in Fig. 3.3:

Φ̂rL(k, ℓ) = Â(k, ℓ) · Φx(k, ℓ−G) + B̂(k, ℓ) · Φ̂rL(k, ℓ− 1). (3.21)

In the following subsections we will discuss the OE and EE methods to estimate
the reverberation parameters θ̂(k).
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Fig. 3.3: The LRE PSD estimate Φ̂rL is computed using the far-end signal PSD Φx, with
the parameters θ̂(k, ℓ) estimated during near-end speech absence.

3.5.1 Output error method

The OE method is a well-known method used for parameter estimation of linear
recursive systems in a variety of applications. The OE method is characterized by
the following recursive di�erence equation (where the superscript O denotes the OE
method):

Φ̂O
rL(k, ℓ) = ÂO(k, ℓ) · Φx(k, ℓ−G) + B̂O(k, ℓ) · Φ̂O

rL(k, ℓ− 1), (3.22)

with the corresponding IIR �lter structure illustrated in Fig. 3.4. Here, Φ̂O
rL denotes

the OE PSD estimate and

θ̂
O
(k, ℓ) =

[
ÂO(k, ℓ) B̂O(k, ℓ)

]T
(3.23)

denotes the reverberation parameters estimated using the OE method, which are
fed into (3.21) to generate the LRE PSD estimate Φ̂rL . Please note that (3.22) has
the same recursive structure as (3.21), such that Φ̂O

rL(k, ℓ) = Φ̂rL(k, ℓ). From (3.22),

it can be observed that the OE PSD estimate in the current frame Φ̂O
rL(k, ℓ) not

only depends on the parameter estimates in the current frame θ̂
O
(k, ℓ), but also on

the OE PSD estimate in the previous frame Φ̂O
rL(k, ℓ− 1), which itself depends on

the parameter estimates in the previous frame θ̂
O
(k, ℓ − 1), and so on. Thus, Φ̂O

rL

is a non-linear function of θ̂
O
, where the current OE PSD estimate depends on the

parameter estimates in all previous frames.

The output error is obtained by subtracting the output in (3.22) from the target
PSD ΦrL :

QO(k, ℓ) = ΦrL(k, ℓ)− Φ̂O
rL(k, ℓ). (3.24)
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Fig. 3.4: Parameter estimation using the output error method by minimizing the cost func-
tion JO.

Similarly, the output log error is given as:

QO
ln(k, ℓ) = ln ΦrL(k, ℓ)− ln Φ̂O

rL(k, ℓ) = ln

(
ΦrL(k, ℓ)

Φ̂O
rL(k, ℓ)

)
. (3.25)

To compute the parameter estimates, we will consider minimizing either the MSE
or the MSLE cost function:

J O
MSE

(
ÂO(k, ℓ), B̂O(k, ℓ)

)
= E

{[
QO(k, ℓ)

]2}
, (3.26)

J O
MSLE

(
ln ÂO(k, ℓ), ln B̂O(k, ℓ)

)
= E

{[
QO
ln(k, ℓ)

]2}
. (3.27)

To update the parameters in every frame using a gradient-descent-based algorithm
(see Section 3.6), these cost functions will be approximated by their instantaneous
values:

JOMSE

(
ÂO(k, ℓ), B̂O(k, ℓ)

)
=
[
QO(k, ℓ)

]2
=
[
ΦrL(k, ℓ)− Φ̂O

rL(k, ℓ)
]2
, (3.28)

JOMSLE

(
ln ÂO(k, ℓ), ln B̂O(k, ℓ)

)
=
[
QO
ln(k, ℓ)

]2
=

[
ln

(
ΦrL(k, ℓ)

Φ̂O
rL(k, ℓ)

)]2
. (3.29)

As Φ̂O
rL is a non-linear function of the parameters θ̂

O
, the cost functions JOMSE and

JOMSLE are not quadratic in the parameters and may exhibit multiple local min-
ima [75,94�97]. This may result in gradient-descent-based algorithms converging to
a local minimum, thereby yielding sub-optimal and inaccurate parameter estimates,

with the initial value of θ̂
O
also in�uencing to which minimum the algorithms con-

verge. This is a typical problem when using adaptive IIR �lters for identifying
recursive systems [75].

3.5.2 Equation error method

In order to avoid the local minima problem associated with the OE method, the
EE method has often been employed for parameter estimation of linear recursive
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Fig. 3.5: Parameter estimation using the equation error method by minimizing the cost
function JE.

systems [75,76]. The EE method di�ers from the OE method by using the delayed
target PSD ΦrL(k, ℓ− 1) instead of the delayed PSD estimate Φ̂rL(k, ℓ− 1) for com-
puting the current PSD estimate, thereby breaking the recursive structure. The EE
method is characterized by the following non-recursive di�erence equation (where
the superscript E denotes the EE method):

Φ̂E
rL(k, ℓ) = ÂE(k, ℓ) · Φx(k, ℓ−G) + B̂E(k, ℓ) · ΦrL(k, ℓ− 1), (3.30)

with the corresponding non-recursive �lter structure illustrated in Fig. 3.5. Here,
Φ̂E

rL denotes the EE PSD estimate and

θ̂
E
(k, ℓ) =

[
ÂE(k, ℓ) B̂E(k, ℓ)

]T
(3.31)

denotes the reverberation parameters estimated using the EE method, which are
fed into (3.21) to generate the LRE PSD estimate Φ̂rL . As a result, the PSD esti-

mate Φ̂E
rL is a linear function of θ̂

E
. Please note that using ΦrL(k, ℓ− 1) instead of

Φ̂rL(k, ℓ − 1) in (3.30) is an approximation, such that unlike the OE method, the
EE PSD estimate Φ̂E

rL is not equal to the LRE PSD estimate Φ̂rL .

Similarly to (3.24), the equation error is given as:

QE(k, ℓ) = ΦrL(k, ℓ)− Φ̂E
rL(k, ℓ), (3.32)

and similarly to (3.25), the equation log error is given as:

QE
ln(k, ℓ) = ln ΦrL(k, ℓ)− ln Φ̂E

rL(k, ℓ) = ln

(
ΦrL(k, ℓ)

Φ̂E
rL(k, ℓ)

)
. (3.33)

Contrary to the cost functions JOMSE and JOMSLE, the cost functions J
E
MSE and JEMSLE

(de�ned similarly to (3.28) and (3.29), respectively) are quadratic in the parameters,
hence exhibiting a single global minimum and no local minima [75,76]. This makes
the EE method particularly attractive for use in practical applications, as the cor-
responding adaptive algorithms typically have fast convergence and converge to a
global minimum. However, it has been shown in [75] that the EE method yields
biased solutions in the presence of additive noise, where the bias is proportional to
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the amount of noise. Additionally, as Φx and ΦrL are approximations of the true
PSDs λx and λrL (see Section 3.3.2), these approximations introduce additional
noise to the system. This results in the EE method yielding biased solutions even in
the absence of additive noise, as was observed in [77] when using the EE method for
reverberation parameter estimation in o�ine mode. In this paper, we investigate
how accurately the EE method estimates the reverberation parameters in online
mode.

3.6 Gradient-descent-based algorithms

In this section, we derive gradient-descent-based algorithms to update the reverber-
ation parameters θ(k) in every frame for the OE and EE estimation methods, either
minimizing the MSE or the MSLE cost function.

For both estimation methods, the gradient-descent update rule for the MSE cost
function is given as:

θ̂
I
(k, ℓ+ 1) = θ̂

I
(k, ℓ)− Γ

2
⊙∇I

MSE(k, ℓ), (3.34)

where I ∈ {O,E} denotes the used estimation method, ⊙ denotes element-wise

multiplication, Γ =
[
µA µB

]T
denotes the (�xed) step-sizes to update both

parameters, and

∇I
MSE(k, ℓ) =

[
∂JI

MSE (ÂI(k,ℓ),B̂I(k,ℓ))
∂ÂI(k,ℓ)

∂JI
MSE (ÂI(k,ℓ),B̂I(k,ℓ))

∂B̂I(k,ℓ)

]T
(3.35)

denotes the gradient of the MSE cost function. Using (3.28), the partial derivatives of
the MSE cost function with respect to the reverberation scaling and decay parameter
estimates are equal to:

∂J IMSE

(
ÂI(k, ℓ), B̂I(k, ℓ)

)
∂ÂI(k, ℓ)

= −2 ·QI(k, ℓ) ·
∂Φ̂I

rL(k, ℓ)

∂ÂI(k, ℓ)
, (3.36)

∂J IMSE

(
ÂI(k, ℓ), B̂I(k, ℓ)

)
∂B̂I(k, ℓ)

= −2 ·QI(k, ℓ) ·
∂Φ̂I

rL(k, ℓ)

∂B̂I(k, ℓ)
. (3.37)

The partial derivatives of the LRE PSD estimate Φ̂I
rL with respect to the parameter

estimates will be computed for the OE and EE methods in subsections 3.6.1 and
3.6.2, respectively. It should be noted that when minimizing the MSE cost function,
the parameter updates in each frame depend on the error QI between the LRE PSD
and its estimate.
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For both estimation methods, the gradient-descent update rule for the MSLE cost
function is given in the logarithmic domain1 as:

ln θ̂
I
(k, ℓ+ 1) = ln θ̂

I
(k, ℓ)− Γ

2
⊙∇I

MSLE(k, ℓ), (3.38)

where the gradient of the MSLE cost function ∇I
MSLE is composed of the partial

derivatives of the MSLE cost function with respect to the logarithm of the parameter
estimates:

∇I
MSLE(k, ℓ) =

[
∂JI

MSLE (ln ÂI(k,ℓ),ln B̂I(k,ℓ))
∂ ln ÂI(k,ℓ)

∂JI
MSLE (ln ÂI(k,ℓ),ln B̂I(k,ℓ))

∂ ln B̂I(k,ℓ)

]T
.

(3.39)
Using (3.29), these partial derivatives are equal to:

∂J IMSLE

(
ln ÂI(k, ℓ), ln B̂I(k, ℓ)

)
∂ ln ÂI(k, ℓ)

= −2 ·

[
QI
ln(k, ℓ)

Φ̂I
rL(k, ℓ)

]
·
∂Φ̂I

rL(k, ℓ)

∂ ln ÂI(k, ℓ)
, (3.40)

∂J IMSLE

(
ln ÂI(k, ℓ), ln B̂I(k, ℓ)

)
∂ ln B̂I(k, ℓ)

= −2 ·

[
QI
ln(k, ℓ)

Φ̂I
rL(k, ℓ)

]
·
∂Φ̂I

rL(k, ℓ)

∂ ln B̂I(k, ℓ)
. (3.41)

The partial derivatives of the LRE PSD estimate Φ̂I
rL with respect to the logarithm

of the parameter estimates will be computed for the OE and EE methods in sub-
sections 3.6.1 and 3.6.2, respectively. It should be noted that when minimizing the
MSLE cost function, the parameter updates in each frame are normalized by the
LRE PSD estimate Φ̂I

rL and depend on the log error QI
ln, which in turn depends on

the ratio of the LRE PSD and its estimate.

3.6.1 Algorithms for output error method

Using (3.22), the partial derivatives of Φ̂O
rL with respect to the parameter estimates

are equal to:

∂Φ̂O
rL(k, ℓ)

∂ÂO(k, ℓ)
= Φx(k, ℓ−G) + B̂O(k, ℓ) ·

∂Φ̂O
rL(k, ℓ− 1)

∂ÂO(k, ℓ)
,

∂Φ̂O
rL(k, ℓ)

∂B̂O(k, ℓ)
= Φ̂O

rL(k, ℓ− 1) + B̂O(k, ℓ) ·
∂Φ̂O

rL(k, ℓ− 1)

∂B̂O(k, ℓ)
,

(3.42)

1 It should be noted that the gradient-descent update rule for the MSLE cost function in the linear
domain yielded unreliable results.
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while the partial derivatives of Φ̂O
rL with respect to the logarithm of the parameter

estimates are equal to:

∂Φ̂O
rL(k, ℓ)

∂ ln ÂO(k, ℓ)
= ÂO(k, ℓ) · Φx(k, ℓ−G) + B̂O(k, ℓ) ·

∂Φ̂O
rL(k, ℓ− 1)

∂ ln ÂO(k, ℓ)
,

∂Φ̂O
rL(k, ℓ)

∂ ln B̂O(k, ℓ)
= B̂O(k, ℓ) · Φ̂O

rL(k, ℓ− 1) + B̂O(k, ℓ) ·
∂Φ̂O

rL(k, ℓ− 1)

∂ ln B̂O(k, ℓ)
.

(3.43)

It should be noted that (3.42) and (3.43) contain partial derivatives of the OE PSD
estimate Φ̂O

rL(k, ℓ−1) in the previous frame with respect to the parameter estimates

θ̂
O
(k, ℓ) and their logarithm ln θ̂

O
(k, ℓ) in the current frame, respectively. These

terms appear due to the recursive �lter structure of the OE method. These partial
derivatives cannot be computed in a straightforward manner, as Φ̂O

rL(k, ℓ− 1) does

not directly depend on θ̂
O
(k, ℓ). In [75], two approximations have been proposed for

computing these partial derivatives, which we now apply to the problem at hand.

3.6.1.1 Recursive prediction error (RPE)

Although the OE PSD estimate Φ̂O
rL(k, ℓ − 1) in the previous frame does not di-

rectly depend on the parameter estimates θ̂
O
(k, ℓ) in the current frame, it obviously

directly depends on the parameter estimates θ̂
O
(k, ℓ − 1) in the previous frame.

For computing the partial derivatives in (3.42) and (3.43), the RPE adaptive algo-
rithm [75] uses the following approximations:

∂Φ̂O
rL(k, ℓ− 1)

∂θ̂
O
(k, ℓ)

≈
∂Φ̂O

rL(k, ℓ− 1)

∂θ̂
O
(k, ℓ− 1)

,

∂Φ̂O
rL(k, ℓ− 1)

∂ ln θ̂
O
(k, ℓ)

≈
∂Φ̂O

rL(k, ℓ− 1)

∂ ln θ̂
O
(k, ℓ− 1)

,

(3.44)

which have been shown to be reasonable if the step-sizes Γ in (3.34) and (3.38)
are su�ciently small. Using these approximations makes it possible to compute the
partial derivatives in (3.42) and (3.43) recursively. As a result, both reverberation
parameters are updated even when the respective inputs to the parameters are
absent.
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3.6.1.2 Pseudo linear regression (PLR)

The PLR algorithm is an approximate gradient method [75] which assumes that
the OE PSD estimate in the previous frame Φ̂O

rL(k, ℓ − 1) is independent of the

parameter estimates in the current frame θ̂
O
(k, ℓ), i.e.:

∂Φ̂O
rL(k, ℓ− 1)

∂θ̂
O
(k, ℓ)

= 0,

∂Φ̂O
rL(k, ℓ− 1)

∂ ln θ̂
O
(k, ℓ)

= 0.

(3.45)

Using (3.45) in (3.42) and (3.43) yields non-recursive formulations for the partial
derivatives. It should be noted that the gradient computed using the PLR algorithm
is an approximate version of the gradient computed using the RPE algorithm, as
the assumptions in (3.45) are stronger than in (3.44).

3.6.2 Algorithm for equation error method

Using (3.30), the partial derivatives of Φ̂E
rL with respect to the parameter estimates

are equal to:

∂Φ̂E
rL(k, ℓ)

∂ÂE(k, ℓ)
= Φx(k, ℓ−G),

∂Φ̂E
rL(k, ℓ)

∂B̂E(k, ℓ)
= ΦrL(k, ℓ− 1),

(3.46)

while the partial derivatives of Φ̂E
rL with respect to the logarithm of the parameter

estimates are equal to:

∂Φ̂E
rL(k, ℓ)

∂ ln ÂE(k, ℓ)
= ÂE(k, ℓ) · Φx(k, ℓ−G),

∂Φ̂E
rL(k, ℓ)

∂ ln B̂E(k, ℓ)
= B̂E(k, ℓ) · ΦrL(k, ℓ− 1).

(3.47)

Hence, the partial derivatives obtained for the EE method in (3.46) and (3.47)
are non-recursive and similar to those obtained for the PLR algorithm for the OE
method. It can also be observed that the reverberation parameters are not updated
when the respective inputs to the parameters are absent, i.e., the reverberation
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scaling parameter ÂE is not updated when Φx(k, ℓ−G) = 0, while the reverberation
decay parameter B̂E is not updated when ΦrL(k, ℓ− 1) = 0.

3.7 Simulations

In this section, we evaluate the performance of the proposed online parameter es-
timation methods (OE and EE), cost functions (MSE and MSLE) and gradient-
descent-based algorithms, giving rise to 6 combinations: OE-RPE-MSE, OE-PLR-
MSE, EE-MSE, OE-RPE-MSLE, OE-PLR-MSLE and EE-MSLE. In Sections 3.7.1
and 3.7.2 we describe the signals and the algorithmic parameters used in our simula-
tions, while in Section 3.7.3 we discuss the performance metrics used to evaluate the
PSD estimation accuracy, the residual echo suppression and the near-end speech dis-
tortion. In Section 3.7.4 we perform two experiments to evaluate the performance of
the proposed parameter estimation methods. To evaluate the parameter estimation
accuracy, the �rst experiment is performed in an idealistic setting using arti�cial
RIRs with frequency-independent reverberation parameters. The second experiment
is performed in a realistic setting using RIRs measured in di�erent rooms, compar-
ing the performance of the proposed methods with state-of-the-art signal-based
methods.

3.7.1 Signals

In our simulations, we use time-domain signals at a sampling frequency fs = 16 kHz.
The far-end speech signal x of length 30s and the near-end speech signal s of length
5s are obtained from the TIMIT database [98], where the double-talk condition
occurs in the last 5s. The background noise signal v of length 30s is stationary air
conditioner noise measured in an o�ce. The time-domain signals are transformed
into the STFT domain with NFFT = 512 (i.e., K = 257) using a Hann analysis
window and an overlap of 75%, i.e., a frameshift of F = 128.

The di�erent RIRs used for our simulations can be divided into two categories:

� Arti�cial RIRs: A total of 30 RIRs were generated exactly according to the
model in (3.12) with N = 640 and Nh = 16000 for all combinations of the
frequency-independent parameters σ2

L = {−40,−36,−32,−28,−24,−20} dB
and T60 = {200, 400, 600, 800, 1000} ms.

� Measured RIRs: A total of 55 RIRs were measured in 4 rooms with di�erent
reverberation times, with the number of RIRs measured in each room and
the corresponding T60 values shown in Table 3.1. The broadband T60 of each
RIR was estimated by line-�tting on its corresponding energy decay curve [29].
The lab, garage and the echoic room were rectangular shaped, while the o�ce
room was L-shaped. It should be noted that these RIRs obviously don't exactly
correspond to the model in (3.12).
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Room No. of IRs T60

Lab 16 300-400 ms

Garage 16 400-500 ms

O�ce 16 500-600 ms

Echoic Room 7 850-950 ms

Table 3.1: Number of RIRs measured in each room and the corresponding reverberation
times (T60).

Method MSLE MSE

µA µB µA µB

OE-RPE 10−2 10−4 10−4 10−3.5

OE-PLR 10−1.75 10−3.75 10−2.5 10−2

EE 10−1 10−2.5 10−2 10−1.5

Table 3.2: Step-sizes used for the OE-RPE, OE-PLR and EE methods (for both the MSE
and MSLE cost functions).

3.7.2 Algorithmic parameters

All required PSDs are computed via recursive smoothing according to (3.8), with

the smoothing factor α = e
−2·F
fs·tc computed for a time-constant tc = 0.02 s. For

the di�erent combinations of parameter estimation methods, cost functions and
gradient-descent-based algorithms, the step-sizes listed in Table 3.2 were used, which
were found to give good results. In our experiments we however observed that the
results obtained for the MSLE cost function were not very sensitive to the choice of
the step-size. For the modi�ed version of Favrot's method (see Appendix A.2), the
delay M has been chosen as M = N = 640, while the delay P has been chosen as
P = κ ·F for two di�erent values κ = 12 and κ = 16. In the RES post�lter in (3.9),
an over-estimation factor β = 2 and a �xed spectral �oor γ = −20 dB have been
used.

3.7.3 Performance metrics

To evaluate the accuracy of the LRE PSD estimate Φ̂rL , we compute the Log Spec-
tral Distance (LSD) [91] between the PSD estimate and the target PSD ΦrL , which
can be expressed as the sum of the under- and over-estimation scores:

LSD = LSDun + LSDov, (3.48)
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LSDun =
10

K · L
·
K−1∑
k=0

l1+L∑
ℓ=l1+1

max

{
0, log10

(
ΦrL(k, ℓ)

Φ̂rL(k, ℓ)

)}
,

LSDov = − 10

K · L
·
K−1∑
k=0

l1+L∑
ℓ=l1+1

min

{
0, log10

(
ΦrL(k, ℓ)

Φ̂rL(k, ℓ)

)}
,

where l1 and L denote the start and the duration of the evaluation window (in
frames), respectively. We choose l1 corresponding to 20s (l1 = 2500) and L cor-
responding to 5s (L = 625). A small LSD score corresponds to an accurate PSD
estimate, with the perfect estimate Φ̂rL = ΦrL yielding LSD = 0.

To evaluate the amount of residual echo suppression and near-end speech distortion
obtained by applying the RES post�lter, we compute the segmental residual echo
attenuation (REA) and the segmental speech-to-speech distortion ratio (SSDR) [91,
99], respectively. The segmental REA is de�ned as:

REAseg =
1

L
·

l1+L∑
ℓ=l1+1

δ(ℓ), (3.49)

where

δ(ℓ) = 10 · log10

(∑F−1
m=0 r2L(m+ ℓ · F )∑F−1
m=0 r̃2L(m+ ℓ · F )

)
(3.50)

denotes the REA in each frame, with the late residual echo signal rL and the
processed residual echo signal r̃L obtained through inverse STFT processing of RL

and R̃L (see (3.11)), respectively. A large REAseg means that a large amount of
residual echo has been suppressed. The segmental SSDR is de�ned as:

SSDRseg =
1

L
·

l2+L∑
ℓ=l2+1

η(ℓ), (3.51)

where

η(ℓ) = 10 · log10

( ∑F−1
m=0 s2(m+ ℓ · F )∑F−1

m=0 (s(m+ ℓ · F )− s̃(m+ ℓ · F ))2

)
(3.52)

denotes the SSDR in each frame, with s the near-end speech signal and s̃ the
processed near-end speech signal (see (3.11)). Here, we choose l2 corresponding
to 25s (l2 = 3125), such that the segmental SSDR is computed in the last 5s
when double-talk occurs. A large SSDRseg corresponds to a small near-end speech
signal distortion. In general, a trade-o� exists between obtaining large residual echo
attenuation and small near-end speech distortion. Hence, it is desirable to maximize
REAseg while keeping SSDRseg as large as possible.
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Fig. 3.6: Plot of σ̂2
L vs σ2

L for the OE-RPE, OE-PLR and EE methods when minimizing
the MSLE cost function for the idealistic setting.

3.7.4 Experimental results

The �rst experiment is performed in an idealistic setting, i.e., using arti�cial RIRs, a
perfect AEC �lter, no near-end speech and no background noise. In this experiment
we evaluate how accurately the proposed methods estimate the RIR parameters
and the LRE PSD. The second experiment is performed in a realistic setting using
measured RIRs, a converged (but not perfect) subband AEC �lter, near-end speech
and background noise. In this experiment, we compare the LSD, segmental REA
and SSDR scores and the T60 estimates obtained using the proposed online methods
with those obtained using state-of-the-art methods, i.e., Valero's method [23] (o�ine
version) and Favrot's method [24] (modi�ed online version presented in Appendix
A.2)

3.7.4.1 Idealistic setting

As already mentioned, in this experiment we use arti�cial RIRs with frequency-
independent parameters σ2

L and T60 (see Section 3.7.1) to generate the acoustic echo
signal and we assume a perfect AEC �lter, i.e., no early residual echo (RE = 0).
Additionally, we assume that no near-end speech and background noise are present,
i.e., s(n) = v(n) = 0, such that E(k, ℓ) = RL(k, ℓ). For this idealistic setting, we
compare the estimates of the RIR parameters σ̂2

L and T̂60 with the true values,
and compare the LSD scores of the LRE PSD estimates obtained using the OE-
RPE, OE-PLR and EE methods (for both the MSE and MSLE cost functions).
For each method, the parameter estimates σ̂2

L and T̂60 are obtained by averaging
the converged values of the estimated model parameters A(k) and B(k) over all
frequency bins and using them in (3.15), (3.16) and (3.13).

Fig. 3.6 and Fig. 3.7 show the estimated scaling parameter σ̂2
L as a function of

the true scaling parameter σ2
L for the OE-RPE, OE-PLR and EE methods when

minimizing the MSLE and MSE cost functions, respectively. Each point in these
�gures corresponds to the average result obtained for 5 RIRs (with di�erent T60
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Fig. 3.7: Plot of σ̂2
L vs σ2

L for the OE-RPE, OE-PLR and EE methods when minimizing
the MSE cost function for the idealistic setting.
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Fig. 3.8: Plot of T̂60 vs T60 for the OE-RPE, OE-PLR and EE methods when minimizing
the MSLE cost function for the idealistic setting.

values), while the error bars depict the standard deviation across these 5 RIRs.
On the one hand, it can be observed that for MSLE minimization (Fig. 3.6), all
considered methods slightly under-estimate σ2

L and yield a very small standard
deviation, indicating robustness to di�erent T60 values. On the other hand, for MSE
minimization (Fig. 3.7), all considered methods yield less accurate estimates with
large standard deviations. Overall, the OE-RPE method with MSLE minimization
gives the most accurate results for all considered σ2

L and T60.

Fig. 3.8 and Fig. 3.9 show the estimated reverberation time T̂60 as a function of
the true reverberation time T60 for the OE-RPE, OE-PLR and EE methods when
minimizing the MSLE and MSE cost functions, respectively. Each point in these
�gures now corresponds to the average result obtained for 6 IRs (with di�erent σ2

L),
while the error bars depict the standard deviation across these 6 IRs. It can be
observed that for MSLE minimization (Fig. 3.8), the OE-RPE method estimates
the T60 very accurately, while the OE-PLR and EE methods slightly over-estimate
the T60. All three methods yield small standard deviations, indicating robustness
to di�erent σ2

L values. For the MSE minimization (Fig. 3.9), the OE-RPE and OE-
PLR methods estimate the T60 reasonably accurately with large standard deviations,
while the EE method fails completely, especially for large T60. Overall, the OE-RPE
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Fig. 3.9: Plot of T̂60 vs T60 for the OE-RPE, OE-PLR and EE methods when minimizing
the MSE cost function for the idealistic setting.

Method LSDun LSDov

T60 = 0.2s 0.4s 0.6s 0.8s 1s 0.2s 0.4s 0.6s 0.8s 1s

OE-RPE-MSLE 0.84 0.98 1.07 1.19 1.28 1.24 1.36 1.47 1.54 1.63

OE-PLR-MSLE 1.37 1.57 1.67 1.63 1.59 1.01 0.96 1.00 1.09 1.13

EE-MSLE 1.83 2.18 2.44 2.45 2.48 0.67 0.67 0.64 0.69 0.67

OE-RPE-MSE 1.15 0.90 0.95 0.99 1.02 1.25 1.97 2.51 2.93 3.10

OE-PLR-MSE 0.73 0.86 0.91 0.94 0.97 1.39 1.82 2.22 2.4 2.42

EE-MSE 0.81 0.41 0.18 0.08 0.06 1.38 2.9 5.27 7.66 9.01

Table 3.3: Average LSD scores obtained for arti�cially generated RIRs for all proposed
parameter estimation methods.

method with MSLE minimization gives the most accurate and consistent results for
all considered σ2

L and T60.

Fig. 3.10 shows the LSD scores of the LRE PSD estimates obtained using all consid-
ered methods as a function of T60. Each point in this �gure again corresponds to the
average result obtained for 6 RIRs (with di�erent σ2

L), while the error bars depict
the standard deviation across these 6 RIRs. Additionally, Table 3.3 breaks down all
average LSD scores into under- and over-estimation scores (see (3.48)). From these
results it can be observed that the OE-RPE-MSLE and OE-PLR-MSLE methods
consistently outperform all other methods across all T60 values, yielding the lowest
LSD scores with the smallest standard deviations. When minimizing the MSE cost
function, all methods yield signi�cantly larger over-estimation scores than under-
estimation scores, especially for large T60 values.

In conclusion, based on the results obtained for the idealistic setting, the OE-RPE-
MSLE method outperforms all other proposed methods in terms of estimation ac-
curacy of the RIR parameters σ2

L and T60 and the LRE PSD ΦrL . This corresponds
to the result obtained in [77] for o�ine processing.



66 online estimation of reverberation parameters for late res

T60 [ms]
0 200 400 600 800 1000 1200

L
S
D

[d
B
]

0

2

4

6

8

10 OE-RPE-MSLE
OE-PLR-MSLE
EE-MSLE
OE-RPE-MSE
OE-PLR-MSE
EE-MSE

1

Fig. 3.10: Plot of LSD vs T60 for all proposed parameter estimation methods for the ideal-
istic setting.

3.7.4.2 Realistic setting

In this experiment, we use measured RIRs (see Table 3.1) to generate the acoustic
echo signal and subband AEC �lter to perform echo cancellation (see Section 3.3.1).
For the AEC �lter we have used a rather short �lter length (G = 5 frames, corre-
sponding to 64 ms), aiming at canceling the direct sound component and the early
re�ections, while achieving fast convergence at low computational cost. The subband
�lter was pre-converged using the NLMS algorithm [15], with white Gaussian noise
as the far-end signal. It should be noted that when using a subband AEC �lter, the
early residual echo is not completely cancelled, i.e., a small amount of early residual
echo remains due to �lter misalignment (RE ̸= 0). In addition, near-end speech and
background noise are present, with the near-end signal-to-noise ratio set to 40 dB.
In order to obtain a fair comparison of the segmental performance metrics for all
measured RIRs, all RIRs have been scaled appropriately such that the speech-to-
residual echo ratio (SRER) is equal to 10 dB. The reverberation parameters θ(k) are
estimated only during periods of near-end speech absence, i.e., during the �rst 25s,
and when the AEC error PSD Φe is at least 3 dB above the background noise PSD
Φv, as during these periods the AEC error PSD Φe is predominantly composed of
the LRE PSD ΦrL . As ΦrL is not directly observable in practice, it is approximated
in (3.30) by Φe during these periods.

For this realistic setting, we compare the LSD, REAseg and SSDRseg scores obtained
using the OE-RPE, OE-PLR and EE methods (for both the MSE and MSLE cost
functions) with the state-of-the-art methods in [23] (o�ine version) and [24] (modi-
�ed online version). Additionally, we also compare the estimated reverberation time
T̂60 with the (true) T60 obtained by line-�tting.

Fig. 3.11 shows the LSD scores obtained using all considered methods for the mea-
sured RIRs in each room. Each point in this �gure corresponds to the average
LSD score obtained for all RIRs in a speci�c room, while the error bars depict the
standard deviation across these RIRs. It can be observed that the proposed OE-
RPE-MSLE and OE-PLR-MSLE methods outperform all other online parameter
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Fig. 3.11: LSD scores obtained for RIRs measured in 4 di�erent rooms for all considered
parameter estimation methods.

Method Lab Garage O�ce Echoic Room

LSDun LSDov LSDun LSDov LSDun LSDov LSDun LSDov

OE-RPE-MSLE 1.00 1.54 1.03 1.52 1.17 1.58 1.40 1.63

OE-PLR-MSLE 1.30 1.33 1.26 1.59 1.90 1.30 1.45 2.27

EE-MSLE 0.23 9.29 0.20 8.89 0.28 7.99 0.49 5.43

OE-RPE-MSE 0.43 7.73 0.39 9.95 0.50 10.61 0.63 10.90

OE-PLR-MSE 0.58 5.83 0.67 7.22 0.80 8.26 0.86 9.74

EE-MSE 0.29 11.73 0.13 13.43 0.12 14.34 0.03 15.73

Valero (o�ine) 0.97 2.28 1.22 2.04 1.91 1.65 2.02 1.44

Favrot: κ = 12 0.77 5.36 0.72 4.91 0.92 4.75 1.28 4.37

Favrot: κ = 16 0.62 6.35 0.61 5.38 0.76 5.14 1.12 4.43

Table 3.4: Average LSD scores obtained for RIRs measured in 4 rooms (see Table 3.1) for
all considered parameter estimation methods.

estimation methods, and are even slightly better than the o�ine method proposed
in [23]. In addition, Table 3.4 breaks down all average LSD scores into under- and
over-estimation scores. Firstly, it can be observed that among all proposed estima-
tion methods, the OE-RPE-MSLE and OE-PLR-MSLE methods yield similar under-
and over-estimation scores. Although the other proposed methods and the modi�ed
Favrot method yield smaller under-estimation scores than the OE-RPE-MSLE and
OE-PLR-MSLE methods, they yield considerably larger over-estimation scores. Fi-
nally, for the o�ine method proposed in [23], both the under- and over-estimation
scores are slightly larger than for the online OE-RPE-MSLE and OE-PLR-MSLE
methods (except for under-estimation scores in the lab and over-estimation scores
in the echoic room).

Fig. 3.12 shows the REAseg scores against the SSDRseg scores obtained using all
considered methods. Each point in this �gure corresponds to the average result
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Fig. 3.12: Plot of segmental REA vs segmental SSDR obtained for RIRs measured in 4
di�erent rooms for all considered parameter estimation methods.

obtained for all RIRs in a speci�c room, while the error bars on the x and y-
axes depict the standard deviations across these RIRs for the SSDRseg and REAseg

scores, respectively. For comparison, we also included the results obtained using the
perfect LRE PSD estimate Φ̂rL = ΦrL and an over-estimation factor β = 1, which
yields the best possible performance in terms of maximizing both the REAseg and
SSDRseg scores. As expected, it can be observed that a large LSD over-estimation
score (see Table 3.4) leads to large residual echo attenuation at the expense of large
near-end speech distortion, while an opposite e�ect can be observed for a large LSD
under-estimation score. The proposed online OE-RPE-MSLE and OE-PLR-MSLE
methods as well as Valero's o�ine method yield signi�cantly better SSDRseg scores
as compared to the other methods (about 5-10 dB), while not losing too much in
terms of the REAseg score (about 2-3 dB). Overall, the OE-RPE-MSLE method
yields the best performance amongst all considered parameter estimation methods,
i.e., both its REAseg as well as its SSDRseg score are closest to the scores obtained
for the perfect LRE PSD estimate.

Fig. 3.13 shows the estimated reverberation time T̂60 obtained using all considered
methods for the measured RIRs in each room. Each point in this �gure corresponds
to the average result obtained for all RIRs in a speci�c room, while the error bars
depict the standard deviation across these RIRs. For comparison, the (true) T60
values obtained by line-�tting on the measured RIRs have also been included. It
can be clearly observed that the OE-RPE-MSLE method yields the most accurate
and consistent T60 estimate across all rooms. On the one hand, the OE-PLR-MSLE
method, Valero's method and Favrot's method perform rather similarly, i.e., slightly
over-estimating the T60 for the lower range (250-500 ms) but under-estimating the
T60 for the higher range (600-900 ms). On the other hand, the EE method for both
cost functions fails completely and signi�cantly over-estimates the T60, while the
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Fig. 3.13: Plot of T̂60 vs T60 (line-�tting) for RIRs measured in 4 di�erent rooms for all
considered parameter estimation methods.

OE-RPE-MSE and OE-PLR-MSE methods signi�cantly underestimate the T60. Ad-
ditionally, in Fig. 3.14 we plot the estimated and true T60 values for all 55 measured
RIRs and compute the correlation coe�cient ζ between these values for each consid-
ered method. It can be seen that the proposed OE-RPE-MSLE method yields the
largest correlation coe�cient (ζ = 0.96), followed by the proposed OE-PLR-MSLE
method (ζ = 0.95) and Favrot's method (ζ = 0.94).

In conclusion, based on the results obtained for this realistic setting, the proposed
OE-RPE-MSLE method outperforms all other considered (online and o�ine) pa-
rameter estimation methods in terms of LRE PSD and T60 estimation accuracy,
while yielding the largest SSDRseg score and hardly compromising on the REAseg

score compared to the perfect LRE PSD estimate.

3.8 Conclusion

In this paper, we considered late residual echo suppression by jointly estimating the
parameters of an exponentially decaying reverberation model using online signal-
based methods. The OE and EE methods, which were originally proposed to es-
timate the coe�cients of time-domain IIR �lters, were used on PSDs to jointly
estimate the reverberation scaling and decay parameters by minimizing either the
MSE or the MSLE cost function. For both methods, gradient-descent-based algo-
rithms were derived to simultaneously update both parameters during periods of
near-end speech absence. The estimated parameters were then used in a recursive �l-
ter structure to generate the corresponding LRE PSD estimate. The di�erent meth-
ods (OE/EE), cost functions (MSE/MSLE) and gradient-descent-based algorithms
(RPE/PLR) were compared with state-of-the-art signal-based methods, both in an
idealistic as well as in a realistic setting. For both considered settings, the proposed
OE-RPE-MSLE and OE-PLR-MSLE methods consistently outperformed all other
considered methods in terms of LRE PSD estimation accuracy. Moreover, across all
considered scenarios the OE-RPE-MSLE method yielded the most accurate T60 es-
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Fig. 3.14: Correlation between T̂60 obtained using each considered parameter estimation
method and T60 (line-�tting) for all measured RIRs.

timates. The EE method failed to accurately estimate the LRE PSD and T60 across
all scenarios, while both OE and EE methods for the MSE cost function failed to
accurately estimate the T60. For the realistic setting, the proposed OE-RPE-MSLE
and OE-PLR-MSLE methods resulted in the smallest near-end speech distortion
after applying the post�lter, while delivering a large residual echo suppression.





4
JOINT ONLINE ESTIMATION OF EARLY AND
LATE RESIDUAL ECHO PSD FOR RESIDUAL
ECHO SUPPRESSION

4.1 Abstract

In hands-free telephony and other distant-talking applications, an acoustic echo
cancellation (AEC) system is typically required, where a short AEC �lter is often
used in practice to achieve fast convergence at low computational cost. This may
result in late residual echo (LRE) remaining due to under-modeling of the echo
path and early residual echo (ERE) due to �lter misalignment. Both residual echo
components can be suppressed using a post�lter in the subband domain, which
requires accurate estimates of the power spectral density (PSD) of the ERE and
LRE components. The ERE PSD has traditionally been estimated by proper scaling
of the loudspeaker PSD, while a recursive estimator based on frequency-dependent
reverberation scaling and decay parameters has frequently been used to estimate
the LRE PSD. State-of-the-art methods estimate the required model parameters
independently of each other. In this article, we propose to extend the ERE PSD
estimator from a scalar to a moving average �lter on the loudspeaker PSD, while
the LRE PSD is estimated using an IIR �lter based on the reverberation scaling and
decay parameters. In addition, we propose a signal-based method to jointly estimate
all model parameters in online mode, and derive two algorithms to simultaneously
update the parameters by minimizing the mean squared log error. The proposed
methods are compared with state-of-the-art methods in terms of estimation accuracy
of the model parameters as well as the residual echo PSDs. Extensive simulation
results using both arti�cially generated as well as measured impulse responses show
that the proposed methods outperform state-of-the-art methods for all considered
scenarios.

4.2 Introduction

Hands-free telephony applications and distant-talking applications, such as speech-
enabled multimedia devices, have become very popular in recent years. In these

71
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applications, the distance between the desired (near-end) speaker and the micro-
phone may be quite large, while the loudspeaker playing back the far-end signal
is typically located much closer to the microphone. As a result, the microphone
signal may be degraded signi�cantly due to the acoustic echo of the far-end signal,
which may lead to the near-end speaker being unintelligible. In a typical acoustic
echo cancellation (AEC) system, an adaptive �lter aims at estimating the impulse
response (IR) between the loudspeaker and the microphone [1, 10, 11]. In practice,
however, the �lter is typically not able to perfectly estimate the IR, resulting in
residual echo due to �lter misalignment. Additionally, as a short �lter is often used
in practice in order to achieve fast convergence at low computational cost, the �lter
is unable to estimate the complete echo path, leading to late residual echo. Thus,
assuming no non-linear signal components, the residual echo is composed of early
residual echo (ERE) due to �lter misalignment and late residual echo (LRE) due to
under-modeling of the IR by the short AEC �lter.

The residual echo is often suppressed in the subband domain using a post�lter
[21, 22, 62�64, 66, 67], which relies on an estimate of the power spectral density
(PSD) of the residual echo. Hence, it is desirable to accurately estimate the PSD
of both the ERE and LRE components. A simple but frequently used method is to
estimate the ERE PSD as a scaled version of the PSD of either the far-end signal [1]
or the estimated echo signal (generated by the AEC �lter) [65]. In either case, the
scalar is estimated during periods of near-end speech absence by computing a ratio
between the PSD of the AEC error signal (obtained after the estimated echo signal
is subtracted from the microphone signal) and the PSD of the respective input
signal.

To estimate the LRE PSD, several methods have been proposed based on the sta-
tistical reverberation model in [28], which assumes that the late reverberant part
of an IR decays exponentially at a rate proportional to the reverberation time. A
recursive estimator for the LRE PSD was proposed in [13], which requires estimates
of two frequency-independent room acoustic parameters: the reverberation scaling
parameter (which is related to the initial power of the LRE component) and the
reverberation decay parameter (which is related to the reverberation time). Both re-
verberation parameters were estimated using a channel-based method, i.e. using the
coe�cients of the converged AEC �lter. In [14], a similar recursive estimator for the
LRE PSD was derived with frequency-dependent reverberation parameters, where
both parameters were again estimated using a channel-based method. It should be
noted that channel-based methods are e�ective only if the AEC �lter is long enough
to capture a signi�cant portion of the decay of the IR. Hence, signal-based methods
have also been proposed, which estimate the reverberation parameters using the far-
end and residual echo signals. A recursive estimator for the LRE PSD was derived
in [23] based on the generalized reverberation model in [72], where a signal-based
method was proposed to estimate the reverberation parameters in o�ine mode (i.e.
batch processing). In [77] and [78], we proposed two signal-based methods to jointly
estimate both reverberation parameters (in o�ine and online mode) by minimiz-
ing either the mean squared error (MSE) or the mean squared log error (MSLE)
cost function. In [24], a coupling-factor-based estimator for the early acoustic echo
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PSD and a recursive estimator for the late acoustic echo PSD were considered in
a pure acoustic echo suppression system (i.e. without AEC �lter). A signal-based
method exploiting higher-order-statistics was proposed to estimate the parameters
independently of each other in online mode.

As an extension of [78], in this paper, we propose signal-based methods to estimate
the PSD of both residual echo components based on parametric models. By assum-
ing that the �lter misalignment is spread evenly over all AEC �lter taps [1, 70, 71],
we propose to model the ERE PSD using a moving average �lter (instead of a scalar)
on the PSD of the far-end signal, based on a frequency-dependent coupling factor.
Similarly as in [14, 78], the LRE PSD is modeled using an IIR �lter on the PSD
of the far-end signal based on (frequency-dependent) reverberation scaling and de-
cay parameters. We propose to jointly estimate all three model parameters (both
reverberation parameters and the coupling factor) in online mode using the output
error method by minimizing a single MSLE cost function. To simultaneously update
the model parameters, we use gradient-descent-based algorithms such as recursive
prediction error and pseudo-linear regression, which were originally derived for time-
domain recursive systems [15, 75, 76]. The proposed methods are �rst evaluated in
an idealistic setting, i.e. using arti�cially generated IRs and no AEC �lter. They are
then compared with state-of-the-art methods [1], [23] and [24] in a realistic setting,
i.e. using IRs measured in di�erent rooms and pre-converged AEC �lters, in terms
of estimation accuracy of the residual echo PSD and the resulting residual echo
suppression and near-end speech distortion.

The remainder of the paper is organized as follows. The signal model as well as
the AEC and post�lter systems are introduced in Section 4.3. In Section 4.4, the
considered models for the ERE and LRE PSDs are presented. In Section 4.5.1,
we discuss state-of-the-art methods for estimating the di�erent model parameters.
In Section 4.5.2, we present the proposed method for jointly estimating the model
parameters by minimizing the MSLE cost function in online mode, with either of two
gradient-descent-based algorithms used to simultaneously update the parameters. In
Section 4.6, simulation results using arti�cial as well as measured IRs are presented.

4.3 Signal model, AEC and postfilter systems

Fig. 4.1 shows a loudspeaker-enclosure-microphone (LEM) system in which the far-
end signal x is played through the loudspeaker and the microphone captures the
acoustic echo component d, the near-end speech signal s and the background noise
signal v. The microphone signal at discrete-time sample n is thus given as:

y(n) = s(n) + v(n) +

Nh−1∑
i=0

h(i) · x(n− i)︸ ︷︷ ︸
d(n)

, (4.1)

where h denotes the IR between the loudspeaker and the microphone, which is
assumed to be time-invariant and of length Nh samples. To remove the acoustic
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WRES Ẽ(k, ℓ)

STFT

S
T
F
T

PSD

PSD

Res. Echo

PSD Est.

1

Fig. 4.1: Acoustic echo cancellation (AEC) and residual echo suppression (RES) systems.

echo component from the microphone signal, we consider a system in the subband
domain consisting of two parts: an AEC �lter Ĥ and a residual echo suppression
(RES) �lter WRES.

4.3.1 Acoustic echo cancellation

We consider a G-tap subband AEC �lter Ĥ, with the �lter length G chosen so as
to cover only the direct path and early re�ections in h. For subband processing,
the (windowed) time-domain signals are transformed into the short-time Fourier
transform (STFT) domain using a fast Fourier transform (FFT) �lterbank of order
NFFT, with the total number of subbands K = NFFT

2 + 1. The complex-valued
spectrum of the far-end signal x in the kth subband and ℓth frame is given as:

X(k, ℓ) =

NFFT−1∑
i=0

x(ℓ · F + i) ·Wana(i) · e−j 2π
NFFT

ki
, (4.2)

where j =
√
−1, F denotes the frameshift and Wana denotes the analysis window.

The spectra of the other time-domain signals are computed similarly to (4.2), with
the spectral equivalent of (4.1) given as:

Y (k, ℓ) = S(k, ℓ) + V (k, ℓ) +D(k, ℓ). (4.3)

The acoustic echo estimate is generated by �ltering the far-end signal through the
AEC �lter:

D̂(k, ℓ) = XH(k, ℓ) Ĥ(k), (4.4)
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where X(k, ℓ) =
[
X(k, ℓ) . . . X(k, ℓ−G+ 1)

]T
denotes the G-dimensional

input vector to the subband AEC �lter Ĥ, ·H denotes the Hermitian operator and
·T denotes the transpose operator. The AEC error signal is then given as:

E(k, ℓ) = Y (k, ℓ)− D̂(k, ℓ)

= S(k, ℓ) + V (k, ℓ) +
(
D(k, ℓ)− D̂(k, ℓ)

)
= S(k, ℓ) + V (k, ℓ) +R(k, ℓ)

= S(k, ℓ) + V (k, ℓ) + RE(k, ℓ)︸ ︷︷ ︸
Misalignment

+ RL(k, ℓ),︸ ︷︷ ︸
Under-modeling

(4.5)

where R, RE and RL denote the residual echo, ERE and LRE components, respec-
tively. The ERE component is given as:

RE(k, ℓ) = XH(k, ℓ) ∆HE(k), (4.6)

with the AEC misalignment �lter de�ned as:

∆HE(k) = HE(k)− Ĥ(k), (4.7)

where HE contains the �rst G coe�cients of the equivalent subband �lter corre-
sponding to h. Since in this paper G = ⌊N

F ⌋, where N ≪ Nh corresponds to the
length of the direct path and early re�ections in h, the LRE component RL is
assumed to contain only late re�ections, also known as reverberation.

4.3.2 Residual echo suppression

From (4.5), it can be observed that in addition to the desired near-end speech
signal, the AEC error signal also contains the background noise and residual echo
components. It is desirable to suppress these interfering signals while maintaining
high quality and low distortion of the near-end speech signal. As shown in Fig. 4.1,
this suppression is performed by applying a real-valued post�lter WRES to the AEC
error signal E. A frequently used post�lter is the Wiener gain [1], i.e.:

WRES(k, ℓ) = 1−
(
λr(k, ℓ) + λv(k, ℓ)

λe(k, ℓ)

)
, (4.8)

where λr, λv and λe denote the PSDs of the residual echo, background noise and
AEC error signals, respectively. Assuming that S, V and R are mutually uncorre-
lated, the PSD of the AEC error signal can be expressed using (4.5) as:

λe(k, ℓ) = E
{
|E(k, ℓ)|2

}
= λs(k, ℓ) + λv(k, ℓ) + λr(k, ℓ), (4.9)
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where E {·} denotes the statistical expectation operator. Additionally, we make the
realistic assumption that the early and late re�ections in the IR h are uncorrelated,
such that the residual echo PSD can be written as:

λr(k, ℓ) = λrE (k, ℓ) + λrL(k, ℓ), (4.10)

where λrE and λrL denote the ERE PSD and LRE PSD, respectively.

In practice, the statistical expectation operator in (4.9) is approximated by temporal
averaging, e.g.:

Φe(k, ℓ) = α · Φe(k, ℓ− 1) + (1− α) · |E(k, ℓ)|2, (4.11)

where Φe is an approximation of λe and α denotes a smoothing factor. For an
unobservable signal such as R, the quantity Φr itself needs to be estimated, with its
estimate denoted as Φ̂r. In the remainder of this paper, we will use the term true
PSD to refer to the quantity λ, the term PSD to refer to the quantity Φ and the
term PSD estimate to refer to its estimate Φ̂.

In order to control the aggressiveness of the residual echo suppression, we will use
the following gain:

WRES(k, ℓ) = max

{
1− β ·

(
Φ̂r(k, ℓ) + Φ̂v(k, ℓ)

Φe(k, ℓ)

)
, γ

}
, (4.12)

where β denotes the over-estimation factor and γ denotes the (�xed) spectral �oor,
i.e. the maximum attenuation of the �lter. Many approaches have been proposed in
literature to estimate the PSD of the background noise Φ̂v [89�91]. In this paper, we
assume that the background noise is stationary and its PSD estimate Φ̂v is known.
Based on (4.10), the residual echo PSD estimate is given by:

Φ̂r(k, ℓ) = Φ̂rE (k, ℓ) + Φ̂rL(k, ℓ). (4.13)

Although during near-end speech absence Φ̂r can be easily estimated from Φe based
on (4.9), this is obviously not possible during periods of double-talk. Hence, in this
paper we will use parametric models for the ERE PSD ΦrE and the LRE PSD ΦrL ,
which will be explained in the next section.

The processed AEC error signal is given as:

Ẽ(k, ℓ) =WRES(k, ℓ) · E(k, ℓ), (4.14)

which can be expressed as the sum of its individual components similarly to (4.5):

Ẽ(k, ℓ) = S̃(k, ℓ) + Ṽ (k, ℓ) + R̃(k, ℓ), (4.15)
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where S̃, Ṽ and R̃ are obtained by independently �ltering S, V and R respectively
withWRES. The processed signals Ẽ, S̃ and R̃ are synthesized into the time-domain
using inverse STFT and overlap-add processing to yield the processed time-domain
signals ẽ, s̃ and r̃, respectively. These signals can then be used to compute metrics to
evaluate the near-end speech distortion and residual echo suppression (see Section
4.6.3).

4.4 Models for early and late residual echo PSD

In this section, we present the considered models for the early and late residual echo
PSDs. We propose to model the ERE PSD using a moving average �lter on the PSD
of the far-end signal. Similarly as in [14,78], the LRE PSD is modeled using an IIR
�lter on the PSD of the far-end signal.

4.4.1 Model for early residual echo PSD

As already mentioned, the ERE is caused by the misalignment between the IR and
the AEC �lter. A simple model for the ERE PSD was proposed in [1], where the
ERE PSD is modeled as a scaled version of the PSD of the far-end signal:

Φ̂rE (k, ℓ) = C(k) · Φx(k, ℓ), (4.16)

where C denotes the (frequency-dependent) coupling factor. As shown in [1], the
coupling factor represents the squared magnitude spectrum of the �lter misalign-
ment. A disadvantage of this model is that a scalar coupling factor may not be
su�cient to model the ERE PSD, especially if a long AEC �lter is used.

We now derive our proposed model for the ERE PSD. Using (4.6), the ERE PSD
is given by:

λrE (k, ℓ) = E
{
|RE(k, ℓ)|2

}
= E


∣∣∣∣∣
G−1∑
g=0

X∗(k, ℓ− g) ·∆HE(k, g)

∣∣∣∣∣
2
 ,

= E

{
G−1∑
i=0

G−1∑
j=0

X∗(k, ℓ− i) ·X(k, ℓ− j) ·∆HE(k, i) ·∆H∗
E(k, j)

}
,

(4.17)

where ∆HE(k, g) denotes the g
th coe�cient of the AEC misalignment �lter ∆HE .

Assuming statistical independence between the far-end signal and the AEC mis-
alignment �lter yields:

λrE (k, ℓ) =

G−1∑
i=0

G−1∑
j=0

E {X∗(k, ℓ− i) ·X(k, ℓ− j)} · E {∆HE(k, i) ·∆H∗
E(k, j)} .

(4.18)
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Fig. 4.2: Proposed model for the ERE PSD ΦrE (moving average �lter).

Assuming that the coe�cients of the AEC misalignment �lter are mutually uncor-
related, i.e., E {∆HE(k, i) ·∆H∗

E(k, j)} = 0 for i ̸= j, the ERE PSD can be written
as:

λrE (k, ℓ) =

G−1∑
g=0

λx(k, ℓ− g) · E
{
|∆HE(k, g)|2

}
. (4.19)

Finally assuming that the misalignment is spread evenly over all AEC �lter coe�-
cients [1,70,71], i.e., E

{
|∆HE(k, g)|2

}
= C(k) ∀ g, the ERE PSD can be simpli�ed

as:

λrE (k, ℓ) = C(k) ·
G−1∑
g=0

λx(k, ℓ− g). (4.20)

Based on (4.20), we will hence use the following model for the ERE PSD:

Φ̂rE (k, ℓ) = C(k) ·
G−1∑
g=0

Φx(k, ℓ− g). (4.21)

This model can be interpreted as an extension of (4.16) in that a moving average
�lter is used instead of an instantaneous scaling of the PSD of the far-end signal.
This model is depicted in Fig. 4.2.

4.4.2 Model for late residual echo PSD

As already mentioned, the LRE component is caused by under-modeling of the IR
by the AEC �lter. Several models for the LRE PSD have been proposed based on the
statistical reverberation model in [28], which assumes that the late reverberant part
of an IR can be described as an exponentially decaying realization of a stochastic
process:

h(i) = wL(i) · e−ρ (i−N), N ≤ i < Nh, (4.22)

where wL ∼ N (0, σ2
L) is a zero-mean stationary white Gaussian noise process with

variance σ2
L and ρ denotes the decay rate. The decay rate is related to the reverber-

ation time T60 of the room as:

ρ =
3 · ln 10
fs · T60

, (4.23)
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Fig. 4.3: Model for the LRE PSD ΦrL (IIR �lter).

where fs denotes the sampling rate in Hz. It should be noted that in practice the
T60, and hence the decay rate ρ, are frequency-dependent [25].

Based on (4.22), a recursive expression for the LRE PSD was �rst derived in [13]
using frequency-independent parameters. In this paper, we will use a version of this
model with frequency-dependent parameters, which was derived in [14] and [78],
and is given as:

Φ̂rL(k, ℓ)=A(k)· Φx(k, ℓ−G)+B(k)· Φ̂rL(k, ℓ−1), (4.24)

where A(k) and B(k) denote the frequency-dependent reverberation scaling and
decay parameters, respectively. These parameters are related to the frequency-
dependent variance σ2

L(k) and decay rate ρ(k) as follows (see [78]):

A(k) = σ2
L(k) ·

(
1− e−2ρ(k)F

1− e−2ρ(k)

)
, (4.25)

B(k) = e−2ρ(k)F . (4.26)

The recursive expression in (4.24) is depicted in Fig. 4.3 as an IIR �lter on the PSD
of the far-end signal.

4.5 Parameter estimation methods

In Section 4.5.1, we brie�y review state-of-the-art signal-based methods to estimate
the model parameters A, B and C. In Section 4.5.2, we present our proposed signal-
based methods to jointly estimate all model parameters by minimizing a single
cost function. Please note that in all the considered methods, the parameters are
estimated only during periods of near-end speech absence.

4.5.1 State-of-the-art methods

In this section, we brie�y discuss state-of-the-art methods for estimating the three
model parameters A, B and C.
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Hänsler et al. [1] estimate the scalar coupling factor C in (4.16) as the smoothed
ratio of the AEC error PSD and the far-end signal PSD:

ĈH(k, ℓ) = (1− δ) · Φe(k, ℓ)

Φx(k, ℓ)
+ δ · ĈH(k, ℓ− 1), (4.27)

where δ denotes a smoothing factor. Please note that in [1], no additional estimator
for the LRE PSD was used, i.e., the estimated coupling factor from (4.27) was fed
into (4.16) to yield an estimate for the complete residual echo PSD Φ̂r.

Valero et al. [23] proposed a method to estimate the reverberation parameters A and
B by minimizing two di�erent cost functions in o�ine (i.e., batch processing) mode.
The reverberation decay parameter B was estimated by minimizing the MSLE cost
function:

JMSLE

(
ln B̂V(k)

)
=

NT−1∑
ℓ=0

(
lnΦe(k, ℓ)− ln Φ̂rL(k, ℓ)

)2
, (4.28)

where NT is the batch size in frames. The reverberation scaling parameter A was
then estimated by minimizing the MSE cost function:

JMSE

(
ÂV(k)

)
=

NT−1∑
ℓ=0

(
Φe(k, ℓ)− Φ̂rL(k, ℓ)

)2
. (4.29)

Please note that in [23], no additional estimator for the ERE PSD was used, i.e.,
the estimated reverberation parameters ÂV and B̂V were fed into (4.24) to yield an
estimate for the complete residual echo PSD Φ̂r.

Favrot et.al. [24] considered a pure acoustic echo suppression setup (i.e., no AEC
�lter) and proposed a coupling-factor-based estimator for the early acoustic echo
PSD as well as a recursive estimator for the late acoustic echo PSD. The model
parameters were estimated independently of each other in online mode using a
method based on higher-order statistics. In order to facilitate a fair comparison, in
this paper we consider a modi�ed version of Favrot's method to estimate all three
model parameters, and therefore both the ERE and LRE PSDs, in the presence of
an AEC �lter (see Appendix B.1).

4.5.2 Joint parameter estimation methods

Based on the parametric models for the ERE and LRE PSDs discussed in Section 4.4,
in this paper we propose methods to jointly estimate all three model parameters A,
B and C in online mode. These methods are extensions of the methods proposed
in [78], which assumed no �lter misalignment, i.e., ΦrE = 0, and therefore only
estimated the reverberation parameters A and B. To jointly estimate the parameters
of generic IIR �lters in the time-domain, several signal-based methods have been
proposed [15,75,76,92�94], either based on output error (OE) or equation error (EE).
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In [78] we investigated both the OE and EE methods (applied to PSDs) to jointly
estimate the reverberation parameters A and B, either using the MSE or MSLE
cost function. Simulation results showed that the OE method using the MSLE cost
function yielded the best performance in terms of PSD estimation accuracy and
residual echo suppression. Therefore, in this paper we will only consider the OE
method using the MSLE cost function to jointly estimate all model parameters
(reverberation parameters A and B and coupling factor C).

By merging the moving average model for the ERE PSD in (4.21) with the recursive
model for the LRE PSD in (4.24), the residual echo PSD estimate is given as:

Φ̂r(k, ℓ) = Φ̂rE (k, ℓ) + Φ̂rL(k, ℓ)

= Ĉ(k, ℓ) ·
G−1∑
g=0

Φx(k, ℓ−g) +

Â(k, ℓ) · Φx(k, ℓ−G) + B̂(k, ℓ) · Φ̂rL(k, ℓ−1),

(4.30)

where Â(k, ℓ), B̂(k, ℓ) and Ĉ(k, ℓ) denote estimates of the model parameters in
subband k and frame ℓ and can be represented by the vector:

θ̂(k, ℓ) =
[
Â(k, ℓ) B̂(k, ℓ) Ĉ(k, ℓ)

]T
. (4.31)

From (4.30), it can be observed that the PSD estimate in the current frame Φ̂r(k, ℓ)

not only depends on the parameter estimates in the current frame θ̂(k, ℓ) but also
on the PSD estimate Φ̂r(k, ℓ− 1), which itself depends on the parameter estimates

in the previous frame θ̂(k, ℓ − 1), and so on. Thus, Φ̂r is a non-linear function of

θ̂, where the current PSD estimate depends on parameter estimates in all previous
frames.

The logarithmic error between the target PSD Φr and the PSD estimate Φ̂r in (4.30)
is de�ned as:

Qln(k, ℓ) = ln

(
Φr(k, ℓ)

Φ̂r(k, ℓ)

)
. (4.32)

To update all model parameters in each frame, we will consider the instantaneous
MSLE cost function:

J
(
ln Â(k, ℓ), ln B̂(k, ℓ), ln Ĉ(k, ℓ)

)
= Q2

ln(k, ℓ). (4.33)

Similarly as in [78], we now derive gradient-descent-based algorithms to update the

model parameters θ̂(k, ℓ). Since the residual echo PSD Φr is obviously not observable,
we will only update the model parameters during periods of near-end speech absence
and when the AEC error signal is not dominated by background noise, such that
we can replace Φr by Φe in (4.32). The parameters will then be used, both during
periods of near-end speech absence as well as double-talk, to estimate the residual
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Fig. 4.4: Online joint estimation of the three model parameters using the output error
method by minimizing a single MSLE cost function.

echo PSD Φ̂r. The block scheme to estimate the model parameters in online mode
is depicted in Fig. 4.4.

The gradient-descent update rule for J in the logarithmic domain is given as:

ln θ̂(k, ℓ+ 1) = ln θ̂(k, ℓ)− µθ

2
· J ′

θ(k, ℓ), (4.34)

where θ ∈ {A,B,C} denotes a model parameter and µθ denotes the step-size used
to update it. J ′

θ denotes the partial derivative of the cost function J in (4.33) w.r.t.

the logarithm of the parameter estimate ln θ̂, and is computed using (4.32) and
(4.33) as:

J ′
θ(k, ℓ) =

∂Q2
ln(k, ℓ)

∂ ln θ̂(k, ℓ)
= 2 ·Qln(k, ℓ) ·

∂Qln(k, ℓ)

∂ ln θ̂(k, ℓ)

= −2 · Qln(k, ℓ)

Φ̂r(k, ℓ)
· ∂Φ̂r(k, ℓ)

∂ ln θ̂(k, ℓ)
.

(4.35)

Using (4.30), the partial derivative ∂Φ̂r(k,ℓ)

∂ ln θ̂(k,ℓ)
for the three model parameters is equal

to:
∂Φ̂r(k, ℓ)

∂ ln Â(k, ℓ)
= Â(k, ℓ) · Φx(k, ℓ−G) + B̂(k, ℓ) · ∂Φ̂rL(k, ℓ− 1)

∂ ln Â(k, ℓ)
, (4.36)

∂Φ̂r(k, ℓ)

∂ ln B̂(k, ℓ)
= B̂(k, ℓ) · Φ̂rL(k, ℓ− 1) + B̂(k, ℓ) · ∂Φ̂rL(k, ℓ− 1)

∂ ln B̂(k, ℓ)
, (4.37)

∂Φ̂r(k, ℓ)

∂ ln Ĉ(k, ℓ)
= Ĉ(k, ℓ) ·

G−1∑
g=0

Φx(k, ℓ− g). (4.38)
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It can be observed that the right hand side of (4.36) and (4.37) contain the partial
derivatives of the LRE PSD estimate in the previous frame Φ̂rL(k, ℓ− 1) w.r.t. the
logarithms of the parameter estimates in the current frame ln Â(k, ℓ) and ln B̂(k, ℓ),
respectively. These terms exist due to the recursive model for the LRE PSD in
(4.24). These partial derivatives cannot be computed in a straightforward manner,
as Φ̂rL(k, ℓ − 1) does not directly depend on either Â(k, ℓ) or B̂(k, ℓ). In the fol-
lowing subsections, we present two algorithms which have been proposed in [75] to
approximate these partial derivatives.

4.5.3 Recursive prediction error (RPE)

The RPE adaptive algorithm approximates the partial derivatives using the param-
eter estimates in the previous frame:

∂Φ̂rL(k, ℓ− 1)

∂ ln Â(k, ℓ)
≈ ∂Φ̂rL(k, ℓ− 1)

∂ ln Â(k, ℓ− 1)
,

∂Φ̂rL(k, ℓ− 1)

∂ ln B̂(k, ℓ)
≈ ∂Φ̂rL(k, ℓ− 1)

∂ ln B̂(k, ℓ− 1)
,

(4.39)

which are reasonable approximations if the step-sizes µA and µB used to update
the reverberation parameters are su�ciently small. Using these approximations in
(4.36) and (4.37) enable computing the partial derivatives recursively.

4.5.4 Pseudo linear regression (PLR)

The PLR algorithm simply assumes that the LRE PSD estimate in the previous
frame Φ̂rL(k, ℓ− 1) is independent of the parameter estimates in the current frame,
i.e.

∂Φ̂rL(k, ℓ− 1)

∂ ln Â(k, ℓ)
= 0,

∂Φ̂rL(k, ℓ− 1)

∂ ln B̂(k, ℓ)
= 0. (4.40)

It should be noted that these assumptions are stronger than the ones used for the
RPE algorithm in (4.39). Using these assumptions in (4.36) and (4.37) yield non-
recursive formulations for the partial derivatives, which are therefore approximate
versions of the partial derivatives computed using the RPE algorithm.

4.6 Simulation results

In this section, we evaluate the performance of the proposed parameter estimation
methods, i.e., the OE-RPE-MSLE and the OE-PLR-MSLE, and compare their per-
formance with the state-of-the-art signal-based methods discussed in Section 4.5.1.
We will refer to the proposed methods estimating all three model parameters as
3P methods, whereas we will refer to the methods in [78] estimating only the two
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Parameter Values

σ2
E {−60,−50,−40,−30,−20,−10} dB

σ2
L {−40,−36,−32,−28,−24,−20} dB

T60 {200, 400, 600, 800, 1000} ms

Table 4.1: Parameter values for generating the arti�cial IRs.

reverberation parameters as 2P methods. In Sections 4.6.1 and 4.6.2, we present the
acoustic conditions and algorithmic parameters used in our simulations. In Section
4.6.3 we discuss the performance metrics used to evaluate the PSD estimation accu-
racy, residual echo suppression and near-end speech distortion. In Section 4.6.4, we
present the simulation results for two settings: an idealistic setting using arti�cially
generated IRs and a realistic setting using real-world IRs.

4.6.1 Acoustic conditions

For all simulations, the sampling frequency of the time-domain signals is equal to
fs = 16 kHz. The 30s long far-end signal x and the 5s long near-end speech signal s
are obtained from the TIMIT database [98], where the double-talk condition occurs
in the last 5s. The 30s long background noise signal v is stationary air conditioner
noise measured in a quiet o�ce.

Two di�erent types of IRs have been considered in our simulations:

� Arti�cial IRs: the arti�cial IRs were generated according to the following time-
domain model:

∆h(i) =

wE(i), 0 ≤ i < N

wL(i) · e−ρ (i−N), N ≤ i < Nh,
(4.41)

where wE ∼ N (0, σ2
E) and wL ∼ N (0, σ2

L) are zero-mean white Gaussian
noise processes with variances σ2

E and σ2
L, respectively, and ρ denotes the

decay rate de�ned in (4.23). This model assumes that the �rst N coe�cients
of ∆h correspond to the AEC misalignment �lter (in the time-domain),
where the misalignment is spread evenly over all AEC �lter coe�cients,
whereas the later coe�cients of ∆h correspond to the exponentially de-
caying model in (4.22). The IR parameters σ2

L and ρ are related to the
(frequency-independent) model parameters A and B as in (4.25) and (4.26),
while the IR parameter σ2

E is related to the (frequency-independent) pa-
rameter C as C = σ2

E · F (see Appendix B.2). A total of 180 arti�cial
IRs were generated using all combinations of the frequency-independent
parameters σ2

E , σ
2
L and T60 given in Table 4.1, with N = 640 and Nh = 16000.
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Room No. of IRs T60 Shape

Lab 16 300-400 ms Rectangular

Garage 16 400-500 ms Rectangular

O�ce 16 500-600 ms L-shaped

Echoic 7 850-950 ms Rectangular

Table 4.2: Details about measured IRs.

Method µA µB µC

OE-RPE-MSLE 10−2 10−4 10−1

OE-PLR-MSLE 10−1.5 10−3.5 10−0.5

Table 4.3: Step-sizes used for the proposed methods.

� Measured IRs: Similarly as in [78], we considered a total of 55 IRs measured
in four rooms with di�erent reverberation times, with details given in Table
4.2. The broadband T60 value of each IR was estimated via line-�tting on its
corresponding energy decay curve [29].

4.6.2 Algorithmic parameters

For the subband processing, a �lterbank of order NFFT = 512 (i.e., K = 257)
and an overlap of 75% (i.e., frameshift F = 128) have been used, with a Hann
window as the analysis window. All required PSDs have been computed via recursive

smoothing according to (4.11), using a smoothing factor α = e
−2·F
fs·tc with a time-

constant tc = 0.02s. For the post�lter in (4.12), an over-estimation factor β = 2
and a spectral �oor γ = −20 dB have been used. For the proposed methods, the
step-sizes listed in Table 4.3 were found to yield good results when used in (4.34).
For the state-of-the-art methods, the following parameters have been used:

� Hänsler's method [1]: smoothing factor δ = 0.9 in (4.27)

� Valero's method [23]: batch size NT = 3750 frames

� Modi�ed Favrot's method (see Appendix B.1): N = 640, O = 1024 and P =
κ · F with κ = 12.
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4.6.3 Performance metrics

To evaluate the estimation accuracy of the residual echo PSD, we compute the Log
Spectral Distance (LSD) [91] between the target PSD Φr and the residual echo PSD
estimate Φ̂r in (4.30), de�ned as:

LSD =
10

K · L
·
K−1∑
k=0

l1+L∑
ℓ=l1+1

∣∣∣∣∣log10
(
Φr(k, ℓ)

Φ̂r(k, ℓ)

)∣∣∣∣∣ , (4.42)

where l1 and L denote the start and the duration of the evaluation window in
frames, respectively. We choose the evaluation window to be between 20s and 25s,
i.e., l1 = 2500 and L = 625. If the LSD score is low, it means that the residual echo
PSD estimate is accurate, with the perfect estimate Φ̂r(k, ℓ) = Φr(k, ℓ) resulting in
LSD = 0.

To evaluate the amount of residual echo suppression after applying the post�lter,
we compute the segmental residual echo attenuation, de�ned as:

REAseg =
10

L
·

l1+L∑
ℓ=l1+1

log10

(∑F−1
f=0 r2(ℓ · F + f)∑F−1
f=0 r̃2(ℓ · F + f)

)
, (4.43)

where the time-domain signals r and r̃ are obtained through inverse STFT process-
ing of the residual echo signal R and its post�ltered version R̃, respectively (see
Section 4.3.2). If the REAseg score is high, it means that a large amount of residual
echo has been suppressed, which is desirable.

Similarly, to evaluate the amount of near-end speech distortion, we compute the
segmental speech-to-speech distortion ratio [99�101], de�ned as:

SSDRseg =
10

L
·

l2+L∑
ℓ=l2+1

log10

(∑F−1
f=0 s2(ℓ · F + f)∑F−1
f=0 s2d(ℓ · F + f)

)
, (4.44)

where sd(n) = s(n) − s̃(n), with s̃ obtained through inverse STFT processing of
the post�ltered near-end speech signal S̃. This score is computed during periods of
double-talk, which occurs between 25s and 30s, i.e., l2 = 3125. If the SSDRseg score
is high, it means that the distortion of the near-end speech signal is low, which is
desirable.

4.6.4 Experimental results

The �rst experiment is performed in an idealistic setting using arti�cially generated
IRs, no background noise and no near-end speech. This experiment aims at eval-
uating the estimation accuracy of the proposed 3P methods and their simpli�ed
2P versions in [78] for the residual echo PSD and the arti�cial IR parameters. The
second experiment is performed in a realistic setting using real-world IRs, near-end
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Fig. 4.5: Plot of σ̂2
E vs. σ2

E for the proposed methods in the idealistic setting.

speech, background noise and a pre-converged subband AEC �lter. This experiment
aims at comparing the PSD estimation accuracy and the residual echo suppression
performance of the proposed methods with the considered state-of-the-art methods.

4.6.4.1 Idealistic setting

In this experiment, we use the arti�cially generated IRs (see Table 4.1) to generate
the acoustic echo signal and use no AEC �lter, i.e., Ĥ(k) = [0 . . . 0]T . Additionally,
we assume no near-end speech (s = 0) and background noise (v = 0). This means
that:

y(n) = d(n) =

Nh−1∑
i=0

∆h(i) · x(n− i), (4.45)

with ∆h de�ned in (4.41) and E(k, ℓ) = Y (k, ℓ). For these idealistic settings, we
evaluate the accuracy of the residual echo PSD estimate Φ̂r obtained using the
proposed methods and compare the estimates of the arti�cial IR parameters σ̂2

E , σ̂
2
L

and T̂60 with the true values. These parameter estimates are obtained by averaging
the converged values of Â(k), B̂(k) and Ĉ(k) over all frequency bins and feeding
them in (4.25), (4.26) and (B.9), respectively.

Fig. 4.5, 4.6 and 4.7 show the true variance of the misalignment σ2
E against the

estimated variance σ̂2
E , the true variance of the late part of the IR σ2

L against the
estimated variance σ̂2

L, and the true reverberation time T60 against the estimated

reverberation time T̂60, obtained using the proposed methods, respectively. Each
point in Fig. 4.5 is obtained by averaging the estimates σ̂2

E over 30 IRs with di�erent
σ2
L and T60 values, in Fig. 4.6 by averaging the estimates σ̂2

L over 30 IRs with

di�erent σ2
E and T60 values and in Fig. 4.7 by averaging the estimates T̂60 over

36 IRs with di�erent σ2
E and σ2

L values, respectively. The error bars depict the
standard deviations across the respective IRs. It can be observed from Fig. 4.5
that for both methods, the parameter σ2

E can be estimated very accurately (with
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Fig. 4.6: Plot of σ̂2
L vs. σ2

L for the proposed methods in the idealistic setting.
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Fig. 4.7: Plot of T̂60 vs. T60 for the proposed methods in the idealistic setting.

very small standard deviations) over a large range of parameter values, indicating
robustness to di�erent values of σ2

L and T60. In addition, it can be observed from
Fig. 4.6 and 4.7 that the RPE algorithm typically yields more accurate estimates
(and especially smaller standard deviations) of the parameters σ2

L and T60 than the
PLR algorithm over a large range of parameter values. This is not surprising, since
the PLR algorithm is an approximation of the RPE algorithm.

We now investigate the bene�t of estimating all three model parameters using the
proposed 3P methods against estimating only two model parameters using the 2P
methods in [78]. To this end, we compare the in�uence of di�erent amounts of mis-
alignment, represented by σ2

E , on the estimation accuracy of the parameters σ2
L and

T60. For σ
2
L = −32 dB, Fig. 4.8 shows the estimated variance σ̂2

L obtained using the
2P and 3P estimation methods for di�erent values of σ2

E . Each point is obtained
by averaging the estimates over 6 IRs with di�erent T60 values. For T60 = 600 ms,
Fig. 4.9 shows the estimated reverberation time T̂60 obtained using the 2P and 3P
estimation methods for di�erent values of σ2

E . Each point is obtained by averaging
the estimates over 6 IRs with di�erent σ2

L values. It should be noted that σ2
E = −∞
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Fig. 4.8: Plot of σ̂2
L obtained using the proposed methods (2P and 3P versions) as a func-

tion of di�erent variances σ2
E in the idealistic setting (σ2

L = −32 dB).
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Fig. 4.9: Plot of T̂60 obtained using the proposed methods (2P and 3P versions) as a
function of di�erent variances σ2

E in the idealistic setting (T60 = 600 ms).

dB corresponds to no �lter misalignment, i.e., no early residual echo. It can be ob-
served that the 2P methods yield accurate estimates for the σ2

L and T60 parameters
only for low values of σ2

E , and fail to do so for large amounts of misalignment. On
the other hand, the proposed 3P methods yield accurate estimates for both param-
eters for all considered σ2

E values, where the RPE algorithm again outperforms the
PLR algorithm. These results clearly show the bene�t of estimating all three model
parameters, especially when a signi�cant amount of �lter misalignment is present.

Fig. 4.10 shows the LSD scores between the target and estimated residual echo
PSDs, obtained using the 2P and 3P estimation methods for di�erent values of σ2

E .
Each point is obtained by averaging the LSD scores over 30 IRs with di�erent σ2

L

and T60 values, while each error bar depicts the standard deviation across these IRs.
It can be observed that the proposed 3P methods yield more accurate estimates for
the residual echo PSD, especially for large values of σ2

E . This again clearly shows
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Fig. 4.10: LSD scores obtained using the proposed methods (2P and 3P versions) as a
function of di�erent variances σ2

E in the idealistic setting.

the bene�t of estimating all three model parameters. In terms of LSD scores, it
should be noted that the RPE and PLR algorithms yield similar results.

4.6.4.2 Realistic setting

In this experiment, we use IRs measured in di�erent rooms (see Table 4.2) to gen-
erate the acoustic echo signal and a pre-converged1 subband AEC �lter Ĥ. The
length of the AEC �lter is rather short (G = 5, corresponding to 64 ms), covering
just the direct path and early re�ections in the IRs. In addition, near-end speech
and background noise are present at a signal-to-noise ratio of 40 dB. In order to
achieve a fair comparison between the segmental metrics for all IRs, each IR has
been scaled appropriately such that a speech-to-residual echo ratio of 10 dB is ob-
tained. The model parameters are estimated only during periods of near-end speech
absence, i.e., during the �rst 25s, and during periods when the AEC error PSD Φe

is at least 3 dB above the background noise PSD Φv. For these realistic settings, we
compare the LSD, REAseg and SSDRseg scores obtained for the proposed methods
with those obtained for the considered state-of-the-art methods.

Fig. 4.11 shows the LSD scores obtained using all considered parameter estimation
methods for di�erent rooms. Each point is obtained by averaging the LSD scores
over all IRs in a room, with the error bars depicting the standard deviation across
these IRs. The rooms have been placed in order of increasing T60 from left to right.
It can be observed that both proposed methods consistently estimate the residual
echo PSD more accurately than all other methods, with the next best performances
delivered by Valero's and Favrot's methods. Hänsler's method, which uses just a

1 The �lter was converged using white Gaussian noise as the far-end signal and the subband NLMS
algorithm [15] for updating the �lter coe�cients.
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Fig. 4.11: LSD scores obtained using all considered parameter estimation methods for dif-
ferent rooms.

single parameter (coupling factor) to estimate the complete residual echo PSD,
yields the highest LSD scores for all rooms, which is to be expected.

Fig. 4.12 shows the REAseg scores plotted against the SSDRseg scores obtained using
all considered methods for di�erent rooms. Each point is obtained by averaging the
segmental metrics obtained for all IRs in a room, with the error bars on the x-axis
and y-axis depicting the standard deviations across these IRs. For comparison, the
scores obtained using the perfect residual echo PSD estimate Φ̂r(k, ℓ) = Φr(k, ℓ)
and an over-estimation factor β = 1 are also included, which corresponds to the
best possible performance in terms of maximizing both segmental metrics. It can
be observed that both proposed methods and Valero's method yield the highest
SSDRseg scores (about 2-5 dB better than other methods), but the proposed meth-
ods outperform Valero's method in terms of the REAseg score. In addition, it can be
observed that the proposed method with the RPE algorithm and Hänsler's method
yield the highest REAseg scores (about 1-2 dB better than other methods), but the
proposed method clearly outperforms Hänsler's method in terms of the SSDRseg

score. In conclusion, the proposed method with the RPE algorithm provides the
best performance in terms of maximizing both segmental metrics.

4.7 Conclusions

In this paper, we proposed two signal-based methods to jointly estimate the PSD of
ERE and LRE components based on parametric models. We modeled the ERE PSD
(due to �lter misalignment) using a moving average �lter on the PSD of the far-end
signal and the LRE PSD (due to under-modeling of the echo path by the AEC �lter)
using an IIR �lter on the PSD of the far-end signal. The estimated residual echo PSD
was then fed into a post�lter used for residual echo suppression. The coe�cients of
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Fig. 4.12: Segmental residual echo attenuation (REAseg) vs. segmental speech-to-speech
distortion ratio (SSDRseg) scores obtained using all considered parameter esti-
mation methods for di�erent rooms.

the moving average �lter were modeled using a frequency-dependent coupling factor,
while the IIR �lter coe�cients were modeled using frequency-dependent reverber-
ation scaling and decay parameters. The three model parameters were estimated
jointly in online mode using the signal-based output error method by minimizing a
single MSLE cost function, with the parameters updated simultaneously using either
the RPE or PLR algorithm. The proposed methods were �rst evaluated in an idealis-
tic setting (arti�cially generated IRs, no near-end speech and no background noise),
and yielded accurate estimates for all three model parameters and the residual echo
PSD, with the RPE algorithm performing better than the PLR algorithm. Addition-
ally, the proposed methods were compared with their simpler versions in [78], which
do not model the �lter misalignment and use just an IIR �lter to model the com-
plete residual echo. The proposed methods yielded accurate parameter and residual
echo PSD estimates irrespective of the amount of �lter misalignment present, while
the simpler versions failed completely for high amounts of �lter misalignment. The
proposed methods were then compared with state-of-the-art parameter estimation
methods in a realistic setting (IRs measured in di�erent rooms, pre-converged AEC
�lter, near-end speech and background noise). The proposed method with the RPE
algorithm consistently outperformed all other methods in terms of estimation ac-
curacy of the residual echo PSD and delivered the best performance in terms of
maximizing residual echo suppression while minimizing near-end speech distortion.





5
CONCLUSION AND FURTHER RESEARCH

In this chapter, we provide a summary of the main contributions of the thesis and
discuss possible directions for further research.

5.1 Conclusion

Hands-free speech communication devices have become increasingly popular during
the last decades and have been widely deployed for applications such as telecon-
ferencing and voice-controlled applications. In addition to capturing the desired
near-end speech from the user, these devices also pick up acoustic echo due to the
acoustic coupling between the loudspeakers and microphones, which may result in
a signi�cant reduction in quality and intelligibility of the near-end speech. AEC sys-
tems are typically required in such devices, which consist of adaptive �lters aiming
at estimating the IRs between the loudspeakers and microphones. In reverberant
environments long AEC �lters are required to achieve good echo cancellation per-
formance. This, however, results in large computational cost for the �lter update
as well as slow convergence. Using short AEC �lters, on the other hand, results in
the �lters being unable to model the complete echo paths between the loudspeakers
and microphones, possibly leading to a signi�cant amount of residual echo. This
residual echo is typically suppressed using a RES post�lter in the subband domain,
which requires an accurate estimate of the residual echo PSD.

The main objective of this thesis was to investigate and develop tap selection
schemes for implementing partial updates of multichannel AEC �lters in order to
achieve low-complexity AEC, as well as to improve model-based estimators for the
residual echo PSD in order to achieve e�ective RES. In Chapter 2, we proposed
novel tap selection schemes which exploit the sparsity present in the multichan-
nel loudspeaker signals across frequency, channels and time, for partially updating
subband MAEC �lters. In Chapter 3, we proposed novel signal-based methods to
jointly estimate the frequency-dependent reverberation scaling and decay parame-
ters in online mode, which were used to estimate the PSD of the LRE component. In
Chapter 4, we proposed a novel model for the PSD of the ERE component based on
a frequency-dependent coupling factor and combined it with the LRE PSD model
in Chapter 3 to yield a new model for the complete residual echo PSD. Additionally,
we proposed signal-based methods to jointly estimate all three model parameters
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(both reverberation parameters and the coupling factor) in online mode. These pro-
posed methods can be seen as extensions of the methods in Chapter 3, where the
ERE component was not considered.

In Chapter 2, we �rst analyzed the sparsity present in real-world multichannel
signals across the dimensions of frequency, channels and time. An analysis of a 5-
channel movie signal showed it to be on average about 65% sparse across subbands,
44% sparse across frames and 62% sparse across channels, respectively. However,
analyzing the sparsity jointly across all three dimensions revealed the signal to be
about 90% sparse. A similar analysis for mono speech and 5-channel music signals
revealed a joint sparsity across all three dimensions of 92% and 70%, respectively.
We investigated existing tap selection schemes and proposed novel schemes which
exploit this high amount of input signal sparsity for partially updating subband
MAEC �lters, thereby saving computational cost. We �rst investigated the 3DM
scheme, which simply applies the M-Max criterion on the tap-inputs across all three
dimensions, and the SPU scheme, which only selects taps in �lters with the largest
magnitude tap-inputs. Simulation results for spectrally and spatially sparse syn-
thetic signals, such as mono brown noise and stereo white noise signals, showed
that the 3DM and SPU schemes completely ignore �lters with the smallest magni-
tude tap-inputs, leading to slow �lter convergence and low ERLE values. In order to
overcome this problem, we proposed two tap selection schemes which do not ignore
any �lters for update. The FEA scheme selects the same number of �lter taps in
each subband and channel, thereby not exploiting input signal sparsity across fre-
quency and channels. The DEA scheme exploits this sparsity by selecting more taps
in �lters with relatively larger magnitude tap-inputs, while not ignoring �lters with
smaller magnitude tap-inputs. Simulation results for mono speech and 5-channel
music signals with only 20% of all �lter taps updated in every frame showed that
the 3DM and the DEA schemes perform almost as well as updating all �lter taps
in terms of ERLE (about 1 dB worse), with the FEA scheme performing slightly
worse (about 2-4 dB) and the SPU scheme performing signi�cantly worse (about
8-12 dB). However, even when only 20% of all �lter taps are updated, the 3DM
scheme still requires about 94% of the total computational e�ort needed for full
�lter update, primarily due to the large computational cost of sorting all tap-inputs
in each frame. On the other hand, the SPU, FEA and DEA schemes do not need
such large sorting e�ort and require only about 28% of the total computational
e�ort needed for full �lter update. Therefore, in conclusion, the proposed DEA tap
selection scheme consistently achieves similar echo cancellation performance to full
�lter update at a signi�cantly reduced computational cost for both synthetic and
real-world multichannel signals.

In Chapter 3, we considered a single-channel system and used a subband AEC
�lter which is long enough to cover the direct path and early re�ections of the IR,
such that the LRE component contained only late reverberation. Based on a sta-
tistical reverberation model for the late reverberant part of an IR, we modeled the
relationship between the LRE PSD and the PSD of the loudspeaker signal using
an IIR �lter with two frequency-dependent parameters, namely the reverberation
scaling and decay parameters. The reverberation scaling parameter is related to
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the initial power of the LRE component, while the reverberation decay parameter
is related to the reverberation time T60. We proposed two signal-based methods,
namely the OE and EE methods, to jointly estimate both reverberation parameters
by minimizing either an MSE or an MSLE cost function in online mode. For the
OE method, we used gradient-descent-based algorithms such as the RPE and PLR
algorithms to update the parameters. The proposed online parameter estimation
methods were �rst evaluated in an idealistic setting using arti�cially generated IRs,
no �lter misalignment, no near-end speech and no background noise signals. Sim-
ulation results for this idealistic setting showed that the OE-RPE-MSLE method
consistently outperforms all other proposed methods in terms of estimation accu-
racy of the reverberation parameters as well as the LRE PSD, yielding the lowest
LSD scores (2.0-2.5 dB) for all considered IRs. The proposed methods were then
compared with state-of-the-art o�ine and online parameter estimation methods in a
realistic setting using IRs measured in di�erent rooms, a fully converged AEC �lter,
near-end speech and background noise signals. Simulation results for this realistic
setting showed that the proposed OE-RPE-MSLE method consistently outperforms
state-of-the-art and the other proposed methods in terms of estimation accuracy of
the T60 and the LRE PSD, yielding the lowest LSD scores (2.5-3.0 dB) for all consid-
ered IRs. Among all considered methods, it also yields the highest SSDRseg scores
(18-20 dB), with most other methods performing signi�cantly worse (about 5-10 dB
worse), while also yielding respectable REAseg scores (14-16 dB), with most other
methods only performing marginally better (about 2-3 dB better). Therefore, in con-
clusion, the proposed OE-RPE-MSLE method yields the most accurate estimates
for both reverberation parameters as well as for the LRE PSD, and results in the
smallest amount of near-end speech distortion while delivering a large amount of
residual echo suppression.

In Chapter 4, we also considered the ERE component caused by the misalignment
between the AEC �lter and the IR. By assuming that the �lter misalignment spreads
evenly over all AEC �lter taps, we proposed to model the ERE PSD using a moving
average �lter (with the same �lter length as the subband AEC �lter) on the PSD
of the loudspeaker signal, based on a single frequency-dependent coupling factor.
The proposed moving average �lter model for the ERE PSD was then combined
with the IIR �lter model for the LRE PSD considered in Chapter 3 to yield a
new model for the complete residual echo PSD. Based on the results obtained in
Chapter 3, we only considered the OE method with the RPE and PLR algorithms
to jointly estimate all three model parameters (both reverberation parameters and
the coupling factor) by minimizing a single MSLE cost function in online mode. The
proposed methods estimating the three model parameters (3P) were �rst evaluated
in an idealistic setting using arti�cially generated IRs, no near-end speech and no
background noise signals. Simulation results showed that the proposed methods
yield accurate estimates for all three model parameters, with the RPE algorithm
performing better than the PLR algorithm. In this idealistic setting, they were then
compared with their simpli�ed versions from Chapter 3, which only estimate the
two reverberation parameters (2P), to illustrate the bene�t of estimating all three
model parameters. Simulation results showed that the proposed 3P methods provide
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highly accurate estimates for all model parameters and yield low LSD scores (2.0-2.5
dB), irrespective of the amount of �lter misalignment, while the 2P methods fail
completely for high amounts of misalignment, yielding very high LSD scores (about
6-7 dB). The proposed 3P methods were then compared with state-of-the-art o�ine
and online parameter estimation methods in a realistic setting using IRs measured
in di�erent rooms, a pre-converged AEC �lter, near-end speech and background
noise signals. Simulation results for this realistic setting showed that the proposed
OE-RPE-MSLE (3P) method consistently outperforms all other methods in terms of
estimation accuracy of the residual echo PSD, yielding the lowest LSD scores (2.0-2.5
dB) for all considered IRs. Among all considered methods, it also yields the highest
SSDRseg scores (17-21 dB), with the other methods performing about 2-5 dB worse,
as well as the highest REAseg scores (14-18 dB), with the other methods performing
about 1-2 dB worse. Therefore, in conclusion, the proposed OE-RPE-MSLE (3P)
method yields the most accurate estimates for all three model parameters as well as
for the residual echo PSD, and delivers the best performance in terms of maximizing
residual echo suppression while minimizing near-end speech distortion.

5.2 Further research directions

In this section, we summarize possible research directions for further improvements
and potential applications of the proposed tap selection schemes for MAEC and
parameter estimation methods for RES.

In Chapter 2, we designed the DEA tap selection scheme by �rst ranking the MAEC
�lters in the di�erent subbands and channels using their respective tap-input mag-
nitudes and then choosing speci�c criteria to ful�ll a constraint. Alternative ap-
proaches could be used to rank the di�erent �lters, e.g., using the l2 norm of the
tap-inputs, and di�erent criteria could be considered to design the DEA scheme.
The constraint, which currently needs to be prede�ned, could be determined dy-
namically by performing sparsity analysis on the multichannel input signals and
adjusted accordingly in real-time, e.g., if the input signals are found to be highly
sparse, then the constraint could be lowered. Aiming to improve the �lter conver-
gence and tracking performance, the feasibility of incorporating the proposed tap
selection schemes with the AP and RLS algorithms [1, 15] could be explored.

In this thesis, all simulations have been performed in rooms with static IRs and with
pre-converged AEC �lters. An important study could be to investigate the tracking
performance of the proposed parameter estimation methods in Chapters 3 and 4
by incorporating room changes in the simulations. A future direction of research
could be to develop a better understanding of the e�ect that the AEC �lter length
has on the performance of the AEC and RES systems. A related study could be to
investigate the performance of the proposed parameter estimation methods when
no AEC �lter is present, i.e., in a pure acoustic echo suppression setup. Another
study could be to investigate the performance of the proposed RES methods when
the AEC �lter is still converging, or when the AEC �lter is updated using a tap
selection scheme, e.g., using the proposed tap selections in Chapter 2.
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For modeling the ERE PSD, the moving average �lter in Chapter 4 could be re-
placed with a generic FIR �lter with a large number of coe�cients, with all �lter
coe�cients modeled independently of each other. If computational complexity is not
a limitation, the complete residual echo PSD could be modeled using a deep neural
network (DNN) with thousands of parameters [102], with the parameters trained us-
ing supervised deep learning algorithms. Additionally, a study could be performed to
compare our classical AEC �lter and RES post�lter based method with end-to-end
deep learning methods [103�106], where the AEC and RES systems are replaced by
a single DNN, and hybrid deep learning methods, where classical approaches such
as using adaptive �lters for AEC are combined with deep learning approaches such
as using DNNs or recurrent neural networks for RES [107�110].

Finally, the usage of the proposed tap selection schemes and parameter estimation
methods could be investigated for other applications, such as acoustic feedback
cancellation, active noise control, network echo cancellation etc.





A
APPENDIX FOR CHAPTER 3

A.1 Derivation of model for late residual echo PSD

We adopt the methodology used in [111] and [112] to derive the recursive expression
for λrL in (3.14), as well as expressions for the reverberation parameters A and B
in terms of the RIR model parameters σ2

L and ρ in (3.15) and (3.16). The energy
envelope of the late part of the stochastic RIR h in (3.12) is given as:

E{h2(i)} = σ2
L · e−2ρ(i−N), N ≤ i < Nh, (A.1)

where E{·} denotes spatial expectation, i.e. the ensemble average over di�erent
realizations of the stochastic process h. As the LRE signal rL is given as:

rL(n) =

Nh−1∑
i=N

h(i) · x(n− i), (A.2)

its auto-correlation at lag τ for one realization of h is de�ned as:

arLrL(n, n+ τ ;h) = E{rL(n) · rL(n+ τ)}

=

Nh−1∑
i=N

Nh−1∑
j=N

h(i) · h(j) · E{x(n− i) · x(n− j + τ)}

=

Nh−1∑
i=N

Nh−1∑
j=N

h(i) · h(j) · axx(n− i, n− j + τ),

(A.3)
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where axx(n, n+ τ) denotes the auto-correlation of the far-end signal x(n) at lag τ .
Assuming that h and x are mutually independent, the spatial average of (A.3) over
all realizations of h can be computed using (A.1) as:

arLrL(n, n+ τ) = E{arLrL(n, n+ τ ;h)}

=

Nh−1∑
i=N

Nh−1∑
j=N

E{h(i) · h(j)} · axx(n− i, n− j + τ)

= σ2
L · e2ρN ·

Nh−1∑
i=N

e−2ρi · axx(n− i, n− i+ τ),

(A.4)

since E{h(i) · h(j)} = 0 if i ̸= j. Evaluating (A.4) at time instant n − F , with
F ≪ Nh, gives:

arLrL(n− F, n− F + τ) = σ2
L · e2ρN ·

Nh−1∑
i=N

e−2ρi · axx(n− F − i, n− F − i+ τ)

≈ σ2
L · e2ρN ·

Nh−1∑
i=N+F

e−2ρ(i−F ) · axx(n− i, n− i+ τ).

(A.5)

Using (A.4) and (A.5), the auto-correlation of the LRE signal arLrL can be computed
recursively as:

arLrL(n, n+ τ) = e−2ρF · arLrL(n− F, n− F + τ) +

σ2
L · e2ρN ·

N+F−1∑
i=N

e−2ρi · axx(n− i, n− i+ τ).
(A.6)

If we assume the signal x to be stationary over F samples, with F the STFT
frameshift, (A.6) can be rewritten as:

arLrL(n, n+ τ) = e−2ρF · arLrL(n− F, n− F + τ) +

σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
· axx(n−N,n−N + τ).

(A.7)

Using the Wiener-Khinchin theorem, (A.7) can be expressed in terms of true PSDs
as:

λrL(k, ℓ) = A · λx(k, ℓ−G) +B · λrL(k, ℓ− 1), (A.8)

where G = ⌊N
F ⌋ and the parameters A and B are equal to:

A = σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
, (A.9)

B = e−2ρF . (A.10)
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A.2 Modified version of PSD estimation method in [24]

We denote the parameters estimated using the modi�ed version of Favrot's method

[24] as θ̂
F
. The parameter AF corresponds to the initial power of the residual echo

and is estimated as:

ÂF
N (k, ℓ) =

E{Φ̃e(k, ℓ) · Φ̃xN
(k, ℓ)}

E{Φ̃xN
(k, ℓ) · Φ̃xN

(k, ℓ)}
, (A.11)

where Φ̃xN
(k, ℓ) = |XN (k, ℓ)|2 − ΦxN

(k, ℓ) and Φ̃e(k, ℓ) = |E(k, ℓ)|2 − Φe(k, ℓ) rep-
resent the temporal �uctuations of the PSD of the N -sample delayed far-end signal
xN (n) = x(n−N) and the AEC error signal e(n), respectively. The far-end signal
is delayed so as to temporally align it with the LRE component in the AEC error
signal. Thus, the numerator in (A.11) is the cross-correlation between the temporal
�uctuations of the delayed far-end signal PSD and the AEC error PSD, while the
denominator is the auto-correlation of the temporal �uctuations of the delayed far-
end signal PSD. The decay rate is estimated by computing (A.11) for two di�erent
delays M and M + P , where M should be chosen such that ÂF

M can be associated
with the late reverberant part of the RIR h and P corresponds to a delay of κ
frames, i.e.:

B̂F(k, ℓ) =

(
ÂF

M+P (k, ℓ)

ÂF
M (k, ℓ)

)1/κ

. (A.12)
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B.1 Original and modified versions of Favrot’s method

In the original method in [24], the coupling factor C was estimated as:

ĈF(k, ℓ) =
E
{
Φ̃y(k, ℓ) · Φ̃xM

(k, ℓ)
}

E
{
Φ̃xM

(k, ℓ) · Φ̃xM
(k, ℓ)

} = Zy
M (k, ℓ), (B.1)

where Φ̃xM
(k, ℓ) = |XM (k, ℓ)|2 − ΦxM

(k, ℓ) and Φ̃y(k, ℓ) = |Y (k, ℓ)|2 − Φy(k, ℓ)
represent the temporal �uctuations of the PSDs of the M -sample delayed far-end
signal xM (n) = x(n −M) and the microphone signal y, respectively. Here, Zy

M is
used to denote the ratio in (B.1) computed using the signals xM and y. The delay
M(≪ N) was chosen so as to align the far-end signal x with the microphone signal
y, i.e., it corresponds to the initial peak in the IR, which depends on the distance
between the loudspeaker and the microphone. The decay rate B was estimated using
(B.1) for two di�erent signal delays O and O + P :

B̂F(k, ℓ) =

(
Zy
O+P (k, ℓ)

Zy
O(k, ℓ)

)1/κ

, (B.2)

where O corresponds to the late echo tail (O ≥ N) and P = κ · F corresponds to a
delay of κ frames.

The modi�cation to the original method that we consider in this paper corresponds
to using the temporal �uctuations of the AEC error PSD Φ̃e(k, ℓ) instead of Φ̃y(k, ℓ)
to estimate the parameters B and C:

ĈF(k, ℓ) = Ze
M (k, ℓ)

B̂F(k, ℓ) =

(
Ze
O+P (k, ℓ)

Ze
O(k, ℓ)

)1/κ

.
(B.3)

Additionally, to estimate the parameter A, we use the N -sample delayed far-end
signal xN :

ÂF(k, ℓ) = Ze
N (k, ℓ). (B.4)
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B.2 Coupling factor

Since the ERE signal rE(n) is equal to:

rE(n) =

N−1∑
i=0

∆h(i) · x(n− i), (B.5)

the auto-correlation for lag τ is given as:

arErE (n, n+ τ) = E{rE(n) · rE(n+ τ)}

= E


N−1∑
i=0

∆h(i)· x(n−i)·
N−1∑
j=0

∆h(j)· x(n−j + τ)


=

N−1∑
i=0

N−1∑
j=0

E{∆h(i) ·∆h(j)} · axx(n−i, n−j + τ),

(B.6)

where axx denotes the auto-correlation of x. Using (4.41) and assuming that the far-
end signal x is stationary over a short period of F samples, with F ≪ N (= G ·F ),
we can rewrite (B.6) as:

arErE (n, n+ τ) = σ2
E ·

N−1∑
i=0

axx(n− i, n− i+ τ),

= σ2
E ·

G−1∑
g=0

F−1∑
f=0

axx(n−g · F−f, n−g · F−f + τ)

≈ σ2
E · F ·

G−1∑
g=0

axx(n− g · F, n− g · F + τ).

(B.7)

Applying the Wiener-Khinchin theorem to (B.7) yields:

λrE (k, ℓ) = σ2
E · F ·

G−1∑
g=0

λx(k, ℓ− g), (B.8)

such that comparing (B.8) with (4.20) yields:

C = σ2
E · F. (B.9)
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