
AUTOMATIC RESTORATION OF
AUDIO S IGNALS IN MEDIA ARCHIVES

Von der Fakultät für Medizin und Gesundheitswissenschaften
der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)
angenommene Dissertation

von

Matthias Brandt
geboren am 30. Juni 1980
in Bremen, Deutschland



Matthias Brandt: Automatic Restoration of Audio Signals in Media Archives

betreuer:
Prof. Dr. ir. Simon Doclo, Prof. Dr.-Ing. Jörg Bitzer

erstgutachter:
Prof. Dr. ir. Simon Doclo

weitere gutachter:
Prof. Dr.-Ing. Jörg Bitzer
Prof. Dr. Joshua D. Reiss

tag der disputation:
8. Mai 2018



ABSTRACT

A large number of historically relevant audio recordings are stored in media archives
around the globe and represent an important part of mankind’s cultural heritage.
These recordings are stored on a variety of carriers, which usually underlie an aging
process that results in the physical decay of the carrier material and ultimately the
loss of the stored information. Therefore, large efforts have been made in recent
years to digitize the inventory of media archives and prevent further deterioration.
However, disturbances that have already been caused by the aging process remain
in the digitized version of the recording. To reduce these disturbances, efficient
audio restoration algorithms have been proposed, which typically require the man-
ual adjustment of one or more algorithm parameters for each individual recording
to achieve optimal restoration results. While manual operation is not a problem
for a selected number of particularly valuable recordings, supervised restoration of
complete archives is usually infeasible due to the sheer number of recordings.

The main topic of this thesis is automatic restoration of audio signals in media
archives. More specifically, we propose algorithms that allow for an unsupervised
restoration of a large number of audio recordings that show a great diversity with
regard to the desired signal type, the disturbance type and the intensity of the dis-
turbance. In doing so, we address three important disturbance types, i.e., impulsive
disturbances, hum disturbances and broadband noise. Impulsive disturbances fre-
quently occur with grooved recording media, e.g., wax cylinders, shellac and vinyl
discs, and are caused by dirt and mechanical deformations of the media. Hum
disturbances are often caused by power line interference with the audio signal dur-
ing the recording process. Broadband noise is mainly caused by restrictions of the
recording medium, e.g., the size of the magnetic particles for tape media. A key ele-
ment in the design of the proposed algorithms is the desire to keep the degradation
of the desired signal as low as possible while achieving a substantial improvement
of the audio quality.

Firstly, based on the observation that state-of-the-art impulsive disturbance restora-
tion algorithms often reduce the audio quality for undisturbed signals, which pro-
hibits their unsupervised application, we propose a classification algorithm to clas-
sify frames of the input signal as either clean or disturbed. The algorithm is based
on supervised learning and uses a logistic regression model with features that are
computed from the appropriately prewhitened input signal. Evaluation results with
a large number of test signals show that applying an existing impulsive disturbance
restoration algorithm only on those frames that have been classified as disturbed
leads to an improvement of the perceptual quality for a large range of signal-to-
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noise ratios (SNRs). In doing so, especially undisturbed signals are protected from
detrimental processing with an impulsive disturbance restoration algorithm.

Secondly, we propose an algorithm to detect hum disturbances in audio recordings
and to estimate all required hum disturbance parameters, i.e., the frequencies of
the hum partial tones and their start and end times. The algorithm uses a quantile-
based statistical analysis of the short-time power spectral density (PSD) estimates of
the input signal in order to detect the presence of stable hum tones. The accuracy
of the frequency estimation is increased by means of adaptive notch filters that
converge towards the true frequencies of the hum partial tones. Evaluation results
with real and artificial test signals show that most perceivable hum disturbances are
detected with a low false alarm rate and with low estimation errors. Furthermore,
we compare the performance of three state-of-the-art hum reduction algorithms, i.e.,
comb filters, subband comb filters and notch filters. Evaluation results show that
the performance of the three considered algorithms differs significantly with regard
to the amount of hum reduction and signal degradation. The results suggest that
notch filters yield a high amount of hum reduction with a low amount of signal
degradation if the frequencies of the hum partial tones are known.

Finally, based on the observation that state-of-the-art noise PSD estimation algo-
rithms lead to significant estimation errors when applied to a large diversity of
signals, especially at high SNRs and for music signals, we propose a noise PSD
estimation algorithm which assumes that the noise in many archive recordings is
stationary. The proposed algorithm estimates the noise PSD as the mean value of
an exponential distribution that corresponds to the empirical distribution of the
truncated short-time periodogram coefficients of the input signal. In addition, the
algorithm provides a confidence measure that reflects the reliability of the noise
PSD estimate, which can be used to decide whether restoration should be applied
or not in a certain frequency band. Evaluation results with a large number of speech
and music signals and a large range of SNRs show that the proposed estimation al-
gorithm achieves significantly lower PSD estimation errors than a state-of-the-art
algorithm based on minimum statistics. The evaluation results also show that the
combination of the proposed noise PSD estimation algorithm with a state-of-the-art
broadband noise reduction algorithm, rejecting noise PSD estimates with low con-
fidence, leads to a quality improvement for a wide range of SNRs and only a small
amount of signal degradation for practically noise-free signals.

The proposed algorithms constitute important steps for automatic audio restoration,
over a wide range of SNRs and input signals, which are typically encountered in
large media archives.
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ZUSAMMENFASSUNG

Eine große Anzahl von historisch relevanten Tonaufnahmen wird in einer Vielzahl
von Medienarchiven aufbewahrt und stellt einen wichtigen Teil des Kulturerbes der
Menschheit dar. Diese Tonaufnahmen sind auf unterschiedlichen Trägerformaten ge-
speichert, die typischerweise einem Alterungsprozess unterliegen, der einen physikali-
schen Zerfall des Trägermaterials mit sich bringt. Auf lange Sicht ist eine Zerstörung
der auf dem Träger gespeicherten Informationen unvermeidbar. Aus diesem Grund
wird seit einiger Zeit großer Aufwand betrieben, um die Bestände der Archive zu
digitalisieren und einem weiteren Verfall zuvorzukommen. Die bereits durch den Al-
terungsprozess verursachten Störungen verbleiben allerdings auch in der digitalen
Version der Aufnahme. Um diese Störungen zu reduzieren, können effiziente Restau-
rationsalgorithmen verwendet werden, wobei typischerweise eine manuelle Einstel-
lung von einem oder mehreren Parametern erforderlich ist um optimale Ergebnisse
zu erzielen. Diese manuelle Bedienung stellt für eine ausgewählte Anzahl besonders
wertvoller Aufnahmen kein Problem dar, macht allerdings die Restauration ganzer
Archive aufgrund der großen Anzahl von Aufnahmen unmöglich.

Der Schwerpunkt dieser Dissertation ist die automatische Restauration von Ton-
aufnahmen in Medienarchiven. Genauer gesagt werden Algorithmen vorgestellt,
die eine unbeaufsichtigte Restauration einer Vielzahl von Tonaufnahmen möglich
machen, wobei sich die Tonaufnahmen durch eine große Vielfalt hinsichtlich des
Nutzsignals, der Störungsart und der Intensität der Störung auszeichnen. Dabei
werden drei wichtige Störungsarten behandelt: Impulsstörungen, Brummstörungen
und breitbandiges Rauschen. Impulsstörungen treten häufig bei Trägern mit Tiefen-
oder Seitenschrift auf, z.B. bei Wachszylindern, Schellack- und Vinyl-Schallplatten,
und werden durch Schmutz und mechanische Verformung des Trägers verursacht.
Brummstörungen werden häufig durch Einstreuungen aus dem Stromnetz in tonsi-
gnalführende Leitungen während des Aufnahmeprozesses verursacht. Breitbandiges
Rauschen wird hauptsächlich durch Grenzen des Aufnahmenmediums verursacht,
z.B. die Größe der Magnetpartikel bei Bandmedien. Eine wichtige Anforderung
für die Entwicklung der vorgeschlagenen Algorithmen war, die Verfälschung des
Nutzsignals so gering wie möglich zu halten und eine hörbare Verbesserung der
Klangqualität zu erzielen.

Ausgehend von der Beobachtung, dass Algorithmen zur Impulsstörungsrestauration
nach dem Stand der Technik häufig zu einer Verschlechtung der Klangqualität für
ungestörte Aufnahmen führen, was eine unbeaufsichtigte Anwendung unmöglich
macht, schlagen wir als erstes einen Klassifikationsalgorithmus vor, der Blöcke des
Eingangssignals als entweder gestört oder störungsfrei klassifiziert. Der Algorith-
mus basiert auf überwachtem Lernen und nutzt ein logistisches Regressionsmodell
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mit Merkmalen, die aus dem auf geeignete Art geweißten Eingangssignal berechnet
werden. Die Ergebnisse einer Evaluation mit einer großen Anzahl von Testsignalen
zeigen, dass die Anwendung eines vorhandenen Algorithmus zur Impulsstörungs-
restauration nur auf diejenigen Blöcke, die als gestört klassifiziert wurden, für einen
großen Bereich von Signal-Rausch-Verhältnissen (SNRs) zu einer Erhöhung der
wahrgenommenen Qualität führt. Dabei werden insbesondere ungestörte Signale vor
einer nachteiligen Bearbeitung mit einem Impulsstörungsrestaurationsalgorithmus
bewahrt.

Als zweites schlagen wir einen Algorithmus zur Detektion und Parameterschätzung
von Brummstörungen in Tonaufnahmen vor. Die geschätzten Parameter sind die Fre-
quenzen der Brumm-Partialtöne und deren Anfangs- und Endzeiten. Der Algorith-
mus verwendet eine quantilbasierte, statistische Analyse der geschätzten Kurzzeit-
Leistungsdichtespektren (LDS) des Eingangssignals, um das Vorhandensein stabiler
Brummtöne zu detektieren. Die Genauigkeit der Frequenzschätzung wird durch ad-
aptive Kerbfilter erhöht, die gegen die wahren Frequenzen der Brumm-Partialtöne
konvergieren. Die Ergebnisse einer Evaluation mit echten und künstlichen Testsi-
gnalen zeigen, dass der größte Teil der wahrnehmbaren Brummstörungen mit einer
niedrigen Fehlalarmrate und mit kleinen Schätzfehlern detektiert wird. Des Weite-
ren wird die Effizienz von drei Brummreduktionsalgorithmen nach dem Stand der
Technik verglichen, nämlich von Kammfiltern, Teilband-Kammfiltern und Kerbfil-
tern. Evaluationsergebnisse zeigen, dass die drei Algorithmen unterschiedliche Ei-
genschaften haben im Hinblick auf die Dämpfung der Brummstörung und den Grad
der Verfälschung des Nutzsignals. Ausserdem deuten die Simulationsergebnisse dar-
auf hin, dass eine starke Reduzierung der Brummstörung bei einem geringen Grad
der Nutzsignalsverfälschung mit Kerbfiltern möglich ist, wenn die Frequenzen der
Brumm-Partialtöne bekannt sind.

Schließlich, ausgehend von der Beobachtung, dass Rausch-LDS-Schätzalgorithmen
nach dem Stand der Technik zu signifikanten Schätzfehlern führen, wenn diese auf
sehr unterschiedliche Signale angewendet werden, insbesondere bei großem SNR
und bei Musiksignalen, schlagen wir einen Rausch-LDS-Schätzalgorithmus vor, der
von der Annahme ausgeht, dass das Rauschen in vielen Archivaufnahmen stati-
onär ist. Der vorgeschlagene Algorithmus ermittelt das Rausch-LDS als den Erwar-
tungswert derjenigen Exponentialverteilung, die zu den abgeschnittenen Kurzzeit-
Periodogrammkoeffizienten des Eingangssignals passt. Des Weiteren ermittelt der
Algorithmus ein Konfidenzmaß, dass die Zuverlässigkeit der Rausch-LDS-Schätzung
anzeigt, und das verwendet werden kann um zu entscheiden, ob einzelne Frequenz-
bänder restauriert werden sollen oder nicht. Ergebnisse einer Evaluation mit einer
großen Anzahl von Sprach- und Musikaufnahmen und über einen großen SNR-
Bereich zeigen, dass der vorgeschlagene Algorithmus signifikant niedrigere LDS-
Schätzfehler erzielt als ein Algorithmus nach dem Stand der Technik, der auf der
Statistik des Minimums basiert. Die Evaluationsergebnisse zeigen außerdem, dass
die Kombination des vorgeschlagenen Rausch-LDS-Schätzalgorithmus mit einem
Reduktionsalgorithmus für breitbandiges Rauschen nach dem Stand der Technik
und der Ablehung von LDS-Schätzwerten mit niedriger Konfidenz zu einer Qua-
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litätsverbesserung über einen großen SNR-Bereich und nur zu einer marginalen
Qualitätsreduktion für praktisch ungestörte Signale führt.

Die vorgeschlagenen Algorithmen stellen wichtige Schritte für eine automatische
Audiorestauration über einen großen SNR-Bereich und unterschiedliche Arten von
Eingangssignalen dar, wie sie üblicherweise in großen Medienarchiven vorzufinden
sind.
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1
INTRODUCTION

1.1 Short History of Sound Recording

“This is an invitation to everyone who reads it to come to our store
and hear the new Edison Phonograph, the one with the big horn. This
phonograph is better, bigger and has a finer finish than any of the other
models. We will hold concerts anytime you come.”

—Advertisement for Edison Phonographs in The Free Lance, Vol. 22, No. 149, p. 3,
January 11, 1908, Virginia, United States of America (a copy of the advertisement is on
page 2).

It was in 1877 when Thomas Alva Edison turned the handle of this new device,
setting the tinfoil-covered cylinder in motion. Reciting with a stentorian voice the
nursery rhyme “Mary Had a Little Lamb”, it was the first time a sound was captured
for later reproduction. Edison himself was shocked after playing back his just made
recording, listening to what seemed like the “ghost of speech” [1]. After thousands of
years of mankind’s fascination for the reproduction of the sound of human voice [2],
the phonograph represented a breakthrough in this long quest. Edison’s invention
changed the way we think about sound and paved the way for new branches in
culture, industry, technology, art and more.

The night after the first successful demonstration of his phonograph, Edison began
to improve the phonograph in order to enhance the obtained sound quality. This
was the beginning of a long line of research activity, aiming for the best possible re-
production. While Edison started by trying to fit the tinfoil more properly onto the
cylinder of the phonograph, it would not take long until others began to introduce
more substantial changes to the machine. In 1881, Charles Sumner Tainter and
Chichester Bell replaced Edison’s tinfoil with a wax-covered cylinder at the Volta
Laboratory [3, 4]. This change led to an improved sound and less background noise.
Furthermore, the wax cylinders were much more durable than the early tinfoil and
their handling was easier. The new, improved machine was called graphophone, and
altogether it represented a severe improvement compared to the phonograph. At
first, phonographs and graphophones were mainly rented to businesses for dictation
[5]. However, first music recordings were made in 1888 [6] and Edison realized that
money could be made by selling prerecorded cylinders [4]. A major problem with
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2 introduction

wax cylinders at that time, however, was mass production: To create copies of the
original recording, a so-called pantographic process was used that allowed to pro-
duce about 25 copies of each master. By recording the original performance on up
to twenty cylinders, about 500 copies of one performance could be made. To create
more copies, the performance had to be redone and recorded again, resulting in
a rather tedious and time-consuming process [6]. Therefore, Edison experimented
with different materials and spent years developing a process that allowed mass pro-
duction of cylinder copies. Finally, he developed a method to create negative gold
molds from the original recording. In a complicated process, positive copies could
then be created from the molds by dipping them into hot wax. Due to the geometric
shape of the cylinders, this process was error-prone and deformations of the wax
material and mistakes in the process led to deformation of the grooves, resulting in
distortions of the sound [4]. The achieved dynamic range was approximately 50 dB
[7] with a frequency response of approximately 200 Hz to 4 kHz [8].

Shortly before Edison started his venture into selling pre-
recorded cylinders in 1889, Emil Berliner had patented his
gramophone in 1887 [4]. In contrast to vertical modulation,
Berliner used lateral modulation and flat discs instead of cylin-
ders as a recording medium. After receiving enthusiastic re-
sponses from an audience that was impressed with the qual-
ity and clarity of his gramophone, Berliner began to believe
that this new medium of sound recording had great applica-
tions in the area of entertainment, rather than business [2].
The combination of this insight with Berliner’s disc produc-
tion process was the beginning of the recording industry. A
crucial fact for this to happen was the easy mass production
of Berliner’s discs: The original recording was cut into zinc
plates coated with beeswax. After etching this disc in acid,
electroplated molds were created that were negatives of the
original recording. From these negatives, stampers were made
and the final, positive records were pressed. Due to the disc
shape of the medium, this process was less complicated and
error-prone compared to Edison’s cylinders and a large num-
ber of copies could be produced easily [6]. While the first disc
records consisted of hard rubber, a new material, shellac, was
used starting around 1900 [9], leading to highly increased me-
chanical stability of the carrier. The frequency response was
comparable to the frequency response of wax cylinders [7] with
a slightly lower dynamic range, reaching approximately 40 dB
[10].

With the availability of technically mature recording and
playback devices and mass-produced prerecorded media, the
research activity in the field of audio technology increased
steadily. Important milestones on the path from shellac discs
to today’s digital hard disc recording were numerous. For ex-



1.1 short history of sound recording 3

ample, the telegraphone, invented by Valdemar Poulsen in 1889, was the first device
to record an audio signal electrically, onto a steel wire [5]. Several years later, after
important inventions like the condenser microphone and vacuum tube amplifier had
been made in the 1920s, the Magnetophon was a sensation at the Berlin exhibition
in 1935 [11]. The frequency range now was 50 Hz to 5000 Hz, with a dynamic range
that was similar to the 40 dB obtained with shellac discs [12]. A huge improvement
in recording quality was presented shortly after, in 1941, namely the application
of AC bias. This new technology increased the dynamic range to 60 dB and the
recordable frequency range to between 50 Hz and 10 000 Hz [11], which can be seen
as the first “noise-free” recording that exhibits practically no perceivable noise while
covering large parts of the frequency range of the human auditory system. As a con-
sequence, tape recording started to become the standard audio recording medium,
e.g., for recording studios—with the famous singer Bing Crosby’s enthusiasm for
the high sound quality stimulating its success [5]. In the following, magnetic tape
recording was improved and developed further in many ways—with Philips’ intro-
duction of the Compact Cassette in 1963 (reaching a dynamic range of 50 dB and a
frequency response of 30 Hz to 18 kHz [13]) and the increase of the dynamic range
by up to 10 dB by Ray Dolby’s invention of his noise-reduction system in 1967 [14,
15] fostering tape as the number one audio recording medium. Further important
developments were, e.g., stereophonic sound systems, invented in 1931 by Alan
D. Blumlein, and in 1948 the long-playing record (LP) by Peter Goldmark which
achieved a dynamic range of approximately 60 dB and a frequency range of 30 Hz
to 15 kHz [9, 16]. For several decades, until around 1990, LPs and tape were the
main carriers for audio, when Compact Disc sales overtook [17]. The Compact Disc
(CD), introduced by Philips and Sony in 1982 [18] was the first digital consumer
audio carrier and was the climax of research activity going back to the 1930s, when
pulse code modulation was invented. The dynamic range now was larger than 90 dB
with a frequency range of 2 Hz to 20 kHz [19]. In the same year, a new technology
was introduced to the market that might be seen as a factor for the decline of the
CD: hard disc recording, invented by New England Digital [20, 21]. With the in-
crease of available memory and increasing network transfer rates, analog storage
and distribution via physical carriers has become less and less important in recent
years. Important related developments of digital signal processing techniques for
audio processing, e.g., the invention of the efficient coding and compression algo-
rithm MPEG-1 Audio Layer III (mp3), standardized in 1992 [22], were crucial in
this process. Nowadays, a large number of high-quality audio recordings with prac-
tically unlimited dynamic range and frequency range can be stored even on mobile
phones, and sent around the globe within mere seconds.
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1.2 Archive Audio

“What are we to expect from this wonderful invention? Mainly, we fear,
an immense storing up of sounds that it might be better not to store up,
an immense accumulation of those winged words whose wings are best
employed in carrying off into nothingness what deserves only temporary
life.”

—Excerpt from “What Will Come of the Phonograph?”, The Spectator, No. 3.131, p. 881,
June 30, 1888, London, England.

1.2.1 The Motivation for Media Archives

Figure 1.1: Ethnographer Frances Densmore
with Blackfoot chief Mountain
Chief in 1916, during a phono-
graph recording session.1

With the wide availability of sound
recording and storage technology, the
number of existing audio documents is
increasing steadily. While the produc-
tion and sale of music and spoken word
recordings has become a profitable mar-
ket since the availability of the first pre-
recorded cylinders and discs, the stor-
age and archival of audio documents re-
ceives more and more attention. The
screening of available recordings and
the management and storage of valu-
able ones is crucially important. In
addition to providing access to infor-
mation, media archives serve as a safe
storage of the world’s cultural heritage.
The number of audio documents stored
in archives around the globe can only
be estimated, but it is immense: e.g.,
the Library of Congress of the United
States reports around 3.5 million audio
documents in 2014 [23], the National
Archives and Records Administration
of the United States reports more than
400 000 sound and video recordings [24] and the German Bundesarchiv reports ap-
proximately 44 000 audio media of various kinds [25]. These media exhibit a large
diversity and comprise recordings of extinct languages, early music but also wildlife
recordings and bird songs [26]. Examples for historically relevant documents are
recordings of Tasmanian Aboriginal songs and spoken word from 1899 [27], early
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American Indian music (see also Figure 1.1) [28] and piano recordings of famous
composers, e.g., Edvard Grieg from 1903 [29].

Analog audio documents demonstrate the challenges of information preservation
much more radical than print media. Due to the low redundancy regarding the
information storage and the high data density, the structural decay of analog car-
riers (e.g., [30]) has severe consequences for the stored information [31]. While
safeguarding of the world’s documentary heritage has received great attention in
recent years, it has become more and more apparent that special consideration has
to be taken regarding sound recordings on mechanical carriers such as cylinders and
discs, magnetic carriers such as tapes, hard discs and floppy discs, and optical carri-
ers such as Compact Discs [32]. This is caused on the one hand by the obsolescence
and future unavailability of machinery that is required to access the information
stored on various media, an on the other hand by the quick decay process of some
carriers. Is has become evident that the only possibility for long-term storage of
the information stored on analog carriers is digitization. In the digital domain, us-
ing error detection and correction techniques, it is possible to copy the information
to a new carrier without a decrease of quality once a certain number of errors is
reached [33]. This so-called re-recording process [34] makes it possible to create a
practically unlimited number of copies from an original with identical information.
Moreover, the availability of the recording in the digital domain allows for global
access [35].

While the re-recording from the original carriers and subsequent digitization inter-
rupts the disintegration process of the carrier material in many cases, the digital
copy of the signal contains different types of disturbances caused by the aging pro-
cess. The degree of perceptual quality degradation varies depending on the type of
the original carrier, age and storage conditions. As a consequence, restoration may
be unnecessary for a certain recording, while in extreme cases a recording may al-
ready be completely useless. For many recordings, the audio quality is far below the
quality modern listeners are accustomed to. Furthermore, large amounts of noise
impede the study of the vast amount of oral recordings,e.g., for research purposes,
as listeners tend to lose concentration when listening to noisy signals for a longer
period of time [36, 37].

The perceptual and technical characteristics of the disturbances vary. Each carrier
typically exhibits different types of disturbance, depending on how the information
is stored on the material. Generally, all analog carriers are prone to multiple dis-
turbance types. For example, shellac discs usually contain broadband noise and
impulsive disturbances. While tape media typically do not contain impulsive dis-
turbances, they may exhibit other types of disturbances, such as signal drop outs
caused by magnetic stray fields. Altogether, a multitude of disturbances exist, some
having more dramatic influence on the signal than others and all differing in per-
ceived sound and origin.

1Photo source: Library of Congress, Reproduction Number: LC-DIG-npcc-20061, Washington,
D. C., United States of America.
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1.2.2 Disturbance Types

As a basic classification, disturbance types can be separated into acoustic and tech-
nical disturbances [38]. Acoustic disturbances arise when undesired acoustic sources
produce sound that leaks into the recording microphone, e.g., an air conditioning
unit humming in the background of a speech recording, applause or cheering in a
classical orchestra recording or the hissing of the ocean when recording the singing
of birds. In contrast, technical disturbances either arise due to shortcomings of
the carrier material, e.g., bubbles in shellac composite material, aging processes
or shortcomings of the used recording or playback equipment. In the context of
this thesis, only technical disturbances will be considered. Technical disturbances
can be defined in a systematic way, justified by their origin, e.g., the technical
properties of the carrier or the recording equipment. In contrast, the definition of
acoustic disturbances is rather subjective and a matter of personal taste. To decide
whether, e.g., the hissing of the ocean in the background should be removed from
some live coverage requires a large amount of semantic information that is usually
not available in the context of archive audio restoration. Of course, the intensity
of technical disturbances becomes worse if, in addition to aging, the carriers are
stored improperly and dust and other particles, e.g., fungus, is attracted by the
information-carrying surface. The main factors causing a physical degradation are
the same for all carriers [35]:

• humidity,

• temperature,

• mechanical deformation, and

• dust/dirt.

In addition, for magnetic tapes severe damage can occur to the signal by strong
magnetic stray fields [35] that directly manipulate the information stored on the
tape.

Depending on the medium a recording was originally made on, the technical dis-
turbance types vary. Technical disturbances are often classified into two groups (cf.
Table 1.1), depending on whether a recording is affected as a whole (global distur-
bances) or if only portions are disturbed (local disturbances) [39]. Major global
disturbances comprise, e.g., broadband noise (often called hiss), additive tonal dis-
turbances (hum), pitch variation defects (depending on the modulation frequency
called wow or flutter), linear and non-linear distortions or stereo issues. Broadband
noise is caused by (thermal) noise generated in the amplifiers that are used for a
recording and by the restrictions of the recording medium. These restrictions are,
e.g., the surface roughness of wax, shellac and vinyl for cylinder and disc media and
the size of the magnetic particles for tape media. Additive tonal disturbances are
typically caused by power line interference during the recording process, e.g., when
audio signal lines are placed close to power cables, or by faulty electric circuits. The
alternating electromagnetic field caused by mains power lines leads to an induction
of an alternating current in audio signal lines. The frequency of this alternating
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current typically corresponds to the mains frequency, i.e., 50 Hz or 60 Hz, depending
on where the recording is made. In addition, non-linearities in the signal chain and
interference from phase-fired controllers, that are often used in light dimmers, in
many cases cause harmonics of the mains frequency [40] which may reach up to
frequencies of several kHz [41]. As a result, the overall hum disturbance may be
described by a harmonic tone complex, consisting of one or more partial tones: the
fundamental frequency and possibly harmonics with frequencies of integer multi-
ples of the fundamental frequency. Pitch variation defects are caused by inconstant
angular velocity of tape machine capstans or by non-centered spindle holes with
disc media. Linear distortions may be caused, e.g., by the frequency response of
a mechanical or analog transmission path involved in a copy process. Non-linear
distortions are generally caused by saturation of electronics or magnetic recording
media [39]. Stereo issues are caused, e.g., by improperly aligned playback heads
of tape machines [42]. Examples of local disturbances are impulsive types of noise
that may occur with all grooved recording media and optical film sound tracks,
where dust particles or scratches on the recording surface affect only short parts of
the signal. Figure 1.2 shows photomicrographs of a clean and a dirty microgroove
vinyl record. It can be seen that scratches, dust and dirt particles have sizes in
the order of the groove width and, hence, can be expected to interfere with the
stored audio information. Due to its perceived sound, this type of disturbance is
commonly called click, crackle or thump, depending on the specific character of
the disturbance. In the context of audio restoration, the term click is usually used
to describe localized degradations that appear rather sporadically, e.g., caused by
scratches on the surface of a disc. In contrast, crackle can be described as a static
floor of small clicks, e.g., caused by a layer of dust or dirt that is more or less evenly
distributed on the surface. Thumps are low-frequency pulses in the signal that are
caused by the response of the pick up system to severe clicks that are, e.g., caused
by large scratches on grooved media or optical film sound tracks [39].

Due to the very different properties of the used recording equipment, media, age
and storage conditions, the intensity of the disturbances with respect to the desired
signal typically varies largely in media archives. In some cases the desired signal
may be barely perceivable while in other cases a recording may be completely free
of disturbances. Some recordings may show multiple disturbances, e.g., broadband
noise, clicks and crackle for shellac discs, while others may only contain broadband
noise, e.g., tape recordings. In general, the most prominent disturbances will vary
from archive to archive. Nevertheless, in many cases impulsive disturbances, hum
disturbances and broadband noise are encountered most frequently [43].

1.2.3 Restoration of Archive Audio

With the availability of a recording as a digital signal, digital signal processing tech-
niques can be used for different purposes, e.g., to extract metadata from the audio
signal [25, 35] or to enhance the quality by reducing the contained disturbances
[38, 39]. Metadata extraction comprises for example the classification of speech and
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Figure 1.2: Photomicrographs of microgroove vinyl discs. a) A used but cleaned vinyl disc.
b) A vinyl disc with scratches and large amounts of dust and dirt.
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Table 1.1: Main disturbance types in audio signals.

Global disturbances Local disturbances

Broadband noise Clicks

Hum Crackle

Pitch variation defects
(wow and flutter)

Thumps

Linear distortions

Non-linear distortions
(saturation, clipping)

Stereo issues
(level imbalance, channel delay)

music signals, the estimation of the bandwidth of the audio signal, or obtaining in-
dications on the original carrier, e.g., through determining the presence or absence
of impulsive disturbances. The additional information can then be used, e.g., to
facilitate the retrieval of individual recordings and the access to media archives [44,
45].

The possibility to enhance the audio quality by using digital signal processing tech-
niques has brought up a number of questions regarding the goals of the re-recording
process. In an attempt to establish a standard re-recording procedure, it is argued
in [46] that legitimate goals are the preservation of an audio document as it was
heard by people of the time of the original recording, and striving to obtain the
true sound of the original performer at the same time. In order to go one step fur-
ther, advances in technology can be used to compensate for imperfections caused by
technical limitations of the recording technology that was used to make the original
recording [47]. Nevertheless, in the context of this thesis the definition from [32, p.
55] is adopted, in which the term restoration is defined as “the process of restoring
an object to a condition as close as possible to that when it was first made.” In
other words, the overall goal of this thesis is to develop methods that enable to
reduce the amount of signal degradation caused by carrier-related processes such as
disintegration, age and wear.

As mentioned above, due to the large variety with regard to the type of desired
signal, recording technology, carrier type, age and storage conditions, the recordings
in archives show a large diversity of disturbances and signal-to-noise ratios SNRs. As
a consequence, each recording requires a different restoration process. For example,
only the subset of the archive recordings that had been stored on grooved media or
optical film is prone to impulsive disturbances. To avoid detrimental effects of the
application of a restoration algorithm, it is important to only process those signals
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that actually contain a specific type of disturbance. In this regard, the decision of
whether a signal is disturbed or not is typically not straightforward. For example, a
technically measurable disturbance, e.g., quantization noise, may be imperceptible
by human listeners. In the context of this thesis, we assume a recording to be
disturbance-free if it is perceived as such.

Unfortunately, for many recordings the original media that could give indications
on potentially contained disturbances are unknown. As a consequence, information
about disturbances can often only be based on an analysis of the signal itself. The
individual, manual inspection and supervised restoration may surely be performed
for a small number of recordings. However, a manual processing of typically very
large numbers of recordings that are stored in an archive is not possible. If the
restoration of complete archives is desired, the only option is automatic processing.
The main challenge of archive audio restoration, therefore, is to perform unsuper-
vised restoration for a large number of very diverse recordings (each one requiring
different processing) and to achieve high restoration quality while minimizing the
risk of signal degradation.

1.3 Prior Work

While a lot of research has been performed to improve the recording process and the
sound storage media themselves, the last decades have shown a lot of research on
reducing disturbances in audio signals after they have been recorded. An early pub-
lication from 1983 contains an enthusiastic description and first results regarding the
restoration of music signals by means of digital signal processing [48]. Since then, a
large number of algorithms for the restoration of audio signals have been proposed
[38, 39]. These algorithms are usually specialized for each disturbance type, hence
typically differing in the assumptions that are made regarding the signal model
and, as a consequence, their functionality. The main goal of audio restoration is
to improve the (perceptual) quality of a recording, i.e., to reduce the disturbance
without significantly affecting the integrity of the desired signal. In doing so, the
audio restoration process typically represents a compromise between the amount
of disturbance reduction and the amount of signal degradation. While in many
cases it is possible to achieve a very high restoration quality using existing algo-
rithms, in order to obtain optimum results it is usually necessary to adjust one or
more algorithm parameters for each recording individually. For example, a crucial
aspect for broadband noise restoration is typically the manual selection of noise-
only sections for the restoration algorithm to accurately estimate the noise power
spectral density (PSD) (the so-called fingerprint). For hum restoration, typically
the fundamental frequency of the hum tone complex and the number of harmon-
ics have to be selected. For unsupervised operation, this required user interaction
imposes significant restrictions on the applicability of most audio restoration algo-
rithms and is related to the usually narrow ranges of parameter settings that lead
to high-quality results. Severe degradations of a signal may occur if it is processed
with inappropriate parameter settings. In general, the requirements for algorithms
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aiming at automatic restoration are substantially different from the requirements
for algorithms aiming at manual restoration. The crucial point in this regard is
the above-mentioned required robustness against a large diversity of desired signals,
disturbance characteristics and disturbance intensities that occur in media archives.
Furthermore, many existing audio restoration algorithms are designed for causal
and real-time processing, e.g., to ease the manual parameter adjustment, or for live
broadcasting applications. Algorithms for automatic restoration are not restricted
to causal processing as the complete signals are usually available. Finally, the la-
tency and computational complexity of the algorithms are of minor importance as
the processing is typically not time-critical.

Existing audio restoration algorithms typically comprise two stages: the estimation
of disturbance parameters and the actual reduction of the disturbance. When the
disturbance parameters are known (or estimated accurately), it is usually possible
to obtain high-quality restoration results for the majority of disturbed signals. To
automate the restoration process, it is therefore crucial to develop a way to robustly
estimate the disturbance parameters. This also includes determining whether a
disturbance is absent in order to protect undisturbed recordings (or sections of a
recording) from possible detrimental processing with restoration algorithms. Only
a few publications on the specific problem of automatic audio restoration exist,
and to the best of the author’s knowledge do not fulfill all crucial points that are
important for automatic restoration of diverse archive audio. The major restriction
of existing automatic restoration algorithms is the assumption of a certain class of
input signals, e.g., noisy speech recordings. In [49] a promising automatic sound
restoration system for archive purposes is described that is able to automatically
remove wow, flutter and broadband noise. However, no description of the broadband
noise restoration algorithm or evaluation results are provided.

This thesis specifically addresses the problem of insufficient robustness of existing
audio restoration algorithms against a large diversity of input signals and SNRs
if no manual parameter adjustment is performed. In doing so, we focus on the
detection of individual disturbance types, i.e., whether a disturbance type is present
in (a section of) a recording or not, and the estimation of disturbance parameters.
In order to maximize the applicability only single-channel methods are considered,
since typically only a subset of the archive recordings is available in multichannel
formats, .

The following sections give an overview on existing algorithms to reduce different
disturbance types in audio signals and discuss potential issues regarding their unsu-
pervised operation for automatic archive restoration applications. More specifically,
we discuss the restoration of impulsive disturbances (Section 1.3.1), hum distur-
bances (Section 1.3.2) and broadband noise (Section 1.3.3). The algorithms address-
ing the individual disturbance types differ fundamentally as the generation process
of the disturbances is different, i.e., they are described by different signal models. In
addition, we briefly describe the typical audio restoration workflow (Section 1.3.4)
and discuss several options to evaluate the quality of audio restoration algorithms
(Section 1.3.5).
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1.3.1 Restoration of Impulsive Disturbances

Impulsive disturbances represent one of the most prominent disturbance types, es-
pecially for grooved recording media. While early publications only deal with the
detection of impulsive disturbances in audio recordings [50], approaches to remove
clicks and crackle followed soon after, e.g., [51]. Typically, the signal portions af-
fected by impulsive disturbances are determined first and corrected in a subsequent
step. Early detection approaches consist of high-frequency pre-emphasis to enhance
transient elements in the input signal followed by thresholding of the preprocessed
signal [50]. Early correction methods simply consist of replacing the disturbed sig-
nal portions with silence or linearly interpolating the neighboring samples [51]. The
linear-prediction-based algorithm for the detection and interpolation of impulsive
disturbances in speech signals proposed in [52] represented a big improvement re-
garding the achieved restoration quality and is the basis for many state-of-the-art
algorithms. These algorithms, which are based on an autoregressive (AR) model
representation for the clean signal, make use of the fact that the clean signal at a
certain time can be approximated adequately based on the surrounding signal. In
contrast, impulsive disturbances do not follow this AR model and can therefore be
detected by a large AR model prediction error. Corrupted samples of the detected
signal portions are then replaced using the AR model and the uncorrupted signal
surrounding the detected portion [38].

More recent versions of the AR-model-based algorithms aim at improving the im-
pulse detection accuracy on the one hand, and the replacement of disturbed samples
on the other hand. For example, in [53, 54] it is proposed to process the input signal
in forward as well as backward direction to reduce the number of erroneously de-
tected impulses (so-called false alarms). Other algorithms use impulse templates to
increase the detection accuracy [55] or are based on machine learning techniques [56,
57, 58]. Interpolation algorithms based on true linear prediction [59] or frequency-
warped prediction are reported to achieve high-quality results for gap lengths as
long as approximately 45 ms [60, 61].

Many existing impulse restoration algorithms have been shown to yield high-quality
results for a variety of disturbed input signals, e.g., speech signals and music signals
from different genres that contain different types of impulsive disturbances. Figure
1.3 shows a section of a music signal with impulsive disturbances that has been
copied from a shellac disc. This figure also shows the output signal of a standard
AR-model-based impulse restoration algorithm [39, Ch. 5.2.3.2] with iterative esti-
mation of the clean signal AR parameters [39, Ch. 5.3.1] using the implementation
from [62]. It can be observed that impulses are removed effectively from the dis-
turbed input signal. However, these algorithms typically require the adjustment of
a threshold parameter, which is related to the disturbance intensity, and assume
that the input signal contains impulsive disturbances. As mentioned before, it can
usually not be assumed that all audio recordings in a media archive actually con-
tain impulsive disturbances. As a consequence, the unsupervised application of an
impulse restoration algorithm may lead to insufficient disturbance reduction or to a
degradation of the signal, primarily due to false alarms in the detection stage. These
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false alarms are typically caused by impulse-like elements of the desired signal, e.g.,
drum transients, guitar pickings, distorted guitar or attacks of brass instruments
and synthesizers. Figure 1.4 shows the undesired reduction of transients from the
desired signal if inappropriate impulse restoration is performed. In this example,
the input signal does not contain impulsive disturbances, but certain elements of
the desired signal (the transients of a synthetic drum sound) are erroneously de-
tected as such and removed. A second possible issue with unsupervised application
of an impulse restoration algorithm is shown in Figure 1.5, where high-frequency
content of a distorted guitar recording is attenuated because part of the signal is
erroneously recognized as an impulsive disturbance, leading to a significant change
in sound character. In Chapter 2, we present evaluation results with a large number
of test signals that underpin these observations and suggest that the application of
an impulse restoration algorithm with a fixed threshold parameter is beneficial for
signals that contain severe disturbances, but may lead to a signal degradation if the
SNR is high and especially for undisturbed signals.

1.3.2 Restoration of Hum Disturbances

In many cases, hum disturbances can be removed effectively by using comb filters
or by placing narrow-band notch filters at the hum tone frequencies. In order to
do so, at least the fundamental frequency of the hum tone complex is required. It
should be noted that care has to be taken to avoid the generation of processing
artifacts that are, e.g., related to the fact that comb filtering is achieved by adding
a delayed version of the signal to itself, causing an echo effect, or that are related to
ringing effects with narrow-band notch filters. Chapter 4 contains a detailed com-
parison of existing hum reduction filter algorithms. More specifically, we compare
the performance of comb filters, subband comb filters and notch filters in terms of
hum reduction and signal degradation by means of an evaluation with artificially
disturbed test signals. We show that comb filters generally lead to a large amount
of hum reduction (as all hum partials are removed), but also a comparatively large
amount of signal degradation. Nevertheless, comb filters may be useful when only
the fundamental frequency of the hum tone complex is known and no information
about the number of hum harmonics is available. It is also shown that notch filters
allow for a large amount of hum reduction with a lower signal degradation compared
to comb filters.

While hum reduction with known disturbance parameters is possible with a small
amount of signal degradation, it is important to refrain from applying a hum re-
duction algorithm if a recording does not actually contain hum. In archive audio
restoration, the information whether a recording contains a hum disturbance or not
is typically not available. Therefore, the presence of hum needs to be detected and
the hum parameters need to be estimated from the signal itself. To the best of the
author’s knowledge, only two publications exist that propose algorithms to auto-
matically estimate hum tones in audio recordings [66, 67]. In [66] an algorithm is
proposed that is shown to efficiently remove hum in an automatic manner. However,
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Figure 1.3: Impulse restoration with a standard AR-model-based algorithm [39, Chs.
5.2.3.2 and 5.3.1]. a) Short section of a gramophone recording on a shellac
disc [63]. A number of impulsive disturbances have been detected and interpo-
lated by the algorithm. b) Zoom of the region that is marked in plot a) with
a grey rectangle.
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Figure 1.4: Erroneous reduction of transients by inappropriate processing of a music sig-
nal with a standard AR-model-based impulse restoration algorithm [39, Chs.
5.2.3.2 and 5.3.1]. In this case, the attack of a synthetic drum sound (in [64])
was removed.

the desired signal is assumed to be speech and speech pauses are used to estimate
the hum parameters. As a consequence, this algorithm is highly prone to estimation
errors if the desired signal does not contain pauses, as is the case in many music
signals. Although the algorithm proposed in [67] is not restricted to speech signals,
it is based on the assumption that a hum disturbance is present in the input signal.
To reduce the disturbance, narrow-band notch filters are placed across the frequency
spectrum. A subjective evaluation presented in [67] documents that a substantial
quality improvement can be achieved with the proposed algorithm. However, the
evaluation is restricted to signals containing severe hum disturbances. It can be
expected that applying a large number of notch filters will lead to a signal degrada-
tion, which becomes especially noticeable if no hum disturbance is present. Hence,
none of the aforementioned algorithms solves the problem of being robust against
a large range of desired signals and SNRs.

1.3.3 Restoration of Broadband Noise

The restoration of broadband noise in audio signals has been an active field of re-
search for more than 50 years. Manfred Schroeder was probably the first to develop
a system to reduce continuous noise in speech signals in 1960. His patent [68]
describes a system that splits the input signal into multiple frequency bands, atten-
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Figure 1.5: Loss of high-frequency energy caused by inappropriate processing of a music
signal with a standard AR-model-based impulse restoration algorithm [39, Chs.
5.2.3.2 and 5.3.1]. The plots show spectrograms of an excerpt of [65] that
features a distorted guitar. a) Spectrogram of the unprocessed input signal. b)
Spectrogram of the signal that has been processed by the impulse restoration
algorithm.
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uates frequency bands with a low SNR, and combines the scaled frequency bands
to obtain a noise-reduced output signal. This principle—applying a time-varying
(real-valued) gain to each frequency band—is still the basis of many single-channel
audio enhancement algorithms. Although noise reduction in the time-domain is
possible, frequency-domain methods are usually preferred as the spectro-temporal
characteristics of the audio signal can be exploited and the computational complex-
ity is reduced (e.g., through the fast Fourier transform). These methods typically
consist of block-based spectral analysis of the input signal, subsequent filtering and
finally block-based synthesis to obtain the time-domain output signal. To alleviate
spectral leakage between neighboring frequency bins and to reduce audible artifacts
caused by time-variant filtering, analysis and synthesis windows are commonly used,
resulting in the well-known weighted overlap-add (WOLA) processing [69, 70]. Esti-
mating the noise characteristics is also typically performed in the frequency domain,
leading to the schematic diagram shown in Figure 1.6.

In [71] the spectral subtraction method is proposed, which can be seen as the basis of
many noise reduction algorithms. In this method the short-time Fourier transform
(STFT) coefficients of the input signal with low SNR are attenuated, coining the
well-known term short-time spectral attenuation (STSA). While the SNR in the
individual frequency bands is not changed, the overall broadband SNR can still be
improved [72]. A major challenge with STSA-based noise reduction algorithms is to
avoid unnatural sounding residual noise, often denoted as musical noise. Research
on single-channel audio signal enhancement has been very active since the publica-
tion of the spectral subtraction algorithm and a number of different methods have
been devised [38, 39, 73, 74, 75]. Typically these methods differ in the gain rules
(also called weighting functions) that are used to perform the frequency-domain
filtering [75]. Widely used gain rules are based on, e.g., spectral subtraction [71]
and Wiener filtering [76]. Other gain rules are based on the minimum mean-square
error (MMSE) of the short-time spectral amplitudes, or their logarithm, [77, 78],
and have been shown to result in less processing artifacts compared to earlier gain
rules. Due to their widespread application, these algorithms can be considered state
of the art. Over the years, various extensions of STSA-based algorithms have been
proposed to further reduce processing artifacts and enhance the audio quality. For
example, it has turned out that in many cases it is beneficial to limit the maximum
amount of attenuation [79], which may even take psychoacoustic properties of the
human auditory system into account [80, 81].

Although most of the STSA-based noise reduction algorithms have been designed
for speech communication applications they have also been applied successfully to
music signals [38, 39, 82, 83]. It should however be noted that the aim of broadband
noise restoration in speech communication applications is generally different from
the aim in archive audio applications. First, in speech communication applications
the input signal is typically assumed to be a noisy recording of a single speaker,
while in archive audio applications the input signal is generally more complex, e.g.,
a noisy music recording. Second, in speech communication applications the latency
and the computational complexity should typically be kept low, while both are
of minor concern in archive audio applications. Third, the general goal in speech
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Figure 1.6: Frequency-domain denoising.

communication applications is typically the enhancement of the speech intelligibility,
while in archive audio applications the main goal is to obtain a pleasant-sounding
high-quality restoration result.

Besides STSA-based algorithms, some recently proposed noise reduction algorithms
exploit assumptions about the time-frequency structure of the desired audio signal
and specifically aim at signals different from speech. In [84] a noise reduction al-
gorithm is proposed which takes the neighborhood for each time-frequency point
of the disturbed input signal into account to compute time and frequency depen-
dent attenuation factors. In [85] an algorithm is proposed that performs a sparse
approximation of the noisy input signals, also taking the neighborhood of each
time-frequency point into account. Both algorithms are reported to yield increased
restoration quality compared to STSA-based algorithms. In [86] an algorithm is
proposed that incorporates an AR model for the desired signal to achieve low sig-
nal degradation. Broadband noise restoration algorithms based on the Bayesian
framework may have advantages in critical applications, but in general are not (yet)
expected to outperform STSA-based algorithms [39].

With the exception of [85], all aforementioned broadband noise restoration algo-
rithms require the noise characteristics to be available. Early noise estimation
algorithms for speech communication applications rely on the use of a voice activity
detector (VAD) [87, Ch. 33.3.2] to determine noise-only sections in the input signal.
As an accurate estimate of the noise PSD is crucial for STSA-based noise reduction
algorithms, research on this topic has received great attention in recent decades. On
the one hand sophisticated VAD methods have been developed, e.g., [88, 89]. On
the other hand, noise PSD estimation algorithms have been proposed that do not
rely on a VAD and are able to update the noise PSD estimate even during speech
activity, which is important to cope with non-stationary noise [74, 75]. Algorithms
based on minimum statistics compute a noise PSD estimate by tracking minima of
the short-time PSD estimates of the noisy input signal within a sliding time window
[90, 91]. Other algorithms compute a noise PSD estimate by recursive smoothing
of the short-time periodogram coefficients of the noisy input signal, where different
methods have been proposed to determine the smoothing constants. In the minima
controlled recursive averaging (MCRA) and improved MCRA (IMCRA) algorithms,
the smoothing constants are determined based on the ratio of the short-time PSD
estimate of the noisy input signal and its minimum within a certain time window
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[92, 93]. In [94] the smoothing constants are determined based on a statistical model
for the speech presence probability (SPP). Quantile-based algorithms compute an
estimate of the noise PSD as a low quantile of the short-time PSD estimates of the
noisy input signal [74, 95, 96]. In [97] an algorithm which simultaneously performs
signal activity detection and noise PSD estimation based on dynamic Bayesian net-
works is proposed, specifically for the application with music signals. However, the
evaluation is restricted to comparatively low SNRs around 15 dB.

It should be noted that all aforementioned noise PSD estimation algorithms except
[97] have been designed for speech communication applications and assume that
the desired signal contains a number of pauses. The requirements for archive audio
restoration, however, are substantially different. While in speech communication
applications the input signal is typically assumed to be a noisy recording of a sin-
gle speaker, in archive audio restoration the signals are much more diverse and
complex, often with hardly any pauses. Furthermore, the typical SNRs of speech
communication signals are often below 20 dB [98], while the SNRs in media archives
vary largely, with many signals even being noise-free. As a consequence, the direct
application of the aforementioned noise PSD estimation algorithms to non-speech
signals, e.g., music, in many cases leads to large estimation errors. Therefore, many
audio restoration systems require the user to select noise-only sections in order to
compute an accurate estimate for the noise PSD and obtain a high-quality restora-
tion result. Figure 1.7 shows the noise PSD estimation results obtained with the
minimum statistics-based algorithm, an SPP-based algorithm, the IMCRA algo-
rithm and the estimation algorithm proposed in Chapter 5 of this thesis. It can be
observed that all noise PSD estimation algorithms except the proposed algorithm
significantly overestimate the noise PSD. This is due to a violation of the assump-
tions regarding the clean signal on which these algorithms are based. As can be seen
in subplot a), the input signal contains no pauses where the noise PSD is accessible.
Large noise PSD estimation errors in turn may result in a large signal degradation
when the noise PSD estimate is used in a broadband noise restoration algorithm.
For example, in Chapter 5 we show that when using the minimum-statistics-based
noise PSD estimate in the state-of-the-art MMSE STSA noise reduction algorithm,
the perceptual quality of the processed signal in many cases is even lower than the
quality of the unprocessed input signal.

1.3.4 Automatic Restoration Workflow

A crucial aspect of a typical audio restoration workflow is the order in which the
individual disturbance types are removed [39, 100]. This is because different distur-
bances may mask each other, or the reduction of a certain disturbance may change
the characteristics of another disturbance, making it more difficult to estimate its
parameters. For example, the presence of impulsive disturbances can be detrimental
to hum reduction, since impulses may lead to perceivable ringing artifacts caused
by notch filters for hum reduction. In addition, the presence of hum may impede
the PSD estimation of broadband noise.
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Figure 1.7: Noise PSD estimates obtained with state-of-the-art algorithms and the algo-
rithm proposed in Chapter 5 for a music signal (excerpt from [99]). a) Noisy
time-domain input signal. b) Estimated noise PSDs in the frequency bin at
approximately 2 kHz. The SNR in this bin is approximately 40 dB and the true
noise PSD was estimated as the recursively smoothed short-time periodogram
coefficients of the noise signal.

In a typical audio restoration workflow, disturbances are handled in the following
order (see Figure 1.8): 1. restoration of impulsive disturbances, 2. restoration of
hum disturbances, 3. restoration of broadband noise. For each disturbance type,
first the presence of the disturbance is determined, followed by a potential reduction
of the disturbance. The output of the processing chain is a signal with all detected
disturbances reduced.

1.3.5 Performance Measures

As already mentioned, the main objective of audio restoration algorithms is to
achieve a high perceptual quality of the processed signal. The human auditory sys-
tem has exceptional capabilities when it comes to noticing the tiniest differences
to what it has learned sounds normal. The design of audio restoration algorithms
therefore involves bridging the gap between the auditory sense and a mathematical
description of what “sounds good” in terms of cost functions and objective perfor-
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mance measures. To evaluate the developed algorithms, it is important to determine
the quality of the obtained restoration results and, in doing so, to take the human
auditory system into account. Generally, two approaches can be taken [101]: subjec-
tive evaluation, based on listening experiments with human listeners, and objective
evaluation, based on measures that can be described mathematically.

Subjective evaluation based on listening experiments has the major advantage of
directly determining the audio quality as perceived by human listeners. However,
these experiments are usually time-consuming—not only because the tests them-
selves have to be performed, but also because appropriate listeners have to be ac-
quired, e.g., listeners that have experience in rating restoration algorithms and are
able to notice possible processing artifacts. Furthermore, it may be hard to deter-
mine whether individual subjective evaluation results actually reflect the auditory
aspect that is sought for, e.g., whether a listener takes the quality of the desired
signal into account while the experiment asks to rate the residual disturbance. In
order to minimize these effects, proper instruction is required, and effects like fa-
tigue have to be avoided. Several procedures to perform and evaluate listening tests
have been proposed, e.g., the method of paired comparison [102, 103, 104] or the
multiple stimulus test with hidden reference and anchor (MUSHRA) [105]. While
subjective evaluation in general leads to very accurate perceptual ratings, their ap-
plicability is usually restricted to a small number of test signals—the number of
required ratings grows linearly with the number of signals for the MUSHRA test
and even quadratically for the method of paired comparison [102]. As a consequence,
subjective evaluation is not feasible for a large number of signals.

As an alternative, objective performance measures can be used to obtain quality
ratings for a large number of signals. Although objective measures are not yet able
to yield ratings that correlate well with subjective ratings under all conditions, they
often yield valuable information that can serve as an indication for the performance
of audio restoration algorithms. While objective measures have been proposed for
speech signals [87] that do not require the clean signal as a reference (so-called
non-intrusive measures), we will only consider intrusive measures that are based
on computing a difference to the clean reference signal. The SNR improvement
between the unprocessed input signal and the output signal of the restoration al-
gorithm is a purely mathematical measure that describes the relative change in
desired signal power to disturbance signal power but usually shows little correlation
to the perceptual quality [87]. While more advanced objective measures, e.g., the
cepstral distance [106] and the Itakura-Saito distance [107], often show good corre-
lation with the subjective impression, they have typically been designed for speech
signals [87]. As this thesis addresses the restoration of a large diversity of desired
signals, an objective measure is required that works well with speech signals as well
as with non-speech signals, e.g., music. In this regard, the perceptual evaluation of
audio quality (PEAQ) measure represents a viable solution that has been specifi-
cally designed to be applied with many types of audio signals [108, 109, 110]. The
PEAQ measure computes a so-called objective difference grade (ODG) from the dif-
ference between the internal representations of the signal under test and the clean
reference signal. The ODG ranges from -4, corresponding to ”very annoying” im-
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pairments, to 0, corresponding to ”imperceptible” impairments [109]. To determine
the internal representation of a signal, properties of the human auditory system,
e.g., the non-linear perception of pitch and masking effects, are taken into account.
Although the PEAQ measure was designed primarily to rate artifacts generated by
audio coding algorithms [109], we believe it is still meaningful to use this measure
to rate the large number of test signals that are used for evaluating the considered
audio restoration algorithms. On the one hand, this can be justified by the fact
that different disturbance types, e.g., broadband noise and digital errors, were con-
sidered during the development of the PEAQ measure [108]. On the other hand, in
informal listening tests we found that ODG ratings generally correspond well with
the subjective impression. In general, we believe that the loss in precision by using
objective measures instead of subjective listening experiments is outweighed by the
gain in generality by being able to use a large number of test signals. A number
of test signals are available for listening on the websites accompanying Chapters 2
and 5, along with their respective ODG ratings [111, 112].

1.4 Contributions and Thesis Outline

The main goal of this thesis is to develop algorithms that allow for an unsupervised
restoration of large numbers of audio recordings, with a large diversity regarding
the desired signal type, the disturbance type and the intensity of the disturbance.
More specifically, we propose novel algorithms to robustly detect three important
disturbance types in archive audio restoration applications, i.e., impulsive distur-
bances, hum disturbances and broadband noise. A key element in the design
of these algorithms is the desire to allow for an automatic restoration, resulting in
the smallest possible amount of signal degradation, and especially protecting sig-
nals that do not contain perceivable disturbances from detrimental processing with
audio restoration algorithms. In addition, for hum disturbances and broadband
noise we propose novel algorithms to accurately estimate the disturbance param-
eters that are required to reduce these disturbances. Furthermore, we present an
overview and an evaluation of three state-of-the-art hum reduction algorithms. A
schematic overview of the thesis is shown in Figure 1.9. The chapters on the three
disturbance types are self-contained, as the algorithms for each disturbance type
are fundamentally different regarding the signal model and, as a consequence, their
functionality.

In order to alleviate robustness issues of existing impulsive disturbance restoration
algorithms, in Chapter 2 we propose a machine-learning-based algorithm to classify
frames of the input signal as either clean or disturbed. In doing so, we specifically
address the fact that many existing impulse restoration algorithms lead to a quality
degradation for undisturbed signals. The proposed algorithm is based on supervised
learning, using a logistic regression model and using features that are computed from
the appropriately prewhitened input signal. In contrast to the detection stages of
typical impulse restoration algorithms that have a time resolution in the order of
the sampling interval, the proposed impulse classification algorithm uses relatively
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long 1 s-frames to achieve a high classification accuracy. The evaluation results
with a large number of test signals show that well-known AR-model-based impulse
restoration algorithms are prone to a significant number of false alarms, especially
for high input SNRs and undisturbed signals. It is also shown that combining the
proposed impulsive disturbance classification algorithm with a state-of-the-art AR-
model-based impulse restoration algorithm leads to an increase in overall restoration
quality, especially protecting signals with a high SNR and undisturbed signals from a
detrimental impulse restoration processing. This work was published in the Journal
of the Audio Engineering Society [113].

Hum disturbances can usually be removed effectively if the hum frequencies are
known. However, as described in Section 1.3.2, existing algorithms to estimate hum
disturbance parameters make certain assumptions about the input signal that pre-
vents their use for automatic archive audio restoration. Therefore, in Chapter 3 we
propose an algorithm to detect hum in audio recordings and to estimate all required
hum disturbance parameters, i.e., the frequencies of the hum partial tones, and their
start and end times. The proposed algorithm uses a quantile-based statistical anal-
ysis of the short-time PSD estimates of the input signal to detect stable hum tones
and uses post-processing to increase the accuracy of the detection. The accuracy of
the frequency estimation increased by means of adaptive notch filters that converge
towards the true frequencies of the hum partial tones. Evaluation results with real
and artificial test signals show that most perceivable hum disturbances are detected
with a low false alarm rate and that the hum parameters are estimated with a high
accuracy. This work was published in the Journal of the Audio Engineering Society
[114].

In Chapter 4 we compare the performance of three state-of-the-art hum reduction
algorithms with regard to the amount of disturbance reduction and signal degrada-
tion. More specifically, based on an evaluation with different desired signals and
artificial as well as real hum disturbances, we analyze comb filters, subband comb
filters, and notch filters. The evaluation results indicate that the performance of
the three considered hum reduction algorithms differs significantly. While comb fil-
ters generally allow for the largest amount of hum reduction, they also result in the
largest amount of signal degradation. Subband comb filters represent a compromise
between the amount of hum reduction and signal degradation by splitting the input
signal into a low and a high frequency band and only processing the low frequency
band with a comb filter. Notch filters provide the highest flexibility as they can
be placed on individual hum partial tones and their attenuation can be adjusted
individually, compared to comb filters that place notches at integer multiples of the
fundamental frequency. This work was published in the Proceedings of the 132nd
Audio Engineering Society Convention [115].

In order to perform high-quality broadband noise restoration, an accurate estimate
of the noise PSD is required. As mentioned in Section 1.3.3, existing noise PSD
estimation algorithms have insufficient robustness for diverse audio material, pro-
hibiting their application for unsupervised automatic audio restoration. In many
recordings broadband noise is caused by insufficiencies of the original carrier and can
therefore be assumed to be rather stationary for the complete recording. Based on
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this observation, in Chapter 5 we propose a novel noise PSD estimation algorithm,
assuming that the noise PSD is constant and that the short-time periodogram coef-
ficients of the broadband noise follow an exponential distribution. The noise PSD is
estimated as the mean value of the exponential distribution that corresponds to the
empirical distribution of the truncated short-time periodogram coefficients of the
disturbed input signal. In addition, the proposed algorithm provides a confidence
measure reflecting the reliability of the noise PSD estimate, which can be used to
decide whether restoration should be applied or not in a certain frequency band.
Evaluation results with a large number of desired signals and different artificial and
real-world broadband noise disturbances show that the proposed algorithm yields
significantly lower noise PSD estimation errors compared to the state-of-the-art
minimum statistics algorithm for a large range of SNRs. The evaluation results
also show that using the proposed noise PSD estimates in the MMSE STSA noise
reduction algorithm allows for an unsupervised restoration, leading to an increased
perceptual quality for the majority of signals and only marginal signal degradation
for practically undisturbed signals. This work has been submitted to the Journal
of the Audio Engineering Society [116].

The proposed algorithms constitute important steps for automatic restoration of
audio recordings, over a wide range of SNRs and input signals, which are typically
encountered in large audio archives.

1.4.1 Publications

Chapters 2 to 5 contain the contents of the following articles:

M. Brandt, J. Bitzer, “Hum Removal Filters: Overview and Analysis,” Proceed-
ings of the 132nd Audio Engineering Society Convention, Budapest, Hungary
(2012 Apr.).

M. Brandt, J. Bitzer, “Automatic Detection of Hum in Audio Signals,” Journal
of the Audio Engineering Society, vol. 62, no. 9, pp. 584–595 (2014 Oct.). https:
//doi.org/10.17743/jaes.2014.0034

M. Brandt, S. Doclo, T. Gerkmann, J. Bitzer, “Impulsive Disturbances in Au-
dio Archives: Signal Classification for Automatic Restoration,” Journal of the
Audio Engineering Society, vol. 65, no. 10, pp. 826–840 (2017 Oct.). https:
//doi.org/10.17743/jaes.2017.0032

M. Brandt, S. Doclo, J. Bitzer, “Automatic Noise PSD Estimation for Archive
Audio Restoration,” Submitted to the Journal of the Audio Engineering Society
(2018 Mar.).

In addition, the following articles have been published whose contents have not been
incorporated in this thesis:

https://doi.org/10.17743/jaes.2014.0034
https://doi.org/10.17743/jaes.2014.0034
https://doi.org/10.17743/jaes.2017.0032
https://doi.org/10.17743/jaes.2017.0032
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M. Brandt, J. Bitzer, “Optimal Spectral Smoothing in Short-Time Spectral
Attenuation (STSA) Algorithms: Results of Objective Measures and Listening
Tests,” Proceedings of the 17th European Signal Processing Conference, Glas-
gow, England, pp. 199–203 (2009 Aug.).

J. Bitzer, M. Brandt, “Speech Enhancement by Adaptive Noise Cancellation:
Problems, Algorithms, and Limits,” Proceedings of the 39th International Au-
dio Engineering Society Conference, Hillerød, Denmark (2010 June).

M. Brandt, J. Bitzer, “Detection of Hum in Audio Signals,” Proceedings of the
12th International Workshop on Acoustic Echo and Noise Control (IWAENC),
Tel Aviv, Israel (2010 Aug.).

M. Brandt, T. Schmidt, J. Bitzer, “Evaluation of a New Algorithm for Auto-
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Engineering Society Convention, London, England (2011 May).
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Time-Frequency Masking,” Proceedings of the 13th International Workshop on
Acoustic Signal Enhancement (IWAENC), Aachen, Germany (2012 Sept.).

M. Ruhland, J. Bitzer, M. Brandt, S. Goetze, “Reduction of Gaussian, Super-
gaussian, and Impulsive Noise by Interpolation of the Binary Mask Residual,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23,
no. 10, pp. 1680–1691 (2015 Oct.). https://doi.org/10.1109/TASLP.2015.
2444664
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2
CLASSIFICATION OF IMPULSIVE
DISTURBANCES

This article presents a new algorithm to classify whether each one-second
long frame of an audio recording contains impulsive disturbances or not.
The developed classification algorithm is based on supervised learning
and appropriate prewhitening of the input signal. It is shown that exist-
ing impulse restoration algorithms suffer from degradation of the desired
signal if the input SNR is high and if no manual parameter adjustment is
possible, which makes automatic restoration of large amounts of diverse
archive audio material infeasible. The proposed classification algorithm
can be used as a supplement to an existing impulse restoration algo-
rithm to alleviate this drawback. An evaluation with a large number of
test signals shows that a high classification accuracy can be achieved,
making fully automatic impulse restoration possible.

2.1 Introduction

The number of audio documents that are stored in archives around the globe is
immense. Since the development and widespread introduction of the phonograph
at the end of the 19th century, all kinds of music recordings, speeches, interviews,
film sound tracks, and other audio documents have accumulated and represent
the world’s audio heritage. Due to age, improper storage, and shortcomings of
the original storage media, the degradation of audio signal quality is a common
problem, especially in historic recordings. Impulsive disturbances are one of the

This chapter contains a copy of the article

M. Brandt, S. Doclo, T. Gerkmann, J. Bitzer, “Impulsive Disturbances in Audio Archives: Signal
Classification for Automatic Restoration,” Journal of the Audio Engineering Society, vol. 65,
no. 10, pp. 826–840 (2017 Oct.). https://doi.org/10.17743/jaes.2017.0032

While the layout of the article has been adapted for a uniform presentation within this thesis, the
contents printed here are identical to those in the published article.
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most prominent types of disturbance, besides broadband hiss and hum. These so-
called click and crackle phenomena are caused by deficiencies of grooved recording
media, e.g., wax cylinders, shellac, and vinyl discs. After digitalization and storage
in archives, these defects remain in the digital version of the signal.

To improve the listening experience, recordings that suffer from impulsive distur-
bances can be processed by impulse restoration algorithms that aim at removing
the disturbance impulses and obtaining an estimate of the original clean signal. For
these restoration algorithms to achieve optimum results, however, their parameters
have to be adjusted for each recording individually, in order to make the algorithm
detect and remove most of the disturbance impulses while leaving the desired signal
unimpaired. In doing so, the optimum choice of parameters depends substantially
on the relative level of the disturbance impulses compared to the level of the desired
signal. Existing impulse restoration algorithms are typically not able to distinguish
between actual disturbance impulses and certain impulse-like elements of the desired
signal with a similar level, e.g., drum transients, guitar pickings or sharp synthesizer
attacks.

In the specific context of audio archive restoration, individual parameter adjust-
ment for each recording is usually not feasible. This is due to the sheer amount of
audio material that is currently stored in archives around the globe: The Library
of Congress, e.g., reports about more than 3.5 million audio media in 2014 [23].
Millions of further recordings are stored in a multitude of archives in the United
States alone [117]. Due to the fact that grooved recording media were superseded by
media that inherently are not subject to impulsive disturbances (e.g., tape, compact
disc), only a subset of the recordings that are stored in an archive are prone to this
type of disturbance. Unfortunately, in many cases the original type of medium of
a digitally stored recording is unknown. Therefore, the decision whether a record-
ing should be processed with an impulse restoration algorithm often can only be
based on an analysis of the signal itself. As a consequence, the overall restoration
quality for a full archive depends on the robustness of the restoration algorithm
against a large range of input SNRs—in many cases the majority of recordings may
even be undisturbed while some recordings contain severe impulsive disturbances.
And while existing impulse restoration algorithms achieve high quality restoration
results for the class of signals that contain typical impulsive disturbances, e.g., in a
recording copied from a vinyl disc, we show in Section 2.4.4.3 that degradation of
the desired signal can occur if a recording does not contain impulsive disturbances
at all. Therefore, the main challenge in archive restoration comes down to the diver-
sity of the material. Examples for especially challenging recordings, in this regard,
are radio documentaries or live recordings of the program that had been broadcast
by a radio station, containing a sequence of music pieces from differing original
media, alternating with voice-overs from a studio speaker.
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2.1.1 Main Idea

The main idea of this paper is to alleviate the robustness problems of existing
impulse restoration algorithms by classifying whether a recording contains impul-
sive disturbance or not. Specifically, we propose a classification algorithm that
determines for each frame of 1 s duration of the input signal whether impulsive dis-
turbances are present or not. This information can then be used, for example, to
control an existing impulse restoration algorithm and only restore those frames that
actually contain impulsive disturbances.1 In order to achieve accurate classification,
the input signal is preprocessed in a prewhitening step. This is done in a blockwise
manner using blocks of ≈ 23 ms length.

As the classification algorithm provides a confidence measure for the disturbance of
a frame, it is possible to adjust the classification behavior either in the conservative
or progressive direction.

An overview of the proposed classification algorithm, consisting of the prewhitening
and classification stages, is shown in Figure 2.1, each stage with its associated signals
and notation.

2.1.2 Related Work

For quite a number of years, attempts have been made to detect and suppress
impulsive disturbances from wax cylinders, gramophone, and vinyl records. As a
consequence, a number of algorithms have been developed that are able to yield
high quality restored signals if their parameters are adjusted properly to a signal
at hand. Most of these algorithms consist of two steps: after detecting the affected
signal portions, impulses are removed by extrapolating the known signal surround-
ing the affected portions. Early detection schemes were typically based on first
enhancing impulsive elements in the input signal and then applying cleverly de-
vised threshold criteria to detect the individual disturbance impulses. Enhancing
impulsive elements in the input signal was, for example, based on high-frequency
pre-emphasis [50] or on subtracting the median filtered version from the input signal
[51]. Early interpolators consisted in replacing the damaged part of the signal with
silence or linear interpolation of the neighboring sample values [51]. Restoration
methods based on linear prediction, introduced in [118, 119, 120, 121], constituted
a big leap forward concerning the quality of restoration and are now state of the art
in commercially available solutions. More recent interpolation approaches based
on true linear prediction [59] or frequency-warped prediction achieve high audio
quality even for gap lengths of around 45 ms [60, 61]. Different approaches have
been developed that aim at improving the impulse detection accuracy on the one
hand, and the replacement of affected samples on the other hand. E.g., the two-

1The presented classification algorithm that works with 1 s frames is not a replacement for
detection stages working on the sample-by-sample level that are part of typical impulse restoration
algorithms.
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channel approach proposed in [122] gains advantage from using two signals obtained
with a stereo replay cartridge, compared to only single-channel processing. Other
recent methods use bidirectional processing [53] or click templates [55] to increase
the detection accuracy. In [56, 57, 58] detection (and interpolation) schemes based
on machine learning techniques have been proposed. Detection methods that are
based on the Bayesian philosophy, developed in [39], are shown to have advantages
in critical applications but with high computational requirements.

In recent years, classification algorithms based on deep learning have shown remark-
able results for a variety of audio signal processing tasks, e.g., audio tagging [123],
or acoustic event detection [124]. In this paper, however, we use a traditional clas-
sifier, due to the fact that deep learning based approaches are known to often suffer
from limited generalization capabilities to unknown data and that their training
is computationally expensive. The proposed algorithm achieves high classification
performance with comparatively low computational requirements.

2.1.3 Paper Structure

The structure of this paper is as follows. In Section 2.2 the characteristics of the
signals to be processed are described. A thorough explanation of the proposed
classification algorithm is given in Section 2.3. To analyze the performance of the
proposed algorithm, the evaluation method and the results for a large number of
test signals are given in Section 2.4.

2.2 Signal Model

In the context of audio restoration, disturbing impulses are usually assumed to be
localized degradations of the signal that are of short duration—ranging from 20 µs
to 4 ms [39], corresponding to about 1–200 samples at a typical sampling rate of
44 100 Hz. For wax cylinders, shellac or vinyl records, the disturbing impulses are
usually caused by scratches and dust particles in the grooves of the medium.

Depending on the severity of the damage, clicks can be assumed to be either additive
to the clean signal or—in the case of severe damage—fully replacing the original sig-
nal (cf., [39, p. 100]). In this article we will assume that the impulsive disturbances
are additive, i.e.,

x[n] = s[n] + d[n] for 0 ≤ n < L, (2.1)

with the sample index n, L the length of the signals, the disturbed signal x[n], the
clean (unobservable) signal s[n] and the sparse disturbance d[n] (with d[n] = 0 for
most n).

To evaluate the proposed algorithm and to determine optimum model parameters
we use artificial disturbances. This has the major advantage of obtaining a fully
controlled environment—i.e., the location of the clicks and the SNR of the disturbed
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sification stages are shown with associated signal notation, block and frame
lengths.



34 classification of impulsive disturbances

signal are known. Furthermore, our preliminary experiments have shown that the
manual annotation of real-world signals is too time-consuming to be feasible for
large amounts of audio recordings and the obtained accuracy is not sufficient to
yield meaningful evaluation results. In addition, it is very difficult to obtain a
recording of a real impulsive disturbance signal, without any desired signal, that
can be used as an additive disturbance. This is due to the fact that real recordings
of, e.g., the blank groove of a vinyl record, always contain additional disturbances,
for example hiss or low frequency mains hum. On the one hand, processing such a
real recording to remove everything except the impulsive disturbances would lead to
a change in the waveform of the impulses, for example caused by the response of the
hum removal filter. On the other hand, using the unprocessed recording, including
hiss and hum, makes it very difficult to properly set the SNR of the artificially
disturbed signals to allow for a precise evaluation. However, we have found in
informal experiments that the performance of autoregressive (AR) model based
impulse restoration algorithms when used with signals containing these artificial
disturbances is comparable to the performance for real disturbed signals. For the
reasons explained above, we did not include signals containing real disturbances in
the evaluation. However, on the website that accompanies the manuscript [111] we
demonstrate the performance of the proposed classification algorithm when used
with real disturbances (i.e., the recording of blank grooves of shellac and vinyl
discs).

In Section 2.2.1 the used model for the artificially generated disturbances will be
reviewed, while in Section 2.2.2 two ways to set the SNR will be discussed.

2.2.1 Artificial Impulsive Disturbance Generation

Impulsive disturbances are often modeled in a probabilistic way as the output of
a filter that is excited by amplitude-modulated impulses with random time of oc-
currence (see [38]). Different distributions for the time between impulses and for
their amplitudes can be used. To generate the artificial impulsive disturbances we
used a method based on [125, Sec. 3.1]. The underlying probabilistic process and
its parameters were selected to fit real-world disturbed signals. More specifically,
the inter-occurrence time τ (in samples) of the impulses is modeled with a gamma
distribution, i.e.,

f(τ ; k,Θ) =
1

Θk · Γ(k)
· τk−1e−

τ
Θ

for τ > 0 and k, Θ > 0, (2.2)
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with shape parameter k, scale parameter Θ and Γ(·) the gamma function (see
[126]). The magnitude A of the impulses is modeled with a log-normal distribu-
tion, i.e.,

f(A;µ, σ) =
1

Aσ
√

2π
exp

(
− (ln(A)− µ)

2

2σ2

)
for A > 0 and σ > 0, (2.3)

with location parameter µ, scale parameter σ and ln(·) the natural logarithm.

The impulsive disturbance signal is constructed by first placing unit impulses with
inter-occurrence times according to the gamma distribution in Equation (2.2). The
individual impulses are scaled according to the log-normal distribution in Equation
(2.3) and multiplied by 1 or −1 with equal probability. To take the response of the
pickup system and variations in the click-generation process into account, this inter-
mediate signal is then filtered with a third-order Butterworth low-pass filter with
time-varying cut-off frequency. Each block of 25 ms is filtered with a random cut-
off frequency according to a uniform distribution between ≈ 2.2 kHz and ≈ 11 kHz.
For simplicity, we did not model the duration of the impulses explicitly as in [125].
Besides, the application of the low-pass filter leads to a varying duration of the gen-
erated impulses as the length of the filter’s impulse response changes in dependence
on its cut-off frequency.

2.2.2 Two SNR Concepts

Since the disturbance signal is modeled as localized impulses with gaps between
occurrences, defining an appropriate measure rating the perceptual amount of dis-
turbance is not straightforward. Obviously, the average magnitude of the distur-
bance impulses comes into consideration as a signal sounds more disturbed as the
disturbance gets louder. However, in practice the interval between impulses, i.e.,
the impulse density, is a second characteristic of the disturbance signal that is at
least of equal importance. This is motivated by the fact that a large proportion of
typical vinyl and shellac degradations are caused by dust and dirt particles in the
grooves of the disc. The size of these particles (corresponding to the energy of the
impulses) can be expected to change only little [127] compared to the number of
dust particles (corresponding to the impulse density) that are distributed on the
disc surface.

For this reason, throughout the article, we will consider two ways to set the SNR,
either by adjusting the gain of the disturbance signal, or by adjusting the impulse
density. In the first case, the disturbance signal is generated with the default pa-
rameters given in [125] (see Table 2.1), where only the gain is adjusted to obtain
the desired SNR. In the second case, the scale parameter of the gamma distribu-
tion in Equation (2.2) is adjusted to obtain the desired SNR. Changing the scale
parameter has the effect of changing the average time between impulses. Signals
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Table 2.1: Default parameters of the impulsive disturbance generation method from [125].
The values related to the inter-occurrence time hold for a sampling rate of
fs = 44 100 Hz.

Parameter

Symbol Description Value

Gamma distribution
(inter-occurrence time)

k Shape 0.2

Θ Scale 2 433.8

Log-normal distribution
(impulse magnitude)

µ Location −3.63

σ Scale 0.74

demonstrating the two characteristics of the disturbances are available online on
the website accompanying this article [111].

2.2.2.1 SNR via Gain Factor

In this case the default disturbance signal, ddef[n], generated with the default pa-
rameters from [125], is scaled with a gain factor, i.e.,

d[n] = ddef[n] ·

√√√√ ∑L−1
i=0 s2[i]∑L−1
i=0 d2

def[i]
· 10−SNR/20,

and added to the clean signal s[n].

2.2.2.2 SNR via Impulse Density

Setting the desired SNR via the impulse density is based on an iterative approach.
First, the scaling factor is determined for the default disturbance signal to yield an
SNR of SNRdef = 30 dB, as informal listening tests have shown that this represents a
medium disturbance, corresponding well with real-world audio material, i.e.,

fscale =

√√√√ ∑L−1
i=0 s2[i]∑L−1
i=0 d2

def[i]
· 10−SNRdef/20.

Second, the scale parameter Θ of the gamma distribution in Equation (2.2) that
corresponds to the desired SNR is determined in an iterative manner.
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If the SNR is too small, the scale parameter is increased, leading to a higher mean
inter-impulse time. If the SNR is too large, the scale parameter is reduced, lowering
the mean inter-impulse time. This iteration is repeated until the deviation from
the desired SNR is smaller than ∆SNR = 0.1 dB. The appendix at the end of this
paper contains a table of the mean shape parameters required to obtain different
SNRs.

2.3 Classification Algorithm

The complete impulsive disturbance classification algorithm is shown in Figure 2.2.
In the training stage a model is trained based on artificially disturbed data to distin-
guish between clean and disturbed one-second long input frames using a supervised
learning approach. To enhance impulses in the input signal the signal is prewhitened
in a first step (cf., Section 2.3.1). To do so, much shorter block lengths are used
in the order of 23 ms. From the prewhitened signal, a number of features are com-
puted that have been selected to efficiently separate between the two classes clean
and disturbed (cf., Section 2.3.2). Using these features as input data, a classifier is
trained to determine the class of each frame of the input signal (cf., Section 2.3.3).
In an application scenario, the resulting classification model is then used to classify
whether the frames of an unknown input signal contain impulsive disturbances or
not. The output of this model is not a hard binary decision but rather a probability
for each frame to belong to the clean and disturbed class, respectively. This can be
viewed as a confidence measure and is important information that in principle allows
for deciding about the overall desired behavior of the classification algorithm: One
option is to decide for a conservative strategy, which would be to classify frames
to be disturbed only if the disturbance probability is very high. Another option
is to reduce the number of missed impulses and accept a certain number of false
alarms by classifying frames to be disturbed even if the disturbance probability is
comparatively low. In conjunction with an impulse restoration algorithm, it is then
possible to choose a compromise between removing all impulsive disturbances and
accepting a certain amount of desired signal degradation or rather avoiding desired
signal degradation with the risk of leaving some impulsive disturbances unremoved.
In our experiments the threshold for assuming a frame to be disturbed is set to 0.5,
making no assumptions about preferred weighting of the classes, to allow for an
evaluation as general as possible.

2.3.1 Prewhitening

In many cases impulsive disturbances are audible even if their amplitude is very
low. As a consequence, it may be a difficult task to automatically find impulses
in the input signal. Therefore, existing approaches for impulse detection employ
different types of prewhitening to make the disturbing impulses stand out from the
desired signal (see, e.g., [38, Ch. 13]). The most common type of prewhitening
is to use the prediction error signal of a linear predictor, which is briefly reviewed
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Figure 2.2: Flow diagram of the impulsive disturbance classification system.

in Section 2.3.1.1. However, since for impulsive disturbance classification we found
that prewhitening based on linear prediction performs only suboptimally (see the
evaluation results in Section 2.4.4.1), we also investigated phase-only transform
(PHOT) prewhitening, which is described in Section 2.3.1.2.

2.3.1.1 Prediction Error of a Linear Predictor

The use of the prediction error of a linear predictor has proven to be an effective
prewhitening step to reduce the energy of the desired signal s[n] and make the
disturbance stand out more clearly [52, 119, 128].

In forward linear prediction (see, e.g., [70]) the current sample is modeled as a linear
combination of previous samples, i.e.,

x̂[n] = −
PLP∑
i=1

a[i]x[n− i] + e[n], (2.4)

where x̂[n] is an approximation of x[n], e[n] is the prediction error, a[i] are the
predictor coefficients and PLP is the prediction order. The predictor coefficients
for the pth input signal block of length N are determined by minimizing the least
squares prediction error:

E(p) =
1

N

N−1∑
i=0

(e[i+ pN ])
2

=
1

N

N−1∑
i=0

(x[i+ pN ]− x̂[i+ pN ])
2
,
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where the superscript •(p) denotes values of the pth block (of length N) of the input
signal. The block length N is typically chosen to correspond to a block length in
the order of 23 ms because of the assumed short-time stationarity of the desired
signal.

Depending on the prediction order and the block length, slowly-varying determinis-
tic elements can be predicted with high accuracy, compared to stochastic elements
and quickly changing parts of the signal. This has the desired effect of reducing the
energy of the desired signal and thus enhancing the impulsive disturbances in the
prediction error signal.

2.3.1.2 Phase Only Transform

The phase only transform (PHOT), also known as the phase transform (PHAT), has
been successfully employed to increase the robustness of sound source localization
systems in noisy and reverberant environments [129, 130] and for surface defect
detection in images [131]. It is computed for the pth block of the input signal x
defined in Equation (2.1) as follows:

X(p)[k] =

N−1∑
i=0

x[i+ pN ] · e−j2πki/N (2.5a)

X
(p)
PHOT[k] =

X(p)[k]∣∣X(p)[k]
∣∣ (2.5b)

xPHOT[n+ pN ] =
1

N

N−1∑
i=0

X
(p)
PHOT[i] · ej2πni/N (2.5c)

with N both the DFT length and block length. The PHOT of the full-length
input signal x is computed by using a weighted overlap-add method as described in
[69].

The reason why the PHOT enhances transients can be illustrated intuitively. The
spectral magnitude of music signals usually decays with higher frequencies [132]—
Figure 2.3 shows the mean power spectral density of music signals from several
decades of the 20th century. The PHOT in Equation (2.5) can be interpreted as
filtering the input signal with a filter that emphasizes high-frequency content of the
signal:

H[k] =
1

|X[k]| .

As impulsive disturbances usually contain much more high-frequency energy than
the target audio signal, the effect of this filter is a relative enhancement of the
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Figure 2.3: Mean power spectral density of music signals from several decades of the 20th
century. This figure has been generated from the database described in Section
2.4.1. The PSDs were estimated using the Welch method and were normalized
such that the overall maximum value is 0 dB. The PSD axis is clipped at
−40 dB for reasons of clarity.

impulses compared to the audio signal. A more thorough examination of why the
phase only transform makes irregularities stand out is given in [131].

2.3.2 Feature Computation

After prewhitening the signals (using the prediction error of a linear predictor or the
PHOT), the features are computed for each frame of the prewhitened signal:

x(q)
pre[n] = xpre[n+ qM ] for 0 ≤ n < M,

with M the frame length of the feature computation. •(q) denotes values of the qth
frame (of length M) of the prewhitened signal. As mentioned before, we use frames
of 1 s duration, corresponding to a frame length of M = 44 100 samples at a sampling
rate of fs = 44 100 Hz. Informal analyses have shown that this choice represents a
good compromise between classification accuracy and time resolution.

To make the feature values independent of the energy the input frames are normal-
ized. To reduce the influence of potentially existing impulses on the level scaling,
this is done in a robust way using the 5 %-truncated standard deviation [133]:
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x′(q)pre [n] = x(q)
pre[n]/σ

x
(q)
pre, 5%

,

where σ
x

(q)
pre, 5%

is the standard deviation of x
(q)
pre whose 5 % smallest and greatest

elements have been removed. By using the truncated standard deviation instead
of the regular standard deviation, the salience of impulses possibly contained in
a frame is not reduced by the normalization which is desirable to allow for good
separability between clean and disturbed input frames.

For classification we have considered a variety of features (see Section 2.A.2). Using
recursive feature elimination [134], we found that good performance can be achieved
using the crest factor, i.e.,

C(q) =

max
0≤i<M

∣∣∣x′(q)pre [n]
∣∣∣√

1
M

∑M−1
i=0

(
x
′(q)
pre [i]

)2
, (2.6)

and the sample kurtosis,

Kurt(q) =

1
M

∑M−1
i=0

(
x
′(q)
pre [i]− x′(q)pre

)4

(
1
M

∑M−1
i=0

(
x
′(q)
pre [i]− x′(q)pre

)2
)2 , (2.7)

which are both relatively easy to compute.

2.3.3 Classifier Training

After computing the features as described in the previous section, they are used to
train a binary classifier that labels each input frame either as clean or disturbed.
The training happens in form of a supervised learning approach, using artificially
disturbed signals (cf., Section 2.2.1) and the corresponding information whether a
frame contains impulsive disturbances or not as training labels. As classifiers we
considered L2-regularized logistic regression and a support vector machine (SVM)
with radial basis function kernels, both in the implementation from [135]. The
optimal hyperparameters (amount of regularization for logistic regression and SVM
and kernel coefficient for SVM) were determined via 5-fold cross-validation [136].
Depending on the specific evaluation goal (cf., Section 2.4.4) either the complete
data set was used for training and testing or the available data was split into training
and test subsets. Details will be given in the respective sections.

2.4 Evaluation Method & Results

To determine the classification performance of the developed algorithm and to find
optimum values for its parameters we use an evaluation based on a database of test
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signals and different error measures. In a first experiment, cf., Section 2.4.4.1, we
optimize the parameters of the prewhitening stage, i.e., block length N , and predic-
tion order PLP for the linear predictor, and investigate the classification performance
for different classifiers. In a second experiment, cf., Section 2.4.4.2, we analyze the
classification performance, based on the optimized parameters, for a large database
of signals unknown to the classification algorithm. A third experiment, cf., Sec-
tion 2.4.4.3, investigates the audio quality improvement of three existing impulse
restoration algorithms. The aim of that section is to assess the ability of these
restoration algorithms to deal with a wide variety of input signals when no indi-
vidual parameter adjustment is performed. A final fourth experiment investigates
the audio quality improvement that is obtained when using the classification algo-
rithm in conjunction with a standard impulse restoration algorithm based on an
AR model of the clean signal [39, Ch. 5]. In all cases, the tests are performed for
different SNRs and both SNR concepts. The frame length for feature computation
is set to M = 44 100 samples, corresponding to a frame duration of 1 s at the used
sampling rate of fs = 44 100 Hz.

In Section 2.4.1 we describe the database of test signals. After that, Section 2.4.2
presents different error measures that are used to rate the classification performance
in the first two experiments on the one hand and the perceptual audio quality
improvement obtained in the third and fourth experiments on the other hand. In
Section 2.4.3 we briefly describe the three reference impulse restoration algorithms
that are used for the evaluation. Section 2.4.4, finally, presents and discusses the
results of the four experiments.

2.4.1 Test Signals

For the development and evaluation of the classification algorithm, we used a
database of clean music recordings [137] that contains 20 recordings from each of the
years 1955−−1985, resulting in 620 clean signals. This time span was chosen since
this is the main targeted period of application for the impulsive disturbance clas-
sification algorithm. Before around 1955 most commercial music recordings were
distributed on wax cylinders or shellac discs, and thus can be assumed to generally
contain impulsive disturbances. In contrast, recordings that have been produced
after around 1985 are available in digital format and can be assumed impulsive
disturbance-free. Starting at the end of the 1940s, magnetic tape recordings gained
widespread popularity and coexisted with the hill-and-dale recording technologies
for several decades, until the introduction of digital recording and the compact disc
(cf., e.g., [4]). As a consequence, no assumptions concerning impulsive disturbances
can be made for recordings from this time span and we show that it is beneficial to
use an impulsive disturbance classifier.

Each test signal was a randomly selected 20 s long monaural segment of the cor-
responding recording from the clean music database. As the database consists of
two-channel CD recordings the monaural test signals were obtained by extracting
the left channels of the original recordings.
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As already mentioned, we used artificial additive disturbances that were generated
using the method described in Section 2.2. As we used four different SNRs plus
undisturbed signals (SNR =∞), and used the two SNR concepts explained above,
the overall amount of test data consisted of 620 · 5 · 2 = 6200 signals, corresponding
to an overall duration of 6200 · 20 s u 34 h. However, due to the random nature of
the disturbance signal generation, not all frames of the disturbance signal actually
contain disturbance impulses. This is caused by high inter-occurrence times between
the individual impulses which may exceed the frame length of 1 s. Therefore, all
frames from the disturbed class that did not contain any impulses were removed
from the training set to prevent two identical disturbance-free signal frames being
used for classifier training.

2.4.2 Error Measures

This section describes both the measures that are used to evaluate the classification
performance of the proposed algorithm and an instrumental measure to evaluate the
audio quality of three existing impulse restoration algorithms and also a full restora-
tion chain where only those frames that have been classified to contain impulsive
disturbances are processed by an impulse restoration algorithm.

2.4.2.1 Classification Performance

The performance of a classification system is typically rated based on three measures:
accuracy, precision and recall [138, 139]. The accuracy is simply the proportion of
correctly identified instances:

Accuracy =
TPos + TNeg

Pos + Neg
,

with TPos and TNeg the number of true positive and true negative instances,
respectively—in our context this translates to disturbance present & correctly classi-
fied as disturbed and no disturbance present & correctly classified as disturbance-free,
respectively. Pos and Neg are the overall number of positive (disturbed) and neg-
ative (clean) instances, respectively. In our context, an instance corresponds to a
frame of the input signal, and all frames of all test signals considered in each exper-
iment are combined to determine the values of TPos, TNeg, Pos and Neg.

If the classes (clean and disturbed) are skewed, i.e., the number of instances in each
class differ, the accuracy measure may not be very useful. The most extreme ex-
ample would be when all instances are disturbed. In that case, a classifier always
assuming an instance to be disturbed will yield an accuracy of 100%. Obviously,
such a classifier would perform very poorly in real-world scenarios as no clean in-
stance would be classified as such.
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Additional performance measures can be used that take the number of positive
(disturbed) and negative (clean) instances into account. The precision specifies the
number of disturbed instances compared to the number of instances assumed to be
disturbed:

Precision =
TPos

TPos + FPos
,

with FPos the number of undisturbed instances erroneously assumed to be disturbed
(false alarm). The recall value is the proportion of disturbed instances that have
been classified as disturbed:

Recall =
TPos

Pos
.

2.4.2.2 Instrumental Measures for Audio Quality

In order to rate the quality improvement of existing impulse restoration algorithms
and also to determine the benefit of the proposed impulsive disturbance classifica-
tion algorithm when integrating it with an impulse restoration algorithm, we will
rate the perceived audio quality of the processed signal using an intrusive instru-
mental audio quality measure. In this context, “intrusive” means that the quality
is determined by computing a similarity measure between the processed signal and
a (clean) reference signal. More specifically, the instrumental measure used in this
article is the “Perceptual Evaluation of Audio Quality” (PEAQ) measure [108, 109,
110]. It yields a so-called Objective Difference Grade (ODG) describing the percep-
tual difference to a reference signal that ranges from −4 (“very annoying”) to 0
(“imperceptible”), cf., Table 2.2.2

Although PEAQ was originally developed to assess artifacts of audio coders, we still
decided to use this measure to evaluate the performance of impulse restoration algo-
rithms, since this measure has also been used to evaluate other audio enhancement
algorithms [85] and informal listening experiments showed that the obtained ODG
scores generally correspond well with subjective auditory impression (cf., demon-
stration signals on the website accompanying this article [111]).

2.4.3 Reference Impulse Restoration Algorithms

One reasonable application of the proposed impulsive disturbance classification al-
gorithm is in combination with an impulse restoration algorithm. A straightforward
way to make automatic restoration possible without compromising the quality of

2As the PEAQ algorithm requires its input signals to have a sampling rate of 48 kHz, the
processed and reference signals were resampled accordingly before running the PEAQ algorithm.
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Table 2.2: The ODG scale.

ODG Impairment Description

0 Imperceptible

-1 Perceptible but not annoying

-2 Slightly annoying

-3 Annoying

-4 Very annoying

undisturbed signal portions is to only process those 1 s frames of the input signal
with an impulse restoration algorithm that have been classified to contain impulsive
disturbances. These processed frames can be concatenated with undisturbed, un-
processed frames. To do so, of course, possible processing delay of the restoration
algorithm has to be taken into account.

We use three impulse restoration algorithms for reference. All of them are based
on an AR model of the clean signal for impulse detection and interpolation [39, Ch.
5]:

• LSAR – A standard least squares AR algorithm that combines the AR model
with a sinusoidal model for the input signal to increase the detection and inter-
polation performance [39, Ch. 5.2.3.2]. In addition, the AR model parameters
and clean signal are estimated iteratively [39, Ch. 5.3.1] as informal listening
tests have shown that the achieved restoration quality benefits greatly from
doing so. We use this algorithm in the implementation and with parameter
values from [62].

• DT-LSAR – An impulse restoration algorithm that uses an improved detec-
tion stage by using a double-threshold based approach [140]. Specifically, the
algorithm is able to merge closely spaced impulses and processes each block
of the input signal multiple times to reduce the number of missed disturbance
impulses.

• Auto-LSAR – A recently published algorithm that incorporates ideas from
[140] and is reported to achieve good restoration performance for a wide range
of input material without manual parameter adjustment [141].

2.4.4 Results

In this section we present results of four experiments to determine the optimum
prewhitening, the classification performance of the proposed algorithm with un-
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known signals, the restoration performance of the three reference impulse restora-
tion algorithms with no parameter adjustment, and the perceptual audio quality
improvement of a fully automatic impulsive disturbance restoration chain.

2.4.4.1 Optimum Prewhitening

It is expected that the prewhitening method and the prewhitening parameters (e.g.,
block length N , prediction order PLP) have a major influence on the performance
of the classification algorithm. Based on a subset of 31 clean signals (one randomly
selected from each year, cf., Section 2.4.1) from the signal database, the disturbed
signals were generated with SNRs ranging from 20 dB to 50 dB, using both SNR
concepts. As mentioned above, those frames from the disturbed class that, due to
the random nature of the disturbance signal generation, did not contain any im-
pulses were removed from the corrupted class of the data set. The classification
algorithm was trained per condition, i.e., per combination of block length N , choice
of prewhitening (none, PHOT or linear prediction), classifier (logistic regression or
SVM), SNR concept and, for prewhitening based on linear prediction, also predic-
tion order PLP. For each condition, 31 · 20 = 620 clean frames were used with an
equal number of disturbed frames that were randomly selected from the available
31 · 4 · 20 = 2480 frames. This was done in order to find an optimal prewhiten-
ing working well both at high and low SNR conditions. We did not use separate
training and test data sets as the aim was to determine the specific prewhitening
that allows for the best classification performance for all data; in this experiment
we were not interested in the generalization performance of the classification algo-
rithm, i.e., how accurately it classifies unknown data. In this section we will rate
the classification quality solely based on the accuracy. Despite what was said about
the disadvantages of the accuracy measure in Section 2.4.2.1, these results are still
meaningful as we selected an equal number of clean and disturbed instances for
our experiments. The fraction of disturbed frames in an actual archive restoration
application scenario may differ from our assumptions, but as we were not able to
find more detailed information on this topic, we think that this approach allows for
an evaluation as general as possible.

Figure 2.4 shows the classification accuracy for several prewhitening algorithms, for
different classifiers and for both SNR concepts. The accuracy values are averaged
over all SNRs per condition. The two columns of Figure 2.4 contain the results
for the two SNR concepts. The results for prewhitening based on linear predic-
tion are those obtained with the optimum prediction order PLP. The optimum
prediction order was determined beforehand as that PLP that allows for the high-
est accuracy, individually for each block length N . As can be observed the choice
of classifier seems to be of minor importance, as the curves for logistic regression
and SVM lie almost on top of each other. However, the choice of prewhitening
has a large influence on the classification performance. Although employing no
prewhitening at all allows for a classification accuracy that is above chance level,
the use of linear prediction and PHOT yields a much better classification accu-
racy, with PHOT clearly outperforming linear prediction. Figure 2.4 shows that
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Figure 2.4: Classification accuracy for all analyzed types of prewhitening with varying
block lengths. The two figures show classification results averaged over all
SNRs (20, 30, 40, and 50 dB). For the linear predictor, for each block length
the optimum prediction order was selected. To enhance the clarity, plots have
been separated in terms of the SNR concept. The length of the error bars is
twice the standard deviation of the five cross-validation runs.

the achieved overall accuracy is higher if the SNR is set by modifying the impulse
density (cf., Section 2.2.2.2). This is plausible as the amplitude—which corresponds
to the detectability—remains the same independent of the SNR. Although there
is no clear optimum choice for all conditions, we chose the combination of PHOT
prewhitening with a block length of N = 1024 samples and the logistic regression
classifier for all further experiments.

2.4.4.2 Classification Performance in Dependence on the SNR

Using the optimal prewhitening parameters determined in the previous section we
evaluate the classification performance of the proposed algorithm using the com-
plete test signal database based on 620 clean recordings. As in the last experiment,
the disturbed signals were obtained using artificial disturbances, SNRs of 20 dB to
50 dB using both SNR concepts. Only those frames of the disturbed class that actu-
ally contain any impulses are used for training, supplemented by an equal number
of clean signal frames. To determine the generalization capabilities of the classifier,
the available data was split into training and test sets, comprising 60% and 40%
of the data, respectively. Classifier training and hyperparameter optimization was
performed with only the training data as described in Section 2.3.3. The classifica-
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Table 2.3: Classification performance in dependence on the SNR. All accuracy, precision
and recall values are in percent.

SNR Concept

Gain Impulse Density

SNR Accuracy Precision Recall Accuracy Precision Recall

20 dB 93.2 88.7 99.1 92.2 88.4 97.1

30 dB 85.9 86.9 84.4 86 87 84.6

40 dB 66 77.9 44.7 68.2 75.5 46.3

50 dB 53.1 59.9 19 76.1 33.8 27.8

tion performance was then evaluated based only on the test data. Table 2.3 lists the
classification error measures in dependence on the SNR and the SNR concept.

As expected, the classification performance improves as the SNR decreases; at an
SNR of 20 dB approximately 92% of all frames are classified correctly (“Accuracy”
columns in Table 2.3). At an SNR of 40 dB the accuracy decreases to ≈ 67%,
however note the precision and recall values: The recall value drops to ≈ 45% for
both SNR concepts whereas the precision value indicates that ≈ 76%− 78% of the
frames that have been classified to be disturbed actually contain impulses. The
relatively low recall values in high SNR scenarios will in many cases not pose a
severe problem as the disturbance is inaudible anyway (compare the demonstration
signals on the article website). Furthermore, the classification performance is similar
for both SNR concepts except at 50 dB.

2.4.4.3 Impulse Reduction Performance of Existing Restoration Algorithms

The goal of this section is to determine a baseline for the performance of existing
impulse restoration algorithms when used with very diverse audio material in an
automatic manner, i.e., with no parameter adjustment. Therefore, we processed
our test signal database (cf., Section 2.4.1) with the LSAR, DT-LSAR and Auto-
LSAR algorithms (cf., Section 2.4.3) and rated the restoration capabilities in terms
of the perceptual quality of the restored signal. As described in Section 2.4.2.2 the
perceived quality is determined using an instrumental measure, namely the PEAQ
algorithm. This algorithm compares two signals, the reference and the test signal,
and computes a single number, indicating the perceptual similarity of both. The
results were obtained using the clean signal for reference.

The box plots [142] in Figure 2.5 display the distribution of the ODG scores obtained
using PEAQ: The lower and upper edges of each box correspond to the first and third
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Figure 2.5: Results of the instrumental audio quality evaluation of the three impulse
restoration algorithms described in Section 2.4.3. The ODG scores were ob-
tained with the PEAQ algorithm, and for each SNR concept (“Gain” or “Im-
pulse Density”) and SNR all 620 signals from the test signal database were used.
The reference signal for the PEAQ algorithm is the clean signal in all cases. The
leftmost boxes (“None”) represent the results for the disturbed signal that has
not been processed by a restoration algorithm, the other boxes (“LSAR,” “DT-
LSAR,” and “Auto-LSAR”) represent the results obtained when the complete
signal is processed by the respective restoration algorithm. Refer to Section
2.4.4.3 for the interpretation of this box plot.

quartiles of the data, respectively. Consequently, the height of each box represents
the inter-quartile range (IQR). The horizontal line inside each box represents the
median value and the lines extending vertically from each box indicate the smallest
and largest data point, respectively, that is still within 1.5 · IQR distance from the
lower, or upper, edge of the box, respectively. All data outside of this interval are
considered outliers and represented by dots.

As can be seen in the figure, considering the leftmost group (“None”) which repre-
sents the results for the unrestored, disturbed input signals, the perceptual audio
quality is severely impaired by impulsive disturbances at low SNRs (compare Ta-
ble 2.2). For SNRs above 40 dB the ODG attains median scores around zero, indi-
cating mostly unnoticeable signal quality degradation. For most SNRs, a number of
outliers extend to low ODG scores around −4. Informal listening tests have shown
that these results correspond to test signals whose desired signal exhibits certain
peculiarities. For example, low ODG scores for unprocessed signals at SNRs of
40 dB and 50 dB are caused by signals that have very low high-frequency content or



50 classification of impulsive disturbances

that contain very quiet sections. In both cases, even soft impulses are perceptually
striking, resulting in low ODG scores.

Higher ODG scores for the signals processed by the impulse restoration algorithms
(“LSAR,” “DT-LSAR,” and “Auto-LSAR”) compared to the disturbed signals:
(“None”) for SNR values of 20 dB and 30 dB indicate that impulse restoration pro-
cessing leads to an improvement of audio quality for heavily disturbed signals. For
severe degradations at an SNR of 20 dB and especially for the SNR concept “Gain”
the “DT-LSAR” algorithm yields a severe increase in audio quality, outperforming
the other two algorithms. This is likely to be caused by its improved detection stage
featuring less missed detections (compare [140]). The “LSAR” algorithm yields less
quality improvement for very low SNRs, but is able to increase the audio quality up
to an SNR of 40 dB. However, note that for SNRs above 40 dB the uninformed pro-
cessing with any of the evaluated impulse restoration algorithms leads to a median
decrease in quality, compared to the unprocessed input signal. This is especially
evident in the results for undisturbed signals (represented here with an SNR of
∞dB). This observation suggests that in these cases all three impulse restoration
algorithms produce a high number of erroneous detections, with the consequence of
removing parts of the desired signal.

2.4.4.4 Restoration Performance with the Classification Algorithm

The last experiment evaluates the gain in audio quality that can be obtained when
combining the presented impulsive disturbance classification algorithm with the
LSAR impulse restoration algorithm. We decided to use the LSAR algorithm for
this experiment as the results in Figure 2.5 indicate that the LSAR algorithm, of
all three analyzed impulse restoration algorithms, performs best when used with
a wide variety of input signals. The improvement in perceived audio quality, as
in the last section, is determined via the PEAQ algorithm, using the clean signal
for reference. Figure 2.6 shows three groups of data, subdivided by the type of
impulse restoration processing: “None,” “Classified,” and “All”. The first group,
“None”, represents the ODG scores for the disturbed, unprocessed input signal. The
“All” group displays the ODG scores for the signals with all frames processed with
the LSAR impulse restoration algorithm and corresponds to the “LSAR” boxes in
Figure 2.5.3 The “Classified” group represents the results obtained for signals where
only frames indicated by the classifier to actually contain impulsive disturbances
were processed by the restoration algorithm. The “Classified” group in the figure
reveals that for SNR values of ≥40 dB the ODG benefits from the application of the
impulsive disturbance classification algorithm, saving (mostly) clean signal frames
from being distorted by the impulse restoration algorithm. The ODG scores in
these cases are significantly higher than the scores of the fully processed signals,
becoming more evident with increasing SNR values and yielding the largest gains
with clean signals. For low SNR values, the application of the impulsive disturbance
classification algorithm has practically no drawbacks as the classification accuracy

3However, note that in this section, only the 248 signals from the test set were used for the
evaluation, while all 620 test signals were used in the last section.
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accuracy |precision |recall (rounded, in %):
93|89|99 86|87|84 66|78|45 53|60|19 87|0|0

accuracy |precision |recall (rounded, in %):
92|88|97 86|87|85 68|75|46 76|34|28 87|0|0
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Figure 2.6: Results of the instrumental audio quality evaluation of the full restoration
processing chain. The ODG scores were obtained with the PEAQ algorithm,
and for each SNR concept (“Gain” or “Impulse Density”), SNR and type of
processing only the 248 signals from the test set, previously unknown to the
classification algorithm, were used. The reference signal for the PEAQ algo-
rithm is the clean signal in all cases. The leftmost boxes (processing “None”)
represent the results for the disturbed signal which has not been processed by
the restoration algorithm, the rightmost box (“All”) represent the results ob-
tained when all frames of the signal are processed by the restoration algorithm.
The middle boxes (“Classified”) show the results with the classification algo-
rithm applied: only the frames classified to contain impulsive disturbances are
processed by the restoration algorithm. The tables on the bottom of the figure
copy the classification performance measures from Table 2.3 for convenience.

is very high in these cases—compare the classification performance measures in
the bottom of the plot. Hence, for SNRs of 20 dB and 30 dB almost all frames
are correctly classified to contain impulsive disturbances, yielding almost identical
results to the fully processed signals.

In summary, we find that for signals that only contain marginal disturbances or
that are completely clean, the presented impulsive disturbance classification algo-
rithm shows its main improvement: Prevent clean signals from being processed
unnecessarily and avoid a reduction of audio quality.
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2.5 Conclusions

In this article we presented a novel classification algorithm to automatically de-
termine whether an audio recording contains impulsive disturbances or not. The
proposed algorithm is based on a supervised learning approach. Using a large clean
music database and artificially generated but plausible disturbances we could show
that the algorithm is capable of classifying most audible disturbances correctly
while featuring a small false alarm rate. Compared to existing impulse detection
schemes, which exhibit a time resolution in the order of the sampling interval, our
approach yields classification results for input signal frames of 1 s duration. Hence,
it is able to take advantage from the additional information, however at the cost of
a decreased time resolution. Furthermore, our results show that prewhitening the
input signal by means of the phase only transform is an important step to increase
the detectability of disturbance impulses which can also be used as a detection
enhancement method for impulse restoration algorithms.

Based on an instrumental audio quality measure, we have presented evaluation re-
sults that suggest that well-known, AR model based impulse restoration algorithms
suffer from a significant number of false alarms, especially for high input SNRs.
Thus, it is important to determine whether a restoration is actually required. The
developed classification algorithm can be used in conjunction with legacy impulse
restoration algorithms to reduce the number of erroneous detection results and, as
a consequence, to increase the audio quality of the restored signal.

We conclude that the presented method constitutes a crucial step towards fully
automatic restoration of media archives.

The website accompanying the article [111] makes a number of disturbed and re-
stored signals available for listening, including their ODG scores.

2.A Appendix

2.a.1 Shape Parameter Values of the Gamma Distribution

The mean shape parameters of the gamma distribution, Θ̄, that are required to
obtain specific SNR values are given in Table 2.4, including the standard deviation
σΘ over all of the test signals. The standard deviation is zero for an SNR of 30 dB
because this is the default case and the standard parameters for the impulsive dis-
turbance generator are used for all signals. For all other SNRs, the shape parameter
depends on the individual clean input signals.
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Table 2.4: Mean and standard deviation of the shape parameter of the gamma distribution
for different SNRs.

SNR Θ̄ σΘ

20 dB 230 23

30 dB 2 434 0

40 dB 24 083 6 374

50 dB 227 976 99 481

(default)

2.a.2 List of Features

Table 2.5 lists all statistical measures that have been investigated as features of the

prewhitened and normalized signal x
′(q)
pre [n]. As described in Section 2.3.2, recursive

feature elimination was used to determine a set of two features that provide good
classification results while reducing the computational requirements.

For the computation of the crest factor with trimmed mean, Trimmeani%{·} is the
i% trimmed mean as described in [143, Ch. 3.3].
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Table 2.5: Features of the prewhitened signal that have been investigated.

Feature Computation

Crest factor See (2.6)
Crest factor – l% trimmed mean,

l ∈ {1, 2, 5, 10} (see [143, Ch. 3.3]) C
(q)
l%

=
max

0≤i<M

∣∣∣x′(q)pre [i]
∣∣∣√

Trimmeanl%

{(
x
′(q)
pre [n]

)2
}

Peak-to-Root-Median-Squared ratio PRMedS(q) =
max

0≤i<M

∣∣∣x′(q)pre [i]
∣∣∣√

Med

{(
x
′(q)
pre [n]

)2
}

Kurtosis See (2.7)

Kurtosis of absolute value Kurt
(q)
abs =

1
M

∑M−1
i=0

(∣∣∣x′(q)pre [i]
∣∣∣−∣∣∣x′(q)pre

∣∣∣)4

(
1
M

∑M−1
i=0

(∣∣∣x′(q)pre [i]
∣∣∣−∣∣∣x′(q)pre

∣∣∣)2)2

Skewness Skew(q) =

1
M

∑M−1
i=0

(
x
′(q)
pre [i]−x

′(q)
pre

)3

(
1
M

∑M−1
i=0

(
x
′(q)
pre [i]−x

′(q)
pre

)2)3/2

Sparseness (see [144]) Sparseness(q) =

√
M−

∑M−1
i=0

∣∣∣x′(q)pre [i]
∣∣∣/√∑M−1

i=0

(
x
′(q)
pre [i]

)2

√
M−1



3
DETECTION OF HUM DISTURBANCES

This article examines the automatic detection of low frequency additive
sinusoidal disturbances in audio signals, usually termed hum. We present
a method to automatically determine whether an audio signal contains
hum or not, and, if necessary, to determine its parameters – e.g., the
fundamental frequency and the number of harmonics. The developed
algorithm does not require a priori information, and we show its good
detection capabilities by an evaluation with artificial signals and real
recordings.

3.1 Introduction

Since the end of the 19th century, a large number of audio recordings have been
produced. Recording media vary from wax cylinders, shellac and vinyl discs, to
various tapes and photographic films to modern digital data storage. The types
of disturbances that degrade recordings are manifold, and there are digital signal
processing algorithms to reduce the audible artifacts, e.g., [39]. One very common
disturbance is hum. In contrast to clicks and crackles, hum disturbances can even be
found in modern (e.g., live) recordings and they cause several problems. Obviously,
the additive tonal signal can distract the listener. Furthermore, the strong tonal
components at low frequencies can cause amplifiers to unnecessarily drain huge
amounts of power or even overload loudspeakers. These low-frequency tones can
also affect dynamic processing devices such as compressors or noise gates since most
of these units rely on the broadband power of the input signal. The undesirable
low-frequency power might obscure the “true” dynamic of the content.

This chapter contains a copy of the article

M. Brandt, J. Bitzer, “Automatic Detection of Hum in Audio Signals,” Journal of the Audio
Engineering Society, vol. 62, no. 9, pp. 584–595 (2014 Oct.). https://doi.org/10.17743/jaes.
2014.0034

While the layout of the article has been adapted for a uniform presentation within this thesis, the
contents printed here are identical to those in the published article.
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Some specific algorithms to remove hum are commercially available. However, these
methods need manual adjustment. In this article we present a method to determine
the required parameters to enhance a signal without depending on user interaction.
Yet we will not be dealing with the removal of hum here but focus on that topic in
a subsequent article. A first overview of removal algorithms was already published
in [115], though. In order to control removal algorithms we need to know the
fundamental frequency of the hum and how many harmonics are present. These
parameters have to be estimated with the desired music signal as a non-stationary
disturbance that masks the hum signal.

In recent years some articles on related subjects have been published, although no
article could be found that deals with the specific complex problems of detecting
hum in music signals. For example, Grigoras [145] shows a method to estimate
the fundamental frequency in the context of forensic audio and how this electric
network frequency and its unique variations over time can be used to determine
when a recording was made and whether pieces have been cut out. Czyzewski
et al. [146] give a thorough description of a method to track the fundamental
frequency of a hum disturbance with high accuracy to use this information to remove
disturbances known as wow and flutter in older recordings. These methods do not
focus on the harmonics or the removal of hum. Liu and Chen [147] present a method
to estimate the amplitudes and phases of harmonics of power systems when the
fundamental frequency is known a priori. Unfortunately, this and other well-known
approaches to the related topic of fundamental frequency estimation in speech or
music signals (e.g., [87, 148]) do not represent a solution to our problem as they
address tracking the non-stationary foreground desired signal at positive signal-to-
noise-ratios (SNRs). In contrast, we aim at estimating the fundamental frequency
and harmonics of a very stable background disturbance with a strongly fluctuating
music signal in the foreground.

In this paper we present an extended and refined version of our hum detection
algorithm [149]. Furthermore, this article shows the algorithm in much more detail
and also contains a deeper analysis of parameters and evaluation results. The paper
is organized as follows: In Section 3.2 the disturbance, its cause, and its parameters
are explained in more detail and the applied signal model is introduced. Based
on this signal model we present an overview of the detection algorithm in Section
3.3. The algorithm is tested with artificially disturbed and real recordings, and the
evaluation method and results are described in Section 3.4. Finally, we end the
paper with some conclusions.

3.2 Problem Statement

During recording and/or copying processes of audio material, power line interference
(PLI) can cause the addition of one or more stationary sinusoidal tones to the desired
signal. This is often the case if audio signal lines are placed close to power cables
and with poorly designed or faulty electric circuits. Usually, the disturbing signal is
a harmonic tone complex with a fundamental frequency of approximately 50 Hz or
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Figure 3.1: Time signal (a) and spectrogram (b) of a music recording containing a hum
disturbance. In this example, showing an excerpt of a BBC recording of Elton
John’s “Sorry Seems to Be the Hardest Word” from 1976, the hum frequencies
are fhum ≈ [50 Hz, 150 Hz]. An exemplary section of 15 s, starting at 20 s and
ending at 35 s, is marked to illustrate the length of the moving window that is
used for analysis.

60 Hz – depending on the power line frequency used. Non-linearities in the signal
chain in many cases result in a number of additional harmonics. We model the
disturbed signal as

x(t) = s(t) +

Ntc−1∑
a=0

na(t), (3.1)

where x(t) is the disturbed recorded signal, s(t) is the unobservable clean signal,
Ntc is the number of tone complexes, and

na(t) = i(t)

Np,a∑
b=1

Ab sin([b ω0,a]t) (3.2)
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with

i(t) – a switch variable, indicating whether the

disturbance is present at time t or not

(i(t) ∈ {0, 1})
Np – the number of partial tones

Ab – the amplitude of each partial tone

ω0 – the fundamental frequency

are harmonic tone complexes forming the disturbance signal. Fig. 3.1 shows the
spectrogram of an exemplary live music recording that contains a hum disturbance.
In this case, the hum frequencies are approximately 50 Hz and 150 Hz.

In some cases, the overall disturbance may consist of several tone complexes (Ntc >
1) with different fundamentals. This can be the case, for example, when a recording
was made in the USA (on 60 Hz-powered machines) and copied in Europe (using
a power line frequency of 50 Hz). Fig. 3.2 shows power spectral densities of two
typical hum disturbances: Fig. 3.2 a) depicts the power spectral density of a hum
tone complex with a fundamental frequency of 60 Hz and a number of harmonics at
120 Hz, 180 Hz, 240 Hz, etc. In this example the power of the fundamental frequency
is lower than the power of the second harmonic, and the power of the harmonics
decreases with the frequency. Furthermore, the power of the even-numbered har-
monics is lower than the power of the odd-numbered harmonics. Fig. 3.2 b) shows
a phenomenon that may occur in practice: There are two hum tone complexes with
different fundamental frequencies ω0 (50 Hz and ≈ 58 Hz) and numbers of partial
tones Np.

Furthermore, irregular mechanical motion of media reproduction equipment can
lead to variations of the fundamental frequency during recording or playback (called
wow and flutter [150, 151, 152]). They are caused, for example, by an imprecisely
centered spindle hole on a record disc or by an inconstant angular velocity of a
capstan of a tape machine. In other cases, low running batteries of mobile recording
equipment may result in a monotonic change (increasing or decreasing, respectively,
depending on whether the mobile machine is used for recording or for playback) of
the fundamental frequency of the hum’s tone complex. However, these cases are
rare and are therefore not considered here. The algorithm though should be capable
of dealing with small fluctuations of the hum frequencies.

Since the number of audible partial tones is low, the range of the detection is
restricted to low frequencies. This fact distinguishes hum from buzz, as the latter
typically contains a high number of harmonics, resulting in a large frequency range
that is disturbed. The algorithm should be capable of detecting the individual
tones of a hum disturbance, not only the fundamental frequency, i.e., determining
the parameters ω, Ntc, Ab and Np,a in Eq. (3.2). This is especially important as
in many cases the fundamental frequency is missing, e.g., due to highpass filtering
during copying processes. Moreover, many of the existing hum removal algorithms
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Figure 3.2: Power spectral density of hum disturbances. a) Hum tone complex consists
of the fundamental frequency at ≈ 60 Hz and a number of (odd and even)
harmonics. b) Two harmonic tone complexes with a fundamental frequency
of 50 Hz and a tone complex with a fundamental frequency of approximately
58 Hz.
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require a determination of whether the fundamental frequency is present or not. If
no fundamental frequency is found it should be estimated, based on the detection of
one or more harmonics. Furthermore, the algorithm must be able to determine start
and end times of hum tones – this corresponds to estimating i(t) in Eq. (3.2) – to
avoid degradation of the desired clean signal by applying hum removal algorithms
to undisturbed sections of the audio material. The most negligible parameter is the
individual amplitude, since most removal algorithms are based on filtering out the
affected frequency completely.

3.3 The Detection Algorithm

The detection algorithm utilizes the presumed long-term stability of the hum. This
stability, in terms of power and frequency, is reflected in the signal model in Eq. (3.2)
since Ab and ω0 do not change over time. To detect stable tones, the basis of the
detector is to analyze rather long sections of the input signal (≈ 10 s. . . 30 s). The
basic principle of the detection algorithm is a statistic analysis of the shortterm
discrete Fourier transform (STDFT) of the input signal that is computed block-
wise. In order to reduce the computational complexity of the processing, the input
signal is sampled down to a sampling rate of fs = 2 kHz in a pre-processing step
that reduces the bandwidth to 1 kHz. To avoid aliasing effects we applied a 100th

order linear-phase FIR low-pass filter beforehand with a cut-off frequency of 900 Hz.
This bandwidth reduction does not pose a problem since most hum tone complexes
have decayed up to 1 kHz. For the block-based processing, the short-term power
spectral densities of the input signal are computed by first obtaining overlapping
blocks of length Lb from the input signal. Block p is defined as1

x(p)[k] = x[p · Lf + k], k = 0, . . . , Lb − 1, (3.3)

where p and k are block and sample indices, respectively, and Lf is the length of the
block-feed. With the discrete Fourier transform (DFT) of each signal block

X(p)[n] =

Lb−1∑
k=0

x(p)[k] · e−2πj k·nLb (3.4)

a block-wise power spectral density (PSD) estimate is obtained by first-order recur-
sive smoothing of the blocks’ periodograms (see, e.g., [153, p. 147]):

P̂ (p)
xx [n] = α · P̂ (p−1)

xx [n] + (1− α) ·
∣∣∣X(p)[n]

∣∣∣2. (3.5)

In Eq. (3.4) and Eq. (3.5), n is the frequency index of the DFT. In Eq. (3.5),
0 ≤ α < 1 is a factor that adjusts the amount of averaging of the recursive smooth-
ing.

1We denote a vector, be it in time or frequency domain, associated with a certain block p by
x(p)[k] or X(p)[n], respectively.
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Figure 3.3: Temporary decrease of the hum sinusoid power by destructive interference with
elements of the clean signal. a) Part of a spectrogram with a hum sinusoid at
f ≈ 123.5 Hz. b) Power at this frequency over time. At T≈ 9.2 s, the hum
power drops by ≈ 20 dB, as a bass note plays at almost exactly the same
frequency, which corresponds to the musical note B2.

In order to detect hum sinusoids, the statistics of each frequency band of the spectral
density are analyzed independently.

3.3.1 Stage 1: Tone Detector

Although in Sec. 3.2 we stated that the power of hum disturbances can be expected
to be stable over a longer period of time whereas the audio signal is assumed to
contain pauses in individual frequency bands, the intuitive examination of spectral
minima (compare for example [91]) yields only suboptimal results. The hum power
may occasionally drop well below its mean value, mainly caused by destructive
interference with elements of the audio signal (e.g., bass tones). An example is
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Figure 3.4: Spectrogram and quantiles that are used for hum detection. Plot a) contains
a region of the spectrogram of a music signal shown in Fig. 3.1. Diagrams
b) and c) show the power at frequency f = 50 Hz (solid line) and f = 100 Hz
(dashed line), respectively. The power at the frequency that contains a hum
sinusoid (50 Hz) is stable over the analysis interval of 15 s whereas at 100 Hz –
where no hum sinusoid is present – the power is subject to strong fluctuations.
Sub-figure c) is obtained from b) by sorting the power values of each frequency
individually in an ascending order. The x-axis then inherently indicates the
quantiles of the distribution of the PSD values.
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given in Fig. 3.3, where a bass note interferes with the hum signal only at one
point in time. Hence, to gain robustness, quantiles2 are used in combination with
different kinds of data smoothing.

In order to draw conclusions about the stability of the frequency components of the
input signal, the short-term block PSDs representing the last T seconds3, divided
into Nb blocks, are considered:

b
(p)
in [n] =

[
P̂ (p)
xx [n] P̂ (p−1)

xx [n] · · · P̂ (p−Nb+1)
xx [n]

]
. (3.6)

Fig. 3.4 a) shows a spectrogram of the input signal, consisting of the short-term
block PSDs P̂xx[n]. Plot b) in the same figure shows the power of two frequencies
over time, each corresponding to one row in Fig. 3.4 a). A hum frequency indication
measure is created by relating the 10 % quantiles (denoted by Q0.1{•}) to the 55 %

quantiles (denoted by Q0.55{•}) of b
(p)
in [n]. Fig. 3.4 c) shows how the quantiles

Q0.0 . . . Q1.0 are obtained by sorting the values in Fig. 3.4 b) in an as ascending
order. This quantile ratio

r(p)
q [n] =

Q0.1

{
b

(p)
in [n]

}
Q0.55

{
b

(p)
in [n]

} (3.7)

is a measure for the amount of fluctuation of power over time in each DFT frequency
bin within the last T seconds. Fig. 3.5 a) shows rq for the section indicated in the
exemplary input signal in Fig. 3.1. Both hum tones, at ≈ 50 Hz and ≈ 150 Hz,
become clearly visible.

In order to reduce the influence of broad frequency ranges showing low fluctuation of
power and strengthening the influence of narrowband frequency peaks, the quantile
ratio measure is enhanced by subtracting its median filtered [154] version:

r̃(p)
q [n] = r(p)

q [n]−medfiltb30/f∆c
{
r(p)
q [n]

}
, (3.8)

where medfiltN{•} denotes the operation of median filtering with a length of N
samples and f∆ = fs/Lb is the DFT frequency resolution. b•c is the integer (or

floor) operator. For the given example Fig. 3.5 a) shows r
(p)
q [n] for all frequency

indices and the corresponding filtered version and Fig. 3.5 b) the result of the
subtraction.

2Quantiles are characteristic values of the cumulative density function of a random variable.
Their computation is straightforward: The a% quantile is obtained by finding the value that has
a% of the data smaller or equal to it (compare [126, p. 68f.]).

3We chose T = 15 s to achieve satisfactory results in our experiments.
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Furthermore, we increase the detection performance by utilizing the long-term sta-
bility of hum disturbances and smoothing the time progression of r

′
q[n] by a median

filter. Therefore, the median of the quantile ratios representing the last Ns blocks,

r̃(p)
q [n] =

[
r̃(p)
q [n] r̃(p−1)

q [n] . . . r̃(p−Ns+1)
q [n]

]
, (3.9)

is computed:

r̃
′(p)
q [n] = Med

{
r̃(p)

q [n]
}
. (3.10)

In the last equation, Med{•} denotes the median operator. Fig. 3.5 c) depicts the
time progression for all frequencies and Fig. 3.5 d) shows the resulting output of
the median operator.

Stable sinusoids can be detected from r̃
′(p)
q [n] by applying a broadband, fixed thresh-

old Θ. Values of r̃
′(p)
q [n] exceeding the threshold Θ represent frequencies that are

very stable in power and can be said to contain hum tones. Finally, we obtain the
set4 of the detected hum frequencies

Fhum =
{
n · f∆

∣∣∣r̃′(p)q [n] > Θ
}
. (3.11)

3.3.2 Stage 2: The Selection Step

The output of the steady tone detector is then optimized by a selection stage to
reduce the set of hum candidates and to raise the detection accuracy. In this step,
further requirements concerning the detected sinusoids can be defined to reduce the
false detection rate. Furthermore, stable sinusoids that drop out for short periods
of time should still be identified by allowing certain pause durations. The most im-
portant parameter is the minimum tone duration Tmin. Of course, choosing a rather
high Tmin, e.g., Tmin = 30 s, drastically reduces the false alarm rate but, on the other
hand, raises the probability of missing hum sinusoids of short duration.

3.3.3 Refinement of the Detected Frequencies

Since the steady tone detector is based on the STDFT of the input signal, the
frequency resolution is limited to f∆. Therefore, for each detected frequency a
time-domain refinement method is applied. The input signal x[k] is filtered with

4We denote sets by calligraphic letters A, B, C, etc. .
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Figure 3.6: Adaptive notch filter with bandpass constrained input signal.

a bandpass filter with a bandwidth of BBP = 2 Hz, centered around the frequency
that has been estimated. Finally, an adaptive notch filtering algorithm [155] with
a variable center frequency but fixed bandwidth determines the desired value by
converging to the frequency that leads to the smallest output power (compare Fig.
3.6).

3.3.4 Determining the Fundamental Frequency of a Tone Complex

The last important parameters to be estimated are the fundamental frequencies of
the hum tone complexes, even if this fundamental frequency is not present in the
signal and only the harmonics are observable. For this reason we used a method
similar to the frequency histogram method proposed in [156] that is capable of de-
termining the – potentially missing – fundamental frequency of a harmonic tone
complex by analyzing its harmonics. We extended that approach to detect the
number of harmonic tone complexes, determine their individual fundamental fre-
quencies, and distinguish the harmonics belonging to either one. In order to do
so, instead of solely picking the frequency with the highest histogram value, we
picked all potential fundamental frequencies – starting with the frequency featuring
the highest histogram value – explaining all measured harmonics. To take small
estimation errors into account we allowed for a certain frequency deviation when
comparing multiples of the potential fundamental frequencies with the measured
harmonics.

3.4 Evaluation

The evaluation of the hum detection algorithm consists of two parts:

• The determination of the quantile combination (compare Eq. (3.7)) that leads
to the best performance, i.e., high hit rates and low false alarm rates,

• The performance achieved with artificial and realworld test signals when using
the optimum quantile combination.
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3.4.1 Test Signals

In order to evaluate different aspects of the hum detector both artificial signals and
real recordings were used.

3.4.1.1 Artificial Signals

For the purpose of testing the hum detection algorithm under controllable condi-
tions, a variety of signals were artificially disturbed: Sinusoids of 30 random frequen-
cies between 30 Hz and 900 Hz were added to hum-free signals at different SNRs.
The audibility of the hum signal strongly depends on the non-stationary clean sig-
nals and the overall SNR could be meaningless if the hum is completely masked by
the clean signal. Therefore, in addition we used the PEAQ algorithm [108, 109] in
the implementation given in [110] to get a perceptually motivated measure. In order
to do so, we added the disturbances to the clean signals at SNRs corresponding to
varying Objective Difference Grades (ODG, the PEAQ perceptual quality measure)
defined as shown in Table 3.1. The rightmost column of the table shows the median
of the SNR values corresponding to the respective ODG ratings over all of our test
signals. Due to the diverse nature of the clean signals the interquartile range5 of
the SNR, the IQR, is rather high.

Table 3.1: ODG values, perceived impairment, and median SNR values (compare [109]).

ODG impairment (MOS) SNR values (IQR)

0.0 imperceptible (5) 36 (≈ 26)

-0.5 26 (≈ 26)

-1.0 perceptible but not annoying (4) 21 (≈ 26)

-1.5 18 (≈ 26)

-2.0 slightly annoying (3) 14 (≈ 20)

-2.5 7 (≈ 23)

-3.0 annoying (2) 2 (≈ 24)

-3.5 -7 (≈ 22)

-4.0 very annoying (1) ¡ -12

For the hum-free calean signals we chose:

• Stationary white Gaussian noise,

• Random excerpts from a speech signal [157],

5The interquartile range is the difference between the 75 % and 25 % quantiles.
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• Random excerpts from a classical music piece [158],

• Random excerpts from a popular music piece [159],

• Random excerpts from an electronic music piece,

• Random excerpts from a field recording from inside an airplane.

Each of these test signals had a duration of two minutes – the hum disturbance
was switched on after 40 s and switched off after 80 s. The SNR in this context was
defined to be the energy of the clean signal within the disturbed section compared
to the energy of the hum sinusoids:

SNR|dB = 10 log10

(∑kend

k=kstart
s2[k]∑kend

k=kstart
n2
a[k]

)
, (3.12)

where kstart and kend denotes the sample indices that correspond to a time of 40 s
and 80 s, respectively. The SNR required to obtain the desired ODG values were
determined with an error of ∆ODG ≤ 0.001.

To allow for an effective determination of the false alarm probability of the hum
detector an equal number of excerpts of hum-free signals was also fed through the
algorithm.

3.4.1.2 Real Recordings

Although the use of artificial test signals allows for a systematic evaluation, practice
has shown that hum disturbances in real recording signals follow the characteristics
mentioned in Sec. 3.2 only to a certain extent. Usually the frequencies of hum
sinusoids drift very little, but in many cases the power of the hum changes over
time. Therefore, to evaluate the behavior of the detection algorithm under realistic
conditions real recordings were used. These signals are 24 hours of radio program
containing studio speakers, live coverage, music recordings, and jingles.

3.4.1.3 Ground Truth

In order to assess the performance of the detection algorithm, information about
the true parameters (ground truth) of the hum disturbances is required. For the
real recordings, ground truth information was obtained manually: We listened to
the signals and used spectral analyzing software to first determine whether hum
sinusoids were actually present. If hum was found, we manually identified its exact
start and stop times. In addition, the frequency of the hum tones was determined
with an accuracy of approximately 1 Hz. We separated the manually detected hum
disturbances into the categories very quiet (could be detected by an operator using
spectral analyzing software during Ground Truth creation but not audible under
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normal circumstances), quiet (compared to the useful signal, the disturbance is very
low in power and just audible under normal circumstances), and disturbing.

3.4.1.4 Determination of the Optimum Quantile Ratio

The overall performance of the detection algorithm depends on the selection of
the upper and lower quantiles. Therefore, it is crucial to determine the quantile
combination that leads to the best performance in terms of high hit rates and low
false alarm rates. Apart from the quantile ratio, the behavior of the algorithm
depends on a number of parameters. To reduce the number of free parameters and
allow for a clear evaluation, some parameters were set to reasonable values. The
length of the median filter in Eq. (3.8), for example, was set to twice the 3 dB
bandwidth of the Hann-window that is used for short-term discrete Fourier analysis
[160, 161].

The test signals used in this section were the same as described in Sec. 3.4.1.1, and
we added the disturbance in order to obtain 11 SNRs, where the SNR is defined in
Eq. (3.12).

3.4.1.4.1 Optimization Criterion

As a performance measure (or error function) that should be minimized we use the
total error probability as a function of the decision threshold Θ,

Perror(Θ) = Pmiss(Θ) + Pfalse alarm(Θ), (3.13)

where Pmiss(Θ) and Pfalse alarm(Θ) denote the probability of miss or false alarm,
respectively. The procedure for estimating the miss and false alarm probabilities
is based on histograms of the quantile ratio, compare Eq. (3.7), – for frequencies
that contain a hum disturbance and for frequencies that do not contain hum dis-
turbances independently. The histograms are obtained by taking into account the
quantile ratio value for all test signals, all SNRs and all hum frequencies for every
quantile combination. Thus, for each of the quantile combinations two histograms
are obtained. The following lower and upper quantiles are examined:

Qlower =
[
1 (5 10 · · · 45)

]
Qupper =

[
(5 10 · · · 95) 99

]
.

With the restriction that the upper quantile must be greater than the lower quantile,
this results in 160 combinations altogether. The miss and false alarm probabilities
are estimated from the normalized histograms:
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Pfalse alarm(Θ) =

lΘ∑
l=0

hwith hum[l] (3.14)

Pmiss(Θ) =

Nbins−1∑
l=lΘ+1

hno hum[l]. (3.15)

where
∑Nbins−1
l=0 hwith hum[l] = 1 and

∑Nbins−1
l=0 hno hum[l] = 1 are normalized his-

tograms and lΘ denotes the histogram bin index corresponding to a threshold value
of Θ. The minimum achievable error and the corresponding optimum threshold
follow from Eq. (3.13):

Perror, min = min{Perror(Θ)} (3.16)

Θopt = arg min
Θ

{Perror(Θ)}. (3.17)

Fig. 3.7 shows the total error probability depending on the threshold value. For
very small threshold values (Θ < 0.03), the total error consists only of false alarms
because almost all quantile ratios are interpreted as if there was a hum disturbance.
For Θ > 0.15 almost no false alarms are triggered but the total error increases as
more and more hum disturbances are dismissed because the resulting quantile ratio
is below the threshold.

The minimum error for each combination of lower and upper quantiles is shown in
Fig. 3.8. The smallest overall error, computed over all SNR values, was achieved
with a lower quantile of 10 % and an upper quantile of 55 %, with a corresponding
optimal threshold of Θopt = 0.18.

3.4.1.5 The Error Measures

Other aspects of the detection algorithm can be evaluated by the following error
measures:

3.4.1.5.1 Hit and false alarm rate

As a first measure, the probability of the algorithm erroneously detecting hum where
none is present (false alarm) or to miss hum disturbances is a very important infor-
mation. To compute the hit rate, we calculated the overall time of correctly detected
sinusoids, Thit

6, divided by the total hum duration, Thum: hhit = Thit/Thum.

In a similar fashion, the false alarm rate is determined by relating the duration of
indicated hum disturbances where no hum was present, Tfa, to the total duration

6In this article all times are specified in seconds unless stated otherwise.
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Figure 3.7: Total error probability vs. threshold Θ. (The lower quantile is 5 % and the
upper quantile is 60 %, the SNR is set to 20 dB). a) Whole possible range of
Θ. b) Zoom of the region that is indicated by the rectangle in plot a).
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Figure 3.8: The minimum error depending on the quantile combination. For each combi-
nation the optimum threshold was used.

of hum-free signal sections that was available from ground truth, Tno hum (see Sec.
3.4.1.3): hfa = Tfa/Tno hum.

3.4.1.5.2 Accuracy of frequency estimation

To calculate the deviation of the detected hum frequencies from the true values, the
absolute value of the difference of both frequencies was determined for each test
case: ∆f = f − f̂ . The frequency estimation accuracy was not determined for the
real recordings due to the problem of determining the ground truth with sufficient
precision.

3.4.1.5.3 Start and stop time deviation

To evaluate the estimated start and stop times, we computed their difference to the
true values: ∆T{start,stop} = T{start,stop} − T̂{start,stop}.

3.4.1.6 Baseline Algorithm

In order to compare our algorithm to an intuitive method to find hum frequencies,
we implemented a simple algorithm based on minima tracking within a certain time
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window as a baseline algorithm (abbreviated by “MT”). The minimum tracking
algorithm is based on the same framework as our algorithm – e.g., down-sampling to
2 kHz, short-time discrete Fourier transformation, and buffering (we used the same
buffer length as for the presented algorithm). The tone detector stage (compare Sec.
3.3.1) is different though. Instead of computing the quantile ratio and smoothing

intermediate values, the minima in the buffer b
(p)
in are picked in each frequency bin.

Hum frequencies are detected by thresholding this vector of minimum powers. The
threshold is computed in the following way:

ΘMT = αMT ·Pmin. (3.18)

The factor αMT is set to a value that minimizes the total error. This optimum value
is determined by the method described in Sec. 3.4.1.4. The threshold defined by Eq.
(3.18) is motivated by the fact that hum sinusoids are characterized by their relative
power compared to the rest of the spectrum, not by their absolute power.

3.4.1.7 Results

In this section the results of the hum detection algorithm are compared with ground
truth. The threshold value in Eq. (3.11) was set to the optimal one that was
determined by the method described in Sec. 3.4.1.4.

3.4.1.7.1 Artificial Test Signals

For the given artificial test scenario we got the following results for the measures
depending on the adjusted ODG:

Hit and false alarm rate The hit and false alarm rates achieved with the artificial
test signals in dependence on the ODG value are shown in Fig. 3.9. For ODGs of −2
and below the hit rate stays above 90 % and falls to approximately 50 % for an ODG
of −0.5. However, although this seems like a sub-optimal detection performance,
informal listening tests have shown that at an ODG of −0.5 the hum disturbances
are barely audible. The rather low hit rate at an ODG of 0 is not likely to pose a
problem in everyday practice since the disturbance is inaudible in almost all cases
for an ODG of 0. Furthermore, all false alarms are caused by errors in the start
and stop time estimation (compare Figs. 3.11 and 3.12). In no case was a hum free
signal erroneously believed to contain hum. In comparison to the baseline system,
the proposed algorithm always has a better hit rate with a relative gain up to 20 %,
even though this scenario with a pure static artificial sinusoid is optimal for the MT
algorithm.
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Figure 3.9: Hit and false alarm rate for artificial test signals. The results of the presented
algorithm are printed in black, the results of the baseline algorithm (MT) are
in grey. The false alarm rate is solely caused by imprecise start and stop
time estimates – in no case was a hum free signal believed to contain a hum
disturbance.

Frequency deviation The frequency estimation error achieved over ODG rating is
shown in Fig. 3.10 a). The box plot shows that for all ODG ratings the absolute fre-
quency estimation error is below 0.5 Hz. Compared to the coarse estimation given
by f∆ it is a vast improvement and allows for automatic removal algorithms. For
comparison purposes the estimation error over the input SNR is shown in Fig. 3.10
b). For SNR values above 30 dB the estimation error increases compared to corre-
sponding ODG ratings (compare the coarse ODG → SNR mapping given in Table
3.1). The frequency estimation depends partially on the input SNR and on the
diverse nature of the input signals. Therefore, a direct mapping of ODG and SNR
results is not possible.

Accuracy of start and end time estimation The start and end time estimation
errors achieved with the artificial test signals are shown in Figs. 3.11 and 3.12,
respectively. The start time error is positive for most test runs, indicating too early
detections. On average, hum is detected approximately 1.5 s early for almost all
ODGs and SNRs. The error in the end time estimation is approximately −1 s in
most cases, where the minus indicates that the end of most hum disturbances is
detected too late. Both errors could be reduced by adjusting the detection times
according to the mean values. Overall, the figures show that only a few outliers
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Figure 3.10: Frequency estimation error for artificial test signals. Plot a) shows the results
in dependence on the ODG rating of the input signal while plot b) shows
the estimation error against the input SNR. The number of values that were
considered for each ODG, or SNR, respectively, are written above the boxes.
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Table 3.2: Detection performance with real-world input data. Shown is the ground truth
hum duration and correctly detected hum duration for the proposed algorithm
(a) and the baseline method (b). Hit and false alarm rates given are determined
by dividing ground truth hum duration by the duration of correctly detected
hum. False alarm times and percentages excluding early detection beginnings
and late endings are in parentheses.

a) Presented algorithm

Hum intensity GT times HD times Rel. freq. [%] Measure

No hum 23h05m52s 1h03m48s (52m13s) 4.60 (3.77) False alarm

Very quiet 4m16s 1m27s 33.93
Quiet 1h03m52s 16m53s 26.44 Hit

Disturbing 3h44m52s 2h27m08s 65.43

b) Baseline method

Hum intensity GT times HD times Rel. freq. [%] Measure

No hum 23h05m52s 4h32m41s (4h29m35s) 19.68 (19.45) False alarm

Very quiet 4m16s 1m24s 32.76
Quiet 1h03m52s 13m59s 21.90 Hit

Disturbing 3h44m52s 1h40m12s 44.56

exist, and for almost all files the start and end times would be correct if adjusted
to zero by subtracting the mean value.

3.4.1.7.2 Real Recordings

Table 3.2 lists the duration of hum disturbances that were correctly detected by the
hum detector, separated into the audibility categories described in Sec. 3.4.1.3. In
this context, a correct detection was counted when

• The detected hum disturbance was at least partly overlapping with the ground
truth hum,

• The frequency deviation between the detection result and the true value was
less than 1 Hz.

Furthermore, the duration of hum actually present in the signals is shown. To
determine the hit rate, the duration of correctly detected hum was divided by the
true hum duration, yielding the results given in Table 3.2.
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Figure 3.11: Start time estimation errors for artificial test signals. Plot a) depicts the
results over the ODG rating of the input signal, plot b) shows the estimation
errors in dependence on the input SNR. The number of values that were
considered for each ODG, or SNR, respectively, are written above the boxes.
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Figure 3.12: End time estimation errors for artificial test signals. Plot a) shows the esti-
mation errors in dependence of the ODG rating of the input signal while plot
b) illustrates the results in dependence on the input SNR. The number of
values that were considered for each ODG, or SNR, respectively, are written
above the boxes.
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If we compare the baseline algorithm with the proposed method, we can see that the
false alarm rate is significantly reduced. This is important to limit harm to clean
material if an automatic hum removal algorithm is applied. At the same time the hit
rate was increased, which shows the far better detection capabilities of the proposed
algorithm. However, the overall detection rate seems small compared to the test
with the artificial test signals, especially for the loud and disturbing hum, since these
signals should be treated in an automatic system, so we analyzed the signals that
were not detected correctly. In almost all cases the desired signal was speech. Since
our test signals were not original archive material but a broadcast version of it, we
found a severe dynamic compression of the material. This broadband compression
algorithm changed the dynamic of the hum sinusoids up to 20 dB at the rate of the
speech signal. Thus, these fluctuating hum signals violate our signal model which
assumes static hum tone with minor variations. For music signals containing hum,
the overall compression is much smoother and therefore our detection algorithm is
able to detect the hum even in broadcast material.

3.5 Conclusions

We have shown in this article that the automatic detection of hum disturbances in
audio signals is feasible. An evaluation of a detection method yields that most of the
hum disturbances that are actually perceivable can be detected reliably with a low
false alarm probability. The information that is obtained by the method presented
can be used to control existing algorithms to effectively remove the disturbances.
We believe that – next to detectors and removal algorithms for other types of degra-
dations, like broadband noise and impulsive disturbances – the automatic detection
and removal of hum is one step in the direction of a fully automatic restoration
approach.





4
REDUCTION OF HUM DISTURBANCES

In this contribution we analyze different filtering algorithms for removing
hum disturbances from audio recordings. In order to protect the desired
signal, high frequency selectivity of the used filters is necessary. How-
ever, due to the time-bandwidth uncertainty principle, high frequency
selectivity brings about long impulse responses. This can result in au-
dibly resonating filters, causing artefacts in the output signal. Thus,
the choice of the optimal algorithm is a compromise between frequency
selectivity and acceptable time domain behavior. In this context, dif-
ferent filter structures and algorithms have different characteristics. To
investigate their influence on the hum disturbance and the desired signal,
we have evaluated three methods using objective measures to illustrate
advantages and drawbacks of the individual approaches.

4.1 Introduction

One of the fundamental tasks in the context of audio restoration is the removal
of additive sinusoidal disturbances that are commonly known as hum. These dis-
turbances are usually caused by power line interference problems during recording
and/or copying processes and can severely reduce the audio quality of a record-
ing. Due to the origin of this type of disturbance, namely faulty shielding of audio
equipment or signal lines in most cases, the disturbance signals can be modelled as
harmonic tone complexes with fundamental frequencies of approximately 50 Hz or
60 Hz and a number of harmonics that are – in most cases – caused by nonlinearities
in the signal chain.

This chapter contains a copy of the article

M. Brandt, J. Bitzer, “Hum Removal Filters: Overview and Analysis,” Proceedings of the 132nd
Audio Engineering Society Convention, Budapest, Hungary (2012 Apr.).

While the layout of the article has been adapted for a uniform presentation within this thesis, the
contents printed here are identical to those in the published article.
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Ideally, the removal of hum disturbances would consist in removing the hum sinu-
soids only and hence leaving the desired part of the disturbed signal completely
unaffected by the restoration. However, this approach would require complete
knowledge about the frequency, amplitude and phase of the additive sinusoids for
perfect cancellation. Although sinusoid parameter estimation is actually feasible
(see e.g. [162]), this turns out to be a highly challenging task for sinusoids embed-
ded in audio signals, since the audio is much louder. Additionally, gross estimation
errors eventually lead to an addition of sinusoids, which cannot be tolerated. There-
fore, state-of-the-art approaches to reduce the power of the disturbed signal at the
frequencies of the hum sinusoids are based on filtering in the time domain. This
requires filters that feature high frequency selectivity, i.e. very narrow dampening
regions while leaving the desired part of the signal mostly unaffected. However,
due to the uncertainty principle, high frequency selectivity causes long impulse re-
sponses which can result in filter resonance artefacts in the output signal. The
choice of the hum removal filter properties is thus a compromise between the degree
of hum reduction on the one hand and the amount of desired signal cancellation
and artefacts that are introduced by the filter itself on the other hand.

To compare different approaches, we have implemented three hum removal filter
algorithms and analyze their behavior with different input signal types.

Basis of our investigations is a signal model that is explained briefly in Section
4.2. The analyzed filtering algorithms are introduced in Section 4.3, followed by a
description of the evaluation method in Section 4.4. After giving the results of our
analysis we end with some conclusions.

4.2 The Signal Model

We model the disturbed signal x(t) as follows

x(t) = s(t) + nhum(t)

where s(t) is the unobservable clean signal and nhum(t) is the hum signal, con-
sisting of a number of sinusoids with different frequencies, phases and amplitudes.
The process of hum removal filtering is denoted by the hum removal system oper-
ator HHR{•}. As all of the analyzed filters are linear, the processed signal can be
written

HHR{x(t)} = HHR{s(t)}+HHR{nhum(t)}.

and we are thus able to analyze the effect of the processing to the desired signal
and the hum signal independently.
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4.3 Hum Removal Filter Algorithms

We implemented the following algorithms, each having different parameters:

• FIR comb filter
The fundamental frequency of this filter can be adjusted. Rejected frequen-
cies are at integer multiples of the fundamental frequency, up to the Nyquist
frequency (compare [163]). An exemplary comb filter transfer function and
the corresponding impulse response are shown in Figure 4.1.

• Subband FIR comb filter
The subband FIR comb filter is based on a third-order bandsplitting algo-
rithm (see [164, 165]) to seperate the input signal into complementary high
and low frequency bands. The crossover frequency can be chosen according
to the properties – i.e. the harmonic frequency power decay – of the hum
disturbance at hand. In Figure 4.2 the transfer functions for the low and high
frequency bands are shown. After seperating the bands, only the lowpass
band is processed with an FIR comb filter to reduce the hum disturbance and,
afterwards, the bands are summed back together to yield the processed output
signal. To take the slope of the lowpass band splitting filter into account, we
set the band splitting frequency to twice the frequency of the highest hum
harmonic.

• Allpass based notch filter
The center frequency, notch depth and bandwidth can be adjusted (compare
[164]). For each hum harmonic, an individual notch filter is required. An
exemplary transfer function and impulse response of this filter are shown in
Figure 4.4.

4.4 Evaluation

For being able to analyze the effect of the filtering to the hum signal nhum(t) and
the desired signal s(t), both signals were processed independently.

4.4.1 The Measures

In order to determine the degree of hum power reduction on the one hand and assess
the influence on the desired signal on the other hand, the following error measures
are introduced which compare the input signal of the filters to their respective
output signal.

• Hum reduction
This is a measure for the amount of broadband hum power reduction that is
achieved by the filter. It is the ratio of the overall energy of the hum signal
nhum(t) to the overall energy of the filtered hum signal HHR{nhum(t)}.
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Figure 4.1: Transfer function (plot a) and impulse response (plot b) of the comb filter. The
fundamental frequency has been set to 50 Hz, resulting in a magnitude transfer
function with zeros at frequencies of (50, 100, . . .)Hz.

• Desired signal distortion
This is a measure for the amount of broadband distortion of the desired signal
that is introduced by the algorithm. It is the ratio of the overall energy
of the desired signal s(t) to the overall energy of the filtered desired signal
HHR{s(t)}.

4.4.2 The Test Signals

The test signals are three different types of desired signals which have been disturbed
artificially by adding three different hum disturbance tone complexes, resulting in
a total of nine combinations. In detail, the clean signals were



4.5 results 85

-40

-30

-20

-10

0

0 5000 10000 15000 20000

Frequency [Hz]

|H
|[

d
B

]

Figure 4.2: Magnitude transfer functions of the complementary band splitting filters. The
crossover frequency has been set to fc = 5 kHz. The sum of the lowpass (solid
line) and highpass (dashed line) transfer functions equals one.

• a speech segment from a radio recording,

• an excerpt of a classical piano music recording,

• an excerpt of a pop music recording.

The hum disturbances were

• an artificially generated sinusoid with a frequency of 50 Hz,

• an artificially generated harmonic tone complex consisting of three sinusoids
with frequencies of 50 Hz, 150 Hz and 250 Hz, which is a typical hum distur-
bance,

• a recording of a severe real-world hum tone complex [166] with audible distur-
bances up to 1.5 kHz.

All test signals had a length of 40 s.

4.5 Results

To obtain the figures in this section, all test signals have been processed by the hum
removal filtering algorithms and the error measures have been computed. In doing
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Figure 4.3: Transfer function (plot a) and impulse response (plot b) of the subband comb
filter. The fundamental frequency has been set to 50 Hz and the crossover
frequency of the bandsplitting filters has been set to 1.5 kHz.

so, the error measure for a specific parameter combination was averaged over all
test signals.

4.5.1 FIR Comb Filter

The FIR comb filter does not feature parameters that can be changed to optimize
its frequency and time domain characteristics for a specific application. The only
parameter is the fundamental frequency whose value is dictated by the properties
of the hum disturbance at hand. The hum reduction and desired signal distortion
measures are given in Table 4.1. The hum reduction capabilities are good and, as
the standard deviation over all test signals is very small, the comb filter reduces
hum power equally well with different kinds of hum characteristics. The measure for
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Figure 4.4: Transfer function (plot a) and impulse response (plot b) of the allpass notch
filter. In this example, the notch center frequency has been set to 50 Hz, the
bandwidth is 2 Hz and the notch depth is∞ dB. The first sample of the impulse
response is not plotted in order to better visualize the decay behaviour.

distortion of the desired signal contains both the power reduction due to the filtering
and also artifacts caused by the characteristic FIR comb filter impulse response, as
a delay effect is perceived in the output signal.

4.5.2 Subband FIR Comb Filter

The subband FIR comb filter does not feature parameters that can be changed to
optimize its frequency and time domain characteristics for a specific application.
However, the splitting frequency can be chosen to match the characteristics of a
specific hum disturbance. In our evaluation, we set the band splitting frequency so
that all hum harmonics were contained in the lowpass band. The resulting hum
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Table 4.1: Performance measures for the FIR comb filter. Given is the mean value over
all test signal combinations and the standard deviation (σ).

Error measure Mean value σ

Hum reduction −33.01 dB 0.01 dB

Desired signal distortion 3.18 dB 0.51 dB

reduction and desired signal distortion measures are given in Table 4.2. Because
the depth of the teeth of the comb filter in the lowpass band decreases with higher
frequencies, the amount of hum power reduction is smaller than for the broadband
comb filter. The large standard deviation indicates that the efficiency is largely
dependent on the characteristics of the hum disturbance and the choice of band-
splitting frequency. However, the desired signal distortion is decreased compared
to the broadband FIR comb filter.

Table 4.2: Performance measures for the subband FIR comb filter. Given is the mean
value over all test signal combinations and the standard deviation (σ).

Error measure Mean value σ

Hum reduction −18.17 dB 8.23 dB

Desired signal distortion 1.55 dB 1.24 dB

4.5.3 Allpass Based Notch Filter

Figures 4.5 and 4.6 show the hum reduction and desired signal distortion, respec-
tively, in dependence on the parameter combination. Notch depths of 0 indicate no
processing at all, and 1 indicates the maximum attenuation of∞dB. It can be seen
in Figure 4.5 that the difference in hum power reduction is comparatively small. On
the other hand, the cancellation of the desired signal is increased for higher notch
bandwidths – compare Figure 4.6.

4.6 Conclusions

We showed that the three most common approaches for reducing hum disturbances
in audio signals have different properties in terms of hum reduction and desired
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Figure 4.5: Hum reduction properties of the allpass based notch filter in dependence on
the notch bandwidth and the notch depth. Zeros in the plot indicate absolute
values < 0.1.
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90 reduction of hum disturbances

signal distortion. By carrying out an evaluation based on objective performance
measures, we provide a means of selecting a hum removal algorithm for a specific
application.



5
BROADBAND NOISE PSD ESTIMATION

This paper presents a novel algorithm to estimate the power spectral den-
sity (PSD) of stationary broadband noise disturbances in audio record-
ings. The proposed algorithm estimates the noise PSD as the mean value
of an exponential distribution which corresponds to the truncated peri-
odogram coefficients of the disturbed audio signal. An evaluation with
a large number of speech and music test signals shows that a high PSD
estimation accuracy can be obtained for a wide range of signal-to-noise
ratios, allowing for unsupervised operation and thus constituting an im-
portant part of a fully automatic broadband noise restoration system
for audio archives.

5.1 Introduction

The quality of audio recordings is often degraded by various types of disturbances,
such as broadband noise, hum, clicks and crackles [38, 39, 113, 114]. Broadband
noise is one of the most frequently occurring types of disturbance, especially in old
recordings, and can be classified according to their technical or acoustic origin [38,
Ch. 2.1.1]. Technical broadband noise disturbances, also known as hiss, typically
arise because of shortcomings of recording equipment or storage media. Acoustic
broadband noise disturbances, on the other hand, have their origin in acoustic phe-
nomena, such as cars passing by, wind, or the hissing of an ocean. While it can
be a difficult task to determine whether a certain acoustic element of a recording
corresponds to an acoustic noise disturbance which typically requires semantic in-
formation, in many cases the identification of technical noise disturbances is much
clearer. For example, it is a well-known fact that every audio recording brings about

This chapter contains a copy of the article

M. Brandt, S. Doclo, J. Bitzer, “Automatic Noise PSD Estimation for Archive Audio Restoration,”
Submitted to the Journal of the Audio Engineering Society (2018 Mar.).

While the layout of the article has been adapted for a uniform presentation within this thesis, the
contents printed here are identical to those in the submitted article.
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a degradation of the original acoustic signal. Early recording media, such as wax
cylinders and shellac discs, typically had SNRs of below 40 dB [10]. The vinyl disc
represented a large improvement in the dynamic range that could be stored, with
SNRs of 55 dB to 60 dB [9]. The next improvement was obtained with magnetic
tape storage media, leading to SNRs between 60 dB and 70 dB [167] and allowing for
sound qualities that still satisfy the expectations of today’s listeners. The compact
disc, commercially introduced in 1982, made dynamic ranges above 90 dB possible
[168]. Nowadays, digital audio formats obviously allow for dynamic ranges that are
as high as desired, merely by increasing the word length for each sample of the
audio signal.

Hence, due to the progress in recording and storage technology, recordings made
today usually do not suffer from audible technical broadband noise disturbances.
Nevertheless, in the last decades considerable effort has been spent to digitize his-
torical recordings from a variety of original media and to reduce broadband noise
disturbances in these audio recordings [33, 47, 169]. In doing so, a central problem
is the estimation of the characteristics of the broadband noise disturbance. State-of-
the-art audio restoration algorithms [38, 62, 84] often require the manual selection
of (one or more) noise-only sections of a recording to determine a so-called noise
fingerprint [39]. Assuming stationarity of the noise disturbance, this fingerprint is
then used as an estimate for the PSD of the underlying noise disturbance. The
restoration quality of a noise reduction algorithm crucially depends on the accuracy
of the noise PSD estimate [38], resulting in insufficient noise reduction if the noise
PSD estimate is too low and resulting in degradation of the desired signal if the
noise PSD estimate is too high.

While the manual selection of noise-only sections is not a problem for a selected
number of very valuable recordings, e.g., early piano recordings of Edvard Grieg
[29], recorded in 1903, the restoration of huge amounts of recordings stored in audio
archives is usually not feasible due to the required manual intervention for each
individual recording. It should be realized that the amount of audio material stored
in archives around the globe is immense: the Library of Congress alone reports
more than 3.5 million audio media in 2014 [23], comprising, e.g., music recordings,
interviews and field recordings. Due to the large variety with regard to the type of
the desired signal, recording technology and age of the media, these recordings show
a large diversity of broadband noise types at a wide range of SNRs—from below
30 dB for old wax cylinder recordings to practically noise-free recordings of today.
If restoration of large audio archives is desired, the only feasible option is automatic
processing. For noise reduction it is therefore crucial to automatically obtain an
accurate estimate of the noise PSD, for low as well as for high input SNRs. As
mentioned before, many recordings stored in an archive do not even contain audible
broadband noise, implying that the optimum choice may be not to perform any
restoration at all for these recordings.

To the best of our knowledge, no noise PSD estimation algorithms exist that are
robust against a large range of input SNRs and against a large variety of desired
signals. Although many efficient noise PSD estimation algorithms, e.g., [91, 92,
94, 170], have been proposed to enhance noisy speech signals in communication
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applications such as conferencing systems or hearing aids (cf. Section 5.1.2), the
requirements for audio restoration of archives are substantially different. First, in
speech communication applications the input signal is typically assumed to be a
noisy recording of a single speaker, whereas in audio archives the input signal is
much more diverse and complex (e.g., music, singing voice, multiple speakers). Fur-
thermore, in speech communication applications the noise is typically assumed to be
of acoustic nature and to be time-varying, whereas in audio archives the noise can
usually be assumed to be of technical nature and to be (rather) constant for each
individual recording. Finally, the main goal of noise reduction in speech commu-
nication applications is to improve speech intelligibility, whereas in archive audio
restoration the main goal is to achieve well sounding, high-resolution restoration
results.

5.1.1 Main Idea of the Proposed Algorithm

The main idea of this paper is to develop an automated procedure for audio restora-
tion, avoiding the need for manual selection of noise-only sections and allowing
for fully unsupervised broadband noise restoration of archive audio material. We
propose an algorithm to estimate the PSD of stationary broadband noise distur-
bances, which is designed to work with diverse input signals, i.e., both speech and
music signals. Assuming an exponential distribution for the noise periodogram co-
efficients, the noise PSD in each frequency band is estimated as the mean value of
an exponential distribution which corresponds to the truncated periodogram coeffi-
cients of the disturbed input signal. The optimum truncation level is determined as
the level that minimizes a distance measure between the empirical distribution of
the truncated periodogram coefficients and the corresponding truncated exponen-
tial distribution. In addition, from this distance measure a frequency-dependent
confidence value is computed that represents a measure for the reliability of the
noise PSD estimate. This confidence value indicates whether the individual fre-
quency bands contain broadband noise or not, and, hence should be processed by
a broadband noise reduction algorithm or not.

5.1.2 Related Work

During the last decades the reduction of broadband noise has received steady re-
search attention, mainly however for speech communication applications [72, 75,
77, 79]. Probably the earliest broadband noise reduction approach is described in
a patent from 1965 [68]. Interestingly, many state-of-the-art broadband noise re-
duction algorithms are still based on a similar principle, namely splitting the noisy
input signal into a number of frequency bands and attenuating the frequency bands
with a low SNR. Since determining the frequency-dependent SNRs requires knowl-
edge about the spectro-temporal characteristics of the broadband noise disturbance,
a variety of noise PSD estimation algorithms have been proposed. Early algorithms
used voice activity detection (VAD) [87, 88, 89] to determine noise-only sections,
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based on which the noise PSD was estimated by averaging short-time periodograms,
e.g., using the Welch method [171]. Obviously, VAD-based noise PSD estimation
algorithms perform poorly when no pauses of the desired signal are detected over
a longer period. This holds especially for music signals where pauses are typically
comparatively scarce. Furthermore, the VAD performance usually degrades at low
SNRs, leading to an overestimation of the noise PSD as desired signal components
are considered part of the noise [92]. Therefore, algorithms have been proposed
that are able to estimate the noise PSD even when the desired signal is active. A
well-known algorithm is the minimum statistics algorithm [91], which estimates the
noise PSD by tracking minima of the noisy input PSD within a certain time win-
dow. A bias compensation factor compensates for the fact that the minimum is
lower than the mean, which is the value of interest. Other algorithms estimate the
noise PSD by recursively averaging the noisy input PSD using a time-varying re-
cursive smoothing factor that depends on the probability of presence of the desired
signal [92, 94].

It should be noted that all aforementioned noise PSD estimation algorithms require
that the desired signal contains a number of pauses—either in the time domain
(VAD-based algorithms) or in the time-frequency domain (algorithms based on min-
imum tracking or desired signal presence probability). While this is true for speech
signals for which a high noise PSD estimation accuracy can be obtained, severe noise
PSD overestimation can occur if the desired signal contains only very few pauses or
does not contain pauses at all, e.g., for music signals (cf. Section 5.4.5.2).

Although most noise reduction algorithms are based on methods that were originally
designed to enhance speech signals, they are often successfully applied to diverse
audio recordings [38, 39, 83]. However, the problem of noise PSD estimation for
signals different from speech has only been treated marginally. In [97] an automatic
method estimate the noise PSD in music signals is proposed that simultaneously
performs signal activity detection and noise PSD estimation based on dynamic
Bayesian networks. It is shown that the proposed algorithm outperforms an earlier
algorithm [170] that was designed for speech applications, however, the evaluation
is restricted to comparatively low SNRs around 15 dB. Other recently proposed
noise reduction algorithms, e.g., [172], eliminate the need for a noise PSD estimate
by performing a sparse approximation of the noisy input signal and taking into
account the time-frequency structure of audio signals. However, in order to obtain
optimal restoration results, crucial parameters of the algorithm need to be adjusted
in dependence on the characteristics and the SNR of the input signal [173].

5.1.3 Paper Structure

This paper is structured as follows: Section 5.2 describes the signal model and the
assumed distribution of the periodogram coefficients of the noise disturbance. In
Section 5.3 the proposed noise PSD estimation algorithm is presented in detail. The
evaluation of the proposed algorithm with a large test signal database comprising
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speech and music signals and different types of broadband noise is presented in
Section 5.4.

5.2 Signal Model

We assume that the broadband noise disturbance is additive, i.e.,

x[n] = s[n] + d[n] for 0 ≤ n < L, (5.1)

with n denoting the sample index, L denoting the length of the signal, x[n] the
disturbed signal, s[n] the clean (unobservable) audio signal and d[n] the broadband
noise disturbance. We assume that the noise is stationary over the complete dura-
tion of the recording and is uncorrelated with the audio signal. These assumptions
are motivated by the targeted audio archive application, in which technical noise
disturbances are caused by shortcomings of storage media or recording equipment,
e.g., a recording that has been digitized from a single reel of tape.

In [174] it has been shown that the real and imaginary parts of the discrete Fourier
transform (DFT) coefficients of stationary noise approximately follow a Gaussian
distribution. Although this requires a sufficiently long DFT, it has been shown
in [174] that the assumption of a Gaussian distribution already holds for a DFT
length of N = 1024 samples. In the short-time Fourier transform (STFT) domain,
the signal model in Eq. (5.1) is given by

X[k, l] = S[k, l] +D[k, l], for 0 ≤ k < N, 0 ≤ l < M, (5.2)

with X[k, l], S[k, l] and D[k, l] the STFT coefficients of the time-domain signals
x[n], s[n] and d[n], respectively, k the frequency index, N the DFT length, l the
block index and M the number of blocks. The STFT coefficients are obtained
by computing the DFT for each (non-overlapping) block of the time-domain input
signal, i.e.,

X[k, l] =

N−1∑
n=0

w[n]x[lN + n] · e−j2πkn/N , (5.3)

where w[n] is an analysis window function that is used to alleviate spectral leakage
between neighboring frequency bins. The real and imaginary parts of the STFT
coefficients D[k, l] of the noise disturbance are assumed to be Gaussian distributed,
i.e.,
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Re{D[k, l]}, Im{D[k, l]} ∼ N
(
0, σ2[k]

)
, for 0 ≤ k < N,

with σ2[k] the variance of the Gaussian distribution in the kth frequency bin. Assum-
ing that the real and imaginary parts are uncorrelated, which holds for large values
of N [174], the squared magnitudes of the STFT coefficients D[k, l], i.e., the short-
time periodograms, follow an exponential distribution [175, pp. 259–260]:

Pd[k, l] = |D[k, l]|2 ∼ Exp
(
σ2[k]

)
, for 0 ≤ k < N,

with the exponential distribution Exp(•) defined via its probability density function
(PDF):

fe(x; µ) =

{
1
µe
− xµ for x ≥ 0

0 else
, (5.4)

with mean µ > 0.

For the clean audio signal s, we assume that for some time-frequency points its
short-time periodogram coefficients

Ps[k, l] = |S[k, l]|2

are zero (or at least much smaller than the corresponding noise periodogram coeffi-
cients Pd[k, l]). Simulation results in Section 5.4.5.1 show that only a small number
of zero coefficients per frequency are required to obtain a very good noise PSD
estimation accuracy.

5.3 Noise PSD Estimation Algorithm

5.3.1 Overall Procedure

The proposed noise PSD estimation algorithm makes use of the assumed station-
arity of the noise disturbance over the complete duration of the recording1 and
the assumption that the clean audio signal is zero for some time-frequency points,
corresponding to a number of time-frequency points where only noise is present.
A confidence value is computed to indicate unreliable estimation results if too few
noise-only time-frequency points are present.

1In our experiments we used signals with a length of 30 s.
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Figure 5.1: Intermediate steps of the proposed noise PSD estimation algorithm, exemplar-
ily shown with an artificially disturbed music signal as input. The broadband
SNR was set to 40 dB by adding white noise to a clean music recording. a)
Spectrogram of the input signal x. The horizontal dotted line indicates a fre-
quency of approximately 2 kHz. b) Power of the input signal (Px) and the
noise disturbance (Pd) at a frequency of approximately 2 kHz. The SNR at
this frequency is approximately 47 dB. The horizontal dotted line indicates
an exemplary truncation level b = −30 dB. c) Normalized histograms of the
periodogram coefficients and PDFs of the assumed distributions. The vertical
dotted line indicates an exemplary truncation level b = −30 dB. The y-axis
has been limited to [0, 20000] to improve clarity. d) Distance measure ∆ for
different truncation levels b, indicating the optimal value bopt.

Figure 5.1 shows four diagrams that illustrate the intermediate steps of the proposed
algorithm. First, the short-time periodogram coefficients of the disturbed input
signal

Px[k, l] = |X[k, l]|2

are computed. Subsequently, each frequency bin is analyzed separately and inde-
pendently from all other frequency bins. Hence, in order to simplify the notation,
from now on we will drop the frequency index k. For a music signal that has been
artificially disturbed with white noise at a broadband SNR of 40 dB, Figure 5.1
a) depicts the spectrogram of the input signal. For an exemplary frequency of ap-
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proximately 2 kHz, Figure 5.1 b) depicts the power of the input signal Px and the
(unobservable) power of the noise disturbance Pd.

The central idea of the proposed algorithm is to determine the power level for each
frequency, below which the empirical distribution of the periodogram coefficients of
the disturbed input signal is closest to the assumed distribution of the periodogram
coefficients of the noise disturbance. The subset of the periodogram coefficients of
the disturbed input signal that is smaller than or equal to a truncation level b is
denoted as

Pb = {Px[l] : 0 ≤ l < M, Px[l] ≤ b},

where we assume that the elements of Pb are sorted in ascending order. The size
of this subset is denoted as Q, and the smallest truncation level b is selected such
that Q ≥Mmin (in this paper we use Mmin = 10). From this subset the normalized
histogram Hb of the truncated periodogram coefficients is calculated, such that∑B−1
i=0 Hb[i] = 1, with B the number of histogram bins (in this paper we use B = 10).

The empirical cumulative distribution function (CDF) of the truncated periodogram
coefficients Fb is given by [176]

Fb(x) =
1

Q

Q−1∑
i=0

1Pb[i]≤x, (5.5)

with the indicator function

1Pb[i]≤x =

{
1 for Pb[i] ≤ x
0 else

.

As mentioned in Section 5.2, the periodogram coefficients of the noise disturbance
are assumed to follow an exponential distribution, cf. Eq. (5.4). As a consequence,
the truncated periodogram coefficients are assumed to follow a truncated exponential
distribution, whose PDF fte and CDF Fte are defined as
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fte(x; µ, b) =


1
µ e
− x
µ

1−e−
b
µ

for 0 ≤ x ≤ b

0 else

(5.6)

Fte(x; µ, b) =


0 for x < 0

e
b
µ

e
b
µ−1

(
1− e− xµ

)
for 0 ≤ x ≤ b

1 for x > b

. (5.7)

The corresponding normalized histogram is denoted as Hte(µ, b), using the same
number of histogram bins as Hb.

For each truncation level b, the optimal value µ̂(b) of the truncated exponential
distribution is then determined by minimizing the distance between the empirical
distribution of the (truncated) periodogram coefficients and the assumed truncated
exponential distribution. We have considered two different distance measures, cf.
Section 5.3.2. The optimal truncation level leading to the minimum distance is
denoted as bopt. The corresponding parameter µ̂(bopt) of the truncated exponential
distribution is used as the noise PSD estimate σ̂2.

For an exemplary value of the truncation level (b = −30 dB), Figure 5.1 c) depicts
the normalized histogram of the truncated periodogram coefficients (black, solid
line) together with the PDF of the exponential distribution using the optimal value
µ̂(b) estimated from Pb (black, dotted line). For reference, the normalized histogram
and the PDF of the estimated exponential distribution of the truncated periodogram
coefficients of the (unobservable) noise disturbance Pd are shown (gray, solid and
dotted line, respectively). Figure 5.1 d) shows the distance measure (the normalized
total absolute difference, cf. Section 5.3.2) as a function of the truncation level b,
indicating the optimal value bopt.

5.3.2 Distance Measures between Probability Distributions

A crucial part of the proposed algorithm is to determine how well the empirical
distribution of the truncated periodogram coefficients of the disturbed input signal
fits the assumed truncated exponential distribution. On the one hand, well-known
statistical hypothesis tests for goodness-of-fit measures could be used, as they aim
at determining whether a sample follows a specific probability distribution. Possible
tests comprise, e.g., the Kolmogorov-Smirnov test [177], the Anderson-Darling test
[178] or the chi-squared test [177]. On the other hand, distance measures between
probability distributions, such as the Kullback-Leibler (KL) or Jensen-Shannon (JS)
divergence [179], could be used.
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In the context of our application, the measure should fulfill two properties: 1) inde-
pendence of the sample size, which is related to the length of the input signal, and
2) boundedness in order to be able to derive a confidence value. As the behavior
of statistical hypothesis tests depends on the sample size [180], they will not be
further considered: for large sample sizes, the statistical evidence that the samples
have been produced by an assumed distribution tends to zero, since small devia-
tions from the assumed distribution become statistically significant. Hence, we will
only consider distance measures between probability distributions. Since the KL
divergence is not bounded [179], we will consider the JS divergence as a first option
for an appropriate distance measure. The JS divergence between the normalized
histograms Hb and Hte(µ, b) is defined as

∆JS(Hb, Hte) =
1

2

[
∆KL

(
Hb,

1

2
(Hb + Hte)

)
+ ∆KL

(
1

2
(Hb + Hte), Hte

)]
,

with the KL divergence between two histograms H1 and H2 defined as [179]

∆KL(H1, H2) =

B−1∑
i=0

H1[i] · log2

H1[i]

H2[i]
. (5.8)

As the JS divergence is bounded by one (0 ≤ ∆JS ≤ 1) if the binary logarithm is
used as in Eq. (5.8) [179], a confidence value can easily be derived as

CJS = 1−∆JS. (5.9)

As a second option, we propose to use the normalized total absolute difference (AD)
between the empirical CDF in Eq. (5.5) and the CDF of the truncated exponential
distribution in Eq. (5.7) as a simple and intuitive distance measure. The (unnor-
malized) total AD is given by

AD =

Q−1∑
i=0

|Fb(Pb[i])− Fte(Pb[i]; µ, b)|,

where both CDFs are evaluated at the periodogram coefficient values Pb[i]. A loose
upper bound for AD is given by

ADmax =
Q

2
,
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Figure 5.2: Absolute difference (AD) and ADmax for exemplary values of Pb, µ and b. In
this example Q = 50.

which corresponds to Fte(Pb[i]; µ, b) being equal to either 0 or 1 for all i. Figure
5.2 shows AD and ADmax for exemplary values of Pb, µ and b, where AD is the
area between Fte(Pb[i]; µ, b) and Fb(Pb[i]), and ADmax is the area between 0 and
Fb(Pb[i]). In this example, Fte(Pb[i]; µ, b) > Fb(Pb[i]) for most i, which indicates
that the periodogram coefficients are generally larger than assumed for this specific
choice of µ and b.

Since AD is not bounded by one, we propose to normalize it by ADmax, i.e.,

∆AD =
AD

ADmax
,

such that similarly as in Eq. (5.9) a confidence value can be easily derived as

CAD = 1−∆AD. (5.10)

The confidence values in Eq. (5.9) and (5.10) are a measure for the reliability of the
obtained noise PSD estimates. Although it will be shown in Section 5.4.5.2 that
the proposed algorithm provides accurate PSD estimation results for a wide range
of SNRs, the confidence values can be used to refrain from restoration when the
confidence in the noise PSD estimate is too low. To this end, a minimum required
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confidence can be defined, and the noise PSD estimate is set to zero at frequencies
where the confidence value is smaller than the minimum required confidence. This is
especially relevant for signals without pauses or with high SNRs. In these cases, the
proposed algorithm typically yields a noise PSD estimate which overestimates the
true noise PSD, leading to signal distortion when used in a noise reduction algorithm.
The complete noise PSD estimation algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed noise PSD estimation algorithm. The minimizeDis-
tance function determines the optimum value µ̂(b) of the truncated exponential
distribution as well as the distance ∆ to that distribution.
procedure estimateNoisePSD(x) . Estimate the noise PSD in x

for all frequency bins k do
∆min ←∞ . Initialize the minimum distance
for all block indices l do . Compute the periodogram coefficients

Px[l]←
∣∣∣∑N−1

n=0 w[n]x[lN + n] · e−j2πkn/N
∣∣∣2

end for
Px ← sort(Px)
for l = Mmin . . .M do

Pb ← [Px[0], . . . , Px[l − 1]]
b← Px[l − 1] . Truncation level
[µ̂, ∆]← minimizeDistance(Pb, b)
if ∆ < ∆min then

∆min ← ∆
σ̂2[k]← µ̂
C[k]← 1−∆ . Confidence value

end if
end for

end for
return σ̂2, C

end procedure

5.4 Evaluation & Results

We evaluate the proposed noise PSD estimation algorithm using a database of music
and speech signals and different types of broadband noise (cf. Section 5.4.1). The
noise PSD estimation accuracy is evaluated using several error measures (cf. Section
5.4.2). Furthermore, the perceptual quality of the restored audio signal is rated
when the obtained noise PSD estimate is used in a high-quality noise reduction
algorithm [77]. The evaluation results are presented in Section 5.4.5 and consist
of three parts: First, we analyze the influence of the used distance measure on
the estimation accuracy of the proposed algorithm. This analysis is based on a
small test signal database in order to alleviate the computational requirements of
the experiment. Second, for a large test signal database we compare the estimation
accuracy using the optimum distance measure with a reference noise PSD estimation
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algorithm based on minimum statistics (cf. Section 5.4.3). Third, we evaluate the
noise reduction performance when the obtained noise PSD estimate is used in a
high-quality noise reduction algorithm and compare its performance to a recently
proposed noise reduction algorithm that does not require a noise PSD estimate (cf.
Section 5.4.4).

5.4.1 Test Signals

The used test signals are clean music and speech signals2 to which we have added
different types of broadband noise at different SNRs ranging from 20 dB to 60 dB.
The clean signals are

• modern music recordings and

• high-quality speech recordings.

The noise disturbances are all technical in nature:

• artificially generated white noise,

• artificially generated pink noise,

• a recording of real tape noise [181] and

• a recording of real optical film soundtrack noise [182].

All clean signals and noise signals are single-channel3 and sampled with
fs = 44.1 kHz. The length of each recording is 30 s. For all experiments, we used
a von-Hann window as the analysis window function for the computation of the
short-time periodogram coefficients and a block length of N = 2048 samples such
that the number of blocks is M = 645. The blocks do not overlap for the proposed
algorithm4 while an overlap of 50 % is used for the minimum statistics algorithm
(cf. Section 5.4.3) as specified in [91].

5.4.2 Performance Measures

In order to evaluate the performance of the proposed noise PSD estimation algo-
rithm, we use different instrumental measures that assess different properties of the
algorithm.

2All signals, i.e., the clean signals and the noise signals, have either been published under
a CC-BY license or are in the public domain and are available for download from the website
accompanying this paper [112].

3The left channel was extracted if a recording had two channels.
4As no gain in estimation accuracy could be observed in informal experiments when using

overlapping blocks, we use non-overlapping blocks to reduce the computational complexity of the
algorithm.
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5.4.2.1 Noise PSD Estimation Errors

To evaluate the PSD estimation accuracy of the proposed algorithm, we use the
error measure proposed in [94], which equally weighs the logarithmic overestimation
error (LogErrOver) and the logarithmic underestimation error (LogErrUnder), i.e.,

LogErr = LogErrOver + LogErrUnder, (5.11)

with

LogErrOver =
1

Nbins

Nbins−1∑
k=0

∣∣∣∣min

(
0, 10 · log10

[
σ2[k]

σ̂2[k]

])∣∣∣∣
LogErrUnder =

1

Nbins

Nbins−1∑
k=0

∣∣∣∣max

(
0, 10 · log10

[
σ2[k]

σ̂2[k]

])∣∣∣∣,
where the number of considered frequency bins Nbins = N

2 + 1.

5.4.2.2 Instrumental Measure for Audio Quality

In order to evaluate the performance of a noise reduction algorithm using the ob-
tained noise PSD estimate, we use an instrumental measure to rate the perceptual
quality of the processed input signal. Specifically, we use the “perceptual evalu-
ation of audio quality” (PEAQ) measure5 [108, 109, 110]. This measure aims at
determining the perceptual similarity between two audio signals by first comput-
ing a representation of each signal that takes the human hearing properties into
account and then computing a similarity measure based on these representations.
This similarity measure is called Objective Difference Grade (ODG) and ranges from
-4 (“very annoying”) to 0 (“imperceptible”), cf. Table 5.1. Although the PEAQ
measure was devised to rate the perceptual quality of artifacts that were produced
by audio coding algorithms, we believe that it also makes sense to use it to rate the
quality of broadband noise restoration algorithms. This can be justified by the fact
that additive noise disturbances were used during the development of the PEAQ
measure (cf. [108]). In addition, in informal listening experiments we found that
the ODG ratings obtained with the PEAQ measure generally correspond well with
the subjective impression. The website accompanying this paper [112] makes the
audio signals that were used for the evaluation available for listening, along with
the corresponding ODG ratings.

5.4.3 Reference Noise PSD Estimation Algorithm

In order to assess the performance of the proposed noise PSD estimation algorithm,
we use the well-known noise PSD estimation algorithm based on minimum statistics

5As the PEAQ measure requires its input signals to have a sampling rate of 48 kHz, the
analyzed signals were resampled accordingly.
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Table 5.1: The ODG scale.

ODG Impairment Description

0 Imperceptible

-1 Perceptible but not annoying

-2 Slightly annoying

-3 Annoying

-4 Very annoying

[91] (cf. Section 5.1.2) for reference. An important parameter of this algorithm is the
length of the minimum search window. If this window is too short to capture a pause
in the desired signal, the minimum value within the window no longer corresponds
to the noise power but contains a certain amount of desired signal power, resulting
in an overestimation of the noise PSD. In [91] a compensation mechanism has been
proposed that accounts for the estimation bias that is caused by using the power
minimum while the goal is to estimate the mean power. It has been shown that
the bias compensation factor becomes larger for longer minimum search windows.
As a consequence, long minimum search windows may even lead to an increased
overestimation if no pause in the desired signal is captured, caused by the bias
compensation factor. In this paper, we will consider two different window lengths:
the standard value of ≈ 1.5 s (typically used in speech communication applications)
and the maximum value of 3.7 s specified in [91].

5.4.4 Reference Noise Reduction Algorithms

Since the main objective is audio restoration, we also evaluate the performance of
the proposed noise PSD estimation algorithm (and the reference noise PSD esti-
mation algorithm) in combination with the frequently used minimum mean square
error short-time spectral attenuation (MMSE STSA) noise reduction algorithm [77].
We use the implementation and parameter values from [62]. In addition, we use
a recently proposed noise reduction algorithm based on structured sparsity [172],
which takes the time-frequency structure of the input signal into account and does
not require a noise PSD estimate. We use the default parameters but reduced the
threshold level (λ) to 0.001 as this value allows for good restoration results for a
wide range of SNRs. The two noise reduction algorithms will be denoted by MMSE
STSA and Struc. sparsity, respectively.

In order to reduce artifacts produced by the noise reduction algorithms, i.e., musical
noise and degradation of the desired signal, we restrict the maximum attenuation
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of each time-frequency coefficient, i.e., we set the spectral floor [79], to −20 dB in
all experiments.

5.4.5 Results

This section presents the results of three experiments to determine the optimum
distance measure (Section 5.4.5.1), the noise PSD estimation accuracy with this
optimum distance measure (Section 5.4.5.2) and the noise reduction performance
when using the proposed noise PSD estimate in the MMSE STSA noise reduc-
tion algorithm (Section 5.4.5.3). In Section 5.4.5.1 we use 50 music and 50 speech
recordings, while in Sections 5.4.5.2 and 5.4.5.3 we use 500 music and 500 speech
recordings.

5.4.5.1 Distance Measure

In this section we analyze the noise PSD estimation accuracy of the proposed algo-
rithm for both considered distance measures (cf. Section 5.3.2), i.e., the JS diver-
gence and the normalized total AD. For both distance measures, Figure 5.3 shows
the LogErr measure in Eq. (5.11) for different SNRs. The box plots represent the
distribution of the LogErr measure for all combinations of the 100 clean music and
speech signals and the four noise types (cf. Section 5.4.1). It can be observed that
the LogErrs are very similar for both distance measures.

For all of the following experiments we selected the normalized total AD as the
distance measure as it leads to a good overall estimation accuracy for all SNRs, and
it is easier to compute than the JS divergence.

5.4.5.2 Noise PSD Estimation Accuracy

Using the optimum distance measure determined in the previous section, in this
section we analyze the noise PSD estimation accuracy in more detail and compare
it to the reference noise PSD estimation algorithm based on minimum statistics (cf.
Section 5.4.3).

Figure 5.4 shows the noise PSD estimation errors of the proposed algorithm and
the reference minimum statistics algorithm (for two search window lengths) for
different SNRs and noise types. First, it can be observed that the estimation errors
for all algorithms depend strongly on the input SNR, i.e., the larger the input
SNR, the larger the estimation errors. Furthermore, increasing the length of the
search window for the minimum statistics algorithm leads to lower estimation errors.
This is due to the fact that a longer search window increases the probability of
capturing parts of the desired signal with pauses inside the search window, hence
reducing the noise PSD overestimation error. For most SNRs and noise types,
the proposed algorithm yields lower estimation errors than the minimum statistics
algorithm. We therefore conclude that the assumption of exponentially distributed
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Figure 5.3: Noise PSD estimation errors of the proposed algorithm for different SNRs for
both distance measures. The lower and upper edge of each box indicates the
first and the third quartile of the data, respectively, while the horizontal line
in each box corresponds to the median value. Vertical lines extending from the
boxes extend to the smallest and largest data point, respectively, within 1.5
times the inter-quartile range (IQR), with IQR the distance between the first
and the third quartile. All data outside these intervals are considered outliers
and are represented by dots.

periodogram coefficients is valid not only for artificially generated noise but also for
real-world noise recordings. Only for an SNR of 20 dB and film noise, the minimum
statistics algorithm yields a smaller error than the proposed algorithm. This can
probably be explained by the fact that the assumption regarding the distribution of
the noise periodogram coefficients is violated: in addition to broadband noise, the
used film noise also contains a certain amount of hum and impulsive disturbances.
The proposed algorithm only estimates the PSD of the stationary noise part of
the disturbance, while the PSD estimate obtained using the minimum statistics
algorithm includes the PSD of the hum. As a consequence, the proposed algorithm
underestimates the noise PSD, leading to an increased LogErr. This specific result
indicates that it is important to detect and remove hum and impulsive disturbances
before noise reduction (e.g., [113, 114]).

It should be noted that the confidence value CAD was not taken into account in this
experiment, i.e., for each frequency the noise PSD is determined from the truncation
level that leads to the maximum confidence (corresponding to the smallest distance
between the empirical distribution of the truncated periodogram coefficients and the
truncated exponential distribution, cf. Eq. (5.10)), however low that confidence is.
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Figure 5.4: Noise PSD estimation errors of the proposed algorithm using the normalized
total AD distance measure and the minimum statistics algorithm for two search
window lengths. This figure integrates the results for all speech and music
signals. The results are separately shown for each noise type.

Figure 5.5 shows the confidence values for each noise type and SNR, averaged over all
frequencies for each disturbed signal. It can be observed that the confidence values
depend on the input SNR, i.e., the larger the input SNR the smaller the confidence.
The confidence values are similar for white noise, pink noise and tape noise, while
they are generally lower for film noise. Similarly, as for the noise PSD estimation
errors in Figure 5.4, this can probably be explained by a certain amount of hum and
impulsive disturbances in the film noise. The results in Figure 5.5 indicate that the
confidence value allows to distinguish severely disturbed, i.e., SNR ≤ 30 dB, from
weakly disturbed input signals, i.e., SNR ≥ 50 dB, in most cases.

5.4.5.3 Noise Reduction

This section presents the results of the proposed noise PSD estimation algorithm
combined with the MMSE STSA noise reduction algorithm in terms of perceptual
audio quality. First, the influence of using a minimum required confidence (MRC),
cf. Section 5.3.2, on the perceptual audio quality is investigated. Second, the
performance of the MMSE STSA noise reduction algorithm using the proposed and
the reference noise PSD estimate is compared to a noise reduction algorithm based
on structured sparsity.
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Figure 5.5: Confidence values of the proposed algorithm, averaged over all frequencies for
each disturbed signal. This figure integrates the results for all speech and music
signals. The results are separately shown for each noise type.
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Figure 5.6: Instrumental audio quality evaluation of the processed signals obtained by com-
bining the proposed noise PSD estimate with the MMSE STSA noise reduction
algorithm for different MRC values. This figure integrates the results for all
speech and music signals and all noise types.
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Figure 5.6 shows the PEAQ ratings of the processed signals for different SNRs and
for different values of the MRC: if the confidence value CAD is lower than the MRC
for a certain frequency, the noise PSD estimate is set to zero, i.e., no noise reduction
is performed at this frequency. Using MRC = 0 corresponds to accepting all noise
PSD estimates, however low the confidence value is. While MRC = 0 leads to
the maximum amount of noise reduction, it can be expected that this will lead
to a degradation of the desired signal in frequency bands with a high SNR or no
pauses in the clean signal (both leading to an overestimation of the noise PSD). In
contrast, MRC = 1 leads to no noise reduction because the empirical CDF of the
periodogram coefficients always deviates from the theoretical CDF, at least by a
small amount, and the confidence never reaches exactly 1. Hence, the MRC can be
used as a trade-off between maximum noise reduction and maximum preservation of
the desired signal. The optimal value of the MRC depends on the audio restoration
task at hand. From Figure 5.6 it can be observed that the achieved restoration
quality depends on the MRC, and the MRC for which the best PEAQ rating is
achieved highly depends on the SNR. Especially for high SNRs, using MRC > 0
is important to protect the clean signal. While all considered MRC values yield
similar median PEAQ ratings for an SNR of 20 dB, MRC = 0.97 yields the best
median PEAQ rating for SNRs of 30 dB to 50 dB, and MRC = 0.99 yields the best
median PEAQ rating for an SNR of 60 dB. As MRC = 0.98 yields PEAQ ratings
that lie between those obtained with MRC = 0.97 and MRC = 0.99, it represents
a trade-off between high noise reduction at low SNRs and preservation of the clean
signal at high SNRs. Hence, in the following experiment we will consider two values
for the MRC that work well for all SNRs, namely MRC ∈ {0.97, 0.98}.
Figure 5.7 shows the PEAQ ratings of the unprocessed disturbed input signals
(“None”) and of the signals processed by the MMSE STSA noise reduction algo-
rithm using the proposed noise PSD estimate (for two MRC values), the minimum-
statistics-based noise PSD estimate (for two search window lengths) and the oracle
noise PSD estimate. In addition, the PEAQ results of a noise reduction algorithm
based on structured sparsity (cf. Section 3.3) are shown. It can be observed that a
broadband noise disturbance may lead to a severe degradation of the overall audio
quality (“None”). The rightmost boxes (“Oracle”) indicate that the MMSE STSA
algorithm using the true noise PSD is able to increase the PEAQ rating for all SNRs
except for SNR = 60 dB. As the true noise PSD is obviously unknown in practice,
these results can only serve as a reference. The results obtained with the minimum
statistics algorithm (for both search window lengths), show that an improvement
of the PEAQ rating is only achieved for an SNR of 20 dB. For SNR > 30 dB the
audio quality is severely reduced, due to a degradation of the desired signal as the
noise PSD is overestimated for these SNRs. As music signals usually do not contain
as many pauses as speech signals, the quality degradation is especially severe for
music signals. The choice of a longer search window alleviates this problem to a cer-
tain extent—the median PEAQ ratings for the minimum statistics algorithm with
a search window length of 3.7 s are higher than those with a search window length
of 1.536 s. Furthermore, the noise reduction algorithm based on structured sparsity
achieves an improvement of the PEAQ rating compared to the unprocessed signal
for SNRs of 20 dB to 40 dB. For SNR > 40 dB, the application of this algorithm also
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leads to a considerable decrease in audio quality. This is caused by a degradation
of the desired signal which is presumably the result of fixed algorithm parameters
that are not adjusted in dependence on the SNR.

For SNRs of 20 dB and 30 dB the PEAQ ratings obtained by the proposed algorithm
are comparable to those obtained by the structured sparsity algorithm. For an
SNR of 40 dB, the PEAQ ratings obtained by the proposed algorithm are a bit
worse than those obtained by the structured sparsity algorithm, but better than
the unprocessed input signal. For SNRs of 50 dB and 60 dB, the PEAQ ratings
obtained by the proposed algorithm with MRC = 0.98 are much higher than those
obtained by all other considered algorithms, reaching quality ratings close to those
of the unprocessed input signal.

In conclusion, the proposed algorithm with MRC = 0.98 is the only algorithm which
improves the audio quality of noisy signals over the wide range of considered SNRs
and input signals typically encountered in audio archives, while only leading to a
small amount of signal degradation for practically clean input signals.

For most SNRs, the difference between the PEAQ ratings of the unprocessed signal
and the processed signal using the proposed algorithm (MRC = 0.98) are, in gen-
eral, rather small. Nevertheless, an informal subjective evaluation of the processed
signals indicates that the application of the proposed noise reduction algorithm in
many cases leads to a substantial increase in audio quality, also in cases in which
this is not indicated by the PEAQ rating. However, the informal subjective evalua-
tion also indicates that the overall quality rating trend obtained with PEAQ corre-
sponds well with the subjective impression—especially considering relative quality
differences between different algorithms. A selection of the audio files can be found
on the website accompanying this paper [112].

5.5 Summary & Conclusions

In this paper we presented a novel algorithm to estimate the PSD of stationary
broadband noise disturbances in audio signals. The proposed algorithm assumes
that the noise periodogram coefficients are exponentially distributed and estimates
the noise PSD as the mean value of an exponential distribution which corresponds
to the truncated periodogram coefficients of the disturbed input signal. In addition,
a confidence value is computed reflecting the reliability of the noise PSD estimate.
This confidence value is used to reject noise PSD estimates with a low confidence
in order to avoid degradation of the desired signal when the obtained noise PSD
estimate is used in a noise reduction algorithm. Based on experiments with a large
database of clean speech and music signals and different artificial and real-world
broadband noise disturbances, we have shown that the proposed algorithm yields
reduced PSD estimation errors compared to the state-of-the-art minimum statistics
algorithm for a large range of SNRs. When using the proposed noise PSD estimate
in the MMSE STSA noise reduction algorithm with an MRC of 0.98, we showed
that an unsupervised restoration is possible for a large variety of test signals at
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Figure 5.7: Instrumental audio quality evaluation of the processed signals obtained by
several algorithms: 1) no processing, 2) MMSE STSA noise reduction algorithm
using the minimum-statistics-based noise PSD estimate, the proposed PSD
estimate and the oracle noise PSD estimate, 3) noise reduction algorithm based
on structured sparsity.

a wide range of SNRs, leading to a median PEAQ improvement for SNRs below
60 dB and very little signal degradation at an SNR of 60 dB. In contrast, restoration
results with minimum-statistics-based noise PSD estimates and a noise reduction
algorithm based on structured sparsity lead to a severe decrease in PEAQ rating for
SNRs above 30 dB and 40 dB, respectively. In conclusion, the presented algorithm
constitutes a crucial step for automatic broadband noise restoration over a wide
range of SNRs and input signals, which are typically encountered in large audio
archives.



6
SUMMARY, CONCLUSIONS AND FURTHER
RESEARCH

In this chapter we summarize the main contributions of this thesis in Section 6.1
and give suggestions for further research in Section 6.2.

6.1 Summary and Conclusions

Most existing solutions for the high-quality restoration of audio material have been
designed for supervised operation and usually require the manual adjustment of
one or more parameters for each individual recording. Due to the large number of
recordings stored in media archives, a supervised restoration is typically not feasible.
As the diversity of recordings stored in archives is generally very high, regarding
the desired signals, the disturbance types and their intensities, the unsupervised
application of existing audio restoration algorithms may lead to a severe quality
degradation, especially for undisturbed signals.

The main objective of this thesis was to develop algorithms that allow for an unsu-
pervised restoration of large numbers of very diverse audio recordings, eliminating
the need for manual parameter adjustment for each recording. Key elements in the
design of these algorithms were to achieve robustness against a high variety of input
signals with regard to the type of the desired signal and the intensity of the distur-
bance on the one hand and the desire to keep the risk of signal degradations as low
as possible on the other hand. Typical audio restoration algorithms comprise two
stages: the estimation of disturbance parameters and the actual disturbance reduc-
tion. To automate the restoration process, it has turned out that the estimation of
disturbance parameters is crucial, including the detection of signal portions (or com-
plete signals) which are disturbance free. To increase the robustness against highly
diverse audio material, in this thesis we therefore proposed novel algorithms for the
classification of impulsive disturbances, for the detection and parameter estimation
of hum disturbances and for the PSD estimation of broadband noise.

The restoration of impulsive disturbances greatly depends on properly adjusting a
threshold parameter for each individual signal. Inadequate parameter values either
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lead to only minor disturbance reduction or a degradation of the desired signal,
e.g., caused by the reduction of transient elements in the desired signal. These
transient elements are, e.g., certain drum sounds or attacks of brass instruments.
Unsupervised application of existing impulse restoration algorithms therefore may
lead to unacceptable sound quality of the processed signal, especially for high input
SNRs and undisturbed signals. The classification algorithm proposed in Chapter
2 allows to classify frames of the input signal as either clean or disturbed. The
proposed classification algorithm is based on a supervised learning approach, using
a logistic regression model and selected features of the appropriately prewhitened
input signal. The model parameters were trained using a large number of test
signals that contain artificial but plausible impulsive disturbances. The proposed
classification algorithm benefits from using comparatively long frames of 1 s length,
compared to detection stages of typical impulse restoration algorithms that work
on the sample-by-sample level. In doing so, the aim of the proposed algorithm
is not to replace detection stages of impulse restoration algorithms but rather to
determine which signal frames actually contain impulsive disturbances and, thus,
should be processed with one of the existing impulse restoration algorithms. We
presented evaluation results for a large number of test signals and a large range
of SNRs, using the PEAQ algorithm to rate the perceptual quality, that indicate
on the one hand that a state-of-the-art AR-model-based impulse restoration algo-
rithm improves the perceptual quality of signals that contain perceivable impulsive
disturbances at SNRs below 40 dB. On the other hand, the results indicate that
the application of this impulse restoration algorithm leads to a degradation of the
signal quality for SNRs larger than 40 dB. This was explained by false alarms in
the algorithm’s detection stage and subsequent reduction of transient elements in
the desired signal. Furthermore, the evaluation results indicate that the application
of the proposed impulsive disturbance classification algorithm to determine those
frames of a recording that actually contain impulsive disturbances, and subsequent
impulse restoration of only those frames leads to an overall increase in restoration
quality, especially for large SNRs and undisturbed signals.

Existing algorithms for the detection of hum disturbances in recordings make as-
sumptions regarding the input signal that impede their applicability for archive au-
dio restoration applications. These algorithms have either been designed for speech
signals and exploit pauses in the input signal to estimate the hum disturbance pa-
rameters or it is assumed that the input signal always contains a hum disturbance.
If a hum restoration algorithm is applied to a hum-free recording, a degradation of
the signal quality can be expected. Therefore, in Chapter 3 we presented a hum
detection algorithm that allows to determine the presence of hum in a recording
and to estimate all parameters that are required to remove the disturbance with
one of the existing hum reduction algorithms. The presented algorithm is based on
a quantile-based statistical analysis of the short-time PSD estimates of the input
signal in order to detect the presence of steady hum tones. It is therefore assumed
that the power of the hum tones changes less than the desired signal power at the
hum frequencies. A measure for the power fluctuation is computed as the ratio of
a low and a high quantile of the power in each frequency bin. A post-processing
step increases the detection accuracy by discarding short detections and allowing
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for hum tones to drop out for a certain duration. As the short-time PSD estimates
are calculated via the DFT, the frequency resolution of the detection is limited. In
order to increase the frequency estimation accuracy, notch filters are placed at the
detected hum frequencies and an accurate hum frequency estimate is determined
from the filter coefficients after convergence. We presented an evaluation with dif-
ferent types of desired signals and artificial hum disturbances that shows that the
optimum low and high quantiles, leading to the minimum number of missed detec-
tions and false alarms, are the 10 % and 55 % quantiles. In addition, using these
optimum quantiles, we presented evaluation results based on artificially disturbed
test signals that indicate that more than 90 % of all hum disturbances with an ODG
of -2 (corresponding to “slightly annoying” disturbances) or less were correctly de-
tected as disturbed while none of the hum-free signals were erroneously detected as
disturbed. Furthermore, the absolute hum frequency estimation error in most cases
was below 0.1 Hz, allowing for an efficient hum restoration. Finally, an evaluation
with 24 h of real-world signals showed that approximately 65 % of the disturbing
hum disturbances and approximately 26 % of the just audible hum disturbances
were detected with a false alarm rate of below 5 % percent.

Following the description of the hum detection algorithm, Chapter 4 contained an
overview and a comparison of different hum reduction algorithms. We reviewed well-
known filters that are often used for hum reduction applications, namely comb filters,
subband comb filters and notch filters. While comb filters allow for an efficient
reduction of hum tones by placing notches at integer multiples of the fundamental
frequency of the hum tone complex up to the Nyquist frequency, the processing
often introduces artifacts which may be perceived as an echo effect. This is due to
the fact that comb filtering is achieved by adding a delayed, and possibly scaled,
version of the signal to itself. While the notch depth can be adjusted by scaling
the delayed version of the signal, we restricted our analysis to a scaling factor of
one, leading to periodic nulls in the frequency response. Subband comb filters take
the low-pass character of typical hum disturbances into account and reduce the
amount of artifacts by only processing the frequency range that actually contains
hum tones. This is achieved with a bandsplitting algorithm to split the input signal
into a low and a high frequency band, applying a comb filter to the low frequency
band, and combining both bands again to obtain the output signal. Notch filters
offer the largest flexibility of the three algorithms by allowing to place notches
on the individual hum tones. We presented an evaluation with different types of
desired signals and artificial and real hum disturbances that showed that comb
filters lead to the largest amount of hum reduction of the three analyzed algorithms
of approximately 33 dB, but also to the largest amount of degradation of the desired
signal of approximately 3 dB. Compared to comb filters, subband comb filters lead
to a lower hum reduction of approximately 18 dB and a lower degradation of the
desired signal of 1.5 dB. Finally, the evaluation showed that a large amount of
hum reduction of up to 40 dB is possible by using notch filters, with only minor
degradation of the desired signal of −1.2 dB if the frequencies of the hum partial
tones are known. This is probably due to the fact that unnecessary notches at
integer multiples of the hum fundamental frequency are avoided, leading reduced
degradation of the desired signal.
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It was shown in Chapter 5 that a state-of-the-art noise PSD estimation algorithm
based on minimum statistics yields significant estimation errors if it is applied to
diverse audio material in an unsupervised manner, especially for SNRs larger than
40 dB. This is mainly caused by the fact that this noise PSD estimation algorithm
has been developed for speech signals, based on the assumption of frequent pauses
in the desired signal. As music signals typically only contain scarce pauses or no
pauses at all, this leads to an overestimation of the noise PSD. We presented an
evaluation, using a large number of artificially disturbed test signals and the PEAQ
algorithm to rate the perceptual quality of the restored signals, that shows that
noise PSD estimation errors may result in a severe quality degradation when the
noise PSD estimation algorithm is combined with the state-of-the-art MMSE STSA
noise reduction algorithm. The algorithm proposed in Chapter 5 allows for a robust
estimation of the noise PSD for a large diversity of input signals and SNRs. It
is based on the assumption that the noise PSD is constant in a recording, which
holds for many archive recordings that have been digitized from a single carrier.
The noise PSD is estimated as the mean value of an exponential distribution that
corresponds to the truncated short-time periodogram coefficients of the input sig-
nal. The optimum truncation level is determined as the one that minimizes a
distance measure between the empirical distribution of the truncated periodogram
coefficients and the corresponding truncated exponential distribution. The evalua-
tion results indicated that the proposed algorithm achieves significantly lower noise
PSD estimation errors than the algorithm based on minimum statistics under most
conditions, for SNRs of 20 dB to 60 dB, and for different types of broadband noise,
i.e., artificial white and pink noise and real tape and film noise. In addition, the
proposed algorithm provides a confidence measure that indicates the reliability of
the PSD estimate. This measure was used to reject noise PSD estimates with a
low confidence to avoid a degradation of the desired signal if the proposed noise
PSD estimation algorithm is used in combination with a broadband noise reduction
algorithm. In order to do so, we defined a minimum required confidence (MRC)
and the noise PSD estimate was set to zero at frequencies where the confidence was
smaller than the MRC. While the presented simulation showed that a noise PSD
estimation algorithm based on minimum statistics, in combination with the MMSE
STSA broadband noise reduction algorithm, can increase the perceptual quality of
severely disturbed signals at an SNR of 20 dB, the quality is generally reduced for
SNRs of 30 dB to 60 dB. The evaluation results for an algorithm based on struc-
tured sparsity that does not require a noise PSD estimate showed that the quality
is increased for SNRs of 20 dB to 40 dB, but that the quality is reduced for SNRs
above 40 dB. The evaluation results showed that the combination of the proposed
noise PSD estimation algorithm with the MMSE STSA broadband noise reduction
algorithm yields output signals with an improved perceptual quality for SNRs of
20 dB to 60 dB, increasing the quality for SNRs of 20 dB to 50 dB and leading to
very little quality degradation at an SNR of 60 dB.

Although the algorithms presented in this thesis represent an important step to-
wards the automatic restoration of highly diverse audio material, they are still
not perfect. The evaluation results showed that the proposed algorithms signifi-
cantly improve the quality for the majority of signals compared to the unsupervised
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operation of state-of-the-art restoration algorithms. Nevertheless, the interaction
with a skilled professional is still required for the most demanding audio restora-
tion projects of particularly valuable recordings, and care has to be taken if whole
media archives are processed in an unsupervised fashion. Still, the impulse proba-
bility of the proposed impulse classification algorithm and the confidence measures
of the proposed broadband noise PSD estimation algorithm can be used to trig-
ger a manual inspection of signals that yield unclear classification and estimation
results.

6.2 Suggestions for Further Research

In this section we give some suggestions for further research—regarding the indi-
vidual restoration of the three considered disturbance types in Sections 6.2.1 to
6.2.3 and regarding more general topics in Sections 6.2.4 and 6.2.5. As the three
considered disturbances (impulsive disturbances, hum and broadband noise) dif-
fer fundamentally regarding the signal model and the algorithms to determine the
disturbance parameters and to reduce the disturbances, possibilities for further re-
search depend on the disturbance.

6.2.1 Restoration of Impulsive Disturbances

The impulsive disturbance classification algorithm presented in Chapter 2 achieves
high classification accuracy for the majority of signals. However, informal experi-
ments have shown that certain transient elements of the desired signal lead to an
erroneous classification. In many cases, these transient elements are attack sounds
of drums or brass instruments or picked guitars which appear rhythmically, i.e., in
a regular pattern. This information can be used to increase the robustness of the
classification algorithm. One approach is to perform beat detection in a preprocess-
ing step, possibly based on an existing beat tracking algorithm [183, 184]. Short
signal portions around the estimated beat positions can then be excluded from the
feature computation and, hence, will probably not influence the classification result.
Another approach is to inspect the positions of the potential impulsive disturbances
by analyzing the result of the detection stage of an impulse restoration algorithm.
Potential impulses appearing in a regular pattern can then be assumed to be related
to the desired signal, whereas impulses that appear unregularly can be assumed to
be related to the disturbance.

6.2.2 Restoration of Hum Disturbances

The results presented in Chapter 3 indicate that detecting hum disturbances and
estimating their parameters is possible with high accuracy. Furthermore, the results
in Chapter 4 indicate that a large amount hum reduction is possible with low sig-
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nal distortion if the frequencies of the hum harmonics are known or well estimated.
Therefore, the combination of the proposed hum detection algorithm with a notch
filter-based hum reduction algorithm is expected to allow for an unsupervised oper-
ation, resulting in high-quality hum restoration for most signals. Nevertheless, the
results also indicate that the hum detection algorithm misses a certain amount of
hum disturbances if their power is low compared to the desired signal. As many hum
disturbances are harmonic tone complexes with multiple partial tones, an increased
detection accuracy may be obtained by integrating all partial tones to determine a
single detection result instead of analyzing each partial tone individually.

A different approach to reduce hum disturbances could be based on cancelling the
tone complex that represents the hum disturbance. Obviously, this requires very
precise knowledge about the hum disturbance itself, with large parameter estimation
errors potentially having catastrophic consequences, i.e., possibly even increasing
the hum power. While a cancellation approach possibly does not lend itself to a
fully unsupervised restoration, it may be advantageous if manual operation and
parameter adjustment is feasible. This is because the cancellation approach in
principle allows for a reduction of hum signal power without any degradation of the
desired signal. In contrast, state-of-the-art filter-based algorithms as summarized
in Chapter 4 always represent a compromise between hum power reduction and the
degradation of the desired signal.

6.2.3 Broadband Noise

The proposed noise PSD estimation algorithm in Chapter 5 relies on the assump-
tion that the periodogram coefficients of the broadband noise follow an exponential
distribution. Furthermore, it is assumed that the spectrogram of the desired sig-
nal exhibits a small number of signal-free time-frequency coefficients, such that the
smallest short-time periodogram coefficients of the noisy input signal for each fre-
quency are assumed to be related to the noise disturbance only. The presented
simulation results indicate that this assumption may be assumed to be valid, as
accurate noise PSD estimation results are obtained with the proposed algorithm.
The basic idea of determining a subset of the short-time periodogram coefficients to
estimate the noise PSD can, however, be extended. For example, a different distri-
bution of the periodogram coefficients of the disturbance can be assumed. This may
lead to improved results, e.g., for certain types of film noise that can coarsely be de-
scribed as a combination of continuous and impulsive noise. Due to outliers caused
by impulses, in this case the periodogram coefficients related to the disturbance are
no longer concentrated at the smallest periodogram coefficients. The challenge is
then to come up with an efficient means to determine the subset of periodogram
coefficients that minimizes the distance to the assumed distribution. Approaches
to solve this problem could be based on efficient algorithms for discrete optimiza-
tion, e.g., Branch-and-Bound [185]. In order to do so, however, an efficient way to
compute a lower bound for the minimum distance is required to prune the search
space of possible subsets. Another extension of the proposed algorithm idea could
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be to incorporate cyclostationarity of the broadband noise into the signal model.
Cyclostationary noise may occur, e.g., with cylinder or disc media if dust and dirt
is distributed unevenly across the carrier. The resulting broadband noise is then
modulated depending on the playback position. Due to the geometrical shape of
these carriers, the modulation is typically periodic and the noise can be described
as a cyclostationary process.

The proposed noise PSD estimation algorithm assumes that the noise PSD is con-
stant over the complete duration of a recording. This is the case for many signals
whose broadband noise is caused by insufficiencies of the original carrier material
and, therefore, can be assumed to be rather stationary for the complete recording.
Nevertheless, the range of application of the proposed algorithm can be extended
to time-varying broadband noise characteristics that may occur, e.g., if a recording
contains a sequence of clips from different original media, or simply at different lev-
els. In order to do so, information about sections with stationary broadband noise
is required. Therefore, an interesting research topic is to develop an algorithm to
detect these sections. Informal experiments based on analyzing high-frequency infor-
mation above the maximum frequency of the desired signal have yielded promising
results.

6.2.4 Automatic Restoration Processing Chain

Chapters 2 to 5 concentrate on the detection, parameter estimation and reduction
of individual disturbances. In combination, the proposed algorithms can be used
to determine which disturbance types are present in recording, or in a section of a
recording. A surely reasonable next step is to combine the algorithms and create
an automatic restoration system for all three disturbance types, e.g., implementing
the processing workflow described in Chapter 1. As mentioned before, it is usually
sensible to treat the disturbance types in a specific order, e.g., to reduce masking
effects and ease the disturbance parameter estimation. The automatic restoration
system first may detect and remove impulsive disturbances, followed by hum dis-
turbances and, finally, broadband noise. While the implementation of this system
is most probably straightforward, its evaluation under realistic conditions that are
typical for archive audio would be very interesting.

6.2.5 Automatic Information Retrieval

While the focus of this thesis is the restoration of recordings in media archives, an
interesting application of the proposed algorithms is automatic information retrieval
from the audio signals. For many recordings, only little information is available
other then the recording itself. This information may regard the original carrier, the
age of a recording or the recording location, and can be useful for the management
of an archive. In addition, information retrieved from the signals may allow to draw
conclusions about the history of a recording, possibly in combination with further
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information. For example, the presence of certain disturbance types indicates a
certain original carrier, potentially giving indications on the age of a recording. The
presence of a hum disturbance with a specific fundamental frequency may give hints
on the country where the recording was made. Altogether, the proposed algorithms
may help to increase the accessibility and management of media archives that get
bigger and bigger every day.
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[97] G. Garćıa, “Automatic Denoising for Musical Audio Restoration,” PhD the-
sis, Stanford, USA: Stanford University (2009).

[98] D. Van Compernolle, W. Ma, F. Xie, M. Van Diest, “Speech Recognition in
Noisy Environments with the Aid of Microphone Arrays,” Speech Commu-
nication, vol. 9, no. 5, pp. 433–442 (1990 Dec.). https://doi.org/10.1016/
0167-6393(90)90019-6

[99] The League, The Soundtrack Of Our Summer, Jamendo (2009).
[100] T. Lorenz, “High-End Audio Restoration,” Proceedings of the 26th VDT

International Convention, Leipzig, Germany (2010 Nov.).
[101] S. Bech, N. Zacharov, Perceptual Audio Evaluation—Theory, Method and

Application, Chichester/West Sussex, England: John Wiley & Sons (2006).
[102] M. G. Kendall, B. B. Smith, “On the Method of Paired Comparisons,”

Biometrika, vol. 31, no. 3, pp. 324–345 (1940 Mar.). https://doi.org/
10.2307/2332613

https://doi.org/10.1109/ICASSP.2015.7178789
https://doi.org/10.1109/89.928915
https://doi.org/10.1109/89.928915
https://doi.org/10.1109/97.988717
https://doi.org/10.1109/TSA.2003.811544
https://doi.org/10.1109/TSA.2003.811544
https://doi.org/10.1109/TASL.2011.2180896
https://doi.org/10.1016/0167-6393(90)90019-6
https://doi.org/10.1016/0167-6393(90)90019-6
https://doi.org/10.2307/2332613
https://doi.org/10.2307/2332613


128 summary, conclusions and further research

[103] R. A. Bradley, M. E. Terry, “Rank Analysis of Incomplete Block Designs: I.
The Method of Paired Comparisons,” Biometrika, vol. 39, no. 3, pp. 324–345
(1952 Dec.). https://doi.org/10.2307/2334029

[104] K. Tsukida, M. R. Gupta, How to Analyze Paired Comparison Data (May
2011).

[105] ITU-R, “Recommendation BS.1534-3: Method for the Subjective Assessment
of Intermediate Quality Level of Audio Systems” (2015 Oct.).

[106] A. Gray, J. Markel, “Distance Measures for Speech Processing,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 24, no. 5, pp. 380–
391 (1976 Oct.). https://doi.org/10.1109/TASSP.1976.1162849

[107] F. Itakura, S. Saito, “Analysis Synthesis Telephony Based on the Maximum
Likelihood Method,” Proceedings of the 6th International Congress on Acous-
tics, Tokyo, Japan, vol. 2, pp. C-17–C-20 (1968 Aug.).

[108] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beer-
ends, C. Colomes, “PEAQ—The ITU Standard for Objective Measurement
of Perceived Audio Quality,” Journal of the Audio Engineering Society, vol.
48, no. 1, pp. 3–29 (2000 Feb.).

[109] International Telecommunication Union, Method for Objective Measurements
of Perceived Audio Quality, Recommendation BS.1387-1, Geneva, Switzer-
land: ITU-R (Nov. 2001)

[110] P. Kabal, “An Examination and Interpretation of ITU-R BS.1387: Perceptual
Evaluation of Audio Quality,” Technical Report, Montreal, Canada: Dept.
Electrical & Computer Engineering, McGill University (May 2002).

[111] M. Brandt, Impulsive Disturbances in Audio Archives: Signal Classification
for Automatic Restoration – Demonstration Signals Accompanying the Arti-
cle. http://www.matbra.org

[112] M. Brandt, Automatic Noise PSD Estimation for Archive Audio Restoration
—Website Accompanying the Paper. https://matbra.github.io/noise_

psd_estimation
[113] M. Brandt, S. Doclo, T. Gerkmann, J. Bitzer, “Impulsive Disturbances in

Audio Archives: Signal Classification for Automatic Restoration,” Journal
of the Audio Engineering Society, vol. 65, no. 10, pp. 826–840 (2017 Oct.).
https://doi.org/10.17743/jaes.2017.0032

[114] M. Brandt, J. Bitzer, “Automatic Detection of Hum in Audio Signals,” Jour-
nal of the Audio Engineering Society, vol. 62, no. 9, pp. 584–595 (2014 Oct.).
https://doi.org/10.17743/jaes.2014.0034

[115] M. Brandt, J. Bitzer, “Hum Removal Filters: Overview and Analysis,” Pro-
ceedings of the 132nd Audio Engineering Society Convention, Budapest, Hun-
gary (2012 Apr.).

[116] M. Brandt, S. Doclo, J. Bitzer, “Automatic Noise PSD Estimation for Archive
Audio Restoration,” Submitted to the Journal of the Audio Engineering So-
ciety (2018 Mar.).

[117] B. Lyons, R. Chandler, C. Lacinak, Quantifying the Need: A Survey of Ex-
isting Sound Recordings in Collections in the United States, New York, USA:
AVPreserve (May 2015)

https://doi.org/10.2307/2334029
https://doi.org/10.1109/TASSP.1976.1162849
http://www.matbra.org
https://matbra.github.io/noise_psd_estimation
https://matbra.github.io/noise_psd_estimation
https://doi.org/10.17743/jaes.2017.0032
https://doi.org/10.17743/jaes.2014.0034


references 129

[118] A. J. E. M. Janssen, R. N. J. Veldhuis, L. B. Vries, “Adaptive Interpolation
of Discrete-Time Signals That Can Be Modeled as Autoregressive Processes,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34, no. 2,
pp. 317–330 (1986 Apr.). https://doi.org/10.1109/TASSP.1986.1164824

[119] S. Vaseghi, P. Rayner, “A New Application of Adaptive Filters for Restora-
tion of Archived Gramophone Recordings,” Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
New York, USA, vol. 5, pp. 2548–2551 (1988 Apr.). https://doi.org/10.
1109/ICASSP.1988.197163

[120] S. V. Vaseghi, “Algorithms for Restoration of Archived Gramophone Record-
ings,” PhD thesis, Cambridge, England: Cambridge University (1988).

[121] R. Veldhuis, Restoration of Lost Samples in Digital Signals, Prentice Hall
International Series in Acoustics, Speech and Signal Processing, New York,
USA: Prentice Hall (1990).

[122] C. Hicks, S. Godsill, “A Two-Channel Approach to the Removal of Impulsive
Noise from Archived Recordings,” Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Adelaide,
Australia, vol. 2, pp. II-213–II-216 (1994 Apr.). https://doi.org/10.1109/
ICASSP.1994.389681

[123] Y. Xu, Q. Huang, W. Wang, P. Foster, S. Sigtia, P. J. B. Jackson, M. D.
Plumbley, “Unsupervised Feature Learning Based on Deep Models for En-
vironmental Audio Tagging,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 6, pp. 1230–1241 (2017 June). https:
//doi.org/10.1109/TASLP.2017.2690563

[124] Y. Lavner, R. Cohen, D. Ruinskiy, H. Ijzerman, “Baby Cry Detection in Do-
mestic Environment using Deep Learning,” Proceedings of the IEEE Interna-
tional Conference on the Science of Electrical Engineering (ICSEE), Eilat, Is-
rael, pp. 1–5 (2016 Nov.). https://doi.org/10.1109/ICSEE.2016.7806117
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