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ABSTRACT

Identifying the target speaker in hearing aid applications is an essential ingredient
to improve speech intelligibility. Although several speech enhancement algorithms
are available to reduce background noise or to perform source separation in multi-
speaker scenarios, their performance depends on correctly identifying the target
speaker to be enhanced. Recent advances in electroencephalography (EEG) have
shown that it is possible to identify the target speaker which the listener is attend-
ing to using single-trial EEG-based auditory attention decoding (AAD) methods.
However, in realistic acoustic environments the AAD performance is influenced by
undesired disturbances such as interfering speakers, noise and reverberation. In ad-
dition, it is important for real-world hearing aid applications to close the AAD loop
by presenting on-line auditory feedback.
This thesis deals with the problem of identifying and enhancing the target speaker
in realistic acoustic environments based on decoding the auditory attention of the
listener using single-trial EEG recordings. To this end, we thoroughly analyze the
AAD performance in noisy and reverberant environments, we propose novel methods
for decoding auditory attention and we propose open-loop and closed-loop cognitive-
driven speech enhancement systems for hearing aid applications.
First, we analyze the impact of different acoustic conditions (anechoic, reverberant,
noisy, and reverberant-noisy) on the performance of a least-squares-based AAD
method. We show that for all considered acoustic conditions it is possible to decode
auditory attention with a considerably large decoding performance, but that the
decoding performance is significantly affected by the presence of background noise
and especially the interfering speaker in the reference signals used for decoding.
Second, we propose several open-loop and closed-loop cognitive-driven speech en-
hancement systems. The first system is an open-loop cognitive-driven binaural
beamformer, aiming at enhancing the target speaker and suppressing the interfering
speaker and background noise while preserving the spatial impression of the acoustic
scene. In this system a binaural minimum-variance-distortionless-response (MVDR)
or binaural linearly-constrained-minimum-variance (LCMV) beamformer is steered
based on AAD. For a two-speaker scenario in diffuse babble noise we show that the
proposed cognitive-driven binaural beamforming system yields a significantly larger
speech enhancement performance than a fixed forward-steered binaural MVDR
beamformer, both in anechoic as well as reverberant conditions. The second system
is an open-loop cognitive-driven convolutional beamformer, aiming at enhancing the
target speaker and jointly suppressing the interfering speaker, reverberation and
background noise. This system combines a neural-network-based mask estimator,
convolutional beamformers and AAD. We show that the proposed cognitive-driven
convolutional beamforming system yields a significantly larger speech enhancement
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performance than cognitive-driven systems based on conventional beamformers. The
third system is a closed-loop cognitive-driven gain controller, where real-time AAD
enables the listener to directly interact with an adaptive gain controller. Although
there is a significant delay to detect attention switches, experimental results demon-
strate the feasibility of the proposed system, which is able to improve the SIR
between the attended and the unattended speaker.
Third, we propose novel methods to decode auditory attention. More specifically, we
propose a reference signal generation approach based on binary masking, which uses
binary masks based on directional speech presence probability to discard low-energy
intervals which are susceptible to interfering speech and background noise. In addi-
tion, we propose an AAD method based on a state-space model, which translates
the correlation coefficients into more reliable probabilistic attention measures and
improves the decoding performance of linear and non-linear methods using small
correlation windows.
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ZUSAMMENFASSUNG

Die Bestimmung des Zielsprechers in Hörgeräte-Anwendungen ist ein wesentlicher
Bestandteil zur Verbesserung der Sprachverständlichkeit. Obwohl verschiedene
Sprachverbesserungsalgorithmen zur Reduzierung von Hintergrundgeräuschen oder
zur Quellentrennung in Szenarien mit mehreren Sprechern existieren, hängt ihre
Leistung von der korrekten Bestimmung des zu verbessernden Zielsprechers ab.
Jüngste Entwicklungen in der Elektroenzephalographie (EEG) haben gezeigt, dass
es möglich ist, den Zielsprecher, auf den sich der Hörer konzentriert, mit Hilfe von
AAD-Methoden (Auditive Aufmerksamkeitsdekodierung), die auf einem einzelnen
Durchlauf im EEG basieren, zu bestimmen. In realistischen akustischen Umgebun-
gen wird die Leistung der AAD jedoch durch unerwünschte Störfaktoren wie inter-
ferierende Sprecher, Geräusch und Nachhall beeinträchtigt. Darüber hinaus ist es
für die Anwendung von Hörgeräten in der realen Welt wichtig, den AAD-Kreislauf
zu schließen, indem online ein auditives Feedback dargeboten wird.
Diese Arbeit befasst sich mit dem Problem der Bestimmung und Verstärkung
des Zielsprechers in realistischen akustischen Umgebungen, basierend auf der
Dekodierung der auditiven Aufmerksamkeit des Hörers unter Verwendung einzel-
ner EEG-Aufnahmen. Zu diesem Zweck analysieren wir eingehend die Leistung der
AAD in verrauschten und nachhallenden Umgebungen, wir präsentieren neue Meth-
oden zur Dekodierung der auditiven Aufmerksamkeit und wir präsentieren kognitiv
gesteuerte Sprachverbesserungssysteme mit offenem und geschlossenem Regelkreis
für Hörgeräteanwendungen.
Als erstes analysieren wir den Einfluss verschiedener akustischer Bedingungen (ane-
choisch, nachhallend, verrauscht und nachhallend-verrauscht) auf die Leistung einer
auf den kleinsten Quadraten basierenden AAD-Methode. Wir zeigen, dass es für alle
betrachteten akustischen Bedingungen möglich ist, die auditive Aufmerksamkeit mit
einer beträchtlich großen Dekodierleistung zu dekodieren, dass aber die Dekodier-
leistung durch das Vorhandensein von Hintergrundgeräuschen und insbesondere den
interferierenden Sprecher in den zur Dekodierung verwendeten Referenzsignalen sig-
nifikant beeinflusst wird.
Als zweites präsentieren wir mehrere kognitiv gesteuerte Sprachverbesserungssys-
teme mit offenem und geschlossenem Regelkreis. Das erste System ist ein kog-
nitiv gesteuerter binauraler Beamformer mit offenem Regelkreis, der darauf
abzielt, den Zielsprecher zu verstärken und den interferierenden Sprecher und
Hintergrundgeräusche zu unterdrücken, während der räumliche Eindruck der
akustischen Szene erhalten werden soll. In diesem System wird ein binauraler
MVDR-Beamformer (Minimum-Variance-Distortionless-Response) oder ein binau-
raler LCMV-Beamformer (Linearly-Constrained-Minimum-Variance) auf der Basis
von AAD gesteuert. Für ein Zwei-Sprecher-Szenario mit diffusem Sprachgeräusch
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zeigen wir, dass das vorgestellte kognitiv-gesteuerte binaurale Beamformer-System
sowohl unter anechoischer als auch unter nachhallender Bedingung eine signifikant
größere Sprachverbesserungsleistung erzielt als ein fixer nach vorne gesteuerter
binauraler MVDR-Beamformer. Das zweite System ist ein kognitiv gesteuerter
Faltungs-Beamformer mit offenem Regelkreis, der darauf abzielt, den Zielsprecher zu
verstärken und gleichzeitig den interferierenden Sprecher, den Nachhall und das Hin-
tergrundgeräusch zu unterdrücken. Dieses System kombiniert einen auf neuronalen
Netzwerken basierenden Maskenschätzer, Faltungs-Beamformer und AAD. Wir
zeigen, dass das vorgeschlagene kognitiv-gesteuerte Faltungs-Beamformersystem
eine signifikant größere Sprachverbesserung erzielt, als kognitiv gesteuerte Systeme,
die auf konventionellen Beamformern basieren. Das dritte System ist ein kognitiv
gesteuerter Verstärkungsregler mit geschlossenem Regelkreis, bei dem die Echtzeit-
AAD dem Hörer die direkte Interaktion mit einem adaptiven Verstärkungsregler
ermöglicht. Obwohl es eine erhebliche Zeitverzögerung bei der Erkennung von
Aufmerksamkeitswechseln gibt, zeigen die experimentellen Ergebnisse die Umset-
zbarkeit des vorgeschlagenen Systems, das in der Lage ist, den SIR zwischen dem
Sprecher, auf den sich der Hörer konzentriert und dem Sprecher, auf den sich der
Hörer nicht konzentriert, zu verbessern.
Als drittes schlagen wir neue Methoden zur Dekodierung der auditiven Aufmerk-
samkeit vor. Konkret schlagen wir einen auf binärer Maskierung basierenden Ansatz
zur Generierung von Referenzsignalen vor, bei dem binären Masken auf der Grund-
lage direktionaler Sprachanwesenheitswahrscheinlichkeit verwendet werden, um In-
tervalle mit niedriger Energie zu verwerfen, die besonders anfällig für interferierende
Sprache und Hintergrundgeräusche sind. Darüber hinaus schlagen wir eine auf
einem Zustandsraummodell basierende AAD-Methode vor, die die Korrelationsko-
effizienten in zuverlässigere probabilistische Aufmerksamkeitsmaße übersetzt und
die Dekodierungsleistung linearer und nichtlinearer Methoden unter Verwendung
kleiner Korrelationsfenster verbessert.
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GLOSSARY

Acronyms and abbreviations

AAD auditory attention decoding
AGC adaptive gain controller
BCI brain-computer interface
BBEAM binaural beamformer
BEAM beamformer
BLSTM bi-directional long short term memory network
cGMM complex Gaussian mixture model
CASA computational auditory scene analysis
CNN convolutional neural network
DNN deep neural network
DOA direction of arrival
DSPP directional speech presence probability
ECoG electrocorticographic
EEG electroencephalography
EM expectation-maximization
ERP event-related potential
fwSSNR frequency-weighted segmental SNR
GCC-PHAT generalized cross-correlation with phase transform
GLM generalized linear model
IC interaural coherence
ILD interaural level difference
ISTFT inverse short-time Fourier transform
ITD interaural time difference
LSL Lab Streaming Layer
LTI linear time-invariant
LCMP linearly constrained minimum power
LCMV linearly-constrained-minimum-variance
MAP maximum posterior distribution
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MMSE minimum mean-squared error
MPDR minimum power distortionless response
MVDR minimum-variance-distortionless-response
MWF multi-channel Wiener filter
PSD power spectral density
RAAD real-time AAD
RETF relative early transfer function
RTF relative transfer function
RMS root-mean-square
SINR signal-to-interference-plus-noise ratio
SIR signal-to-interference ratio
SNR signal-to-noise ratio
SPP speech presence probability
SRM spatial release from masking
SSM state-space model
STFT short-time Fourier transform
SVM support vector machine
TRF temporal response function
wLCMP weighted linearly-constrained-minimum-power
wMPDR weighted minimum-power-distortionless-response
WOLA weighted overlap-add
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1
INTRODUCTION

1.1 Motivation

Hearing impairment is affecting about half a billion persons in the world, includ-
ing every third person aged 65 [2]. Hearing impairment often leads to a decreased
speech intelligibility in complex acoustic conditions, particularly in multi-speaker
scenarios. Persons with impaired hearing typically have serious difficulties to segre-
gate a target speaker from a mixture of speakers and background noise, reducing
their ability to interactively communicate with other persons and possibly leading
to feelings of isolation [3,4] and cognitive decline [5,6]. Hearing aids aim at restoring
the normal hearing ability by several processing steps such as frequency-dependent
amplification, dynamic range compression and speech enhancement [7,8]. The main
objective of speech enhancement is to improve the intelligibility of the recorded
microphone signals, which are often corrupted by various undesired disturbances,
such as interfering speakers, noise and reverberation. During the last decades many
contributions have been dedicated to speech enhancement for hearing aid appli-
cations, and several single- and multi-channel noise reduction methods have been
proposed [9–15]. Typically, the performance of these methods in terms of improv-
ing speech intelligibility depends on correctly identifying the target speaker to be
enhanced. In hearing aid applications, the target speaker is often assumed to be
either located in front of the hearing aid user or to be the loudest speaker. However,
since in real-world conditions these assumptions are often violated, the performance
of speech enhancement methods may substantially decrease. Hence, correctly iden-
tifying the target speaker in hearing aid applications is an essential ingredient to
successfully improve speech intelligibility, motivating the work in this thesis.
Recent advances have shown that it is possible to infer the auditory attention of
listeners from electroencephalography (EEG) recordings [16, 17]. Using single-trial
EEG recordings, several auditory attention decoding (AAD) methods have been
proposed to identify the attended speaker [16, 18–26]. The possibility of decoding
auditory attention from EEG recordings has led to an increasing research interest
to incorporate AAD in a brain-computer interface (BCI) for real-world applications,
e.g., to cognitively control speech enhancement in hearing aids [27–31]. Cognitive-
driven speech enhancement systems using AAD potentially provide the listener
with a relatively high degree of flexibility to selectively attend to a desired speaker.
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However, in realistic acoustic environments the performance of AAD is likely to
be influenced by undesired disturbances (interfering speakers, noise and reverber-
ation), which may have a negative effect on the reference signals used in AAD
methods [19, 26, 27, 32]. Additionally, it is important to close the loop between the
cognitive-driven speech enhancement system and the listener by presenting the en-
hanced speech signal in an on-line fashion, enabling the listener to interact with
the speech enhancement system. The main objectives of this thesis are there-
fore to analyze the performance of AAD in realistic noisy and reverber-
ant acoustic conditions, to improve AAD methods and to develop and
evaluate open-loop and closed-loop cognitive-driven speech enhancement
systems for hearing aid applications using AAD.
In the remainder of this chapter we present a brief overview of state-of-the-art speech
enhancement and AAD methods and highlight the main contributions of this thesis.
In Section 1.2, we discuss the effect of reverberation, noise and interfering speakers
on speech intelligibility and cues. In Section 1.3, we provide a general overview of
single- and multi-channel speech enhancement methods and discuss some remaining
challenges of applying these methods in hearing aids. In Section 1.4, we provide
an overview of AAD methods and discuss the main challenges of applying theses
methods for hearing aid applications. In Section 1.5, we provide an overview of
open-loop cognitive-driven speech enhancement systems using AAD and discuss
some remaining challenges of these systems for hearing aid applications. In Section
1.6, we summarize the structure and the main contributions of the thesis.

1.2 Effect of reverberation, noise and interfering speaker on speech
intelligibility and cues

Throughout the thesis, we typically consider an acoustic scenario comprising two
competing speakers and background noise in a reverberant environment, as illus-
trated in Fig. 1.1. The listener is wearing binaural hearing aids with multiple micro-
phones. The signals at ears of the listener and the signals captured by the hearing
aid microphones consist of a mixture of the target speaker, the interfering speaker,
background noise and reverberation. The target speaker is defined as the speech
source to which the listener wants to listen, whereas the interfering speaker is the
speech source to which the listener does not want to listen and should hence be
suppressed. Typical background noise can be, e.g., fan noise, traffic noise or babble
noise which occurs when multiple speakers are talking simultaneously. Background
noise has a negative effect on speech intelligibility, even more for hearing-impaired
listeners [33–36].
In a reverberant environment, the speech signals of the target speaker and the in-
terfering speaker are not only directly arriving at the ears of the listener and the
hearing aid microphones, but are also acoustically reflected against surfaces and
objects. In order to consider the influence of reverberation on speech intelligibility,
reverberation is typically decomposed into early and late reverberation. Early re-
verberation consists of spatially distinct reflections [37], which arrive at the ears
and the hearing aid microphones typically in the order of tens of milliseconds [37],
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Fig. 1.1: Acoustic scenario with a target speaker, an interfering speaker and background
noise in a reverberant environment. The listener is wearing binaural hearing aids
with multiple microphones. The direct path, early and late reverberation are
illustrated between the target speaker and the microphones of the right hearing
aid.

whereas late reverberation occurs later and arrives approximately uniformly from
all directions [37]. While early reflections can be beneficial for speech intelligibil-
ity by increasing the efficient signal-to-noise ratio of the target speech [38–40], late
reverberation is known to have a detrimental effect on speech quality and intelli-
gibility [39, 41, 42], in particular for hearing-impaired listeners [42]. The amount of
reverberation in a room can be specified using the reverberation time (T60) [43],
i.e., the time required for the reverberant energy to decay by 60 dB after the sound
source has been deactivated.
In complex acoustic conditions, the human auditory system possesses a remarkable
ability to segregate a speaker of interest from a mixture of speakers and background
noise. While the auditory system using one ear, referred to as monaural hearing,
may perform source segregation based on monaural cues (e.g., pitch, spectral pinna
cues and amplitude modulation), using both ears, referred to as binaural hearing,
allows the auditory system to exploit binaural cues in addition to monaural cues
for segregation.
The main binaural cues are the interaural level difference (ILD), the interaural
time difference (ITD) and the interaural coherence (IC). The ILD occurs due to
the head acting as an obstacle for the sound waves traveling between the ears,
i.e., the so-called head shadow effect. The ITD occurs due to the time difference of
arrival of the sound waves traveling between the ears. The interaural coherence is the
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Fig. 1.2: A block scheme of a typical single-channel speech enhancement system. y [n]
denotes the captured microphone signal and ŝ [n] denotes the estimated target
speech signal.

normalized cross-correlation between the signals at both ears. It has been shown that
the ILD cue dominantly contributes to source localization at high frequencies [44,45],
whereas the ITD cue dominantly contributes at low frequencies. These binaural
cues together play an important role in speech intelligibility [45–47] by providing
spatial release from masking (SRM), also known as binaural unmasking [45–47].
The SRM is relatively small when the target speech and the interfering speech can
be segregated by monaural cues, e.g., when the speakers have a different pitch,
and is particularly large when other cues, e.g., binaural cues, are available for the
listener. In noisy and reverberant environments the binaural cues are smeared such
that source localization becomes more difficult and SRM is reduced, particularly for
impaired-hearing persons [46,48,49].

1.3 Overview of speech enhancement methods

The aim of speech enhancement is to selectively enhance the target speech signal and
suppress interfering speakers and background noise. In general, speech enhancement
methods can be classified into single-channel and multi-channel methods, based on
the number of microphones which are used. In the following sections, we present an
overview of several single- and multi-channel speech enhancement methods. A more
detailed review of speech enhancement methods can be found in, e.g., [10–15]. In ad-
dition, we present a general overview of multi-channel speech enhancement methods
for binaural hearing aid applications and discuss challenges and open issues.

1.3.1 Single-channel speech enhancement

Single-channel speech enhancement methods typically exploit spectro-temporal dif-
ferences between the speech and the noise signals. The spectral coefficients of the
target speech signal are commonly estimated by applying a (real-valued) gain to the
spectral coefficients of the noisy microphone signal, aiming at suppressing the dis-
turbances present in the recorded microphone signal. A block diagram of a typical
single-channel speech enhancement system is depicted in Fig. 1.2. Many gain func-
tions have been derived using a statistical framework, e.g., resulting in estimators
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that are optimal in the minimum mean-squared error (MMSE) or the maximum pos-
terior distribution (MAP) sense under certain assumptions. The well-known Wiener
filter is the MMSE estimator of the target speech spectral coefficients, when assum-
ing a Gaussian distribution for the speech and noise spectral coefficients [50–53].
However, since a super-Gaussian assumption is more appropriate to model speech
spectral coefficients, several MMSE and MAP estimators using a super-Gaussian
assumption have been proposed [15,54–58].
To compute these gain functions, typically an estimate of the short-term power
spectral densities (PSDs) of the speech signal and the noise is required, as shown in
Fig. 1.2. Several methods have been proposed to blindly estimate the noise PSD from
the noisy microphone signals, e.g., based on a voice activity detector [59], speech
presence probability (SPP) [60,61], or by using subspace techniques [62]. In addition,
several methods have been proposed to estimate the speech PSD, e.g., the maximum
likelihood estimation method in [63] and the temporal cepstrum smoothing method
in [64].The aforementioned PSD estimators typically suffer from a limited capability
to track highly non-stationary background noises, e.g., resulting in speech distortion
and limited noise reduction [52, 53]. Alternatively, the noise and speech PSDs can
be estimated using machine learning methods, where the structure and statistics
of speech and noise are learned and modeled using training data. Several machine
learning-based PSD estimation methods have been proposed by using statistical
generative models, e.g., hidden Markov models [58, 65–68], by using probabilistic
models employing non-negative matrix factorization [69–71], and by using codebook-
based methods [72–74].
More recently, several single-channel speech enhancement methods based on neural
networks have been proposed. Neural networks have the potential to approximate
arbitrary functions [75,76], referred to as the universal approximation property. Neu-
ral networks with many hidden layers, known as deep neural networks (DNNs), can
be trained to directly estimate the target speaker [77–79]. In addition, DNNs can be
trained to estimate gain functions [80–82] or masks, aiming at clustering and retain-
ing the time-frequency bins containing mainly the target speaker [83–85]. DNNs with
different structures have been considered for speech enhancement, e.g., recurrent
neural networks [77, 78, 85] and convolutional neural networks (CNNs) [79, 83, 84].
It should be noted that the generalization of the neural network-based speech en-
hancement methods to unseen conditions, e.g., unknown speakers or unseen acoustic
conditions, is still a challenging problem.

1.3.2 Multi-channel speech enhancement

When multiple microphones are available multi-channel speech enhancement allows
to exploit the spatial diversity between the target speaker, the interfering speakers
and the background noise in addition to the spectro-temporal diversity. Spatial fil-
ters, also often referred to as beamformers [9], can preserve the target speech signal
without distortion (or with low distortion) and suppress the interfering speech sig-
nals and background noise by linearly filtering and summing the microphone signals
(see Fig. 1.3). Generally, beamformers can be categorized into two main classes, i.e.,
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Fig. 1.3: A block scheme of spatial filtering. ym [n] denotes the m-th captured microphone
signal with m ∈ {1, · · · ,M} and ŝ [n] denotes the estimated target speech signal.

signal-independent and signal-dependent, based on whether the statistics of the mi-
crophone signals are exploited or not [13]. In the following section, we present an
overview of the existing signal-independent and signal-dependent beamformers pro-
posed in the literature. In addition, we present an overview of the existing methods
for estimating the parameters of these beamformers.

Signal-independent beamformer

Signal-independent beamformers, also referred to as fixed beamformers, require the
geometry of the microphone array and the direction of arrival (DOA) of the target
speaker to be known. The most commonly used signal-independent beamformers are
the delay-and-sum beamformer, the superdirective beamformer and the differential
microphone beamformer. The delay-and-sum beamformer simply aligns the signals
arriving from the DOA of the target speaker by applying delays to the microphone
signals before summing them, thereby maximizing the array gain for spatially uncor-
related noise, e.g., sensor noise [9]. The superdirective beamformer maximizes the
array gain assuming that the noise field is diffuse (or spatially isotropic), i.e., com-
posed of a superposition of uncorrelated plane waves that are uniformly distributed
on a surface with equal PSDs [86]. The differential microphone beamformer is im-
plemented using small-sized microphone arrays [87,88].
Most aforementioned signal-independent beamformers require the DOAs of speakers.
The DOA of the target speaker can be estimated, e.g., by using a beamforming-based
method [89] or by using a classification-based SPP estimation method [90].
In general, since the statistics of the microphone signals are not taken into account
in the design of signal-independent beamformers, these beamformers are not able
to adapt to time-varying acoustic environments, e.g., when opening a window or
turning on the air conditioner.

Signal-dependent beamformer

In contrast to signal-independent beamformers, signal-dependent beamformers ex-
ploit the spectro-temporal and spatial statistics of the microphone signals. The most
commonly used signal-dependent beamformers exploiting the spatial statistics are
the minimum variance distortionless response (MVDR) beamformer and the linearly
constrained minimum variance (LCMV) beamformer. The commonly used signal-
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dependent beamformer exploiting both the spectro-temporal and spatial statistics
is the multi-channel Wiener filtering (MWF).
The MVDR beamformer aims at minimizing the PSD of the output signal while
preserving the target speech component in an arbitrarily chosen reference micro-
phone [9, 10, 86]. The MVDR beamformer requires either the covariance matrix of
the microphone signals, the covariance matrix of the interfering speech and back-
ground noise component, referred to as the covariance matrix of the overall inter-
fering component, or the covariance matrix of the background noise component. In
addition, the MVDR beamformer requires the estimate of the reverberant relative
transfer function (reverberant RTF) between the target speaker and the micro-
phones. From a theoretical point of view, if a perfect estimate of the covariance
matrix of either the microphone signals or the overall interfering component and a
perfect estimate of the reverberant RTF of the target speaker are used in designing
the MVDR beamformer, the MVDR beamformer is optimal in terms of signal-to-
interference-plus-noise (SINR) ratio. The MVDR beamformer using an estimate of
the covariance matrix of the microphone signals is also known as minimum power
distortionless response (MPDR) beamformer [9]. In practice, it should be realized
that using the estimated covariance matrix of the microphone signals may lead to the
target speaker cancellation in the case of reverberant RTF estimation errors [9,91].
If perfect estimates of the covariance matrix of the background noise component
and the reverberant RTF of the target speaker are used, the MVDR beamformer is
optimal in terms of signal-to-noise ratio (SNR).
In order to also control the interfering speaker suppression, in [9] an extension of
the MVDR incorporating an interference suppression constraint has been proposed,
known as LCMV beamformer. The LCMV beamformer requires either the covari-
ance matrix of the microphone signals, the covariance matrix of the overall inter-
fering component or the covariance matrix of the background noise component. In
addition, the LCMV beamformer requires the estimates of the reverberant RTFs of
the target speaker and the interfering speakers. From a theoretical point of view, if
perfect estimates of the RTFs and one of the mentioned covariance matrices are used
and the interference suppression constraint is set to completely suppress the inter-
fering speakers, the LCMV beamformer is optimal in terms of signal-to-interference
(SIR) ratio. The LCMV beamformer using an estimate of the covariance matrix of
the microphone signals is known as linearly constrained minimum power (LCMP)
beamformer [9].
The MWF generates an MMSE estimate of the target speech component at an
arbitrarily chosen reference microphone [92,93]. The MWF requires the covariance
matrix of the target speech component and of the overall interfering component. It
has been shown that for a single speech source the MWF can be decomposed as an
MVDR beamformer followed by a single-channel Wiener filter [94, 95]. As opposed
to the MDVR and the LCMV beamformer, at the output of the MWF there is a
trade-off between distortion of the target speech component and reduction of the
interfering speech and noise component. To control this trade-off, the MWF has
been extended to a speech-distortion-weighted MWF [96,97].
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While the discussed signal-dependent beamformers are able to suppress interfering
speakers and background noise, they are not designed to suppress late reverberation,
which has a negative effect on speech quality and intelligibility [39, 41, 42]. Aiming
at preserving the target speech component in an arbitrarily chosen reference mi-
crophone and jointly suppressing the interfering speech component, the background
noise component and the late reverberation component, a convolutional beamformer
has been recently proposed in [98–100]. The convolutional beamformer can be im-
plemented as a dereverberation filter followed by a variant of MPDR beamformer,
referred to as weighted MPDR (wMPDR) beamformer [100]. This sequential im-
plementation allows to estimate the parameters of the wMPDR beamformer using
multi-channel dereverberated signals which are obtained as the outputs of the dere-
verberation filter. The convolutional beamformer requires the covariance matrix of
microphone signals and the relative early transfer function (RETF) between the
target speaker and the microphones.
All discussed beamformers require estimates of certain parameters, e.g., the covari-
ance matrix of the microphone signals, the covariance matrix of the overall interfer-
ing component, the covariance matrix of the background noise component, or the
covariance matrix of the target speaker component. In addition, the reverberant
RTFs and the RETFs of the target speaker and the interfering speakers may be
required. The covariance matrix of the microphone signals can be easily obtained
by recursively updating microphone covariance matrix at each time-frequency (T-
F) bin [13]. The covariance matrix of the overall interfering component is typically
estimated by recursively updating covariance matrix of the microphone signals at
the T-F bins where the target speaker is inactive [13], using the masks of the target
speaker. The masks of the target speaker and also the interfering speakers can be
estimated based on, e.g., the speech presence probabilities (SPPs) of the speakers at
each T-F bin, estimated from the microphone signals. In [90] a classification-based di-
rectional SPP estimation method has been proposed using support vector machines
(SVMs). In [101] a SPP estimation method has been proposed by modeling direc-
tional and sparse SPPs of the speakers for each T-F bin using a complex Gaussian
mixture model (cGMM). The masks of speakers can be also directly estimated from
the microphone signals using DNNs with different structures, e.g., bi-directional
long short term memory networks (BLSTMs) and CNNs [83,84,102,103].
The covariance matrix of the target speaker component can be estimated by sub-
tracting the estimated covariance matrix of the microphone signals and the esti-
mated covariance matrix of the overall interfering component [104]. Alternatively,
the covariance matrix of the target speaker component can be estimated based on
the generalized eigenvalue decomposition of the estimated covariance matrix of the
microphone signals and the estimated covariance matrix of the overall interfering
component [104].
The covariance matrix of the background noise component can be estimated by
recursively updating covariance matrix of the microphone signals at the T-F bins
where all speakers are inactive, using the masks of all speakers. Alternatively, the
covariance matrix of the background noise component can be easily approximated
using diffuse noise field assumption [11].
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The reverberant RTFs of the target speaker and the interfering speakers are com-
monly estimated either using the covariance subtraction method [104–106] or the
covariance whitening method [104, 107, 108]. Both of these RTF estimation meth-
ods are based on the rank-one model of the covariance matrix of the speaker. Let
us consider as an example how the reverberant RTF of the target speaker can
be estimated. The covariance subtraction method estimates the reverberant RTF
of the target speaker based on the the estimated covariance matrix of the target
speech component, which is obtained by subtraction of the covariance matrix of the
microphone signals and the covariance matrix of the overall interfering component.
Although the subtraction method has a relatively low computational complexity, its
performance is not always very good since due to estimation errors the estimated
covariance matrix of the target speech component typically does not have rank-
one [104,106]. The covariance whitening method estimates the reverberant RTF of
the target speaker by applying the generalized eigenvalue decomposition either to
the estimated covariance matrix of the microphone signals or the estimated covari-
ance matrix of the target speech and background noise component, which can be
obtained using the estimated masks of the target speaker. It should be noted that
for an acoustic scenario with multiple simultaneously active speakers, due to the
estimation errors of the covariance matrices the performance of jointly estimating
the reverberant RTFs of the speakers can drastically decrease. As an alternative
to reverberant RTF estimation, the RTFs of the speakers can be approximated by
anechoic RTFs which are determined by the DOAs of the speakers. These anechoic
RTFs can be either analytically computed based on a head model, e.g., [109], or
selected from a database of (measured) prototype RTFs, e.g., [110]. However, using
anechoic RTFs for speech enhancement in a reverberant environment may lead to
a limited suppression of the interfering speakers.
Similarly to the reverberant RTF estimation, the RETFs of speakers are estimated
using either the covariance subtraction method or the covariance whitening method
[99,100]. However, the covariance matrices used for RETF estimation are obtained
using the multi-channel output signals of a dereverberation filter.
In general, since multi-channel speech enhancement exploits spatial diversity, it is
typically able to yield a larger speech quality and speech intelligibility and a lower
speech distortion compared to single-channel speech enhancement.

1.3.3 Multi-channel speech enhancement in binaural hearing aids

In order to enable hearing aid users to exploit binaural cues, the multi-channel
speech enhancement methods discussed in Section 1.3.2 need to be extended to pro-
duce two different output signals, presented to the left and the right ear. In addition
to reducing the background noise and the interfering speakers, another important
objective of binaural speech enhancement methods is to preserve the binaural cues
of the target speaker, the interfering speakers and the background noise. To gen-
erate two different outputs, all microphone signals from the left and right hearing
aids are processed by two different (complex-valued) beamformers. In [95, 111,112]
the MVDR beamformer and the MWF have been extended into a binaural version
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Fig. 1.4: Block scheme of binaural spatial filtering (a) incorporating constraints or (b) mix-
ing with scaled noisy reference microphone signals. yL,m [n] and yR,m [n] denote
the m-th captured microphone signal of the left and the right hearing aid with
m ∈ {1, 2, 3}, ŝL [n] and ŝR [n] denote the estimated target speech signals of the
left and the right hearing aid and α denotes the mixing parameter.

by estimating the target speech component at a reference microphone on the left
and the right hearing aid. While the binaural MVDR beamformer and the binaural
MWF preserve the binaural cues of the target speaker, these beamformers distort
the binaural cues of the interfering speakers and the background noise, such that
all sources are perceived as coming from the direction of the target speaker [95,113].
This binaural cue distortion may change the spatial impression of the acoustic scene,
lead to a confusion between acoustical and visual information and decrease speech
intelligibility [114].
In order to preserve the binaural cues of all sources in the acoustic scene, it has been
proposed to apply a common gain to the reference microphone signals from both
hearing aids, known as binaural spectral post-filtering technique [115]. Similarly to
the single-channel speech enhancement methods discussed in Section 1.3.1, binaural
spectral post-filtering generally aims at retaining the T-F bins containing mainly
the target speaker by applying a large common gain and suppressing the T-F bins
containing mainly interfering speakers or background noise by applying a small
common gain. The common gain can be computed, e.g., by exploiting the spatial
information between the microphones [116–118], based on computational auditory
scene analysis (CASA) [119, 120] or based on the output of a multi-channel speech
enhancement algorithm [121]. Although binaural spectral post-filtering allows for
binaural cue preservation of the target speaker, the interfering speakers and the
background noise, it may introduce speech distortion, especially at low SNRs [51].
As an alternative to binaural spectral post-filtering, it has been proposed to ei-
ther directly incorporate additional constraints into the binaural beamformer de-
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sign [112,122,123] or to mix the binaural output signals with scaled noisy reference
microphone signals [95,124–127], as depicted in Fig. 1.4. In [122] an extension of the
binaural MVDR incorporating an interference suppression constraint has been pro-
posed, known as the binaural LCMV beamformer. The binaural LCMV beamformer
aims at partially suppressing the interfering speakers while perfectly preserving the
binaural cues of both the target speaker and the interfering speakers. In addition,
an extension of the binaural MVDR and the binaural MWF has been proposed by
incorporating an RTF preservation constraint for the interfering speakers [112,123].
In [124] a binaural MVDR beamformer with partial noise estimation has been pro-
posed, which mixes the output signals of the binaural MVDR beamformer with
scaled noisy reference microphone signals using a mixing parameter determined
based on psychoacoustically motivated boundaries. Furthermore, a binaural MWF
with partial noise estimation has been proposed using a mixing parameter which
is either frequency-independent [125] or determined based on psychoacoustically
motivated boundaries [126] and or the output SNR [127]. It should be noted that
mixing the output signals of either the binaural MVDR beamformer or the bin-
aural MWF with scaled noisy reference microphone signals obviously results in a
trade-off between preserving the binaural cues and reducing interfering speakers
and background noise [95,124].

Challenges and open issues

The performance of most discussed binaural multi-channel speech enhancement
methods depends on correctly estimating certain parameters, e.g., covariance matri-
ces and reverberant RTFs. Although several RTF estimation methods are available
for a single-speaker scenario [104,105,107], jointly estimating the RTFs of two simul-
taneously active speakers is not straightforward. Therefore, one goal of this thesis
is to jointly estimate the RTFs or the RETFs of the speakers, either directly from
the microphone signals based on the estimated DOAs of the speakers or from the
covariance matrices based on the estimated masks of the speakers.
The wMPDR convolutional beamformer optimally combines interfering speaker sup-
pression, dereverberation and noise suppression. While suppressing the interfering
speaker is desired to improve speech intelligibility, keeping the interfering speaker
audible is also important to allow the listener to switch attention between speakers.
Therefore, another goal of this thesis is to develop an extension of the wMPDR con-
volutional beamformer, allowing to control the level of suppression of the interfering
speaker.
Even when assuming that the parameters (covariance matrices and RTFs) can be
accurately estimated and the binaural cues of all sources can be preserved, the
performance in terms of speech intelligibility improvement still relies on correctly
identifying the target speaker and the interfering speaker. In practice, this may not
be successfully achieved by assuming that the target speaker is, e.g., located in front
of the listener or is the loudest speaker. Therefore, another goal of this thesis is to
identify the target speaker and the interfering speaker by decoding the auditory at-
tention of the listener and subsequently enhancing the identified target speaker and
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suppressing the identified interfering speaker using binaural multi-channel speech
enhancement algorithms.

1.4 Overview of auditory attention decoding methods

The aim of auditory attention decoding (AAD) is to identify to which speaker the
listener is attending by relating the EEG responses of the listener to the received
speech signals. Using single-trial EEG recordings, several methods for AAD have
been proposed to identify the attended speaker in an acoustic scenario with two
competing speakers [16, 18, 19, 21–24,128–132]. Existing AAD methods can be gen-
erally classified into forward-model-based and backward-model-based methods, de-
pending on whether EEG recordings are predicted from speech envelopes or speech
envelopes are predicted from EEG recordings. In the following sections, we briefly
describe EEG signals, present an overview of forward-model-based and backward-
model-based AAD methods and discuss challenges and open issues. A more detailed
review of several AAD methods can be found in, e.g., [22, 128,133].

1.4.1 EEG

The EEG represents the electrical potential, usually the difference in potential mea-
sured at various points on the scalp [134–137]. The electrical potential on the scalp
is a superposition of neural activity-related current sources that are distributed
in a volume conductor (the head). At the cellular level, neural synaptic activities
(both excitatory as well as inhibitory) lead to local changes in the membrane po-
tential [137]. A synchronized activity of many neuronal sets with a similar polarity
constitutes a substantial current source. Different brain regions and states generate
different sets of current sources. These current sources are mixed and constitute
electrical potentials in the brain, referred to as neuronal action potentials or spikes,
on the cortical surface, referred to as electrocorticographic (ECoG) activity, or on
the scalp, referred to as EEG activity, as illustrated in Fig. 1.5.
Spike and ECoG measurements typically have a high spatial resolution and cover
a wide frequency range. However, theses measurements are invasive. On the other
hand, EEG measurements are non-invasive and have appropriate temporal resolu-
tion, e.g., to measure event-related potentials evoked by visual or auditory stimuli.
Due to the non-invasive and appropriate temporal resolution properties of EEG mea-
surements, EEG measurements have become an established measurement method
for real-world applications, e.g., for clinical care and treatment as well as for BCI
applications [134, 138–141]. Nevertheless, it should be realized that EEG measure-
ments can be corrupted by environmental noise sources, such as AC power lines
and mobile phones, and physiological noise sources, such as muscle artifacts caused
by muscle contraction, eye movement and skin potentials. These noise sources may
be effectively mitigated either by preventing noise during EEG recording or by re-
moving noise after EEG recording, e.g., by filtering and blind source separation
techniques [134,142,143].
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Fig. 1.5: Different methods to measure electrical potentials of brain activity: EEG, ECoG
and spike.

Aiming at understanding how the auditory system processes complex auditory stim-
uli using EEG, a large research effort has focused relating the EEG responses to au-
ditory stimuli, e.g., by estimating the response function of the auditory system using
system identification techniques. Traditionally, the response function is estimated by
measuring EEG responses at particular times relative to an impulse-like auditory
stimulus and averaging over many responses, commonly referred to as the event-
related potentials (ERPs) technique [137,144,145]. The ERP technique is typically
used with the auditory stimuli consisting of discrete syllables or phonemes, which
may not be suited to model the neural processing of natural continuous speech, es-
pecially when corrupted by noise and reverberation. Therefore, it has recently been
proposed to model the auditory system by impulse response functions [146, 147],
assuming that the auditory system can be modeled as a linear time-invariant (LTI)
system. Although it is unlikely that the complex neural processing in auditory sys-
tem is performed in a linear and time-invariant fashion, LTI models may still be
a reasonable approximation of the linear neural processing [148]. LTI models allow
to either predict the EEG responses from a representation of auditory stimulus,
referred to as forward modeling [22, 128, 133, 149–152], or to reconstruct a repre-
sentation of the auditory stimulus from EEG recordings, referred to as backward
modeling [16,22,128,133,153–156]. In the following, we will present an overview of
AAD methods using forward and/or backward models.

1.4.2 Forward-model-based AAD methods

Forward-model-based methods aim to perform AAD by predicting the measured
EEG responses from the envelope of the clean speech of the attended speaker (see
Fig. 1.6). Initially, forward models were used to investigate how different repre-
sentations of the auditory stimulus are encoded in multi-channel EEG responses.
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Fig. 1.6: Illustration of the main difference between the forward and the backward model.
The exemplary acoustic scenario comprises an attended speaker and an unat-
tended speaker. The ongoing EEG responses of a listener to these acoustic stimuli
are recorded.

In [150, 157] it has been proposed to estimate the impulse response function, also
known as the temporal response function (TRF), by minimizing the least-squares
error between the measured EEG responses and the predicted EEG responses. TRFs
relate a representation of the input stimulus to each of the multi-channel EEG re-
sponses separately, thereby ignoring information between EEG channels, e.g., inter-
channel correlation. Using TRFs, numerous studies have proposed to predict the
EEG responses from the slowly varying temporal envelope of a speech signal (< 9
Hz) [150,152,158].
A forward-model-based AAD method using TRFs has recently been proposed to
identify the attended speaker in an acoustic scenario with two competing speakers
[128]. This AADmethod aims at predicting each of the multi-channel EEG responses
using trained attended TRFs. In the training step, the envelope of the clean speech
signal of the attended speaker is used to train the attended TRFs. In the decoding
step, the EEG responses are predicted from the envelope of the attended and the
unattended speaker using the trained TRFs. These predicted EEG responses are
compared with the measured EEG responses by computing correlation coefficients.
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Based on these correlation coefficients, the speaker with the largest correlation is
identified as the attended speaker. In [22] it has been proposed to combine the
correlation coefficients computed for different EEG channels using SVM classifiers
to identify the attended speakers.
Since the aforementioned forward-model-based AAD methods are unable to exploit
the information between EEG channels to design AAD TRFs, their performance
for AAD is typically limited. In addition, since the correlation coefficients using
these methods are highly fluctuating, a large correlation window on the order of
30 − 60 seconds is typically required to achieve a reliable decoding performance.
Furthermore, these methods rely on the assumption that the clean speech signals
of the attended and the unattended speaker are available as reference signals for
decoding.

1.4.3 Backward-model-based AAD methods

Backward-model-based methods aim to perform AAD by reconstructing the at-
tended speech envelope from single-trial EEG recordings (see Fig. 1.6). Initially,
backward models were mainly used to study the neural processing of auditory
scene analysis, e.g., attending to a target speaker in the presence of an interfering
speaker [20,133,152,156,158–162]. Backward models reconstruct a representation of
the auditory stimulus from multi-channel EEG recordings using a spatio-temporal
filter. In [133] it has been proposed to compute the spatio-temporal filter by min-
imizing the least-squares error between the envelope of the speech stimulus and
the reconstructed envelope. The spatio-temporal filter allows to exploit the corre-
lation between the EEG channels for reducing stimulus-irrelevant neural activities
that are spatially correlated between channels, e.g., muscle artifacts. In addition,
the spatio-temporal filter intrinsically performs EEG channel selection by allocat-
ing larger weights to channels highly contributing to the reconstruction and smaller
weights to channels with little information related to the reconstruction [156].
Recently, several backward-model-based AAD methods have been proposed based
on, e.g., a least-squares cost function [16,18,19,22,28,128,129,163], canonical correla-
tion analysis [21], a state-space model [24] and neural networks [23,130]. The least-
squares-based AAD method aims at reconstructing the envelope of the attended
speaker from the EEG recordings using a spatio-temporal filter. In the training step,
the clean speech signal of the attended speaker is used to train the spatio-temporal
filter by minimizing the least-squares error between the attended speech envelope
and the reconstructed envelope. In the decoding step, the attended speech enve-
lope is reconstructed from the EEG recordings using the spatio-temporal trained
filter. The reconstructed speech envelope is then compared with the envelope of
the reference signals by computing correlation coefficients to identify the attended
speaker.
To avoid over-fitting, several methods generalizing the least-squares-based AAD
methods have been proposed, e.g., by constraining the filter coefficients [16, 18, 19,
22, 128, 129]. In [16, 18, 19, 129] it has been proposed to regularize the least-squares
cost function by constraining the squared l2−norm of either the filter coefficients
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or the derivatives of the filter coefficients. While these constraints tend to avoid
over-fitting by smoothing the filter coefficients, the filter coefficients that hardly
contribute to the envelope reconstruction are still assigned near-to-zero values. To
promote sparsity of the filter coefficients, it has hence been proposed in [128] to
constrain the l1−norm of the filter coefficients, i.e., only keep a relatively small
numbers of filter coefficients with non-zero values. To control the balance between
smoothness and sparsity of the filter coefficients, it has been proposed in [22] to
combine the squared l2−norm and l1−norm using a trade-off parameter. It has
been shown that the regularization with the squared l2−norm of the derivative
of the filter coefficients improves the accuracy of attended envelope reconstruction
compared to the regularization with the squared l1−norm or the squared l2−norm
of the filter coefficients [22]. However, all discussed regularization approaches yield
a comparable decoding performance [22].
Using a combination of forward and backward models, another AAD method has
been proposed in [21, 128], where a canonical correlation analysis is used to com-
pute an attended and an unattended linear transformation which maximize the
mutual projections between the EEG recordings and the attended and the unat-
tended envelope. The few components of the attended and the unattended linear
transformation resulting in the largest mutual projections are then used to iden-
tify the attended speaker using SVM classifiers. In [128] it has been shown that
the canonical-correlation-analysis-based AAD method can typically yield a larger
decoding performance compared to the least-squares-based AAD methods.
Aiming at AAD for dynamic scenarios where, e.g., attention switching occurs, it
has been proposed to decode AAD based on updating filters [24]. The filters aim to
reconstruct both the attended and the unattended speech envelopes from the EEG
recordings and are recursively updated with a forgetting factor as the new EEG
samples become available. To decode AAD, the l1−norm of the filter coefficients is
translated into a probabilistic measure of the attentional state using a state-space
model. Since the parameters of the state-space model are updated using two nested
expectation-maximization (EM) algorithms, the proposed AAD method is highly
complex.
To take into account the non-linear processing of acoustic signals along the audi-
tory pathway, it has been proposed in [23, 130] to reconstruct the attended speech
envelope from the EEG recordings using a non-linear model, more in particular a
convolutional DNN. Similarly as for the (linear) least-squares-based AAD method,
the DNN-based reconstructed envelope is then correlated with the envelope of the
reference signals for decoding. As an alternative to the DNN-based envelope recon-
struction, an integrated DNN-based architecture has been proposed in [130]. The in-
tegrated DNN-based AAD directly compares the EEG recordings with the envelopes
of the reference signals, generating a similarity score for each reference signal. The
reference envelope with the largest similarity score is then identified as the attended
speech envelope. These DNN-based AAD methods may yield a slightly larger de-
coding performance compared to the least-squares-based AAD methods. However,
generalization of these methods to EEG responses where the listener switches at-
tention between speakers remains to be investigated.
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Since backward-modeling-based AAD methods exploit information between the
EEG channels, e.g., inter-channel correlation, these methods typically yield a larger
decoding performance compared to the forward-model-based AAD methods. Sim-
ilarly to the forward-model-based AAD methods, most aforementioned backward-
model-based AAD methods suffer from highly fluctuating correlation coefficients
and therefore rely on a large correlation window on the order of 30 − 60 seconds.
In addition, most aforementioned backward-modeling-based methods rely on the as-
sumption that the clean speech signals of the attended and the unattended speakers
are available as reference signals for decoding.

Challenges and open issues

The performance of most aforementioned AADmethods has been extensively investi-
gated for anechoic acoustic conditions [22,28,128,129,163–165]. However, in practice
also background noise and reverberation are present, which may negatively influ-
ence the decoding performance. In addition, most aforementioned AAD methods
rely on the assumption that the clean speech signals of the speakers are available
as reference signals for decoding. However, in hearing aid applications obviously
only the microphone signals containing acoustic disturbances (interfering speaker,
background noise and reverberation) are available. In order to fully understand the
performance of AAD in realistic noisy and reverberant acoustic conditions, one goal
of this thesis is to analyze the performance of AAD for different acoustic conditions
and to investigate the impact of each disturbance in the microphone signals on
AAD performance, which can be used to design efficient algorithms for generating
appropriate reference signals for decoding from the microphone signals.
Generally, most aforementioned AAD methods suffer from highly fluctuating corre-
lation coefficients and therefore rely on a large correlation window on the order of
30−60 seconds. The large correlation window can cause a large processing delay and
hence limits the feasibility of AAD for hearing aid applications. Therefore, another
goal of this thesis is to improve the decoding performance of the least-squares-based
and DNN-based AAD methods using correlation coefficients obtained with a small
correlation window.

1.5 Open-loop cognitive-driven speech enhancement using AAD

Aiming at generating appropriate reference signals for decoding from the micro-
phone signals and incorporating AAD in speech enhancement algorithms, sev-
eral cognitive-driven single- and multi-channel speech enhancement algorithms
[27, 28, 30, 166, 167] have been proposed. Most of these cognitive-driven speech en-
hancement algorithms have been developed for open-loop scenarios, where AAD
is performed in an off-line fashion without presenting (on-line) feedback, e.g., the
enhanced attended speaker, to the listener. The single-microphone speech enhance-
ment algorithm proposed in [28,167] uses a deep neural network (DNN) to generate
reference signals by separating the speakers from the mixture received at the mi-
crophone. Using AAD, one of the reference signals is then selected as the enhanced
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attended speaker. The cognitive-driven multi-channel Wiener filter (MWF) pro-
posed in [27,166] generates reference signals from binaural hearing aid microphone
signals using multiple multi-channel Wiener filters based on an envelope demixing
algorithm. Using EEG recordings and AAD, one of the reference signals is then
selected as the enhanced attended speaker. Experimental results in [27,28,166–168]
show that the proposed cognitive-driven speech enhancement algorithms are able
to enhance the attended speaker and strongly suppress the interfering unattended
speaker. To directly generate the enhanced attended speaker from binaural hearing
aid microphone signals using AAD, it has been proposed in [30] to jointly decode the
auditory attention and perform LCMV beamforming. Experimental results in [30]
show that the joint AAD and LCMV beamforming is robust to AAD estimation
errors and is able to enhance the attended speaker.

Challenges and open issues

While most aforementioned cognitive-driven speech enhancement algorithms are
able to strongly suppress the interfering speaker, which is desired to improve speech
intelligibility, it may deprive the listener from switching attention. In addition, the
binaural MWF changes the spatial impression of the acoustic scene since all sources
at the output of the binaural MWF are perceived as coming from the direction of
the attended speaker [10,95], which may lead to a confusion between acoustical and
visual information. Therefore, one goal of this thesis is to develop a cognitive-driven
binaural beamforming system that enhances the attended speaker and controls the
suppression of the unattended speaker while preserving the spatial impression of
the acoustic scene.
While (late) reverberation has a negative effect on speech quality and intelligibility,
most of the aforementioned cognitive-driven speech enhancement algorithms may
not be able to suppress reverberation. Therefore, another goal of this thesis to
develop cognitive-driven beamforming system to enhance the attended speaker and
jointly suppress the interfering speaker, reverberation and background noise.
The performance of most aforementioned cognitive-driven speech enhancement algo-
rithms has been investigated only for open-loop scenarios with no attention switch
between speakers. To investigate the performance of cognitive-driven speech en-
hancement for hearing aid applications, closing the loop by presenting auditory
feedback according to the AAD results in an on-line fashion is very important.
Feedback presentation may influence the subsequent intent of the listener and the
brain signals that encode that intent. In [163] the feasibility of closed-loop AAD has
been demonstrated by presenting the AAD results as visual feedback, either using
different colors or a sphere with different radii. However, the feasibility of closed-
loop cognitive-driven speech enhancement remains to be investigated. Therefore,
another goal of this thesis is to enable the listener to switch attention between the
speakers and to interact with a speech enhancement algorithm using a closed-loop
cognitive-driven system.
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1.6 Outline of the thesis and main contributions

This thesis deals with the problem of identifying and enhancing the target speaker
in realistic acoustic environments based on decoding the auditory attention of the
listener using single-trial EEG recordings. To this end, we thoroughly analyze the
AAD performance in realistic noisy and reverberant environments, we propose novel
methods for decoding auditory attention and we propose cognitive-driven speech
enhancement algorithms for hearing aid applications.
The main contributions of this thesis are threefold. First, we analyze the per-
formance of a least-squares-based AAD method by investigating the im-
pact of different acoustic conditions (anechoic, reverberant, noisy, and
reverberant-noisy). We show that for all considered acoustic conditions it is possi-
ble to decode auditory attention with a considerably large decoding performance but
that the decoding performance is significantly affected by the presence background
noise and especially the interfering speaker in the reference signals used for decod-
ing. Second,we propose several open-loop and closed-loop cognitive-driven
speech enhancement systems. The first system is an open-loop cognitive-driven
binaural beamformer, aiming at enhancing the target speaker and suppressing the
interfering speaker and background noise while preserving the spatial impression
of the acoustic scene. In this system a binaural MVDR or LCMV beamformer is
cognitively steered based on AAD and the RTFs of the attended and the unat-
tended speaker. The second system is an open-loop cognitive-driven convolutional
beamformer, aiming at enhancing the attended speaker and jointly suppressing
the interfering speaker, reverberation and background noise. This system combines
a neural-network-based mask estimator, wMPDR or wLCMP convolutional beam-
formers and AAD. The third system is a closed-loop cognitive-driven gain controller,
where real-time AAD enables the listener to directly interact with the speech en-
hancement system. Third, we propose methods to improve the decoding
performance. More specifically, we propose a reference signal generation approach
based on binary masking, which uses binary masks based on directional speech
presence probability to discard low-energy intervals which are susceptible to in-
terfering speech and background noise. In addition, we propose an AAD method
based on a state-space model, which improves the decoding performance of linear
(least-squares-based) and non-linear (DNN-based) methods using small correlation
windows.
In the remainder of this section a chapter-by-chapter overview of this thesis is
presented, summarizing the main contributions. Additionally, references to the pub-
lications that have been produced in the context of this thesis are provided. A
structured overview of the thesis is given in Fig. 1.7.
In Chapter 2, we investigate the performance of a least-squares-based AAD
method for different acoustic conditions (anechoic, reverberant, noisy, and
reverberant-noisy). In particular, we investigate the impact of different acoustic
conditions for AAD filter training and decoding. In addition, we investigate the in-
fluence on the decoding performance of the head shadow effect and of the different
acoustic disturbances (interfering speaker, noise and reverberation) in the reference
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Fig. 1.7: Structure of the thesis.
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signals used for decoding and the training signals used for computing the filters. To
investigate the performance of the least-squares-based AAD method, we use correla-
tion coefficients obtained with a 60-second correlation window. We show that for all
considered acoustic conditions it is possible to decode auditory attention with a con-
siderably large decoding performance (> 90%), even when the acoustic conditions
for AAD filter training and decoding are different. We show that for all considered
acoustic conditions the head shadow effect has no significant impact on the decoding
performance. In addition, we show that the decoding performance (> 87%) is signif-
icantly affected by the presence of background noise and especially the interfering
speaker in the reference signals used for decoding. Furthermore, we show that it
is even feasible to use training signals affected by reverberation, background noise
and/or the interfering speaker for computing the filters. Even when using the micro-
phone signals as training signal and reference signals, it is still feasible to perform
AAD with a large decoding performance (> 82%). This chapter has been published
as a journal paper in the IEEE Transactions on Neural Systems and Rehabilitation
Engineering [26]. Other publications related to this chapter are [32,169].
In Chapter 3, we propose an open-loop cognitive-driven binaural speech enhance-
ment system, aiming at enhancing the attended speaker and controlling the sup-
pression of the unattended speaker while preserving the spatial impression of the
acoustic scene. First, either the anechoic or the reverberant RTFs of both speakers
are estimated from the microphone signals, where the anechoic RTFs are computed
based on the estimated DOAs of both speakers. Based on these RTFs, two MVDR
or LCMV beamformers are used to generate reference signals for auditory attention
decoding. Using the envelopes of these reference signals, the EEG recordings and a
30-second correlation window, in the AAD step the attended and the unattended
speaker are identified based on the least-squares-based AAD method, enabling to
steer a binaural MVDR or LCMV beamformer. We provide a detailed analysis and
experimental comparison between the cognitive-driven binaural LCMV and MVDR
beamformers for an acoustic scenario comprising two competing speakers and dif-
fuse background noise in an anechoic and a reverberant condition. In addition, we
investigate the impact of RTF and DOA estimation errors and AAD errors on the
speech enhancement performance. We show that the proposed system using anechoic
DOA-based RTFs significantly improves the binaural SINR for the anechoic condi-
tion (7.4–8.7 dB) as well as for the reverberant condition (3.2–3.6 dB) compared to
a fixed forward-steered binaural MVDR beamformer (0.3 dB for the anechoic con-
dition and 0.5 dB for the reverberant condition). In particular, the cognitive-driven
binaural LCMV beamformer is able to both improve the binaural SINR as well as
preserve the binaural cues of both the attended and the unattended speaker. We
show that the proposed system using estimated DOA-based anechoic RTFs yields a
larger binaural SINR improvement and AAD performance for the reverberant con-
dition compared to using estimated reverberant RTFs. The decoding performance
for the LCMV beamformers (> 82%) is larger than for the MVDR beamformers
(> 77%). Moreover, for the considered experimental setup we show that the AAD
performance and the binaural SINR improvement of the proposed system are sensi-
tive to RTF estimation errors and AAD errors, but not to DOA estimation errors.
This chapter has been published as a journal paper in the IEEE Transactions on
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Audio, Speech, and Language Processing [31]. Other publications related to this
chapter are [29,170].
While the open-loop cognitive-driven convolutional beamforming system in Chapter
3 is able to suppress the interfering speaker and background noise, it is not designed
to suppress reverberation. In Chapter 4, we hence propose an open-loop cognitive-
driven convolutional beamforming system. Compared to the cognitive-driven binau-
ral beamforming system in Chapter 3, the proposed cognitive-driven convolutional
beamforming system allows to enhance the attended speaker and jointly suppress
reverberation, the interfering speaker and background noise. In addition, instead
of estimating the anechoic or reverberant RTFs based on DOAs, the proposed sys-
tem estimates the RTFs based on masks. First, the masks of both speakers are
estimated from the noisy and reverberant microphone signals using a speech separa-
tion neural network. Based on the estimated masks, two convolutional beamformers
generate reference signals for AAD by enhancing the speech signal of each speaker.
Using a 30-second correlation window, the least-squares-based AAD method then
selects one of the reference signals as the enhanced attended speech signal. For the
beamformers we propose to use a wMPDR convolutional beamformer as it com-
bines dereverberation, noise suppression and interfering speaker suppression. We
also propose an extension of the wMPDR convolutional beamformer, referred to as
wLCMP convolutional beamformer, which allows to control the level of suppression
of the interfering speaker. We experimentally compare the proposed cognitive-driven
convolutional beamforming system with a cognitive-driven speech enhancement sys-
tems based on (conventional) MVDR, LCMV, MPDR and LCMP beamformers. We
show that the wMPDR and wLCMP convolutional beamformers yield the highest
frequency-weighted segmental SNR (fwSSNR) improvement for the anechoic condi-
tion as well as for the reverberant condition. For the reverberant condition, only the
proposed system using convolutional beamformers provides a fwSSNR improvement,
showing the influence of dereverberation, while the system using MVDR, LCMV,
MPDR or LCMP beamformers even tend to degrade the fwSSNR. This chapter
has been published as a conference paper to the IEEE International Workshop on
Machine Learning for Signal Processing (MLSP) [171].
In contrast to Chapters 3 and 4 where we consider open-loop cognitive-driven speech
enhancement systems, in Chapter 5 we propose a closed-loop gain controller sys-
tem which cognitively steers an adaptive gain controller (AGC) based on real-time
AAD for a scenario with two competing speakers. Based on the EEG responses
and the (assumed to be known) speech signals of both speakers, the correlation
coefficients are generated either using a small correlation window of length 0.25
seconds or using a large correlation window of length 15 seconds. These correlation
coefficients are translated into more reliable probabilistic attention measures, based
on which the attended and the unattended speaker are identified. The AGC then
amplifies the identified attended speaker and attenuates the identified unattended
speaker and presents these signals via loudspeakers. To translate the correlation co-
efficients into probabilistic attention measures, we propose an AAD algorithm using
either a generalized linear model (GLM) or a state-space model (SSM). Experimen-
tal results demonstrate the feasibility of the proposed closed-loop cognitive-driven
gain controller system (both using GLM and SSM), enabling the listener to inter-
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act with the system in real-time. Although there is a significant delay to detect
attention switches (11.5–19.8 seconds), which causes the attended speaker to be
wrongly attenuated and the unattended speaker to be wrongly amplified, the pro-
posed closed-loop system is able to improve the SIR between the attended and the
unattended speaker (0.6–3.8 dB). This may make it easier to follow the attended
speaker, ignore the unattended speaker and switch attention between both speakers,
resulting in a lower cognitive effort compared to open-loop AAD. A statistical anal-
ysis of the results show that there is no significant difference in terms of decoding
performance, switch detection delay and perceived level of cognitive effort between
the open-loop and the closed-loop AAD system. This chapter has been submitted
as a journal paper to the Journal of Neural Engineering.
In Chapter 6, we propose a novel reference signal generation approach for AAD,
which uses binary masks to discard low-energy intervals which are susceptible to
interfering speech and background noise. In contrast to Chapters 3, 4 and 5 where
we consider complete cognitive-driven speech enhancement systems, in Chapter 6
we focus only on reference signal generation for AAD. First, the directional speech
presence probability (DSPP) and the DOAs of both speakers are estimated from
the microphone signals. Based on the estimated DSPPs, the intervals with low es-
timated speech energy for both speakers are detected, resulting in binary masks.
The reference signals for decoding are then generated by either masking the mi-
crophone signals or the MVDR output signals. In addition, the estimated binary
masks are considered themselves as reference signals for decoding. To investigate
the performance of the proposed reference signal generation approach, we use cor-
relation coefficients obtained with a 30-second correlation window. We show that
the proposed reference signal generation approach significantly improves the decod-
ing performance (> 81%) compared to using the (non-masked) microphone signals
(> 77%) and the MVDR output signals (> 78%), especially in the reverberant
condition. Quite remarkably, we also show that using the binary masks as refer-
ence signals yields a comparable decoding performance to using the masked MVDR
output signals. This chapter will be submitted as a journal paper to the IEEE
Transactions on Neural Systems and Rehabilitation Engineering.
In Chapter 7, we propose a novel AAD method based on a state-space model,
which improves the decoding performance of a linear (least-squares-based) AAD
method and a non-linear (DNN-based) AAD method using a 5-second correlation
window. The state-space model translates the generated correlation coefficients into
more reliable probabilistic attention measures, based on which the attended speaker
is identified. We experimentally compare the performance of the linear and non-
linear AAD methods with and without the state-space model for different acous-
tic conditions (anechoic, reverberant, noisy, and reverberant-noisy). We show that
without the state-space model a relatively low decoding performance (69%–73%) is
obtained, mainly due to the relatively small (attended and unattended) correlation
coefficients with a large variability. When using the state-space model, the decoding
performance significantly increases, where the increase is considerably larger for the
least-squares-based AAD method (> 94%) than for the DNN-based AAD method
(> 73%). This chapter has been published as a conference paper in the Proceedings
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of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) [172].
In Chapter 8, we summarize the main contributions of the thesis and suggest
possible topics for further research.



2
IMPACT OF DIFFERENT ACOUSTIC
COMPONENTS ON EEG-BASED AUDITORY
ATTENTION DECODING IN NOISY AND
REVERBERANT CONDITIONS

Identifying the target speaker in hearing aid applications is an essential ingre-
dient to improve speech intelligibility. Recently, a least-squares-based method
has been proposed to identify the attended speaker from single-trial EEG
recordings for an acoustic scenario with two competing speakers. This least-
squares-based auditory attention decoding (AAD) method aims at decoding
auditory attention by reconstructing the attended speech envelope from the
EEG recordings using a trained spatio-temporal filter. While the performance
of this AAD method has been mainly studied for noiseless and anechoic acous-
tic conditions, it is important to fully understand its performance in realistic
noisy and reverberant acoustic conditions. In this paper, we investigate AAD
using EEG recordings for different acoustic conditions (anechoic, reverberant,
noisy, and reverberant-noisy). In particular, we investigate the impact of differ-
ent acoustic conditions for AAD filter training and for decoding. In addition,
we investigate the influence on the decoding performance of the different acous-
tic components (i.e. reverberation, background noise and interfering speaker)
in the reference signals used for decoding and the training signals used for
computing the filters. First, we found that for all considered acoustic con-
ditions it is possible to decode auditory attention with a considerably large
decoding performance. In particular, even when the acoustic conditions for
AAD filter training and for decoding are different, the decoding performance
is still comparably large. Second, when using speech signals affected by either
reverberation and/or background noise there is no significant difference in de-
coding performance (p > 0.05) compared to when using clean speech signals
as reference signals. In contrast, when using reference signals affected by the
interfering speaker, the decoding performance significantly decreases. Third,
the experimental results indicate that it is even feasible to use training signals
affected by reverberation, background noise and/or the interfering speaker for
computing the filters.

25
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2.1 Introduction

In complex acoustic conditions the human auditory system has a remarkable abil-
ity to segregate a speaker of interest from a mixture of speakers and background
noise [45, 173]. In contrast with normal-hearing persons, hearing-impaired persons
typically have more difficulties with such auditory segregation, particularly in multi-
talker scenarios [174]. Although many acoustic signal processing algorithms are
available to reduce background noise or to perform source separation in multi-talker
scenarios [10,13], these algorithms typically need to rely on assumptions about the
target speaker to be enhanced. For example, in hearing aid applications the target
speaker is typically assumed to be located in front of the user or is assumed to be
the loudest speaker. As in real-world conditions such assumptions are often violated,
the performance of these algorithms may substantially decrease. Therefore, success-
fully identifying the target speaker in hearing aid applications is very important to
improve speech intelligibility.
Recent studies have shown that auditory cortical responses are correlated with the
envelope of the attended speech signal [152,175,176], based on which decoding and
encoding properties of the speech signal, e.g. spectrotemporal features and percep-
tual unites, have been studied in the brain auditory pathway [177,178]. Based on this
finding, an auditory attention decoding (AAD) method has been proposed in [16]
to identify the attended speaker from single-trial EEG recordings. This method
aims at reconstructing the attended speech envelope from the EEG recordings us-
ing a trained spatio-temporal filter. In the training step, the clean speech signal
of the attended speaker is used to train a spatio-temporal filter by minimizing the
least-squares error between the attended speech envelope and the reconstructed en-
velope. In the decoding step, the clean speech signals of both the attended and the
unattended speaker are used as reference signals. In [16] it has been shown that
for high-density EEG recordings it is possible to decode auditory attention when
presenting the clean speech signals of the different speakers to different ears of a
listener (i.e. dichotic stimuli presentation). When presenting competing speech sig-
nals in a simulated anechoic condition including head filtering effects, it has been
shown in [164] that a larger AAD performance can be obtained compared to di-
chotic presentation. Recently, a large research effort has focused on investigating
how to use AAD as part of a brain-computer interface for real-world applications,
e.g., to control a hearing aid [18,19,21,25,27–29,164,165,179–182], mainly however
for anechoic conditions. Aiming at integrating a small-size EEG recording system
in hearing aids, in [18, 165,179] the reliability of AAD using a low number of EEG
electrodes has been shown in an anechoic condition. Aiming at investigating the
effect of neurofeedback, in [180] the feasibility of an online closed-loop system for
AAD has been shown in an anechoic condition. Instead of using the clean speech
signals of the attended and the unattended speaker as reference signals for decoding,
in [19, 27–29, 181] the effect of different reference signals on the AAD performance
has been investigated for an anechoic condition. Using simulated noisy reference
signals for decoding, in [19] we have investigated the robustness of AAD to residual
interference and background noise. In [27, 181] a neuro-steered noise reduction al-
gorithm has been proposed to suppress the unattended speaker based on the AAD



2.1 introduction 27

Fig. 2.1: Acoustic simulation setup and EEG experiment setup. The acoustic simulation
setup was used for simulating the presented stimuli in different acoustic conditions.
For the EEG experiment setup, MATLAB was used for sending the acoustic
stimuli to the audio interface and the event markers to the Brain-Vison recorder
software. The acoustic stimuli were presented to the participants via earphones
using the audio interface. The EEG responses were amplified using BrainAmp
and recorded together with the event markers using Brain-Vision.

decision for an anechoic condition. In [28] an AAD-based sound source separation al-
gorithm using deep neural networks has been presented to suppress the unattended
speaker. In [29] we have investigated steerable beamformers to generate reference
signals for AAD in an anechoic condition.
While the performance of the aforementioned least-squares-based AAD method
has been extensively investigated for noiseless and anechoic acoustic conditions,
in practice also background noise and reverberation, i.e. acoustic reflections against
walls and objects, are present. Reverberation is known to spectro-temporally distort
speech signals, causing the binaural spatial cues and pitch to become less reliable
for performing auditory attention tasks [183–186]. In addition, interfering speakers
and background noise degrade the attended speech signal, possibly leading to a
severe speech encoding degradation at the level of the auditory nerve and the brain-
stem [160, 187]. Since in noisy and reverberant conditions the available signals at
the ears contain several acoustic components (i.e. reverberation, background noise
and interfering speaker), fully understanding the impact of each acoustic component
on AAD is of crucial importance, e.g., in order to generate appropriate reference
signals for decoding from these signals. Recently, in [20] the performance of the
least-squares-based AAD method was investigated for noisy and reverberant acous-
tic conditions. In [20] the same acoustic condition was used for AAD filter training
and for decoding and the feasibility of using reverberant speech signals both as
training and as reference signals was investigated. It was shown that in this way a
comparable decoding performance for the reverberant condition as for the anechoic
condition can be obtained. In this paper, we perform a more detailed analysis of
the performance of the least-squares-based AAD method for an acoustic scenario
comprising two competing speakers, background noise and reverberation. Compared
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Table 2.1: Acoustic signals used for experimental analysis

Signal Definition

sa, su clean speech signal
xa,anm , xu,anm anechoic speech signal
xam, xum reverberant speech signal
xanm interfered speech signal

xa,nom , xu,nom noisy speech signal
ym binaural speech signal

to [20] we consider more acoustic conditions, especially with regard to background
noise, and we specifically investigate the impact of different acoustic conditions for
the training and the decoding steps. In addition, we investigate the influence on
the decoding performance of the different acoustic components in the reference sig-
nals used for decoding and the training signals used for computing the filters. Some
preliminary results were presented in [169], where we investigated the feasibility of
using the (unprocessed) signals at the ears, containing reverberation, background
noise and the interfering speaker, as reference and training signals.
The paper is organized as follows. In Section 2.2 the different acoustic conditions
used for recording the EEG responses and the different acoustic signals used for the
experimental analysis are introduced. In Section 2.3 the training and decoding steps
of the least-squares-based AAD method are briefly reviewed. Section 2.4 describes
the acoustic and EEG measurement setup used for the experiments. In Section 2.5
the experimental results are presented and discussed, exploring the influence on the
decoding performance of the different acoustic conditions and acoustic components.

2.2 Acoustic Conditions and Components

We consider an acoustic scenario comprising two competing speakers and back-
ground noise in a reverberant environment (see left part of Fig. 2.1). The clean
speech signal of the attended speaker is denoted as sa [i], while the clean speech
signal of the unattended speaker is denoted as su [i], with i the discrete time index.
The signals at the ears of the listener consist of a mixture of both speakers, includ-
ing head filtering effects, reverberation and background noise. The signal ym [i] at
the m-th ear, with m = 1 denoting the left ear and m = 2 denoting the right ear,
can be written as

ym [i] = ham [i] ∗ sa [i]︸ ︷︷ ︸
xa

m[i]

+hum [i] ∗ su [i]︸ ︷︷ ︸
xu

m[i]

+vm [i] , (2.1)

where ham [i] and hum [i] denote the (reverberant) acoustic impulse response between
the m-th ear and the attended and the unattended speaker, respectively, ∗ denotes
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the convolution operation, and vm [i] denotes the background noise component at
the m-th ear. The reverberant speech signal of the attended and the unattended
speaker at the m-th ear is denoted as xam [i] and xum [i], respectively. These reverber-
ant speech signals consist of an anechoic speech signal encompassing the (anechoic)
head filtering effect, i.e. xa,anm [i] and xu,anm [i], and a reverberation component. For
notational conciseness the index i will be omitted in the remainder of this paper,
except where explicitly required.
For the EEG recordings we will consider four different acoustic conditions, i.e. ane-
choic, reverberant, noisy and reverberant-noisy. We refer to the EEG data recorded
in a specific acoustic condition as the EEG condition. Depending on the acous-
tic condition, the stimuli presented at the ears of the listener obviously comprise
different acoustic components:

• in the anechoic condition (an), the mixture of the anechoic speech signals of
the attended and the unattended speaker is presented.

• in the noisy condition (no), the mixture of the anechoic speech signals of the
attended and the unattended speaker and background noise is presented.

• in the reverberant condition (re), the mixture of the reverberant speech signals
of the attended and the unattended speaker is presented.

• in the reverberant-noisy condition (rn), the mixture of the reverberant speech
signals of the attended and the unattended speaker and background noise is
presented.

To investigate the impact of the different acoustic components on the AAD perfor-
mance, we will consider several acoustic signals (see Table 2.1) to compute envelopes
for filter training and evaluation:

• the clean speech signals sa and su.
• the anechoic speech signals xa,anm and xu,anm , i.e. the clean speech signals af-

fected by head filtering effects.
• the reverberant speech signals xam and xum, i.e. the anechoic speech signals

affected by reverberation.
• the interfered speech signals, i.e. the anechoic speech signals affected by an

interfering speaker
xanm = xa,anm + xu,anm . (2.2)

• the noisy speech signals, i.e. the anechoic speech signals affected by back-
ground noise

xa,nom = xa,anm + vm, xu,nom = xu,anm + vm. (2.3)

• the binaural speech signals ym in (2.1), i.e. the anechoic speech signals affected
by reverberation, background noise and an interfering speaker.

It should be noted that in the experiments (see Section 2.4.2) the positions of
the attended and the unattended speaker are not always the same, i.e. for some
participants the attended speaker is on the right side (and the unattended speaker
on the left side), whereas for some participants the attended speaker is on the
left side (and the unattended speaker on the right side). Due to the head filtering
effect, the broadband energy ratio between the attended speech component and
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the unattended speech component in the signals at the ears is always smaller at
the side of the unattended speaker than at the side of the attended speaker for
the considered scenario. Therefore, the speech signals in Table 2.1 at the side of
the attended speaker will be referred to as attended speech signals and the speech
signals at the side of the unattended speaker as unattended speech signals.

2.3 Auditory Attention Decoding Method

This section briefly reviews the least-squares-based AAD method proposed in [16].
This method aims at reconstructing the attended speech envelope from the EEG
recordings using a trained spatio-temporal filter. Section 2.3.1 describes the train-
ing step, where the envelope of a training signal is used together with the EEG
recordings to compute the filter. Section 2.3.2 describes the decoding step, where
the envelopes of two reference signals (attended and unattended) are compared with
an estimate of the attended speech envelope computed using the trained filter.

2.3.1 Training Step

In the training step, the attended speaker is assumed to be known and an attended
speech signal (e.g., the clean speech signal of the attended speaker sa) is used as
training signal. From this signal the attended speech envelope ea [k], with k = 1 . . .K
the sub-sampled time index, is extracted, e.g., based on the Hilbert transform [129].
The attended speech envelope is then estimated from the EEG recordings rc [k],
c = 1 . . . C, using a spatio-temporal filter as

êa [k] =
C∑
c=1

L−1∑
l=0

gc,l rc [k + l + ∆] , (2.4)

with gc,l the l-th filter coefficient in the c-th channel, L the number of filter coeffi-
cients per channel, and ∆ modeling the latency of the attentional effect in the EEG
responses to the speech stimuli. In vector notation, (2.4) can be written as

êa [k] = gT r [k] , (2.5)

with
g =

[
gT1 gT2 . . . gTC

]T
, (2.6)

gc = [gc,0 gc,1 . . . gc,L−1]T , (2.7)

r [k] =
[
rT1 [k] rT2 [k] . . . rTC [k]

]T
, (2.8)

rc [k] = [rc [k + ∆] rc [k + 1 + ∆] . . . rc [k + L− 1 + ∆]]T , (2.9)

with (.)T denoting the transpose operation. The spatio-temporal filter g is computed
by minimizing the least-squares error between the attended speech envelope ea [k]
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and the reconstructed envelope êa [k], regularized with the squared l2−norm of the
derivatives of the filter coefficients to avoid over-fitting [16,18,129,169], i.e.

J (g) = 1
K

K∑
k=1

(
ea [k]− gT r [k]

)2 + βgTDg, (2.10)

with D denoting the derivative matrix [18] and β denoting a regularization param-
eter. The filter minimizing the regularized least-squares cost function in (2.10) is
equal to

g = (Q + βD)−1 q, (2.11)

with the correlation matrix Q and the cross-correlation vector q given by

Q = 1
K

K∑
k=1

(
r [k] rT [k]

)
, q = 1

K

K∑
k=1

(r [k] ea [k]). (2.12)

In this paper we will consider several EEG training conditions (tc) for computing
the filter g, i.e. tc = an using EEG responses recorded in the anechoic condition,
tc = re using EEG responses recorded in the reverberant condition, tc = no using
EEG responses recorded in the noisy condition, and tc = rn using EEG responses
recorded in the reverberant-noisy condition. In addition, we will consider the EEG
training condition tc = ac, in which EEG responses from all conditions are used for
computing the filter.
Aiming at investigating the influence of each acoustic component, in this paper
we will consider different attended speech signals (see Table 2.1) as training signals,
more in particular the clean attended speech signal sa, the anechoic attended speech
signal xa,anm , the reverberant attended speech signal xam, the interfered attended
speech signal xanm , the noisy attended speech signal xa,nom , and the binaural attended
speech signal ym.

2.3.2 Decoding Step

For each acoustic condition, the complete set of EEG responses is segmented into
T trials (see Section 2.4.4 for more details). To decode to which speaker a listener
attended during trial t, first an estimate of the attended speech envelope êat [k] is
computed using the (trained) filter gt, i.e.

êat [k] = (gt)T rt [k] , (2.13)

with rt [k] denoting the EEG recordings of trial t. Next, the correlation coefficients
between the estimated attended speech envelope êat [k] and the envelope of two
reference signals, i.e. namely the attended and the unattended reference signal, are
computed as

ρat = ρ (eat [k] , êat [k]) , ρut = ρ (eut [k] , êat [k]) , (2.14)
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where ρat and ρut denote the attended and the unattended correlation coefficient,
respectively, and eat [k] and eut [k] denote the attended and the unattended speech
envelope, respectively. When ρat > ρut , it is decided that auditory attention has
been correctly decoded. Accordingly, a larger difference between the attended and
the unattended correlation coefficient ρat − ρut (referred to as correlation difference)
is indicative of a more reliable AAD decision. The decoding performance P is de-
fined as the percentage of correctly decoded trials over all considered trials and all
participants. To compute the correlation coefficients in (2.14), EEG recordings in
different acoustic conditions can be used for computing êat [k]. In addition, aiming at
investigating the influence of each acoustic component on the decoding performance,
different reference signals (see Table 2.1) can be used for computing the attended
and the unattended speech envelope eat [k] and eut [k], respectively.
In this paper we will investigate the decoding performance for several EEG eval-
uation conditions ec ∈ {an, re, no, rn, ac}, with Pec denoting the decoding per-
formance for a specific EEG evaluation condition. To decode trial t of an EEG
evaluation condition using the filter trained in a specific EEG training condition
which is not necessary the same as the EEG evaluation condition, the filter gt is
computed as follows:

• when the trial t to be decoded is part of the trials in the EEG training condi-
tion, the filter is computed using (2.11) as

gt =
(
Q̃t + βD

)−1 q̃t, (2.15)

with Q̃t the average correlation matrix, computed by averaging all correla-
tion matrices corresponding to trials in the EEG training condition except
trial t, and q̃t the average cross-correlation vector, computed by averaging all
cross-correlation vectors corresponding to trials in the EEG training condition
except trial t, i.e.

Q̃t = 1
T − 1

T∑
n=1, n6=t

Qn, q̃t = 1
T − 1

T∑
n=1, n6=t

qn. (2.16)

This procedure corresponds to leave-one-out cross validation.
• when the trial t to be decoded is not part of the trials in the EEG training

condition, the filter is computed using (2.11) as

gt =
(
Q̄ + βD

)−1 q̄, (2.17)

with Q̄ the average correlation matrix, computed by averaging all correlation
matrices corresponding to trials in the EEG training condition, and q̄ the
average cross-correlation vector, computed by averaging all cross-correlation
vectors corresponding to trials in the EEG training condition, i.e.

Q̄ = 1
T

T∑
n=1

Qn, q̄ = 1
T

T∑
n=1

qn, (2.18)
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Since the number of trials across acoustic conditions is different (see Section 2.4.2),
for tc = ac the average correlation matrix and the average cross-correlation vector
(Q̃t, Q̄, q̃t and q̄) are computed in such a way that the contribution of trials from
each acoustic condition is considered equally.
In [19] it has been shown that the parameters involved in the filter design (∆, L,
β) play an important role in obtaining a good decoding performance. In order not
to favour one specific EEG evaluation condition, the filter parameters have been
determined to optimize the average decoding performance Pac over all considered
acoustic conditions. Please note that the filter parameters have been optimized per
participant and for each EEG training condition (see Section 2.4.2 and 2.4.4).

2.4 Acoustic and EEG Measurement Setup

In this section, we describe the acoustic and EEG measurement setup used for the
experiments and information about the participants and the used paradigm.

2.4.1 Participants

Eighteen native German-speaking participants (right-handed and aged between 21
and 34 years) took part in this study. All participants were normal-hearing as was
confirmed by pure tone audiometry. The participants reported no past or present
neurological or psychiatric conditions. All participants signed an informed consent
form and were paid for their participation. Two participants were excluded from
the analysis, one participant due to poor attentional performance (as revealed by
the questionnaire results) and the other participant due to a technical hardware
problem.

2.4.2 Acoustic Stimuli

Two German audio stories, uttered by two different male speakers, were used as
the clean speech signals (sampling frequency of 16 kHz). One story was from the
German audio book website [188] and the other story was from a selection of audio
books [189]. Speech pauses that exceeded 0.5 s were shortened to 0.5 s. Before per-
forming the experiment, the participants reported no, or very limited, knowledge
of the audio stories. The acoustic stimuli were simulated by convolving the clean
speech signals (i.e. the audio stories) with non-individualized binaural acoustic im-
pulse responses, either from [110,190], or [191], and by adding diffuse babble noise,
generated according to [192]. The competing speakers were simulated at −45◦ (left)
and 45◦ (right). Eight different acoustic conditions were considered for the stimuli
(see Table 2.2): anechoic, reverberant with a moderate and a large reverberation
time (T60 = 0.5 s, T60 = 1 s), noisy with two different broadband signal-to-noise
ratios (SNR = 9.0 dB, SNR = 4.0 dB), and three combinations of reverberation
and noise. The SNR is defined as the broadband energy ratio between the reverber-
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Table 2.2: Acoustic conditions used for experimental analysis and stimuli presentation
Experimental Analysis Condition Stimuli Presentation SNR [dB] T60 [s] Number of Trials

Anechoic (an) Anechoic [110] ∞ < 0.05 40

Reverberant (re) Reverberant I [110] ∞ 0.50 10
Reverberant II [190,191] ∞ 1.00 10

Noisy (no) Noisy I [110] 9.0 < 0.05 10
Noisy II [110] 4.0 < 0.05 10

Reverberant-noisy (rn)
Reverberant-noisy I [110] 9.0 0.50 10
Reverberant-noisy II [110] 4.0 0.50 10

Reverberant-noisy III [190,191] 9.0 1.00 10

ant speech signal of the attended and the unattended speaker at the ears and the
background noise component at the ears, i.e.

SNR = 10 log10

∑
i

|xa1 [i] |2 + |xu1 [i] |2 + |xa2 [i] |2 + |xu2 [i] |2∑
i

|v1 [i] |2 + |v2 [i] |2
. (2.19)

For the experimental analysis, the acoustic conditions were grouped based on acous-
tic similarity as shown in Table 2.2, resulting in four experimental analysis condi-
tions, i.e. anechoic, reverberant, noisy, and reverberant-noisy. The acoustic stimuli
were presented to the participants via insert earphones (E-A-RTONE 3A) using an
RME HDSP 9632 PCI Audio Interface, Tucker Davis Technologies programmable
attenuators, and MATLAB, which was also used for generating the EEG marker
stream (see Fig. 2.1).

2.4.3 Paradigm

The stimuli were presented in 11 sessions, each of length 10 minutes, interrupted
by short breaks. Among all participants, 8 participants were instructed to attend
to the left speaker, while 10 participants were instructed to attend to the right
speaker. The participants were also instructed to look at a fixation cross on a screen
and minimize eye blinking. For each participant, the anechoic condition was always
assigned to the first session and subsequently to every other third session (i.e. session
4, 7, and 10). Aiming at minimizing the influence of the speech material on AAD,
the acoustic conditions (except for the anechoic condition) were randomly assigned
to the other sessions. Following each session, the participants were asked to fill
out a questionnaire consisting of 10 multiple-choice questions related to each story.
The questionnaire was aimed to indicate whether the participants attended to the
instructed speaker and whether the audio story was intelligible in the different
acoustic conditions. The experiment for each participant took place on two different
days.
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2.4.4 EEG Setup and Signal Pre-processing

The EEG responses were recorded using a BrainAmp system, provided by Brain-
Products GmbH, Germany, and C = 64 channels, provided by Easycap GmbH,
Germany, with a sampling frequency of 500 Hz (see EEG experiment setup in Fig.
2.1). The EEG responses were referenced to the nose electrode and recorded using
the Brain-Vision recorder software. The EEG recordings were re-referenced offline
to a common average reference, band-pass filtered between 2 Hz and 8 Hz using
a third-order Butterworth band-pass filter (as in [16, 18, 165]), and subsequently
downsampled to fs = 64 Hz. The envelopes of all considered 16 kHz speech signals
were obtained using a Hilbert transform [129], followed by low-pass filtering at 8
Hz and downsampling to fs = 64 Hz. For the training and decoding steps (see
Section 2.3), the EEG recordings of each session were split into 10 trials, each of
length 60 seconds (see Table 2.2). For filter training, the filter was computed using
all considered trials based on (2.15) and (2.17), as proposed in [129,169], instead of
computing a filter per trial and averaging per-trial filters as proposed in [16]. For
filter training and evaluation, each participant’s own data were used. The decoding
performance was computed by averaging the percentage of correctly decoded trials
over all considered trials and all participants.

2.5 Results and Discussion

In this section, the decoding performance of the least-squares-based AAD method is
investigated for different acoustic conditions (see Table 2.2) using the experimental
setup discussed in the previous section. Section 2.5.1 discusses the results of the
questionnaire. In Section 2.5.2 the impact of different acoustic conditions for the
training and decoding steps is investigated. In Section 2.5.3 the impact of the head
filtering effect is explored by comparing the decoding performance using either the
clean or the anechoic speech signals. Finally, in Section 2.5.4 the influence of each
acoustic component is investigated by comparing the decoding performance using
reference and training signals affected by background noise, reverberation, and/or
interfering speaker.

2.5.1 Questionnaire Analysis

For all considered acoustic conditions, Fig. 2.2 presents the correct answer scores
related to the attended story, averaged across all participants. The highest score
is obtained for the anechoic condition, while the lowest score is obtained for
the reverberant-noisy condition. The statistical multiple comparison test (Kruskal-
Wallis test followed by the post-hoc Dunn and Sidak test [1]) showed a significant
difference (Kruskal-Wallis test: χ2 = 19.0, p = 0.002) in terms of the correct answer
score between the anechoic condition and either the noisy or the reverberant-noisy
condition (post-hoc Dunn and Sidak test: p = 0.022 and p = 0.000, respectively)
and between the reverberant condition and the reverberant-noisy condition (post-
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Fig. 2.2: The correct answer scores related to the attended story, averaged across all partic-
ipants, for different acoustic conditions. Error bars represent one standard error
around the mean and ∗ indicates a significant difference (p < 0.05) between acous-
tic conditions, based on the Kruskal-Wallis test followed by the post-hoc Dunn
and Sidak test [1].

hoc Dunn and Sidak test: p = 0.013), implying that – as expected – the noisy and
the reverberant-noisy condition are more challenging.

2.5.2 Impact of Acoustic Conditions

For all considered EEG evaluation conditions, Fig. 2.3 presents the decoding per-
formance for different EEG training conditions when the clean speech signals are
used as reference and training signals.
First, we investigate the feasibility of decoding EEG responses in different acoustic
conditions ec ∈ {an, re, no, rn, ac} when using filters trained using EEG responses
in a specific acoustic condition tc ∈ {an, re, no, rn} (i.e. left part of Fig. 2.3, sepa-
rated by dashed line). When the EEG evaluation and training conditions are equal
(indicated by∇), it can be observed that a very good decoding performance (> 96%)
is obtained for all EEG evaluation conditions. These results are consistent with
previous findings for the anechoic condition [19, 27, 164, 165, 180, 181] as well as
with recent findings for the reverberant and the reverberant-noisy conditions [169].
For each EEG training condition tc ∈ {an, re, no, rn}, it can be observed that
the decoding performance when the EEG evaluation and training conditions are
equal (indicated by ∇) is among the highest decoding performances for all EEG
evaluation conditions. When the EEG evaluation and training conditions are not
equal, typically a lower decoding performance is obtained (except in some cases
for the anechoic and the reverberant EEG training conditions). For example, for
the reverberant-noisy EEG training condition the highest decoding performance
is obtained for the reverberant-noisy EEG evaluation condition (> 97%), while a
lower decoding performance is obtained for the anechoic, reverberant, and noisy
EEG evaluation conditions (> 90%). In addition, for all EEG training conditions
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Fig. 2.3: The decoding performance for different EEG training and evaluation conditions
when using the clean speech signals. The plus signs represent the upper boundary
of the confidence interval corresponding to chance level, based on a binomial test
at the 5% significance level, the error bars represent the bootstrap confidence
interval at the 5% significance level, ∇ indicates the decoding performance when
the EEG training and evaluation conditions are equal, and the dashed line sepa-
rates the decoding performance obtained with filters trained in a specific acoustic
condition and with filters trained in all acoustic conditions. A multiple compari-
son test (the Kruskal-Wallis test followed by the post-hoc Dunn and Sidak test)
was performed across Pac where ∗ indicates a significant difference (p < 0.05).

tc ∈ {an, re, no, rn} it can be observed that the average decoding performance for
all conditions Pac is considerably high (> 93%).
Secondly, we investigate the feasibility of decoding EEG responses in different acous-
tic conditions ec ∈ {an, re, no, rn, ac} when using filters trained using EEG re-
sponses in all acoustic conditions tc = ac (i.e. right part of Fig. 2.3, separated by
dashed line). It can be observed that a very good decoding performance (> 95%)
is obtained for all EEG evaluation conditions and that the decoding performance
across EEG evaluation conditions is more consistent compared to when using fil-
ters trained in a specific acoustic condition. In addition, the average decoding per-
formance for all conditions Pac obtained with filters trained in all conditions is
occasionally significantly larger than with filters trained in a specific acoustic con-
dition1. For example, the decoding performance Pac obtained with filters trained
in all conditions (tc = ac) is significantly larger than with filters trained either in
the reverberant condition (tc = re) or in the reverberant-noisy condition (tc = rn)
(Kruskal-Wallis test: χ2 = 16.5, p = 0.002; post-hoc Dunn and Sidak test compar-
isons of tc = ac with tc = re and tc = rn: p = 0.020, p = 0.001, respectively).
To investigate how much the average decoding performance for all conditions Pac
varies across participants, Fig. 2.4 presents Pac per participant, obtained with fil-

1 We also performed the AAD experiment using filters trained with 40 trials that were arbitrarily
selected from different acoustic conditions and observed similar findings.



38 impact of different acoustic components on aad

Fig. 2.4: The decoding performance Pac per participant obtained with filters trained in all
acoustic conditions and using clean speech signals. The plus signs represent the
upper boundary of the confidence interval corresponding to chance level, based
on a binomial test at the 5% significance level, the error bars represent the boot-
strap confidence interval at the 5% significance level, the solid circles represent
the minimum decoding performance and the void circles represent the maximum
decoding performance.

ters trained in all conditions. It can be observed that the decoding performance per
participant ranges between 80% and 100%.
The feasibility of using either filters trained in a specific acoustic condition or filters
trained in all acoustic conditions to perform AAD in different acoustic conditions
may be explained by considering the robust neural responses to degraded – but
still intelligible – speech signals. Several studies have shown that auditory corti-
cal responses resemble the clean attended speech signal more than the speech sig-
nal degraded by different acoustic components (e.g., background noise, interfering
speaker), suggesting a robust neural representation of the clean attended speech
signal [20, 152, 160, 175, 193]. To decode auditory attention, the trained filters aim
at reconstructing the clean attended speech envelope from EEG responses that are
largely invariant to degradations. Hence, the reconstructed attended envelope is ex-
pected to be more correlated to the clean attended speech envelope than to the clean
unattended speech envelope, i.e. the correlation difference (ρa − ρu) is expected to
be larger than zero. For all considered EEG evaluation conditions, Fig. 2.5 presents
the correlation difference for different EEG training conditions, averaged across all
considered trials and participants (note that these average correlation coefficients
are not directly used for decoding). It can be observed that a correlation differ-
ence significantly larger than zero is obtained for all considered acoustic conditions,
which is consistent with a robust neural representation of the clean attended speech
signal.
Finally, we investigate the parameters involved in the filter design (∆, L, β) across
EEG training conditions. Fig. 2.6 depicts the optimal parameter values (see Section
2.3.2), averaged across all considered trials and all participants. It can be observed
that the optimal value for ∆ varies only slightly between 93.8 ms to 101.6 ms,
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Fig. 2.5: Average correlation differences for different EEG training and evaluation condi-
tions when using the clean speech signals. The error bars represent the bootstrap
confidence interval at the 5% significance level.

(a) (b)

Fig. 2.6: The optimal values for the filter parameters (a) ∆ and L, and (b) the regulariza-
tion parameter β, averaged across all trials and all participants when using the
clean speech signal. The shaded area indicates the bootstrap confidence interval
at the 5% significance level.

while the optimal value for L varies more substantially between 109.3 ms to 128.9
ms. Accordingly, the EEG responses contributing most to the AAD performance are
those with latencies between 93.8 ms and 230.5 ms, consistent with previous findings
in [18, 19, 160]. In addition, the optimal value for the regularization parameter β
varies between 10−1 to 102. It can be observed that the optimal regularization
parameter is smaller when using filters trained in all conditions than when using
filters trained in a specific acoustic condition. A possible explanation may be that
training in all conditions can by itself be considered as some form of regularization,
consistent with previous finding in [129].
In summary, the results in this section show the feasibility of using either filters
trained in a specific acoustic condition or filters trained in all conditions to perform



40 impact of different acoustic components on aad

(a) (b)

Fig. 2.7: Influence of head filtering effect on AAD. Comparison of decoding performance
using either the clean or the anechoic speech signals when the EEG evaluation
and training conditions are equal to (a) the anechoic condition or (b) all con-
ditions. The plus signs represent the upper boundary of the confidence interval
corresponding to chance level based on a binomial test at the 5% significance level,
the error bars represent the bootstrap confidence interval at the 5% significance
level.

AAD in different acoustic conditions2. While these results were obtained using the
clean speech signals as training and reference signals, in the next sections we will
investigate in more detail the influence of the different acoustic components (head
filtering effect, reverberation, background noise, interfering speaker) in the training
and reference signals.

2.5.3 Influence of head filtering effect

In this section, we investigate the influence of the head filtering effect by comparing
the decoding performance when using clean or anechoic speech signals either as
training or as reference signals. Fig. 2.7a presents the decoding performance for the
anechoic condition (ec = an) when using filters trained in the anechoic condition
(tc = an). Fig. 2.7b presents the average decoding performance for all conditions
(ec = ac) when using filters trained in all conditions (tc = ac). A paired Wilcoxon
signed rank test revealed no significant difference (p > 0.05) between using either the
clean speech signals or the anechoic speech signals as training or as reference signals.
These results indicate that for all considered acoustic conditions head filtering effects
have no significant influence on the decoding performance.

2 We also performed the AAD experiment using trial lengths of 30 seconds and observed similar
findings.
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2.5.4 Influence of background noise, reverberation and interfering speaker

To investigate the influence of each acoustic component on AAD, Fig. 2.8 presents
the decoding performance for all considered acoustic conditions (anechoic, reverber-
ant, noisy, reverberant-noisy) using the following signals as training signals or as
reference signals:

• the clean speech signals sa and su.
• the anechoic speech signals xa,anm and xu,anm .
• the anechoic speech signals affected by different acoustic components, i.e. the

noisy speech signals xa,nom and xu,nom in (2.3) for the noisy condition, the re-
verberant speech signals xam and xum in (2.1) for the reverberant condition,
the interfered speech signal xanm (attended and unattended side) in (2.2) for
the anechoic condition3, and the binaural speech signals ym (attended and
unattended side) in (2.1) for the reverberant-noisy condition.

Similarly, Fig. 2.9 presents the correlation difference (ρa − ρu), averaged across all
considered trials and participants (note that these average correlation coefficients
are not directly used for decoding).
First, we investigate the case where the clean or the anechoic attended speech sig-
nal is used as training signal (i.e. left part of Fig. 2.8 and 2.9, separated by dashed
line). When using the clean or anechoic speech signals as reference signals, a very
good decoding performance (> 94%) is obtained for all acoustic conditions, as
already shown in Fig. 2.7. When using the noisy speech signals (in the noisy condi-
tion, Fig. 2.8a) or the reverberant speech signals (in the reverberant condition, Fig.
2.8b) as reference signals, there is no significant difference in decoding performance
(p > 0.05) compared to when using the clean or anechoic speech signals as reference
signals. On the other hand, when using the interfered speech signals (in the ane-
choic condition, Fig. 2.8c) or the binaural speech signals (in the reverberant-noisy
condition, Fig. 2.8d) as reference signals, the decoding performance is significantly
lower (p < 0.05) than when using the clean or anechoic speech signals as reference
signals, although the decoding performance is still considerably large (> 87%). The
feasibility of using either the interfered speech signals or the binaural speech signals
as reference signals for AAD can be explained by considering the broadband energy
ratio between the attended and unattended speech components in the signals at
the ears. As already mentioned in Section 2.2, due to the head filtering effect this
broadband energy ratio is smaller at the side of the unattended speaker than at the
side of the attended speaker. In summary, the results in Fig. 2.8 (left side) show
that when using reference signals affected by reverberation or background noise,
a comparable decoding performance can be obtained as when using clean or ane-
choic speech signals, whereas when using reference signals affected by the interfering
speaker the decoding performance significantly decreases. This also suggests that in

3 The interfered speech signal is used in the anechoic condition to exclude the influence of other
acoustic components (background noise and reverberation) on the analysis.
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(a) Noisy condition (ec = no, tc = no) (b) Reverberant condition (ec = re, tc = re)

(c) Anechoic condition (ec = an, tc = an) (d) Reverberant-noisy condition (ec = rn, tc = rn)

Fig. 2.8: Influence of different acoustic components (background noise, reverberation and
interfering speaker) on AAD. Comparison of decoding performance when using
(a) the noisy speech signals in the noisy condition, (b) the reverberant speech
signals in the reverberant condition, (c) the interfered speech signals in the ane-
choic condition, (d) the binaural speech signals in the reverberant-noisy condition,
either as training signal or as reference signals. The plus signs represent the up-
per boundary of the confidence interval corresponding to chance level based on a
binomial test at the 5% significance level, and the error bars represent the boot-
strap confidence interval at the 5% significance level. The dashed line separates
the case where the clean or the anechoic attended speech signals are used as
training signals and the case where the attended speech signals affected by differ-
ent acoustic components are used as training signals. A paired Wilcoxon signed
rank test was performed between the decoding performance using the clean or
the anechoic speech signals as reference signals and using the anechoic speech
signals affected by different acoustic components as reference signals. In addition,
a paired Wilcoxon signed rank test was performed between the decoding per-
formance using the clean or the anechoic speech signals as training signals and
using the anechoic speech signals affected by different acoustic components as
training signals. ∗ indicates a significant difference (p < 0.05) based on the paired
Wilcoxon signed rank test.
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(a) Noisy condition (ec = no, tc = no) (b) Reverberant condition (ec = re, tc = re)

(c) Anechoic condition (ec = an, tc = an) (d) Reverberant-noisy condition (ec = rn, tc = rn)

Fig. 2.9: Influence of different acoustic components (background noise, reverberation and
interfering speaker) on AAD. Comparison of correlation difference when using
(a) the noisy speech signals in the noisy condition, (b) the reverberant speech
signals in the reverberant condition, (c) the interfered speech signals in the ane-
choic condition, (d) the binaural speech signals in the reverberant-noisy condition,
either as training signal or as reference signals. The error bars represent the boot-
strap confidence interval at the 5% significance level, and ∗ indicates a significant
difference (p < 0.05) based on the paired Wilcoxon signed rank test.
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order to generate appropriate reference signals, it is more important to reduce the
interfering speaker than to reduce background noise or reverberation.
The decoding performance results in Fig. 2.8 can be further explained by consid-
ering the influence of each acoustic component on the correlation difference in Fig.
2.9. For the noisy condition (Fig. 2.9a), there are no significant differences between
the considered reference signals, which corresponds to the decoding performance
results in Fig. 2.8a. For the reverberant condition (Fig. 2.9b), it can be observed
that the correlation differences significantly decrease (ρa − ρu < 0.04) when using
the reverberant speech signals as reference signals, but only when using the clean
attended speech signal as training signal. Nevertheless, this lower correlation differ-
ence does not result in a significantly lower decoding performance in Fig. 2.8b. For
the anechoic condition (Fig. 2.9c) and the reverberant-noisy condition (Fig. 2.9d),
it can be observed that the correlation differences significantly decrease when us-
ing the interfered speech signals (ρa − ρu < 0.03) or the binaural speech signals
(ρa − ρu < 0.02) as reference signals. These lower correlation differences are also
reflected by significantly lower corresponding decoding performances in Fig. 2.8c
and 2.8d.
Secondly, we explore the potential of using the attended speech signal affected by
different acoustic components as training signal (i.e. right part of Fig. 2.8 and 2.9,
separated by dashed line). On the one hand, when using the noisy attended speech
signal (in the noisy condition, Fig. 2.8a) or the reverberant attended speech signal
(in the reverberant condition, Fig. 2.8b) as training signal, there is no significant
difference in decoding performance (p > 0.05) compared to when using the clean
or the anechoic attended speech signal as training signal (for all considered refer-
ence signals). On the other hand, when using the interfered attended speech signal
(in the anechoic condition, Fig. 2.8c) or the binaural attended speech signal (in
the reverberant-noisy condition, Fig. 2.8d) as training signal, the decoding perfor-
mance is significantly lower compared to when using either the clean or the anechoic
attended speech signal as training signal (for all considered reference signals). Nev-
ertheless, even when using the binaural attended speech signal as training signal in
the reverberant-noisy condition, it is still feasible to perform AAD with a decoding
performance larger than 82%. The decoding performance results in Fig. 2.8 when
using attended speech signals affected by different acoustic components as training
signal are mostly consistent with the correlation differences in Fig. 2.9.
In summary, the results in this section show that using speech signals affected by
background noise and reverberation as training or reference signals results in a de-
coding performance that is comparable to using the clean or anechoic speech signals
as training or reference signals. On the contrary, using speech signals affected by the
interfering speaker as training or reference signals typically results in a significantly
lower decoding performance. Table 2.3 presents which training/reference signals
lead to the largest decoding performance for a specific EEG training/evaluation
condition.
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Table 2.3: Acoustic signal as training or reference signals using which the largest decoding
performance for a specific EEG (training and evaluation) condition is obtained.

EEG Condition Acoustic Signal

Noisy Clean, anechoic and noisy signals
Reverberant Clean, anechoic and reverberant signals
Anechoic Clean and anechoic signals

Reverberant-noisy Clean and anechoic signals

2.6 Conclusions

In this paper, we investigated the performance of the least-squares-based AAD
method for different acoustic conditions (anechoic, reverberant, noisy, and
reverberant-noisy), both in the training step as well as in the decoding step. The
experimental results showed that for all considered acoustic conditions it is possible
to decode auditory attention with a considerably large decoding performance, even
when the acoustic conditions for training and decoding are different. In addition, for
most acoustic conditions there is no significant difference in decoding performance
when using filters trained in all conditions or filters trained in a specific condition.
This suggests that for an unseen realistic acoustic condition AAD can be performed
using filters trained in, e.g., a laboratory acoustic condition.
Furthermore, we investigated the influence of the head filtering effect and of acoustic
components (reverberation, background noise and interfering speaker) on the decod-
ing performance. The experimental results showed that for all considered acoustic
conditions the head filtering effect has no significant impact on the decoding per-
formance. Moreover, when using speech signals affected by either reverberation or
background noise as reference signals, a comparable decoding performance is ob-
tained as when using clean speech signals as reference signals. On the contrary,
when using speech signals affected by the interfering speaker as reference signals,
the decoding performance significantly decreases. This suggests that for generating
appropriate reference signals, e.g., using acoustic signal pre-processing algorithms,
it is more important to reduce the interfering speaker than to reduce background
noise or reverberation. Furthermore, when using the binaural speech signals as refer-
ence signals for decoding, a relatively large decoding performance can be obtained.
This implies that decoding is feasible for the considered scenario even based on the
unprocessed noisy and reverberant signals.
Finally, we explored the potential of using the attended speech signal affected by
different acoustic components as training signal for computing the filter. When
using attended speech signals affected by either reverberation or by background
noise as training signal, a comparable decoding performance is obtained as when
using the clean attended speech signal as training signal. However, when using
attended speech signals affected by the interfering speaker as training signal, the
decoding performance may significantly decrease. Nevertheless, even when using
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the binaural attended speech signal as training signal, it is still feasible to achieve
a large decoding performance.
While the discussion in this paper has been limited to the least-squares-based AAD
method, in which auditory attention is decoded using an envelope reconstruction
model, AAD approaches based on empirical mode decomposition [194,195], inherent
fuzzy entropy [196] or a neural encoding model [24,197] have not been investigated
in this paper. Further work could therefore include a study on how reverberation
and noise influence these AAD approaches.



3
COGNITIVE-DRIVEN BINAURAL
BEAMFORMING USING EEG-BASED
AUDITORY ATTENTION DECODING

Identifying the target speaker in hearing aid applications is an essential ingre-
dient to improve speech intelligibility. Recently, a least-squares-based auditory
attention decoding (AAD) method has been proposed to identify the target
speaker from single-trial EEG recordings in an acoustic scenario with two
competing speakers. Aiming at enhancing the target speaker and suppress-
ing the interfering speaker and ambient noise, in this paper we propose a
cognitive-driven speech enhancement system, consisting of a binaural beam-
former which is steered based on AAD and estimated relative transfer function
(RTF) vectors, which require estimates of the direction-of-arrivals (DOAs) of
both speakers. For binaural beamforming and to generate reference signals for
AAD, we consider either minimum-variance-distortionless-response (MVDR)
beamformers or linearly-constrained-minimum-variance (LCMV) beamform-
ers. Contrary to the binaural MVDR beamformer, the binaural LCMV beam-
former allows to preserve the spatial impression of the acoustic scene and to
control the suppression of the interfering speaker, which is important when
intending to switch attention between speakers. The speech enhancement per-
formance of the proposed system is evaluated in terms of the binaural signal-
to-interference-plus-noise ratio (SINR) improvement in anechoic and rever-
berant conditions. Furthermore, we investigate the impact of RTF and DOA
estimation errors and AAD errors on the speech enhancement performance.
The experimental results show that the proposed system using LCMV beam-
formers yields a larger decoding performance and binaural SINR improvement
compared to using MVDR beamformers.

3.1 Introduction

During the last decades significant advances have been made in multi-microphone
speech enhancement algorithms for hearing aids. Although several algorithms are
available to reduce background noise or to perform source separation in multi-talker
scenarios [10, 13], their performance in improving speech intelligibility depends on
correctly identifying the target speaker to be enhanced. In hearing aid applications,
the target speaker is typically assumed to be either located in front of the listener

47
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or to be the loudest speaker. However, since in real-world conditions these assump-
tions are often violated, the performance of speech enhancement algorithms may
substantially decrease.
Recent advances have shown that it is possible to infer the auditory attention of
a listener from electroencephalography (EEG) recordings [16,17]. Using single-trial
EEG recordings, several auditory attention decoding (AAD) methods have been
proposed to identify the attended speaker based on, e.g., a least-squares cost func-
tion [16], neural networks [23], and Bayesian filtering [24]. Aiming at incorporating
AAD in a brain-computer interface for real-world applications, e.g., to control a
hearing aid, a large research effort has recently focused on investigating the feasibil-
ity of AAD in real-world listening conditions [20,24–26,32,129,165,169,198], closing
the loop of an AAD system by presenting feedback to the listener [180], and steering
source separation and noise reduction algorithms based on AAD [27–29,166].
The least-squares-based AAD method proposed in [16] aims at reconstructing the
attended speech envelope from the EEG recordings using a trained spatio-temporal
filter. In the training step, the clean speech signal of the attended speaker is used to
train the spatio-temporal filter by minimizing the least-squares error between the
attended speech envelope and the reconstructed envelope. In the decoding step, the
clean speech signals of both the attended and the unattended speaker are used as
reference signals for decoding. Similarly to the least-squares-based AAD method,
the AAD methods proposed in [23,24] use the clean speech signals of both speakers
for decoding. In hearing aid applications, only the microphone signals, containing
reverberation, background noise and interference, are obviously available in prac-
tice. In [26, 169] it has been shown that AAD is still feasible using the noisy and
reverberant microphone signals as reference signals, but the decoding performance
is significantly decreased compared to using the clean speech signals as reference
signals.
Aiming at generating appropriate reference signals for decoding from the micro-
phone signals and incorporating AAD in speech enhancement algorithms, several
cognitive-driven source separation and noise reduction algorithms [27–29, 166, 170]
have been proposed. The single-microphone source separation algorithm proposed
in [28] uses a deep neural network (DNN) to generate reference signals by separating
the speakers from the mixture received at the microphone. Using electrocorticog-
raphy recordings and AAD, one of the reference signals is then selected as the
enhanced attended speaker. Although experimental results in [28] show that the
algorithm is able to significantly improve the quality of the attended speaker, it
should be realized that the algorithm is speaker-dependent, i.e., requires prior DNN
training on known speakers. The multi-microphone noise reduction algorithms pro-
posed in [27, 29, 166, 170] are able to exploit the spatial diversity provided by the
microphone signals for reference signal generation and speech enhancement. The
cognitive-driven multi-channel Wiener filter (MWF) proposed in [27,166] generates
reference signals from binaural hearing aid microphone signals using multiple multi-
channel Wiener filters based on an envelope demixing algorithm and a voice activity
detector (VAD). Using EEG recordings and AAD, one of the reference signals is
then selected as the enhanced attended speaker. Experimental results in [27, 166]
show that the cognitive-driven MWF is able to enhance the attended speaker and
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strongly suppress the interfering unattended speaker (especially in an anechoic con-
dition). While strongly suppressing the interfering speaker is desired to improve
speech intelligibility, it may deprive the listener from switching attention. In addi-
tion, the binaural MWF changes the spatial impression of the acoustic scene since
all sources at the output of the binaural MWF are perceived as coming from the
direction of the attended speaker [10, 95], which may lead to a confusion between
acoustical and visual information.
Aiming at enhancing the attended speaker and controlling the suppression of the
unattended speaker while preserving the spatial impression of the acoustic scene,
in [170] a cognitive-driven speech enhancement system was proposed consisting of
a binaural beamformer which is steered based on AAD and the estimated DOAs of
the attended and the unattended speaker (see block diagram Fig. 3.1). First, the
DOAs of both speakers are estimated from the binaural microphone signals. Based
on the estimated DOAs, RTF vectors are selected from a database of (anechoic)
prototype RTF vectors and two beamformers (BEAMs) generate reference signals
for AAD. The least-squares-based AAD method then identifies the DOA of the
attended and the unattended speaker to steer a binaural beamformer (BBEAM)
for speech enhancement. To generate reference signals for AAD, in this paper we
either consider minimum-variance-distortionless-response (MVDR) beamformers or
a linearly-constrained-minimum-variance (LCMV) beamformers as BEAMs. While
MVDR beamformers generate acceptable reference signals for decoding, we expect
LCMV beamformers to generate better reference signals by jointly suppressing the
interfering speaker and background noise. To generate binaural output signals, we
either consider a steerable binaural MVDR beamformer or a steerable binaural
LCMV beamformer as BBEAM. Contrary to the binaural MVDR beamformer, the
binaural LCMV beamformer allows to control the suppression of the signal arriving
from the unattended DOA and preserve the spatial impression of the acoustic scene.
Compared to [170], in this paper we provide a detailed analysis and experimental
comparison between the cognitive-driven binaural LCMV and MVDR beamformers
for an acoustic scenario comprising two competing speakers and diffuse background
noise in an anechoic and a reverberant condition. For the reverberant condition,
we compare the performance between using (oracle or estimated) reverberant RTF
vectors and anechoic prototype RTF vectors, which are determined by the (oracle
or estimated) DOAs. In addition, we investigate the impact on the speech enhance-
ment performance of RTF, DOA and AAD estimation errors and the STFT frame
length. Moreover, we investigate how well the proposed cognitive-driven binaural
beamformers preserve the spatial impression of the acoustic scene.
The paper is organized as follows. In Section 3.2 the configuration and the notation
used for the binaural hearing aid setup recordings are introduced. In Section 3.3 the
used DOA and RTF vector estimator are described. In Section 3.4 the beamformers
and the AAD method used in the proposed cognitive-driven speech enhancement
system are described. Section 3.5 describes the acoustic and EEG measurement
setup, the algorithm implementation details and the performance measures. In Sec-
tion 3.6 the experimental results are presented, exploring the decoding performance
and the speech enhancement performance of the proposed system.
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Fig. 3.1: Block diagram of the proposed cognitive-driven binaural beamformer in an acous-
tic scenario comprising two competing speakers (s1 and s2 with DOAs θ1 and θ2)
and background noise. Based on the estimated DOAs (θ̂1 and θ̂2) of the speak-
ers, the anechoic or reverberant RTF vectors (â1 and â2) are estimated and two
beamformers (BEAM1 and BEAM2) generate reference signals (z1 and z2) for
AAD. The AAD method then identifies the DOA of the attended and the unat-
tended speaker (θ̂a and θ̂u) to steer a binaural beamformer (BBEAM), generating
binaural output signals zL and zR.

3.2 Configuration and notation

We consider an acoustic scenario comprising two competing speakers with DOAs
θ1 and θ2 and background noise in a reverberant environment (see Fig. 3.1). The
angle θ = 0◦ corresponds to the frontal direction, while negative θ correspond to
the left side of the listener and positive θ correspond to the right side. The clean
signal of speaker 1 is denoted as s1 [n], while the clean signal of speaker 2 is denoted
as s2 [n], with n the discrete time index. We consider a binaural hearing aid setup,
where each hearing aid contains M microphones. The m-th microphone signal of
the left hearing aid yL,m [n] can be decomposed as

yL,m [n] = x1,L,m [n] + x2,L,m [n] + vL,m [n] , (3.1)
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where x1,L,m [n] and x2,L,m [n] denote the reverberant speech component in the m-
th microphone signal corresponding to speaker 1 and speaker 2, respectively, and
vL,m [n] denotes the background noise component. The reverberant speech compo-
nents x1,L,m [n] and x2,L,m [n] consist of an anechoic speech component, encompass-
ing the (anechoic) head filtering effect, and a reverberation component. The m-th
microphone signal of the right hearing aid yR,m [n] can be decomposed similarly as
in (3.1).
In the STFT domain, the 2M -dimensional stacked vector of all microphone signals
from the left and the right hearing aid is given by

y (k, l) = [YL,1 (k, l) . . . YL,M (k, l) YR,1 (k, l) . . . YR,M (k, l)]T , (3.2)

where k denotes the frequency index and l denotes the frame index. For notational
conciseness the indices k, l and n will be omitted in the remainder of this paper
wherever possible.
Using (3.1) and (3.2), the signal vector y can be written as

y = x1 + x2 + v, (3.3)

where the vectors x1, x2, and v are defined similarly as in (3.2) for speaker 1, speaker
2, and the background noise, respectively. The vectors x1 and x2 are given by

x1 = h1S1, x2 = h2S2, (3.4)

where h1 and h2 denote the 2M -dimensional (reverberant) acoustic transfer func-
tion (ATF) vectors between the microphones on both hearing aids and speaker 1
and speaker 2, respectively. Using the first microphones on the left and the right
hearing aid as so-called reference microphones, the vector x1 can be written as

x1 = ā1,LX1,L,1 = ā1,RX1,R,1, (3.5)

where ā1,{L,R} denote the 2M -dimensional relative transfer function (RTF) vectors
[10, 13] of speaker 1 with respect to the reference microphones on the left and the
right hearing aid, respectively. The RTF vectors ā2,{L,R} of speaker 2 are defined
similarly.
The output signals of all beamformers depicted in Fig. 3.1 are obtained by filtering
and summing the microphone signals on both hearing aids, i.e.,

z = ISTFT
{
wHy

}
, (3.6)

where ISTFT {· } denotes the inverse short-time Fourier transform, w denotes the
2M -dimensional filter vector, and (· )H denotes the conjugate transpose operator.

3.3 DOA and RTF estimation

In this section, we present the algorithms to estimate the DOAs and the RTF vectors
of both speakers, which will be used for beamforming and to generate reference



52 cognitive-driven binaural beamforming using aad

signals for AAD (see Section 3.4). Section 3.3.1 describes a classification-based DOA
estimation algorithm. Section 3.3.2 describes two DOA-based RTF vector estimation
algorithms.

3.3.1 DOA estimation

To estimate the DOAs of multiple speakers from binaural microphone signals, sev-
eral methods have been proposed, e.g., by modeling binaural cues using a Gaussian
mixture model [199], by using a beamforming-based approach [89], or by using a
classification-based method [90]. In this paper, we will use the DOA estimation algo-
rithm from [90], which estimates the source presence probability (SPP) for different
DOAs using support vector machine (SVM) classifiers. The SVMs are trained to
distinguish between the presence of a source for a certain direction and the absence
for all other directions. The decision value of each SVM is mapped to the SPP pθ [n]
for each direction using a generalized linear model. As feature the short-term gen-
eralized cross-correlation with phase transform (GCC-PHAT) [200] is used, which
has been shown to be relatively robust to noise and reverberation [201].
To estimate the DOAs of speakers 1 and 2, we first smooth the SPP for each direction
across time, which increases the robustness against background noise, i.e.,

pθ [n] = τpθ [n] + (1− τ) pθ [n− 1] , (3.7)

with τ denoting the recursive smoothing constant. We then select two DOAs with
the largest smoothed SPP pθ [n], from which the DOAs of speaker 1 and 2 are
determined such that θ̂1 ≤ θ̂2.
In the simulations (see Section 3.5), we will consider the following DOAs for speakers
1 and 2:

• ODOA: oracle DOAs, i.e., θ̂1 = θ1 and θ̂2 = θ2.
• EDOA: estimated DOAs θ̂1 and θ̂2 using [90] and (3.7).

3.3.2 RTF vector estimation

To estimate the RTF vectors ā1,{L,R} and ā2,{L,R} for both speakers, we will con-
sider two approaches. In the first approach, the RTF vectors are approximated
by anechoic RTF vectors aL(θ) and aR(θ), which are determined by the DOA θ
(assuming the speakers are in the far field and in the horizontal plane). These ane-
choic RTF vectors can be either analytically computed based on a (spherical) head
model, e.g., [109], or selected from a database of (measured) prototype RTF vectors,
e.g., [110]. The estimated RTF vectors are denoted as a{L,R}(θ̂1) for speaker 1 and
a{L,R}(θ̂2) for speaker 2.
The second approach aims at estimating the reverberant RTF vectors of both speak-
ers directly from the microphone signals. Although many RTF vector estimation
approaches are available for a single-speaker scenario [104,106,107,202], jointly esti-
mating the RTF vectors of two simultaneously active speakers is not straightforward.
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Assuming that the representation of both speakers in the STFT-domain is sparse,
i.e., each time-frequency bin is dominated either by speaker 1 or speaker 2, we will
first estimate the RTF vectors for each time-frequency bin assuming a single-speaker
scenario and then assign these RTF vector estimates either to speaker 1 or speaker
2. The RTF vectors with respect to the reference microphones on the left and the
right hearing aid are estimated as [203]

ã{L,R} (k, l) =
Φ̂y (k, l) e{L,R}

eT{L,R}Φ̂y (k, l) e{L,R}
, (3.8)

with the smoothed microphone covariance matrix at each time-frequency bin com-
puted as

Φ̂y (k, l) = αy (k, l)yH (k, l) + (1− α) Φ̂y (k, l − 1) , (3.9)

with α recursive smoothing constant and e{L,R} reference microphone selection
vectors consisting of zeros and one element equal to 1, i.e., eL (1) = 1 and
eR (M + 1) = 1. The estimated RTF vectors ã{L,R} (k, l) are then assigned to either
speaker 1 or 2 based on their corresponding DOA and the estimated DOAs of both
speakers. Similarly as in [204], the corresponding DOA θ̂RTF (k, l) of the estimated
RTF vectors is determined per time-frequency bin by computing the normalized
cross-correlation κ̂ (k, l) between the reference microphone signals (corresponding
to the phase difference) with the normalized cross-correlation κ(θ) between the
anechoic prototype RTF vectors for all directions θ, i.e.,

θ̂RTF (k, l) = argmin
θ

(|κ̂ (k, l)− κ(θ)|), (3.10)

with
κ̂ (k, l) = eTLΦ̂y (k, l) eR∣∣∣eTLΦ̂y (k, l) eR

∣∣∣ , (3.11)

κ(θ) = eTRaL(θ)∣∣eTRaL(θ)
∣∣ . (3.12)

When the DOA θ̂RTF (k, l) is in a region of ±5◦ around the estimated DOA θ̂1 (l)
of speaker 1, then the estimated RTF vectors ã{L,R}(k, l) are assigned to speaker 1
and recursively smoothed, i.e.,

â1,{L,R}(k, l) = βã{L,R}(k, l) + (1− β) â1,{L,R}(k, l − 1). (3.13)

with β recursive smoothing constant. When the DOA θ̂RTF (k, l) is in a region of
±5◦ around the estimated DOA θ̂2 (l) of speaker 2, then the estimated RTF vectors
ã{L,R}(k, l) are assigned to speaker 2 and recursively smoothed, i.e.,

â2,{L,R}(k, l) = βã{L,R}(k, l) + (1− β) â2,{L,R}(k, l − 1). (3.14)
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3.4 Cognitive-driven binaural beamformer

In this section, we present the proposed cognitive-driven speech enhancement system
(see Fig. 3.1), consisting of three main blocks. Section 3.4.1 describes the reference
signal generation, where either MVDR or LCMV beamformers generate reference
signals for AAD using the estimated DOA-based RTF vectors. Section 3.4.2 reviews
the least-squares-based AAD method in [16], which is used to identify the DOA of
the attended and the unattended speaker. These DOAs are used to steer a binaural
MVDR or LCMV beamformer generating binaural output signals, which is discussed
in Section 3.4.3.

3.4.1 Reference signal generation using beamformers

In [26, 32] it has been shown that the decoding performance of the least-squares-
based AAD method (see Section 3.4.2) is heavily affected by the presence of back-
ground noise and especially the interfering speaker in the reference signals used
for decoding. In this paper we will investigate different beamformers for generating
appropriate reference signals from the binaural microphone signals.
In [29] it has been proposed to use an MVDR beamformer for generating reference
signals. The MVDR beamformer [9,10,86] using RTF vectors ā aims at minimizing
the power spectral density (PSD) of the output noise component while preserving
the target speech component in one of the microphone signals. The corresponding
constrained optimization problem is given by

min
w

wHΦvw︸ ︷︷ ︸
noise output PSD

subject to wH āt = 1︸ ︷︷ ︸
target

, (3.15)

where Φv = ε
{
vvH

}
denotes the noise covariance matrix with ε {·} the expected

value operator, and āt denotes the RTF vector corresponding to the target speaker.
The MVDR beamformer solving (3.15) is given by [9, 10,86]

wMVDR = Φ−1
v āt

āHt Φ−1
v āt

. (3.16)

A disadvantage of the MVDR beamformer is the fact that an interfering speaker may
not be sufficiently suppressed, possibly reducing the AAD performance. Hence, to
jointly suppress the interfering speaker and background noise, we will also consider
the LCMV beamformer [9, 205], which adds an interference suppression constraint
to the MVDR optimization problem in (3.15), i.e.,

min
w

wHΦvw︸ ︷︷ ︸
noise output PSD

subject to wH āt = 1︸ ︷︷ ︸
target

, wH āi = 0︸ ︷︷ ︸
interference

, (3.17)
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where āi denotes the RTF vector corresponding to the interfering speaker. The
LCMV beamformer solving (3.17) is given by [205,206]

wLCMV = Φ−1
v C̄

(
C̄HΦ−1

v C̄
)−1 b, (3.18)

with
C̄ = [āt āi] , b = [1 0]T . (3.19)

Since in practice it is not trivial to accurately estimate both RTF vectors āt and
āi in a noisy and reverberant environment, in this paper we will also consider
beamformers using anechoic RTF vectors a (θ). The MVDR beamformer in (3.16)
with target angle θt is given by

wMVDR (θt) = Φ−1
v a (θt)

aH (θt) Φ−1
v a (θt)

. (3.20)

The LCMV beamformer in (3.18) with target angle θt and interfering angle θi is
given by

wLCMV (θt, θi) = Φ−1
v C

(
CHΦ−1

v C
)−1 b, (3.21)

with
C = [a (θt) a (θi)] , b = [1 0]T . (3.22)

Aiming at generating appropriate reference signals, i.e., separated speaker signals
with reduced noise, we will either use two MVDR beamformers or two LCMV beam-
formers (BEAM1 and BEAM2 in Fig. 3.1), employing either anechoic or reverberant
RTF vectors, i.e.,

• MVDR beamformers: an MVDR beamformer with estimated target angle θt =
θ̂1 to generate the reference signal for speaker 1, and an MVDR beamformer
with estimated target angle θt = θ̂2 to generate the reference signal for speaker
2.

• LCMV beamformers: an LCMV beamformer with estimated target angle θt =
θ̂1 and estimated interfering angle θi = θ̂2 to generate the reference signal for
speaker 1, and an LCMV beamformer with estimated target angle θt = θ̂2
and estimated interfering angle θi = θ̂1 to generate the reference signal for
speaker 2.

It should be noted that we consider the RTF vectors normalized with respect to the
left microphone (i.e., aL(θ̂{t,i}) and â{t,i},L) if θ̂t ≤ 0◦, and normalized with respect
to the right microphone (i.e., aR(θ̂{t,i}) and â{t,i},R) if θ̂t > 0◦.
The output signals of the MVDR and LCMV beamformers can be decomposed as

z1 = zt,1 + zi,1 + zv,1, (3.23)

z2 = zt,2 + zi,2 + zv,2, (3.24)
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where zt,1 and zt,2 denote the target output speech component, zi,1 and zi,2 denote
the interfering output speech component, and zv,1 and zv,2 denote the output noise
component.
In the simulations (see Section 3.5), we will consider the following RTF vectors for
the MVDR and LCMV beamformers:

• ORTF: oracle reverberant RTF vectors ā1 and ā2.
• ODOA: anechoic RTF vectors a (θ) using the oracle DOAs θ1 and θ2.
• ERTF: estimated RTF vectors â1 and â2

• EDOA: anechoic RTF vectors a (θ) using the estimated DOAs θ̂1 and θ̂2.
It should be noted that for the anechoic condition the oracle RTF vectors (ORTF)
are obviously the same as the anechoic RTF vectors using the oracle DOAs (ODOA).

3.4.2 Auditory attention decoding

Based on the reference signals z1 and z2 generated by the MVDR or LCMV beam-
formers, the EEG-based auditory attention decoding method then aims at iden-
tifying which speaker the listener attended to. This section briefly describes the
least-squares-based AAD method from [16], which consists of a training and a de-
coding step.

3.4.2.1 Decoding step

The EEG recordings are first segmented into trials (see Section 3.5.2 for more de-
tails). To decode auditory attention from C-channel EEG recordings rc [i], with
c = 1 . . . C and i the sub-sampled time index of a trial, it has been proposed in [16]
to reconstruct an estimate of the attended speech envelope êa [i] using a trained
spatio-temporal filter, i.e.,

êa [i] = gT r [i] , i = 1 . . . I, (3.25)

with
g =

[
gT1 gT2 . . . gTC

]T
, (3.26)

gc = [gc,0 gc,1 . . . gc,J−1]T , (3.27)

r [i] =
[
rT1 [i] rT2 [i] . . . rTC [i]

]T
, (3.28)

rc [i] = [rc [i+ ∆] rc [i+ 1 + ∆] . . . rc [i+ J − 1 + ∆]]T , (3.29)

where J denotes the number of filter coefficients per channel and ∆ models the
latency of the attentional effect in the EEG responses to acoustic stimuli. Next,
the correlation coefficients between the estimated attended speech envelope êa [i] in
(3.25) and the envelope of two reference signals are computed as

ρ1 = ρ (e1 [i] , êa [i]) , ρ2 = ρ (e2 [i] , êa [i]) , (3.30)
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where e1 [i] and e2 [i] denote the envelopes of the reference signals z1 and z2, re-
spectively, such that ρ1 and ρ2 denote the correlation coefficients corresponding
to speaker 1 and speaker 2, respectively. Based on these correlation coefficients, it
is then decided that the listener attended to speaker 1 if ρ1 > ρ2 or attended to
speaker 2 otherwise.
In this paper, we hence propose to estimate the DOA of the attended speaker θa
and the DOA of unattended speaker θu based on the correlation coefficients ρ1 and
ρ2 and the estimated DOAs of speaker 1 and 2 as{

θ̂a = θ̂1, θ̂u = θ̂2 if ρ1 > ρ2

θ̂a = θ̂2, θ̂u = θ̂1 otherwise.
(3.31)

To investigate the impact of AAD errors on the speech enhancement performance
of the proposed system, in the simulations we will consider either

• oracle AAD (OAAD), i.e., θ̂a = θa and θ̂u = θu

• estimated AAD (EAAD), where θ̂a and θ̂u are determined using (3.31).

3.4.2.2 Training step

Prior to the decoding step, the spatio-temporal filter g in (3.25) needs to be trained.
During the training step the attended speaker is obviously assumed to be known.
The filter g is computed by minimizing the least-squares error between the attended
speech envelope ea [i] and the reconstructed envelope êa [i], regularized with the
squared l2−norm of the derivatives of the filter coefficients to avoid over-fitting
[16,26,129,169], i.e.,

min
g

1
I

I∑
i=1

(
ea [i]− gT r [i]

)2 + βgTDg, (3.32)

with D denoting the derivative matrix [169] and β denoting a regularization param-
eter. The filter minimizing the regularized least-squares cost function in (3.32) is
equal to

g = (Q + βD)−1 q, (3.33)

with the correlation matrix Q and the cross-correlation vector q given by

Q = 1
I

I∑
i=1

(
r [i] rT [i]

)
, q = 1

I

I∑
i=1

(r [i] ea [i]). (3.34)

3.4.3 Binaural beamformer

The estimated DOAs of the attended and the unattended speaker in (3.31) are then
used to steer a binaural beamformer (BBEAM in Fig. 3.1), generating binaural out-
put signals. For binaural beamforming, we will consider either the binaural MVDR
or LCMV beamformer.
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The binaural MVDR beamformer [95] aims at minimizing the PSD of the output
noise component while passing signals arriving from the estimated attended DOA
θ̂a. Similarly to (3.16), the binaural MVDR beamformer for the left and the right
hearing aid using the estimated RTF vectors is given by

wBMVDR,L = Φ−1
v âa,L

âHa,LΦ−1
v âa,L

, (3.35)

wBMVDR,R = Φ−1
v âa,R

âHa,RΦ−1
v âa,R

, (3.36)

where âa,{L,R} = â1,{L,R} if θ̂a = θ̂1 or âa,{L,R} = â2,{L,R} if θ̂a = θ̂2. When using
anechoic RTF vectors, the binaural MVDR beamformer for the left and the right
hearing aid is given by

wBMVDR,L(θ̂a) = Φ−1
v aL(θ̂a)

aHL (θ̂a)Φ−1
v aL(θ̂a)

, (3.37)

wBMVDR,R(θ̂a) = Φ−1
v aR(θ̂a)

aHR (θ̂a)Φ−1
v aR(θ̂a)

. (3.38)

It should be noted that the binaural MVDR beamformer preserves the binaural
cues, i.e., the interaural level difference (ILD) and the interaural time difference
(ITD), of the signals arriving from the attended DOA, but distorts the binaural
cues of signals arriving from other directions (including background noise). Since
all sources are perceived as coming from the direction of the attended speaker, this
will change the spatial impression of the acoustic scene.
As an alternative to the binaural MVDR beamformer, we also consider the binau-
ral LCMV beamformer [91, 122], which allows to control the suppression of signals
arriving from the unattended DOA (possibly enabling the listener to switch atten-
tion) and preserves the binaural cues of signals arriving from the attended and the
unattended DOA. The binaural LCMV beamformer aims at minimizing the PSD
of the output noise component while passing signals arriving from the estimated
attended DOA θ̂a and suppressing signals arriving from the estimated unattended
DOA θ̂u. Similarly to (3.18), the binaural LCMV beamformer for the left and the
right hearing aid using the estimated RTF vectors is given by

wBLCMV,L = Φ−1
v C̄L

(
C̄H

LΦ−1
v C̄L

)−1
bL, (3.39)

wBLCMV,R = Φ−1
v C̄R

(
C̄H

RΦ−1
v C̄R

)−1
bR, (3.40)

with
C̄L = [âa,L âu,L] , bL = [1 δL]T , (3.41)

C̄R = [âa,R âu,R] , bR = [1 δR]T , (3.42)
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where âu,{L,R} = â1,{L,R} if θ̂u = θ̂1 or âu,{L,R} = â2,{L,R} if θ̂u = θ̂2, and 0 ≤
δL ≤ 1 and 0 ≤ δR ≤ 1 denote the interference suppression factors for the left and
the right hearing aid, respectively. When using anechoic RTF vectors, the binaural
LCMV beamformer for the left and the right hearing aid is given by

wBLCMV,L(θ̂a, θ̂u) = Φ−1
v CL

(
CH
LΦ−1

v CL

)−1 bL, (3.43)

wBLCMV,R(θ̂a, θ̂u) = Φ−1
v CR

(
CH
RΦ−1

v CR

)−1 bR, (3.44)

with
CL =

[
aL(θ̂a) aL(θ̂u)

]
, (3.45)

CR =
[
aR(θ̂a) aR(θ̂u)

]
. (3.46)

Since we aim at preserving the spatial impression of the acoustic scene, we will use
the same interference suppression factor for the left and the right hearing aid, i.e.,
δ = δL = δR. Setting δ to zero corresponds to a complete suppression of signals
arriving from the estimated unattended DOA θ̂u but unpredictable binaural cue
distortion for the unattended speaker (due to using anechoic RTF vectors in a re-
verberant environment or DOA estimation errors in an anechoic environment), while
δ > 0 leads to a more controlled suppression and binaural cue preservation of the
unattended speaker [91,122]. The output signals of the binaural LCMV beamformer
for the left and the right hearing aid are equal to

zL = ISTFT
{

wH
BLCMV,L(θ̂a, θ̂u)y

}
, (3.47)

zR = ISTFT
{

wH
BLCMV,R(θ̂a, θ̂u)y

}
. (3.48)

The binaural output signals of the binaural MVDR and LCMV beamformers can
be decomposed as

zL = za,L + zu,L + zv,L, (3.49)

zR = za,R + zu,R + zv,R, (3.50)

where za,L and za,R denote the (oracle) attended output speech component, zu,L
and zu,R denote the (oracle) unattended output speech component, and zv,L and
zv,R denote the output noise component.

3.5 Experimental setup

In this section, we describe the acoustic simulation setup, the setup used for EEG
measurements, AAD training and evaluation, the implementation details for the
DOA estimation, RTF estimation and beamforming algorithms, and the used per-
formance measures.
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Table 3.1: Reference signals used for evaluating the AAD performance
Reference Signals Abbreviation Description

Oracle anechoic signals ORACLE Anechoic speech components of the attended and the unattended speaker

Processed microphone signals
ORTF Output signals of MVDR/LCMV beamformers using oracle reverberant RTFs

ODOA Output signals of MVDR/LCMV beamformers using anechoic RTFs and oracle DOAs

ERTF Output signals of MVDR/LCMV beamformers using estimated reverberant RTFs

EDOA Output signals of MVDR/LCMV beamformers using anechoic RTFs and estimated DOAs
Unprocessed microphone signals UNPROC Noisy and reverberant reference microphone signals

3.5.1 Acoustic simulation setup

Two German audio stories, uttered by two different male speakers, were used as the
clean speech signals s1 and s2. Speech pauses from the audio stories that exceeded
0.5 s were shortened to 0.5 s, resulting in two highly overlapping (competing) au-
dio stories. The hearing aid microphone signals yL,m and yR,m were generated at
a sampling frequency of 16 kHz by convolving the clean speech signals with non-
individualized measured binaural impulse responses (anechoic or reverberant) for
a binaural hearing aid setup from [110], and adding diffuse babble noise. The dif-
fuse babble noise was simulated according to [192] using babble speech recordings
and a cylindrically isotropic noise field assumption. The hearing aid setup in [110]
consisted of two hearing aids, each equipped with 3 microphones, mounted on a
dummy head. As reference microphones, we chose the front microphones of the left
and the right hearing aid. The left and the right competing speaker were simulated
at θ1 = −45◦ and θ2 = 45◦ (see Fig. 3.2). In total, four acoustic conditions were con-
sidered: two anechoic conditions with binaural input SNRs 9.0 dB and 4.0 dB, and
two reverberant conditions (reverberation time T60 ≈ 0.5 s) with the same SNRs.
The binaural input SNR is defined as the energy ratio between the speech compo-
nents of speaker 1 and 2 in the reference microphone signals and the background
noise components in the reference microphone signals, i.e.,

BSNRin = 10log10
φx
φv
, (3.51)

with

φx = ε
{
|x1,L,1|2

}
+ ε

{
|x2,L,1|2

}
+

ε
{
|x1,R,1|2

}
+ ε

{
|x2,R,1|2

}
,

φv = ε
{
|vL,1|2

}
+ ε
{
|vR,1|2

}
. (3.52)

3.5.2 EEG measurement and AAD setup

Eighteen normal-hearing and German-speaking participants took part in this study
(see [26]). As acoustic stimuli, the reference microphone signals of the left and the
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Fig. 3.2: Acoustic simulation setup for the reverberant condition. Two competing speakers
were located at DOAs θ1 = −45◦ and θ2 = 45◦ and a distance of 1 m from the
listener with two hearing aids, each equipped with 3 microphones.

right hearing aid were presented to the participants via insert earphones (E-A-
RTONE 3A)1. Among all participants, 8 participants were instructed to attend
to the left speaker, while 10 participants were instructed to attend to the right
speaker. Two participants were excluded from the analysis, one participant due to
poor attentional performance and the other one due to a technical hardware issue.
For all acoustic conditions, the EEG responses rc [i] were recorded using C = 64
channels2 at a sampling frequency of 500 Hz, and referenced to the nose electrode
(see [26] for more details). Similarly as in [16, 26], the EEG responses were re-
referenced offline to a common average reference, band-pass filtered between 2 Hz
and 8 Hz using a third-order Butterworth band-pass filter, and subsequently down-
sampled to 64 Hz.
For filter training and decoding (see Section 3.4.2), the attended speech envelope
ea [i] as well as the envelopes e1 [i] and e2 [i] of the reference signals were obtained
using a Hilbert transform [129], followed by low-pass filtering at 8 Hz and down-
sampling to 64 Hz. The attended speech envelope ea [i] was computed from the
anechoic speech component of the attended speaker in the reference microphone
signal at the side of the attended speaker. The EEG recordings for the different
acoustic conditions were grouped together based on reverberation time, resulting
in two experimental analysis conditions, i.e., anechoic and reverberant. The EEG
recordings corresponding to each experimental analysis condition were split into 40
trials, each of length 30 seconds. Each participant’s own data were used for filter
training and evaluation. To avoid using the same trial for filter training and decod-
ing, the leave-one-out cross validation approach was used (see [26] for more details).
All analyses were performed using the EEG recordings under the same experimental
analysis condition. Similarly as in [29], the parameters of the spatio-temporal filter
g in (3.25) were set to J = 8 and ∆ = 8 (corresponding to 125 ms).
The AAD performance will be evaluated for both experimental analysis conditions
using several reference signals z1 and z2 (see Table 3.1):

1 Please note that during the EEG measurement the participants were only presented the reference
microphone signals, not the binaural output signals of the proposed system.

2 BrainCap with multitrodes from Easycap GmbH.
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• oracle anechoic signals, corresponding to perfectly separated speech signals of
the attended and the unattended speaker, i.e., the anechoic speech component
of the attended speaker in the reference microphone signal at the side of the at-
tended speaker and the anechoic speech component of the unattended speaker
in the reference microphone signal at the side of the unattended speaker.

• processed microphone signals, i.e., the output signals of the MVDR and the
LCMV beamformers, either using reverberant or anechoic RTF vectors.

• unprocessed microphone signals, i.e., the reference microphone signal at the
side of speaker 1 as the reference signal for speaker 1 and the reference mi-
crophone signal at the side of speaker 2 as the reference signal for speaker
2.

3.5.3 Algorithm implementation details

3.5.3.1 DOA estimation algorithm

For the DOA estimation algorithm (see Section 3.3.1), the SVM classifiers were
trained using simulated noisy speech signals, generated by convolving clean speech
signals from the TIMIT database with anechoic binaural room impulse responses
(BRIRs) from [110] and adding diffuse speech-shaped noise at SNRs of −20 dB to 20
dB in steps of 10 dB. The GCC-PHAT features were calculated using a frame length
of 10 ms with an overlap of 5 ms. The smoothed SPP pθ in (3.7) was initialized
with pθ [1] and recursively smoothed using a corresponding time constant of 1 s.
The DOAs of speaker 1 and 2 were then determined as two DOAs between −90◦
and 90◦ (in steps of 5◦) with the largest smoothed SPP such that θ̂1 ≤ θ̂2.

3.5.3.2 RTF vector estimation algorithm

The RTF estimation algorithm (see Section 3.3.2) was implemented using a weighted
overlap-add (WOLA) framework with different STFT frame lengths, i.e., FL =
512, 1024, 2048, 4096, 8192 samples, and an overlap of 50% between successive
frames. The microphone covariance matrix in (3.9) was initialized using the cylin-
drically isotropic noise assumption and recursively smoothed using a corresponding
time constant of 50 ms. The estimated RTF vectors â1,{L,R} (k, l) in (3.13) corre-
sponding to speaker 1 were initialized with the anechoic RTF vectors corresponding
to the estimated DOA of speaker 1 at l = 1. Similarly, the estimated RTF vec-
tors â2,{L,R} (k, l) in (3.14) corresponding to speaker 2 were initialized with the
anechoic RTF vectors corresponding to the estimated DOA of speaker 2 at l = 1.
The estimated RTF vectors in (3.13) and (3.14) were recursively smoothed using a
corresponding time constant of 100 ms.
As proposed in [207], the oracle reverberant RTF vectors āt and āi corresponding to
the target and the interfering speaker were calculated as the normalized principal
eigenvector of the (oracle) target and interference covariance matrix, respectively.
These covariance matrices were constructed using white noise convolved with the re-
verberant BRIRs from [110] corresponding to the target and the interfering speaker.
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Similarly, the anechoic RTF vectors a (θ) for angle θ was calculated as the normal-
ized principal eigenvector of the (oracle) covariance matrix for angle θ, constructed
using white noise convolved with the anechoic BRIRs from [110] for angle θ.

3.5.3.3 Beamforming

All considered beamformers were implemented using WOLA framework with a de-
fault STFT frame length FL = 512 when using anechoic RTF vectors and a default
STFT frame length FL = 8192 when using reverberant RTF vectors, with an over-
lap of 50% between successive frames. To investigate the impact of the STFT frame
length on the AAD performance and the speech enhancement performance when
using reverberant RTF vectors, we will also consider FL = 1024, 2048, 4096.
To investigate the difference between using reverberant or anechoic RTF vectors and
to investigate the impact of RTF, DOA and AAD estimation errors on the speech
enhancement performance of the complete proposed system, we will consider the
following combinations:

• ORTF–OAAD, with oracle reverberant RTF vectors and oracle AAD;
• ORTF–EAAD, with oracle reverberant RTF vectors and estimated AAD;
• ODOA–OAAD, with anechoic RTF vectors using the oracle DOAs and oracle

AAD;
• ODOA–EAAD, with anechoic RTF vectors using the oracle DOAs and esti-

mated AAD;
• ERTF–EAAD, with estimated reverberant RTF vectors using the estimated

DOAs and estimated AAD;
• EDOA–EAAD, with anechoic RTF vectors using the estimated DOAs and

estimated AAD.
Please note that for the complete system we will either use the binaural MVDR
beamformer (to generate the binaural output signals) together with MVDR beam-
formers (to generate the reference signals), or the binaural LCMV beamformer (to
generate the binaural output signals) together with LCMV beamformers (to gen-
erate the reference signals). To investigate the impact on the speech enhancement
performance as well as the binaural cue preservation of the interference suppression
factor δ used in the binaural LCMV beamformer (see Section 3.4.3), we will con-
sider several values for the interference suppression factor, i.e., δ = 0, 0.1, 0.2. In
addition, to compare the proposed cognitive-driven beamformer with a frequently
used beamformer in hearing aids, we will also consider the forward-steered binau-
ral MVDR beamformer (FS–BMVDR), i.e., assuming that the attended speaker is
located in the frontal direction, corresponding to using anechoic RTF vectors and
fixed DOA θ̂a = 0◦ in (3.37) and (3.38).

3.5.4 Performance measure

The performance of the MVDR and LCMV beamformers for generating reference
signals is evaluated in terms of the signal-to-interference-plus-noise ratio improve-
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ment (∆SINR). The input SINRs in the reference microphones for the beamformer
corresponding to speaker 1 (left hearing aid) for the beamformer corresponding to
speaker 2 (right hearing aid) are defined as

SINRin,1 = 10log10

ε
{
|x1,L,1|2

}
ε
{
|x2,L,1 + vL,1|2

} , (3.53)

SINRin,2 = 10log10

ε
{
|x2,R,1|2

}
ε
{
|x1,R,1 + vR,1|2

} . (3.54)

The output SINRs for the beamformer corresponding to speaker 1 and the beam-
former corresponding to speaker 2 are defined as

SINRout,1 = 10log10

ε
{
|zt,1|2

}
ε
{
|zi,1 + zv,1|2

} , (3.55)

SINRout,2 = 10log10

ε
{
|zt,2|2

}
ε
{
|zi,2 + zv,2|2

} , (3.56)

with all output signal components defined in (3.23) and (3.24). The average SINR
improvement for both speakers is defined as

∆SINR = ∆SINR1 + ∆SINR2

2 , (3.57)

with
∆SINR1 = SINRout,1 − SINRin,1, (3.58)

∆SINR2 = SINRout,2 − SINRin,2. (3.59)

To evaluate the AAD performance, for each trial the correlation coefficients corre-
sponding to the (oracle) attended speaker ρa and the (oracle) unattended speaker
ρu are computed. A trial is considered to be correctly decoded if ρa > ρu. The AAD
performance is then computed by averaging the percentage of correctly decoded
trials over all considered trials and all participants.
The speech enhancement performance of the binaural MVDR and LCMV beam-
formers is evaluated in terms of the binaural signal-to-interference-plus-noise ratio
improvement (∆BSINR). The binaural input SINR is defined as

BSINRin =

10log10

ε
{
|xa,L,1|2

}
+ ε

{
|xa,R,1|2

}
ε
{
|xu,L,1 + vL,1|2

}
+ ε

{
|xu,R,1 + vR,1|2

} , (3.60)
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where xa,L,1 and xa,R,1 denote the (oracle) attended speech components in the
reference microphone signals, and xu,L,1 and xu,R,1 denote the (oracle) unattended
speech components in the reference microphone signals. The binaural output SINR
is defined as

BSINRout =

10log10

ε
{
|za,L|2

}
+ ε

{
|za,R|2

}
ε
{
|zu,L + zv,L|2

}
+ ε

{
|zu,R + zv,R|2

} , (3.61)

with all output signal components defined in (3.49) and (3.50). The BSINR improve-
ment is defined as

∆BSINR = BSINRout − BSINRin. (3.62)

To evaluate the binaural cue preservation of the unattended speaker at the output
of the binaural beamformers, we calculate the ILD and ITD errors, averaged over
all frequencies, using the binaural auditory model proposed in [208].

3.6 Results and discussion

In this section, we evaluate the AAD performance and the speech enhancement
performance of the proposed cognitive-driven binaural beamforming system using
the experimental setup discussed in the previous section. In Section 3.6.1 we eval-
uate the SINR improvement of the beamformers used to generate reference signals
for decoding, where we also investigate the difference between using reverberant
or anechoic RTF vectors and the impact of RTF and DOA estimation errors. In
Section 3.6.2 we evaluate the decoding performance using these reference signals.
Finally, in Section 3.6.3 we evaluate the speech enhancement performance of the
binaural beamformers, where in addition to RTF and DOA estimation errors we
also investigate the impact of AAD errors.

3.6.1 Performance of the beamformers for generating reference signals

For the anechoic and the reverberant condition, Fig. 3.3 depicts the average SINR
improvement in (3.57) of the MVDR and LCMV beamformers used to generate
reference signals. When using oracle (anechoic or reverberant) RTF vectors, i.e.,
ODOA for the anechoic condition and ORTF for the reverberant condition, it can
be observed that an SINR improvement of about 4 - 5 dB is obtained by the MVDR
beamformers, while a larger SINR improvement of about 7 - 8 dB is obtained by
the LCMV beamformers. The larger SINR improvement obtained by the LCMV
beamformers can be explained by the interference suppression constraint in (3.17),
which leads to a larger suppression of the interfering speaker (and a similar noise
reduction) compared to the MVDR beamformers [9,205]. When using anechoic RTF
vectors (ODOA) instead of reverberant RTF vectors (ORTF) in the reverberant
condition, it can be observed for both beamformers that the SINR improvement
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(a) anechoic condition (b) reverberant condition

Fig. 3.3: Average SINR improvement of the MVDR and LCMV beamformers for (a) the
anechoic condition and (b) the reverberant condition using oracle RTFs, oracle
DOAs, estimated RTFs and estimated DOAs.

substantially decreases. The decrease is larger for the LCMV beamformers compared
to the MVDR beamformers, mainly due to the fact that the interfering speaker is
suppressed less than when using imperfect RTF vectors (i.e., anechoic RTF vectors
in the reverberant condition). Nevertheless, the SINR improvement obtained by
the LCMV beamformers is still larger than the MVDR beamformer. When using
estimated RTF vectors (ERTF) in the reverberant condition, it can be observed
that the SINR improvement decreases rather considerably by 3.2 - 7 dB compared
to using oracle RTF vectors (ORTF). This can be explained by the fact that the
reverberant RTF vector estimation method presented in Section 3.3.2 is not able
to accurately estimate the RTF vectors for both speakers. However, when using
estimated DOAs (EDOA), the SINR improvement for both beamformers and for
both acoustic conditions decreases only by 0.9 - 1.1 dB compared to using oracle
DOAs (ODOA).

3.6.2 Auditory attention decoding performance

For the anechoic and the reverberant condition, Fig. 3.4 depicts the average decod-
ing performance when using either the oracle anechoic signals, the MVDR output
signals, the LCMV output signals, or the unprocessed microphone signals as refer-
ence signals for decoding. For both acoustic conditions, it can be observed that the
largest decoding performance is obtained when using the oracle anechoic signals
(> 89%) and the worst decoding performance is obtained when using either the
unprocessed microphone signals (> 77%) or the beamformer output signals with
estimated RTF vectors (ERTF) (>71%).
When using oracle RTF vectors, i.e., ODOA for the anechoic condition and ORTF
for the reverberant condition, the average decoding performance for both beam-
formers is substantially larger than when using the unprocessed microphone signals.
When using anechoic RTF vectors (ODOA) instead of reverberant RTF vectors



3.6 results and discussion 67

(a) anechoic condition (b) reverberant condition

Fig. 3.4: Average decoding performance for (a) the anechoic condition and (b) the reverber-
ant condition when using the oracle anechoic signals, the MVDR output signals,
the LCMV output signals, and the unprocessed microphone signals as reference
signals for decoding. The red dashed-line represents the upper boundary of the
confidence interval corresponding to chance level based on a binomial test at the
5% significance level. The error bars represent the bootstrap confidence interval
at the 5% significance level.

(ORTF) in the reverberant condition, it can be observed that the decoding perfor-
mance substantially decreases but is still larger than the decoding performance using
the unprocessed microphone signals. When using estimated RTF vectors (ERTF) in
the reverberant condition, the decoding performance is even lower than when using
the unprocessed microphone signals, showing that for the considered acoustic setup
the AAD performance is sensitive to RTF estimation errors. However, when using
estimated DOAs (EDOA), it can be observed for both beamformers and for both
acoustic conditions that the decoding performance is larger than when using the
unprocessed microphone signals. The decoding performance for the LCMV beam-
formers (> 82%) is larger than for the MVDR beamformers (> 77%), which can
be explained by the larger SINR improvement of the LCMV beamformers and es-
pecially the larger interference suppression compared to the MVDR beamformers
(see Fig. 3.3). This is in accordance with the experimental results in [26,32], where
it has been shown that jointly suppressing interference and background noise is of
great importance for reference signal generation. In addition, it can be observed
for both beamformers and both acoustic conditions that the decoding performance
using estimated DOAs (EDOA) is very similar to using oracle DOAs (ODOA).
To investigate the impact of the STFT frame length, Fig. 3.5 depicts the average
decoding performance in the reverberant condition for several STFT frame lengths
when using either the MVDR output signals or the LCMV output signals with
different RTF vectors. These results show that the decoding performance is very
similar for all considered STFT frame lengths.
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Fig. 3.5: Average decoding performance using different STFT frame lengths in the rever-
berant condition. The red dashed-line represents the upper boundary of the con-
fidence interval corresponding to chance level based on a binomial test at the 5%
significance level. The error bars represent the bootstrap confidence interval at
the 5% significance level.

3.6.3 Binaural speech enhancement performance

For the anechoic and the reverberant condition, Fig. 3.6 depicts the binaural SINR
improvement of the complete proposed system using either the binaural MVDR
beamformer or the binaural LCMV beamformer (for several values of the inter-
ference suppression factor δ). In addition, this figure depicts the binaural SINR
improvement of the forward-steered binaural MVDR beamformer.
When using both oracle AAD as well as oracle RTF vectors, i.e., ODOA–OAAD in
the anechoic condition and ORTF–OAAD in the reverberant condition, it can be
observed that the binaural MVDR beamformer yields a binaural SINR improvement
of 9.5 dB (anechoic condition) and 5.8 dB (reverberant condition), while the binaural
LCMV beamformer yields a binaural SINR improvement of 9.3 - 11.0 dB (anechoic
condition) and 9.2 - 10.2 dB (reverberant condition). When using anechoic RTF
vectors (ODOA–OAAD) instead of reverberant RTF vectors (ORTF–OAAD) in
the reverberant condition, it can be observed that the binaural SINR improvement
of both beamformers substantially decreases, i.e., 4.4 dB for the binaural MVDR
beamformer and 6.3 - 6.7 dB for the binaural LCMV beamformer.
When using oracle RTF vectors and estimated AAD, i.e., ODOA–EAAD in the
anechoic condition and ORTF–EAAD or ODOA–EAAD in the reverberant condi-
tion, it can be observed that the binaural SINR improvement decreases for both
beamformers compared to using oracle AAD. The decrease is especially significant
for the LCMV beamformer using oracle reverberant RTF vectors in the reverberant
condition. When using estimated RTF vectors and estimated AAD (ERTF–EAAD)
in the reverberant condition, it can be observed that the binaural SINR improve-
ment significantly decreases for both beamformers compared to oracle RTF vec-
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(a) anechoic condition (b) reverberant condition

Fig. 3.6: Binaural SINR improvement of the proposed system when using the binaural
MVDR beamformer (BMVDR) and the binaural LCMV beamformer (BLCMV)
for several values of the interference suppression factor δ for (a) the anechoic
condition and (b) the reverberant condition. The red dashed-line represents the
binaural SINR improvement of the forward-steered binaural MVDR beamformer
(FS–BMVDR).

tors (ORTF–EAAD). However, when using estimated DOAs and estimated AAD
(EDOA–EAAD), a very similar binaural SINR improvement is obtained for both
beamformers and both acoustic conditions compared to using oracle DOAs. These
results clearly show that for the reverberant condition the practically implementable
EDOA–EAAD system (using estimated DOAs and anechoic RTF vectors) outper-
forms the practically implementable ERTF–EAAD systems (using estimated rever-
berant RTF vectors).
To investigate the impact of the STFT frame length, Fig. 3.7 depicts the binaural
SINR improvement in the reverberant condition for different STFT frame lengths
when using the binaural MVDR beamformer or the binaural LCMV beamformer
with interference suppression factor δ = 0.1. On the one hand, when using reverber-
ant RTF vectors (ORTF–OAAD, ORTF–EAAD, ERTF–EAAD), it can be observed
for both beamformers that the binaural SINR improvement decreases for smaller
STFT frame lengths. In general, the impact of the STFT frame length is larger
for the LCMV beamformer than for the MVDR beamformer, since a larger frame
length leads to a larger suppression of the interfering speaker (especially when us-
ing oracle reverberant RTF vectors). On the other hand, when using anechoic RTF
vectors (ODOA–OAAD, ODOA–EAAD, EDOA–EAAD), the frame length only has
a minor impact on the binaural SINR improvement. These results hence show that
the practically implementable system using estimated AAD together with estimated
DOAs yields a large binaural SINR improvement even when rather using shorter
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(a) binaural MVDR beamformer (b) binaural LCMV beamformer

Fig. 3.7: Binaural SINR improvement of the proposed system using different STFT frame
lengths in the reverberant condition for (a) the binaural MVDR beamformer
(BMVDR) and (b) the binaural LCMV beamformer (BLCMV). The red dashed-
line represents the binaural SINR improvement of the forward-steered binaural
MVDR beamformer (FS–BMVDR).

STFT frames. In a practical implementation, the latency of the proposed system
using estimated AAD and estimated DOAs consists of three parts: AAD estimation,
DOA estimation and STFT-domain processing. The latency caused by AAD esti-
mation in (3.31) using 30 second trials corresponds to 30 s. The latency caused by
DOA estimation in (3.7) using a frame length of 10 ms with an overlap of 5 ms and
a time constant of 1 s corresponds to 1.115 s. The latency caused by STFT-domain
processing in (3.37), (3.38), (3.43) and (3.44) using an STFT frame length of 512
samples with an overlap of 50% between successive frames corresponds to 64 ms. It
should be noted that the latency caused by AAD and DOA estimation only affects
the startup time and does not affect the processing latency of the binaural signals,
which is only determined by the STFT-domain processing.
To further investigate the impact of AAD errors on the binaural SINR improvement
when using estimated AAD and estimated DOAs (EDOA–EAAD), Fig. 3.8 depicts
the binaural SINR improvement averaged over all trials (as in Fig. 3.7) and the
binaural SINR improvement averaged only over correctly decoded and wrongly de-
coded trials. When trials are wrongly decoded, the unattended speaker is wrongly
enhanced by the binaural MVDR and LCMV beamformer and in addition the at-
tended speaker is wrongly suppressed by the LCMV beamformer, such that the
binaural SINR improvement averaged over wrongly decoded trials is negative for
both beamformers. For the binaural LCMV beamformer with δ = 0.2, the binaural
SINR improvement is less prone to wrongly decoded trials compared to the binaural
LCMV beamformer with a smaller δ. Nevertheless, the binaural LCMV beamformer
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(a) anechoic condition (b) reverberant condition

Fig. 3.8: Binaural SINR improvement averaged over all trials, all correctly decoded tri-
als and all wrongly decoded trials obtained when using estimated DOAs and
estimated AAD (EDOA–EAAD) for (a) the anechoic condition and (b) the rever-
berant condition.

with δ = 0 or δ = 0.1 yields the largest binaural SINR improvement averaged over
all (correctly and wrongly decoded) trials, i.e., 8.3 - 8.7 dB (anechoic condition) and
3.4 - 3.6 dB (reverberant condition). This is larger than the binaural SINR improve-
ment of the cognitive-driven binaural MVDR beamformer, i.e., 7.4 dB (anechoic
condition) and 3.2 dB (reverberant condition), and significantly larger than the bin-
aural SINR improvement of the forward-steered binaural MVDR beamformer, i.e.,
0.3 dB (anechoic condition) and 0.5 dB (reverberant condition).
Finally, we evaluate the binaural cue preservation of the unattended speaker, i.e.,
how well the impression of the acoustic scene is preserved. For the anechoic and
the reverberant condition, Fig. 3.9 and 3.10 present the ILD and ITD errors of
the unattended speaker (averaged only over correctly decoded trials) when using
estimated DOAs and estimated AAD (EDOA–EAAD). It can be observed that
the binaural MVDR beamformer and the binaural LCMV beamformer with δ = 0
yield large ILD and ITD errors, while the binaural LCMV with δ > 0 yields a
better binaural cue preservation for both acoustic conditions. The better binaural
cue preservation obtained by the binaural LCMV beamformer can be explained by
considering the role of the interference suppression constraint in the optimization
problem of the binaural LCMV beamformer (see Section 3.4.3). The interference
suppression factor δ > 0 allows the binaural LCMV beamformer to preserve the
binaural cues of the unattended speaker in addition to the binaural cues of the
attended speaker, contrary to the binaural MVDR beamformer [91,122].
Table 3.2 compares the performance of all considered beamformers in terms of
binaural SINR improvement, binaural cue preservation, and the impact of AAD,
RTF vector and DOA estimation errors on the performance.
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(a) anechoic condition (b) reverberant condition

Fig. 3.9: ILD errors of the unattended speaker averaged over correctly decoded trials when
using estimated DOAs and estimated AAD (EDOA–EAAD) for (a) the anechoic
condition and (b) the reverberant condition.

(c) anechoic condition (d) reverberant condition

Fig. 3.10: ITD errors of the unattended speaker averaged over correctly decoded trials
when using estimated DOAs and estimated AAD (EDOA–EAAD) for (a) the
anechoic condition and (b) the reverberant condition.

3.7 Conclusion

In this paper, we proposed a binaural speech enhancement system which cognitively
steers the binaural MVDR and the binaural LCMV beamformer based on AAD and
estimated DOA-based anechoic or reverberant RTF vectors. Based on these RTF
vectors, two MVDR or LCMV beamformers generate reference signals for auditory
attention decoding. Using the envelopes of these reference signals and the EEG
recordings, in the AAD step the DOAs of the attended and the unattended speaker
are identified to steer the binaural MVDR or LCMV beamformer. The experimental
results showed that for a two-speaker scenario in diffuse babble noise the proposed
system using anechoic DOA-based RTF vectors significantly improves the binaural
SINR for the anechoic condition as well as for the reverberant condition compared
to a fixed forward-steered binaural MVDR beamformer. In particular, the cognitive-
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Table 3.2: Comparison of the proposed cognitive-driven speech enhancement system using
either the binaural MVDR beamformer or the binaural LCMV beamformer and
the forward-steered binaural MVDR beamformer

Binaural MVDR Binaural LCMV
with δ = 0

Binaural LCMV
with δ = 0.1

Binaural LCMV
with δ = 0.2

Forward-steered
Binaural MVDR

Binaural SINR improvement Medium Very large Large Medium Low

Binaural cues of unattended speaker Not preserved Not preserved Preserved Preserved Not preserved

Impact of DOA errors Low Low Low Low DOA–independent

Impact of RTF errors High High High High RTF–independent

Impact of AAD errors Medium High Medium Medium AAD–independent

driven binaural LCMV beamformer with δ = 0.1 is able to both improve the binaural
SINR as well as preserve the binaural cues of both the attended and the unattended
speaker. Moreover, the results show that for the considered experimental setup
the proposed system using estimated DOA-based anechoic RTF vectors yields a
larger binaural SINR improvement for the reverberant condition compared to using
estimated DOA-based reverberant RTF vectors. Furthermore, the results show that
the STFT frame length only has a minor impact on the binaural SINR improvement
when using estimated DOA-based anechoic RTF vectors.
While the application of the proposed cognitive-driven binaural speech enhancement
system has been limited to acoustic scenarios with two competing speakers in this
paper, in [209] it has been shown that AAD is feasible for an acoustic scenario with
four competing speakers when using perfectly separated clean speech signals for
decoding. Future work could therefore investigate the performance of (an extension
of) the proposed cognitive-driven binaural speech enhancement system for acoustic
scenarios with more than two competing speakers.





4
COGNITIVE-DRIVEN CONVOLUTIONAL
BEAMFORMING USING EEG-BASED
AUDITORY ATTENTION DECODING

The performance of speech enhancement algorithms in a multi-speaker sce-
nario depends on correctly identifying the target speaker to be enhanced. Au-
ditory attention decoding (AAD) methods allow to identify the target speaker
which the listener is attending to from single-trial EEG recordings. Aiming at
enhancing the target speaker and suppressing interfering speakers, reverber-
ation and ambient noise, in this paper we propose a cognitive-driven multi-
microphone speech enhancement system, which combines a neural-network-
based mask estimator, weighted minimum power distortionless response con-
volutional beamformers and AAD. To control the suppression of the interfering
speaker, we also propose an extension incorporating an interference suppres-
sion constraint. The experimental results show that the proposed system out-
performs the state-of-the-art cognitive-driven speech enhancement systems in
challenging reverberant and noisy conditions.

4.1 Introduction

In a multi-speaker scenario the performance of many speech enhancement algo-
rithms depends on correctly identifying the target speaker to be enhanced. Recent
advances in electroencephalography (EEG) have shown that it is possible to identify
the target speaker which the listener is attending to using single-trial EEG-based
auditory attention decoding (AAD) methods [16,26,128,130]. However, many AAD
methods rely on the unrealistic assumption that the clean speech signals of the
speakers are available as reference signals for decoding. In real-world conditions,
obviously only the microphone signals, which consist of a mixture of the speakers,
including reverberation and background noise, are available.
Aiming at incorporating AAD in speech enhancement, several algorithms have re-
cently been proposed to generate appropriate reference signals for decoding from
the microphone signals [27, 30, 31, 167]. Most cognitive-driven speech enhancement
algorithms generate reference signals by separating the speakers from the mixture
received at the microphones either using time-domain neural networks [167], multi-
channel Wiener filters [27] or minimum variance distortionless response (MVDR)
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beamformers [31]. Using AAD, one of the reference signals is then selected as the
enhanced attended speaker. More recently, aiming at controlling the suppression of
the interfering speaker, which is important when intending to switch attention be-
tween speakers, a cognitive-driven beamforming system using linearly constrained
minimum variance (LCMV) beamformers has been proposed [30,31].
While most aforementioned cognitive-driven speech enhancement systems are able
to suppress the interfering speakers and background noise, they may not be able
to suppress (late) reverberation, which is known to have a detrimental effect on
speech quality and intelligibility [39]. In this paper we propose a cognitive-driven
convolutional beamforming system aiming at enhancing the attended speaker and
jointly suppressing the interfering speakers, reverberation and background noise.
The proposed system is depicted in Fig. 4.1 for a scenario with two speakers. First,
time-frequency masks of both speakers are estimated from the noisy and reverber-
ant microphone signals using a speaker-independent speech separation neural net-
work. Then, two beamformers are designed to generate reference signals for AAD
by enhancing the speech signal of each speaker based on the estimated masks. The
AAD method then selects one of the reference signals as the enhanced attended
speech signal. For the beamformers we propose to use a recently proposed weighted
minimum power distortionless response (wMPDR) convolutional beamformer as
it optimally combines dereverberation, noise suppression and interfering speaker
suppression [100]. While suppressing the interfering speaker is desired to improve
speech intelligibility, keeping the interfering speaker audible is also important to
allow the listener to switch attention between speakers. Therefore, we also propose
an extension of the wMPDR convolutional beamformer incorporating an interfer-
ence suppression constraint, referred to as a weighted linearly constrained minimum
power (wLCMP) convolutional beamformer, which allows to control the level of sup-
pression of the interfering speaker.
We experimentally compare our proposed method with state-of-the-art cognitive-
driven systems based on conventional MPDR, LCMP, MVDR and LCMV beam-
formers, which are steered based on estimated masks or estimated DOAs. The re-
sults show that the proposed system outperforms state-of-the-art cognitive-driven
systems for dealing with noisy and reverberant speech mixtures and reveal potential
future research directions.

4.2 Cognitive-driven convolutional beamformer

4.2.1 Signal model

We consider an acoustic scenario comprising I competing speakers1 with the clean
signals denoted as si [n], i = 1 . . . I where n is the discrete time index. We consider

1 It should be noted that we provide a general description of the algorithms for I speakers, but limit
our experiments in Section 4.4 to two speakers.



4.2 cognitive-driven convolutional beamformer 77

Fig. 4.1: Acoustic simulation setup and block diagram of the proposed cognitive-driven
convolutional beamforming system.

a binaural hearing aid setup with M microphones. The m-th microphone signal
ym [n] can be decomposed as

ym [n] =
I∑
i=1

xi,m [n] + vm [n] , m = 1 . . . M, (4.1)

where xi,m [n] denotes the reverberant speech component in the m-th microphone
signal corresponding to speaker i and vm [n] denotes the background noise com-
ponent. The reverberant speech components xi,m [n] consist of an anechoic speech
component xani,m [n] (encompassing the head filtering effect), an early reverberation
component arriving typically in the order of tens of milliseconds, and a late rever-
beration component. While early reverberation can be beneficial for speech intelli-
gibility, late reverberation is known to have a detrimental effect on speech quality
and intelligibility [39].
In the short-time Fourier Transform (STFT) domain, the M -dimensional stacked
vector of all microphone signals is given by

yk,f = [Y1,k,f . . . YM,k,f ]T ∈ CM×1, (4.2)

where Ym,k,f denotes the STFT coefficient of ym [n], and k = 1 . . . K and f =
1 . . . F are the frame index and the frequency index, respectively.

4.2.2 Mask estimation

The first component of our proposed system is a separation neural network that
estimates time-frequency ideal ratio masks corresponding to each speaker from the
reverberant and noisy microphone signals. These masks will be used for beamform-
ing and to generate reference signals for AAD (see Section 4.2.3).
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Several neural network-based speech separation approaches have been proposed,
both in frequency-domain and in time-domain [77, 83]. In this paper we use a
BLSTM-based frequency-domain approach [83] since it trains faster than time-
domain approaches such as [77], allowing a faster experimental turnover.
The separation neural network takes the STFT coefficients of the m-th microphone
signal as input features and generates real-valued time-frequency masks, i.e.,

[Γ1,m . . . ΓI+1,m] = h(Ym), (4.3)

where the matrix Ym ∈ CK×F contains all STFT coefficients of the m-th micro-
phone signal, h(·) is the separation neural network, and the matrix Γi,m ∈ RK×F
for i = 1 . . . I, contains the estimated time-frequency masks for speaker i. In ad-
dition to the time-frequency masks for the speakers, the network also generates a
time-frequency mask for the background noise, i.e., ΓI+1,m.
The separation neural network is trained using permutation invariant training
(PIT) [83] with a scale-dependent SNR loss in the time-domain [210]. However,
at test time the masks have speaker permutation ambiguity, i.e., it is not known
which mask corresponds to which speaker. In addition, the separation neural net-
work in (4.3) operates on each microphone signal independently, which typically
causes speaker permutation ambiguities across the microphones. To resolve this am-
biguity, we align the masks obtained for each microphone based on the least-squares
error. We then average the masks across the microphones to obtain one mask for
each speaker, i.e. Γ̄i ∈ RK×F . The averaged mask Γ̄i contains the masks γi,k,f of
the i-th speaker for all times frames and frequencies.

4.2.3 Reference signal generation using beamformers

Based on the estimated masks Γ̄i, we design I beamformers to extract each speaker
with reduced noise and reverberation from the microphone signals (see BEAM1
and BEAM2 in Fig. 4.1). The output signals zi,k,f of the beamformers are then
transformed to the time-domain as x̂i [n] = ISTFT (zi,k,f ), where ISTFT denotes
the inverse short-time Fourier transform. These time-domain output signals x̂i [n]
will be used as reference signals for AAD.
In this paper we investigate different types of beamformers for generating reference
signals, i.e., wMPDR and wLCMP convolutional beamformers, and conventional
MPDR and LCMP beamformers, which will be described in detail in Section 4.3.

4.2.4 Speaker selection using AAD

Based on the reference signals x̂i [n] generated by the beamformers, the speaker
which the listener is attending to is then selected using the EEG-based auditory
attention decoding method proposed in [16]. First, an estimate of the envelope of
the attended speech signal êa [l], with l the sub-sampled time index, is reconstructed
from the EEG signals using a trained spatio-temporal filter. Then, the correlation
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between the reconstructed envelope êa [l] and the envelopes êi [l] of the reference
signals x̂i [n] is computed, i.e.,

ρi = ρ (êi [l] , êa [l]) , i = 1 . . . I, (4.4)

where ρ(·) is the Pearson correlation. Finally, the attended speech signal x̂a [n] is
selected as the reference signal yielding the maximum correlation with the recon-
structed envelope, i.e.,

x̂a [n] = x̂ ī [n] , ī = argmax
i

ρi. (4.5)

4.3 Beamforming

In this section, we review the wMPDR convolutional beamformer [98], present the
proposed wLCMP convolutional beamformer, and compare them with the conven-
tional MPDR and LCMP beamformers. Since the beamformer operates for each
frequency independently, the frequency index f will be omitted in this section for
notational conciseness.

4.3.1 Weighted MPDR convolutional beamformer

The wMPDR convolutional beamformer in [98] aims at 1) suppressing the noise
component while preserving the target speech component in one of the microphone
signals and 2) suppressing the late reverberation component while preserving the
early reverberation component corresponding to the target speaker (i.e., dereverber-
ation). The output signal zk of a convolutional beamformer is defined as

zk = w̄H ȳk = wH
0 yk +

Lw−1∑
τ=b

wH
τ yk−τ , (4.6)

where w̄ =
[
wT

0 wT
b . . . wT

Lw−1
]T ∈ CM(Lw−b+1)×1, ȳk =

[
yTk ỹTk

]T ∈
CM(Lw−b+1)×1, ỹk consists of the observation from b frames in the past until Lw−1
frames in the past, i.e., ỹk =

[
yTk−b . . . yTk−Lw+1

]T , and b and Lw model the frame
delay of the start and end time of the late reverberation, respectively.
It has been shown in [100] that the convolutional beamformer w̄ can be factorized
into a dereverberation matrix G ∈ CM(Lw−b+1)×M and a beamforming vector q ∈
CM×1, i.e., w̄ = −Gq with q = w0. The convolutional beamforming in (4.6) can
hence be written as dereverberation filtering followed by beamforming [100], i.e.,

dk = yk −GH ȳk︸ ︷︷ ︸
dereverberation

, zk = qHdk︸ ︷︷ ︸
beamforming

. (4.7)

Assuming that the output of the convolutional beamformer zk follows a zero mean
complex Gaussian distribution with a time-varying variance [98], the wMPDR con-
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volutional beamformer is obtained by maximizing an objective function L (w̄), which
is derived based on the maximum-likelihood estimation with a target speaker preser-
vation constraint (distortionless constraint), i.e.,

L (w̄) ∝ 1
K

K∑
k=1

(
− ln (λk)− |zk|

2

λk

)
, (4.8)

where λk denotes the time-varying variance of the target speech component (includ-
ing the early reverberation) and K denotes the number of frames over which the
beamformer coefficients are estimated.
This optimization problem can be solved in a alternating fashion, by first assuming
λk constant and solving for w̄ and then updating λk. Assuming λk constant, the
optimization problem of the wMPDR convolutional beamformer incorporating the
target speaker preservation constraint can be written as [98]

max
w̄
− w̄HR̄ȳw̄ s.t. w̄H ā = 1︸ ︷︷ ︸

target

, (4.9)

where ā denotes the relative early transfer function (RETF) vector corresponding to
the target speaker and R̄ȳ = 1

K

∑
k

ykyH
k

λk
. The wMPDR convolutional beamformer

solving (4.9) is given by [100]

w̄wMPDR = −GqwMPDR, (4.10)

where
G = R−1

ỹ Pỹ, qwMPDR = R−1
d ā

āHR−1
d ā

, (4.11)

with Rỹ = 1
K

∑
k

ỹkỹH
k

λk
, Pỹ = 1

K

∑
k

ỹkyH
k

λk
, Rd = 1

K

∑
k

dkdH
k

λk
.

To estimate the RETF vector of the target speaker ā in (4.11), we use the masks of
the target speaker γt,k, assuming the target speaker index is t. The RETF vector is
estimated using the covariance whitening method [107], i.e.,

ā = R
t̃+vMaxEig

(
R−1
t̃+v

Rt

)
, (4.12)

where Rt =
∑

k
γt,kdkdH

k∑
k
γt,k

is the covariance matrix of the target speaker and R
t̃+v =∑

k
(1−γt,k)dkdH

k∑
k
(1−γt,k)

is the covariance matrix of all interfering speakers and background
noise.
The estimation methods discussed in this section are used to iteratively update the
output signal of the wMPDR convolutional beamformer. First, the dereverberation
filtering in (4.7) is performed using G in (4.11). Based on the dereverberated sig-
nals dk and the estimated masks γt,k, the RETF vector of the target speaker ā is
updated using (4.12) to steer the beamformer qwMPDR in (4.11). Using the steered
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beamformer, the output signal zk in (4.7) is obtained. The variance of the target
speech component is then updated as λk = |zk|2 for the next iteration.

4.3.2 Weighted LCMP convolutional beamformer

As an alternative to the wMPDR convolutional beamformer, we propose the wL-
CMP convolutional beamformer, which allows to control the suppression of the
interfering speakers. The wLCMP convolutional beamformer is derived by adding
interfering speaker suppression constraints to the optimization problem of the wM-
PDR convolutional beamformer, i.e.,

max
w̄
− w̄HR̄ȳw̄ s.t. w̄H ā = 1︸ ︷︷ ︸

target

, w̄HB̄ = δ︸ ︷︷ ︸
interference

, (4.13)

where B̄ =
[
b̄1 . . . b̄U

]
contains the RETF vectors of U interfering speakers, with

U = I−1, and δ = [δ1 . . . δU ] controls the amount of suppression of the interfering
speakers. This optimization problem is the same as the optimization problem of
the conventional LCMP beamformer [205], but with different RTF vectors and co-
variance matrix. Therefore the wLCMP convolutional beamformer can be obtained
as

w̄wLCMP = −GqwLCMP, (4.14)

where the dereverberation matrix G is obtained as in (4.11) and the beamforming
vector qwLCMP is obtained as in [205], i.e.,

qwLCMP = R−1
d C̄

(
C̄HR−1

d C̄
)−1 p, (4.15)

with C̄ =
[
ā B̄

]
and p = [1 δ]T . Setting δu to zero in (4.15) corresponds

to a complete suppression of the u-th interfering speaker, while δ > 0 leads to a
controlled suppression.
The RETF vector of the target speaker ā in (4.15) is estimated using (4.12). The
RETF vector of the u-th interfering speaker b̄u is estimated as

b̄u = R
ũ+vMaxEig

(
R−1
ũ+v

Ru

)
(4.16)

where Ru =
∑

k
γu,kdkdH

k∑
k
γu,k

is the covariance matrix of the u-th interfering speaker

and R
ũ+v =

∑
k
(1−γu,k)dkdH

k∑
k
(1−γu,k)

.

The output signal of the wLCMP convolutional beamformer is iteratively updated
similarly as for the wMPDR convolutional beamformer.
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4.3.3 Relation with conventional MPDR and LCMP beamformers

The conventional MPDR beamformer aims at minimizing the PSD of the output
signal while preserving the reverberant target speech component in one of the mi-
crophone signals [10]. The MPDR beamformer is given by

wMPDR =
R−1
y a

aHR−1
y a

, (4.17)

where Ry = 1
K

∑
k ykyHk and a denotes the reverberant RTF vector corresponding

to the target speaker. The MPDR beamformer in (4.17) is similar to the convolu-
tional wMPDR beamformer in (4.11) except that the covariance matrix Ry and the
RTF vector a are estimated using the microphone signals yk instead of the dere-
verberated microphone signals dk. In addition, the MPDR beamformer is obtained
using a non-iterative optimization procedure compared to the wMPDR convolu-
tional beamformer.
A similar relation exists between the conventional LMCP beamformer incorporating
interfering speaker suppression constraints and the wLMCP convolutional beam-
former in (4.15). The conventional LCMP beamformer is given by [205]

wLCMP = R−1
y C

(
CHR−1

y C
)−1 p, (4.18)

with C = [a B] and B = [b1 . . . bU ] containing the reverberant RTF vectors of
U interfering speakers.
The output signals of the MPDR and the LCMP beamformer are obtained as

zk = wH
{MPDR, LCMP}yk. (4.19)

These output signals are obviously computed without involving a dereverberation
step compared to the output signals of wMPDR and wLCMP convolutional beam-
formers in (4.6).

4.4 Experimental setup

4.4.1 Acoustic simulation setup

In the experimental evaluation we consider two competing speakers, i.e., I = 2.
Two German audio stories, uttered by two different male speakers, were used as
the clean speech signals s1 [n] and s2 [n]. Speech pauses that exceeded 0.5 s were
shortened to 0.5 s, resulting in two highly overlapping (competing) audio stories.
The hearing aid microphone signals ym [n] were generated at a sampling frequency
of 16 kHz by convolving the clean speech signals with non-individualized measured
binaural impulse responses (anechoic or reverberant) from [110], and adding diffuse
babble noise, simulated according to [192]. The hearing aid setup in [110] consisted
of two hearing aids, each equipped with three microphones (M = 6), mounted on
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a dummy head. The left and the right competing speaker were simulated at θ1 =
−45◦ and θ2 = 45◦. We consider three acoustic conditions, i.e., an anechoic-noisy
condition with an average frequency-weighted segmental SNR (fwSSNR) of 2.9 dB,
a reverberant condition (reverberation time T60 ≈ 0.5 s) with an average fwSSNR
of 3.5 dB, and a reverberant-noisy condition with an average fwSSNR of 0.5 dB.
The average fwSSNR is computed by averaging the highest fwSSNR corresponding
to speaker 1 and to speaker 2 among the microphone signals. The reference signals
used to compute the fwSSNR are the anechoic speech signals xani,m [n] of the speakers
at the first microphone of the hearing aid located at the same side of each speaker.

4.4.2 Mask estimation

The mask estimation neural network consisted of 3 BLSTM layers of 896 units. The
network was trained on simulated noisy and reverberant mixtures obtained by mix-
ing Librispeech [211] utterances convolved with room impulse responses generated
with the image method for reverberation times between 0.2 s and 0.6 s, and adding
babble noise at SNRs between 5 and 15 dB. The number of training mixtures was
50k. Note that there is a large mismatch between the training and the testing con-
dition with respect to reverberation, background noise and head shadow effect, and
also a large linguistic dissimilarity, as Librispeech consists of English read speech
but the test data consists of German audio stories.

4.4.3 Beamforming

All considered beamformers were implemented using a weighted overlap-add
(WOLA) framework with an STFT frame length FL = 512, an overlap of 75%
between successive frames and a Hann window. For the wMPDR and wLCMP
convolutional beamformers, the frame delay b was set to 4 and the length of the
dereverberation filter was set to Lw = 20, 16 and 8 for frequency ranges 0− 0.8kHz,
0.8− 1.5kHz and 1.5− 3kHz, respectively. The variance of the target speech compo-
nent was initialized as λk = ‖yk‖2. For the wLCMP convolutional beamformer and
the LCMP beamformer, we set the interference suppression parameter to δ = 0.1 to
partially suppress the unattended speaker. The outputs signal of the wMPDR and
wLCMP convolutional beamformers were obtained with 10 iterations.
To investigate the impact of mask estimation errors on the speech enhancement
performance of the proposed system, we consider oracle ideal ratio masks (oMASK)
and estimated ideal ratio masks (eMASK), obtained by the mask estimation neural
network in (4.3).
We also compare our proposed system with a state-of-the-art cognitive-driven sys-
tem proposed in [31], which uses either a conventional MVDR beamformer or a con-
ventional LCMV beamformer to generate reference signals. Contrary to the MPDR
and LCMP beamformers described in Section 4.3.3, these MVDR and LCMV beam-
formers use a diffuse noise covariance matrix instead of Ry and are steered using es-
timated anechoic RTF vectors (based on estimated DOAs of both speakers) instead
of estimated reverberant RTF vectors. For the LCMV beamformer, the interference



84 cognitive-driven convolutional beamforming using aad

suppression parameter was set to δ = 0.1. Similarly as in [31], the DOAs of both
speakers were estimated using a classification-based method [90] and the anechoic
RTF vectors corresponding to the estimated DOAs were selected from a database
of (measured) prototype RTF vectors [110].

4.4.4 Speaker selection using AAD

We used EEG responses recorded for 16 native German-speaking participants, where
8 participants were instructed to attend to the left speaker and 8 participants to the
right speaker. See [31] for details about the EEG recording and the AAD training
and decoding configuration.
For the AAD training and decoding steps (see Section 4.2.4), the EEG recordings
were split into 30-second trials, resulting in 40 trials for the anechoic-noisy condition
as well as for the reverberant-noisy condition, and 20 trials for the reverberant
condition. Each participant’s own data were used for training the spatio-temporal
filter used for reconstructing the speech envelope êa[l] from the EEG data.

4.4.5 Performance measures

We evaluate the cognitive-driven beamformers both in terms of AAD and speech
enhancement performance. To evaluate the AAD performance, a trial is considered
to be correctly decoded if the fwSSNR corresponding to the selected beamformer
output signal x̂a [n] (as the attended speech signal) is larger than the fwSSNR cor-
responding to the discarded beamformer output signal. To compute fwSSNR, the
anechoic speech component xana,m [n] of the attended speaker in the first microphone
signal of the hearing aid at the side of the attended speaker was used as the fwSSNR
reference signal. The AAD performance is then computed by averaging the percent-
age of correctly decoded trials over all considered trials and all participants.
The speech enhancement performance of the complete proposed system is evaluated
in terms of the fwSSNR improvement (∆fwSSNR) using the same reference signals
as used for AAD performance evaluation. The input fwSSNR is defined as the
highest fwSSNR among the microphone signals. The output fwSSNR is defined as
the fwSSNR of the selected beamformer output signals x̂a [n].
To investigate the impact of the errors of speaker selection using AAD on the speech
enhancement performance of the complete proposed system, we will consider oracle
AAD (oAAD) where the attended speech signal x̂a [n] is determined based on the
highest ∆fwSSNR among the output signals of BEAM1 and BEAM2, and estimated
AAD (eAAD) where x̂a [n] is determined based on the highest Pearson correlation
coefficients as described in Section4.2.4.

4.5 Experimental results

In this section, we evaluate the AAD performance and the speech enhancement
performance of the proposed cognitive-driven convolutional beamforming system.
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Fig. 4.2: Average auditory attention decoding performance for the anechoic-noisy, rever-
berant and reverberant-noisy conditions for the different considered beamform-
ers. The upper boundary of the confidence interval corresponding to chance level
for the anechoic-noisy, reverberant and reverberant-noisy conditions are 61.39%,
66.19%, 61.39%, respectively, computed based on a binomial test at the 5% sig-
nificance level.

In Section 4.5.1 we investigate the impact of mask estimation errors on the AAD
performance. In Section 4.5.2, we investigate the impact of AAD errors on the speech
enhancement performance.

4.5.1 Auditory attention decoding performance

Figure 4.2 depicts the average AAD performance for the anechoic-noisy, the re-
verberant and the reverberant-noisy condition, when using the output signals of
the wMPDR or wLCMP convolutional beamformer, the MPDR or LCMP beam-
former and the MVDR or LCMV beamformer as reference signals for decoding. We
observe that all considered beamformers yield a AAD performance that is signifi-
cantly larger than chance levels. For all considered acoustic conditions the wMPDR
convolutional beamformer and the wLCMP convolutional beamformer using the
oracle masks (wMPDR-oMASK and wLCMP-oMASK) yield the highest AAD per-
formance, showing the potential of using convolutional beamformers for AAD.
When using estimated masks instead of oracle masks for the convolutional beam-
formers (wMPDR-eMASK and wLCMP-eMASK) the AAD performance decreases,
especially in the reverberant-noisy condition. In the reverberant-noisy condition, the
MVDR and LCMV beamformers using anechoic RTF vectors based on estimated
DOAs (MVDR-eDOA and LCMV-eDOA) yield a larger average AAD performance
than the beamformers using reverberant RTF vectors based on the estimated masks.
This suggests that in order to improve the AAD performance, a better estimation
of RTF vectors is required, e.g., based on prototype RTF vectors or neural networks
that are more robust to background noise and reverberation.
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(a) (b)

Fig. 4.3: fwSSNR improvement (a) averaged over all considered acoustic conditions when
using oracle AAD and estimated AAD (b) for the anechoic-noisy, reverberant
and reverberant-noisy conditions when using estimated AAD. The input fwSSNR
averaged over all considered acoustic conditions is 2.06dB and the input fwSSNRs
for the anechoic-noisy, reverberant and reverberant-noisy conditions are 2.9dB,
3.5dB, 0.5dB, respectively.

4.5.2 Speech enhancement performance

Figure 4.3a depicts the fwSSNR improvement of the complete proposed system av-
eraged over all considered acoustic conditions, either using oracle AAD or estimated
AAD. It can be observed that the convolutional beamformers outperform all other
considered beamformers for both oracle and estimated AAD. When using estimated
AAD instead of oracle AAD, for all considered beamformers the fwSSNR improve-
ment decreases by 0.2–1.1 dB, showing the sensitivity to AAD errors. Nevertheless,
the fwSSNR improvement of the convolutional beamformers is about 1.6–1.8 dB
larger than the state-of-the-art MVDR and LCMV beamformers using estimated
DOAs.
Figure 4.3b depicts the fwSSNR improvement of the complete proposed system for
the anechoic-noisy, reverberant and reverberant-noisy conditions when using esti-
mated AAD. It can be observed that all beamformers yield a significant fwSSNR
improvement for the anechoic-noisy condition. However, for the reverberant con-
dition the systems using conventional beamformers (MPDR-eMask, LCMP-eMask,
MVDR-eDOA, LCMV-eDOA) tend to degrade the fwSSNR, whereas only the pro-
posed system using convolutional beamformers (wMPDR-eMask, wLCMP-eMask)
provides a fwSSNR improvement, showing the influence of dereverberation. It should
be noted that the considered reverberant-noisy condition with an interfering speaker
is an extremely adverse condition with babble noise at a signal-to-interference-plus-
noise ratio (SINR) of 0.3 dB and a reverberation time of 0.5 s, which makes it very
challenging for speech enhancement.
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4.5.3 Discussion

The experimental results show that for the considered acoustic setup the AAD per-
formance and the fwSSNR improvement of the proposed cognitive-driven speech
enhancement system using convolutional beamformers are sensitive to mask estima-
tion errors, particularly for the reverberant and reverberant-noisy conditions. The
mask estimation errors can be mainly attributed to the linguistic dissimilarity of
training and testing conditions of the neural-network-based mask estimation algo-
rithm and also the intrinsic difficulty of separating out two competing speakers with
the same gender in the reverberant-noisy condition.
The results show that the wMPDR convolutional beamformer yields a larger
fwSSNR improvement than the wLCMP convolutional beamformer. Although the
wMPDR convolutional beamformer can strongly suppress the interfering speaker, it
may deprive the listener from the ability to switch attention between the speakers.
In contrast, the wLCMP convolutional beamformer is able to both control the in-
terfering speaker suppression as well as yield a considerable fwSSNR improvement.
Lastly, the results show that the convolutional beamformers (wLCMP-eMASK and
wMPDR-eMASK) yield the highest fwSSNR improvement for all considered acous-
tic conditions, whereas the conventional LCMV beamformer (LCMV-eDOA) yields
the highest AAD performance in the reverberant and reverberant-noisy conditions.
Future work could therefore investigate the potential of combining the convolutional
and the conventional beamformers to improve both the decoding and the speech en-
hancement performance.

4.6 Conclusion

In this paper, we proposed a cognitive-driven speech enhancement system which
combines neural-network-based mask estimation, convolutional beamformers and
AAD. We considered the wMPDR convolutional beamformer, which jointly en-
hances the attended speaker and suppresses the unattended speaker, reverberation
and background noise. In addition, we proposed a wLCMP convolutional beam-
former which enables to control the amount of suppression for the unattended
speaker. The experimental results showed that the proposed system using convo-
lutional beamformers is able to considerably improve the fwSSNR both for noisy
and reverberant conditions compared to state-of-the-art cognitive-driven speech en-
hancement systems.





5
CLOSED-LOOP COGNITIVE-DRIVEN GAIN
CONTROL OF COMPETING SOUNDS USING
AUDITORY ATTENTION DECODING

Recent advances in EEG have shown that it is possible to identify the target
speaker which a listener is attending to using single-trial EEG-based audi-
tory attention decoding (AAD) methods. However, the performance of most
AAD methods has been investigated for an open-loop scenario, where AAD
is performed in an off-line fashion without presenting on-line feedback to the
listener. Aiming at developing a closed-loop AAD system that allows to en-
hance a target speaker, suppress an interfering speaker and switch attention
between both speakers, in this paper we propose a cognitive-driven adaptive
gain controller (AGC) based on real-time AAD. Using the EEG responses
of the listener and the speech signals of both speakers, the real-time AAD
generates probabilistic attention measures, based on which the attended and
the unattended speaker are identified. The AGC then amplifies the identified
attended speaker and attenuates the identified unattended speaker, which are
presented to the listener via loudspeakers. We investigate the performance of
the proposed system in terms of the decoding performance and the signal-
to-interference ratio (SIR) improvement. The experimental results show that
closed-loop AAD in an on-line fashion is feasible and enables the listener to
interact with the AGC. Furthermore, the results show that although there is
a significant delay to detect attention switches, the proposed system is able
to improve the SIR between the attended and the unattended speaker. In ad-
dition, no significant difference in decoding performance is observed between
closed-loop AAD and open-loop AAD. The subjective evaluation results show
that the proposed closed-loop cognitive-driven system demands a similar level
of cognitive effort to follow the attended speaker, to ignore the unattended
speaker and to switch attention between both speakers compared to using
open-loop AAD.

5.1 Introduction

Hearing aids aim at restoring the normal hearing abilities by several processing
steps including speech enhancement. The main objective of speech enhancement is
to improve the intelligibility of the recorded microphone signals, which are often
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corrupted by various noise sources [10, 13]. In a scenario with multiple competing
speakers the performance of many speech enhancement algorithms depends on cor-
rectly identifying the target speaker, i.e., the speaker which the listener is attending
to.
Recent advances in electroencephalography (EEG) have shown that it is possible to
identify the target speaker from single-trial EEG recordings [16,20–26,128,130,163,
172]. Several single-trial EEG-based auditory attention decoding (AAD) methods to
identify the attended speaker have been proposed based on, e.g., a least-squares cost
function [16,20,22,25,26,163], canonical correlation analysis [21,128], a state-space
model [24,172] and neural networks [23,130]. The least-squares-based AAD method
used in [16, 20, 22, 25, 26, 163] aims at reconstructing the attended speech envelope
from the EEG responses of the listener using a trained spatio-temporal envelope
estimator. To identify the attended speaker, the reconstructed speech envelope is
compared with the speech envelopes of the competing speakers using correlation
coefficients. Since these correlation coefficients are typically highly fluctuating, a
large correlation window on the order of about 30 seconds is typically required to
obtain a reliable decoding performance, which causes a large processing delay.
The possibility of decoding auditory attention from EEG recordings has led to an
increasing research interest in the topic of incorporating AAD in a brain-computer
interface for real-world applications, e.g., to cognitively drive speech enhancement
algorithms [27, 30, 31, 198, 212]. Cognitive-driven speech enhancement algorithms
potentially provide the listener with the ability to selectively attend to a specific
speaker. It should however be noted that the performance of most aforementioned
AAD methods and cognitive-driven speech enhancement algorithms has been inves-
tigated for an open-loop scenario, where AAD is performed in an off-line fashion
without presenting on-line feedback to the listener. In addition, scenarios with no
attention switch between speakers have typically been investigated, which is unreal-
istic in practice. To investigate the performance of AAD for real-world applications,
closing the loop by presenting feedback according to the AAD results in an on-line
fashion is of crucial importance. Feedback presentation may influence the subse-
quent intent of the listener and the brain signals that encode that intent. In [163]
the feasibility of a closed-loop system based on least-squares-based AAD has been
shown by presenting the AAD results as visual feedback, i.e., using different colors
or a sphere with different radii. However, the feasibility of closed-loop AAD enabling
the listener to interact with speech enhancement in an on-line fashion and allowing
the listener to switch attention between speakers remains to be investigated.
Aiming at developing a closed-loop AAD system that allows to enhance a target
speaker, suppress an interfering speaker and switch attention between both speak-
ers, we propose a cognitive-driven adaptive gain controller (AGC), which is based
on real-time AAD (RAAD). The RAAD generates correlation coefficients for both
speakers using the EEG responses of the listener and the speech signals of both
speakers. These correlation coefficients are then translated into more reliable proba-
bilistic attention measures, based on which the attended and the unattended speaker
are identified. The AGC as an ideal speech enhancement algorithm then amplifies
the identified attended speaker and attenuates the identified unattended speaker. Fi-
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Fig. 5.1: Experiment protocol used to calibrate and evaluate the cognitive-driven gain
controller system. The experiment protocol consists of a calibration phase with
four sessions, an open-loop AAD phase with one session and a closed-loop AAD
phase with three sessions.

nally, the loop of cognitive-driven gain control is closed by presenting the amplified
attended speaker and the attenuated unattended speaker via loudspeakers.
To generate correlation coefficients of speakers, we adopt the least-squares-based
AAD method from [16]. The correlation coefficients are generated either using a
small correlation window of length 0.25 seconds or using a large correlation window
of length 15 seconds. To identify the attended and the unattended speaker from
the fluctuating correlation coefficients, we propose an AAD algorithm using a gen-
eralized linear model (GLM) and consider an AAD algorithm using a state-space
model (SSM), as proposed in [24, 172]. To amplify the attended speaker and atten-
uate the unattended speaker, we propose an AGC which adjusts the gains of both
speakers based on the probabilistic attention measures, as proposed in [213]. For an
acoustic scenario comprising two competing speakers we investigate the speech en-
hancement performance of the proposed closed-loop cognitive-driven gain controller
system based on objective and subjective evaluations. In addition, we provide a de-
tailed analysis and experimental comparison between an open-loop AAD system
and the closed-loop AAD system using either the GLM or the SSM.

5.2 Methods

5.2.1 Experiment protocol

In this section, we present the experiment protocol used to calibrate and evaluate
the cognitive-driven gain controller system. The experiment protocol consists of a
calibration phase, an open-loop AAD phase and a closed-loop AAD phase (see Fig.
5.1).

5.2.1.1 Calibration phase

In the calibration phase the cognitive-driven gain controller system was calibrated
using the EEG responses for a scenario with two competing speakers (see Fig. 5.2).
Participants were cued by an arrow on a screen to listen attentively to one of
the speakers while recording the ongoing EEG responses. Participants were also in-
structed to minimize eye movement and blinking. The EEG recordings were recorded
during four sessions, lasting 30 minutes in total. The first and the second session
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Fig. 5.2: Overview of the proposed cognitive-driven gain controller system for a scenario
with two competing speakers. The EEG responses were acquired using the EEG
amplifier. The acquired EEG responses and EEG trigger markers were streamed
using the gUSBamp application. Using the gUSBamp application and the LSL
software package, the streamed EEG responses were forwarded to the real-time
AAD (RAAD) for on-line decoding, to the Lab Recorder application for record-
ing, and to the OpenViBE software for on-line EEG visualization. The RAAD
was implemented and run using MATLAB (MATLAB 1). The RAAD identified
the attended and the unattended speaker and generated their corresponding prob-
abilistic attention measure. The generated probabilistic attention measure of the
attended speaker (p̂a) was forwarded to the AGC using the LSL software package.
Based on the probabilistic attention measure, the AGC amplified the attended
speaker (λ̄aŝa) and attenuated the unattended speaker (λ̄uŝu) as acoustic stimuli.
The AGC (together with trigger marker and visual stimuli) were implemented and
run using MATLAB (MATLAB 2). The AAD loop is then closed by presenting
the acoustic stimuli using the audio interface and two loudspeakers.

each lasted 10 minutes, while the third and the fourth session each lasted 5 minutes.
For the first and the third session the participants were cued to attend to the left
speaker, whereas for the second and the fourth session the participants were cued
to attend to the right speaker. Following each session, the participants were asked
to fill out a questionnaire consisting of multiple-choice questions about the stories
uttered by the speakers. There was one question per minute of each story. The ques-
tionnaire was used to check whether the participants attended to the cued speaker.
After the fourth session, there was a short break. During this break, the recorded
EEG responses were used to calibrate the cognitive-driven gain controller system
(see Section 5.2.5), individualized per participant.
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5.2.1.2 Open-loop AAD phase

In the open-loop AAD phase, the calibrated AAD algorithms were employed to
identify the attended and the unattended speaker without presenting feedback to
the participants. Similarly to the calibration phase, the scenario comprised two
competing speakers. The open-loop AAD phase consisted of one session lasting 10
minutes. During this session, participants were cued by an arrow on a screen every
minute to switch attention between the competing speakers while recording the
ongoing EEG responses. Afterwards, participants were asked to rate how effortful
it was to follow the attended speaker, to ignore the unattended speaker and to
switch attention to the cued speaker on a scale from 0 to 10, with 0 being least
effortful and 10 being most effortful. In addition, participants were asked to rate
how well they understood the attended story on a scale from 0 to 10, with 0 being
nothing understood and 10 being everything understood. While participants were
rating, the decoding performance of several AAD algorithms (see Section 5.2.5.1)
was evaluated using the recorded EEG responses. The following settings for the
correlation window used in the AAD algorithms were considered:

• LW–GLM: AAD algorithm using generalized linear model with a large corre-
lation window of 15 seconds1.

• LW–SSM: AAD algorithm using state-space model with a large correlation
window of 15 seconds.

• SW–SSM: AAD algorithm using state-space model with a small correlation
window of 0.25 seconds. Using a small correlation window was motivated by
the results in [24], where it was shown that the state-space model is able
to translate highly fluctuating coefficients of the spatio-temporal envelope
estimators into reliable probabilistic attention measures (see Section 5.2.5.1-
D).

5.2.1.3 Closed-loop AAD phase

In the closed-loop AAD phase, the calibrated cognitive-driven gain controller system
was employed to identify the attended and the unattended speaker and to close the
loop by presenting the amplified attended speaker and the attenuated unattended
speaker in an on-line fashion via loudspeakers. The closed-loop AAD phase consisted
of three sessions, each lasting 10 minutes. During each session, participants were
cued by an arrow on a screen every minute to switch attention between the presented
competing speakers while recording the ongoing EEG responses. To identify the
attended and the unattended speaker, in each session a different AAD algorithm
was used, i.e., LW–GLM, LW–SSM and SW–SSM. These AAD algorithms were
randomly assigned to the sessions. For analysing the experimental results, 24%
of the results needed to be excluded, 5% due to a technical hardware problem

1 Note that in this paper an AAD algorithm using GLM with a small correlation window was
not considered, since initial experiments showed highly fluctuating correlation coefficients with
unreliable probabilistic attention measures.
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when saving the results and 19% due to poor attentional performance reported by
participants themselves after a few sessions2.

5.2.2 Participants

Ten native German-speaking participants took part in this study. All participants
were self-reported normal hearing and reported no past or present neurological or
psychiatric conditions.

5.2.3 Stimuli

Two German audio stories, uttered by two different male speakers, were used as the
speech signals of the competing speakers. One story was from a German audio book
website [189] and the other story was from a selection of audio books [188]. Before
performing the experiment, participants reported no knowledge of the audio stories.
Speech pauses from the audio stories that exceeded 0.5 s were shortened to 0.5 s.
The audio stories were normalized to the same root-mean-square (RMS) value at a
comfortable level which was individualized by each participant. The audio stories
with no repetition were considered as the acoustic stimuli for the calibration phase,
the open-loop AAD phase and the closed-loop AAD phase. The acoustic stimuli
were presented at a sampling frequency of 44100 Hz using MATLAB (MATLAB
2 in Fig. 5.2), a Fireface UC audio interface system (provided by RME Audio,
Germany) and two loudspeakers placed at the left side (with an azimuth of −45◦)
and the right side (with an azimuth of 45◦) of the participants. The visual stimuli
consisting of an arrow for cueing were presented using a monitor in front of the
participants. In addition, the EEG trigger markers synchronized with the acoustic
and visual stimuli were generated using the Fireface UC audio interface system and
a g.TRIGbox (provided by g.tec, Austria). The presentation of the acoustic and
visual stimuli and the trigger marker generation were performed using the same
computer employed for the cognitive-driven gain controller system (see Fig. 5.2).

5.2.4 Data acquisition

Aiming at using a small number of electrodes for AAD, EEG responses were acquired
using C = 16 electrodes. The electrodes were placed on the scalp area at F1, F2, FC3,
FC4, FT7, FT8, Cz, C5, C6, P5, P4, P7, P8, Oz, PO3 and PO4. This electrode place-
ment was inspired by the results in [20, 165], where it was shown that an electrode
configuration covering the temporal, central, frontal and parental scalp areas yields
a reliable decoding performance. The EEG responses were referenced to the P9 elec-
trode. The EEG responses were acquired using active (g.LADYbird) electrodes and

2 Some participants reported that they either lost their concentration to attend to the cued speaker
or they engaged with the story uttered by the non-cued speaker.
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Fig. 5.3: Block diagram and process flow of the real-time AAD (RAAD) and the adaptive
gain controller (AGC).

a g.USBamp bio-signal amplifier (provided by g.tec, Austria). The acquired EEG re-
sponses and EEG trigger markers were streamed at a sampling frequency of 500 Hz
using the gUSBamp application from the Lab Streaming Layer (LSL) software pack-
age (provided by Swartz Center for Computational Neuroscience, UCSD). Using the
gUSBamp application, the streamed EEG responses were also forwarded to RAAD
for on-line decoding, to the Lab Recorder application (provided by Swartz Center
for Computational Neuroscience and Kothe) for recording, and to the OpenViBE
software for on-line EEG visualization. The gUSBamp application, the OpenViBE
software and the Lab Recorder application were run on the same computer employed
for the cognitive-driven gain controller system (see Fig. 5.2).

5.2.5 Cognitive-driven gain controller system

In this section, we present the proposed cognitive-driven gain controller system
consisting of RAAD and AGC (see Fig. 5.3). Section 5.2.5.1 describes the RAAD,
which generates probabilistic attention measures based on which the attended and
the unattended speaker are identified. Section 5.2.5.2 describes the AGC, which
amplifies the identified attended speaker and attenuates the identified unattended
speaker based on the probabilistic attention measures.
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5.2.5.1 Real-time auditory attention decoding (RAAD)

The RAAD consists of three blocks (see Fig. 5.3), i.e., pre-processing of the EEG
responses, correlation coefficient generation and AAD using either GLM or SSM.
A. Pre-processing: The streamed EEG responses from the gUSBamp application

were re-referenced to a common average reference, band-pass filtered between
0.5 Hz and 9 Hz using a fourth-order Butterworth band-pass filter, and subse-
quently downsampled to 64 Hz in an on-line fashion. Contrary to the on-line
EEG pre-processing, the speech pre-processing was performed in an off-line
fashion, i.e., the speech signal s1,t of speaker 1 and the speech signal s2,t of
speaker 2, with t the discrete time index for t = 1 . . . T , were assumed to
be available. The envelopes of both speech signals e1,k and e2,k, with k the
sub-sampled time index for k = 1 . . .K, were obtained using a Hilbert trans-
form, followed by low-pass filtering at 9 Hz and downsampling to 64 Hz. The
pre-processed EEG responses and the speech envelopes were then provided in
an on-line fashion to the correlation coefficient generation block.

B. Correlation coefficient generation: To generate the correlation coefficients of
speaker 1 and speaker 2, we adopted the least-squares-based AAD method
from [16], which estimates the attended speech envelope from the EEG record-
ings using a spatio-temporal envelope estimator trained during the calibration
phase.
1) Training step (calibration phase): In the training step, the attended

speaker is assumed to be known. The attended speech envelope is then es-
timated from the pre-processed EEG responses rc,k, with c the electrode
index for 1 . . . C, using a spatio-temporal envelope estimator g [16], i.e.,

êa,k = gT rk, (5.1)

with
g =

[
gT1 gT2 . . . gTC

]T
, (5.2)

gc = [gc,0 gc,1 . . . gc,J−1]T , (5.3)

rk =
[
rT1,k rT2,k . . . rTC,k

]T
, (5.4)

rc,k = [rc,k rc,k+1 . . . rc,k+J−1]T , (5.5)

where J denotes the number of envelope estimator coefficients per elec-
trode. The trained envelope estimator g is obtained by minimizing the
least-squares error between the (known) attended speech envelope ea,k
and the reconstructed envelope êa,k, regularized with the squared-norm
of the derivative of the envelope estimator coefficients to avoid over-
fitting [16,26,129], i.e.,

min
g

1
K

K∑
k=1

(ea,k − gT rk︸ ︷︷ ︸
êa,k

)2 + βgTΛg, (5.6)
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with Λ denoting the derivative matrix [26] and β denoting a regulariza-
tion parameter. The solution of (5.6) is equal to

g = (Q + βΛ)−1 q, (5.7)

with the correlation matrix Q and the cross-correlation vector q given
by

Q = 1
K

K∑
k=1

rkrT
k , q = 1

K

K∑
k=1

rkea,k . (5.8)

2) Correlation coefficient generation step (open-loop and closed-loop AAD
phase): To generate the correlation coefficients of speaker 1 and speaker
2, we compute the Pearson correlation coefficients between the estimated
attended envelope êa,k in (5.1) and the speech envelopes e1,k and e2,k,
i.e.,

ρ1,k = ρ (e1,k, êa,k) , ρ2,k = ρ (e2,k, êa,k) , (5.9)

where êa,k denotes the stacked vector of estimated attended envelopes
corresponding to a correlation window of length KCOR, i.e.,

êa,k = [êa,k−KCOR+1 êa,k−KCOR+2 . . . êa,k]T , (5.10)

and e1 [k] and e2 [k] are defined similarly as in (5.10).
In the training step, the pre-processed EEG responses obtained from the cal-
ibration phase were segmented into trials of length 15 seconds, shifted by 1
sample (corresponding to 1

64 seconds). In addition, the parameters J and β of
the envelope estimator in (5.3) and (5.7) were determined for each participant
using a leave-one-trial-out cross-validation approach, similarly as in [16, 26].
Using these parameters, an envelope estimator g in (5.7) for each participant
was then computed using all trials from the calibration phase.
In the correlation coefficient generation step, the EEG responses were seg-
mented in the same way as in the training step. The correlation coefficients
were computed either using a large correlation window of length KCOR = 960
samples (corresponding to 15 seconds) with an overlap of 959 samples or using
a small correlation window of length KCOR = 16 samples (corresponding to
0.25 seconds) with no overlap. In [18, 22, 24, 172] it has been shown that the
performance of AAD algorithms is affected by fluctuations of the correlation
coefficients ρ1,k and ρ2,k in (5.9). In this paper we propose to use two methods
(GLM and SSM) to translate the fluctuating correlation coefficients into more
reliable probabilistic attention measures.

C. Auditory attention decoding using generalized linear model: The AAD algo-
rithm using the GLM consists of a training and a decoding step. The training
step takes place during the calibration phase, whereas the decoding step takes
place during the open-loop and the closed-loop AAD phase.
1) Training step: To estimate the probability of attending to speaker 1 or

speaker 2, the correlation coefficients of speaker 1 and speaker 2 in (5.9)
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are first segmented into non-overlapping (NOL) windows of lengthKNOL,
i.e.,

ρ1,i =
[
ρ1,(i−1)KNOL+1 ρ1,(i−1)KNOL+2 . . . ρ1,iKNOL

]T
, (5.11)

ρ2,i =
[
ρ2,(i−1)KNOL+1 ρ2,(i−1)KNOL+2 . . . ρ2,iKNOL

]T
, (5.12)

The mean differential correlation coefficient of speaker 1 and speaker 2
in window i is computed as

∆̄ρi = 1
KNOL

KNOL∑
n=1

(ρ1,(i−1)KNOL+n − ρ2,(i−1)KNOL+n). (5.13)

We model the attention state d̄i in window i as a binary random variable
[197], i.e.,{

d̄i = 1, attending to speaker 1 in window i

d̄i = 2, attending to speaker 2 in window i
, (5.14)

which is assumed to follow a Bernoulli distribution with probability p̄i,
i.e.,

P
(
d̄i
)

= p̄i
2−d̄i (1− p̄i) d̄i−1 =

{
p̄i, if d̄i=1

1− p̄i, if d̄i=2
. (5.15)

Using a GLM, the probability of attending to speaker 1 is given by [214]

p̄i = P
(
d̄i = 1

)
= 1− P

(
d̄i = 2

)
= 1

1 + e−z̄i
, (5.16)

with the linear predictor z̄i, i.e.,

z̄i = xTi α, (5.17)

xi = [1 ∆̄ρi]T , (5.18)

α = [α0 α1]T , (5.19)

where α0 and α1 denote the GLM parameters. Obviously, the probability
of attending to speaker 1 monotonically increases from 0 to 1 for z̄i ∈
(−∞,∞).
To obtain the GLM parameters α0 and α1, the probability mass function
in (5.15) can be written as an exponential distribution using the canonical
link function θi = logit (p̄i) = z̄i, with logit (p̄i) = log

(
p̄i

1−p̄i

)
, i.e.,

P
(
d̄i
)

= exp(d̄iθi − b (θi)), (5.20)
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Algorithm 1 : GLM Training
input: xi and d̄i for i = 1 . . . I
1: initialization: p̄(0)

i = d̄i, z̄(0)
i = logit(p̄(0)

i ), calculate α̂(1) using (5.23)
2: for r = 1 . . . R do
3: calculate p̄(r)

i and z̄(r)
i using (5.26) and (5.27), respectively

4: calculate y(r) and W(r) using (5.28), (5.29) and (5.25), respectively
5: update the GLM parameters α̂(r+1) using (5.23)
6: end for
output: α̂ = α̂(R+1)

with
b (θi) = log (1 + exp (θi)) . (5.21)

The GLM parameters in (5.19) are then obtained by maximizing the
log-likelihood function, i.e.,

α̂ = arg max
α

` (xi, i = 1 : I|α) =
I∑
i=1

d̄iθi − b (θi) , (5.22)

which is a maximum likelihood (ML) estimate and can be computed
by using an iteratively re-weighted least-squares algorithm and Newton-
Raphson method as [215,216]

α̂(r+1) = (XTW(r)X)−1XTW(r)y(r), (5.23)

with r the iteration index and

X = [xT1 xT2 . . . xTI ]T , X ∈ RI×2, (5.24)

W(r) = diag

 1
p̄

(r)
i

(
1− p̄(r)

i

)
 , W(r) ∈ RI×I , (5.25)

p̄
(r)
i = logit−1(z̄(r)

i ), (5.26)

z̄
(r)
i = xTi α̂(r), (5.27)

y(r) = [y(r)
1 y

(r)
2 . . . y

(r)
I ]T , y(r) ∈ RI×1, (5.28)

y
(r)
i = z̄

(r)
i + (d̄i − p̄(r)

i )logit′(p̄(r)
i ), (5.29)

where (· )′ denotes the derivative operator. Algorithm 1 summarizes the
GLM parameter estimation in the training step.

2) Decoding step: To decode which speaker a participant is attending to in
window i, the mean differential correlation coefficient ∆̄ρi is computed
using (5.13), based on which the linear predictor z̄i is computed using
the (trained) GLM parameters α̂ in (5.17). The probability of attending
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to speaker 1 P
(
d̄i = 1

)
and the probability of attending to speaker 2

P
(
d̄i = 2

)
are then obtained using (5.16). Based on these probabilities,

it is decided that the participant attended to speaker 1 if P
(
d̄i = 1

)
>

P
(
d̄i = 2

)
or attended to speaker 2 otherwise. The probabilistic attention

measure of the attended speaker p̂a,i in window i is hence determined asp̂a,i = P
(
d̄i = 1

)
, if P

(
d̄i = 1

)
> P

(
d̄i = 2

)
p̂a,i = P

(
d̄i = 2

)
, otherwise.

(5.30)

Obviously, the probabilistic attention measure of the attended speaker
p̂a,i can vary between 0.5 and 1. The probabilistic attention measure of
the unattended speaker p̂u,i is determined as p̂u,i = 1− p̂a,i. The process
flow of AAD using the GLM is depicted in Fig. 5.3.

The AAD algorithm using the GLM was implemented and run using MATLAB
(MATLAB 1 of RAAD in Fig. 5.2). For the training step, Algorithm 1 with
R = 30 iterations and the correlation coefficients obtained from the calibration
phase were used. Both for the training and the decoding steps, the correlation
coefficients were computed using the large correlation window (i.e., KCOR =
960 samples) and the mean differential correlation coefficients in (5.13) were
generated using a window of length KNOL = 16 samples (corresponding to
0.25 seconds). During the decoding step, the probabilistic attention measures
p̂a,i and p̂u,i were forwarded to the AGC using the LSL software package (see
Fig. 5.2). Each participant’s own data were used for training and decoding. To
evaluate the performance of the proposed LW–GLM algorithm, the decoding
performance for each participant was computed as the percentage of correctly
decoded NOL windows.

D. Auditory attention decoding using state-space model: As an alternative to the
GLM, it has been proposed in [24] to use a SSM to translate the absolute values
of the coefficients of the spatio-temporal envelope estimator into probabilistic
attention measures. Contrary to [24], in this paper we propose to use the
absolute values of the correlation coefficients

φ1,k = |ρ1,k| , (5.31)

φ2,k = |ρ2,k| , (5.32)

instead of the coefficients of the spatio-temporal envelope estimator, which
need to be obtained for both the attended and the unattended speaker.
Similarly to (5.14), we model the attention state dk at time instance k as a
binary random variable, i.e.,{

dk = 1, attending to speaker 1 at time instance k
dk = 2, attending to speaker 2 at time instance k

, (5.33)
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which is assumed to follow a Bernoulli distribution with probability pk. The
probability of attending to speaker 1 is given by

pk = P (dk = 1) = 1− P (dk = 2) = 1
1 + e−zk

, (5.34)

where the variable zk is modeled as an autoregressive (AR) process, i.e.,

zk = c0zk−1 + wk. (5.35)

The parameter c0 is a hyperparameter ensuring stability of the AR process
and the noise process wk is assumed to follow a normal distribution with
variance ηk, i.e.,

wk ∼ N (0, ηk) , (5.36)

ηk ∼ Inverse-Gamma (a0, b0) , (5.37)

where a0 and b0 are hyperparameters controlling the smoothness of the SSM.
The AR model in (5.35) implies that the zk at time instance k is predicted from
zk−1 at the previous time instance with some uncertainty, which is modeled
by the noise process wk.
To relate the correlation coefficients ρ1,k and ρ2,k in (5.9) to the attention
state dk, we model the probability of the absolute values of the correlation
coefficients φ{1,2},k given attention to speaker 1 or speaker 2, using a log-
normal distribution3, i.e.,

p (φl,k | dk = l) ∼ Log-Normal (δa, µa) , l = 1, 2, (5.38)

with
δa ∼ Gamma (γ̄a, ν̄a) , p (µa | δa) ∼ N (µ̄a, δa) , (5.39)

where γ̄a, ν̄a and µ̄a denote the hyperparameters of the attended log-normal
distribution. Similarly, we model the probability of the absolute values of the
correlation coefficients φ{1,2},k given no attention to speaker 1 or speaker 2,
as

p (φl,k | dk 6= l) ∼ Log-Normal (δu, µu) , l = 1, 2, (5.40)

with
δu ∼ Gamma (γ̄u, ν̄u) , p (µu | δu) ∼ N (µ̄u, δu) , (5.41)

where γ̄u, ν̄u and µ̄u denote the hyperparameters of the unattended log-normal
distribution. Since a small overlap between the attended and the unattended
log-normal distributions is desired for a reliable decoding performance, the
hyperparameters γ̄{a,u}, ν̄{a,u} and µ̄{a,u} are tuned to minimize the overlap.

3 Please note that modeling the probabilities of the absolute values of the correlation coefficients
with log-normal distributions allows for a closed-form iterative solution [24] compared to when
modeling the probabilities of the correlation coefficients either with normal or von Mises-Fisher
distributions [197].
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Aiming at estimating the probability of attending to speaker 1 and speaker
2 at time instance k = k∗ (see Fig. 5.3), we now consider using the absolute
values of the correlation coefficients within a sliding window of length KSSM =
KP +KA+1, with KP and KA denoting the number of correlation coefficients
prior to and after k∗, respectively. The set of parameters to be estimated in
this window is given by Ω = {zk∗−KP :k∗+KA

, ηk∗−KP :k∗+KA
, δa, µa, δu, µu}.

This set can be estimated by maximizing the log-posterior function, i.e.,

Ω̂ = arg max
Ω

` (Ω|φ1,k, φ2,k, k = k∗ −KP : k∗ +KA) , (5.42)

which is a maximum a posteriori (MAP) estimate and can be computed iter-
atively using the Expectation Maximization (EM) algorithm as in [24,197].
Based on the estimated variable zk the probability pk = P (dk = 1) of attend-
ing to speaker 1 is obtained using (5.34). These probabilities are segmented
into non-overlapping windows of length KNOL, i.e.,

pi =
[
p(i−1)KNOL+1 p(i−1)KNOL+2 . . . piKNOL

]T
. (5.43)

The probability of attending to speaker 1 in window i is then computed as
the mean of the probabilities, i.e.,

P
(
d̂i = 1

)
= 1
KNOL

KNOL∑
n=1

p(i−1)KNOL+n, (5.44)

with d̂i the attention state in window i. The probability of attending to speaker
2 in window i is computed as

P
(
d̂i = 2

)
= 1− P

(
d̂i = 1

)
. (5.45)

Based on these probabilities, it is decided that the participant attended to
speaker 1 if P

(
d̂i = 1

)
> P

(
d̂i = 2

)
or attended to speaker 2 otherwise. The

probabilistic attention measure of the attended speaker p̂a,i in window i is
hence determined asp̂a,i = P

(
d̂i = 1

)
, if P

(
d̂i = 1

)
> P

(
d̂i = 2

)
p̂a,i = P

(
d̂i = 2

)
, otherwise.

(5.46)

The probabilistic attention measure of the unattended speaker p̂u,i is deter-
mined as p̂u,i = 1− p̂a,i. The process flow of AAD using the SSM is depicted
in Fig. 5.3.
The AAD algorithm using the SSM was implemented and run using MATLAB
(MATLAB 1 of RAAD in Fig. 5.2). The hyperparameters in (5.35) and (5.37)
were set to c0 = 1, a0 = 2.008 and b0 = 0.2016, similarly as in [24]. The hyper-
parameters γ̄a, ν̄a and µ̄a in (5.39) were set by fitting a gamma and a normal
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distribution to the absolute values of the correlation coefficients of the (oracle)
attended speaker obtained from the calibration phase. Similarly, the hyperpa-
rameters γ̄u, ν̄u and µ̄u in (5.41) were set by fitting a gamma and a normal
distribution to the absolute values of the correlation coefficients of the (oracle)
unattended speaker obtained from the calibration phase. The SSM parameter
set Ω was estimated using the EM algorithm as in [24] with 20 iterations. For
the LW–SSM algorithm using the large overlapping correlation window (i.e.,
KCOR = 960 samples, 1 sample shift), a small SSM window of lengthKSSM = 1
sample (corresponding to 1

64 seconds) with KP = 0 and KA = 0 was used. For
the SW–SSM algorithm using the small non-overlapping correlation window
(i.e., KCOR = 16 samples), a large SSM window of length KSSM = 60 samples
(corresponding to 15 seconds) with KP = 53 (corresponding to 13.25 seconds)
and KA = 6 (corresponding to 1.50 seconds) was used as in [24]. The length of
the window KNOL in (5.43) was set such that both algorithms generated the
probabilistic attention measure of the attended speaker p̂a,i in (5.46) every
0.25 seconds. This means that for the LW–SSM algorithm a window of length
KNOL = 16 samples was used, while for the SW–SSM algorithm a window of
length KNOL = 1 sample was used. Each participant’s own data were used for
hyperparameter and parameter setting as well as for decoding. To evaluate
the performance of the proposed LW–SSM and SW–SSM algorithms, the de-
coding performance for each participant was computed as the percentage of
correctly decoded NOL windows.

5.2.5.2 Adaptive gain controller (AGC)

The probabilistic attention measure of the attended speaker p̂a,i in window i either
obtained using the GLM in (5.30) or using the SSM in (5.46), is then used to drive
the AGC (see Fig. 5.2).
The speech signal s1,i of speaker 1 and the speech signal s2,i of speaker 2 are first
segmented into non-overlapping windows of length KAGC, i.e., for window i

s1,i =
[
s1,(i−1)KAGC+1 s1,(i−1)KAGC+2 . . . s1,iKAGC

]T
, (5.47)

s2,i =
[
s2,(i−1)KAGC+1 s2,(i−1)KAGC+2 . . . s2,iKAGC

]T
. (5.48)

Based on the AAD results for window i, the attended speech vector ŝa,i and the
unattended speech vector ŝu,i are determined as{

ŝa,i = s1,i, ŝu,i = s2,i if the identified attended speaker is speaker 1
ŝa,i = s2,i, ŝu,i = s1,i otherwise.

(5.49)

By multiplying the attended speech vector ŝa,i with the gain λa,i and multiplying
the unattended speech vector ŝu,i with the gain λu,i, the objective of the AGC is to
achieve a desired signal-to-interference-ratio (SIR) between the identified attended
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and unattended speakers in window i. The desired SIR in window i is defined as a
linear function of the probabilistic attention measure p̂a,i, i.e.,

SIRdesi = 2SIRmaxp̂a,i − SIRmax, (5.50)

such that p̂a,i = 1 corresponds to SIRmax, i.e., the maximum desired SIR and a
p̂a,i = 0.5 corresponds to SIR = 0 dB. The SIR in window i at the output of the
AGC is equal to

SIRi = 10 log10(
λ2
a,iϕa,i

λ2
u,iϕu,i

), (5.51)

with the energy of the attended and unattended speech signal in window i given by

ϕa,i = ŝTa,iŝa,i, ϕu,i = ŝTu,iŝu,i. (5.52)

By setting (5.51) equal to the desired SIR in (5.50) and constraining the overall
energy at the output of the AGC to be equal to the overall input energy, i.e.,

λ2
a,iϕa,i + λ2

u,iϕu,i = ϕa,i + ϕu,i, (5.53)

the gains λu,i and λa,i can be computed as

λ2
u,i = 1+

ϕa,i
ϕu,i

1 + 10
SIRdes

i
10

, (5.54)

λ2
a,i = 10

SIRdes
i

10 + ϕu,i
ϕa,i

λ2
u,i. (5.55)

To avoid annoying artefacts due to highly time-varying gains, the gains λu,i in (5.54)
and λa,i (5.55) are averaged over four windows, i.e.,

λ̄u,i = 1
4

i∑
n=i−3

λu,n, λ̄a,i = 1
4

i∑
n=i−3

λa,n. (5.56)

The amplified attended speaker s̄a,i and the attenuated unattended speaker s̄u,i in
window i are finally obtained as

s̄a,i = λ̄a,iŝa,i, (5.57)

s̄u,i = λ̄u,iŝu,i. (5.58)

These signals are then presented to the participant using two loudspeakers. The
AGC was implemented and run using MATLAB (MATLAB 2 in Fig. 5.2). The
sampling frequency of the speech signals of both speakers was equal to 44100 Hz. The
maximum desired SIR in (5.50) was set to +7. The speech enhancement performance
of AGC was evaluated in terms of the SIR improvement ∆SIR, i.e.,

∆SIR = SIRout − SIRin, (5.59)
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(a) Large correlation window
(KCOR = 960 samples, 1 sample shift)

(b) Small correlation window
(KCOR = 16 samples, no overlap)

Fig. 5.4: Exemplary correlation coefficients of speaker 1 and speaker 2 and probabilistic
attention measures of speaker 1 from the open-loop AAD phase when using AAD
algorithms employing (a) a large correlation window (LW–GLM, LW–SSM), and
(b) a small correlation window (SW–SSM).

with

SIRin = 10 log10(

I∑
i=1
sTa,isa,i

I∑
i=1
sTu,isu,i

), (5.60)

SIRout = 10 log10(

I∑
i=1
s̄Ta,is̄a,i

I∑
i=1
s̄Tu,is̄u,i

), (5.61)

where sa,i and su,i denote the (oracle) attended and unattended speech vectors,
defined similarly as in (5.47).

5.3 Results

In this section, we evaluate the decoding performance and the speech enhancement
performance of the proposed cognitive-driven gain controller system described in
the previous section. In Section 5.3.1 we evaluate the decoding performance of the
proposed AAD algorithms for the open-loop and the closed-loop AAD phase. In
Section 5.3.2 we evaluate the speech enhancement performance of the AGC for
the closed-loop AAD phase. Finally, in Section 5.3.3 we compare the subjective
evaluation between the open-loop and the closed-loop AAD phase.
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(a) open-loop AAD (b) closed-loop AAD

Fig. 5.5: Decoding performance for (a) the open-loop AAD and (b) the closed-loop AAD
when using the LW–GLM, the LW–SSM and the SW–SSM. The dashed-line rep-
resents the upper boundary of the confidence interval corresponding to chance
level based on a binomial test at the 5% significance level.

5.3.1 Auditory attention decoding performance

For the AAD algorithms using the large correlation window (LW–GLM, LW–SSM)
and the small correlation window (SW–SSM), Fig. 5.4 depicts exemplary correlation
coefficients ρ1,k and ρ2,k of speaker 1 and speaker 2, corresponding to a session from
the open-loop AAD phase. It can be observed that all considered AAD algorithms
translate the correlation coefficients into smooth probabilistic attention measures,
which are robust against fluctuations of the correlation coefficients. When using the
large correlation window, i.e., LW–GLM and LW–SSM, the correlation coefficients
are more discriminative and the probabilistic attention measures are more reliable
while having a low variability compared to using the small correlation window,
i.e., SW–SSM. This can mainly be explained by the fact that the large correlation
window provides a larger amount of data from the reconstructed attended envelope
and the envelopes of the speakers compared to the small correlation window. The
discriminability and reliability of correlation coefficients and probabilistic attention
measures are obviously essential ingredients to improve the decoding performance.
For the considered AAD algorithms, Fig. 5.5 depicts the decoding performance for
the open-loop and the closed-loop AAD phase. It can be observed that all AAD
algorithms yield a decoding performance that is larger than chance level (50.0%).
For the open-loop AAD phase, the LW–GLM, LW–SSM and SW–SSM algorithms
yield a (median) decoding performance of 65.0%, 60.5% and 56.5%, respectively.
For the closed-loop AAD phase, the LW–GLM, LW–SSM and SW–SSM algorithms
yield a (median) decoding performance of 67.7%, 64.2% and 60.4%, respectively.
The higher median decoding performance obtained by the LW–GLM and LW–SSM
algorithms is consistent with the probabilistic attention measures in Fig. 5.4, where
due to the large correlation window more reliable probabilistic attention measures
are obtained compared to the SW–SSM algorithm. In order to compare the decoding
performance between the open-loop and the closed-loop AAD phase, a statistical
multiple comparison test (Kruskal-Wallis test followed by the post-hoc Dunn and
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(a) open-loop AAD (b) closed-loop AAD

Fig. 5.6: Delay to detect a cued attention switch for (a) the open-loop AAD phase and (b)
the closed-loop AAD phase when using the LW–GLM, LW–SSM and SW–SSM
algorithms.

Fig. 5.7: SIR improvement of the proposed cognitive-driven gain controller system when
using the LW–GLM, LW–SSM and SW–SSM algorithms.

Sidak test [1]) was performed. This test revealed no significant difference (p > 0.05)
in decoding performance between the open-loop and the closed-loop AAD phase
nor the considered AAD algorithms.
To further investigate the performance of the proposed AAD algorithms, Fig. 5.6
depicts the delay to detect a cued attention switch for the open-loop and the closed-
loop AAD phase. For the open-loop AAD phase, the LW–GLM, LW–SSM and
SW–SSM algorithms yield a median delay of 16.0 seconds, 7.7 seconds and 13.9
seconds, respectively. For the closed-loop AAD phase, the LW–GLM, LW–SSM and
SW–SSM algorithms yield a median delay of 19.8 seconds, 11.5 seconds and 17.4
seconds, respectively. A statistical multiple comparison test (Kruskal-Wallis test
followed by the post-hoc Dunn and Sidak test) revealed no significant difference
(p > 0.05) between the open-loop and the closed-loop AAD phase nor the considered
AAD algorithms.
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5.3.2 Speech enhancement performance of adaptive gain controller

For the considered AAD algorithms, Fig. 5.7 depicts the SIR improvement for the
closed-loop AAD phase. It can be observed that the LW–GLM, LW-GLM and SW–
SSM algorithms yield a median SIR improvement of 1.1 dB, 1.7 dB and 0.5 dB,
respectively. The larger SIR improvement obtained by the LW–GLM and LW–SSM
algorithms can be explained by the higher decoding performance compared to the
SW–SSM algorithm. The higher decoding performance leads to a larger number
of windows during which the attended speaker is correctly amplified and the unat-
tended speaker is correctly attenuated. In addition, it can be observed that the
SW-SSM algorithm yields an SIR improvement with a larger variability (−2.7-3.0
dB) than the LW–GLM algorithm (0.6-2.1 dB) and the LW–SSM algorithm (0.7-3.8
dB). This can be explained by the larger variability of the probabilistic attention
measures obtained by the SW–SSM (see Fig. 5.4). Due to the linear role of the prob-
abilistic attention measure in the AGC for determining the desired SIR between the
attended and the unattended speaker, see (5.50), the probabilistic attention mea-
sures with a large variability lead to SIRs with a large variability.

5.3.3 Subjective evaluation of open-loop and closed-loop AAD

Finally, we subjectively evaluate the open-loop and the closed-loop AAD phase.
Fig. 5.8 presents the perceived effort to follow the attended speaker, to ignore the
unattended speaker, to switch attention between both speakers, and the level of
story understanding.
For the effort to follow the attended speaker and to ignore the unattended speaker
(Fig. 5.8a and Fig. 5.8b), it can be observed that the lowest median effort level is
obtained for the open-loop AAD, while a higher median is obtained for the closed-
loop AAD, especially when using the SW–SSM algorithm. This can be attributed to
the negative SIR improvements in some windows (see Fig. 5.7), where the attended
speaker is wrongly attenuated and the unattended speaker is wrongly amplified.
Nevertheless, a statistical multiple comparison test (Kruskal-Wallis test followed
by the post-hoc Dunn and Sidak test) revealed no significant difference (p > 0.05)
between all considered open-loop and closed-loop AAD cases. Similarly, for the ef-
fort to switch attention between both speakers (Fig. 5.8c), a statistical multiple
comparison test revealed no significant difference (p > 0.05) between all considered
open-loop and closed-loop AAD cases. These results show that the proposed closed-
loop cognitive-driven gain controller system demands a similar perceived effort to
follow the attended speaker, to ignore the unattended speaker and to switch atten-
tion compared to the open-loop AAD system. For the level of story understanding
(Fig. 5.8d), the highest median understanding level is obtained for the open-loop
AAD, while a lower median understanding level is obtained for the closed-loop
AAD. This is consistent with the perceived level of cognitive effort (Fig. 5.8a, Fig.
5.8b, Fig. 5.8c), where the open-loop AAD demands the lowest median effort level,
possibly resulting in more cognitive resources available for story understanding com-
pared to the closed-loop AAD. Nevertheless, a statistical multiple comparison test
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(a) (b)

(c) (d)

Fig. 5.8: Subjective evaluation results of the open-loop and the closed-loop AAD phase
using the LW–GLM, LW–SSM and SW–SSM algorithms in terms of perceived
effort to (a) follow the attended speaker, (b) ignore the unattended speaker, (c)
switch attention between both speakers and (d) understand the story.

revealed no significant difference (p > 0.05) between the considered open-loop and
closed-loop AAD cases.
Lastly, Fig. 5.9 presents the level of improvement in system usage achieved by
the participants throughout the sessions of closed-loop AAD experiment. It can
be observed for all considered AAD algorithms that a significant improvement in
system usage is obtained.

5.4 Discussion

The experimental results for the open-loop AAD system show that the highest
median decoding performance is obtained by the LW–GLM algorithm (65%). This
is in accordance with the experimental results in [20], where it has been shown that
open-loop AAD using a low number of electrodes with a correlation window smaller
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Fig. 5.9: Subjective improvement in system usage for the closed-loop AAD system when
using the LW–GLM, LW–SSM and SW–SSM algorithms.

than 15 seconds results in a decoding performance lower than 75%4. In addition,
the experimental results show that there is no significant difference in decoding
performance between the open-loop and the closed-loop AAD system using the
proposed AAD algorithms. This is consistent with the experimental results in [163],
where no significant difference in decoding performance between an open-loop and
a closed-loop AAD system using visual feedback has been observed.
The experimental results show that the LW–GLM and LW–SSM algorithms using
the large correlation window yield a higher median decoding performance compared
to the SW–SSM algorithm using the small correlation window. The large correlation
window provides a larger amount of data from the reconstructed attended envelope
and the envelopes of the speakers compared to the small correlation window, re-
sulting in more discriminative correlation coefficients, more reliable probabilistic
attention measures and a larger decoding performance. This is in accordance with
the experimental results in [18,20], where it has been shown that using a larger cor-
relation window results in a larger decoding performance. The experimental results
also show that the LW–GLM algorithm yields a higher median decoding perfor-
mance compared to the LW–SSM algorithm. This may be explained by the fact
that the LW–GLM algorithm infers the probabilistic attention measures based on
the mean differential correlation coefficients rather than the absolute values of the
correlation coefficient. The mean differential correlation coefficients provide a larger
dynamic range including negative and non-negative values for inferring the proba-
bilistic attention measures.
The experimental results demonstrate the feasibility of closed-loop AAD in an on-
line fashion, enabling the listener to interact with an adaptive gain controller (as an
ideal speech enhancement algorithm) for a two-speaker scenario. On the one hand,
the closed-loop cognitive-driven gain controller system improves the SIR between

4 Please note that the decoding performance in [20] was obtained based on an optimal EEG electrode
configuration, whereas the decoding performance reported in this paper was obtained based on a
fixed EEG electrode configuration.
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the attended and the unattended speaker. This may make it easier to follow the
attended speaker, ignore the unattended speaker and switch attention between both
speakers, resulting in a lower cognitive effort, compared to open-loop AAD. On the
other hand, the closed-loop cognitive-driven gain controller system introduces a
significant delay to detect attention switches, which causes the attended speaker
to be wrongly attenuated and the unattended speaker to be wrongly amplified.
This may make it more difficult to follow the attended speaker and ignore the
unattended speaker, resulting in a higher cognitive effort compared to open-loop
AAD. Nevertheless, the subjective evaluation results indicate that overall the closed-
loop cognitive-driven gain controller system demands a similar effort as the open-
loop AAD system.
The latency of the proposed closed-loop cognitive-driven gain controller system af-
fecting the processing of the attended and unattended speech signals consists of
three parts: correlation coefficient generation, AAD using either the large-window
GLM, the large-window SSM or the small-window SSM, and adaptive gain con-
troller. The latency caused by the correlation coefficient generation using the large
correlation window and the small correlation window correspond to 1

64 seconds and
1
4 seconds, respectively. The latency caused by AAD using the large-window GLM
corresponds to 1

4 seconds. The latency caused by AAD using the large-window SSM
(SSM window with KA = 0) corresponds to 1

64 seconds, whereas the latency caused
by AAD using the small-window SSM (SSM window with KA = 6) corresponds to
1.50 seconds. Also, the latency for generating the probabilistic attention measures
caused by AAD using either the large-window SSM or the small-window SSM corre-
sponds to 1

4 seconds. The latency caused by the adaptive gain controller corresponds
to 1

44100 seconds.
While the closed-loop AAD experiments using the proposed cognitive-driven gain
controller system was performed without incorporating a practicing phase for par-
ticipants in this paper, the subjective evaluation results suggest that a significant
improvement in the system usage was obtained throughout the closed-loop AAD
experiment. Future work could therefore investigate the impact of incorporating a
practicing phase on the decoding and the speech enhancement performance of the
cognitive-driven gain controller system.

5.5 Conclusion

In this paper, we proposed a closed-loop gain controller system which cognitively
steers an adaptive gain controller based on real-time AAD for a scenario with two
competing speakers. The real-time AAD infers the probabilistic attention measures
of the attended and the unattended speaker from EEG recordings of the listener and
the speech signals of both speakers. Based on these probabilistic attention measures,
the adaptive gain controller amplifies the identified attended speaker and attenuates
the identified unattended speaker. The loop of cognitive-driven gain control is then
closed by presenting the amplified attended speaker and the attenuated unattended
speaker via loudspeakers. The experimental results demonstrate the feasibility of the
proposed closed-loop cognitive-driven gain controller system (both using GLM and
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SSM), enabling the listener to interact with the system in real-time. Although there
is a significant delay to detect attention switches, which causes the attended speaker
to be wrongly attenuated and the unattended speaker to be wrongly amplified, the
proposed closed-loop system is able to improve the SIR between the attended and
the unattended speaker. Moreover, the subjective evaluation results show that the
proposed closed-loop cognitive-driven system demands a similar perceived level of
cognitive effort to follow the attended speaker, to ignore the unattended speaker
and to switch attention between both speakers compared to the open-loop AAD
system. With this work, a first attempt was made to bring closed-loop cognitive-
driven speech enhancement closer to real-world applications.



6
EEG-BASED AUDITORY ATTENTION
DECODING USING BINARY MASKING

The performance of many speech enhancement algorithms in a multi-speaker
scenario depends on correctly identifying the target speaker to be enhanced.
Recent advances in electroencephalography (EEG) have shown that it is pos-
sible to identify the target speaker from single-trial EEG recordings using a
least-squares-based auditory attention decoding method. Since in practice the
clean speech signals of the speakers are typically not available as reference sig-
nals for decoding, it has been proposed to either just use the (noisy and rever-
berant) microphone signals as reference signals or to generate reference signals
by applying minimum-variance-distortionless-response (MVDR) beamformers
to the microphone signals. However, since the MVDR output signals still con-
tain interfering speech and background noise, the decoding performance is
significantly lower compared to using the clean speech signals as reference sig-
nals. Aiming at generating better reference signals for decoding, in this paper
we propose reference signal generation algorithms, which use binary masks
to discard intervals with a low target speech energy, which are susceptible to
interfering speech and background noise. The binary masks are determined
from the directional speech presence probability of the speakers which can be
estimated from the microphone signals. As reference signals we either use the
masked microphone signals, the masked MVDR output signals or the binary
masks themselves. The performance of the proposed algorithms is evaluated
in terms of the decoding performance for a two-speaker scenario with a binau-
ral hearing aid setup in anechoic and reverberant conditions. In addition, the
performance of the proposed algorithms is analyzed based on the correlation
difference and the signal-to-interference-plus-noise ratio (SINR). The experi-
mental results show that using the masked microphone and MVDR output
signals as reference signals yields a larger correlation difference, SINR and
decoding performance (especially in the reverberant condition) compared to
using the (non-masked) microphone and MVDR output signals. Quite remark-
ably, the results also show that using the binary masks as reference signals
yields a decoding performance that is comparable to using the masked MVDR
output signals.

113
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6.1 Introduction

In acoustic scenarios with multiple speakers and background noise the human au-
ditory system has a remarkable ability to localize and segregate a speaker of in-
terest and suppress the other speakers and background noise [45, 217]. For per-
sons with hearing impairment source localization and segregation is typically much
more challenging [218]. In order to improve speech intelligibility, several multi-
microphone speech enhancement algorithms for hearing aid are currently available
to perform source separation in multi-speaker scenario and to reduce background
noise [10, 13, 115]. These algorithms aim at enhancing the target speaker, which is
typically identified as the speaker in front of the hearing aid user or as the loudest
speaker. Since in real-world conditions these assumptions about the target speaker
may not correspond with the hearing wish of the listener, the benefit from speech en-
hancement algorithms may substantially decrease. Therefore, correctly identifying
the target speaker in hearing aid applications is an essential ingredient to improve
speech intelligibility.
Several studies have shown that auditory EEG responses of the listener are corre-
lated with the envelope of the attended speaker [16,175,178]. Using single-trial EEG
recordings, several auditory attention decoding (AAD) methods have been proposed
to identify the attended speaker based, e.g., on a least-squares cost function [16],
neural networks [23,130], and Bayesian filtering [24,172]. The possibility of decoding
auditory attention from EEG recordings has led to the idea of incorporating AAD
in a brain-computer interface, e.g., to control a hearing aid [198]. Hence, a large
research effort has recently focused on investigating the feasibility of AAD in real-
world listening conditions [20, 24, 26, 169, 198] and on steering speech enhancement
algorithms based on AAD [27–29,31,166,212].
The frequently used least-squares-based AAD method proposed in [16] aims at re-
constructing the attended speech envelope from the EEG recordings using a trained
spatio-temporal filter. The reconstructed envelope is then correlated with the en-
velope of two (attended and unattended) reference signals to identify the attended
speaker. In [16] the the clean speech signals of both the attended and the unattended
speaker have been used as reference signals for decoding. In practice, these clean
speech signals are typically not available, i.e., only the microphone signals, contain-
ing interfering speech, background noise and reverberation, are available. Although
in [26,169] it has been shown that AAD is still feasible using the microphone signals
instead of the clean speech signals as reference signals, the decoding performance
is significantly decreased, such that several source separation and noise reduction
algorithms have been proposed to generate appropriate reference signals from the
microphone signals [27–29, 31, 166, 212]. The single-microphone source separation
algorithms proposed in [28,212] use deep neural networks to generate the reference
signals by separating the speakers from the mixture received at the microphone.
Although these algorithms are able to generate appropriate reference signals in ane-
choic conditions, the generalization to reverberant conditions is still challenging. The
multi-microphone algorithm proposed in [27, 166] generates reference signals using
multiple multi-microphone Wiener filters (MWFs). These MWFs rely on the second-
order statistics of the interfering speech and background noise, which are estimated



6.2 configuration and notation 115

using an envelope demixing algorithm and a voice activity detector. Experimental
results in [27,166] show that using the MWF-based reference signals yields a larger
decoding performance (especially in an anechoic condition) than using the micro-
phone signals as reference signals. However, the performance of the MWFs highly
relies on the estimation accuracy of the second-order statistics provided by the enve-
lope demixing algorithm, which is prone to reverberation. Instead of using multiple
MWFs, the multi-microphone algorithm proposed in [29,31] generates reference sig-
nals using multiple minimum-variance-distortionless-response (MVDR) beamform-
ers, which are steered based on the estimated directional-of-arrivals (DOAs) of the
speakers. Although experimental results in [29,31] show that using the MVDR out-
put signals as reference signals yields a larger decoding performance than using the
microphone signals as reference signals, the decoding performance is significantly
lower compared to using the clean speech signals as reference signals. This can
be explained by the fact that the interfering speaker may not be sufficiently sup-
pressed by the MVDR beamformers, leading to intervals in the reference signals
where the interfering speaker (and the background noise) dominate, e.g., when the
target speaker pauses or speaks softly.
Aiming at generating better reference signals for decoding, in this paper we pro-
pose a reference signal generation algorithm, which uses binary masks to discard
(low-energy) intervals which are susceptible to interfering speech and background
noise (see Fig. 6.1). First, the directional speech presence probability (DSPP) and
the DOA of both speakers are estimated from the microphone signals. Based on the
estimated DSPPs, the intervals with low estimated speech energy for both speakers
are detected and binary masks are estimated. The reference signals for decoding
are then generated by either masking the microphone signals or the MVDR out-
put signals. In addition, the estimated binary masks are considered themselves as
reference signals for decoding.
The paper is organized as follows. In Section 6.2 the configuration and notation used
for the binaural hearing aid setup are introduced. In Section 6.3 the reference signal
generation using MVDR beamformers is briefly reviewed, where also the algorithm
to estimate the directional speech presence probability and the DOAs are described.
In Section 6.4 the reference signal generation based on binary masking is described.
In Section 6.5 the least-squares-based AAD method using the generated reference
signals is briefly reviewed. In Section 6.7 the experimental results are presented,
investigating the decoding performance of the proposed reference signal generation
algorithms for an acoustic scenario comprising two competing speakers and diffuse
background noise in an anechoic and a reverberant condition.

6.2 Configuration and notation

We consider an acoustic scenario comprising two competing speakers with DOAs
θ1 and θ2 and background noise in a reverberant environment (see Fig. 6.1). The
angle θ = 0◦ corresponds to the frontal direction, with negative θ corresponding to
the left side of the listener and positive θ corresponding to the right side. The clean
signals of the speakers are denoted as s1 [n] and s2 [n], with n the discrete time
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Fig. 6.1: Block diagram of the proposed reference signal generation algorithm in an acous-
tic scenario comprising two competing speakers (s1 and s2) on the left and the
right side of the listener. First, the directional speech presence probability (DSPP)
and the DOA of speakers are estimated from the microphone signals y. Based on
the estimated DSPPs (p̂1 and p̂2), the intervals with low estimated speech energy
for both speakers are detected and binary masks (b̂1 and b̂2) are estimated. The
reference signals (z1 and z2) are then generated by either masking the micro-
phone signals or the output signals of the MVDR beamformers or bu considering
the estimated binary masks themselves. Using the generated reference signals to-
gether with single-trial EEG recording of the listener, the attended speaker is
then identified.

index. We consider a binaural hearing aid setup, where each hearing aid contains
M microphones. The m-th microphone signal yL,m [n] of the left hearing aid can be
decomposed as

yL,m [n] = x1,L,m [n] + x2,L,m [n] + vL,m [n] , (6.1)

where x1,L,m [n] and x2,L,m [n] denote the reverberant speech component in the m-
th microphone signal corresponding to speaker 1 and speaker 2, respectively, and
vL,m [n] denotes the background noise component. The reverberant speech compo-
nents x1,L,m [n] and x2,L,m [n] consist of an anechoic speech component xan1,L,m [n]
and xan2,L,m [n], encompassing the (anechoic) head filtering effect, and a reverbera-
tion component. The m-th microphone signal yR,m [n] of the right hearing aid can
be decomposed similarly as in (6.1)
In the short-time Fourier transform (STFT) domain, the 2M -dimensional stacked
vector of all microphone signals from the left and the right hearing aid is given by

y (k, l) = [YL,1 (k, l) . . . YL,M (k, l) YR,1 (k, l) . . . YR,M (k, l)]T , (6.2)
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where k denotes the frequency index and l denotes the frame index. For notational
conciseness the indices k and l will be omitted in the remainder of this paper
wherever possible. Using (6.1) and (6.2), the signal vector y can be written as

y = x1 + x2 + v, (6.3)

where the vectors x1, x2, and v are defined similarly as in (6.2) for speaker 1, speaker
2, and the background noise component, respectively. To decode auditory attention
from the listener, the least-squares-based AAD method (see Section 6.5) requires
two reference signals z1 [n] and z2 [n], corresponding to speaker 1 and speaker 2.
In [16] the clean speech signals s1 [n] and s2 [n] have been used as reference signals.
Since the anechoic speech components of speaker 1 and speaker 2 in the microphone
signals encompassing the head filtering effect are more similar to what the listener
perceives compared to the clean speech signals, in this paper (similarly as in [26])
the anechoic speech component in the first microphone signal at the side of speaker
1 and speaker 2 will be used as oracle reference signals, i.e.,

z1 [n] = xan1,L,1 [n] , z2 [n] = xan2,R,1 [n] . (6.4)

Since these speech components are typically not available in practice, we will refer
to the reference signals in (6.4) as oracle reference signals (ORACLE). Since due
to the head shadowing effect it can be assumed for the considered scenario (see
Fig. 6.1) that the broadband energy of the speech components x1,L,m [n] in the left
microphone signals corresponding to speaker 1 is larger than the broadband energy
of the speech components x2,L,m [n] corresponding to speaker 2 (and vice-versa for
the right microphone signals), it has been shown in [32,169] that AAD is also feasible
using the unprocessed microphone signals as reference signals, i.e.,

z1 [n] = yL,1 [n] , z2 [n] = yR,1 [n] . (6.5)

We will refer to the reference signals in (6.5) as the microphone reference signals
(MIC). Obviously, the decoding performance is heavily affected by the presence of
background noise and especially the interfering speaker in the microphone reference
signals.
In the following sections we will discuss several algorithms to generate better refer-
ence signals from the microphone signals. In Section 6.3 we will briefly review the
reference signal generation algorithm using multiple MVDR beamformers [29, 31].
In Section 6.4 we will propose a novel reference signal generation algorithm based
on directional speech presence probability and binary masking.

6.3 Reference signal generation using MVDR beamformers

In [29, 31] it has been proposed to generate the reference signals corresponding
to speaker 1 and speaker 2 using two binaural MVDR beamformers, which are
steered based on the estimated DOAs of both speakers. Section 6.3.1 describes an
algorithm to estimate the directional speech presence probability and the DOAs
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from the binaural microphone signals. Section 6.3.2 describes the binaural MVDR
beamformers.

6.3.1 DSPP and DOA estimation

Several multi-microphone methods have been proposed in the literature to estimate
directional speech presence probability and voice activity detection [90,199,219–222].
In this paper, we will use the discriminative learning approach from [90], where
support vector machine (SVM) classifiers estimate the source presence probability
for different DOAs. The SVMs are trained to distinguish between the presence
of a source for a certain direction and the absence for all other directions. The
decision value of each SVM is mapped to a directional source presence probability
pθ [n] for each direction using a generalized linear model. As feature the short-
term generalized cross-correlation with phase transform (GCC-PHAT) function in
the time-domain [200] is used, which has been shown to be relatively robust to
reverberation. To increase the robustness against background noise, we first smooth
the DSPP for each direction across time, i.e.,

pθ [n] = τpθ [n] + (1− τ) pθ [n− 1] , (6.6)

with τ denoting the recursive smoothing constant. We then select two DOAs with
the largest smoothed DSPP pθ [n], from which the DOAs of speaker 1 and speaker
2 are determined such that θ̂1 ≤ θ̂2. The DSPP of both speakers is then determined
as

p̂1 [n] = pθ̂1
[n] , (6.7)

p̂2 [n] = pθ̂2
[n] . (6.8)

6.3.2 MVDR beamformer

Aiming at generating better reference signals for decoding, it has been proposed
in [29,31] to apply two MVDR beamformers to the binaural microphone signals. The
MVDR beamformer [9, 10, 86] aims at minimizing the noise power spectral density
(PSD) while preserving sounds arriving from target direction θt. The corresponding
constrained optimization problem is given by

min
w

wHΦvw︸ ︷︷ ︸
noise output PSD

subject to wHa(θt) = 1︸ ︷︷ ︸
target

, (6.9)

where w denotes the 2M-dimensional filter vector applied to all microphone sig-
nals, a(θ) denotes the (anechoic) steering vector for direction θ and Φv =E

{
vvH

}
denotes the noise covariance matrix with E {·} the expected value operator. The
MVDR beamformer solving (6.9) is given by

wMVDR (θt) = Φ−1
v a (θt)

aH (θt) Φ−1
v a (θt)

. (6.10)
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To generate reference signals from the binaural microphone signals, two MVDR
beamformers are used, i.e., an MVDR beamformer with estimated target angle
θt = θ̂1 to generate the reference signal for speaker 1, and an MVDR beamformer
with estimated target angle θt = θ̂2 to generate the reference signal for speaker 2,
i.e.,

z1 [n] = ISTFT
{

wH
MVDR(θ̂1)y

}
, (6.11)

z2 [n] = ISTFT
{

wH
MVDR(θ̂2)y

}
. (6.12)

where ISTFT denotes the inverse short-time Fourier transform. We refer to the
reference signals in (6.11) and (6.12) as the MVDR reference signals.
Although it has been shown in [29,31] that using the MVDR reference signals yields
a larger decoding performance than using the microphone reference signals, the
decoding performance is significantly lower compared to using the oracle reference
signals. This can be explained by the fact that the MVDR beamformers may not
be able to sufficiently suppress the interfering speaker, i.e., speaker 2 in z1 [n] and
speaker 1 in z2 [n].

6.4 Reference signal generation using binary masking

In this section, we propose an algorithm to improve the decoding performance based
on binary masking. The main idea is to discard intervals in the reference signals
with a low target speech energy, which are hence susceptible to interfering speech
and background noise. After defining oracle binary masks, Section 6.4.1 describes
an approach to estimate the binary masks from DSPPs discussed in Section 6.3.1.
Section 6.4.2 then discusses how to use the estimated binary masks to generate
reference signals for decoding.

6.4.1 Binary mask estimation

To perfectly detect the intervals in the reference signals with low target speech
energy, i.e., when the target speaker pauses or speaks softly, we require the target
speech component in the reference signals. Assuming the oracle reference signals in
(6.4) are available, the ideal binary masks for speaker 1 and speaker 2 are defined
as

b1 [n] =
{

0 if γ1 [n] ≤ α1,γ

1 else
, (6.13)

b2 [n] =
{

0 if γ2 [n] ≤ α2,γ

1 else
. (6.14)

where γ1 [n] =
∣∣xan1,L,1 [n]

∣∣2 and γ2 [n] =
∣∣xan2,R,1 [n]

∣∣2 denote the energy of speaker
1 and speaker 2, and α1,γ and α2,γ denote the energy threshold for speaker 1 and
speaker 2. Since in practice the oracle reference signals are not available, we propose
to detect the susceptible intervals based on the estimated DSPPs p̂1 [n] and p̂2 [n]
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of the speakers, which can be estimated from the microphone signals (see Section
6.3.1). The binary masks for speaker 1 and speaker 2 are estimated as

b̂1 [n] =
{

0 if p̂1 [n] ≤ α1,p

1 else
, (6.15)

b̂2 [n] =
{

0 if p̂2 [n] ≤ α2,p

1 else
, (6.16)

where α1,p and α2,p denote the DSPP threshold for speaker 1 and speaker 2.

6.4.2 Mask reference signals

To generate reference signals without low target speech energy intervals, the ideal
or estimated binary masks can be applied either to the microphone signals, i.e.,

z1 [n] = b̂1 [n] yL,1 [n] , (6.17)

z2 [n] = b̂2 [n] yR,1 [n] . (6.18)

or to the MVDR output signals, i.e.,

z1 [n] = b̂1 [n] ISTFT
{

wH
MVDR

(
θ̂1

)
y
}
, (6.19)

z2 [n] = b̂2 [n] ISTFT
{

wH
MVDR

(
θ̂2

)
y
}
. (6.20)

In addition, the binary masks themselves may also be used directly as reference
signals, i.e., z1 [n] = b1 [n] and z2 [n] = b2 [n] or z1 [n] = b̂1 [n] and z2 [n] = b̂2 [n].

6.5 Auditory attention decoding

Based on the reference signals z1 and z2 and the EEG recordings of the listener, au-
ditory attention is then decoded. This section briefly reviews the least-squares-based
AAD method proposed in [16], which aims at reconstructing the attended speech
envelope from the EEG recordings using a trained spatio-temporal filter. Section
6.5.1 describes the decoding step, where the reconstructed envelope is compared
with the envelope of both reference signals to identify the attended speaker. Section
6.5.2 describes the training step to compute the spatio-temporal filter.

6.5.1 Decoding step

C-channel EEG recordings rc [i], with c = 1 . . . C and i = 1 . . . I the sub-sampled
time index, are first segmented into trials (see Section 6.6.3.4 for more details). An
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estimate of the attended speech envelope êa [i] using a trained spatio-temporal filter,
i.e.,

êa [i] = gT r [i] , i = 1 . . . I (6.21)

with
g =

[
gT1 gT2 . . . gTC

]T
, (6.22)

gc = [gc,0 gc,1 . . . gc,J−1]T , (6.23)

r [i] =
[
rT1 [i] rT2 [i] . . . rTC [i]

]T
, (6.24)

rc [i] = [rc [i+ ∆] rc [i+ 1 + ∆] . . . rc [i+ J − 1 + ∆]]T , (6.25)

where J denotes the number of filter coefficients per channel, ∆ modeling the latency
of the attentional effect in the EEG responses to acoustic stimuli, and (.)T denotes
the transpose operation. Next, the correlation coefficients ρ1 and ρ2 corresponding
to speaker 1 and speaker 2 are computed by correlating the envelopes of both
reference signals with the estimated attended speech envelope êa [i], i.e.,

ρ1 = ρ (e1 [i] , êa [i]) , ρ2 = ρ (e2 [i] , êa [i]) , (6.26)

where e1 [i] and e2 [i] denote the envelopes of the reference signals z1 and z2, respec-
tively. Based on these correlation coefficients, it is then decided that the listener
attended to speaker 1 if ρ1 > ρ2 or attended to speaker 2 otherwise. The correla-
tion difference, defined as the difference between the correlation coefficients of the
attended and the unattended speaker, i.e., ∆ρ = ρ (ea [i] , êa [i]) − ρ (eu [i] , êa [i]),
can be used as a confidence measure for the AAD decision.

6.5.2 Training step

During the training step, the attended speaker is assumed to be known and an at-
tended speech signal is used as the training signal. The filter g in (6.21) is computed
by minimizing the least-squares error between the reconstructed envelope êa [i] and
the attended speech envelope ea [i], regularized with the squared l2−norm of the
derivatives of the filter coefficients to avoid over-fitting [16,129,169], i.e.

min
g

I∑
i=1

(
ea [i]− gT r [i]

)2 + βgTDg, (6.27)

where D denotes the derivative matrix [18] and β denotes a regularization parameter.
The filter minimizing the regularized least-squares cost function in (6.27) is equal
to

g = (Q + βD)−1 q, (6.28)

with the correlation matrix Q and the cross-correlation vector q given by

Q = 1
I

I∑
i=1

(
r [i] rT [i]

)
, q = 1

I

I∑
i=1

(r [i] ea [i]). (6.29)
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Fig. 6.2: Acoustic simulation setup. Two competing speakers were located at θ1 = −45◦

and θ2 = 45◦ with respect to the listener with two hearing aids, each equipped
with 3 microphones.

In the simulations, we will consider the following training signals for computing the
filter g:

• anechoic training signal, i.e., the anechoic speech component of the attended
speaker in the reference microphone signal at the side of the attended speaker.

• masked anechoic training signal using oracle binary masks of the attended
speaker.

6.6 Experimental setup

In this section, we describe the acoustic simulation setup, the EEG measurement
setup, the algorithm implementation details, and the used performance measures
for AAD.

6.6.1 Acoustic simulation setup

Two highly overlapping German audio stories, uttered by two different male speak-
ers, were used as the clean speech signals s1 [n] and s2 [n] (sampling frequency
16 kHz). The binaural hearing aid microphone signals yL,m [n] and yR,m [n] were
generated by convolving the clean speech signals with non-individualized binaural
impulse responses (anechoic or reverberant) from [110] and adding diffuse babble
noise. The diffuse babble noise was simulated according to [192] using babble speech
recordings and assuming a cylindrically isotropic noise field, i.e., using the anechoic
ATFs from [110] with a resolution of 5◦. The hearing aid setup in [110] consisted of
two hearing aids, each equipped with M = 3 microphones, mounted on a dummy
head. The left and the right competing speaker were located at θ1 = −45◦ and
θ2 = 45◦ (see Fig. 6.2). In total, five acoustic conditions were considered: three
anechoic conditions with binaural input SNRs ∞ dB, 4.0 dB and 9.0 dB, and two
reverberant conditions (reverberation time T60 ≈ 0.5 s) with binaural input SNRs
4.0 dB and 9.0 dB. The binaural input SNR (BSNR) is defined as the energy ratio
between the speech components of speaker 1 and 2 in the reference microphone
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signals and the background noise components in the reference microphone signals,
i.e.,

BSNRin = 10log10

E
{
|x1,L,1|2

}
+ E

{
|x2,L,1|2

}
+ E

{
|x1,R,1|2

}
+ E

{
|x2,R,1|2

}
E
{
|vL,1|2

}
+ E

{
|vR,1|2

} .

(6.30)

6.6.2 EEG measurement

Eighteen normal-hearing German-speaking participants took part in this study
(see [26]). Before performing the experiment, the participants reported no, or very
limited, knowledge of the audio stories. As acoustic stimuli, the reference micro-
phone signals of the left and the right hearing aid were presented to the participants
via insert earphones (E-A-RTONE 3A). Among all participants, 8 participants were
instructed to attend to the left speaker, while 10 participants were instructed to at-
tend to the right speaker. Two participants were excluded from the analysis, one
participant due to a technical hardware issue since batteries of EEG amplifier sud-
denly went out of charge during EEG recording and the other participant due to
poor attentional performance.
For all acoustic conditions, the EEG responses rc [i] were recorded using C = 64
channels (Easycap GmbH) at a sampling frequency of 500 Hz, and referenced to the
nose electrode (see [26] for more details). Similarly as in [16,26], the EEG responses
were re-referenced offline to a common average reference, band-pass filtered between
2 Hz and 8 Hz using a third-order Butterworth band-pass filter, and subsequently
downsampled to 64 Hz.

6.6.3 Algorithm implementation details

6.6.3.1 DSPP and DOA estimation (Section 6.3.1)

For the DSPP and DOA estimation algorithm, the SVM classifiers were trained
using simulated noisy speech signals, generated by convolving clean speech signals
from the TIMIT database [223] with anechoic binaural impulse responses from [110]
and adding diffuse speech-shaped noise at SNRs of −20 dB to 20 dB in steps of 10
dB. The GCC-PHAT features were calculated using a frame length of 10 ms with
an overlap of 5 ms. The DSPPs pθ [n] in (6.6) were recursively smoothed using a
corresponding time constant of 1 s.

6.6.3.2 Binary mask estimation (Section 6.4.1)

The speech energies γ1 [n] and γ2 [n] were calculated using a frame length of 10 ms
with an overlap of 5 ms. The energy thresholds α1,γ and α2,γ were determined as
the median value of the speech energies γ1 [n] and γ2 [n], respectively. The DSPP
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thresholds α1,p and α2,p were determined as the median of the DSPPs p̂1 [n] and
p̂2 [n], respectively1.

6.6.3.3 MVDR beamforming (Section 6.3.2)

The binaural MVDR beamformers were implemented using a weighted overlap-add
(WOLA) framework with an STFT frame length of 512 samples and an overlap
of 50%. The noise covariance matrix Φv was calculated assuming a cylindrically
isotropic noise field, i.e., by spatially averaging the auto- and cross-correlations of
the anechoic ATFs from [110] with a resolution of 5◦. As proposed in [207], the
anechoic RTF vector a (θ) for angle θ was calculated as the normalized principal
eigenvector of the (oracle) covariance matrix for angle θ, constructed using white
noise convolved with the anechoic binaural impulse responses from [110] for angle θ.
The anechoic RTF vector is normalized with respect to the left microphone when
θ ≤ 0◦ and with respect to the right microphone when θ > 0◦.

6.6.3.4 AAD training and decoding (Section 6.5)

The EEG recordings of the anechoic acoustic condition without background noise
(SNR = ∞ dB) were considered for filter training, while the EEG recordings of
the remaining four acoustic conditions were considered as unseen conditions for
decoding. The acoustic conditions for decoding were grouped together based on
reverberation time, resulting in two experimental analysis conditions, i.e., anechoic
and reverberant. The EEG recordings corresponding to filter training were split
into 80 trials, each of 30 seconds length. The EEG recordings corresponding to each
experimental analysis condition were split into 40 trials, each of 30 seconds length.
The attended speech envelope ea [i] used for filter training as well as the envelopes
e1 [i] and e2 [i] of the reference signals used for decoding were obtained using a
Hilbert transform [129], followed by low-pass filtering at 8 Hz and downsampling
to 64 Hz. Each participant’s own data were used for filter training and evaluation.
Similarly as in [29], the parameters of the spatio-temporal filter g in (6.21) were set
to J = 8 and ∆ = 8 (corresponding to 125 ms).

6.6.4 AAD performance

For each experimental condition, the following reference signals z1 [n] and z2 [n]
were considered for decoding:

• non-masked reference signals, i.e., the oracle reference signals (ORACLE), the
microphone signals (MIC), the MVDR ouput signals (MVDR).

• masked reference signals, i.e., the masked oracle reference signals using either
ideal binary masks (IM-ORACLE) or estimated binary masks (EM-ORACLE),

1 Several criteria (mean, 25th percentile, median, 75th percentile, 90th percentile) were considered
for the energy and DSPP thresholds. Among the considered criteria, the median yielded the largest
decoding performance for the considered scenarios.
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the masked microphone signals using either the ideal binary masks (IM-MIC)
or the estimated binary masks (EM-MIC), and the masked MVDR output
signals using either the ideal binary masks (IM-MVDR) or the estimated
binary masks (EM-MVDR).

• binary mask reference signals, i.e., the ideal binary masks (IM) or the esti-
mated binary masks (EM).

To evaluate the AAD performance with the non-masked reference signals, we used
the spatio-temporal filter g trained with the anechoic training signal. To evaluate
the AAD performance with the masked reference signals or with the binary mask
reference signals, we used the spatio-temporal filter g trained with the masked
anechoic training signal.
The AAD performance was computed by averaging the percentage of correctly de-
coded trials over all considered trails and all participants. In addition, as a confi-
dence measure for AAD the correlation difference ∆ρ was averaged across all con-
sidered trails and participants. To statistically compare the decoding performance
and the correlation difference, we performed a paired Wilcoxon signed rank test at
the 5% significance level.
To analyze the performance for the correlation difference, we also considered the
average signal-to-interference-plus-noise (SINR) in the reference signals, i.e.,

SINR = SINR1 + SINR2

2 , (6.31)

with

SINR1 = 10log10

E
{
|z1,1|2

}
E
{
|z1,2|2 + |z1,v|2

} , (6.32)

SINR2 = 10log10

E
{
|z2,2|2

}
E
{
|z2,1|2 + |z2,v|2

} , (6.33)

where z1,1, z1,2 and z1,v denote the speech component of speaker 1, the speech
component of speaker 2 and the background noise component in the reference signal
z1 corresponding to speaker 1, respectively, and z2,2, z2,1 and z2,v denote the speech
component of speaker 2, the speech component of speaker 1 and the background
noise component in the reference signal z2 corresponding to speaker 2, respectively.

6.7 Results and discussion

In this section, we evaluate the performance of the proposed reference signal gen-
eration algorithms using the experimental setup discussed in the previous section.
In Section 6.7.1, we evaluate the decoding performance of the proposed algorithms.
In Section 6.7.2, we analyze the performance of the proposed algorithms based on
the correlation difference and SINR, where we also investigate the impact of DSPP
estimation errors.
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(a) anechoic condition (b) reverberant condition

Fig. 6.3: Average decoding performance for (a) the anechoic condition and (b) the rever-
berant condition when using the oracle signals, the microphone reference signals,
the MVDR reference signals, the masked reference signals either using ideal bi-
nary masks or estimated binary masks as reference signal for decoding. The red
dashed-line represents the upper boundary of the confidence interval correspond-
ing to chance level based on a binomial test at the 5% significance level, and ∗
indicates a significant difference (p < 0.05) based on the paired Wilcoxon signed
rank test.

6.7.1 Auditory attention decoding performance

For the anechoic and the reverberant condition, Fig. 6.3 depicts the average decoding
performance when using the non-masked reference signals, the masked reference
signals and the binary mask reference signals.
When masking the oracle reference signals with ideal binary masks (IM–ORACLE),
there is no significant difference in decoding performance compared to using the
non-masked oracle reference signals (ORACLE). In addition, there is no signifi-
cant difference in decoding performance between when masking the oracle reference
signals with ideal binary masks (IM–ORACLE) and estimated binary masks (EM–
ORACLE). These results show that discarding low speech energy intervals from the
oracle reference signals (using either ideal or estimated binary masks) has hardly any
impact on the decoding performance, indicating that the reference signals compris-
ing moderate-to-high speech energy intervals of the oracle reference signals can be
reliably used instead of the (complete) oracle reference signals for decoding auditory
attention.
When masking either the microphone reference signals or the MVDR reference sig-
nals with ideal binary masks (IM–MIC or IM–MVDR), for both acoustic conditions
the decoding performance significantly increases (> 90.7% for the anechoic condi-
tion and > 86.8% for the reverberant condition) compared to using the non-masked
reference signals (> 82.4% for the anechoic condition and > 76.8% for the rever-
berant condition). When masking either the microphone reference signals or the
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(a) anechoic condition (b) reverberant condition

Fig. 6.4: Average correlation difference for (a) the anechoic condition and (b) the reverber-
ant condition when using the non-masked reference signals, the masked reference
signals and the binary mask reference signals, using ideal and estimated binary
masks. The error bars represent the bootstrap confidence interval at the 5% sig-
nificance level and ∗ indicates a significant difference (p < 0.05) based on the
paired Wilcoxon signed rank test.

MVDR reference signals with estimated binary masks (EM–MIC or EM–MVDR)
instead of ideal binary masks (IM–MIC, IM–MVDR), the decoding performance
significantly decreases (> 84.1% for the anechoic condition and > 81.6% for the
reverberant condition) but is still larger than the decoding performance using the
non-masked reference signals especially for the reverberant condition.
When using the binary mask reference signals (IM or EM), it can be observed for
both acoustic conditions that a large decoding performance is obtained. The decod-
ing performance obtained by estimated binary masks is significantly lower (86.5% for
the anechoic condition and 83.9% for the reverberant condition) compared to using
ideal binary masks (92.1% for the anechoic condition and 87.9% for the reverberant
condition). Nevertheless, the decoding performance obtained by estimated binary
masks is comparable to masking the microphone reference signals or the MVDR
reference signals with estimated binary masks. These results show that estimated
binary masks can be reliably used instead of the masked microphone signals or the
masked MVDR output signals as reference signals for decoding auditory attention.

6.7.2 Correlation difference and SINR

The decoding performance results in Fig. 6.3 can be further analyzed based on
the correlation difference and SINR in Fig. 6.4 and Fig. 6.5. For both acoustic
conditions, it can be observed that when masking the oracle reference signals with
ideal binary masks (IM–ORACLE) there is no significant difference in correlation
difference compared to using the non-masked oracle reference signals (ORACLE),
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(a) anechoic condition (b) reverberant condition

Fig. 6.5: Average SINR of the non-masked and masked microphone and MVDR reference
signals for (a) the anechoic condition and (b) the reverberant condition, using
ideal and estimated binary masks.

consistent with the decoding performance results in Fig. 6.3. In addition, there is no
significant difference in correlation difference between masking the oracle reference
signals with ideal binary masks (IM–ORACLE) and estimated binary masks (EM–
ORACLE). The comparable correlation difference obtained by the oracle reference
signals and masking with ideal or estimated binary masks may be explained by
considering the auditory neural responses to landmarks of high speech energy such
as speech envelope peaks and syllable onsets. Several studies have shown that the
neural responses are correlated with high-energy landmarks [224–226], during which
the speech energy and the speech presence probability are high. Discarding intervals
with low speech energy either using ideal or estimated binary masks results in signals
comprising intervals with moderate-to-high speech energy, including the high-energy
speech landmarks.
When masking either the microphone reference signals or the MVDR reference
signals with ideal binary masks (IM–MIC or IM–MVDR), for both acoustic con-
ditions a significantly larger correlation difference is obtained compared to using
the non-masked reference signals (MIC or MVDR). When masking with estimated
binary masks (EM–MIC or EM–MVDR) instead of ideal binary masks (IM–MIC,
IM–MVDR), the correlation difference significantly decreases. Nevertheless, the cor-
relation difference obtained by estimated binary masks is still larger than using the
non-masked reference signals, as reflected by larger corresponding decoding per-
formances in Fig. 6.3. The correlation differences obtained by masking with ideal
binary masks and estimated binary masks can be explained by considering the
SINR resulted in Fig. 6.5. It can be observed that when masking either the micro-
phone reference signals or the MVDR reference signals with ideal binary masks or
estimated binary masks, a larger SINR is obtained (about 3.9 - 10.3 dB for the ane-
choic condition and 2.0 - 3.5 dB for the reverberant condition) compared to using
the non-masked reference signals (1.8 dB for the anechoic condition and 0.3 dB for
the reverberant condition). Moreover, it can be observed that the SINR obtained
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by masking with ideal binary masks (about 4.4 - 10.3 dB for the anechoic condition
and 2.6 - 3.5 dB for the reverberant condition) is larger than using estimated binary
masks (about 3.9 - 9.7 dB for the anechoic condition and 2.0 - 3.2 dB for the rever-
berant condition). These results show that the correlation difference and the SINR
become sensitive to DSPP estimation errors when masking either the microphone
reference signals or the MVDR reference signals.
When using the binary mask reference signals, it can be observed for both acoustic
conditions that the correlation difference is significantly larger than zero, which is
reflected by the significant decoding performances in Fig. 6.3. The fact that a sig-
nificant correlation difference is obtained using the binary mask reference signals
may be explained by considering a neural representation of high-energy landmarks.
In [226,227] it has been shown that the human brain, especially the superior tempo-
ral gyrus, encodes high-energy speech landmarks rather than a complete speech en-
velope. Since the envelopes of the binary mask reference signals comprise landmarks
of moderate-to-high speech energy, these envelopes are expected to be correlated
with auditory neural responses.

6.8 Conclusion

In this paper, we proposed reference signal generation algorithms based on binary
masking, which discard low-energy intervals susceptible to interfering speech and
background noise. The proposed algorithms determine the binary masks from the
DSPP and the DOAs of both speakers, which are estimated from the microphone
signals. The reference signals for decoding are then generated by either masking the
microphone signals or the MVDR output signals. The reference signals comprising
moderate-to-high speech energy intervals of the oracle reference signals generated
by masking were also considered. Moreover, the binary masks were considered them-
selves as reference signals for decoding. The performance of the proposed reference
signal generation algorithms was evaluated for a two-speaker scenario in diffuse
babble noise. The experimental results showed that the reference signals compris-
ing moderate-to-high speech energy intervals of the oracle reference signals can be
reliably used instead of the (complete) oracle reference signals for decoding audi-
tory attention. This suggests that for generating appropriate reference signals, e.g.,
from the microphone signals, it is more important to preserve the moderate-to-high
speech energy intervals than low speech energy intervals. Moreover, the experimen-
tal results showed that the proposed algorithms masking either the microphone sig-
nals or the MVDR output signals significantly improve the decoding performance
compared to when using the (non-masked) microphone and MVDR output signals
especially in the reverberant condition. Quite remarkably, the results showed that
AAD using the binary masks as reference signals yields a decoding performance
that is comparable to using the masked MVDR output signals as reference signals.





7
IMPROVING AUDITORY ATTENTION
DECODING PERFORMANCE OF LINEAR AND
NON-LINEAR METHODS USING
STATE-SPACE MODEL

Identifying the target speaker in hearing aid applications is crucial to improve
speech understanding. Recent advances in electroencephalography (EEG)
have shown that it is possible to identify the target speaker from single-trial
EEG recordings using auditory attention decoding (AAD) methods. AAD
methods reconstruct the attended speech envelope from EEG recordings,
based on a linear least-squares cost function or non-linear neural networks,
and then directly compare the reconstructed envelope with the speech en-
velopes of speakers to identify the attended speaker using Pearson correlation
coefficients. Since these correlation coefficients are highly fluctuating, for a
reliable decoding a large correlation window is used, which causes a large
processing delay. In this paper, we investigate a state-space model using cor-
relation coefficients obtained with a small correlation window to improve the
decoding performance of the linear and the non-linear AAD methods. The
experimental results show that the state-space model significantly improves
the decoding performance.

7.1 Introduction

Multi-microphone speech enhancement algorithms in currently available hearing
aid devices are able to perform source separation and reduce background noise
to improve speech intelligibility. However, the performance of these algorithms in
improving speech intelligibility typically depends on correctly identifying the target
speaker to be enhanced. In hearing aid applications, the target speaker is typically
identified using assumptions such as the target speaker being located in front of
the listener or being the loudest speaker. However, since in real-world conditions
these assumptions may often be violated, e.g., when the auditory attention of the
listener is misaligned with the assumptions, the performance of speech enhancement
methods decreases and results in a substantially reduced benefit from hearing aids.
Recent advances in electroencephalography (EEG) have shown that it is possible to
identify the target speaker from single-trial EEG recordings of a listener by decoding
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the auditory attention [27,28,31]. Several auditory attention decoding (AAD) meth-
ods have been proposed to identify the target speaker, based on, e.g., a linear least-
squares cost function [16, 22, 24, 128] and non-linear neural networks [23, 130]. The
linear least-squares-based AAD method proposed in [16] is able to exploit the linear
neural process of attention along the auditory pathway to identify the attended
speaker. The non-linear neural-network-based AAD method proposed in [23] is able
to exploit the non-linear neural process of attention in addition to the linear neural
process. To identify the attended speaker, these methods aim at reconstructing the
attended speech envelope from the EEG recordings using a trained spatio-temporal
estimator. In the training step, a spatio-temporal envelope estimator is trained by
either minimizing the least-squares error or maximizing the correlation cost function
between the attended speech envelope and the reconstructed envelope. In the decod-
ing step, the attended speech envelope is reconstructed using the trained envelope
estimator and then directly compared with the speech envelopes of two speakers
using Pearson correlation coefficients to identify the attended speaker. Since these
correlation coefficients are highly fluctuating, for a reliable decoding a large cor-
relation window on the order of 30 seconds is typically used, which causes a large
processing delay and hence limits the feasibility of AAD for hearing aid applications.
In [24], it has been proposed to use coefficients of least-squares-based envelope es-
timators, obtained separately for reconstructing the attended and the unattended
speech envelope. Using coefficients of estimators, a state-space model then identifies
the attended speaker. In this paper, we investigate a state-space model using corre-
lation coefficients obtained with a small correlation window to improve the decoding
performance of the (linear) least-squares-based AAD method and the (non-linear)
neural-network-based AAD method. The correlation coefficients are generated us-
ing either the least-squares-based AAD method or the neural-network-based AAD
method. The state-space model then translates the generated correlation coefficients
into smooth estimates of the attention state, based on which the attended speaker
is identified.
For an acoustic scenario with two competing speakers and diffuse noise at different
SNRs and reverberation times, 64-channel EEG responses with 18 participants were
recorded. The experimental results show for correlation coefficients obtained with
a 5-second correlation window that the least-squares-based AAD method and the
neural-network-based AAD method yield a low decoding performance. However,
when using the state-space model with the least-squares-based AAD method, the
decoding performance significantly improves.

7.2 Auditory attention decoding

This section presents the auditory attention decoding using a state-space model,
which employs correlation coefficients generated either by the least-squares-based
AAD method and the neural-network-based AAD method. In Section 7.2.1 the
acoustic scenario and the notation are defined. Section 7.2.2 describes the state-
space model. Section 7.2.3 and Section 7.2.4 describe the least-squares-based AAD
method and the neural-network-based AAD method.
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7.2.1 Configuration and notation

We consider an acoustic scenario comprising two competing speakers and back-
ground noise in a reverberant environment, where the ongoing EEG responses of a
listener to these acoustic stimuli are recorded (See Fig. 7.1). The clean speech sig-
nal of speaker 1 is denoted as s1 [n], with n the discrete time index, while the clean
speech signal of speaker 2 is denoted as s2 [n]. The envelopes of the clean speech
signals of speaker 1 and 2 are denoted as e1 [k] and e2 [k], with k the sub-sampled
time index, respectively.
The reconstructed attended speech envelope from C-channel EEG recordings rc [k],
with c = 1 . . . C, using a trained spatio-temporal envelope estimator F is given by

êa [k] = F (r [k]), (7.1)

with
r [k] =

[
rT1 [k] rT2 [k] . . . rTC [k]

]T
, (7.2)

rc [k] = [rc [k] rc [k + 1] . . . rc [k + ∆]]T , (7.3)

where ∆ denotes the latency considered for modeling the attentional effect in the
EEG responses to acoustic stimuli.
The Pearson correlation coefficients between the reconstructed attended envelope
êa [k] and the envelope of two speakers are given by

ρ1,k = ρ (e1 [k] , êa [k]) , ρ2,k = ρ (e2 [k] , êa [k]) , (7.4)

where êa [k] denotes the stacked vector of the reconstructed attended envelope cor-
responding to a correlation window of length KCOR, i.e.,

êa [k] = [êa [(k − 1)KCOR + 1] êa [(k − 1)KCOR + 2] . . . êa [kKCOR]]T , (7.5)

and e1 [k] and e2 [k] are defined similarly as in (7.5). Please note that in this paper
we assume that the clean speech signal of speakers are available for obtaining the
envelopes of speakers e1 [k] and e2 [k]. However, since in practice only microphone
signals containing a mixture of speakers and ambient noise are available, the clean
speech signal of speakers needs to be appropriately estimated from microphone
signals, e.g., by using the noise reduction and source separation algorithms proposed
in [27,31,170,212].

7.2.2 AAD using state-space model

Suppose the attended envelope is reconstructed using a trained (linear or nonlinear)
spatio-temporal estimator and the correlation coefficients of speakers are obtained.
We aim at estimating the probability of attending to speaker 1 or 2 based on a
state-space model using the past and the subsequent correlation coefficients (see
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Fig. 7.1: Illustration of the process flow of AAD using state-space model.

Fig. 7.1). Let the attention state of the listener when attending to either speaker 1
or 2 be defined as a binary random variable, i.e.,{

dk = 1, when attending to speaker 1
dk = 2, when attending to speaker 2

, (7.6)

which follows a Bernoulli process. The probability of attending to speakers based
on the state-space model is obtained as [24,197]

p (dk = 1) = 1− p (dk = 2) = 1
1 + e−(zk) , (7.7)

with
zk = c0zk−1 + wk, (7.8)

wk ∼ N (0, ηk) , (7.9)

ηk ∼ Inverse-Gamma (a0, b0) , (7.10)

, c0 denoting the hyperparameter ensuring the stability of zk, and a0 and b0 denoting
the hyperparameters used to control the smoothing degree of the state-space model
by tuning the variations of zk and p (dk = {1, 2}). The autoregressive model in (7.8)
implies that the (attention state) parameter zk at instance k is predicted from zk−1
at the instance k− 1 with some uncertainty, which is modeled by the noise process
w (k). Please note that when zk varies from −∞ to ∞, p (dk = 1) monotonically
varies from 0 to 1. To relate the correlation coefficients of speakers to the attention
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state, the probability of the absolute values of correlation coefficients given attending
to either speaker 1 or 2 is modeled using a Log-Normal distribution, i.e.,

p (|ρl,k| | dk = l) ∼ Log-Normal (αa) , l = 1, 2 (7.11)

with αa denoting the parameter set of the attended Log-Normal distribution. The
probability of the correlation coefficients given ignoring either speaker 1 or 2 is
modeled as

p (|ρl,k| | dk 6= l) ∼ Log-Normal (αu) , l = 1, 2 (7.12)

with αu denoting the parameter set of the unattended Log-Normal distribution.
Let’s suppose we are at the instance k = k0 (see Fig. 7.1) and aim to estimate the
probability of attending to speakers p (dk = {1, 2}) at the instance k = k∗ using
the correlation coefficients obtained within a sliding smoothing window of length
KSSM = KP +KA + 1, with KP and KA denoting the parameters determining the
number of the correlation coefficient prior to and after the instance k∗, respectively.
The parameters of the state-space model corresponding to the smoothing window
are hence given as Ω = {zk0−KSSM+1:k0 , ηk0−KSSM+1:k0 ,αa,αu}. Theses parame-
ters including zk∗ are estimated from the correlation coefficients ρ1,k0−KSSM+1:k0

and ρ2,k0−KSSM+1:k0 obtained within the smoothing window using the Expectation
Maximization (EM) estimation algorithm proposed in [24, 197]. Based on the es-
timated attention state parameter zk∗ , the probability of attending to speakers
p (dk∗ = {1, 2}) are obtained. It is then decided that the listener attended to speaker
1 if p (dk∗ = 1) > p (dk∗ = 2) or attended to speaker 2 otherwise. Please note that
the estimated parameters Ω are also used for the initialization of parameters in the
next smoothing window.
In the simulations (see Section 7.3), we will consider to use the state-space
model with correlation coefficients generated either by the least-squares-based AAD
method (see Section 7.2.3) or the neural-network-based AAD method (see Section
7.2.4).

7.2.3 Least-squares-based AAD

The least-squares-based AAD method proposed in [16] aims at estimating the at-
tended speech envelope from the EEG recordings using a trained linear spatio-
temporal estimator. In the training step, the attended speaker is assumed to be
known and an attended speech signal is used to train a linear estimator by mini-
mizing the least-squares error between the attended speech envelope ea [k] and the
reconstructed envelope êa [k], i.e.,

min
g

1
K

K∑
k=1

(ea [k]− êa [k])2 + βgTDg, (7.13)
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with êa [k] = F (r [k]) = gT r [k], D denoting the derivative matrix [169] and β de-
noting a regularization parameter. The linear estimator minimizing the regularized
least-squares cost function in (7.13) is equal to

g = (Q + βD)−1 q, (7.14)

with the correlation matrix Q and the cross-correlation vector q given by

Q = 1
K

K∑
k=1

(
r [k] rT [k]

)
, q = 1

K

K∑
k=1

(r [k] ea [k]). (7.15)

In the decoding step, the attended envelope êa [k] is obtained using the (trained)
linear estimator g in (7.14). Next, the correlation coefficients between the recon-
structed attended envelope and the envelope of two speaker ρ1,k and ρ2,k are com-
puted as in (7.4). Based on these correlation coefficients, it is then decided that the
listener attended to speaker 1 if ρ1,k > ρ2,k or attended to speaker 2 otherwise.

7.2.4 Neural-network-based AAD

The neural-network-based AAD method aims at estimating the attended speech
envelope from the EEG recordings using a trained non-linear spatio-temporal es-
timator. Similarly as in [23, 130], we consider a network H consisting of a hidden
convolutional layer with hyperbolic tangent activation functions and one output
layer with linear activation functions. In the training step, the network is trained
to maximize the correlation between the attended speech envelope and the recon-
structed envelope by minimizing the correlation cost function [23], i.e.,

min 1
K

K∑
k=1

(1− ρ (ea [k] , êa [k])), (7.16)

A correlation cost function equal to 0 corresponds to the maximum correla-
tion between the attended speech envelope and the reconstructed envelope, i.e.,
ρ (ea [k] , êa [k]) = 1, while a correlation cost function equal to 1 corresponds to
the minimum correlation. A correlation cost function larger than 1 corresponds to
a negative correlation.
In the decoding step, the attended envelope is obtained using the (trained) network
H, i.e., êa [k] = F (r [k]) = H(r [k]). Next, the correlation coefficients between the
reconstructed attended envelope and the envelope of two speaker are computed ρ1,k
and ρ2,k as in (7.4). Based on these correlation coefficients, it is then decided that
the listener attended to speaker 1 if ρ1,k > ρ2,k or attended to speaker 2 otherwise.
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7.3 Experimental setup

7.3.1 Acoustic stimuli and EEG measurement

EEG responses were recorded for 18 native German-speaking participants. Two
German audio stories, uttered by two different male speakers, were simultaneously
presented to the participants using insert earphones. The presented stimuli at both
ears were generated by convolving the clean speech signals, i.e., the audio stories,
with (non-individualized) binaural impulse responses from [110], and adding diffuse
noise, generated according to [192]. The left and the right speaker were simulated
at θ1 = −45◦ and θ2 = 45◦. Eight different acoustic conditions were considered
for the stimuli: one anechoic condition with no background noise, two reverberant
conditions with a moderate and a large reverberation time (reverberation time T60 =
0.5 s and 1 s), two anechoic conditions with binaural input SNRs = 9.0 dB and 4.0
dB, and three combinations of reverberation and noise. Among all participants, 8
participants were instructed to attend to the left speaker, while 10 participants were
instructed to attend to the right speaker. Two participants were excluded from the
analysis, one participant due to poor attentional performance and the other one due
to a technical hardware problem. The EEG responses were recorded using C = 64
channels at a sampling frequency of 500 Hz, and referenced to the nose electrode.
The EEG responses were re-referenced offline to a common average reference, band-
pass filtered between 2 Hz and 8 Hz using a third-order Butterworth band-pass
filter, and subsequently downsampled to 64 Hz. The envelopes of the speech signals
were obtained using a Hilbert transform, followed by low-pass filtering at 8 Hz and
downsampling to 64 Hz.

7.3.2 AAD training and testing

For AAD training and testing, the EEG recordings for the different acoustic condi-
tions were grouped together based on acoustic similarity, resulting in four experimen-
tal analysis conditions, i.e., anechoic, reverberant, anechoic-noisy, and reverberant-
noisy, each of length 20 minutes. To avoid using EEG recordings of the same ex-
perimental analysis condition for training and testing, the leave-one-condition-out
approach was used, i.e., four combinations of three experimental analysis conditions
without repetition were considered for training and the left condition for each com-
bination was considered for testing. This resulted in four training conditions and
four testing conditions.
For the least-squares-based AAD method, the latency parameter of the linear es-
timator in (7.3) was set to ∆ = 20 (corresponding to 312 ms), as found to be an
appropriate choice for AAD [16, 26]. For training, the estimator in (7.14) and the
regularization parameter β of the estimator in (7.13) was determined using a k-fold
cross-validation approach with k = 10, each of length 6 minutes. For testing, the
EEG recordings were segmented into trials of length 5 s with an overlap of 4.98
s (corresponding to one sample shift). The correlation coefficients were computed
using a correlation window of length KCOR = 5 s with an overlap of 4.5 s.
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For the neural-network-based AAD method, the network H consisting of a convo-
lutional hidden layer with a filter kernel size of 20 samples (corresponding to 312
ms) was used. For training, the network was trained using a k-fold cross-validation
approach with k = 10, each of length 6 minutes. The network was trained with
the Nadam optimizer [228] using a batch size of 3840 samples (corresponding to
60 seconds × 64 channels), a learning rate of 0.002, and 3000 iterations. To avoid
over-fitting, the dropout technique from [229] was used with a ratio of 0.25, which
corresponds to randomly setting 25% of the hidden units to 0. The network was
implemented in Keras [230]. For testing, the correlation coefficients were obtained
using the same correlation window setting as used for the least-squares-based AAD
method.
For the state space model, the hyperparameters c0 in (7.8) and a0 and b0 in (7.10)
were set to c0 = 1, a0 = 2.008 and b0 = 0.2016, similarly as in [24]. For testing, a
sliding smoothing window of length KSSM = 3 with KA = 1, KP = 1 was used. For
each testing condition, the parameter set of the attended Log-Normal distribution
αa in (7.11) was initialized by fitting over correlation coefficients of the (oracle)
attended speaker obtained during the first 15 s and was then fixed. The parameter
set of the unattended Log-Normal distribution αu in (7.12) was similarly initialized
by fitting over correlation coefficients of the (oracle) unattended speaker. For testing,
the parameters of the state-space model Ω corresponding to an smoothing window
were estimated using the EM estimation algorithm with 20 iterations.
The quality of correlation coefficients generated by either the least-squares-based
AAD method or the neural-network-based AAD method was evaluated in terms
of the attended correlation and the unattended correlation. The attended corre-
lation was computed using the Pearson correlation between the reconstructed en-
velopes and the envelopes of the attended speaker, i.e., ρa,k = ρ (ea [k] , êa [k]). The
unattended correlation was computed between the reconstructed envelopes and the
envelopes of the unattended speaker, i.e. ρu,k = ρ (eu [k] , êa [k]),
The decoding performance was evaluated for several AAD methods, i.e., the least-
squares-based AAD method (LS), the neural-network-based AAD method (NN),
the state-space model using with the least-squares-based AAD method (LS-SSM)
and the state-space model with the neural-network-based AAD method (NN-SSM).
The decoding performance for the least-squares-based and the neural-network-based
AAD method was computed as the percentage of correctly decoded 5-second corre-
lation windows. The decoding performance for the state-space model using either
the least-squares-based or the neural-network-based AAD method was computed as
the percentage of correctly decoded 5-second smoothing windows.

7.4 Results and discussion

For the least-squares-based AAD method and the neural-network-based AAD
method, Fig. 7.2 depicts the attended correlation and the unattended correlation
for different acoustic conditions. It can be observed for all acoustic conditions that
the attended correlation obtained by the neural-network-based AAD method (NN)
is larger than the least-squares-based AAD method (LS), showing that the neural-
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Fig. 7.2: Attended correlation and unattended correlation for different acoustic conditions
when using the least-squares-based method and the neural-network-based AAD
method.

Fig. 7.3: Decoding performance for different acoustic conditions when using the least-
squares-based method, the neural-network-based AAD method, the state-space
model with the least-squares-based method and the state-space model with the
neural-network-based AAD method.

network-based AAD method is able to reconstruct the attended speech envelope
with a better accuracy. However, the attended correlation obtained by the neural-
network-based AAD has a larger variability compared to the least-squares-based
AAD method, which corresponds to attended correlation coefficients with a larger
fluctuation. In addition, it can be observed that there is no significant difference in
the unattended correlation obtained by the least-squares-based AAD method and
the neural-network-based AAD method. However, the unattended correlation ob-
tained by the neural-network-based AAD has a larger variability compared to the
least-squares-based AAD method.
For all acoustic conditions, Fig. 7.3 depicts the decoding performance when using ei-
ther the least-squares-based AAD method, the neural-network-based AAD method,
the state-space model with the least-squares-based AAD method, or the state-space
model with neural-network-based AAD method. It can be observed that when us-
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ing either the least-squares-based AAD method or the neural-network-based AAD
method, a relatively low decoding performance (with the median decoding perfor-
mance 69%−73%) is obtained, mainly due to quite small (attended and unattended)
correlations with a large variability (see Fig. 7.2) based on which decoding is per-
formed by these methods. A statistical multiple comparison test (Kruskal-Wallis
test followed by the posthoc Dunn and Sidak test [1]) revealed no significant dif-
ference (p > 0.05) in decoding performance when using the least-squares-based
AAD method or the neural-network-based AAD method. When using the state-
space model with either the least-squares-based or the neural-network-based AAD
method (LS–SSM, LS–NN), the decoding performance increases. The increase is
considerably larger for the least-squares-based AAD method (with the median de-
coding performance > 94%) compared to the neural-network-based AAD method
(with the median decoding performance > 73%). The larger decoding performance
can be explained by the fact that the correlations generated by the least-squares-
based AAD method have a lower variability compared to the correlations generated
by the neural-network-based AAD method, which leads to a smoother estimate of
attention probabilities and a more stable decoding. The statistical multiple compar-
ison test revealed that for most acoustic conditions (except anechoic–noisy) the de-
coding performance using the state-space model with the least-squares-based AAD
method is significantly larger (p < 0.05) compared to using the least-squares-based
AAD method, the neural-network-based AAD method, and the state-space model
with the neural-network-based AAD method.

7.5 Conclusion

In this paper, we investigated a state-space model using correlation coefficients ob-
tained with a 5-second correlation window to improve the decoding performance of
the (linear) least-squares-based AAD method and the (non-linear) neural-network-
based AAD method. The state-space model translates correlation coefficients, gen-
erated either by the least-squares-based or the neural-network-based AAD method,
into smooth estimates of the attention state. The experimental results showed for all
acoustic conditions that there is no significant difference in decoding performance
between using the least-squares-based AAD method and the neural-network-based
AAD method. However, when using the state-space model with the least-squares-
based AAD method, for most acoustic conditions the decoding performance signifi-
cantly improves.



8
CONCLUSION AND FURTHER RESEARCH

In this chapter, we provide a summary of the main contributions of the thesis in
Chapters 2−7 and discuss possible extensions and directions for further research
which could be envisaged as a follow-up to the work presented in this thesis.

8.1 Conclusion

Identifying the target speaker in hearing aid applications is an essential ingredient
to improve speech intelligibility. Although several speech enhancement algorithms
are available to reduce background noise or to perform source separation in multi-
speaker scenarios, their performance depends on correctly identifying the target
speaker to be enhanced. Recent advances in EEG have shown that it is possible to
identify the target speaker which the listener is attending to using single-trial EEG-
based AAD methods. However, in realistic acoustic environments the performance
of AAD is influenced by undesired disturbances (interfering speakers, noise and re-
verberation), which have a negative effect on the reference signals used for decoding
auditory attention. Additionally, it is important for real-world applications to close
the loop by presenting on-line auditory feedback according to the AAD results.
The main objectives of this thesis were to analyze the performance of AAD for a two-
speaker scenario in realistic noisy and reverberant acoustic conditions, to improve
AAD methods and to develop and evaluate open-loop and closed-loop cognitive-
driven speech enhancement systems for hearing aid applications using AAD. In
Chapter 2, we analyzed the performance of a least-squares-based AAD method
by investigating the impact of different acoustic conditions (anechoic, reverberant,
noisy, and reverberant-noisy) for AAD filter training and for decoding as well as
by investigating the influence of different acoustic disturbances on the reference
signals used for AAD. In Chapters 3, 4 and 5, we proposed open-loop and closed-
loop cognitive-driven speech enhancement systems to enhance the attended speaker
while controlling the suppression of the interfering speaker. In Chapters 6 and 7, we
proposed AAD methods based on either binary masking or a state-space model.
In Chapter 2, we investigated the performance of the least-squares-based AAD
method for different acoustic conditions, both in the training step as well as in
the decoding step (using correlation coefficients obtained with a 60-second corre-
lation window). The experimental results showed that for all considered acoustic
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conditions it is possible to decode auditory attention with a considerably large de-
coding performance (> 90%1), even when the acoustic conditions for training and
decoding are different. In addition, for most acoustic conditions there is no signifi-
cant difference in decoding performance when using filters trained in all conditions
or filters trained in a specific condition. This suggests that for an unseen realistic
acoustic condition AAD can be performed using filters trained in, e.g., a laboratory
acoustic condition. Furthermore, we investigated the influence of the head filtering
effect and of acoustic components (reverberation, background noise and interfering
speaker) on the decoding performance. The experimental results showed that for
all considered acoustic conditions the head filtering effect has no significant impact
on the decoding performance. Moreover, when using speech signals affected by ei-
ther reverberation or background noise as reference signals, a comparable decoding
performance is obtained as when using clean speech signals as reference signals.
On the contrary, when using speech signals affected by the interfering speaker as
reference signals, the decoding performance significantly decreases (> 87%). This
suggests that for generating appropriate reference signals, e.g., using acoustic signal
pre-processing algorithms, it is more important to reduce the interfering speaker
than to reduce background noise or reverberation. Furthermore, when using the
(unprocessed) noisy and reverberant microphone signals as reference signals for de-
coding, a relatively large decoding performance (87%) can still be obtained. This
implies that decoding is feasible for the considered scenario even based on the unpro-
cessed noisy and reverberant signals. Moreover, we explored the potential of using
the attended speech signal affected by different acoustic components as training
signal for computing the filter. When using attended speech signals affected by ei-
ther reverberation or by background noise as training signal, a comparable decoding
performance is obtained as when using the clean attended speech signal as training
signal (> 92%). However, when using attended speech signals affected by the inter-
fering speaker as training signal, the decoding performance significantly decreases
(> 82%). Nevertheless, even when using the attended speech signals affected by
reverberation, background noise and an interfering speaker as training signal, it is
still feasible to achieve a large decoding performance (82%).
Aiming at enhancing the attended speaker and controlling the suppression of the
unattended speaker while preserving the spatial impression of the acoustic scene,
in Chapter 3 we proposed an open-loop cognitive-driven binaural speech enhance-
ment system. The system cognitively steers a binaural MVDR or LCMV beam-
former based on AAD and estimated (anechoic or reverberant) RTFs. Based on
the estimated RTFs of both speakers, two MVDR or LCMV beamformers gener-
ate reference signals for auditory attention decoding. Using the envelopes of these
reference signals, the EEG recordings and a 30-second correlation window, in the
AAD step the DOAs of the attended and the unattended speaker are identified to
steer the binaural MVDR or LCMV beamformer. The experimental results showed
that for a two-speaker scenario in diffuse babble noise the proposed system using

1 Please note that the decoding performance reported in Chapter 2 was obtained using spatio-
temporal AAD filters with parameters optimized per participant.
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anechoic RTFs significantly improves the binaural SINR for the anechoic condition
(7.4–8.7 dB) as well as for the reverberant condition (3.2–3.6 dB) compared to a
fixed forward-steered binaural MVDR beamformer (0.3 dB for the anechoic condi-
tion and 0.5 dB for the reverberant condition). In particular, the cognitive-driven
binaural LCMV beamformer (with the interference suppression factor δ = 0.1) is
able to both improve the binaural SINR as well as preserve the binaural cues of both
the attended and the unattended speaker. Moreover, the results showed that the
proposed system using estimated anechoic RTFs yields a larger binaural SINR im-
provement and AAD performance for the reverberant condition compared to using
estimated reverberant RTFs. In addition, the results for both MVDR and LCMV
beamformers showed that when using estimated anechoic RTFs the decoding perfor-
mance is larger than when using the unprocessed microphone signals (> 77%2). The
decoding performance for the LCMV beamformers (> 82%) is larger than for the
MVDR beamformers (> 78%), which can be explained by the larger SINR improve-
ment of the LCMV beamformers and especially the larger interference suppression
compared to the MVDR beamformers. This is in accordance with the experimental
results in Chapter 2, where it was shown that jointly suppressing interference and
background noise is of great importance for reference signal generation. Moreover,
the results showed that for the considered experimental setup the AAD performance
and the binaural SINR improvement of the proposed system are sensitive to RTF
estimation errors and AAD errors, but not to DOA estimation errors.
While the open-loop cognitive-driven speech enhancement system in Chapter 3 is
able to suppress the interfering speaker and background noise, it is not designed to
suppress reverberation. In Chapter 4, we hence proposed an open-loop cognitive-
driven convolutional beamforming system aiming at enhancing the attended speaker
and jointly suppressing the interfering speaker, reverberation and background noise.
The proposed system consists of a neural-network-based mask estimator, convo-
lutional beamformers and a least-squares-based AAD method which uses a 30-
second correlation window. First, the masks of both speakers are estimated from the
noisy and reverberant microphone signals using a speech separation neural network.
Based on these masks, two convolutional beamformers generate reference signals for
AAD by enhancing the speech signal of each speaker. The least-squares-based AAD
method then selects one of the reference signals as the enhanced attended speech
signal. For the beamformers we proposed to use a wMPDR convolutional beam-
former as it combines dereverberation, noise suppression and interfering speaker
suppression. We also proposed an extension of the wMPDR convolutional beam-
former, referred to as a wLCMP convolutional beamformer, which allows to control
the level of suppression of the interfering speaker. We experimentally compared the
proposed cognitive-driven convolutional beamforming system with cognitive-driven
speech enhancement systems based on (conventional) MVDR, LCMV, MPDR and
LCMP beamformers. The experimental results showed that for a two-speaker sce-
nario the proposed system using either the convolutional wMPDR beamformer or

2 Please note that as opposed to Chapter 2, the decoding performance reported in Chapter 3 was
obtained using spatio-temporal AAD filters with fixed parameters.
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the convolutional wLCMP beamformer yields the highest fwSSNR improvement
for the anechoic condition (4.0–4.4 dB3) as well as for the reverberant condition
(0.5–2.1 dB), whereas the conventional LCMV beamformer yields the highest AAD
performance in the reverberant condition (> 81%). In addition, the results showed
that the wMPDR convolutional beamformer yields a larger fwSSNR improvement
than the wLCMP convolutional beamformer. Although the wMPDR convolutional
beamformer strongly suppresses the interfering speaker, it may deprive the listener
from the ability to switch attention between the speakers. In contrast, the wLCMP
convolutional beamformer is able to both control the interfering speaker suppres-
sion as well as yield a considerably large fwSSNR improvement. Furthermore, the
experimental results showed that for the considered acoustic setup the AAD perfor-
mance and the fwSSNR improvement of the proposed system using convolutional
beamformers are sensitive to mask estimation errors, particularly for the reverber-
ant condition. Nevertheless, for the reverberant condition only the proposed system
using convolutional beamformers provides a fwSSNR improvement, showing the in-
fluence of dereverberation, while the systems using conventional beamformers tend
to degrade the fwSSNR.
While in Chapters 3 and 4 we considered open-loop cognitive-driven speech enhance-
ment systems, in Chapter 5 we closed the cognitive-driven speech enhancement
system loop by enabling the listener to interact with an adaptive gain controller us-
ing a real-time AAD. The real-time AAD infers the probabilistic attention measures
of the attended and the unattended speaker from EEG recordings of the listener
and the (assumed to be known) speech signals of both speakers. Based on these
probabilistic attention measures, the adaptive gain controller amplifies the identi-
fied attended speaker and attenuates the identified unattended speaker. The loop
of cognitive-driven gain control is then closed by presenting the amplified attended
speaker and the attenuated unattended speaker via loudspeakers. The experimen-
tal results demonstrated the feasibility of the proposed closed-loop cognitive-driven
gain controller system (both using GLM and SSM), enabling the listener to inter-
act with the system in real-time. Although there is a significant delay to detect
attention switches (11.5–19.8 seconds), which causes the attended speaker to be
wrongly attenuated and the unattended speaker to be wrongly amplified, the pro-
posed closed-loop system is able to improve the SIR between the attended and the
unattended speaker (0.6–3.8 dB). In addition, no significant difference in terms of de-
coding performance and switch detection delay was observed between the proposed
closed-loop cognitive-driven system and the open-loop AAD system. Moreover, the
subjective evaluation results showed that the proposed closed-loop cognitive-driven
system demands a similar perceived level of cognitive effort to follow the attended
speaker, to ignore the unattended speaker and to switch attention between both
speakers compared to the open-loop AAD system. With this work, a first attempt

3 Please note that due to different reference signals used for the fwSSNR and the SINR, the fwSSNR
improvement in Chapter 4 is not directly comparable with the SINR improvement reported in
Chapter 3.
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was made to bring closed-loop cognitive-driven speech enhancement closer to real-
world applications.
While in Chapters 3, 4 and 5 we considered complete open-loop and closed-loop
cognitive-driven speech enhancement systems, in Chapters 6 and 7 we focused on
AAD and proposed two novel methods to improve the decoding performance.
In Chapter 6, we proposed reference signal generation approaches based on binary
masking, which discard low-energy intervals susceptible to interfering speech and
background noise. The proposed approaches determine the binary masks from the
directional speech presence probability and the DOAs of both speakers, which are
estimated from the microphone signals. The reference signals for decoding are then
generated by either masking the microphone signals or the MVDR output signals.
The reference signals comprising moderate-to-high speech energy intervals of the
oracle reference signals generated by masking were also considered. Moreover, the
binary masks were considered themselves as reference signals for decoding. The
performance of the proposed reference signal generation algorithms was evaluated
using correlation coefficients obtained with a 30-second correlation window for a
two-speaker scenario in diffuse babble noise. The experimental results show that
the reference signals comprising moderate-to-high speech energy intervals of the or-
acle reference signals can be reliably used instead of the (complete) oracle reference
signals for decoding auditory attention. This suggests that for generating appro-
priate reference signals, e.g., from the microphone signals, it is more important to
preserve the moderate-to-high speech energy intervals than low speech energy inter-
vals. In addition, the experimental results showed that the proposed reference signal
generation algorithms masking either the microphone signals or the MVDR output
signals significantly improve the decoding performance (> 81%) compared to when
using the (non-masked) microphone signals (> 77%) and the MVDR output signals
(> 78%) especially in the reverberant condition. Quite remarkably, the results show
that AAD using the binary masks as reference signals yields a decoding performance
that is comparable to using the masked MVDR output signals as reference signals.
In Chapter 7, we proposed a novel AAD method based on a state-space model,
which improves the decoding performance of a linear (least-squares-based) AAD
method and a non-linear (DNN-based) AAD method using a short correlation win-
dow. First, correlation coefficients are generated by both AAD methods using a
5-second correlation window. Similarly as in Chapter 5, a state-space model then
translates the generated correlation coefficients into probabilistic attention mea-
sures, based on which the attended speaker is identified. For different acoustic con-
ditions we experimentally compared the performance of the AAD method using the
state-space model with the least-squares-based AAD method and the DNN-based
AAD method. The results showed that when using either the least-squares-based or
the DNN-based AAD method, a relatively low decoding performance (69%–73%) is
obtained, mainly due to the relatively small (attended and unattended) correlation
coefficients with a large variability based on which decoding is performed. When us-
ing the state-space model, the decoding performance significantly increases, where
the increase is considerably larger for the least-squares-based AAD method (> 94%)
than for the DNN-based AAD method (> 73%).
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8.2 Further research directions

In this section, we summarize possible research directions for further improvements
and possible applications of the proposed AAD methods and cognitive-driven speech
enhancement systems.
While the discussion in Chapter 2 was limited to AAD methods in which audi-
tory attention is decoded based on envelope reconstruction from EEG recordings
and a comparison with the envelopes of the reference signals, AAD approaches
based on integrated DNN-based architecture as in [130], which directly compare
the EEG recordings with the envelopes of the reference signals, or forward models
as in [22, 128], which predict the EEG recordings from the envelopes, remain to
be investigated. Further work could therefore include a study on how reverbera-
tion, noise and interfering speakers influence these AAD approaches. Furthermore,
in [231–233] it was shown that phonetic features and spectrograms of speech signals
are better encoded in EEG recordings compared to the speech envelope. Therefore,
it would certainly be interesting to evaluate the potential of incorporating different
speech representations or a combination of speech representations into AAD.
The results in Chapter 3 showed that although the cognitive-driven binaural LCMV
beamformer with interference suppression factor δ = 0.1 is able to significantly im-
prove the binaural SINR, the binaural SINR improvement is sensitive to AAD errors.
When trials are wrongly decoded, the unattended speaker is wrongly enhanced by
the binaural LCMV beamformer and in addition the attended speaker is wrongly
suppressed, such that the binaural SINR improvement averaged over wrongly de-
coded trials can even be negative. It was also shown that for δ = 0.2, the binaural
SINR improvement is less prone to wrongly decoded trials compared to smaller val-
ues of δ. This suggests that an adaptive interference suppression factor control, e.g.,
based on the probabilistic attention measures, can effectively improve the sensitivity
of the binaural SINR improvement to AAD errors.
In Chapter 4, it was shown that the proposed cognitive-driven convolutional wL-
CMP beamformer yields the highest fwSSNR improvement for the reverberant con-
dition, whereas the (conventional) LCMV beamformer yields the highest AAD per-
formance for the reverberant condition. Future work could therefore investigate
the potential of combining the convolutional and the conventional beamformers to
improve both the decoding as well as the speech enhancement performance. Fur-
thermore, it was shown that when using estimated mask-based RTFs instead of
oracle-mask-based RTFs for the convolutional beamformers the AAD performance
decreases, especially for the reverberant condition. In addition, for the reverberant
condition the conventional beamformers using estimated anechoic RTFs selected
from a database of prototype RTFs yield a larger AAD performance than the con-
volutional beamformers using estimated mask-based reverberant RTFs. This sug-
gests that in order to improve the AAD performance, a better estimation of RTFs
is required, e.g., based on prototype RTFs, neural networks that are more robust
to background noise and reverberation for mask estimation, or a combination of
prototype RTFs and neural networks.
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The open-loop and closed-loop cognitive-driven speech enhancement systems pro-
posed in this thesis are based on a modular processing flow first decoding auditory
attention and then performing speech enhancement. Alternatively, decoding and
speech enhancement may be jointly performed, which could lead to an optimal end-
to-end cognitive-driven speech enhancement system. In [234] an end-to-end neural-
network-based speech enhancement method for extracting a target speaker from
the mixture has been proposed which is based on an adaptation utterance spoken
by the target speaker to guide the neural networks. Future work could therefore
investigate an end-to-end cognitive-driven speech enhancement system using neural
networks that are guided by EEG recordings to extract the attended speaker.
In Chapter 5, the closed-loop AAD experiments using the proposed cognitive-driven
gain controller system were performed without incorporating a practicing phase for
the participants. However, the subjective evaluation results showed that a significant
improvement in the system usage was obtained throughout the closed-loop AAD
experiment. Future work could therefore investigate the impact of incorporating a
practicing phase on the decoding and the speech enhancement performance of the
cognitive-driven gain controller system.
In Chapter 6, we proposed reference signal generation algorithms for AAD based on
binary masking, which discard low-energy intervals susceptible to interfering speech
and background noise. The proposed algorithms determine the binary masks based
on the DSPP of both speakers and generate the reference signals by either mask-
ing the microphone signals or the MVDR output signals. Although the proposed
algorithms are able to discard intervals in the reference signals with a low target
speech energy, they may not be able to discard intervals with a low SINR, which
are dominated by interfering speech and background noise. The intervals with a low
SINR can be determined based on, e.g., the DSPP ratios of both speakers. Further
work could therefore include a study on improving the performance of the proposed
reference signal generation algorithms by incorporating the DSPP ratios in binary
masking.
Although the application of the proposed open-loop and closed-loop cognitive-driven
speech enhancement systems in this thesis was limited to acoustic scenarios with
two competing speakers, it was shown in [209] that open-loop AAD is feasible for an
acoustic scenario with four competing speakers when using perfectly separated clean
speech signals for decoding. In addition, the application of the proposed cognitive-
driven speech enhancement systems was limited to acoustic scenarios with non-
moving speakers, while in real-world conditions speakers may move. Therefore, it
would certainly be interesting to investigate the performance of (an extension of)
the proposed cognitive-driven speech enhancement systems for acoustic scenarios
with more than two competing and moving speakers.
Furthermore, it would be interesting to investigate the potential of combining other
signal modalities with EEG for cognitive-driven speech enhancement, e.g., eye gaze
direction, eye blinks and pupillometry of the listener or video recordings. The
eye gaze direction can be estimated, e.g., from electrooculography (EOG) record-
ings [235, 236]. The eye blinks, the pupil dilation and the eye gaze direction can
be measured, e.g., using an eye tracker camera, mounted on glasses. These mea-
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surements can be informative of cognitive processes such as cognitive load [237].
Video recordings can be combined with an acoustic analysis, e.g., to estimate the
DOAs and the number of speakers. In addition, the (silent) video recordings of lip
movement of speakers can be used to reconstruct the speech of speakers [238–240].
Further work could therefore include a study on improving the performance of the
proposed cognitive-driven speech enhancement systems by combining several signal
modalities.
Finally, the application of AAD is obviously not limited to hearing devices. AAD
could also be used, e.g., for virtual reality (VR) that simulates a remote environment,
e.g., for education, training, entertainment and medicine. AAD could be used to
adapt the simulated world based on the auditory attention of the VR user. Another
application of AAD could be in work environments demanding high alertness to
audio inputs, e.g., air/train traffic control stations. AAD could be used in these
environments to monitor the state of the auditory attention of an operator in order
not to miss salient audio inputs.
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