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ABSTRACT

This paper describes an algorithm for robust time-delaynegion
(TDE) in situations where a large amount of additive noise r&n
verberation is present. In [1] an adaptive eigenvalue dgomition

algorithm has been developed for TDE between two micropfione

in highly reverberant acoustic environments. In this papeex-
tend this algorithm to highly noisy and reverberant envinents,
by using a generalized eigenvalue decomposition or by pitemh
ing the noisy microphone signals. It is shown that time-gielzan
be robustly estimated for SNRs down to -5 dB.

1. INTRODUCTION

In many speech communication applications, such as tefiecon
encing, hands-free voice-controlled systems and hearifsg iais
desirable to localize the dominant speaker. In telecontang ap-
plications the speaker position has to be known for corraectera
steering, while in other applications the speaker posisoreeded
for microphone array beamforming in order to suppress amous
noise and reverberation.

By estimating the time-delays between the microphone Sgria
microphone array, it is possible to accurately estimatesfieaker
position [2]. However, time-delay estimation is not an etask
because of the non-stationary character of the speecHsigoam
reverberation and acoustic background noise. Generabynnre-
verberation is considered to be the main problem for TDEK®],
also acoustic background noise can considerably decreaget-
formance of time-delay estimators. While highly noisy attans
are not very common in typical teleconferencing applicaighey
frequently occur ire.g. hearing aid applications.

Most TDE methods are based on a generalized cross-coorelati
(GCC) measure between the microphone signals [4][5]. Hewev

GCC-based methods. However this algorithm is only optifnadi
noise or only spatio-temporally white noise is presenthis paper
we extend the eigenvalue decomposition algorithm to thered|
noise case, by using a generalized eigenvalue decompositiay
prewhitening the microphone signals.

In section 2 it is shown that if the length of the room impulse
responses is known or can be overestimated, the total roem im
pulse responses can be exactly identified from the noisepaubs
of the speech and noise correlation matrix. In practice shiz-
space is computed with the generalized singular value deosem
sition (GSVD) of a speech and noise data matrix or the simgula
value decomposition (SVD) of a prewhitened speech dataxnatr
Since for TDE only the time delay between the first peak (direc
path) of the impulse responses is required, it is not necgssa
estimate the complete impulse responses. In [1] an adgptee-
dure is presented for estimating the time-delay betweepehés

of two impulse responses. In section 3 this adaptive praeadill

be extended to the colored noise case.

Section 4 describes the simulation results, where the padioce
and convergence speed of the algorithms is compared ferelift
signal-to-noise ratios (SNR). It is shown that time-delaga be
robustly estimated for SNRs down to -5 dB and that the conver-
gence time is dependent on the SNR.

2. ESTIMATION OF ROOM IMPUL SE RESPONSES

ConsiderM microphones where each microphone signalk],
m =0...M — 1, consists of afiltered version of the clean speech
signals[k] and some additive noise,

T [K] = Sm[k] + nm[k] = hm[k] @ s[k] + nw[k], (1)

with s, [k] andn,,[k] the speech and noise component received

since most of these methods assume an ideal room model with-at theynth microphone at timé and .. [k] the room impulse re-

out reverberationi.e. only a direct path between the source and
the microphone array, they cannot handle reverberationweH.

To make TDE more robust to room reverberation, a cepstral pre

filtering technique has been proposed [6] and techniquesiheen
developed which use a more realistic room model with reverbe
ation [1][7]. In [1] an eigenvalue decomposition algorithmas
been developed to estimate the room impulse responsesalthis
gorithm performs much better for highly reverberant rootremt
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sponse between the speech source andritiemicrophone. The
goal is to estimaté,, [k] from ., [k] without any knowledge of
s[k]. Knowing the complete room impulse responses, it is trivial
to compute the time-delays between the microphone sighise
room impulse responses have lengtithen

sio[k] hy =7 L[k] hi )

with
smolk] = [smlk]  smlk— 1] smlk—L+1]] (3)
hl, = [ hw[0] hm[l] hm[L —1] ] . (4

Although we do not explicitly attribute a time indéxto the im-

pulse responses, this does not mean that they cannot beairiaet.
In the following we will assume\/ = 2, although it is quite easy
to extend the algorithms to the case of more than two micropso
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2.1. Noisglesscase

The2K x 2K clean speech correlation matii; is defined as

R3 -R3
RS — 22,K Y21, K , 5
K -Ri: x Rk ®)
with
S = E{si (k] sj k[K]} - (6)

If K > L and the impulse responsks andh, do not have com-
mon zeros and the autocorrelation matrix of the input sigf¥dl
has full rank [8], then the clean speech correlation ma&fx has
rank K + L — 1, such that it is rank-deficient and its null-space has
dimensionkK — L + 1.

If K = L, the null-space oR}, has dimension, and the vector

h,

v = { I } (7)
belongs to this null-space becal®g¢ v = 0. If we take the eigen-
value decompositioRR; = VA, VT, the unit-norm eigenvec-
tor, belonging to the only zero eigenvaluel®f,, contains a scaled
version of the two impulse responses, such that the timaydelan
be exactly estimated.

If K > L, the null-space oRj containsK — L + 1 eigenvec-
tors, which all contain a different filtered version of thepufse
responses. By computing the QR-decomposition of the fult nu
space or by applying successive QR-decompositions to tyenei
vectors in the null-space, the correct impulse responséngth
L can be identified [9].

2.2. Spatio-temporally white noise

If additive noise is present, we can define the noisy speegi-co
lation matrixR7 and the noise correlation matrR} similar as
in (5). Assuming that the clean speech sigs@] and the noise
components:., [k] are uncorrelated,

R =RL +RI. ®)
From the eigenvalue decomposition of the noisy speechleerre
tion matrix,R%Z = V, A, VT, the impulse responses can only be
identified if the noise is spatio-temporally whiieg. R} = o21.
Because in that cade} = V. (A, + o2I)VZ, the eigenvector
corresponding to the smallest eigenvadfecontains a scaled ver-
sion of the impulse responses. Also f&r > L, the procedure is
similar to the procedure in the noiseless case.

2.3. Spatio-temporally colored noise

If spatio-temporally colored noise is present, the roomuite@ re-
sponses can still be identified from the generalized eideawde-
composition ofR7 andR7 or from the eigenvalue decomposition
of the prewhitened noisy speech correlation matrix. In loatbes,
R7 needs to be known or we have to able to estinfafe from
noise-only periodse.g. using a voice activity detector (VAD). In
the following we will also assume th&7 has full rank.

1. The generalized eigenvalue decomposition (GEVORGf
andRY7 is defined as [10]
QA.QF

R}

{ R; - QA.QT, @)
with Q an invertible, but not necessarily orthogonal matrix.
From (8) and (9) it follows that

(R1)™'R% (RL)™'(RL — RY)
Q' (A'A. -T1)Q".

(10
(11)
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Since (R7)'R3 has rank2L — 1, one (and only one)

of the values of the diagonal matrix;,, ' A.. is equal to 1.

Therefore a columiy of Q ~T exists for which
(R7)'Riq=0, (12)

such thalR7 q = 0. Since the dimension of the null-space
of Rj is 1, the vectorg contains a scaled version of the
impulse responses.

2. The prewhitened correlation matix}, is defined as
» X4 JAN ny— x ny—
Rj = (R)"’RL(RE) ™, (13)

with (R})'/2 the Cholesky-factor of the noise correlation
matrix R, such thaR} = (R})7/2(R7)"/2. From the

eigenvalue decomposition &7 ,
it follows thatR 5, can be written as

(14)

R; 2 (R) 7R3 (R}) V= Vo(A, — DV} .
SinceRfL has rank L —1, one of the values of the diagonal
matrix A, is 1 and a columw of V;, exists for which

R;v = (R7) "’Ry(R})/*v=0, (15)
such thaR3 (R} )~'/2¥ = 0. Since the dimension of the

null-space ofRj is 1, the vectofR})~ /2% contains a
scaled version of the impulse responses.

In fact, both algorithms are equivalent, since
Ar=A'A,, QT=RyV?V,. (16)

However the adaptive versions of the algorithms, which vl
used for practical TDE and which are defined in section 3, can
produce different results.

Alsoif K > L, the procedure for estimating the impulse responses
of length L is similar to the procedure in the noiseless case.

2.4. Practical computation

In practice we do not work with correlation matrices, butwdata
matrices. The x 2L speech data matriX [k] is defined as
—XlT,L[k]
—X{L[k +1]

X2T,L [k:]

x{L[k +1]
X [k] .

, (A7)

xgplk+p—1] —xi[k+p—1]
such that the empirical correlation mati, ~ X1, [k]" X1 [k]/p.
The noise data matriN ;. [k] is similarly defined.

1. GSVD-procedurelnstead of computing the GEVD @7
andR7, we compute the generalized singular value decom-
position (GSVD) ofX 1. [k] andN . [k], defined as [10]

X1, [k] U.2.Q"
N [k] U.2,.Q7T.

2. Prewhitening-procedureThe prewhitened matriX ;, [k] is
Xp[k] = X [K](RE) /2 (19)

where the Cholesky-fact¢R} )1/ is computed by the QR-
decomposition of the noise matriN . [k] = Q. (R})"/>.
The singular value decomposition Xz, [£] is defined as

X[k = U2, VT . (20)

(18)
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2.5. Simulation results

In our simulations we have filtered a 16 kHz speech segment of
160000 samples with 2 impulse responsks=t 20), which are
depicted in figure 1a. A stationary speech-like, with the same
long-term spectral characteristics as speech, noiseldigadeen
added and the SNR of the microphone signals is 10 dB.

Figure 1b and 1c show the estimated impulse respotses @0),

for the SVD-procedure (assuming no noise) and the GSVD (or
prewhitening) procedure. As can be clearly seen, the ineprels
sponses are almost correctly estimated with the GSVD-piureg
unlike the SVD-procedure. Because the assumption of uacorr
lated speech and noise segments is not always completédy sat
fied,i.e. X7 [k]NL[k] ~ 0, small estimation errors occur in the
GSVD-procedure. In our simulations we noticed that thedpett
this assumption is satisfiede. the higher the SNR and the longer
the speech and noise segments, the smaller the estimatioriser

3. ADAPTIVE PROCEDURE FOR TDE

In practice, room impulse responses can have thousandp®f ta
Because of the correlated nature of speech, autocornelata
trices of the input signak[k] of these dimensions will be rank-
deficient. Therefore it is impossible to identify the compleoom
impulse responses in practice. If we underestimate thetheniy
the impulse response&( < L), the estimated impulse responses
are biased and do not necessarily exhibit any resemblanite to
actual impulse responses, making it difficult (and pradtidan-
possible) to estimate the correct time-delays.

However, in [1] it has been shown that by using an adaptivereig
value decomposition algorithm, it is still possible to itignthe
main peak in the impulse responses, even when underestgnati
the length of the impulse responses. For TDE only this tiralend
between the first peak of the impulse responses is required.

The procedure iteratively estimates the eigenvectdR§f corre-
sponding to the smallest eigenvalue by minimizifgR % v, sub-
ject to the constraint”v = 1. The problem is solved by mini-
mizing the mean square value of the error sigra],

T
o) = Xkl 21)
vl
withx [k] = [ x5 x[k] —xTx[k] ]". This can be done using

a gradient-descent constrained LMS-procedure:

v[k] — pelk

J5ax
vik+1 = 22
Bl = o T e 2 || @2
oclk] 1 g VK]
i = T O - e @

Since the smallest eigenvalue Bf; is assumed to be zero and
normalization is included in each iteration, the gradiemrgually

reduces to§oii} ~ x[k], such that the update formula becomes
v[k] — pelk]xr K]
K+ . (24)
Y T = el R BT

In [1] it is also indicated that initialization ofr and the choice
of the parameterd and i are quite important for a good con-
vergence behavior. The time-delay is calculated as therdiiice
between the main peaks in the two estimated impulse response
as the peak of the correlation function between the two isgul
responses. It is also shown that this algorithm performsemor
bustly in highly reverberant rooms than GCC-based methods.
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Figure 1: @) Impulse responsds; andhs, (b) Estimated impulse
responses with SVD-procedure am)l GSVD-procedure

For the noise-robust algorithms, described in sectiongd32.4,
it is also possible to derive adaptive versions. In the sitiohs
it will be shown that the adaptive version of the GSVD-praged
and the prewhitening-procedure can produce differenitesu

1. For theGEVD-procedurewe need to iteratively estimate
the generalized eigenvector Bff, andR}% corresponding
to the smallest generalized eigenvalue by minimizing the
cost functiong” R%q, subject tag” R?%q = 1. This prob-
lem can be solved by minimizing the mean square value of
the error signat[k],

elk] = qTXK [k] _ qTXK [k}

M= JaRe ~ TRp)q) - @
The gradient now becomes
delk] 1 [kl —e Rialk]
okl = varmmram M )

Since the smallest generalized eigenvalue is 1, we cannot
further simplify this expression. To avoid roundoff error
propagation, we include a normalization step in each itera-
tion, such that the update formula can be written as

alk+1] = alk] — pelk]{xx[k] — e[k|RFqlk]}
B alk +1]
alk+1] = VaTlk + Rk + 1] (26)

2. Theprewhitening-procedurean be made adaptive by using
prewhitened speech data vectas|k] = xx [k](R) /2.
The update formula now becomes

Vik] — pelk]{xk[k] — e[k]V[k
ok 4 1] = Y = el ]{>_¢K[ | —elklv] I} @
V(K] — pelk]{%x [k] — e[k]V[K] } |
and the actual impulse responseig] = (R%)™'/2v[k].

As indicated in section 2.4, the Cholesky-fact® ) ~/2
can be updated during noise periods by inverse QR-updating.

4. SIMULATIONS

In our simulations we have filtered a 16 kHz speech signal of
80000 samples and a speech-like noise signal with two room im
pulse responsed.(= 2000), constructed with the image method
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Figure 2: Convergence plots of adaptive EVD, GEVD and Figure 3: Convergence plots of adaptive EVD, GEVD and

prewhitening-procedure (SNR = -5 dB, subsampling = 10)

[11]. The room dimensions afem x 4 m x 2m, the positions of
the 2 omni-directional microphonesdré 1 1]and[1 1 1.5],
the speech source position[iQ 2 1.7] and the noise source po-
sitonis[ 1 1.5 1]. The correct time-delay for the speech source
is —12.183 samples (an@.746 samples for the noise source) and
is indicated as a dotted line in the figures. The reverberaiine
Teo of the room is250 ms. We have performed simulations at dif-
ferent SNRs for the different algorithms (adaptive EVD, GEV
and prewhitening-procedure). The filterlengthis 100 and for
each algorithm we have chosen the stepgizéhich gave the best
results. The subsampling factor is 1@, only every 10 samples a
new iteration is performed.

Figure 2 shows the convergence plots of the time-delays ISR

is -5 dB. As can be seen the adaptive EVD-procedure does net co
verge to the speech time-delay, but to the noise time-délag
adaptive GEVD-procedure has an irregular behavior, butemes

to the correct time-delay. The prewhitening-proceduréésgro-
cedure which converges fastest to the correct time-delay.

Figure 3 shows the convergence plots of the time-delays iR

is 0 dB. All procedures now converge to the correct timegela
but the adaptive prewhitening and adaptive GEVD-proceduee
somewhat faster than the adaptive EVD-procedure. Noteighat
quite remarkable that the adaptive EVD-procedure congetge
the correct time-delay at an SNR of 0 dB, without any knowéedg
of the noise characteristics.

From our simulations, we conclude that the adaptive preminig-
procedure is the most robust procedure in additive noiseteatdit
converges to the correct time-delay for SNRs down to -5 d& Th
convergence time is dependent of the SNR (and of the paresnete
of the algorithm), but for most low-SNR scenarios the cogeece
time lies between 1 and 2 sec.

5. CONCLUSION

In this paper we have described an algorithm for robust tieley
estimation in adverse acoustic situations with a large armofi
reverberation and additive noise. We have extended aniadapt
EVD-algorithm for time-delay estimation to noisy enviroents,

by using a GEVD or by prewhitening the microphone signals. [11]

Simulations show that the adaptive prewhitening-algarith the
most robust algorithm for time-delay estimation in addithoise.
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prewhitening-procedure (SNR = 0 dB, subsampling = 10)
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