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ABSTRACT

This paper describes an algorithm for robust time-delay estimation
(TDE) in situations where a large amount of additive noise and re-
verberation is present. In [1] an adaptive eigenvalue decomposition
algorithm has been developed for TDE between two microphones
in highly reverberant acoustic environments. In this paperwe ex-
tend this algorithm to highly noisy and reverberant environments,
by using a generalized eigenvalue decomposition or by prewhiten-
ing the noisy microphone signals. It is shown that time-delays can
be robustly estimated for SNRs down to -5 dB.

1. INTRODUCTION

In many speech communication applications, such as teleconfer-
encing, hands-free voice-controlled systems and hearing aids, it is
desirable to localize the dominant speaker. In teleconferencing ap-
plications the speaker position has to be known for correct camera
steering, while in other applications the speaker positionis needed
for microphone array beamforming in order to suppress acoustic
noise and reverberation.
By estimating the time-delays between the microphone signals of a
microphone array, it is possible to accurately estimate thespeaker
position [2]. However, time-delay estimation is not an easytask
because of the non-stationary character of the speech signals, room
reverberation and acoustic background noise. Generally, room re-
verberation is considered to be the main problem for TDE [3],but
also acoustic background noise can considerably decrease the per-
formance of time-delay estimators. While highly noisy situations
are not very common in typical teleconferencing applications, they
frequently occur ine.g.hearing aid applications.
Most TDE methods are based on a generalized cross-correlation
(GCC) measure between the microphone signals [4][5]. However,
since most of these methods assume an ideal room model with-
out reverberation,i.e. only a direct path between the source and
the microphone array, they cannot handle reverberation very well.
To make TDE more robust to room reverberation, a cepstral pre-
filtering technique has been proposed [6] and techniques have been
developed which use a more realistic room model with reverber-
ation [1][7]. In [1] an eigenvalue decomposition algorithmhas
been developed to estimate the room impulse responses. Thisal-
gorithm performs much better for highly reverberant rooms than
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GCC-based methods. However this algorithm is only optimal if no
noise or only spatio-temporally white noise is present. In this paper
we extend the eigenvalue decomposition algorithm to the colored
noise case, by using a generalized eigenvalue decomposition or by
prewhitening the microphone signals.
In section 2 it is shown that if the length of the room impulse
responses is known or can be overestimated, the total room im-
pulse responses can be exactly identified from the noise subspace
of the speech and noise correlation matrix. In practice thissub-
space is computed with the generalized singular value decompo-
sition (GSVD) of a speech and noise data matrix or the singular
value decomposition (SVD) of a prewhitened speech data matrix.
Since for TDE only the time delay between the first peak (direct
path) of the impulse responses is required, it is not necessary to
estimate the complete impulse responses. In [1] an adaptiveproce-
dure is presented for estimating the time-delay between thepeaks
of two impulse responses. In section 3 this adaptive procedure will
be extended to the colored noise case.
Section 4 describes the simulation results, where the performance
and convergence speed of the algorithms is compared for different
signal-to-noise ratios (SNR). It is shown that time-delayscan be
robustly estimated for SNRs down to -5 dB and that the conver-
gence time is dependent on the SNR.

2. ESTIMATION OF ROOM IMPULSE RESPONSES

ConsiderM microphones where each microphone signalxm[k],
m = 0 . . . M − 1, consists of a filtered version of the clean speech
signals[k] and some additive noise,

xm[k] = sm[k] + nm[k] = hm[k] ⊗ s[k] + nm[k] , (1)

with sm[k] andnm[k] the speech and noise component received
at themth microphone at timek andhm[k] the room impulse re-
sponse between the speech source and themth microphone. The
goal is to estimatehm[k] from xm[k] without any knowledge of
s[k]. Knowing the complete room impulse responses, it is trivial
to compute the time-delays between the microphone signals.If the
room impulse responses have lengthL, then

s
T
i,L[k] hj = s

T
j,L[k] hi , (2)

with

s
T
m,L[k] =

�
sm[k] sm[k − 1] . . . sm[k − L + 1]

�
(3)

h
T
m =

�
hm[0] hm[1] . . . hm[L − 1]

�
. (4)

Although we do not explicitly attribute a time indexk to the im-
pulse responses, this does not mean that they cannot be time-variant.
In the following we will assumeM = 2, although it is quite easy
to extend the algorithms to the case of more than two microphones.
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2.1. Noiseless case

The2K × 2K clean speech correlation matrixRs
K is defined as

R
s
K =

�
Rs

22,K −Rs
21,K

−Rs
12,K Rs

11,K

�
, (5)

with
R

s
ij,K = E{si,K [k] sT

j,K [k]} . (6)

If K ≥ L and the impulse responsesh1 andh2 do not have com-
mon zeros and the autocorrelation matrix of the input signals[k]
has full rank [8], then the clean speech correlation matrixRs

K has
rankK +L−1, such that it is rank-deficient and its null-space has
dimensionK − L + 1.
If K = L, the null-space ofRs

L has dimension1, and the vector

v =

�
h1

h2

�
(7)

belongs to this null-space becauseRs
Lv = 0. If we take the eigen-

value decomposition,Rs
L = Vs∆sV

T
s , the unit-norm eigenvec-

tor, belonging to the only zero eigenvalue ofRs
L, contains a scaled

version of the two impulse responses, such that the time-delays can
be exactly estimated.
If K > L, the null-space ofRs

K containsK − L + 1 eigenvec-
tors, which all contain a different filtered version of the impulse
responses. By computing the QR-decomposition of the full null-
space or by applying successive QR-decompositions to two eigen-
vectors in the null-space, the correct impulse responses oflength
L can be identified [9].

2.2. Spatio-temporally white noise

If additive noise is present, we can define the noisy speech corre-
lation matrixRx

L and the noise correlation matrixRn
L similar as

in (5). Assuming that the clean speech signals[k] and the noise
componentsnm[k] are uncorrelated,

R
x
L = R

s
L + R

n
L . (8)

From the eigenvalue decomposition of the noisy speech correla-
tion matrix,Rx

L = Vx∆xV
T
x , the impulse responses can only be

identified if the noise is spatio-temporally white,i.e. Rn
L = σ2

nI.
Because in that caseRx

L = Vx(∆s + σ2
nI)VT

x , the eigenvector
corresponding to the smallest eigenvalueσ2

n contains a scaled ver-
sion of the impulse responses. Also forK > L, the procedure is
similar to the procedure in the noiseless case.

2.3. Spatio-temporally colored noise

If spatio-temporally colored noise is present, the room impulse re-
sponses can still be identified from the generalized eigenvalue de-
composition ofRx

L andRn
L or from the eigenvalue decomposition

of the prewhitened noisy speech correlation matrix. In bothcases,
Rn

L needs to be known or we have to able to estimateRn
L from

noise-only periods,e.g. using a voice activity detector (VAD). In
the following we will also assume thatRn

L has full rank.

1. The generalized eigenvalue decomposition (GEVD) ofRx
L

andRn
L is defined as [10]�

Rx
L = Q ΛxQ

T

Rn
L = Q ΛnQT ,

(9)

with Q an invertible, but not necessarily orthogonal matrix.
From (8) and (9) it follows that

(Rn
L)−1

R
s
L = (Rn

L)−1(Rx
L − R

n
L) (10)

= Q
−T (Λ−1

n Λx − I)QT . (11)

Since(Rn
L)−1Rs

L has rank2L − 1, one (and only one)
of the values of the diagonal matrixΛ−1

n Λx is equal to 1.
Therefore a columnq of Q−T exists for which

(Rn
L)−1

R
s
Lq = 0 , (12)

such thatRs
Lq = 0. Since the dimension of the null-space

of Rs
L is 1, the vectorq contains a scaled version of the

impulse responses.

2. The prewhitened correlation matrix̄Rx
L is defined as

R̄
x
L

△

= (Rn
L)−T/2

R
x
L(Rn

L)−1/2 , (13)

with (Rn
L)1/2 the Cholesky-factor of the noise correlation

matrix Rn
L, such thatRn

L = (Rn
L)T/2(Rn

L)1/2. From the
eigenvalue decomposition of̄Rx

L,

R̄
x
L = V̄xΛ̄xV̄

T
x , (14)

it follows thatR̄s
L can be written as

R̄
s
L

△

= (Rn
L)−T/2

R
s
L(Rn

L)−1/2 = V̄x(Λ̄x − I)V̄T
x .

SinceR̄s
L has rank2L−1, one of the values of the diagonal

matrix Λ̄x is 1 and a column̄v of V̄x exists for which

R̄
s
Lv̄ = (Rn

L)−T/2
R

s
L(Rn

L)−1/2
v̄ = 0 , (15)

such thatRs
L(Rn

L)−1/2v̄ = 0. Since the dimension of the
null-space ofRs

L is 1, the vector(Rn
L)−1/2v̄ contains a

scaled version of the impulse responses.

In fact, both algorithms are equivalent, since

Λ̄x = Λ
−1
n Λx, Q

−T = (Rn
L)−1/2

V̄x . (16)

However the adaptive versions of the algorithms, which willbe
used for practical TDE and which are defined in section 3, can
produce different results.
Also if K > L, the procedure for estimating the impulse responses
of lengthL is similar to the procedure in the noiseless case.

2.4. Practical computation

In practice we do not work with correlation matrices, but with data
matrices. Thep × 2L speech data matrixXL[k] is defined as

XL[k] =

26664 xT
2,L[k] −xT

1,L[k]
xT

2,L[k + 1] −xT
1,L[k + 1]

...
...

xT
2,L[k + p − 1] −xT

1,L[k + p − 1]

37775 , (17)

such that the empirical correlation matrixRx
L ≃ XL[k]T XL[k]/p.

The noise data matrixNL[k] is similarly defined.

1. GSVD-procedure. Instead of computing the GEVD ofRx
L

andRn
L, we compute the generalized singular value decom-

position (GSVD) ofXL[k] andNL[k], defined as [10]�
XL[k] = UxΣxQ

T

NL[k] = UnΣnQT .
(18)

2. Prewhitening-procedure. The prewhitened matrix̄XL[k] is

X̄L[k] = XL[k](Rn
L)−1/2 (19)

where the Cholesky-factor(Rn
L)1/2 is computed by the QR-

decomposition of the noise matrix,NL[k] = Qn(Rn
L)1/2.

The singular value decomposition ofX̄L[k] is defined as

X̄L[k] = ŪxΣ̄xV̄
T
x . (20)
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2.5. Simulation results

In our simulations we have filtered a 16 kHz speech segment of
160000 samples with 2 impulse responses (L = 20), which are
depicted in figure 1a. A stationary speech-like,i.e. with the same
long-term spectral characteristics as speech, noise signal has been
added and the SNR of the microphone signals is 10 dB.
Figure 1b and 1c show the estimated impulse responses (K = 20),
for the SVD-procedure (assuming no noise) and the GSVD (or
prewhitening) procedure. As can be clearly seen, the impulse re-
sponses are almost correctly estimated with the GSVD-procedure,
unlike the SVD-procedure. Because the assumption of uncorre-
lated speech and noise segments is not always completely satis-
fied, i.e. XT

L [k]NL[k] ≃ 0, small estimation errors occur in the
GSVD-procedure. In our simulations we noticed that the better
this assumption is satisfied,i.e. the higher the SNR and the longer
the speech and noise segments, the smaller the estimation error is.

3. ADAPTIVE PROCEDURE FOR TDE

In practice, room impulse responses can have thousands of taps.
Because of the correlated nature of speech, autocorrelation ma-
trices of the input signals[k] of these dimensions will be rank-
deficient. Therefore it is impossible to identify the complete room
impulse responses in practice. If we underestimate the length of
the impulse responses (K < L), the estimated impulse responses
are biased and do not necessarily exhibit any resemblance tothe
actual impulse responses, making it difficult (and practically im-
possible) to estimate the correct time-delays.
However, in [1] it has been shown that by using an adaptive eigen-
value decomposition algorithm, it is still possible to identify the
main peak in the impulse responses, even when underestimating
the length of the impulse responses. For TDE only this time-delay
between the first peak of the impulse responses is required.
The procedure iteratively estimates the eigenvector ofRx

K corre-
sponding to the smallest eigenvalue by minimizingvT Rx

Kv, sub-
ject to the constraintvT v = 1. The problem is solved by mini-
mizing the mean square value of the error signale[k],

e[k] =
vT xK [k]

‖v‖
, (21)

with xK [k] =
�

xT
2,K [k] −xT

1,K [k]
�T

. This can be done using
a gradient-descent constrained LMS-procedure:

v[k + 1] =
v[k] − µe[k] ∂e[k]

∂v[k]

‖v[k] − µe[k] ∂e[k]
∂v[k]

‖
, (22)

∂e[k]

∂v[k]
=

1

‖v[k]‖

n
xK [k] − e[k]

v[k]

‖v[k]‖

o
. (23)

Since the smallest eigenvalue ofRx
K is assumed to be zero and

normalization is included in each iteration, the gradient eventually
reduces to∂e[k]

∂v[k]
≃ xK [k], such that the update formula becomes

v[k + 1] =
v[k] − µe[k]xK [k]

‖v[k] − µe[k]xK [k]‖
. (24)

In [1] it is also indicated that initialization ofv and the choice
of the parametersK andµ are quite important for a good con-
vergence behavior. The time-delay is calculated as the difference
between the main peaks in the two estimated impulse responses or
as the peak of the correlation function between the two impulse
responses. It is also shown that this algorithm performs more ro-
bustly in highly reverberant rooms than GCC-based methods.
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Figure 1: (a) Impulse responsesh1 andh2, (b) Estimated impulse
responses with SVD-procedure and (c) GSVD-procedure

For the noise-robust algorithms, described in sections 2.3and 2.4,
it is also possible to derive adaptive versions. In the simulations
it will be shown that the adaptive version of the GSVD-procedure
and the prewhitening-procedure can produce different results.

1. For theGEVD-procedure, we need to iteratively estimate
the generalized eigenvector ofRx

K andRn
K corresponding

to the smallest generalized eigenvalue by minimizing the
cost functionqT Rx

Kq, subject toqT Rn
Kq = 1. This prob-

lem can be solved by minimizing the mean square value of
the error signale[k],

e[k] =
qT xK [k]p
qT Rn

Kq
=

qT xK [k]

‖(Rn
K)1/2q‖

. (25)

The gradient now becomes

∂e[k]

∂q[k]
=

1p
qT [k]Rn

Kq[k]

n
xK [k]−e[k]

Rn
Kq[k]p

qT [k]Rn
Kq[k]

o
.

Since the smallest generalized eigenvalue is 1, we cannot
further simplify this expression. To avoid roundoff error
propagation, we include a normalization step in each itera-
tion, such that the update formula can be written as

q̃[k + 1] = q[k] − µe[k]
�
xK [k] − e[k]Rn

Kq[k]
	

q[k + 1] =
q̃[k + 1]p

q̃T [k + 1]Rn
Kq̃[k + 1]

(26)

2. Theprewhitening-procedurecan be made adaptive by using
prewhitened speech data vectorsx̄K [k] = xK [k](Rn

K)−1/2.
The update formula now becomes

v̄[k + 1] =
v̄[k] − µe[k]

�
x̄K [k] − e[k]v̄[k]

	
‖v̄[k] − µe[k]

�
x̄K [k] − e[k]v̄[k]

	
‖

, (27)

and the actual impulse response isv[k] = (Rn
K)−1/2v̄[k].

As indicated in section 2.4, the Cholesky-factor(Rn
K)−1/2

can be updated during noise periods by inverse QR-updating.

4. SIMULATIONS

In our simulations we have filtered a 16 kHz speech signal of
80000 samples and a speech-like noise signal with two room im-
pulse responses (L = 2000), constructed with the image method
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Figure 2: Convergence plots of adaptive EVD, GEVD and
prewhitening-procedure (SNR = -5 dB, subsampling = 10)

[11]. The room dimensions are5m× 4 m× 2 m, the positions of
the 2 omni-directional microphones are

�
1 1 1

�
and

�
1 1 1.5

�
,

the speech source position is
�
2 2 1.7

�
and the noise source po-

sition is
�
1 1.5 1

�
. The correct time-delay for the speech source

is −12.183 samples (and9.746 samples for the noise source) and
is indicated as a dotted line in the figures. The reverberation time
T60 of the room is250 ms. We have performed simulations at dif-
ferent SNRs for the different algorithms (adaptive EVD, GEVD
and prewhitening-procedure). The filterlengthK is 100 and for
each algorithm we have chosen the stepsizeµ which gave the best
results. The subsampling factor is 10,i.e. only every 10 samples a
new iteration is performed.
Figure 2 shows the convergence plots of the time-delays if the SNR
is -5 dB. As can be seen the adaptive EVD-procedure does not con-
verge to the speech time-delay, but to the noise time-delay.The
adaptive GEVD-procedure has an irregular behavior, but converges
to the correct time-delay. The prewhitening-procedure is the pro-
cedure which converges fastest to the correct time-delay.
Figure 3 shows the convergence plots of the time-delays if the SNR
is 0 dB. All procedures now converge to the correct time-delay,
but the adaptive prewhitening and adaptive GEVD-procedureare
somewhat faster than the adaptive EVD-procedure. Note thatis
quite remarkable that the adaptive EVD-procedure converges to
the correct time-delay at an SNR of 0 dB, without any knowledge
of the noise characteristics.
From our simulations, we conclude that the adaptive prewhitening-
procedure is the most robust procedure in additive noise andthat it
converges to the correct time-delay for SNRs down to -5 dB. The
convergence time is dependent of the SNR (and of the parameters
of the algorithm), but for most low-SNR scenarios the convergence
time lies between 1 and 2 sec.

5. CONCLUSION

In this paper we have described an algorithm for robust time-delay
estimation in adverse acoustic situations with a large amount of
reverberation and additive noise. We have extended an adaptive
EVD-algorithm for time-delay estimation to noisy environments,
by using a GEVD or by prewhitening the microphone signals.
Simulations show that the adaptive prewhitening-algorithm is the
most robust algorithm for time-delay estimation in additive noise.
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Figure 3: Convergence plots of adaptive EVD, GEVD and
prewhitening-procedure (SNR = 0 dB, subsampling = 10)
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[6] A. Stéphenne and B. Champagne, “A new cepstral prefilter-
ing technique for time delay estimation under reverberant
conditions,”Signal Processing, vol. 59, pp. 253–266, 1997.

[7] P. C. Ching, Y. T. Chan, and K. C. Ho, “Constrained adap-
tation for time delay estimation with multipath propagation,”
IEE Proceedings-F, vol. 138, no. 5, pp. 453–458, Oct. 1991.

[8] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue,
“Subspace Methods for the Blind Identification of Multi-
channel FIR Filters,” IEEE Trans. Signal Processing, vol.
43, no. 2, pp. 516–525, Feb. 1995.

[9] S. Gannot and M. Moonen, “Subspace methods for multi-
microphone speech dereverberation,” inProc. Int. Workshop
on Acoustic Echo and Noise Control (IWAENC), Darmstadt,
Germany, Sept. 2001.

[10] G. H. Golub and C. F. Van Loan,Matrix Computations, MD :
John Hopkins University Press, Baltimore, 3rd edition, 1996.

[11] J. Allen and D. Berkley, “Image method for efficiently simu-
lating small-room acoustics,”Journal Acoust. Soc. of Amer-
ica, vol. 65, pp. 943–950, Apr. 1979.

W2001-4 IEEE Workshop on Applications of Signal Processing to Audioand Acoustics 2001


