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ABSTRACT
A stochastic gradient implementation of a generalised multi-
microphone noise reduction scheme, called the Spatially Pre-
processed Speech Distortion Weighted Multi-channel Wiener
Filter (SP-SDW-MWF), has recently been proposed in [1]. In
order to compute a regularisation term in the filter update formu-
las, data buffers are required in this implementation, resulting in
a large memory usage. This paper shows that by approximating
this regularisation term in the frequency-domain the memory us-
age (and the complexity) can be reduced drastically. Experimen-
tal results demonstrate that this approximation only gives rise to
a limited performance difference and that hence the proposed al-
gorithm preserves the robustness benefit of the SP-SDW-MWF
over the GSC (with Quadratic Inequality Constraint).

1. INTRODUCTION
Noise reduction algorithms in hearing aids and cochlear implants
are crucial for hearing impaired persons to improve speech in-
telligibility in background noise. Multi-microphone systems ex-
ploit spatial in addition to temporal and spectral information of
the desired and noise signals and are hence preferred to single-
microphone systems. For small-sized arrays such as in hearing
instruments, multi-microphone noise reduction however goes to-
gether with an increased sensitivity to errors in the assumed sig-
nal model such as microphone mismatch, reverberation, etc.
In [2] a generalised noise reduction scheme, called the Spa-
tially Pre-processed Speech Distortion Weighted Multi-channel
Wiener Filter (SP-SDW-MWF), has been proposed. It encom-
passes both the Generalised Sidelobe Canceller (GSC) and the
MWF [3, 4] as extreme cases and allows for in-between so-
lutions such as the Speech Distortion Regularised GSC (SDR-
GSC). By taking speech distortion explicitly into account in the
design criterion of the adaptive stage, the SP-SDW-MWF (and
the SDR-GSC) add robustness against model errors to the GSC.
Compared to the widely studied GSC with Quadratic Inequality
Constraint (QIC) [5], the SP-SDW-MWF achieves better noise
reduction for a given maximum speech distortion level.
In [1] cheap stochastic gradient algorithms for implementing the
SDW-MWF have been presented. These algorithms however
require large data buffers for calculating a regularisation term
required in the filter update formulas. By approximating this
regularisation term in the frequency-domain, (diagonal) speech
and noise correlation matrices need to be stored, such that the
memory usage is decreased drastically, while also the computa-
tional complexity is further reduced. Experimental results using
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a hearing aid demonstrate that this approximation results in a
small performance difference, such that the proposed algorithm
preserves the robustness benefit of the SP-SDW-MWF over the
QIC-GSC, while its computational complexity and memory us-
age are comparable to the NLMS-based algorithm for QIC-GSC.

2. SPATIALLY PRE-PROCESSED SDW-MWF
The SP-SDW-MWF, depicted in Figure 1, consists of a fixed spa-
tial pre-processor, i.e. a fixed beamformer A(z) and a blocking
matrix B(z), and an adaptiveSpeech DistortionWeighted Multi-
channel Wiener Filter (SDW-MWF) [2]. Note that this structure
strongly resembles the GSC [5, 6], where the standard adaptive
filter has been replaced by an adaptive SDW-MWF.
The desired speaker is assumed to be in front of the microphone
array (having M microphones), and an endfire array is used. The
fixed beamformer creates a so-called speech reference y0[k] =
x0[k] + v0[k] (with x0[k] and v0[k] respectively the speech and
the noise component of y0[k]) by steering a beam towards the
front, whereas the blocking matrix creates M−1 so-called noise
references yi[k] = xi[k] + vi[k], i = 1 . . . M − 1, by steering
zeroes towards the front. During speech-periodsthese references
consist of speech+noise, i.e. yi[k] = xi[k]+vi[k], whereas dur-
ing noise-only-periods the noise components vi[k] are observed.
We assume that the second-order statistics of the noise are suffi-
ciently stationary such that they can be estimated during noise-
only-periods and used during subsequent speech-periods. This
requires the use of a voice activity detection (VAD) mechanism.
Let N be the number of input channels to the multi-channel
Wiener filter (N = M if w0 is present, N = M − 1 other-
wise). Let the FIR filters wi[k] have length L, and consider the
L-dimensional data vectors yi[k], the NL-dimensional stacked
filter w[k] and stacked data vector y[k], defined as

yi[k]= [ yi[k] yi[k − 1] . . . yi[k − L + 1] ]
T (1)

w[k]=
ˆ

wT
M−N [k] wT

M−N+1[k] . . . wT
M−1[k]

˜T (2)

y[k]=
ˆ

yT
M−N [k] yT

M−N+1[k] . . . yT
M−1[k]
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Figure 1: Spatially Pre-processed SDW-MWF
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with T denoting transpose. The vector y[k] can be decomposed
into a speech component and a noise component, i.e. y[k] =
x[k] + v[k], with x[k] and v[k] defined similarly as in (3).
The goal of the SDW-MWF is to provide an estimate of the noise
component v0[k−∆] in the speech reference by minimising the
cost function [2]

J(w[k])=
1

µ
E

̨
˛
˛w

T [k]x[k]
˛
˛
˛

2
ff

| {z }

ε2
x

+E

̨
˛
˛v0[k−∆]−w

T [k]v[k]
˛
˛
˛

2
ff

| {z }

ε2
v

(4)
where ε2

x represents the speech distortion energy, ε2
v represents

the residual noise energy and the parameter µ ∈ [0,∞) provides
a trade-off between noise reduction and speech distortion [3]. As
depicted in Figure 1, the noise estimate wT [k]y[k] is then sub-
tracted from the speech reference in order to obtain the enhanced
output signal z[k]. Depending on the setting of µ and the pres-
ence/absence of the filter w0 on the speech reference, different
algorithms are obtained:

• Without w0, we obtain the Speech Distortion Regularised
GSC (SDR-GSC), where the standard ANC design crite-
rion (i.e. minimising the residual noise energy ε2

v) is sup-
plemented with a regularisation term 1

µ
ε2

x that takes into
account speech distortion due to signal model errors. For
µ = ∞, the standard GSC is obtained.

• With w0, we obtain the SP-SDW-MWF (for µ = 1,
we obtain an MWF, where the output signal z[k] is the
MMSE estimate of the speech component x0[k−∆]). In
[2] it has been shown that in comparison with the SDR-
GSC, the performance of the SP-SDW-MWF is even less
affected by signal model errors.

Different implementations exist for computing and updating the
filter w[k]. In [3, 4] recursive matrix-based implementations (us-
ing GSVD and QRD) have been proposed, while in [1] cheap
stochastic gradient implementations have been developed.

3. STOCHASTIC GRADIENT ALGORITHM (SG)
3.1. Time-Domain (TD) implementation
In [1] a stochastic gradient algorithm in the time-domain has
been developed for minimising the cost function J(w[k]), i.e.

w[k+1] = w[k]+ρ
h

v[k](v0[k−∆]−v
T [k]w[k])−r[k]

i

(5)

r[k] =
1

µ
x[k]xT [k]w[k] (6)

ρ =
ρ′

vT [k]v[k] + 1

µ
xT [k]x[k] + δ

, (7)

with ρ the normalised step size of the adaptive algorithm, δ
a small positive constant, and w[k], v[k], x[k] and r[k] NL-
dimensional vectors. For 1/µ = 0 and no filter w0 present, (5)
reduces to an NLMS-type update formula often used in GSC,
operated during noise-only-periods [6]. For 1/µ 6= 0, the ad-
ditional regularisation term r[k] limits speech distortion due to
signal model errors.
In order to compute (6), knowledge about the (instantaneous)
correlation matrix x[k]xT [k] of the clean speech signal is re-
quired, which is obviously not available. In order to avoid
the need for calibration, it is suggested in [1] to store L-
dimensional speech+noise-vectors yi[k], i = M−N . . . M−1
during speech-periods in a circular speech+noise-buffer By ∈
R

NL×Ly (similar as in [7]) and to adapt the filter w[k] using (5)

during noise-only-periods1, based on approximating the regular-
isation term in (6) by

r[k] =
1

µ

h

yBy [k]yT
By

[k] − v[k]vT [k]
i

w[k] , (8)

with yBy [k] a vector from the circular speech+noise-buffer By .
However, this estimate of r[k] is quite bad, resulting in a large
excess error, especially for small µ and large ρ′. Hence, it has
been suggested to use an estimate of the average clean speech
correlation matrix E{x[k]xT [k]} in (6), such that r[k] can be
computed as

r[k] =
1

µ
(1− λ̄)

kX

l=0

λ̄k−l
h

yBy [l]yT
By

[l] − v[l]vT [l]
i

·w[k] ,

(9)
with λ̄ a weighting factor and the step size ρ in (7) now equal to

ρ=
ρ′

vT [k]v[k]+ 1

µ
(1−λ̄)

kP

l=0

λ̄k−l

˛
˛
˛yT

By
[l]yBy [l]−vT [l]v[l]

˛
˛
˛+δ

.

For stationary noise a small λ̄, i.e. 1/(1 − λ̄) ∼ NL, suffices.
However, in practice the speech and the noise signals are often
spectrally highly non-stationary (e.g. multi-talker babble noise),
whereas their long-term spectral and spatial characteristics usu-
ally vary more slowly in time. Spectrally highly non-stationary
noise can still be spatially suppressed by using an estimate of the
long-termcorrelation matrix in r[k], i.e. 1/(1 − λ̄) À NL.
In order to avoid expensive matrix operations for computing
(9), it is assumed in [1] that w[k] varies slowly in time, i.e.
w[k] ≈ w[l], such that (9) can be approximated without ma-
trix operations as

r[k] = λ̄r[k−1]+(1−λ̄)
1

µ

h

yBy [k]yT
By

[k] − v[k]vT [k]
i

w[k] .

(10)
However, as will be shown in the next paragraph, this assump-
tion is not required in a frequency-domain implementation.

3.2. Efficient Frequency-Domain (FD) implementation
In [1] the SG-TD algorithm has been converted to a frequency-
domain implementation by using a block-formulation and
overlap-save procedures. However, the SG-FD algorithm in [1]
(Algorithm 1) requires the storage of large data buffers (with
typical buffer lengths Ly = 10000 . . . 20000). A substan-
tial memory (and computational complexity) reduction can be
achieved by the following two steps:

• When using (9) instead of (10) for calculating the regular-
isation term, correlation matrices instead of data buffers
need to be stored. The FD implementation of the to-
tal algorithm is then summarised in Algorithm 2, where
2L×2L-dimensional speech and noise correlation matri-
ces Sij

y [k] and Sij
v [k], i, j = M −N . . . M −1 are used

for calculating the regularisation term Ri[k] and (part of)
the step size Λ[k]. These correlation matrices are up-
dated respectively during speech-periods and noise-only-
periods2. However, this first step does not necessarily
reduce the memory and will even increase the computa-
tional complexity, since the correlation matrices are not
diagonal.

1In [1] it has been shown that storing noise-only-vectors vi[k], i =
M − N . . . M − 1 during noise-only-periods in a circular noise-buffer
Bv ∈ R

ML×Lv allows adaptation during speech+noise-periods.
2When using correlation matrices, filter adaptation can only take

place during noise-only-periods, since during speech-periods the desired
signal d[k] cannot be constructed from the noise-buffer Bv any more.

Proceedings of SPS 2004 (the 2004 IEEE Benelux Signal Processing Symposium)

196



Algorithm 2 FD implementation (without approximation)
Initialisation and matrix definitions:

Wi[0] = [ 0 · · · 0 ]
T

, i = M − N . . . M − 1

Pm[0] = δm, m = 0 . . . 2L − 1

F = 2L × 2L-dimensional DFT matrix

g =

»
IL 0L

0L 0L

–

, k = [ 0L IL ]

0L = L × L matrix with zeros, IL = L × L identity matrix

For each new block of L samples (per channel):

d[k] = [ y0[kL − ∆] · · · y0[kL − ∆ + L − 1] ]
T

Yi[k] = diag
n

F [ yi[kL − L] · · · yi[kL + L − 1] ]
T

o

Output signal:

e[k] = d[k] − kF
−1

M−1X

j=M−N

Yj [k]Wj [k], E[k] = Fk
T
e[k]

If speech detected:

S
ij
y [k] = (1 − λ)

kX

l=0

λk−l
Y

H
i [l]Fk

T
kF

−1
Yj [l]

If noisedetected: Vi[k] = Yi[k]

S
ij
v [k] = (1 − λ)

kX

l=0

λk−l
V

H
i [l]Fk

T
kF

−1
Vj [l]

Update formula (only during noise-only-periods):

Ri[k] =
1

µ

M−1X

j=M−N

h

S
ij
y [k] − S

ij
v [k]

i

Wj [k]

Wi[k + 1] = Wi[k] + FgF
−1

Λ[k]
n

V
H
i [k]E[k] − Ri[k]

o

with

Λ[k] =
2ρ′

L
diag

˘
P−1

0 [k], . . . , P−1

2L−1[k]
¯

Pm[k] = γPm[k − 1] + (1 − γ) (Pv,m[k] + Px,m[k])

Pv,m[k] =

M−1X

j=M−N

|Vj,m[k]|2

Px,m[k] =
1

µ

˛
˛
˛
˛
˛

M−1X

j=M−N

Sjj
y,m[k] − Sjj

v,m[k]

˛
˛
˛
˛
˛

• The correlation matrices in the frequency-domain can be
approximated by diagonal matrices, since FkT kF−1 in
Algorithm 2 can be well approximated by I2L/2 [8].
Hence, the speech and the noise correlation matrices are
updated as

S
ij
y [k] = λS

ij
y [k − 1] + (1 − λ)YH

i [k]Yj [k]/2 ,(11)

S
ij
v [k] = λS

ij
v [k − 1] + (1 − λ)VH

i [k]Vj [k]/2 ,(12)

leading to a significant reduction in memory usage (and
computational complexity), cf. Section 4, while having a
minimal impact on the performance and the robustness,
cf. Section 5. We will refer to this algorithm as Algo-
rithm 3.

Algorithm Complexity MIPS
GSC-SPA (3M − 1)FFT + 14M − 12 2.02

MWF-Algo1 (3N + 5)FFT + 28N + 6 3.10(a), 4.13(b)

MWF-Algo3 (3N +2)FFT+8N2+14N +3 2.54(a), 3.98(b)

Memory kWords
GSC-SPA 4(M − 1)L + 6L 0.45

MWF-Algo1 2NLy + 6LN + 7L 40.61(a), 60.80(b)

MWF-Algo3 4LN2 + 6LN + 7L 1.12(a), 1.95(b)

Table 1: Computational complexity and memory for M = 3,
L=32, fs =16 kHz, Ly =10000, (a) N =M − 1, (b) N =M

4. MEMORY AND COMPUTATIONAL COMPLEXITY
Table 1 summarises the computational complexity and the mem-
ory for the FD implementation of the QIC-GSC (computed us-
ing the NLMS-based Scaled Projection Algorithm (SPA) [5])
and the SDW-MWF (Algorithm 1 and 3). The complexity is
expressed as the number of operations in MIPS and the mem-
ory is expressed in kWords. We assume that a 2L-point FFT
requires 2L log2 2L operations (assuming the radix-2 FFT algo-
rithm). From this table we can draw the following conclusions:

• The computational complexity of the SDW-MWF (Algo-
rithm 1) with filter w0 is about twice the complexity of
the GSC-SPA (and even less without w0). The approxi-
mation in the SDW-MWF (Algorithm 3) further reduces
the complexity. However, this only remains true for a
small number of input channels, since the approximation
introduces a quadratic term O(N2).

• Due to the storage of the speech+noise-buffer, the mem-
ory usage of the SDW-MWF (Algorithm 1) is quite high
in comparison with the GSC-SPA. By using the approxi-
mation in the SDW-MWF (Algorithm 3), the memory us-
age can be drastically reduced. Note however that also for
the memory usage a quadratic term O(N2) is introduced.

5. EXPERIMENTAL RESULTS
In this paragraph it is shown that practically no performance dif-
ference exists between implementing the SDW-MWF using Al-
gorithm 1 or 3, such that the SDW-MWF using the proposed
implementation preserves its robustness benefit.

5.1. Set-up and performance measures
A 3-microphone BTE has been mounted on a dummy head in
an office room. The desired source is positioned in front of
the head (0◦). The noise scenario consists of three multi-talker
babble noise sources, positioned at 75◦, 180◦ and 240◦. The
desired signal and the total noise signal both have a level of
70 dB SPL at the centre of the head. For evaluation purposes,
the speech and the noise signal have been recorded separately.
In the experiments, the microphones have been calibrated in an
anechoic room with the BTE mounted on the head. A delay-
and-sum beamformer is used as fixed beamformer A(z). The
blocking matrix B(z) pairwise subtracts the time-aligned cali-
brated microphone signals. The filter length L = 32, the step
size ρ′ = 0.8, γ = 0.95 and λ = 0.999.
To assess the performance, the intelligibility weighted signal-to-
noise ratio improvement ∆SNRintellig is used, defined as

∆SNRintellig =
X

i

Ii(SNRi,out − SNRi,in), (13)

where Ii expresses the importance for intelligibility of the i-th
one-third octave band with centre frequency f c

i [9], and where
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Figure 2: SNR improvement of FD SP-SDW-MWF (with and
without approximation) in a multiple noise source scenario

SNRi,out and SNRi,in are respectively the output and the input
SNR (in dB) in this band. Similarly, we define an intelligibility
weighted spectral distortion measure SDintellig as

SDintellig =
X

i

IiSDi (14)

with SDi the average spectral distortion (dB) in the i-th one-third
band, calculated as

SDi =
1

(21/6 − 2−1/6) fc
i

Z
2
1/6fc

i

2−1/6fc
i

|10 log10 Gx(f)| df,

(15)
with Gx(f) the power transfer function of speech from the input
to the output of the noise reduction algorithm. To exclude the
effect of the spatial pre-processor, the performance measures are
calculated w.r.t. the output of the fixed beamformer.

5.2. Experimental results
Figures 2 and 3 depict the SNR improvement and the speech
distortion of the SP-SDW-MWF (with w0) and the SDR-GSC
(without w0) as a function of the trade-off parameter 1/µ, for
Algorithm 1 (no approx) and Algorithm 3 (approx). These fig-
ures also depict the effect of a gain mismatch ν2 = 4 dB at
the second microphone. One can observe that approximating
the regularisation term results in a small performance difference
(smaller than 0.5 dB). For some scenarios the performance is
even better for Algorithm 3 than for Algorithm 1, probably since
Algorithm 1 assumes that the filter w[k] varies slowly in time.
Hence, also when implementing the SDW-MWF using Algo-
rithm 3, it still preserves its robustness benefit. E.g. it can be
observed that the GSC (i.e. SDR-GSC with 1/µ = 0) will result
in a large speech distortion (and a smaller SNR improvement)
when microphone mismatch occurs. Both the SDR-GSC and the
SDW-MWF add robustness to the GSC, i.e. distortion increases
for increasing 1/µ. The performance of the SDW-MWF is even
hardly effected by microphone mismatch.

6. CONCLUSION
In this paper we have shown that the memory usage (and
the computational complexity) of the SDW-MWF can be re-
duced drastically by approximating the regularisation term in
the frequency-domain, i.e. by computing the regularisation term
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Figure 3: Speech distortion of FD SP-SDW-MWF (with and
without approximation in a multiple noise source scenario

using (diagonal) FD correlation matrices instead of TD data
buffers. It has been shown that approximating the regularisa-
tion term only results in a small performance difference, such
that the robustness benefit of the SDW-MWF is preserved at a
smaller computational cost, which is comparable to the NLMS-
based implementation for QIC-GSC.
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