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ABSTRACT

This paper describes some techniques for reducing the dampu
tional complexity of a GSVD-based optimal filtering techuécfor
noise reduction in multi-microphone speech signals. It teen
shown that this GSVD-based optimal filtering technique hiasta
ter noise reduction performance than standard beamfortaoig
nigues and is more robust to deviations from the nominahsitn
[1] [2]. However the computational complexity of this tedtume
is too high to be amenable for real-time implementation.

First, the computational complexity is reduced by usingurec
sive and approximate (so called square root-free) GSVDatiipgl
techniques, without a significant loss in performance. B8elyo
the complexity is reduced by using downsampling technigées
drawback of using downsampling techniques is slower cgarere
towards the optimal filter, which is however not a major peohl
when considering quite stationary acoustic environments.

1. INTRODUCTION

In many speech communication applications, like hands-fne-
bile telephony and audio-conferencing, the recorded $psig
nals are corrupted by acoustic background noise and echalsig
(see figure 1). This causes a signal degradation which cdrtdea
total unintelligibility of the speech and which decreasesperfor-
mance of speech coding and speech recognition devicesefoher
efficient noise and echo reduction techniques are called for
Recently a signal enhancement technique, based on a geedral
singular value decomposition (GSVD), has been proposeithwvh
amounts to a specific optimal filtering technique for the celsere
the so-called ‘desired response’ signal cannot be observae
optimal filter can be written as a function of the generaligiedju-
lar vectors and singular values of a so-called speech ase daita
matrix [1]. It has been shown that this optimal filtering teictue
outperforms classical beamforming techniques for all nese-
tion times [2]. This technique is briefly discussed in setfo

The main disadvantage of the algorithm is its high comportei
complexity. Recalculating the GSVD of the speech and naige d

Simon Doclo is a Research Assistant supported by the |.\Wl&mn{ish In-
stitute for Scientific and Technological Research in IngystMarc Moo-
nen is a Research Associate with the F.W.O.-Vlaanderend(FarrScien-
tific Research-Flanders). This research work was carri¢énhahe frame
of the Concerted Research Actiddathematical Engineering Techniques
for Information and Communication Systeoighe Flemish Government,
the F.W.O. Research Project nr. G.0295.Bgsign and implementation
of adaptive digital signal processing algorithms for braehd applica-
tionsand the IT-projecMultimicrophone Signal Enhancement Technigues
for handsfree telephony and voice controlled systems (MU&of the
.W.T., and was partially sponsored by Philips ITCL.

matrix and the optimal filter from scratch for every samplguiees
too many computations (see section 3). To reduce the cortypéex
recursive GSVD-updating algorithm, which computes the GSV
at timek using the decomposition at timie— 1, has to be used.
This GSVD-updating algorithm, together with its (approzie)
square root-free implementation, is discussed in secéaasd 5.

It is shown that the performance of these recursive algostis
about equal to the performance of the non-recursive alyuarit

A further complexity reduction can be achieved by not perfiog

a full sweep during each update or by using downsamplieg,
the GSVD and the optimal filter are not updated for every sampl
In section 7 it will be shown that when using downsamplindntec
nigues, the convergence speed will be slower. Section 8 ateap
the computational complexity for all discussed techniques

2. GSVD-BASED OPTIMAL FILTERING

The GSVD-based optimal filtering technique [1] considersbpr
lems where the observed signal veatare RY contains a signal-
of-interests, € RY (e.g. a speech signal) and an additive noise
termny, € RY, such thatu, = s, + ny.

If we consider speech applications and use a robust spassa-n
detection algorithm [3], noise-only observations can beengur-
ing speech pauses. Our goal is to reconstruct the signaterest

sy from ui, by means of a linear filteW e R™V*Y usings, =
uf'W. It can be shown that using a MMSE-criterion the optimal

filter W[v’f,]F attimek is equal to
WWF:S {uk . u{}_l (8 {uk . u{}fé' {nk nz}) (1)

In practice this filter is computed by means of a generalized s
gular value decomposition (GSVD) [4] of a speech data matrix
Ay € RPXN, containing speech vectors, and a noise data matrix
By € RIXN, containing noise vectors,

T T
Uk —pt1 Ng—g+1
A = . B = . 2)
uk;l nk;l
Ug ng

Attime &, the GSVD of the matriceA ;) andBy, is defined as
Apy Ua - St - X(ig
By

= Uk - B[k 'Xf;;p
with YAk = diag{ai[k]}, Yk = diag{m[k]}, Uapw andUB[k]
orthogonal matricesX[x; an invertible (but not necessarily orthog-
onal) matrix ano% the generalized singular values. Equation 3

can be rewritten as

@)
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Uapr) - Rap - Qg

4)
Uk - R - Q[Q;;]»

with R i, € RV*N andRp(, € RV upper triangular matri-
ces having parallel rows ar@,; € RY*" an orthogonal matrix.
Substituting these formulas into (1) gives

P i
X, T diag{1 — £
. 995

W[VI\C/]F = } : X[Tk] ®)
(Rﬂg’[k])2 T
gt Rapw - Q) (6)
(RA[k])2 [k] [k]

We are also interested in the diagonal elements of the eaor ¢
variance matrixt {e,, - e/ }, with e, = sx — uf W, since these
elements indicate how well th&"* component o, is estimated.
The smallest element on the diagonal corresponds to thesbest
timator, which is the corresponding columnW y, ». However
simulations indicate that using the middle columt}, » of Wy ¢
instead of the optimal column does not decrease performance
When considering/ microphones where each microphone signal
m;(k), j =1...M, consists of a filtered version of the speech
and an additive noise term, the vector € R™* takes the form

mysi ]T ©)

mi(k—L+1)]. (8)

=Qu - Rajyg ~diag{1f§

ur = [ mijg

m; = [m;(k) m;(k—1)

moyg

The enhanced speech sigigt) is then computed as
S=1[8(k-p+1) 3k —1) 3(k)]" = Ap - wivs.

This can be considered a multi-channel filtering operatidmere
each of theV channels is filtered with ah-taps FIR-filter.

In each time step new samples;(k), j = 1... M, are present.
During speech periods new data vectors are appended togbetsp
matrix A, while during noise periods they are appended to the
noise matrixB . Since in each time step the mati;; or By,

changes, the GSVD and the optimal filtw[v"“,]F need to be re-
computed. In section 3 an algorithm for computing this GS¥D i
discussed, while in sections 4 and 5 it is shown that this G8&D
be computed more efficiently using a recursive algorithm.

3. JACOBI-TYPE GSVD COMPUTATION

For brevity the time indices will be omitted in this section. The
GSVD of the matricesA andB can be computed as follows (for
details see [4]). First, the matric#s and B are reduced to upper
triangular form by a QR-decomposition,

9)

A=Qs - Rs, B=Qp: Rsp
- =~ <~

pxXN NXN gxN NXxXN

whereR4 and R are square upper triangular, adh andQp
have orthonormal columns. The GSVD Af and B readily fol-
lows from the GSVD ofR 4 andR .

The GSVD ofR4 andRp is computed by carrying out an iterative
procedure, where a series of Givens transformations iseapfu
R4 andRp in order to yield upper triangular factors with parallel
rowsX 4 - R andXp - R. Each iteration essentially reduces to a
GSVD of an elementarg x 2 block on the main diagonal, par-
allelizing the rows of Ra }:,:+1 and{ Rz }:,:+1. When the pivot
indexi repeatedly takes up all possible values

i=1,2,...,N—1, (10)

this is called one sweep (& — 1 GSVD-steps).
The GSVD of{ Ra};,i+1 and{Rg}i :+1 corresponds to the SVD
of the2 x 2 upper triangular block

{Ro}iivs ={Ra}tiivr - {Rs}iii1,

followed by an orthogonal transformation to upper-trialagae
{Ra}ii+1 and{Rp}ii+1. The SVD of the elementary x 2
upper triangular blocK R¢ }: ;41 comes down to calculating the
Givens rotation® and¢ (e.g.see [4]) such that

(11

ric’i* 0 | —sin® cosf rlcz 1"8“'1
0 Tic+1,i+1* o cosf sinf 0 rg'l’i‘*‘l
—sing cos¢
{ cos¢ sing } ' (12)

Since computing a full GSVD require§ sweeps, the total com-
plexity (defined as the total number of additions and muttégp!
tions) amounts t8N?(p + ¢ — 2N/3) (QR-decompositions) +
18N (GSVD). For typical values af, ¢ and N the complexity of
this algorithm is too high to be amenable for real-time immpée-
tation (see section 8). Therefore we will consider more ieffic
recursive GSVD-updating algorithms.

4. RECURSIVE GSVD-UPDATING ALGORITHM

Instead of recomputing the GSVD from scratch for each tirap,st
recursive GSVD-updating algorithms compute the GSVD aéetim
k using the decomposition at timke— 1. In [5] [6] a Jacobi-type
(G)SVD-updating algorithm is described. Suppose thatrae i
k — 1, the upper triangular factors are reducedRq;—,; and
Rp,—1) with approximately parallel rows, such that

A1) = Uap—y - Rap—1 - Q)

(13)
B = Usg-1 BBr-1 'Qﬂ_lp

of which only R a[x—1}, Rpjr—1) and@Q,—1) are stored. At time
k a new data vectaun (speech) ony (noise) is present, such that
we need to recompute the GSVD Af;,; andBy;, defined as

Ao Ap A B
A[k]:{ el } B[k]:{ k1] } (14)

ug ny
with \s an exponential weighting factor for speech angdan ex-
ponential weighting factor for noise (¥ = 1 no weighting is
performed). In fact, eithen;, or n; are equal ta0, which can
lead to a further complexity reduction. For the general case
can rewriteA ,; andBy; as

_ — -
Uape— || : As - Rap
A= NI [*”}.T, 15
[k 19| {uﬂ]-QUH] Q- (15)
[[o o] [3] )
Ublk-1 . An - Rpe—1
By = 0 {" [_]}~T_.16
%] n’[z;c]'Q[k—l] Qir—11- (16)
-m 1

First, the triangular factors are restored by performing@@Rates
with the transformed input vectois),, = ufy; - Qu—1) Or i}y, =
nﬁ] . Q[k—l.]' QR-updating can be eas.ily performed by using or-
thogonal Givens transformations, zeroing the elementbehat-
tom row. Since eithen or ny is 0, only one QR-update is
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required. Assuming that speech is presen}( = 0), the QR- For solving an elementary x 2 SVD with approximate formulas,
update forA;; can be written as the relevant transformation formula becomes (see equafipn

4,0 i1 ; . i 4,41
ré (£ B sinf cosf et re
0 T’CH”“ cosf  sinf 0 rgL it

A Ualk-1j B T 17
k] = “Qap) Rap - Q-1 (17) —sing cos¢ 18
oo el
. wherer ™! is only approximately annihilated(; ™ | < [r57t)).
Alk)

Several approximate formulas can be used for calculatimg)
andtan ¢, which do not require any square roots [8] [9].

For a square root-free GSVD-procedure, the matricas Ug,
Ra, Rp andQ are factorized as

HereQ 4y is an(IV + 1) x N matrix with orthogonal columns,
which needs not be computed explicitly. The matfy, 1) is not
altered by the QR-update. If noise is preseam}{ = 0), a QR-

update forB;) needs to be performed. Ra=(DA,)2Ra(Deot)?, Rp = (D2 )2 Rp(Deot)? (19)
Secondly, the GSVD-procedure is resumed in order to péiele _ A L1 _ B .1 _ 1

the rows ofRA[k] andRB[k]. A fixed number of sweeps)is per- Ua=Ua(Drow)?,Up = Up(Drow)?, @ = Q(Deot) (20)
formed, where the inOt indextakes up the values= 1,2,...,r with Dﬁ)wa DrB;w andD..; diagona| row and column sca”ng ma-
(see equation 10). Typically one sweep is performed< 1), trices. In a GSVD-update only the diagonal matrig&s,,,, DE .,
where the pivot index takes up all possible values-(N — 1) [6]. D.o1, the upper triangular matricés., Rz, and the matrixQ are
The tOtal GSVD'Update procedure can be summarized as ®llow stored and updated’ without Calcu|ating any square ro@t@:[ﬁ
(assuminga(y = 0) : The actual complexity reduction results from the fact thatrow

1. matrix-vector multiplication and QR-update and column transformation matrices contain ones along ithg d

- A - Ra onal (or anti-diagonal), hereby halving the number of nplitta-
Ra <= Qap - [ o’ Q } tions required. If we substitute these factorizations igoation
Iel 4, the GSVD ofA ;) andBy;) can be written as

2. GSVD-steps 7 > 9
S p App = Uap- Dfow[k] “Rapg) - Deoii) - Q[q;;] 9
forj=1, ... ,s B - T DB R D AT (21)
fori=1,...,r W = Usi - Drowp - otk - Deottrs - Qi
Ra < Ohpg Ra-Qu such that the optimal fiIteWL’;]F has to be computed as
T  Rn. . Byii i 2
Rp <= ®pp R Qra WE/I;,]F = Q[k] : R;[lk] - diag{1 — p me[k] (RB[k]) }.
— . 5 A (pi )2
end Q Q Q[k, ] q Drow[k] (RA[k])
end R Deotg - Q- (22)

If exponential weighting factors, and),, are used, the facter/q

in equation 22 has to be replaced fly— \2)/(1 — \2).

The complexity of one square root-free GSVD-update is etpal
2.5N? (matrix-vector multiplication) 2 N2 (square root-free QR-
update) +s-r- (14N —r) (square root-free GSVD-steps). ko=

1 andr = N — 1 this amounts td7.5N2, which is less expensive
than ‘conventional’ (non square root-free) GSVD-updating

The matrices 41, ;) and Py, ;) correspond to the Givens rota-
tions@ and¢ solving the elementary x 2 SVD (see equation 12),
while Q1,5 corresponds to the orthogonal transformation upper-
triangularizing{ R }:,:+1 and{ Rz }; ;+1 in thei'™ iteration.

The complexity of one GSVD-update is equal2dN? (matrix-
vector multiplication) +3N? (QR-update) s - r - 18 N (GSVD-
steps). Fos = 1 andr = N — 1 this amounts t@3.5N2.

6. SSIMULATIONS
5. SQUARE ROOT-FREE IMPLEMENTATION
Simulations have been performed, comparing the performahc
the non-recursive GSVD-update algorithm with the two reiwer
algorithms. The simulation environment is depicted in fegly in

The computational complexity can be further reduced by gisin
square root-free implementations for the QR-updates anthé®

ca[culation of elementary x 2 SVDs. The calculation of the ro- | i o microphone array, as well as a speech and noise source
tation angles for a QR-update and for an elementary 2 SVD is present. In our simulations we udé = 5 microphones. The

requires respectively one and three square roots. filterlength per channel i& = 10, such thatV = ML = 50. No
Gentleman has developed a square root-free procedure fer QRexponentiaI weighting is performed, such that= A, = 1.
updating where use is made of a one-sided factorization®f th 114 signal-to-noise ratio (SNR) of t’he noisy first micropaig-
upper triangulari-matrix [7]. However, since the above SVD  5j5 5.1 dB. Using the non-recursive GSVD-based filterigga
schemes as such do not lend themselves to square root-free iMgihm the SNR of the enhanced signal is 16.1 dB. For the reeirs
plementation, alter_natlve scheme_s based on approximatefo algorithms figure 2 shows the SNR of the enhanced signal for di
las for the calculation of the rotation anglésand ¢ have to be ferent values of (number of sweeps) and(GSVD-steps). These
considered [8]. When combined with a generalized Gentleman g res show that there is no difference in performance berviee
procedure with a two-sided factorization of the upper giaar ‘conventional’ and the square root-free GSVD-updatingetgm
R-factor, these schemes eventually yield square root-fkée-S (all approximations). When performing more than one swérep
updating algorithms [9], which can be easily extended toasgu SNR only marginally improves. When performing less thén- 1 '

root-free GSVD-updating algorithms [6]. GSVD-steps, the SNR gradually decreases.
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Figure 1: Simulation environment
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Figure 2: Effect of number of sweeps and GSVD-steps on SNR

7. DOWNSAMPLING TECHNIQUES

Without any loss in performance the computational compedn
be further reduced for stationary acoustic environmentagigg
downsampling techniques. In this context downsamplingmaea
that the GSVD ofA ;) andBy and the fiIterWL’“V]F are not up-
dated for every sample, but that the GSVD is updated edgry
samples and that the filter is updated evéfysamples. The draw-

back of using downsampling is slower convergence towards th

optimal filter (corresponding to highest SNR). Figure 3 shohe
energy of the residual noise in the enhanced signal for reiffie

values ofd; = d,. This figure shows that a higher downsampling

factor results in slower convergence, implying that dowmsiing
has to be limited in non-stationary acoustic environments.

8. COMPUTATIONAL COMPLEXITY

The complexity of the different GSVD-update algorithms ks

ready been computed in sections 3, 4 and 5. The complexity of

the update of the fiIteW[V"“,]F is always4N2. The following table
shows the total computational complexity (in floating paiper-
ations per second) for the different GSVD-update algoritiies-
suming thap < ¢, s = 1, = N — 1). The numerical results are
obtained forN = 50, ¢ = 4000 and fs; = 8 kHz and are shown in
case of no downsampling and downsampling with= d, = 20.

| | Non-recursive | Recursive | Square root-freg
- (1TN? +3qN?) | 2507 4 47 T ATGNT 4 437
d= 257 Gflops 550 Mflops 430 Mflops
d=20 | 12.9 Gflops 27.5 Mflops 21.5 Mflops

Effect of downsampling on convergence speed
25 T T T T

down=100
-

Noise energy

N

~ no downsampling

25 ; ; . ; ; ;

0 50 100 150 200 250 300 350 400 450
Frame (20 ms)

Figure 3: Effect of downsampling on convergence speed

9. CONCLUSION

In this paper we have shown that by using recursive and square
root-free GSVD-updating techniques and by using downsegpl
techniques, the computational complexity of a GSVD-bag#d o
mal filtering scheme for noise reduction can be consideredsly
duced without a significant loss in performance, making téni$-
nigue amenable for real-time implementation.
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