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ABSTRACT

This paper describes some techniques for reducing the computa-
tional complexity of a GSVD-based optimal filtering technique for
noise reduction in multi-microphone speech signals. It hasbeen
shown that this GSVD-based optimal filtering technique has abet-
ter noise reduction performance than standard beamformingtech-
niques and is more robust to deviations from the nominal situation
[1] [2]. However the computational complexity of this technique
is too high to be amenable for real-time implementation.
First, the computational complexity is reduced by using recur-
sive and approximate (so called square root-free) GSVD-updating
techniques, without a significant loss in performance. Secondly,
the complexity is reduced by using downsampling techniques. A
drawback of using downsampling techniques is slower convergence
towards the optimal filter, which is however not a major problem
when considering quite stationary acoustic environments.

1. INTRODUCTION

In many speech communication applications, like hands-free mo-
bile telephony and audio-conferencing, the recorded speech sig-
nals are corrupted by acoustic background noise and echo signals
(see figure 1). This causes a signal degradation which can lead to
total unintelligibility of the speech and which decreases the perfor-
mance of speech coding and speech recognition devices. Therefore
efficient noise and echo reduction techniques are called for.
Recently a signal enhancement technique, based on a generalized
singular value decomposition (GSVD), has been proposed, which
amounts to a specific optimal filtering technique for the casewhere
the so-called ‘desired response’ signal cannot be observed. The
optimal filter can be written as a function of the generalizedsingu-
lar vectors and singular values of a so-called speech and noise data
matrix [1]. It has been shown that this optimal filtering technique
outperforms classical beamforming techniques for all reverbera-
tion times [2]. This technique is briefly discussed in section 2.
The main disadvantage of the algorithm is its high computational
complexity. Recalculating the GSVD of the speech and noise data
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matrix and the optimal filter from scratch for every sample requires
too many computations (see section 3). To reduce the complexity a
recursive GSVD-updating algorithm, which computes the GSVD
at timek using the decomposition at timek − 1, has to be used.
This GSVD-updating algorithm, together with its (approximate)
square root-free implementation, is discussed in sections4 and 5.
It is shown that the performance of these recursive algorithms is
about equal to the performance of the non-recursive algorithm.
A further complexity reduction can be achieved by not performing
a full sweep during each update or by using downsampling,i.e.
the GSVD and the optimal filter are not updated for every sample.
In section 7 it will be shown that when using downsampling tech-
niques, the convergence speed will be slower. Section 8 compares
the computational complexity for all discussed techniques.

2. GSVD-BASED OPTIMAL FILTERING

The GSVD-based optimal filtering technique [1] considers prob-
lems where the observed signal vectoruk ∈ R

N contains a signal-
of-interestsk ∈ R

N (e.g. a speech signal) and an additive noise
termnk ∈ R

N , such thatuk = sk + nk.
If we consider speech applications and use a robust speech-noise
detection algorithm [3], noise-only observations can be made dur-
ing speech pauses. Our goal is to reconstruct the signal-of-interest
sk from uk by means of a linear filterW ∈ R

N×N using ŝk =
u

T
k W. It can be shown that using a MMSE-criterion the optimal

filter W
[k]
WF at timek is equal to
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In practice this filter is computed by means of a generalized sin-
gular value decomposition (GSVD) [4] of a speech data matrix
A[k] ∈ R

p×N , containing speech vectors, and a noise data matrix
B[k] ∈ R

q×N , containing noise vectors,

A[k] =

26664 u
T
k−p+1

...
u

T
k−1

u
T
k

37775 B[k] =

26664 n
T
k−q+1

...
n

T
k−1

n
T
k

37775 . (2)

At time k, the GSVD of the matricesA[k] andB[k] is defined as(
A[k] = UA[k] · ΣA[k] · X

T
[k]

B[k] = UB[k] · ΣB[k] · X
T
[k],

(3)

with ΣA[k] = diag{σi[k]}, ΣB[k] = diag{ηi[k]}, UA[k] andUB[k]

orthogonal matrices,X[k] an invertible (but not necessarily orthog-
onal) matrix and

σi[k]

ηi[k]
the generalized singular values. Equation 3

can be rewritten as
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A[k] = UA[k] · RA[k] · Q

T
[k]

B[k] = UB[k] · RB[k] · Q
T
[k],

(4)

with RA[k] ∈ R
N×N andRB[k] ∈ R

N×N upper triangular matri-
ces having parallel rows andQ[k] ∈ R

N×N an orthogonal matrix.
Substituting these formulas into (1) gives

W
[k]
WF =X−T

[k] · diag{1 −
p

q

η2
i[k]

σ2
i[k]

} · XT
[k] (5)

=Q[k] · R
−1
A[k] · diag{1−

p

q

(Rii
B[k])

2

(Rii
A[k])

2
} · RA[k] · Q

T
[k] (6)

We are also interested in the diagonal elements of the error co-
variance matrixE

�
ek · eT

k

	
, with ek = sk − u

T
k W, since these

elements indicate how well theith component ofsk is estimated.
The smallest element on the diagonal corresponds to the bestes-
timator, which is the corresponding column ofWWF . However
simulations indicate that using the middle columnw

m
WF of WWF

instead of the optimal column does not decrease performance.
When consideringM microphones where each microphone signal
mj(k), j = 1 . . . M , consists of a filtered version of the speech
and an additive noise term, the vectoruk ∈ R

ML takes the form

uk =
�

m1k m2k . . . mMk

�T
(7)

mjk =
�

mj(k) mj(k − 1) . . . mj(k − L + 1)
�
. (8)

The enhanced speech signalŝ(k) is then computed as

ŝk =
�
ŝ(k − p + 1) . . . ŝ(k − 1) ŝ(k)

�T
= A[k] ·w

m
WF .

This can be considered a multi-channel filtering operation,where
each of theM channels is filtered with anL-taps FIR-filter.
In each time step new samplesmj(k), j = 1 . . . M , are present.
During speech periods new data vectors are appended to the speech
matrix A[k], while during noise periods they are appended to the
noise matrixB[k]. Since in each time step the matrixA[k] or B[k]

changes, the GSVD and the optimal filterW
[k]
WF need to be re-

computed. In section 3 an algorithm for computing this GSVD is
discussed, while in sections 4 and 5 it is shown that this GSVDcan
be computed more efficiently using a recursive algorithm.

3. JACOBI-TYPE GSVD COMPUTATION

For brevity the time indicesk will be omitted in this section. The
GSVD of the matricesA andB can be computed as follows (for
details see [4]). First, the matricesA andB are reduced to upper
triangular form by a QR-decomposition,

A = QA|{z}
p×N

· RA|{z}
N×N

, B = QB|{z}
q×N

· RB|{z}
N×N

(9)

whereRA andRB are square upper triangular, andQA andQB

have orthonormal columns. The GSVD ofA andB readily fol-
lows from the GSVD ofRA andRB .
The GSVD ofRA andRB is computed by carrying out an iterative
procedure, where a series of Givens transformations is applied to
RA andRB in order to yield upper triangular factors with parallel
rowsΣA · R andΣB · R. Each iteration essentially reduces to a
GSVD of an elementary2 × 2 block on the main diagonal, par-
allelizing the rows of{RA}i,i+1 and{RB}i,i+1. When the pivot
indexi repeatedly takes up all possible values

i = 1, 2, . . . , N − 1, (10)

this is called one sweep (=N − 1 GSVD-steps).
The GSVD of{RA}i,i+1 and{RB}i,i+1 corresponds to the SVD
of the2 × 2 upper triangular block

{RC}i,i+1 = {RA}i,i+1 · {RB}−1
i,i+1, (11)

followed by an orthogonal transformation to upper-triangularize
{RA}i,i+1 and{RB}i,i+1. The SVD of the elementary2 × 2
upper triangular block{RC}i,i+1 comes down to calculating the
Givens rotationsθ andφ (e.g.see [4]) such that�

ri,i
C

∗

0

0 ri+1,i+1
C

∗

�
=

�
− sin θ cos θ

cos θ sin θ

� �
ri,i

C ri,i+1
C

0 ri+1,i+1
C

��
− sin φ cos φ

cos φ sinφ

�
. (12)

Since computing a full GSVD requiresN sweeps, the total com-
plexity (defined as the total number of additions and multiplica-
tions) amounts to3N2(p + q − 2N/3) (QR-decompositions) +
18N3 (GSVD). For typical values ofp, q andN the complexity of
this algorithm is too high to be amenable for real-time implemen-
tation (see section 8). Therefore we will consider more efficient
recursive GSVD-updating algorithms.

4. RECURSIVE GSVD-UPDATING ALGORITHM

Instead of recomputing the GSVD from scratch for each time step,
recursive GSVD-updating algorithms compute the GSVD at time
k using the decomposition at timek − 1. In [5] [6] a Jacobi-type
(G)SVD-updating algorithm is described. Suppose that at time
k − 1, the upper triangular factors are reduced toRA[k−1] and
RB[k−1] with approximately parallel rows, such that(

A[k−1] = UA[k−1] · RA[k−1] · Q
T
[k−1]

B[k−1] = UB[k−1] · RB[k−1] · Q
T
[k−1],

(13)

of which onlyRA[k−1], RB[k−1] andQ[k−1] are stored. At time
k a new data vectoruk (speech) ornk (noise) is present, such that
we need to recompute the GSVD ofA[k] andB[k], defined as

A[k] =

�
λs · A[k−1]

uk

�
, B[k] =

�
λn · B[k−1]

nk

�
, (14)

with λs an exponential weighting factor for speech andλn an ex-
ponential weighting factor for noise (ifλ = 1 no weighting is
performed). In fact, eitheruk or nk are equal to0, which can
lead to a further complexity reduction. For the general casewe
can rewriteA[k] andB[k] as

A[k] =

26664 UA[k−1]

0.
.
.
0

0 . . . 0 1

37775·� λs · RA[k−1]

u
T
[k] · Q[k−1]

�
· QT

[k−1] (15)

B[k] =

26664 UB[k−1]

0.
.
.
0

0 . . . 0 1

37775·� λn · RB[k−1]

n
T
[k] · Q[k−1]

�
· QT

[k−1]. (16)

First, the triangular factors are restored by performing QR-updates
with the transformed input vectors̃uT

[k] = u
T
[k] · Q[k−1] or ñT

[k] =

n
T
[k] · Q[k−1]. QR-updating can be easily performed by using or-

thogonal Givens transformations, zeroing the elements on the bot-
tom row. Since eitheru[k] or n[k] is 0, only one QR-update is
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required. Assuming that speech is present (n[k] = 0), the QR-
update forA[k] can be written as

A[k] =

26664 UA[k−1]

0.
.
.
0

0 . . . 0 1

37775 · QA[k]| {z }
ŨA[k]

·R̃A[k] · Q
T
[k−1] (17)

HereQA[k] is an(N + 1) × N matrix with orthogonal columns,
which needs not be computed explicitly. The matrixQ[k−1] is not
altered by the QR-update. If noise is present (u[k] = 0), a QR-
update forB[k] needs to be performed.
Secondly, the GSVD-procedure is resumed in order to parallelize
the rows ofR̃A[k] andR̃B[k]. A fixed number of sweeps (s) is per-
formed, where the pivot indexi takes up the valuesi = 1, 2, . . . , r
(see equation 10). Typically one sweep is performed (s = 1),
where the pivot index takes up all possible values (r = N −1) [6].
The total GSVD-update procedure can be summarized as follows
(assumingn[k] = 0) :

1. matrix-vector multiplication and QR-update

RA ⇐ QT
A[k] ·

�
λs · RA

u
T
[k] · Q

�
2. GSVD-steps

for j = 1, . . . , s
for i = 1, . . . , r

RA ⇐ ΘT
A[k,i] · RA · Q[k,i]

RB ⇐ ΦT
B[k,i] · RB · Q[k,i]

Q ⇐ Q · Q[k,i]

end
end

The matricesΘA[k,i] andΦB[k,i] correspond to the Givens rota-
tionsθ andφ solving the elementary2×2 SVD (see equation 12),
while Q[k,i] corresponds to the orthogonal transformation upper-
triangularizing{RA}i,i+1 and{RB}i,i+1 in theith iteration.
The complexity of one GSVD-update is equal to2.5N2 (matrix-
vector multiplication) +3N2 (QR-update) +s · r · 18N (GSVD-
steps). Fors = 1 andr = N − 1 this amounts to23.5N2.

5. SQUARE ROOT-FREE IMPLEMENTATION

The computational complexity can be further reduced by using
square root-free implementations for the QR-updates and for the
calculation of elementary2 × 2 SVDs. The calculation of the ro-
tation angles for a QR-update and for an elementary2 × 2 SVD
requires respectively one and three square roots.
Gentleman has developed a square root-free procedure for QR-
updating where use is made of a one-sided factorization of the
upper triangularR-matrix [7]. However, since the above SVD
schemes as such do not lend themselves to square root-free im-
plementation, alternative schemes based on approximate formu-
las for the calculation of the rotation anglesθ andφ have to be
considered [8]. When combined with a generalized Gentleman
procedure with a two-sided factorization of the upper triangular
R-factor, these schemes eventually yield square root-free SVD-
updating algorithms [9], which can be easily extended to square
root-free GSVD-updating algorithms [6].

For solving an elementary2× 2 SVD with approximate formulas,
the relevant transformation formula becomes (see equation12)�

ri,i
C

∗

ri,i+1
C

∗

0 ri+1,i+1
C

∗

�
=

�
− sin θ cos θ
cos θ sin θ

� �
ri,i

C ri,i+1
C

0 ri+1,i+1
C

��
− sin φ cos φ
cos φ sinφ

�
, (18)

whereri,i+1
C is only approximately annihilated (|ri,i+1

C

∗

| ≤ |ri,i+1
C |).

Several approximate formulas can be used for calculatingtan θ
andtanφ, which do not require any square roots [8] [9].
For a square root-free GSVD-procedure, the matricesUA, UB ,
RA, RB andQ are factorized as

RA =(DA
row)

1
2 R̄A(Dcol)

1
2 , RB = (DB

row)
1
2 R̄B(Dcol)

1
2 (19)

UA = ŪA(DA
row)

1
2 , UB = ŪB(DB

row)
1
2 , Q = Q̄(Dcol)

1
2 (20)

with DA
row, DB

row andDcol diagonal row and column scaling ma-
trices. In a GSVD-update only the diagonal matricesDA

row, DB
row,

Dcol, the upper triangular matrices̄RA, R̄B , and the matrixQ̄ are
stored and updated, without calculating any square roots [6] [9].
The actual complexity reduction results from the fact that the row
and column transformation matrices contain ones along the diag-
onal (or anti-diagonal), hereby halving the number of multiplica-
tions required. If we substitute these factorizations intoequation
4, the GSVD ofA[k] andB[k] can be written as(

A[k] = ŪA[k] · D
A
row[k] · R̄A[k] · Dcol[k] · Q̄

T
[k]

B[k] = ŪB[k] · D
B
row[k] · R̄B[k] · Dcol[k] · Q̄

T
[k],

(21)

such that the optimal filterW[k]
WF has to be computed as

W
[k]
WF = Q̄[k] · R̄

−1
A[k] · diag{1 −

p

q

DB,ii

row[k]

DA,ii

row[k]

(R̄ii
B[k])

2

(R̄ii
A[k])

2
} ·

R̄A[k] · Dcol[k] · Q̄
T
[k]. (22)

If exponential weighting factorsλs andλn are used, the factorp/q
in equation 22 has to be replaced by(1 − λ2

n)/(1 − λ2
s).

The complexity of one square root-free GSVD-update is equalto
2.5N2 (matrix-vector multiplication) +2N2 (square root-free QR-
update) +s ·r ·(14N−r) (square root-free GSVD-steps). Fors =
1 andr = N − 1 this amounts to17.5N2, which is less expensive
than ‘conventional’ (non square root-free) GSVD-updating.

6. SIMULATIONS

Simulations have been performed, comparing the performance of
the non-recursive GSVD-update algorithm with the two recursive
algorithms. The simulation environment is depicted in figure 1, in
which a microphone array, as well as a speech and noise source
is present. In our simulations we useM = 5 microphones. The
filterlength per channel isL = 10, such thatN = ML = 50. No
exponential weighting is performed, such thatλs = λn = 1.
The signal-to-noise ratio (SNR) of the noisy first microphone sig-
nal is 5.1 dB. Using the non-recursive GSVD-based filtering algo-
rithm the SNR of the enhanced signal is 16.1 dB. For the recursive
algorithms figure 2 shows the SNR of the enhanced signal for dif-
ferent values ofs (number of sweeps) andr (GSVD-steps). These
figures show that there is no difference in performance between the
‘conventional’ and the square root-free GSVD-updating algorithm
(all approximations). When performing more than one sweep,the
SNR only marginally improves. When performing less thanN −1
GSVD-steps, the SNR gradually decreases.
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Figure 1: Simulation environment
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Figure 2: Effect of number of sweeps and GSVD-steps on SNR

7. DOWNSAMPLING TECHNIQUES

Without any loss in performance the computational complexity can
be further reduced for stationary acoustic environments byusing
downsampling techniques. In this context downsampling means
that the GSVD ofA[k] andB[k] and the filterW[k]

WF are not up-
dated for every sample, but that the GSVD is updated everydg

samples and that the filter is updated everydf samples. The draw-
back of using downsampling is slower convergence towards the
optimal filter (corresponding to highest SNR). Figure 3 shows the
energy of the residual noise in the enhanced signal for different
values ofdf = dg. This figure shows that a higher downsampling
factor results in slower convergence, implying that downsampling
has to be limited in non-stationary acoustic environments.

8. COMPUTATIONAL COMPLEXITY

The complexity of the different GSVD-update algorithms hasal-
ready been computed in sections 3, 4 and 5. The complexity of
the update of the filterW[k]

WF is always4N2. The following table
shows the total computational complexity (in floating pointoper-
ations per second) for the different GSVD-update algorithms (as-
suming thatp < q, s = 1, r = N − 1). The numerical results are
obtained forN = 50, q = 4000 andfs = 8 kHz and are shown in
case of no downsampling and downsampling withdf = dg = 20.

Non-recursive Recursive Square root-free
1

dg
(17N3 + 3qN2) 23.5N2

dg
+ 4N2

df

17.5N2

dg
+ 4N2

df

d = 1 257 Gflops 550 Mflops 430 Mflops
d = 20 12.9 Gflops 27.5 Mflops 21.5 Mflops
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Figure 3: Effect of downsampling on convergence speed

9. CONCLUSION

In this paper we have shown that by using recursive and square
root-free GSVD-updating techniques and by using downsampling
techniques, the computational complexity of a GSVD-based opti-
mal filtering scheme for noise reduction can be considerablyre-
duced without a significant loss in performance, making thistech-
nique amenable for real-time implementation.
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