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Abstract

In typical speech communication applications, such as hands-free mobile te-
lephony, voice-controlled systems and hearing aids, the recorded microphone
signals are corrupted by background noise, room reverberation and far-end echo
signals. This signal degradation can lead to total unintelligibility of the speech
signal and decreases the performance of automatic speech recognition systems.
In this thesis several multi-microphone noise reduction and dereverberation
techniques are developed.

In Part I we present a Generalised Singular Value Decomposition (GSVD)
based optimal filtering technique for enhancing multi-microphone speech sig-
nals which are degraded by additive coloured noise. Several techniques are
presented for reducing the computational complexity and we show that the
GSVD-based optimal filtering technique can be integrated into a ‘Generalised
Sidelobe Canceller’ type structure. Simulations show that the GSVD-based
optimal filtering technique achieves a larger signal-to-noise ratio improvement
than standard fixed and adaptive beamforming techniques and that it is more
robust against several deviations from the assumed signal model.

In Part II multi-microphone algorithms for time-delay estimation, dereverbe-
ration, and combined noise reduction and dereverberation are discussed. Since
these algorithms require an estimate of the acoustic impulse responses, we al-
so present batch and adaptive techniques for estimating the acoustic impulse
responses, both in the time-domain and in the frequency-domain. We derive
a stochastic gradient algorithm which iteratively estimates the generalised ei-
genvector corresponding to the smallest generalised eigenvalue and which can
be used for time-delay estimation. We show that by integrating the normalised
matched filter with the multi-channel Wiener filter, a combined noise reduction
and dereverberation technique is obtained.

In Part III several design procedures and cost functions are discussed for desig-
ning fixed broadband beamformers with an arbitrary desired spatial directivity
pattern for a given arbitrary microphone array configuration, using an FIR
filter-and-sum structure. We present two novel cost functions, which are based
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ii Abstract

on eigenfilters. We discuss far-field, near-field and mixed near-field far-field
broadband beamformer design, and we present two design procedures for de-
signing broadband beamformers that are robust against gain and phase errors
in the microphone characteristics.



Korte Inhoud

In veel spraakcommunicatietoepassingen, zoals handenvrije mobiele telefonie,
spraakgestuurde systemen en hoorapparaten, zijn de opgenomen microfoonsig-
nalen vaak van lage kwaliteit ten gevolge van achtergrondlawaai, reverberatie
en ‘far-end’-echosignalen. Deze slechte signaalkwaliteit kan ertoe leiden dat
het gewenste spraaksignaal totaal onverstaanbaar wordt en dat de performan-
tie van systemen voor automatische spraakherkenning aanzienlijk vermindert.
In deze doctoraatsthesis worden verschillende technieken ontwikkeld voor ruis-
onderdrukking en dereverberatie met behulp van meerdere microfoons.

In Deel I stellen we een optimaal-filtertechniek, gebaseerd op de Veralgemeende-
Singuliere-Waarde-Ontbinding (GSVD), voor om de signaalkwaliteit van meer-
kanaals spraaksignalen te verbeteren wanneer additieve gekleurde ruis aanwezig
is. Verschillende technieken worden besproken om de berekeningscomplexi-
teit te verminderen en we tonen aan dat deze GSVD-gebaseerde optimaal-
filtertechniek gëıntegreerd kan worden in een ‘Generalised Sidelobe Canceller’-
structuur. Simulaties tonen aan dat de GSVD-gebaseerde optimaal-filtertech-
niek een grotere verbetering in signaal-ruisverhouding oplevert dan standaard
vaste en adaptieve bundelvorming en dat deze techniek robuuster is wanneer
afwijkingen in het veronderstelde signaalmodel optreden.

In Deel II worden meer-kanaals algoritmes besproken voor het schatten van
tijdsvertraging, voor dereverberatie en voor gecombineerde ruisonderdrukking
en dereverberatie. Aangezien deze algoritmes een schatting vereisen van de
akoestische impulsresponsies, bespreken we ook adaptieve en niet-adaptieve
technieken om akoestische impulsresponsies te schatten, zowel in het tijdsdo-
mein als in het frequentiedomein. We leiden een stochastisch-gradiënt-algoritme
af dat iteratief de veralgemeende eigenvector berekent behorend bij de kleinste
veralgemeende eigenwaarde en dat gebruikt kan worden voor het schatten van
tijdsvertraging. We tonen aan dat een gecombineerde techniek voor ruison-
derdrukking en dereverberatie kan bekomen worden door het genormaliseerd
‘matched’ filter te integreren met het meer-kanaals Wiener-filter.

iii



iv Korte Inhoud

In Deel III worden verschillende ontwerpprocedures besproken voor vaste breed-
band bundelvormers met een willekeurig spatiaal directiviteitspatroon voor
een gegeven willekeurig microfoonrooster, met behulp van een FIR ‘filter-and-
sum’-structuur. We stellen 2 nieuwe kostfuncties voor die gebaseerd zijn op
eigenfilters. We bespreken het ontwerp van ‘far-field’, ‘near-field’ en ‘mixed
near-field far-field’ breedband bundelvormers en we ontwikkelen 2 ontwerppro-
cedures voor breedband bundelvormers die robuust zijn tegen afwijkingen in
de versterking en de fase van de microfoons.
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Mathematical Notation

a scalar a
a vector a
A matrix A
a∗ complex conjugate of a
AT transpose of matrix A
AH Hermitian transpose of matrix A
A−1 inverse of matrix A
ai ith element of vector a
an,i ith element of vector an
Aij (i, j)-th element of matrix A
[a]i ith sub-vector of vector a
[A]ij (i, j)-th sub-matrix of matrix A
{A}i,i+1 2 × 2 sub-matrix of matrix A on the intersection of

rows {i, i+ 1} and columns {i, i+ 1}
aR,aR,AR real part of scalar a, vector a, matrix A
aI ,aI ,AI imaginary part of scalar a, vector a, matrix A
x[k] discrete time-filter, time-sequence, stochastic process
X(z) z-transform of x[k]
X(ω) Discrete-Time Fourier Transform of x[k]
X(l,m) lth component of DFT of mth frame of x[k]
cx[k] complex cepstrum of x[k]
rx[k] autocorrelation function of x[k]
rxy[k] cross-correlation function of x[k] and y[k]
Px(ω) power spectral density of x[k]
Pxy(ω) cross-power spectral density of x[k] and y[k]
Γxy(ω) complex coherence between x[k] and y[k]
Gxy(ω) power transfer function between x[k] and y[k]
R̄xx = E{xxT } autocorrelation matrix of vector x
R̄xy = E{xyT } cross-correlation matrix of vectors x and y
Rxx empirical autocorrelation matrix of vector x
Rxy empirical cross-correlation matrix of vectors x and y

v
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f (i)(a) ith derivative of function f(a)
fα(a) probability density function of stochastic variable a
µa mean of probability density function fα(a)
σ2
a variance of probability density function fα(a)

⊗ convolution
⊙ element-wise multiplication
O(M) order M
E{·} expectation operator
F{·} Discrete-Time Fourier Transform operator
F−1{·} Inverse Discrete-Time Fourier Transform operator
ℜ{·} real part
ℑ{·} imaginary part
tr{A} trace of matrix A (sum of diagonal elements)
diag{a} square diagonal matrix with vector a as diagonal
| · | absolute value
‖ · ‖2 L2-norm
‖ · ‖∞ L∞-norm
‖ · ‖F Frobenius-norm

â, â, Â estimate of scalar a, vector a, matrix A
⌊a⌋ largest integer smaller or equal than a
⌈a⌉ smallest integer larger or equal than a
div(a, b) integer division of a and b
mod(a, b) remainder of integer division of a and b
a≪ b a is much smaller than b
a≫ b a is much larger than b
a ≈ b a is approximately equal to b

Fixed Symbols

An, An(ω, θ) microphone characteristic of nth microphone
D(ω, θ),D(ω, θ, r) desired spatial directivity pattern of beamformer
F (ω, θ), F (ω, θ, r) weighting function
H(ω, θ),H(ω, θ, r) spatial directivity pattern of beamformer
I number of images in acoustic impulse response hn[k]
J number of linear constraints
JMSE MSE cost function
K filter length of acoustic room impulse response hn[k]
L filter length of FIR filters on microphones
LANC filter length of FIR adaptive filter in ANC

postprocessing stage
Lf filter length of FIR filter on far-end echo signal
M number of microphones × filter length (M = LN)
N number of microphones
P size of speech data matrix Y[k]
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Q size of noise data matrix V[k]
Pk number of rows in speech data matrix Y[k] at time k
Qk number of rows in noise data matrix V[k] at time k
S surface of room
T threshold value
T60 reverberation time
V volume of room

an, an(ω, θ) gain of microphone characteristic of nth microphone
c speed of sound propagation (c = 340ms )
d constant inter-microphone distance
dn distance between nth microphone and centre of

microphone array
f frequency-domain variable
fs sampling frequency
f [k] total transfer function for speech signal s[k]
f0[k] far-end echo signal
hn[k] acoustic impulse response between source and nth

microphone
k, k′ discrete-time index
m,n microphone index
r distance between source and centre microphone array
rn(θ, r) distance between source and nth microphone
sf , sg sub-sampling factors
s[k] clean speech signal at time k
vn[k] noise component of nth microphone signal at time k
wn[k] filter on the nth microphone signal
xn[k] speech component of nth microphone signal at time k
yn[k] nth microphone signal at time k
z[k] output signal
zx[k] speech component in the output signal z[k]
zv[k] noise component in the output signal z[k]

b constraint vector
d(ω, θ) steering vector
e[k] error vector
ei vector with ith element equal to 1 and all other

elements equal to 0
ev[k] residual noise
ey[k] signal distortion
e(ω) filter delay vector
g(ω, θ),g(ω, θ, r) steering vector broadband beamforming
s[k] data vector of s[k]
v[k] stacked noise data vector
vn[k] L-dimensional data vector of vn[k]
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w[k] stacked filter vector
wn[k] L-dimensional FIR filter on nth microphone signal
wmin local/global minimum of cost function
ws stationary point
x[k] stacked speech data vector
xn[k] L-dimensional data vector of xn[k]
y[k] stacked data vector
yn[k] L-dimensional data vector of yn[k]

0 zero vector, zero matrix
1M M ×M -dimensional matrix, all elements equal to 1
A(ω, θ) diagonal matrix containing microphone characteristics

C, Ĉ constraint matrices

Ca, Ĉa null space of C, Ĉ
D L× L-dimensional diagonal matrix 0 . . . L− 1
F(w) minimax matrix
G(ω, θ),G(ω, θ, r) steering matrix
HNL Hessian matrix for non-linear cost function
IM M ×M -dimensional identity matrix
JM M ×M -dimensional reverse identity matrix
Q[k] matrix containing generalised singular vectors of

Y[k] and V[k]
Q̄[k] matrix containing generalised eigenvectors of

R̄yy[k] and R̄vv[k]
QY [k],RY [k] QR-decomposition of Y[k]
SNL NL×NL-dimensional block-reversal matrix
UY [k],UV [k] orthogonal matrices containing generalised singular

vectors of Y[k] and V[k]
V[k] noise data matrix at time k
V̄y[k] orthogonal matrix containing eigenvectors of R̄yy[k]
W filter matrix
WWF [k] empirical Wiener filter matrix at time k
W̄WF [k] Wiener filter matrix at time k
Y[k] speech data matrix at time k
∆̄y[k] diagonal matrix containing eigenvalues of R̄yy[k]
∆θ,∆ω(θ) diagonal constraint matrices for broadband beamforming
ΣY [k],ΣY [k] diagonal matrices containing generalised singular values

of Y[k] and V[k]
Λ̄y[k], Λ̄v[k] diagonal matrices containing generalised eigenvalues of

R̄yy[k] and R̄vv[k]

αr weighting factor
δ[k] Dirac impulse at k = 0
δ speech detection error rate
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δn delay of DS beamformer for nth microphone
ǫ2y[k] signal distortion energy
ǫ2v[k] residual noise energy
ζ[k] VAD output at time k
ζc[k] zero-crossing rate
θ angle
θx direction of speech source
λ Lagrange multiplier
λy exponential weighting factor for speech
λv exponential weighting factor for noise
µ adaptive filter step size
σi[k], ηi[k] generalised singular values of Y[k] and V[k]
σ̄2
i [k], η̄

2
i [k] generalised eigenvalues of R̄yy[k] and R̄vv[k]

τn delay of nth microphone
φn angle of nth microphone in planar array
ψn, ψn(ω, θ) phase of microphone characteristic of nth microphone
ω pulsation
Θ,Θp,Θs angle region
Φ(ω) noise sensitivity
Ψ phase pdf of microphone characteristics
Ω,Ωp,Ωs frequency region

Acronyms and Abbreviations

AEC Acoustic Echo Cancellation
AG array gain
ANC Adaptive Noise Cancellation
APA Affine Projection Algorithm
ASIC Application Specific Integrated Circuit
ASR Automatic Speech Recognition
AR autoregressive
BSS blind source separation
BTE behind-the-ear
cf. confer : see also
CSP Cross-power Spectrum Phase
DFT Discrete Fourier Transform
DI Dereverberation Index
DR direct-to-reverberant energy ratio
DS delay-and-sum
DSP Digital Signal Processor
DTFT Discrete-Time Fourier Transform
e.g. exempli gratia : for example
EVD Eigenvalue Decomposition
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FIR finite impulse response
FFT Fast Fourier Transform
GCC Generalised Cross-Correlation
GEVD Generalised Eigenvalue Decomposition
GSC Generalised Sidelobe Canceller
GSVD Generalised Singular Value Decomposition
i.e. id est : that is
IDFT Inverse Discrete Fourier Transform
IDTFT Inverse Discrete-Time Fourier Transform
iff if and only if
IFFT Inverse Fast Fourier Transform
IIR infinite impulse response
KLT Karhunen-Loève Transform
LCMV linearly constrained minimum variance
LMS Least Mean Squares
LS Least Squares
MAPD modified amplitude pdf
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
MV minimum variance
MVDR minimum variance distortionless response
NLMS Normalised Least Mean Squares
PAST Projection Approximation Subspace Tracking
pdf probability density function
PSD Power Spectral Density
PTF Power Transfer Function
QSVD Quotient Singular Value Decomposition
RLS Recursive Least Squares
SD Speech Distortion
SII Speech Intelligibility Index
SNR Signal-to-Noise Ratio
STFT short-time Fourier Transform
SVD Singular Value Decomposition
SQP Sequential Quadratic Programming
TDE Time-Delay Estimation
TLS Total Least Squares
vs. versus
VAD Voice Activity Detection
WNG white noise gain
WSS wide-sense stationary
w.r.t. with respect to



Contents

Abstract i

Glossary v

Contents xi

Samenvatting xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hands-free speech communication systems . . . . . . . . . . . . 2

1.2.1 General problem formulation . . . . . . . . . . . . . . . 2

1.2.2 Adaptive multi-microphone systems . . . . . . . . . . . 4

1.2.3 Typical applications . . . . . . . . . . . . . . . . . . . . 5

1.3 Characterisation of signals and the acoustic environment . . . . 10

1.3.1 Speech signals . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Noise signals . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Acoustic environment . . . . . . . . . . . . . . . . . . . 11

1.3.4 Microphones for speech recordings . . . . . . . . . . . . 14

1.4 Overview of speech enhancement techniques . . . . . . . . . . . 15

1.4.1 Acoustic noise reduction . . . . . . . . . . . . . . . . . . 16

xi



xii Contents

1.4.2 Acoustic echo cancellation . . . . . . . . . . . . . . . . . 18

1.4.3 Dereverberation . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Outline of the thesis and main contributions . . . . . . . . . . . 22

1.5.1 Objectives of the developed algorithms . . . . . . . . . . 22

1.5.2 Chapter by chapter overview and contributions . . . . . 23

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Signal enhancement techniques 29

2.1 Signal processing basics . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Recording model . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Noise reduction and dereverberation . . . . . . . . . . . 32

2.2.3 Frequency-domain representation . . . . . . . . . . . . . 34

2.2.4 Performance measures . . . . . . . . . . . . . . . . . . . 35

2.3 Single-microphone noise reduction . . . . . . . . . . . . . . . . 37

2.3.1 Spectral subtraction techniques . . . . . . . . . . . . . . 37

2.3.2 Signal subspace-based techniques . . . . . . . . . . . . . 39

2.4 Single-microphone dereverberation . . . . . . . . . . . . . . . . 49

2.4.1 Inverse filtering . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.2 Cepstrum-based techniques . . . . . . . . . . . . . . . . 50

2.5 Multi-microphone noise reduction . . . . . . . . . . . . . . . . . 51

2.5.1 Beamformer definitions and performance measures . . . 52

2.5.2 Fixed beamforming . . . . . . . . . . . . . . . . . . . . . 54

2.5.3 Adaptive beamforming . . . . . . . . . . . . . . . . . . . 59

2.6 Multi-microphone dereverberation . . . . . . . . . . . . . . . . 67

2.6.1 Inverse filtering . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.2 Matched filtering . . . . . . . . . . . . . . . . . . . . . . 68



Contents xiii

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

I GSVD-Based Optimal Filtering for Multi-Microphone
Noise Reduction

3 GSVD-Based Optimal Filtering for Single and Multi-Microphone
Speech Enhancement 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Unconstrained optimal filtering . . . . . . . . . . . . . . . . . . 77

3.2.1 Multi-channel Wiener filter . . . . . . . . . . . . . . . . 77

3.2.2 Low-rank modelling of speech signals . . . . . . . . . . . 81

3.2.3 General class of estimators . . . . . . . . . . . . . . . . 83

3.3 Practical computation using GSVD . . . . . . . . . . . . . . . . 85

3.3.1 Empirical estimates using data matrices . . . . . . . . . 85

3.3.2 Different estimates of speech components . . . . . . . . 87

3.3.3 Batch and recursive algorithm . . . . . . . . . . . . . . 89

3.3.4 Other implementations . . . . . . . . . . . . . . . . . . . 90

3.4 Filter symmetry properties and averaging operation . . . . . . 90

3.4.1 Single-microphone case . . . . . . . . . . . . . . . . . . 90

3.4.2 Single-microphone averaging operation . . . . . . . . . . 91

3.4.3 Multi-microphone case . . . . . . . . . . . . . . . . . . . 94

3.5 Frequency-domain analysis . . . . . . . . . . . . . . . . . . . . 95

3.5.1 Multi-channel Wiener filter . . . . . . . . . . . . . . . . 95

3.5.2 Power Transfer Functions . . . . . . . . . . . . . . . . . 97

3.5.3 Single speech source . . . . . . . . . . . . . . . . . . . . 97

3.5.4 Noise Sensitivity . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Combined noise and echo reduction . . . . . . . . . . . . . . . . 100

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 100



xiv Contents

3.6.2 Integrated multi-channel Wiener filter approach . . . . . 102

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Complexity reduction using recursive GSVD and ANC post-
processing stage 107

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Recursive GSVD and sub-sampling . . . . . . . . . . . . . . . . 108

4.2.1 Jacobi-type algorithm for computing the GSVD . . . . . 108

4.2.2 Recursive GSVD-updating algorithm . . . . . . . . . . . 112

4.2.3 Square root-free implementation . . . . . . . . . . . . . 115

4.2.4 Sub-sampling techniques . . . . . . . . . . . . . . . . . . 117

4.2.5 Overall computational complexity . . . . . . . . . . . . 117

4.3 ANC postprocessing stage . . . . . . . . . . . . . . . . . . . . . 117

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Simulation results and control algorithm 121

5.1 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 Simulation environment . . . . . . . . . . . . . . . . . . 122

5.1.2 GSVD-based optimal filtering technique . . . . . . . . . 123

5.1.3 Fixed and adaptive beamforming techniques . . . . . . . 125

5.2 Performance of optimal filtering technique . . . . . . . . . . . . 126

5.2.1 Spatial directivity pattern . . . . . . . . . . . . . . . . . 127

5.2.2 Batch vs. recursive processing . . . . . . . . . . . . . . . 128

5.2.3 Recursive GSVD-updating algorithms . . . . . . . . . . 128

5.2.4 Spectrally non-stationary noise source . . . . . . . . . . 130

5.2.5 Effect of ANC postprocessing stage . . . . . . . . . . . . 132

5.3 Control algorithm: VAD . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 VAD algorithms . . . . . . . . . . . . . . . . . . . . . . 134



Contents xv

5.3.2 Effect of VAD-errors on performance . . . . . . . . . . . 136

5.3.3 Combination of GSVD-based optimal filtering technique
and VAD algorithms . . . . . . . . . . . . . . . . . . . . 138

5.4 Performance comparison with beamforming techniques . . . . . 141

5.4.1 Simulated acoustic scenarios . . . . . . . . . . . . . . . . 142

5.4.2 Real-life recording and energy-based VAD . . . . . . . . 146

5.4.3 Robustness issues . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

II Multi-Microphone Dereverberation and Source Lo-
calisation

6 Robust Time-Delay Estimation for Acoustic Source Localisa-
tion 153

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Batch estimation of two impulse responses . . . . . . . . . . . . 155

6.2.1 Noiseless case . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.2 Spatio-temporally white noise . . . . . . . . . . . . . . . 157

6.2.3 Spatio-temporally coloured noise . . . . . . . . . . . . . 158

6.2.4 Practical computation . . . . . . . . . . . . . . . . . . . 159

6.2.5 Simulation results . . . . . . . . . . . . . . . . . . . . . 160

6.3 Adaptive procedure for TDE . . . . . . . . . . . . . . . . . . . 161

6.3.1 Adaptive EVD algorithm [9] . . . . . . . . . . . . . . . 162

6.3.2 Adaptive GEVD and prewhitening algorithm . . . . . . 163

6.4 Extension to more than two microphones . . . . . . . . . . . . 165

6.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5.1 No reverberation, 2-microphone case . . . . . . . . . . . 166

6.5.2 Realistic conditions, 2-microphone case . . . . . . . . . 167



xvi Contents

6.5.3 Realistic conditions, 3-microphone case . . . . . . . . . 170

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Combined noise reduction and dereverberation 173

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2 Estimation of acoustic transfer functions . . . . . . . . . . . . . 175

7.2.1 Frequency-domain signal model . . . . . . . . . . . . . . 175

7.2.2 Practical computation . . . . . . . . . . . . . . . . . . . 177

7.2.3 White noise case: subspace tracking algorithm . . . . . 178

7.3 Noise reduction and dereverberation . . . . . . . . . . . . . . . 179

7.3.1 Speech dereverberation . . . . . . . . . . . . . . . . . . 179

7.3.2 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . 180

7.3.3 Combined noise reduction and dereverberation . . . . . 181

7.4 Practical implementation issues . . . . . . . . . . . . . . . . . . 182

7.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

III Broadband Beamformer Design

8 Far-Field Broadband Beamforming 187

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2 Far-field beamforming: configuration . . . . . . . . . . . . . . . 189

8.3 Broadband beamforming procedures . . . . . . . . . . . . . . . 192

8.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.2 Weighted least-squares . . . . . . . . . . . . . . . . . . . 193

8.3.3 Maximum energy array . . . . . . . . . . . . . . . . . . 194

8.3.4 Non-linear criterion . . . . . . . . . . . . . . . . . . . . 196



Contents xvii

8.4 Eigenfilter design procedures . . . . . . . . . . . . . . . . . . . 200

8.4.1 Conventional eigenfilter technique . . . . . . . . . . . . 201

8.4.2 Eigenfilter based on TLS error . . . . . . . . . . . . . . 203

8.5 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.5.1 Point constraints . . . . . . . . . . . . . . . . . . . . . . 204

8.5.2 Line constraint . . . . . . . . . . . . . . . . . . . . . . . 205

8.5.3 Derivative constraints . . . . . . . . . . . . . . . . . . . 206

8.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6.1 Design specification 1 . . . . . . . . . . . . . . . . . . . 208

8.6.2 Design specification 2 . . . . . . . . . . . . . . . . . . . 213

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9 Near-Field Broadband Beamforming 217

9.1 Near-field configuration . . . . . . . . . . . . . . . . . . . . . . 218

9.2 Near-field beamformer design procedures . . . . . . . . . . . . . 220

9.2.1 Design for one distance . . . . . . . . . . . . . . . . . . 220

9.2.2 Mixed near-field far-field beamforming . . . . . . . . . . 220

9.3 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.3.1 Point constraint . . . . . . . . . . . . . . . . . . . . . . 224

9.3.2 Derivative constraint . . . . . . . . . . . . . . . . . . . . 224

9.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.4.1 Near-field broadband beamformer . . . . . . . . . . . . 225

9.4.2 Mixed near-field far-field design . . . . . . . . . . . . . . 226

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10 Robust Broadband Beamforming for gain and phase errors 233

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



xviii Contents

10.2 Known microphone characteristics . . . . . . . . . . . . . . . . 234

10.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . 234

10.2.2 Cost functions . . . . . . . . . . . . . . . . . . . . . . . 236

10.3 Robust broadband beamforming . . . . . . . . . . . . . . . . . 238

10.3.1 Weighted sum using probability density functions . . . . 239

10.3.2 Minimax criterion . . . . . . . . . . . . . . . . . . . . . 244

10.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

11 Conclusions and Further Research 253

11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

11.2 Suggestions for further research . . . . . . . . . . . . . . . . . . 256

Bibliography 259

Appendices 283

A Linear algebra definitions . . . . . . . . . . . . . . . . . . . . . 283

A.1 Structured real matrices . . . . . . . . . . . . . . . . . . 283

A.2 Matrix decompositions . . . . . . . . . . . . . . . . . . . 286

A.3 Matrix and vector norms . . . . . . . . . . . . . . . . . 288

A.4 Matrix inversion lemma . . . . . . . . . . . . . . . . . . 289

A.5 Symmetry properties of eigenvectors . . . . . . . . . . . 290

A.6 Derivative to vectors and matrices . . . . . . . . . . . . 292

B Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 295

B.1 Orthogonality of QT
V UV . . . . . . . . . . . . . . . . . 295

B.2 Minimisation of ||Y0[k]W − X0[k]||2F . . . . . . . . . . . 295

B.3 Solution of optimisation problem (2.129) . . . . . . . . . 295

B.4 Solution of optimisation problem (2.134) . . . . . . . . . 297



Contents xix

B.5 Constrained gradient-descent procedure (2.137) . . . . . 297

C Appendix to Part I . . . . . . . . . . . . . . . . . . . . . . . . . 300

C.1 Signal distortion ǫ2y[k] versus residual noise ǫ2v[k] . . . . 300

C.2 Wiener filter for combined noise and echo reduction . . 301

D Appendix to Part III . . . . . . . . . . . . . . . . . . . . . . . . 303

D.1 Weighted LS criterion with linear constraint . . . . . . . 303

D.2 Derivative constraints for near-field case . . . . . . . . . 304

D.3 Expressions for robust non-linear criterion . . . . . . . . 305

D.4 Proof of Theorem 10.1 . . . . . . . . . . . . . . . . . . . 308

E Calculation of expressions for far-field broadband beamforming 310

E.1 WLS criterion . . . . . . . . . . . . . . . . . . . . . . . . 310

E.2 Energy criterion . . . . . . . . . . . . . . . . . . . . . . 311

E.3 Passband error . . . . . . . . . . . . . . . . . . . . . . . 313

E.4 Non-linear criterion . . . . . . . . . . . . . . . . . . . . 315

F Solving integrals for far-field assumption . . . . . . . . . . . . . 322

G Calculation of expressions for near-field broadband beamforming 329

G.1 WLS criterion . . . . . . . . . . . . . . . . . . . . . . . . 329

G.2 Energy criterion . . . . . . . . . . . . . . . . . . . . . . 330

G.3 Passband error . . . . . . . . . . . . . . . . . . . . . . . 332

G.4 Non-linear criterion . . . . . . . . . . . . . . . . . . . . 333

H Solving integrals for near-field assumption . . . . . . . . . . . . 335

H.1 Far-field assumptions . . . . . . . . . . . . . . . . . . . . 339

List of Publications 341

Curriculum Vitae 345



xx Contents



Technieken voor
ruisonderdrukking en
dereverberatie in
spraaktoepassingen met
behulp van meerdere
microfoons

Hoofdstuk 1: Inleiding

De motivatie voor het werk in deze doctoraatsthesis is de snel groeiende markt
van spraak- en audiotoepassingen. Handenvrije mobiele telefonie, spraakge-
stuurde systemen en video-conferencing zijn belangrijke toepassingen in de
telecommunicatiesector, terwijl hoorapparaten en cochleaire implantaten be-
langrijke toepassingen vormen in de biomedische sector. Het gemeenschappe-
lijk probleem voor al deze toepassingen is de opname van spraaksignalen in een
ongunstige akoestische omgeving. In een typisch handenvrij systeem worden
immers microfoons gebruikt op een zekere afstand van de spreker, zodat de op-
genomen signalen van lage kwaliteit zijn ten gevolge van achtergrondlawaai, re-
verberatie (nagalm) en ‘far-end’-echosignalen. Deze slechte signaalkwaliteit kan
ertoe leiden dat het gewenste spraaksignaal onverstaanbaar wordt en dat de per-
formantie van systemen voor spraakherkenning of spraakcodering aanzienlijk
vermindert. Het oplossen van dit probleem vereist performante technieken voor
signaalverbetering (ruisonderdrukking, dereverberatie en echo-onderdrukking).

Figuur 1.1 geeft een typische handenvrije-communicatie-omgeving weer, waar
een spreker zich vrij kan bewegen zonder een microfoon vast te houden. Het
microfoonrooster heeft als doel het (zuivere) signaal van de spreker zo goed
mogelijk op te nemen. Door de afstand tussen de spreker en de microfoons
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zal echter ook achtergrondlawaai (bv. radio, andere sprekers, ‘far-end’ echo)
opgenomen worden, en zal niet enkel het direct pad van de spreker opgevangen
worden, maar ook de weerkaatsingen van het spraaksignaal tegen muren, vloer
en andere objecten (d.i. reverberatie of nagalm).

In deze doctoraatsthesis worden verschillende technieken ontwikkeld voor ruis-
onderdrukking en dereverberatie met behulp van meerdere microfoons. Deze
technieken moeten in principe aan meerdere doelstellingen voldoen. We be-
handelen voornamelijk meer-kanaals signaalverbeteringstechnieken, aangezien
meer-kanaals technieken zowel de spectrale als de spatiale karakteristieken in
de microfoonsignalen kunnen uitbuiten, in tegenstelling tot één-kanaals tech-
nieken die enkel de spectrale karakteristieken benutten. Aangezien de signalen
en de akoestische omgeving meestal tijdsvariant zijn, dienen de ontwikkelde
algoritmes adaptief te zijn, zodat ze verschillende ruissituaties en veranderen-
de akoestische omgevingen aankunnen. In het algemeen veronderstellen we
dat de ruisbronnen niet gekend zijn, dit wil zeggen dat er geen referentiesig-
naal voor de ruisbronnen beschikbaar is. We zullen ook de integratie van ver-
schillende signaalverbeteringstechnieken bespreken, zoals gecombineerde ruis-
en echo-onderdrukking en gecombineerde ruisonderdrukking en dereverberatie.
Aangezien de meeste meer-kanaals signaalverbeteringstechnieken gevoelig zijn
aan afwijkingen in de karakteristieken van het microfoonrooster (versterking,
fase, microfoonpositie) en andere afwijkingen (bv. foute schatting van de po-
sitie van de spreker, spraakdetectiefouten), zullen we de robuustheid van de
ontwikkelde algoritmes onderzoeken met betrekking tot deze afwijkingen en,
waar mogelijk, zullen we robuustheid tegen deze afwijkingen mee in rekening
brengen in het algoritmisch ontwerp. Uiteindelijk zullen we ook rekening hou-
den met de berekeningscomplexiteit van de ontwikkelde algoritmes. Nochtans is
het voornamelijk de bedoeling in deze thesis om algoritmes te ontwikkelen die
een betere performantie en/of robuustheid hebben dan bestaande technieken,
waarbij complexiteit slechts op de tweede plaats komt.

Deel I behandelt een GSVD-gebaseerde optimaal-filtertechniek, die gebruikt
kan worden voor één-kanaals en meer-kanaals ruisonderdrukking, maar die geen
dereverberatie uitvoert. In Deel II wordt een gecombineerde techniek voor
ruisonderdrukking en dereverberatie besproken en een techniek voor akoestische
bronlokalisatie die robuust is tegen achtergrondlawaai en reverberatie. Deel
III behandelt ontwerpprocedures voor robuuste breedband bundelvormers, die
zowel voor ruisonderdrukking als voor dereverberatie gebruikt kunnen worden.

In paragraaf 1.2 worden de algemene voor- en nadelen van handenvrije sys-
temen besproken en wordt dieper ingegaan op de specifieke problemen, econo-
misch belang en bestaande producten voor enkele belangrijke toepassingen:

• Handenvrije mobiele telefonie: vanuit een economisch standpunt is mo-
biele telefonie zeker de voornaamste toepassing, met wereldwijd meer
dan één miljard gebruikers. In veel landen is het tegenwoordig verboden
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om mobiel te telefoneren in de wagen, tenzij een handenvrije kit gebruikt
wordt. De voornaamste problemen bij handenvrije mobiele telefonie in de
wagen zijn ‘far-end’-echosignalen en meerdere ruisbronnen (motor, ban-
den, radio, andere passagiers). De meeste huidige handenvrije kits ge-
bruiken één enkele directionele microfoon, die nog steeds vrij veel achter-
grondlawaai opvangt. Daarom wordt verwacht dat in de nabije toekomst
meer geavanceerde meer-kanaals systemen aangewend zullen worden. Het
feit dat deze systemen vrij goedkoop moeten blijven beperkt echter het
aantal microfoons en de benodigde hardware voor signaalverwerking.

• Video-conferencing: in plaats dat elke deelnemer aan een video-conferentie
zijn eigen microfoon heeft, is het mogelijk om een microfoonrooster te ge-
bruiken dat het geluid van de actieve spreker zo goed mogelijk opvangt.
De voornaamste problemen bij video-conferencingsystemen zijn ‘far-end’-
echosignalen en akoestische bronlokalisatie in omgevingen met veel ach-
tergrondlawaai en reverberatie. Bronlokalisatie kan gebruikt worden om
een camera te richten of om het microfoonrooster elektronisch te sturen
in de richting van de spreker met behulp van een bundelvormer.

• Spraakgestuurde systemen: tegenwoordig kunnen steeds meer apparaten
met behulp van spraakcommando’s bediend worden (bv. HiFi systemen,
PC software, domotica, telematica in de wagen). Opdat spraakgestuur-
de bediening een toegevoegde waarde zou bieden, moet de spraakher-
kenning echter betrouwbaar werken in alle omstandigheden. Aangezien
de performantie van spraakherkenningssystemen drastisch vermindert in
akoestische omgevingen met veel achtergrondlawaai en reverberatie, kun-
nen signaalverbeteringstechnieken er voor zorgen dat de performantie en
betrouwbaarheid terug verbetert in deze omgevingen.

• Hoorapparaten en cochleaire implantaten: slechthorendheid is een pro-
bleem waaraan wereldwijd meer dan 300 miljoen mensen lijden. De
meeste slechthorenden hebben een perceptueel gehoorverlies, waarbij niet
alleen alle geluiden verzwakt worden, maar vooral verschillende geluiden
niet meer van elkaar onderscheiden kunnen worden. Dit probleem kan
dus niet opgelost worden door alle geluiden te versterken, maar enkel
door het ongewenst lawaai te verzwakken ten opzichte van het gewenst
geluid. Door de recente evolutie in de productie van microfoons en micro-
elektronica is het mogelijk om meerdere microfoons en een DSP in te
bouwen in een hoorapparaat. Bestaande meer-kanaals hoorapparaten ge-
bruiken vrij eenvoudige algoritmes voor spraakverbetering, voornamelijk
wegens de beperkte rekenkracht van de DSP. In de toekomst zal het ech-
ter mogelijk worden om meer geavanceerde algoritmes te implementeren,
die zorgen voor een betere performantie en robuustheid. Robuustheid is
belangrijk in hoorapparaten wegens de kleine afstand tussen de micro-
foons (typisch 1 à 2 cm). Voor cochleaire implantaten kunnen natuurlijk
ook gelijkaardige signaalverbeteringstechnieken toegepast worden.
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In paragraaf 1.3 worden de belangrijkste karakteristieken van spraak- en ruis-
signalen en van de akoestische omgeving besproken. Spraak is een breedban-
dig signaal met frequentiecomponenten tussen 100 en 8000 Hz, waarbij voor
spraakverstaanbaarheid voornamelijk de frequenties tussen 300 en 3400 Hz be-
langrijk zijn. Wegens de vraag naar hoge spraakkwaliteit zullen we in deze
thesis meestal werken met een bemonsteringsfrequentie van 16 kHz. Aange-
zien in een typische conversatie gemiddeld slechts 50% spraak aanwezig is,
kan van deze aan/af-karakteristiek gebruik gemaakt worden door middel van
een spraakdetectie-algoritme (VAD) dat het signaal classificeert in spraak- en
ruisperiodes. Spraaksignalen kunnen ook beschreven worden door middel van
een lineair lage-rangmodel, waarbij verondersteld wordt dat elke vector van het
spraaksignaal voorgesteld kan worden als een lineaire combinatie van een eindig
aantal basisvectoren (bv. complexe exponentiëlen). In het algemeen is er min-
der gekend over de achtergrondruis. Achtergrondruis kan komen van een geloka-
liseerde ruisbron (bv. radio) of kan diffuse ruis zijn die uit alle richtingen komt
(bv. ‘cocktail party’). Sommige ruisbronnen hebben een traag-variërend karak-
ter, terwijl andere ruisbronnen zeer niet-stationair zijn of zelfs andere spraaksig-
nalen zijn. De akoestische omgeving kan globaal gekarakteriseerd worden door
de reverberatietijd T60, die aangeeft hoeveel tijd geluid nodig heeft om te zakken
tot −60 dB van het origineel niveau. De akoestische filtering tussen twee punten
in een kamer kan goed beschreven worden door middel van een lineair FIR filter,
dat akoestische impulsresponsie genoemd wordt. Akoestische impulsresponsies
kunnen gesimuleerd worden met behulp van de ‘image’-methode. Aangezien
akoestische impulsresponsies meestal niet-minimum-fasesystemen zijn, kunnen
deze impulsresponsies niet eenvoudig gëınverteerd worden. Van de microfoons
wordt meestal verondersteld dat ze puntsensoren zijn met een ideale omni-
directionele karakteristiek. In een echte opstelling kunnen echter verschillende
soorten afwijkingen voorkomen: afwijkingen in de veronderstelde microfoonka-
rakteristieken (versterking, fase, directiviteit), de plaatsing van de microfoons,
en een mogelijk schaduweffect van het hoofd. Het is belangrijk dat signaalver-
beteringstechnieken rekening houden met deze afwijkingen. Afhankelijk van
de afstand tussen de spreker en de microfoons, bevindt de spreker zich in het
zogenaamde ‘far-field’ of ‘near-field’ van het microfoonrooster. Formule (1.4)
geeft de grens aan waar de ‘far-field’-veronderstellingen nog gelden.

Paragraaf 1.4 geeft een kort overzicht van verschillende technieken voor sig-
naalverbetering (ruisonderdrukking, echo-onderdrukking, dereverberatie). Eén-
kanaals technieken voor ruisonderdrukking kunnen ingedeeld worden in ener-
zijds parametrische technieken zoals Wiener- of Kalman-filtering en ander-
zijds niet-parametrische technieken zoals spectrale subtractie en deelruimte-
gebaseerde technieken. Meer-kanaals technieken kunnen ingedeeld worden in
enerzijds vaste en adaptieve bundelvorming en anderzijds meer-kanaals Wiener-
filtering, een techniek die in Deel I in meer detail zal besproken worden. De-
reverberatie komt neer op het schatten van het zuivere spraaksignaal uit de
microfoonsignalen, zonder enige kennis over de akoestische impulsresponsies.
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Standaard één-kanaals technieken zijn cepstrum-technieken of inverse filtering,
maar deze technieken hebben een zeer beperkte performantie. Meer-kanaals
technieken daarentegen kunnen een spatiale verwerking uitvoeren, zodat het
reverberante gedeelte spatiaal gescheiden kan worden van het direct pad. Stan-
daard meer-kanaals technieken zoals inverse filtering of ‘matched’ filtering ver-
eisen een schatting van de akoestische impulsresponsies, terwijl vaste bundel-
vormers deze kennis niet vereisen.

In paragraaf 1.5 wordt een overzicht gegeven van de verschillende hoofdstuk-
ken en worden onze bijdragen toegelicht. Figuur 1.4 geeft een schematisch over-
zicht van de thesis en van de verbanden tussen de verschillende hoofdstukken.

Hoofdstuk 2: Technieken voor signaalverbetering

Dit hoofdstuk beschrijft enkele één-kanaals en meer-kanaals technieken voor
ruisonderdrukking en dereverberatie die belangrijk zijn voor het vervolg van de
thesis.

Paragraaf 2.1 behandelt enkele basisdefinities van signaalverwerking, zoals
Discrete Fourier-Transformatie (DFT), autocorrelatie, kruiscorrelatie, ‘Power
Spectral Density’ (PSD), coherentie en ‘Power Transfer Function’ (PTF).

In paragraaf 2.2 wordt het algemeen model beschreven voor de opname van
spraaksignalen in een akoestische omgeving met achtergrondlawaai. Elk mi-
crofoonsignaal yn[k] bestaat uit een gefilterde versie van het zuivere spraak-
signaal s[k] en additieve ruis. Figuur 2.1 toont een algemene opstelling voor
meer-kanaals signaalverbetering, waar de microfoonsignalen (adaptief) gefilterd
worden met de filters wn[k] en gecombineerd worden tot het uitgangssignaal.
Alle signaalverbeteringstechnieken in deze thesis verschillen in feite louter in de
manier waarop de filters wn[k] berekend worden. Deze filters kunnen ontworpen
worden voor verschillende doelstellingen:

• Het doel van ruisonderdrukking is de energie van de residuele ruiscompo-
nent in het uitgangssignaal te minimaliseren, terwijl ook spraakvervor-
ming mee in rekening gebracht wordt.

• Het doel van dereverberatie is de filters wn[k] te berekenen zodat de totale
transferfunctie voor het spraaksignaal gelijk is aan een vertraging.

• Het doel van gecombineerde ruisonderdrukking en dereverberatie is het
schatten van het zuivere spraaksignaal s[k], dit wil zeggen dat gelijktijdig
de transferfunctie voor het spraaksignaal een vertraging benadert en de
energie van de residuele ruiscomponent geminimaliseerd wordt.

Alle uitdrukkingen kunnen ook voorgesteld worden in het frequentiedomein. In
paragraaf 2.2.4 worden verschillende performantiecriteria gedefinieerd. Ruis-
onderdrukking wordt beschreven door de verbetering in signaal-ruisverhouding



xxvi Samenvatting

(SNR). Spraakvervorming kan beschreven worden door de PTF tussen de spraak-
component in het ingangs- en het uitgangssignaal. Dereverberatie kan beschre-
ven worden door de PTF tussen het zuivere spraaksignaal en de spraakcompo-
nent in het uitgangssignaal.

In paragraaf 2.3 worden twee één-kanaals technieken voor ruisonderdrukking
besproken: spectrale subtractie en deelruimte-gebaseerde technieken. Beide
technieken benutten enkel de temporele en de spectrale informatie van de
spraak- en de ruissignalen. In de meeste spectrale-subtractietechnieken wor-
den de DFT-coëfficiënten vermenigvuldigd met een ruisafhankelijke verster-
kingsfactor, terwijl in de deelruimte-gebaseerde technieken de KLT-coëfficiënten
(Karhunen-Loève-Transformatie) gewijzigd worden. Aangezien beide technie-
ken een schatting nodig hebben van de ruiskarakteristieken, is er een spraak-
detectie-algoritme vereist. Deelruimte-gebaseerde technieken veronderstellen
dat het zuivere spraaksignaal beschreven kan worden door middel van een lage-
rangmodel en voeren signaalverbetering uit door de ruisdeelruimte te verwij-
deren en het zuivere spraaksignaal te schatten in de overblijvende signaaldeel-
ruimte, gebruik makend van een kleinste-kwadraten (LS) of een minimum-
variantie (MV) schatter. Beide schatters kunnen voorgesteld worden door
middel van een eigenfilterbank, zowel wanneer witte ruis als wanneer gekleur-
de ruis aanwezig is. Het kan bewezen worden dat de signaalonafhankelijke
spectrale-subtractietechnieken en de signaalafhankelijke deelruimte-gebaseerde
technieken asymptotisch hetzelfde resultaat produceren wanneer de frameleng-
te oneindig lang wordt en wanneer verondersteld wordt dat de spraak- en de
ruissignalen stationair zijn. In Deel I van de thesis zullen we de beschreven
deelruimte-gebaseerde technieken uitbreiden naar meerdere microfoons.

In paragraaf 2.4 worden twee één-kanaals technieken voor dereverberatie
besproken: inverse filtering, waarbij de akoestische impulsresponsies gekend
verondersteld zijn, en cepstrum-gebaseerde technieken, die geen kennis over
de akoestische impulsresponsies vereisen. In de praktijk kunnen één-kanaals
inverse-filteringtechnieken maar met beperkt succes toegepast worden, aan-
gezien akoestische impulsresponsies meestal niet-minimum-fasesystemen zijn,
terwijl één-kanaals cepstrum-gebaseerde technieken ook meestal een beperkte
performantie hebben, omdat het cepstrum van het zuivere spraaksignaal en de
akoestische impulsresponsie in grote mate met elkaar overlappen.

Paragraaf 2.5 behandelt vaste en adaptieve bundelvormingstechnieken voor
meer-kanaals ruisonderdrukking. Vaste bundelvormers zijn data-onafhankelijk
en proberen ruimtelijk in te zoomen op de spraakbron. Hierdoor kan reverbe-
ratie en achtergrondruis die niet uit de richting van de spraakbron komt onder-
drukt worden. Verschillende soorten vaste bundelvormers worden besproken:
de eenvoudige – maar vaak gebruikte – ‘delay-and-sum’ (DS) bundelvormer;
eerste-orde differentiële microfoons, gebruik makend van 2 microfoons op een
korte afstand van elkaar die vertraagd worden ten opzichte van elkaar; super-
directieve bundelvormers die de directiviteitsindex maximaliseren voor een ge-
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kend ruisveld; en de meest algemene ‘filter-and-sum’ bundelvormers, die in meer
detail in Deel III van de thesis bestudeerd worden. Adaptieve bundelvormers
combineren het ruimtelijk inzoomen van vaste bundelvormers met adaptieve
ruisonderdrukking, zodat adaptieve bundelvormers zich kunnen aanpassen aan
veranderende akoestische omgevingen en in het algemeen in een betere ruis-
onderdrukking resulteren dan vaste bundelvormers. In deze paragraaf wordt
de ‘linearly-constrained minimum-variance’ (LCMV) bundelvormer besproken,
die de energie van het uitgangssignaal minimaliseert met de beperking dat
signalen uit de richting van de spraakbron niet vervormd worden. Dit LCMV-
optimalisatieprobleem met beperkingen kan geherformuleerd worden als een
optimalisatieprobleem zonder beperkingen, resulterend in de ‘Generalised Si-
delobe Canceller’ (GSC) structuur. Deze GSC-structuur is opgebouwd uit een
vaste bundelvormer die een spraakreferentie genereert, een ‘blocking’-matrix
die ruisreferenties genereert en een ‘adaptive noise cancellation’ (ANC) trap
die gebruik maakt van een meer-kanaals adaptief filter. In de praktijk zal
echter door signaalreflecties (reverberatie) en door afwijkingen in de veronder-
stelde microfoonkarakteristieken signaallek optreden in de ruisreferenties, wat
leidt tot signaalvervorming. Verschillende varianten van de standaard GSC-
structuur worden besproken die de hoeveelheid signaallek verminderen (bv.
door middel van een spatiale ‘blocking’-matrix) of het effect van de signaal-
lek op de adaptieve filters beperken (bv. spraakgestuurd adaptatie-algoritme).
In Deel I van de thesis zal de performantie van de GSVD-gebaseerde optimaal-
filtertechniek vergeleken worden met de performantie van deze vaste en adap-
tieve bundelvormers.

In paragraaf 2.6 worden twee meer-kanaals technieken voor dereverberatie
besproken: inverse filtering en ‘matched’ filtering. Beide technieken vereisen
dat de akoestische impulsresponsies (gedeeltelijk) gekend zijn. Met behulp van
de inverse-filteringtechniek is het mogelijk om perfecte dereverberatie uit te
voeren. Deze techniek is echter vrij gevoelig aan de nauwkeurigheid van de
opgemeten/geschatte impulsresponsies. In de ‘matched’-filteringtechniek wor-
den de microfoonsignalen gefilterd met de tijdsomgekeerde van de (gedeelte-
lijke) akoestische impulsresponsies. Deze techniek is minder gevoelig aan de
nauwkeurigheid van de impulsresponsies, maar perfecte dereverberatie is niet
mogelijk. Bovendien treedt er een ‘pre-echo’-probleem op, dat verminderd kan
worden door de ‘matched’ filters tot een zekere filterlengte af te kappen. Deze
‘matched’-filteringtechniek vormt de basis voor de frequentiedomeintechnieken
voor dereverberatie en gecombineerde ruisonderdrukking en dereverberatie, die
ontwikkeld worden in Deel II van de thesis.

Deel I : GSVD-gebaseerde optimale filtering voor
meer-kanaals ruisonderdrukking

In dit deel stellen we een optimaal-filtertechniek, gebaseerd op de Veralgemeende-
Singuliere-Waarde-Ontbinding (GSVD), voor om de signaalkwaliteit van meer-
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kanaals spraaksignalen te verbeteren wanneer additieve gekleurde ruis aanwezig
is. Verschillende technieken worden besproken om de berekeningscomplexi-
teit te verminderen en we tonen aan dat deze GSVD-gebaseerde optimaal-
filtertechniek gëıntegreerd kan worden in een GSC-structuur. Simulaties tonen
aan dat de GSVD-gebaseerde optimaal-filtertechniek een grotere verbetering in
signaal-ruisverhouding oplevert dan standaard vaste en adaptieve bundelvor-
ming en dat deze techniek robuuster is wanneer afwijkingen in het veronder-
stelde signaalmodel optreden.

Hoofdstuk 3: GSVD-gebaseerde optimale filtering voor
één-kanaals en meer-kanaals spraakverbetering

In paragraaf 2.3 zijn één-kanaals deelruimte-gebaseerde technieken voor sig-
naalverbetering besproken. Het kernidee is om het microfoonsignaal voor te
stellen in een vectorruimte en deze vectorruimte op te splitsen in 2 orthogona-
le deelruimtes: de signaaldeelruimte en de ruisdeelruimte. Signaalverbetering
kan dan toegepast worden door de ruisdeelruimte te verwijderen en het zuivere
spraaksignaal te schatten uit de overblijvende signaaldeelruimte. Eén-kanaals
deelruimte-gebaseerde technieken kunnen beschouwd worden als een (signaal-
afhankelijke) frequentie-filtering, die adaptief de meest energetische formanten
uit het spraaksignaal overhoudt en zo achtergrondruis onderdrukt. In dit hoofd-
stuk stellen we een meer-kanaals uitbreiding voor, die zo de spatio-temporele
informatie van de spraak- en de ruisbronnen combineert. Wanneer een MV-
schatter gebruikt wordt, leidt dit tot een GSVD-gebaseerde implementatie van
het meer-kanaals Wiener-filter, waarbij het lage-rangmodel van het spraaksig-
naal mee in rekening wordt gebracht.

Paragraaf 3.2 behandelt optimale filtering voor meer-kanaals spraakverbe-
tering. Het optimaal filter in de ‘mean square error’ (MSE) zin is het meer-
kanaals Wiener-filter, dat een ‘minimum mean square error’ (MMSE) schatting
produceert voor de spraakcomponenten in de microfoonsignalen maar dus geen
dereverberatie uitvoert. In tegenstelling tot de GSC, dat als een optimaal-
filterprobleem met beperkingen beschouwd kan worden, is meer-kanaals Wiener-
filtering een optimaal-filterprobleem zonder beperkingen. Door gebruik te ma-
ken van de Veralgemeende-Eigenwaarde-Ontbinding (GEVD) van de spraak-
en de ruiscorrelatiematrices, kan het lage-rangmodel van het spraaksignaal ge-
makkelijk in rekening gebracht worden. Voor het meer-kanaals Wiener-filter
kan spraakvervorming nooit vermeden worden, aangezien de schattingsfout de
som is van een term die de residuele ruis voorstelt en een term die spraak-
vervorming voorstelt. In deze paragraaf stellen we ook een algemene klasse
schatters voor, waarbij het mogelijk is om spraakvervorming en ruisonderdruk-
king tegenover elkaar af te wegen en waarvan de filterparameters ook verkregen
kunnen worden uit de GEVD van de correlatiematrices.

In paragraaf 3.3 tonen we aan dat in de praktijk de Veralgemeende-Singuliere-
Waarde-Ontbinding (GSVD) van een spraak- en een ruisdatamatrix gebruikt
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kan worden om een empirische schatting van de optimaal-filtermatrix te be-
komen. Deze datamatrices worden geconstrueerd met behulp van een spraak-
detectie-algoritme (VAD), dat bepaalt of een vector tot de spraak- of tot de
ruisdatamatrix behoort. Dit spraakdetectie-algoritme is de enige a-priori infor-
matie waarop de GSVD-gebaseerde optimaal-filtertechniek steunt. We tonen
aan dat verschillende schattingen voor dezelfde spraakcomponent bekomen wor-
den, en we beschrijven een procedure om te bepalen welke schatting uiteindelijk
gebruikt moet worden (in de praktijk wordt meestal de vertraagde spraakcom-
ponent x0[k−L

2 +1] in het eerste microfoonsignaal gekozen). In de ‘batch’-versie
van het algoritme worden de datamatrices geconstrueerd met behulp van alle
beschikbare spraak- en ruisdatavectoren in het beschouwde signaalframe. Deze
‘batch’-versie is echter niet geschikt voor een implementatie in reële tijd wegens
de grote vertraging veroorzaakt door de frame-gebaseerde verwerking. In de
recursieve versie van het algoritme worden de datamatrices voor elke tijdsstap
bijgewerkt met de nieuw beschikbare spraak- of ruisdatavector (afhankelijk van
de uitgang van het VAD-algoritme), gebruik makend van een venster met ex-
ponentiële weging. Aangezien in de recursieve versie voor elke tijdsstap de
GSVD en het optimaal filter herberekend moeten worden, is de berekenings-
complexiteit vrij hoog. Daarom worden in hoofdstuk 4 verscheidene technieken
beschreven om de berekeningscomplexiteit te verminderen. In deze paragraaf
worden ook kort enkele andere implementatietechnieken voor het meer-kanaals
Wiener-filter vermeld, zoals een implementatie gebaseerd op de QR-ontbinding,
een LMS-gebaseerde implementatie en een subband-gebaseerde implementatie.
De subband-gebaseerde implementatie leidt tot een lagere complexiteit en een
betere performantie dan de fullband-implementatie, aangezien de MSE in elke
subband geminimaliseerd kan worden, wat perceptueel relevanter is.

In paragraaf 3.4 leiden we een aantal symmetrie-eigenschappen af voor de
optimaal-filtermatrix, zowel in het één-kanaals als in het meer-kanaals geval.
Deze eigenschappen zijn zowel geldig voor witte ruis als voor gekleurde ruis en
voor elke wegingsfunctie van de veralgemeende eigenwaarden. Ook wordt de
uitmiddelingsoperatie die toegepast wordt in sommige één-kanaals deelruimte-
gebaseerde technieken onderzocht. Dit leidt tot het besluit dat deze uitmidde-
lingsoperatie onnodig en vaak zelfs suboptimaal is.

In paragraaf 3.5 analyseren we het meer-kanaals Wiener-filter in het frequen-
tiedomein. We tonen aan dat – onder zwakke voorwaarden – het meer-kanaals
Wiener-filter gesplitst kan worden in een spatiale filterterm, die afhangt van de
spatiale karakteristieken (coherentie) van de spraak- en de ruisbronnen, en een
één-kanaals spectraal Wiener-filter, dat afhangt van de spectrale karakteristie-
ken (PSD) van de spraak- en de ruisbronnen. We berekenen de transferfuncties
voor de spraak- en de ruiscomponenten en we vereenvoudigen alle uitdrukkin-
gen in het geval van één enkele spraakbron. We tonen aan dat meer spraak-
vervorming optreedt voor frequenties met een lage SNR en wanneer de spatiale
scheiding tussen de spraak- en de ruisbronnen slecht is en dat meer ruisonder-



xxx Samenvatting

drukking bekomen wordt voor frequenties met een lage SNR en wanneer de
spraak- en de ruisbronnen spatiaal goed gescheiden zijn. Bovendien tonen we
aan dat de ruisgevoeligheid van de GSC en het meer-kanaals Wiener-filter aan
elkaar gelijk zijn in het geval van één enkele spraakbron en wanneer de vaste
bundelvormer in de GSC een ‘matched’ filter is.

In paragraaf 3.6 tonen we aan dat de meer-kanaals optimaal-filtertechniek
ook gebruikt kan worden voor gecombineerde ruis- en echo-onderdrukking door
het ‘far-end’-echosignaal als extra ingangssignaal te beschouwen. Voor on-
eindig lange filters bewijzen we dat de ‘far-end’-echobron geen invloed heeft
op de filters voor de microfoonsignalen, zodat dezelfde performantie bekomen
wordt als in het geval waar geen echobron aanwezig is, en dat de ‘far-end’-
echocomponenten in de microfoonsignalen volledig onderdrukt kunnen worden.

Hoofdstuk 4: Vermindering van berekeningscomplexiteit
met behulp van recursieve GSVD en ‘ANC-postprocessing’-
trap

In dit hoofdstuk worden verschillende technieken besproken om de berekenings-
complexiteit van de GSVD-gebaseerde optimaal-filtertechniek te verminderen.

Zoals reeds gezegd, is de berekeningscomplexiteit van de recursieve versie vrij
hoog, aangezien voor elke tijdsstap de GSVD en het optimaal filter herbere-
kend moeten worden. Paragraaf 4.2 beschrijft technieken om de complexi-
teit te verminderen door gebruik te maken van recursieve algoritmes van het
Jacobi-type om de GSVD te herberekenen en door gebruik te maken van sub-
bemonstering. In plaats van de volledige GSVD opnieuw te berekenen voor
elke tijdsstap, berekenen recursieve algoritmes de GSVD op tijdstip k door ge-
bruik te maken van de ontbinding op tijdstip k−1. De complexiteit kan verder
verlaagd worden door een implementatie te gebruiken die geen wortels nodig
heeft om de rotatiehoeken in de Givens-transformaties te berekenen. Voor
stationaire akoestische omgevingen kan de complexiteit zonder enig verlies in
performantie verder verlaagd worden door sub-bemonsteringstechnieken, waar
sub-bemonstering in deze context betekent dat de GSVD en het optimaal filter
niet voor elke tijdsstap herberekend worden. Voor niet-stationaire akoestische
omgevingen moet sub-bemonstering echter beperkt worden. Voor realistische
waarden van de parameters (4 microfoons, 20 filtertaps, 16 kHz) vat Tabel 4.4
de berekeningscomplexiteit samen voor de verschillende implementaties. De-
ze tabel toont aan dat de berekeningscomplexiteit van de recursieve GSVD-
gebaseerde optimaal-filtertechniek significant kan verminderd worden, zodat
deze techniek geschikt wordt voor een implementatie in reële tijd.

In paragraaf 4.3 tonen we aan dat de GSVD-gebaseerde optimaal-filtertechniek
gëıntegreerd kan worden in een GSC-structuur met een ‘ANC-postprocessing’-
trap. De uitgang van de GSVD-gebaseerde optimaal-filtertechniek wordt ge-
bruikt als spraakreferentiesignaal, terwijl er verschillende mogelijkheden be-
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staan om een ruisreferentie te creëren. We maken hiervoor gebruik van het
optimaal filter om de ruiscomponenten te schatten, en we tonen aan dat dit
filter eenvoudig kan afgeleid worden uit het optimaal filter om de spraakcompo-
nenten te schatten. In hoofdstuk 5 zal door middel van simulaties aangetoond
worden dat de ‘ANC-postprocessing’-trap ofwel gebruikt kan worden om de
performantie te verbeteren, ofwel om de berekeningscomplexiteit te verminde-
ren zonder de performantie te verlagen. Aangezien er net zoals bij een GSC
meestal ook signaallek optreedt in de ruisreferenties (signaallek kan vermin-
derd worden door grotere filterlengtes voor het optimaal filter te gebruiken),
zullen we het effect van deze signaallek op de ANC adaptieve filters verminde-
ren door gebruik te maken van een spraakgestuurd adaptatie-algoritme, dit wil
zeggen dat de adaptieve filters enkel mogen adapteren wanneer er geen spraak
aanwezig is.

Hoofdstuk 5: Simulatieresultaten en controle-algoritme

Voor verschillende gesimuleerde akoestische omgevingen en voor een realis-
tische opname bespreekt dit hoofdstuk de performantie (ruisonderdrukking,
spraakvervorming, robuustheid) van de GSVD-gebaseerde implementatie van
de meer-kanaals optimaal-filtertechniek, waarbij het lage-rangmodel van het
spraaksignaal mee in rekening wordt gebracht. De performantie van de GSVD-
gebaseerde optimaal-filtertechniek wordt vergeleken met standaard vaste en
adaptieve bundelvormingstechnieken, en de robuustheid tegen spraakdetectie-
fouten en afwijkingen in het veronderstelde signaalmodel wordt onderzocht.

De gebruikte simulatie-omgeving is weergegeven in Figuur 5.1 in paragraaf 5.1
en bevat een microfoonrooster met 4 microfoons op een afstand van 5 cm van el-
kaar, een spraakbron op 1.3 m van het microfoonrooster en 3 ruisbronnen. Voor
het spraaksignaal gebruiken we Engelse zinnen uit de ‘Hearing in Noise Test’,
terwijl we 3 verschillende ruissignalen gebruiken: stationaire witte ruis, stati-
onaire spraakruis met hetzelfde lange-termijnspectrum als spraak en een niet-
stationair muzieksignaal. Deze paragraaf bespreekt ook enkele implementatie-
aspecten voor de GSVD-gebaseerde optimaal-filtertechniek en voor de bundel-
vormingstechnieken (filterlengte, stapgrootte, exponentiële weging).

In paragraaf 5.2 wordt de performantie (SNR-verbetering en spraakvervor-
ming) van de GSVD-gebaseerde optimaal-filtertechniek met en zonder ‘ANC-
postprocessing’-trap besproken. Voor eenvoudige akoestische scenario’s, wan-
neer er geen signaalreflecties optreden (reverberatietijd T60 = 0), toont Figuur
5.4 aan dat de GSVD-gebaseerde optimaal-filtertechniek het gewenste bundel-
vormingsgedrag vertoont voor spatio-temporele witte ruis en voor gelokaliseer-
de ruisbronnen. Wanneer er wel reverberatie aanwezig is, tonen simulaties
(cf. Figuur 5.5) aan dat de SNR-verbetering verhoogt en de spraakvervor-
ming vermindert voor grotere filterlengtes en voor lagere reverberatietijden.
Figuur 5.5 toont ook aan dat de ‘batch’ en de recursieve versie van de GSVD-
gebaseerde optimaal-filtertechniek quasi dezelfde performantie hebben. Figuur



xxxii Samenvatting

5.7 toont aan dat voor stationaire akoestische omgevingen een hogere sub-
bemonsteringsfactor gebruikt kan worden zonder de performantie te verlagen.
In paragraaf 5.2.4 wordt de performantie voor een spectraal niet-stationaire
ruisbron onderzocht, dit wil zeggen een ruisbron op een vaste positie maar
met een veranderend spectrum. Aangezien we meestal vrij lange datablokken
beschouwen in de meer-kanaals GSVD-gebaseerde optimaal-filtertechniek – ex-
ponentiële weging dicht bij 1 – zal de performantie voornamelijk afhankelijk zijn
van de gemiddelde (lange-termijn) spectrale en spatiale karakteristieken van de
ruisbron, zodat de GSVD-gebaseerde optimaal-filtertechniek ook gebruikt kan
worden om niet-stationaire ruisbronnen te onderdrukken (cf. Figuur 5.8). In
paragraaf 5.2.5 wordt het effect van de ‘ANC-postprocessing’-trap bestudeerd,
en wordt aangetoond dat de ‘ANC-postprocessing’-trap ofwel kan gebruikt wor-
den om de performantie te verbeteren ofwel om de complexiteit te verminderen
zonder de performantie te verlagen. Deze ‘ANC-postprocessing’-trap zal echter
wel leiden tot een verhoogde spraakvervorming, die echter beperkt kan worden
door langere filters te gebruiken (cf. Figuur 5.9).

In paragraaf 5.3 wordt het effect van spraakdetectiefouten op de perfor-
mantie onderzocht. Eerst wordt een overzicht gegeven van verschillende één-
kanaals spraakdetectie-algoritmes (‘log-likelihood’, log-energie, ‘zero crossing
rate’, spectrale entropie, geometrische VAD), waarvan de performantie bestu-
deerd wordt voor verschillende ruistypes en signaal-ruisverhoudingen. Daarna
wordt het gemiddeld effect van (manueel ingevoerde) spraakdetectiefouten gea-
nalyseerd op de performantie van de GSVD-gebaseerde optimaal-filtertechniek,
zowel theoretisch als experimenteel. Aangezien het spraakdetectie-algoritme de
enige a-priori informatie is waarop de GSVD-gebaseerde optimaal-filtertechniek
steunt, wordt verwacht dat deze techniek vrij gevoelig is voor spraakdetectiefou-
ten. Nochtans kan er theoretisch aangetoond worden dat de SNR-verbetering
van het meer-kanaals Wiener-filter niet verminderd wordt door spraakdetectie-
fouten, noch wanneer spraak foutief als ruis gedetecteerd wordt, noch wanneer
ruis foutief als spraak gedetecteerd wordt. Wanneer spraak foutief als ruis
gedetecteerd wordt, zal de spraakvervorming echter wel sterk toenemen met
het percentage foutief geclassificeerde samples (wanneer dit percentage lager
is dan 20%, blijft de spraakvervorming echter beperkt). Wanneer ruis foutief
als spraak gedetecteerd wordt, zal de spraakvervorming slechts in geringe mate
toenemen. Deze vaststellingen worden ook experimenteel bevestigd. Wanneer
we de performantie evalueren van de GSVD-gebaseerde optimaal-filtertechniek
in combinatie met de verschillende spraakdetectie-algoritmes, dan blijkt dat
de beste performantie voor verschillende ruistypes verkregen wordt door de
spraakdetectie-algoritmes gebaseerd op ‘log-likelihood’ en log-energie.

In paragraaf 5.4 wordt de performantie van de GSVD-gebaseerde optimaal-
filtertechniek vergeleken met standaard bundelvormingstechnieken voor ver-
schillende akoestische scenario’s (één en meerdere gesimuleerde ruisbronnen,
realistische opname). De figuren 5.12, 5.13 en 5.14 tonen de SNR-verbetering
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en de spraakvervorming van verschillende algoritmes (DS-bundelvormer, GSC,
spatiale ‘blocking’-matrix, GSVD-gebaseerde optimaal-filtertechniek met en
zonder ‘ANC-postprocessing’-trap) voor verschillende reverberatietijden en ruis-
scenario’s (witte ruis, spraakruis, 3 ruisbronnen). De SNR-verbetering van
de GSVD-gebaseerde optimaal-filtertechniek met ‘ANC-postprocessing’-trap is
steeds beter dan de SNR-verbetering van de GSC voor alle reverberatietijden
en voor alle beschouwde akoestische scenario’s. Voor de GSVD-gebaseerde
optimaal-filtertechniek treedt een grotere spraakvervorming op voor hogere re-
verberatietijden en wanneer de ‘ANC-postprocessing’-trap met meerdere ruis-
referenties toegevoegd wordt. Uit deze figuren blijkt ook dat de performantie
voor witte ruis beter is dan voor spraakruis en dat de performantie voor één
enkele ruisbron beter is dan voor meerdere ruisbronnen, wat volledig in overeen-
stemming is met de frequentiedomeinanalyse uit paragraaf 3.5. In deze para-
graaf wordt ook de robuustheid van de GSC en de GSVD-gebaseerde optimaal-
filtertechniek geanalyseerd voor verschillende afwijkingen in het veronderstelde
signaalmodel: (a) afwijking in de versterking en de fase van de microfoons, (b)
afwijking in de microfoonpositie, (c) foutieve veronderstelling over de richting
van de spreker. De GSC is zeer gevoelig voor een afwijking in de versterking
en de fase (en in mindere mate voor de andere afwijkingen) wanneer de ruis-
gevoeligheid groot is. Aangezien de GSVD-gebaseerde optimaal-filtertechniek
geen a-priori veronderstellingen maakt over de positie van de spreker of over de
microfoonkarakteristieken, tonen simulaties aan dat deze techniek robuuster is
dan de GSC voor de 3 beschouwde afwijkingen. We kunnen zelfs bewijzen dat
de performantie van de GSVD-gebaseerde optimaal-filtertechniek onafhankelijk
is van de versterking en de fase van de microfoons.

Deel II : Meer-kanaals dereverberatie en Bron-
lokalisatie

In dit deel worden meer-kanaals algoritmes besproken voor het schatten van
tijdsvertraging, voor dereverberatie en voor gecombineerde ruisonderdrukking
en dereverberatie. Aangezien deze algoritmes een schatting vereisen van de
akoestische impulsresponsies, bespreken we ook adaptieve en niet-adaptieve
technieken om akoestische impulsresponsies te schatten, zowel in het tijdsdo-
mein als in het frequentiedomein. We leiden een stochastisch-gradiëntalgoritme
af dat iteratief de veralgemeende eigenvector berekent behorend bij de kleinste
veralgemeende eigenwaarde en dat gebruikt kan worden voor het schatten van
tijdsvertraging. We tonen aan dat een gecombineerde techniek voor ruison-
derdrukking en dereverberatie kan bekomen worden door het genormaliseerd
‘matched’ filter te integreren met het meer-kanaals Wiener-filter.

Hoofdstuk 6: Robuuste schatting van tijdsvertraging voor
akoestische bronlokalisatie

In veel toepassingen, zoals video-conferencing, spraakgestuurde systemen en
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hoorapparaten, is het wenselijk om de actieve spreker te lokaliseren. Met be-
hulp van een microfoonrooster is het mogelijk om de positie van deze spre-
ker te bepalen, zodat het microfoonrooster elektronisch kan gestuurd worden
door middel van vaste (en adaptieve) bundelvormers of zodat de videocame-
ra automatisch op de spreker gericht kan worden. In de literatuur is reeds
aangetoond dat de positie berekend kan worden uit de tijdsvertragingen tus-
sen de verschillende microfoonsignalen. Een nauwkeurige schatting van deze
tijdsvertragingen is echter geen eenvoudige taak wegens reverberatie, achter-
grondlawaai en het niet-stationaire karakter en het lage-rangmodel van spraak-
signalen. Aangezien de meeste standaard technieken (bv. gebaseerd op de
veralgemeende kruiscorrelatie) een ideaal kamermodel zonder reverberatie ver-
onderstellen, is hun performantie vrij laag in reverberante omgevingen. Recent
is een adaptief Eigenwaarde-Ontbinding (EVD) algoritme voorgesteld voor een
(gedeeltelijke) schatting van 2 akoestische impulsresponsies met behulp van
een stochastisch-gradiëntalgoritme dat iteratief de eigenvector behorend bij de
kleinste eigenwaarde schat. Uit de geschatte akoestische impulsresponsies kan
de tijdsvertraging berekend worden als het tijdsverschil tussen de eerste pieken
(overeenkomend met het direct pad) of als de piek van de correlatiefunctie tus-
sen de 2 impulsresponsies. De performantie van het adaptief EVD-algoritme is
veel beter dan standaard technieken in een reverberante omgeving.

Strikt gesproken is het adaptief EVD-algoritme enkel geldig wanneer er geen
ruis aanwezig is of wanneer er spatio-temporele witte ruis aanwezig is. In dit
hoofdstuk breiden we daarom het adaptief EVD-algoritme uit voor het geval
waar spatio-temporele gekleurde ruis aanwezig is, door een adaptief stochastisch-
gradiëntalgoritme af te leiden voor de Veralgemeende-Eigenwaarde-Ontbinding
(GEVD) of door een ‘prewhitening’-operatie uit te voeren op de microfoonsig-
nalen. Bovendien breiden we alle beschouwde algoritmes voor het schatten van
tijdsvertraging uit naar het geval van meer dan 2 microfoons.

Paragraaf 6.2 bespreekt de niet-adaptieve (‘batch’) schatting van de volle-
dige akoestische impulsresponsies uit de microfoonsignalen, gebruik makend
van deelruimte-gebaseerde technieken. We tonen aan dat als de lengte van de
akoestische impulsresponsies ofwel gekend is ofwel overschat kan worden, de vol-
ledige akoestische impulsresponsies berekend kunnen worden uit de EVD van
de spraakcorrelatiematrix (indien geen of spatio-temporele witte ruis aanwezig
is) of uit de GEVD van de spraak- en de ruiscorrelatiematrix (indien spatio-
temporele gekleurde ruis aanwezig is). Uit simulaties blijkt dat deze procedures
vrij gevoelig zijn voor de onafhankelijkheidsveronderstelling tussen spraak en
ruis. Hoe beter aan deze veronderstelling voldaan is (bv. hogere SNR, langere
spraak- en ruissegmenten), hoe beter de schatting is. In de praktijk kunnen
de akoestische impulsresponsies duizenden filtertaps hebben, afhankelijk van
de hoeveelheid reverberatie. Wegens het (benaderend) lage-rangmodel van het
spraaksignaal zullen correlatiematrices van het zuiver spraaksignaal met deze
dimensies rangdeficiënt of op zijn minst slecht geconditioneerd zijn. Daarom is
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het in de praktijk vrij moeilijk om met deze deelruimte-gebaseerde technieken
in het tijdsdomein de volledige akoestische impulsresponsies te schatten, zeker
wanneer er achtergrondruis aanwezig is.

Deze ‘batch’-technieken voor het schatten van impulsresponsies vormen de ba-
sis voor het afleiden van stochastisch-gradiëntalgoritmes die iteratief de (veral-
gemeende) eigenvector behorend bij de kleinste (veralgemeende) eigenwaarde
berekenen. In paragraaf 6.3 beschrijven we het adaptief EVD-algoritme en lei-
den we een adaptief GEVD-algoritme en een adaptief ‘prewhitening’-algoritme
af. In de literatuur is reeds aangetoond dat het adaptief EVD-algoritme ge-
bruikt kan worden voor het schatten van tijdsvertraging, merkwaardig genoeg
zelfs wanneer de lengte van de akoestische impulsresponsies onderschat wordt.
Door middel van simulaties tonen we aan dat dit resultaat ook geldig is voor het
adaptief GEVD-algoritme wanneer spatio-temporele gekleurde ruis aanwezig is.

In paragraaf 6.4 beschrijven we hoe de ontwikkelde ‘batch’ en adaptieve al-
goritmes voor het schatten van tijdsvertraging eenvoudig uitgebreid kunnen
worden voor het geval van meer dan 2 microfoons.

In paragraaf 6.5 worden de simulatieresultaten beschreven. De performantie
van de verschillende adaptieve algoritmes voor het schatten van tijdsvertraging
(EVD, GEVD, ‘prewhitening’) wordt onderzocht voor verschillende reverbe-
ratiecondities (ideaal en realistisch), verschillende signaal-ruisverhoudingen en
verschillende microfoonconfiguraties (2 en 3 microfoons). De simulaties to-
nen aan dat voor alle beschouwde scenario’s de tijdsvertragingen robuuster
geschat worden door het adaptief GEVD-algoritme dan door het adaptief EVD-
algoritme en het adaptief ‘prewhitening’-algoritme.

Hoofdstuk 7: Gecombineerde ruisonderdrukking en dere-
verberatie

Zoals reeds aangegeven in paragraaf 2.2, vormt het doel van meer-kanaals sig-
naalverbetering ofwel ruisonderdrukking (zonder aandacht te schenken aan resi-
duele reverberatie), dereverberatie (zonder aandacht te schenken aan residuele
ruis) of gecombineerde ruisonderdrukking en dereverberatie (waarbij gelijktij-
dig de transferfunctie voor het spraaksignaal een vertraging moet benaderen
en de residuele ruiscomponent geminimaliseerd wordt).

De meeste meer-kanaals dereverberatie-algoritmes (bv. inverse of ‘matched’
filtering) vereisen een schatting van de akoestische impulsresponsies, in het
tijdsdomein of in het frequentiedomein. Zoals reeds aangegeven in paragraaf
6.2, kan met behulp van deelruimte-gebaseerde technieken een schatting in het
tijdsdomein bekomen worden, maar is het in de praktijk vrij moeilijk om de
volledige akoestische impulsresponsies te schatten wegens de lengte van de im-
pulsresponsies, het lage-rangmodel van het spraaksignaal en achtergrondruis.
Bovendien blijken deelruimte-gebaseerde technieken in het tijdsdomein vrij ge-
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voelig te zijn voor een onderschatting van de lengte van de impulsresponsies.

Wegens deze redenen zijn er in de literatuur ook technieken in het frequentie-
domein voorgesteld om de akoestische transferfuncties te schatten. Alhoewel
deze technieken in het frequentiedomein minder gevoelig zijn voor het orde-
schattingsprobleem, treedt er een (onbekende) schalingsambigüıteit op in elke
frequentiebin. Het wegwerken van deze ambigüıteit vereist voorafgaande kennis
over de akoestische transferfuncties, wat duidelijk een nadeel is en wat het prak-
tisch gebruik van deze frequentiedomeintechnieken beperkt. Strikt gesproken
zijn de voorgestelde technieken enkel geldig wanneer spatiaal witte ruis aanwe-
zig is. In dit hoofdstuk breiden we deze technieken uit voor het geval wanneer
spatiaal gekleurde ruis aanwezig is en tonen we aan dat met behulp van de
geschatte akoestische transferfuncties zowel dereverberatie als gecombineerde
ruisonderdrukking en dereverberatie uitgevoerd kan worden.

In paragraaf 7.2 stellen we een deelruimte-gebaseerde techniek in het frequen-
tiedomein voor om de akoestische transferfuncties te schatten wanneer spatiaal
gekleurde ruis aanwezig is. Het blijkt dat deze techniek vrij gelijkaardig is aan
de deelruimte-gebaseerde techniek in het tijdsdomein, waar nu de akoestische-
transferfunctievector berekend kan worden uit de veralgemeende eigenvector
behorend bij de grootste veralgemeende eigenwaarde (in tegenstelling tot de
kleinste veralgemeende eigenwaarde voor de tijdsdomeintechniek). De transfer-
functievector kan echter maar geschat worden op een (frequentie-afhankelijke)
schaleringsfactor na, wat resulteert in een ambigüıteit die enkel opgelost kan
worden als de norm van de transferfunctievector gekend is. Alhoewel aange-
toond is dat deze norm minder bëınvloed wordt door kleine bewegingen van de
spreker dan de individuele transferfuncties, zal deze norm toch drastisch wij-
zigen wanneer de spreker in de kamer rondloopt. Dit beperkt het gebruik van
deze frequentiedomeintechniek tot bv. desktop- of wagentoepassingen, waar
de positie van de spreker vrij vast is en de norm van de transferfunctievector
op voorhand opgemeten kan worden. Het wegwerken van deze voorafgaan-
de kennis over de norm van de transferfunctievector is een onderwerp voor
verder onderzoek. Wanneer spatiaal witte ruis aanwezig is, kan een deelruimte-
trackingprocedure gebruikt worden om de voornaamste eigenvector adaptief te
schatten. De uitbreiding van deze deelruimte-trackingprocedure naar spatiaal
gekleurde ruis is een onderwerp voor verder onderzoek.

Met behulp van de geschatte akoestische-transferfunctievector kan zowel dere-
verberatie als gecombineerde ruisonderdrukking en dereverberatie uitgevoerd
worden. In paragraaf 7.3 wordt aangetoond dat perfecte dereverberatie be-
komen kan worden met behulp van het genormaliseerd ‘matched’ filter. Aan-
gezien dit filter geen rekening houdt met de residuele ruiscomponent, is het
zelfs mogelijk dat de ruiscomponenten in de microfoonsignalen versterkt wor-
den door dit dereverberatiefilter. In deze paragraaf tonen we ook aan dat
de MMSE-schatting van het zuivere spraaksignaal s[k] bekomen kan worden
door de MMSE-schattingen van de spraakcomponenten in de microfoonsig-
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nalen te filteren met het genormaliseerd ‘matched’ filter. We kunnen dus een
techniek voor gecombineerde ruisonderdrukking en dereverberatie bekomen door
het genormaliseerd ‘matched’ filter te integreren met het meer-kanaals Wiener-
filter voor ruisonderdrukking. Aangezien beide algoritmes gebruik maken van
dezelfde ontbinding, namelijk de GSVD van een spraak- en een ruisdatama-
trix, kunnen ze eenvoudig gecombineerd worden. Merk op dat zowel voor de
voorgestelde dereverberatietechniek als voor de techniek voor gecombineerde
ruisonderdrukking en dereverberatie voorafgaande kennis over de norm van de
akoestische-transferfunctievector nodig is.

In paragraaf 7.4 worden enkele praktische implementatie-aspecten besproken.
Aangezien in feite een convolutie in het frequentiedomein uitgevoerd wordt,
moeten de corresponderende filters in het tijdsdomein beperkt worden om cir-
culaire convoluties te vermijden.

In paragraaf 7.5 worden de simulatieresultaten beschreven voor een kamer
met reverberatietijd T60 = 400 msec, een microfoonrooster met 4 microfoons
op een afstand van 2 cm van elkaar en een signaal-ruisverhouding van 0 dB. Voor
de verschillende algoritmes geeft Tabel 7.1 een overzicht van de objectieve per-
formantiecriteria voor ruisonderdrukking en dereverberatie. De simulatieresul-
taten tonen aan dat de GSVD-gebaseerde meer-kanaals Wiener-filtertechniek
de beste signaal-ruisverhouding oplevert, dat de GSVD-gebaseerde dereverbe-
ratietechniek met behulp van het genormaliseerd ‘matched’ filter de beste de-
reverberatieperformantie heeft, en dat de techniek voor gecombineerde ruison-
derdrukking en dereverberatie een afweging maakt tussen beide doelstellingen.

Deel III : Ontwerp van breedband bundelvor-
mers

In dit deel worden verschillende ontwerpprocedures besproken voor vaste breed-
band bundelvormers met een willekeurig spatiaal directiviteitspatroon voor
een gegeven willekeurig microfoonrooster, met behulp van een FIR ‘filter-and-
sum’-structuur. We stellen 2 nieuwe kostfuncties voor die gebaseerd zijn op
eigenfilters. We bespreken het ontwerp van ‘far-field’, ‘near-field’ en ‘mixed
near-field far-field’ breedband bundelvormers en we ontwikkelen 2 ontwerppro-
cedures voor breedband bundelvormers die robuust zijn tegen afwijkingen in
de versterking en de fase van de microfoons.

Hoofdstuk 8: ‘Far-field’ breedband bundelvorming

Welgekende meer-kanaals signaalverbeteringstechnieken zijn vaste en adaptie-
ve bundelvormers (cf. paragraaf 2.5). Alhoewel adaptieve bundelvormers in
het algemeen een betere performantie hebben dan vaste bundelvormers en zich
kunnen aanpassen in een veranderende akoestische omgeving, zijn adaptieve
bundelvormers vaak vrij gevoelig voor afwijkingen in het veronderstelde sig-
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naalmodel (cf. paragraaf 5.4). Daarom worden vaste bundelvormers (met een
vast directiviteitspatroon) soms verkozen omdat ze geen controle-algoritme no-
dig hebben en wegens hun eenvoudige implementatie en lage berekeningscom-
plexiteit. Vaste bundelvormers worden vaak gebruikt in zeer reverberante om-
gevingen, om meerdere bundels te creëren, in toepassingen waar de positie van
de spreker ongeveer gekend is en om de spraakreferentie in een GSC te creëren.

In het algemeen proberen vaste bundelvormers ruimtelijk in te zoomen op de
spraakbron, om zo reverberatie en achtergrondruis te onderdrukken die niet
uit dezelfde richting als de spraakbron komt. Voor de meeste vaste bundelvor-
mingstechnieken uit paragraaf 2.5 (DS-bundelvormer, differentiële microfoons,
superdirectieve microfoons, frequentie-invariante bundelvormers) is het echter
niet mogelijk om een willekeurig spatiaal directiviteitspatroon te ontwerpen
voor een willekeurige microfoonroosterconfiguratie. Dit is echter wel mogelijk
met behulp van de meest algemene FIR ‘filter-and-sum’-structuur (cf. Figuur
8.1), waarmee een – vooraf gedefinieerd – gewenst spatiaal directiviteitspa-
troon zo goed mogelijk benaderd kan worden door een bepaalde kostfunctie te
optimaliseren. In dit hoofdstuk worden verschillende kostfuncties voorgesteld
om breedband bundelvormers te ontwerpen, die bv. gebaseerd zijn op ge-
wogen kleinste-kwadraten (LS), een maximum-energie-rooster of niet-lineaire
optimalisatietechnieken. Alhoewel we in het algemeen de voorkeur geven aan
de niet-lineaire ontwerpprocedure, leidt deze ontwerpprocedure tot een grote
berekeningscomplexiteit omdat een iteratieve optimalisatietechniek vereist is.
Daarom stellen we ook 2 nieuwe niet-iteratieve ontwerpprocedures voor die
gebaseerd zijn op eigenfilters: de conventionele eigenfiltertechniek die een refe-
rentiepunt nodig heeft, en de eigenfiltertechniek gebaseerd op een ‘Total Least
Squares’ (TLS) criterium. Door simulaties zal aangetoond worden dat de TLS-
eigenfiltertechniek de beste niet-iteratieve ontwerpprocedure is, dit wil zeggen
de niet-iteratieve procedure waarvan de performantie het dichtst de niet-lineaire
procedure benadert maar met een veel lagere berekeningscomplexiteit. In dit
hoofdstuk veronderstellen we dat de spraakbron zich in het ‘far-field’ van het
microfoonrooster bevindt en dat de microfoons een (perfecte) omni-directionele
karakteristiek hebben met een vlakke frequentieresponsie gelijk aan 1. In hoofd-
stuk 9 worden ‘near-field’ en ‘mixed near-field far-field’ breedband bundelvor-
mers besproken en in hoofdstuk 10 worden robuuste breedband bundelvormers
besproken, die de microfoonkarakteristieken mee in rekening brengen.

Paragraaf 8.2 bespreekt enkele conventies met betrekking tot de notatie en
geeft enkele definities (bv. spatiaal directiviteitspatroon). Aangezien in dit
hoofdstuk verondersteld wordt dat de spraakbron zich in het ‘far-field’ van het
microfoonrooster bevindt, kunnen we vlakke golfvoortplanting en een gelijke
verzwakking voor alle microfoons veronderstellen.

Het ontwerp van een breedband bundelvormer bestaat uit het berekenen van de
filtercoëfficiënten, zodanig dat het werkelijk spatiaal directiviteitspatroon het
gewenst spatiaal directiviteitspatroon zo dicht mogelijk benadert. Er bestaan
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verschillende ontwerpprocedures naargelang de kostfunctie die geoptimaliseerd
wordt. In paragraaf 8.3 worden 3 kostfuncties voorgesteld:

• de welgekende gewogen-kleinste-kwadratenkostfunctie (LS), die de gewogen-
kleinste-kwadratenfout tussen het werkelijk en het gewenst spatiaal direc-
tiviteitspatroon minimaliseert. Deze kostfunctie kan geschreven worden
als een kwadratische functie.

• de maximum-energie-roosterkostfunctie (ME), die de energieverhouding
tussen het passband- en het stopbandgebied maximaliseert. Deze kost-
functie geeft aanleiding tot een veralgemeend eigenwaardeprobleem.

• de niet-lineaire kostfunctie (NL), die de fout tussen de amplitudes van
het werkelijk en het gewenst spatiaal directiviteitspatroon minimaliseert,
zonder rekening te houden met de fase van de directiviteitspatronen. We
stellen een kleine wijziging voor aan de standaard niet-lineaire kostfunctie,
zodat de dubbele integralen slechts eenmalig moeten berekend worden.

In het algemeen geven we de voorkeur aan de (gewijzigde) niet-lineaire kost-
functie. Aangezien het minimaliseren van deze kostfunctie echter aanleiding
geeft tot een niet-lineair optimalisatieprobleem, dat met behulp van iteratieve
optimalisatietechnieken dient opgelost te worden en dus aanleiding geeft tot een
hoge berekeningscomplexiteit, zullen we ook de niet-iteratieve ontwerpprocedu-
res met een lagere berekeningscomplexiteit in aanmerking nemen. In paragraaf
8.4 worden 2 nieuwe niet-iteratieve kostfuncties, gebaseerd op eigenfilters, ge-
definieerd en in paragraaf 8.6 wordt de performantie van alle beschouwde niet-
iteratieve ontwerpprocedures vergeleken met de niet-lineaire ontwerpprocedure.

Voor alle kostfuncties zullen we het breedband-bundelvormerontwerp uitvoeren
voor het volledige frequentie-hoek-gebied, dit wil zeggen dat we het fullband-
probleem niet opsplitsen in afzonderlijke smallband-problemen voor verschil-
lende frequenties. Bovendien zullen we de dubbele integralen over frequenties
en hoeken niet benaderen door een eindige Riemann-som over een rooster van
frequenties en hoeken. Voor elke kostfunctie bespreken we eerst het algemeen
ontwerp voor een willekeurig gewenst spatiaal directiviteitspatroon, en beper-
ken we ons dan tot het ontwerp van een breedband bundelvormer met een
passband- en een stopbandgebied. Voor elke kostfunctie tonen we ook aan hoe
lineaire beperkingen kunnen opgelegd worden aan de filtercoëfficiënten.

In paragraaf 8.4 stellen we 2 nieuwe niet-iteratieve kostfuncties voor, die ge-
baseerd zijn op eigenfilters. Eigenfilters zijn reeds gebruikt voor het ontwerp
van één-dimensionale FIR filters met lineaire fase, voor 2-dimensionale FIR fil-
ters en voor spatiale filters. In deze paragraaf breiden we het toepassingsgebied
van eigenfilters uit naar het ontwerp van breedband bundelvormers. In deze
paragraaf worden 2 eigenfilter-kostfuncties beschouwd:

• de conventionele-eigenfilterkostfunctie (EIG), die de fout tussen de rela-
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tieve werkelijke en gewenste spatiale directiviteitspatronen minimaliseert.
Deze kostfunctie vereist een referentiepunt in het frequentie-hoek-gebied.
Het minimaliseren van deze kostfunctie met of zonder bijkomende be-
perkingen leidt tot een (veralgemeend) eigenwaarde-probleem. Meestal
wordt een kwadratische beperking gebruikt die de oppervlakte onder het
spatiaal directiviteitsspectrum gelijkstelt aan 1.

• de TLS-eigenfilterkostfunctie (TLS), die de ‘Total Least Squares’ (TLS)
fout tussen het werkelijk en het gewenst spatiaal directiviteitspatroon
minimaliseert. Deze kostfunctie vereist geen referentiepunt en leidt ook
tot een veralgemeend eigenwaarde-probleem.

In paragraaf 8.5 worden verschillende types van lineaire beperkingen bespro-
ken die opgelegd kunnen worden aan de filtercoëfficiënten. Puntbeperkingen,
lijnbeperkingen en afgeleide-beperkingen worden behandeld.

Paragraaf 8.6 beschrijft de simulatieresultaten voor de verschillende kostfunc-
ties en voor drie verschillende ontwerpspecificaties (verschillende passband- en
stopbandgebieden, lineaire beperkingen). Het bundelvormerontwerp wordt uit-
gevoerd voor een lineair uniform microfoonrooster met 5 microfoons op een
afstand van 4 cm van elkaar, een bemonsteringsfrequentie van 8 kHz en een
filterlengte van 20 taps. Voor alle ontwerpspecificaties vergelijken we de per-
formantie van de niet-iteratieve ontwerpprocedures (LS, EIG, TLS, ME) met
de niet-lineaire ontwerpprocedure (NL) en bepalen we welke niet-iteratieve ont-
werpprocedure de beste performantie heeft, gebruik makend van de niet-lineaire
kostfunctie als performantiecriterium. Uit deze simulaties blijkt dat de TLS-
eigenfiltertechniek de beste niet-iteratieve ontwerpprocedure is.

Hoofdstuk 9: ‘Near-field’ breedband bundelvorming

Wanneer de spraakbron zich dicht genoeg bij het microfoonrooster bevindt
(in het zogenaamde ‘near-field’), zijn de ‘far-field’-veronderstellingen niet meer
geldig en moet sferische golfvoortplanting en signaalverzwakking voor de micro-
foonsignalen in rekening gebracht worden. Dit hoofdstuk bespreekt het ontwerp
van ‘near-field’ breedband bundelvormers. Het ultieme doel is het ontwerp van
een breedband bundelvormer waarvan het spatiaal directiviteitspatroon zo goed
mogelijk het gewenst spatiaal directiviteitspatroon benadert voor alle afstan-
den tot het microfoonrooster. In dit hoofdstuk zullen we enkel het ontwerp van
‘near-field’ breedband bundelvormers bespreken voor één welbepaalde afstand
tot het microfoonrooster en voor een beperkt aantal afstanden.

In paragraaf 9.2 tonen we aan dat het ontwerp van ‘near-field’ breedband
bundelvormers voor één welbepaalde afstand zeer gelijkaardig is aan het ont-
werp van ‘far-field’ breedband bundelvormers (‘far-field’ bundelvormers zijn in
feite een speciaal geval voor een oneindig grote afstand). Dezelfde ontwerppro-
cedures en kostfuncties kunnen gebruikt worden en het enige verschil ligt in
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de berekening van de dubbele integralen die voorkomen in het ontwerp. Het
spatiaal directiviteitspatroon van een ‘near-field’ bundelvormer ontworpen voor
één welbepaalde afstand tot het microfoonrooster kan echter voor andere af-
standen in grote mate afwijken van het gewenst spatiaal directiviteitspatroon
(cf. simulaties in paragraaf 9.4). Daarom stellen we in deze paragraaf ook ont-
werpprocedures voor om breedband bundelvormers te ontwerpen die voor ver-
schillende afstanden werken. Indien één van deze afstanden oneindig is, wordt
dit ‘mixed near-field far-field’ bundelvorming genoemd. Deze uitbreiding is
vanzelfsprekend voor de meeste kostfuncties (gewogen kleinste-kwadraten, con-
ventionele eigenfilter, niet-lineaire procedure). Voor de TLS-eigenfiltertechniek
en de maximum-energie-roosterkostfunctie leidt deze uitbreiding echter tot een
zeer verschillend optimalisatieprobleem, namelijk een som van veralgemeende
Rayleigh-quotiënten, waarvoor geen oplossing in gesloten vorm beschikbaar is
en waarvoor iteratieve optimalisatietechnieken gebruikt moeten worden.

In paragraaf 9.3 worden lineaire beperkingen voor het ‘near-field’-geval be-
sproken. Enkel punt- en afgeleide-beperkingen worden beschouwd, aangezien
lijnbeperkingen niet gedefinieerd kunnen worden voor het ‘near-field’-geval.

Paragraaf 9.4 beschrijft de simulatieresultaten voor ‘near-field’ breedband
bundelvorming voor één welbepaalde afstand en voor ‘mixed near-field far-field’
bundelvorming. Voor het ‘near-field’-ontwerp hebben we dezelfde ontwerpcri-
teria (microfoonrooster, passband- en stopbandgebieden, filterlengte) gebruikt
als voor het ‘far-field’-ontwerp uit paragraaf 8.6, maar hebben we de bundelvor-
mer ontworpen voor een afstand r = 0.2 m tot het microfoonrooster. Uit deze
simulaties blijkt opnieuw dat de TLS-eigenfiltertechniek de beste niet-iteratieve
ontwerpprocedure is. Voor het ‘mixed near-field far-field’-ontwerp hebben we
de bundelvormer ontworpen voor de afstanden r = 0.2 m en r = ∞, gebruik ma-
kend van de gewogen-kleinste-kwadratenkostfunctie, de TLS-eigenfiltertechniek
en de niet-lineaire kostfunctie. Uit deze simulaties blijkt dat voor alle kost-
functies het ‘mixed near-field far-field’-ontwerp een afweging maakt tussen de
performantie in ‘near-field’ en ‘far-field’.

Hoofdstuk 10: Breedband bundelvorming robuust tegen
afwijkingen in versterking en fase

In de vorige hoofdstukken hebben we verondersteld dat de microfoons een (per-
fecte) omni-directionele karakteristiek hebben met een vlakke frequentierespon-
sie gelijk aan 1. In dit hoofdstuk brengen we de microfoonkarakteristieken mee
in rekening en bespreken we het ontwerp van breedband bundelvormers die
robuust zijn tegen (onbekende) afwijkingen in de versterking en de fase van de
microfoons.

Het is gekend dat vaste (en adaptieve) bundelvormers zeer gevoelig kunnen
zijn voor afwijkingen in de microfoonkarakteristieken (versterking, fase, micro-
foonpositie). Kleine afwijkingen in de veronderstelde microfoonkarakteristieken
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kunnen leiden tot grote afwijkingen in het spatiaal directiviteitspatroon, zeker
voor microfoonroosters met een kleine afmeting, die bv. frequent voorkomen in
hoorapparaten en cochleaire implantaten. Aangezien het in de praktijk moei-
lijk is om microfoons met exact dezelfde karakteristiek te produceren, is het
in feite onmogelijk om de exacte microfoonkarakteristiek te kennen zonder een
meet- of kalibratieprocedure uit te voeren. Deze meet- of kalibratieprocedu-
re zal echter enkel de foutgevoeligheid voor het beschouwd microfoonrooster
verminderen, terwijl de kostprijs van zo’n procedure voor elk individueel mi-
crofoonrooster zeer groot is. Na kalibratie is het bovendien nog mogelijk dat
de microfoonkarakteristieken veranderen in de tijd.

Een standaard techniek om de robuustheid tegen willekeurige afwijkingen te
verbeteren bestaat erin de witte-ruis-versterking (WNG) te beperken door een
kwadratische beperking op te leggen aan de filtercoëfficiënten. In dit hoofd-
stuk beschouwen we specifiek afwijkingen in de versterking en de fase van de
microfoons en stellen we ontwerpprocedures voor om breedband bundelvor-
mers met een willekeurig spatiaal directiviteitspatroon te ontwerpen die ro-
buust zijn tegen deze specifieke afwijkingen. Aangezien we in dit hoofdstuk
microfoonroosters met een kleine afmeting beschouwen, veronderstellen we dat
de ‘far-field’-veronderstellingen geldig zijn. Alle uitdrukkingen kunnen echter
eenvoudig uitgebreid worden naar het ‘near-field-geval.

In paragraaf 10.2 herdefiniëren we de uitdrukkingen en de kostfuncties voor
breedband-bundelvormerontwerp die de microfoonkarakteristieken mee in re-
kening brengen. In het algemeen bestaan de microfoonkarakteristieken uit een
frequentie- en hoekafhankelijke versterking en fase. Door gebruik te maken
van de geherdefinieerde uitdrukkingen, is het mogelijk om breedband bundel-
vormers te ontwerpen wanneer de microfoonkarakteristieken exact gekend zijn.
Alle uitdrukkingen kunnen significant vereenvoudigd worden wanneer we ver-
onderstellen dat de microfoonkarakteristieken onafhankelijk zijn van frequentie
en hoek (zelfs als in de praktijk aan deze veronderstelling niet volledig vol-
daan is, kunnen we meestal het volledige beschouwde frequentie-hoek-gebied
opsplitsen in kleinere gebieden waar wel aan deze veronderstelling voldaan is).

In veel toepassingen zijn de microfoonkarakteristieken echter niet exact gekend
en kunnen ze zelfs veranderen in de tijd. In paragraaf 10.3 stellen we 2
procedures voor om breedband bundelvormers te ontwerpen die robuust zijn
tegen willekeurige afwijkingen in de versterking en de fase van de microfoons.
In plaats van elk individueel microfoonrooster te kalibreren of op te meten, is
het beter om alle mogelijke microfoonkarakteristieken te beschouwen en één
van de volgende kostfuncties te optimaliseren:

• de gemiddelde performantie, dit wil zeggen de gewogen som van de kost-
functies voor alle mogelijke microfoonkarakteristieken, waar de waar-
schijnlijkheid van een bepaalde microfoonkarakteristiek als gewicht ge-
bruikt wordt. Deze procedure vereist dus dat de waarschijnlijkheids-
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dichtheidsfuncties (pdf) van de versterking en de fase gekend zijn. Voor
de gewogen-kleinste-kwadraten en de niet-lineaire kostfuncties blijkt dat
dezelfde ontwerpprocedures als voor niet-robuust bundelvormerontwerp
toegepast kunnen worden, die slechts enkele bijkomende parameters ver-
eisen die eenvoudig uit de versterkings- en fase-pdf berekend kunnen wor-
den (voor de versterking zijn de hogere-orde-momenten van de pdf nodig,
terwijl voor de fase in het algemeen kennis over de volledige pdf noodza-
kelijk is). Wanneer we de gemiddelde performantie optimaliseren, is het
toch nog mogelijk dat voor een specifieke combinatie van versterking en
fase (typisch met een lage waarschijnlijkheid) de kostfunctie vrij hoog is.
Om dit te vermijden, kunnen we de volgende kostfunctie minimaliseren.

• de ‘worst-case’-performantie, dit wil zeggen de maximale kostfunctie voor
alle mogelijke microfoonkarakteristieken. Dit criterium is strenger dan
de gemiddelde performantie, aangezien nu de kost voor het ‘worst-case’-
scenario geoptimaliseerd wordt. Deze procedure geeft aanleiding tot een
minimax-optimalisatieprobleem over een eindig rooster van microfoonka-
rakteristieken (versterking en fase). Hoe meer punten dit rooster bevat,
hoe hoger de berekeningscomplexiteit om het minimax-optimalisatiepro-
bleem op te lossen. Wanneer enkel afwijkingen in de versterking van
de microfoons beschouwd worden en de gewogen-kleinste-kwadratenkost-
functie gebruikt wordt, kunnen we aantonen dat het aantal roosterpunten
drastisch gereduceerd kan worden.

Paragraaf 10.4 beschrijft de simulatieresultaten voor robuust breedband-
bundelvormerontwerp. Aangezien het effect van afwijkingen groter is voor een
microfoonrooster met een kleine afmeting, hebben we een lineair niet-uniform
microfoonrooster gebruikt met 3 microfoons op posities

[
−0.01 0 0.015

]
m.

We hebben een ‘endfire’ breedband bundelvormer ontworpen voor een bemon-
steringsfrequentie van 8 kHz en een filterlengte van 20 taps. Met behulp van de
gewogen-kleinste-kwadratenkostfunctie, de TLS-eigenfiltertechniek en de niet-
lineaire kostfunctie hebben we een niet-robuuste en verschillende robuuste bun-
delvormers ontworpen. Uit de simulaties blijkt dat robuust bundelvormeront-
werp een grote verbetering in performantie oplevert zelfs wanneer er kleine
afwijkingen in de versterking en/of de fase van de microfoons optreden.

Hoofdstuk 11: Besluit en suggesties voor verder onderzoek

In paragraaf 11.1 wordt een algemeen besluit gegeven en paragraaf 11.2
somt enkele suggesties voor verder onderzoek op:

• Alhoewel in hoofdstuk 4 verschillende technieken zijn voorgesteld om de
berekeningscomplexiteit van de GSVD-gebaseerde optimaal-filtertechniek
te verminderen, blijft de complexiteit vrij hoog – in feite veel hoger
dan voor standaard bundelvormingstechnieken. Daarom zou het inte-
ressant zijn om andere technieken te bestuderen om de complexiteit te
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verminderen, bv. subband-gebaseerde QR-technieken of stochastische-
gradiëntalgoritmes, zonder de performantie en de robuustheid drastisch
te verlagen.

• Bovendien is het mogelijk dat het spraakdetectie-algoritme (VAD) vol-
ledig faalt, bv. bij zeer lage SNR of voor zeer niet-stationaire ruis. In
dit geval wordt de performantie van het meer-kanaals Wiener-filter zeer
onbetrouwbaar, wat kan resulteren in een onaanvaardbaar hoge spraak-
vervorming of trage convergentie. Daarom is het noodzakelijk om voor
deze scenario’s een grotere robuustheid te bekomen. Voor deze scena-
rio’s zijn vaste breedband bundelvormers daarentegen zeer robuust aan-
gezien ze niet afhankelijk zijn van een VAD-algoritme. Daarom zou het
interessant zijn om de combinatie van meer-kanaals Wiener-filtering en
vaste breedband bundelvorming te onderzoeken. We verwachten dat de
gecombineerde techniek robuuster is dan het meer-kanaals Wiener-filter
in situaties waar het VAD-algoritme faalt, terwijl de performantie beter
is dan vaste breedband bundelvormers in andere scenario’s.

• In paragraaf 6.3 hebben we een stochastisch-gradiëntalgoritme voorge-
steld dat de veralgemeende singuliere vector schat behorend bij de klein-
ste veralgemeende singuliere waarde. In paragraaf 7.2 is in feite een
stochastisch-gradiëntalgoritme vereist dat de veralgemeende singuliere
vector schat behorend bij de grootste veralgemeende singuliere waarde.
Alhoewel er een deelruimte-trackingprocedure bestaat voor de SVD, blijft
de uitbreiding van deze deelruimte-trackingprocedure voor de GSVD een
onderwerp voor verder onderzoek.

• We geloven dat nog veel onderzoek vereist is voor het schatten van akoes-
tische impulsresponsies en voor dereverberatie, aangezien hiervoor nog
enkele fundamentele problemen dienen opgelost te worden (cf. hoofdstuk
6 en 7). Deelruimte-gebaseerde technieken in het tijdsdomein blijken zeer
gevoelig te zijn aan een onderschatting van de lengte van de impulsres-
ponsies, terwijl de onderliggende reden voor deze gevoeligheid niet goed
begrepen is. Deelruimte-gebaseerde technieken in het frequentiedomein
hebben voorafgaande kennis nodig over de akoestische transferfuncties
om een schalingsprobleem op te lossen dat optreedt in elke frequentie-
bin. Het oplossen van dit schalingsprobleem blijft een onderwerp voor
verder onderzoek. Een gelijkaardig schalingsprobleem treedt echter op in
frequentiedomeintechnieken voor blinde-signaalscheiding (BSS), waar re-
cent technieken ontwikkeld zijn om het schalings- en permutatieprobleem
(gedeeltelijk) op te lossen. Het zou interessant zijn om te onderzoeken
of deze BSS-algoritmes ook kunnen gebruikt worden om het schalingspro-
bleem op te lossen dat optreedt bij het schatten van akoestische transfer-
functies. Bovendien moeten andere blinde systeemidentificatietechnieken
zoals meer-kanaals lineaire predictie en niet-lineaire Kalman-filtering ver-
der onderzocht worden, aangezien deze technieken reeds hun bruikbaar-
heid hebben bewezen in andere domeinen (bv. digitale communicatie).



Chapter 1

Introduction

1.1 Motivation

The work presented in this thesis is motivated by the rapidly growing market of
speech and audio applications. Typical applications in the telecommunication
and consumer equipment market include video-conferencing, hands-free mobile
telephony and voice-controlled systems, whereas biomedical applications inclu-
de hearing aids and cochlear implants. The main user benefit for the consumer
equipment applications lies in the hands-free operation, enabling the user to
walk around freely without wearing a headset or a microphone and hence provi-
ding a natural way of communication. Obviously, the main benefit for hearing
aid applications is increased hearing capacity, enabling a hearing aid user to
interact better with other people.

The common point between the above-mentioned applications is speech acqui-
sition in a (possibly) adverse acoustic environment. In hands-free systems, a
microphone or a microphone array is typically employed at a certain distance
from the speaker. This causes problems not encountered in ordinary telephony
or voice-controlled systems, where the microphones are usually installed or held
close to the speaker. Therefore, in a hands-free communication system, the re-
corded speech signals are corrupted in various ways, i.e. by background noise,
by room reverberation and by far-end echo signals (cf. Section 1.2.1). This
signal degradation can lead to total unintelligibility of the speech signal and
decreases the performance of speech coding and speech recognition systems.
Hence high-performance signal enhancement procedures are called for.

In this thesis several multi-microphone noise reduction and dereverberation
techniques for speech applications are discussed. Part I discusses a GSVD-
based unconstrained optimal filtering technique, which can be used for single-
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2 Introduction

microphone and multi-microphone noise reduction, but which does not perform
dereverberation. Part II describes a combined noise reduction and dereverbe-
ration technique as well as an acoustic source localisation technique, which is
robust against background noise and reverberation. In Part III design pro-
cedures are discussed for designing robust far-field and near-field broadband
beamformers, which can be used both for noise reduction and dereverberation.

1.2 Hands-free speech communication systems

In this section, we first describe the general advantages and problems occurring
in hands-free speech communication systems and then focus on some important
applications, considering specific advantages, problems, economic importance
and existing products for each application. However, the algorithms presen-
ted in this thesis are not designed with one specific application in mind and
can be used for all considered speech communication applications. Of course,
tuning an algorithm towards a specific application or user environment can
considerably improve its performance.

1.2.1 General problem formulation

Figure 1.1 depicts a typical hands-free speech communication environment.
Contrary to classical communication systems (e.g. hand-held telephony), the
speaker is allowed to walk around freely in the room without wearing a headset
or holding a microphone. The goal of the microphone array – typically loca-
ted at a fixed position – is to record the (clean) speech signal uttered by the
speaker. It is clear from Fig. 1.1 that in a hands-free system several types of
signal degradation occur. Due to the large distance between the speaker and
the microphone array, background noise sources are also picked up by the mi-
crophone array, and not only the direct path signal of the speaker is recorded,
but also the signal reflections against walls, floors and objects present in the
recording room (i.e. reverberation).

Background noise

Background noise typically arises from computer fans, traffic, audio equipment,
or other speakers present in the room (i.e. cocktail party noise). Background
noise can seriously reduce the intelligibility of the recorded speech signals. In
particular, this is the case for hearing-impaired people, who are much more
sensitive to the noise level or more precisely the signal-to-noise ratio (SNR)
[212]. E.g. in a restaurant, with some background music and several groups
of people talking to each other, a hearing-impaired person will already have
severe difficulties in discriminating what his/her interlocutor is saying. It is
also well known that the performance of acoustic source localisation techniques
[106][271] and automatic speech recognition (ASR) systems [96][201] rapidly
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Figure 1.1: Typical hands-free speech communication environment

degrades with decreasing SNR. Signal processing techniques for reducing the
background noise level are referred to as acoustic noise reduction techniques
(cf. Section 1.4.1). Although most of the noise sources are unknown signals,
it is sometimes possible to obtain a reference signal for the noise source, e.g.
by directly using the emitted noise signal (e.g. other speaker), by recording
the noise source with an additional microphone (e.g. car engine) or by using
a related signal (e.g. ignition signal of the car engine). In these cases, specific
signal enhancement techniques can be used. In this thesis, we will mainly focus
on unknown noise sources for which no reference signal is available.

A specific type of noise, also depicted in Fig. 1.1, is far-end echo, emitted by
a loudspeaker and coming from the remote site in a typical teleconferencing
application. Far-end echo signals are also recorded by the microphone array
and are sent to the remote site, where usually the same acoustic coupling
between the loudspeakers and the microphone array exists. Hence, the local
speaker will hear an echo or a delayed version of his/her own speech. In the
worst case scenario, the closed loop gain may become too large and the system
may become unstable, resulting in a harmful sinusoidal tone (i.e. acoustic
feedback). For far-end echo signals, a noise reference can be easily obtained
by using the signals emitted by the loudspeakers. Signal processing techniques
for cancelling these echo signals are referred to as acoustic echo cancellation
techniques (cf. Section 1.4.2). In this thesis, we will generally not consider
acoustic echo cancellation.

Reverberation

The acoustic environment itself also plays an important role in hands-free
speech communication systems. Acoustic waves, coming from the speaker,
propagate through the air and are reflected by the walls, the floor, the ceiling,
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and in principle by any object present in the room before being picked up by
the microphones. This propagation results in a signal attenuation and spec-
tral distortion, called reverberation (cf. Section 1.3.3). Although speech and
audio sound more pleasant when some reverberation is added [88], in highly
reverberant environments the speech intelligibility of the recorded signals drops
considerably [129][211]. It is also known that reverberation heavily effects the
performance of ASR systems, since the performance of an ASR system trained
in one specific environment will drop considerably when used in another acous-
tic environment [96][201]. In addition, the performance of most acoustic source
localisation techniques is seriously degraded by room reverberation [29], even
more than by background noise. Signal processing techniques for reducing or
removing reverberation are referred to as dereverberation techniques or blind
deconvolution techniques (cf. Section 1.4.3).

It has to be remarked that the human auditory system is remarkably robust in
most adverse situations. We are able to focus on a speech source under severe
noise conditions and in extreme reverberant environments. To a large extent
this is due to the binaural nature of our hearing and to the (non-linear) adaptive
processing in our inner-ear and our brains [20]. On the other hand, speech
acquisition systems, speech recognition systems and acoustic source localisation
systems do not process the incoming signals as the human auditory system, and
their performance seriously degrades with increasing levels of background noise
and reverberation.

1.2.2 Adaptive multi-microphone systems

For all above-mentioned problems (background noise, echo, reverberation),
single-microphone signal enhancement techniques exist (cf. Section 1.4). Ge-
nerally, the performance of single-microphone techniques is limited, since these
techniques can only exploit the temporal and the spectral information pre-
sent in the microphone signal. Especially for the dereverberation problem, no
adequate single-microphone enhancement techniques are presently available.
Hence, in many applications (e.g. video-conferencing, hearing aids), a growing
tendency exists to move from single-microphone systems to multi-microphone
systems [18][22][76][104][115][149]. Although multi-microphone systems come
at an increased cost (more microphones, D/A converters, memory, signal pro-
cessing power), they exhibit a huge advantage over single-microphone systems,
since multi-microphone techniques are able to additionally exploit the spatial
information of the sources. Typically, speech and noise sources are not located
at the same position in the room, such that their signals can be spatially sepa-
rated. Also for the dereverberation problem, it is possible to zoom in on the
desired speaker by using multi-microphone beamforming techniques.

It is clear from Fig. 1.1 that the presented situation is far from being static. The
speaker is allowed to move around freely in the room, while the noise sources



1.2. Hands-free speech communication systems 5

can be non-stationary (both spectrally and spatially) and the acoustic environ-
ment can change e.g. by people moving around, doors opening, etc. Especially
for hearing aid applications, the acoustic environment can change dramatically
since the hearing aid user can be present in many different environments (office,
concert hall, outdoors). Therefore there is a need for algorithms which can deal
with different noise situations and with changing acoustic environments. Adap-
tive multi-microphone algorithms are suitable candidates for this task. Both
for acoustic noise reduction, echo cancellation and dereverberation, separate
(multi-microphone) algorithms are available (cf. Section 1.4). However, in or-
der to increase the performance and to reduce the computational complexity of
the complete signal enhancement system, there is also a tendency to integrate
the noise reduction, echo cancellation and dereverberation systems. We will try
to address both issues in this thesis.

1.2.3 Typical applications

Hands-free car kits and headsets

From an economic point of view, hands-free mobile telephony certainly is the
most important application. The estimated number of worldwide cellular sub-
scribers now exceeds one billion, and it is expected that this number will con-
tinue to increase in the near future [77][278]. Hands-free mobile telephony kits
can mainly be found in the car, but are also available as small headsets, which
are worn around one ear and which communicate with the mobile phone using
a wireless (e.g. Bluetooth) protocol.

Recently in many countries – including Belgium – mobile telephony has been
forbidden while driving, unless a hands-free car kit is used. This is motivated
by the observation that hand-held mobile phone calls distract the driver and
increase the number of accidents. During a mobile phone call, the driver misses
4 out of 10 road signs and fails to give way to other vehicles in 25% of the cases.
It appears that the accident risk increases with 75%, which reduces to 24% if a
hands-free kit is used [269]. Furthermore, it was found that 65% of all mobile
phone conversations in North America take place in a car or another form
of transport, but that actually less than 15% of the mobile phone users have
hands-free accessories [38]. This implies that a large market for hands-free kits
can be expected in the near future.

The main problems for hands-free car kits are far-end echo signals, emitted
through the loudspeakers, and multiple noise sources: engine noise, wind and
tire noise, traffic noise, the car radio – which is however generally turned off
during calls – and other people talking in the car. Reverberation in a car envi-
ronment is quite limited, as e.g. measurements in an empty mono-volume have
shown small reverberation times in the range of 40 to 70 msec. However, back-
ground noise and far-end echo signals are able to cause low speech intelligibility
and hence low overall system performance.
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Most present-day hands-free car kits still use a single microphone, mounted on
the dashboard or on the ceiling of the car. However, this microphone records
all signals and is not able to accurately focus on the speaker. Even when using
a directional microphone, this microphone has to be installed correctly in order
to provide the correct focus. Therefore it is expected that these systems will
evolve to multi-microphone systems, which are able to focus on the active
speaker and reduce the annoying noise from the recorded signals. For signal
enhancement algorithms in the car environment, one can also exploit the fact
that the speaker is located close to the microphone array and that the position
of the speakers (driver and passengers) is roughly known [115][193]. However,
the main impediment for using a large number of microphones in a hands-free
car kit is the cost of the microphones and the signal processing hardware.

For mobile telephony headsets – which can be used in any environment – back-
ground noise is the main problem. Echo signals also arise, however not pro-
pagating through the air as is usually the case, but through the headset itself.
Reverberation is not an issue since the microphone is located quite close to the
mouth of the speaker. However, better focusing and adaptive noise reduction
could still be obtained by using multiple microphones.

The most common low-cost hands-free mobile telephony car kits are headsets
using a directional microphone and a headphone, which are connected to the
mobile phone with a wire (e.g. Panasonic KX-TCA87, ± 25 EUR). Smaller
headsets, which are worn on one ear and which communicate with the mobile
phone using a wireless (e.g. Bluetooth) protocol, are also available (e.g. Erics-
son HBH-30, ± 180 EUR). However, systems without a headset are usually
preferred, since these systems provide a more natural way of communication.
Complete hands-free car kits, which need to be built in and integrated in the
dashboard or the ceiling and which can be connected to the car radio, provide
a better sound quality (e.g. Nokia CARK-91US, ± 150 EUR). The most ad-
vanced products rely on echo cancellation and noise reduction techniques (e.g.
NMS Communications Sonata III), and even some multi-microphone beamfor-
ming and noise reduction products for car applications are already available
(e.g. Digital Super Directional Array from Andrea Electronics, Mercedes TE-
MIC StarRec Acoustic Technology). It is expected that in the near future
smaller and more advanced solutions for hands-free telephony will be develo-
ped, which can be integrated in the mobile phone themselves, and which provide
high-quality wideband speech enhancement.

Video-conferencing

Apart from hands-free mobile telephony, audio- and video-conferencing forms
another telecommunication application where hands-free speech acquisition is
important [136]. In a one-to-one PC video-conferencing setup, a single mi-
crophone mounted on the screen of the PC will generally provide acceptable
quality. However, for a video-conference with more participants, several swit-
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chable microphones would be required and an adaptively steerable microphone
array provides a good alternative. Also tele-classing, which enables students to
attend classes and lectures from a remote classroom, can be viewed as a special
case of video-conferencing. In order to pick up questions of the students in the
remote classroom, a microphone array solution can be used.

The main problems for video-conferencing systems are far-end echo signals and
acoustic source localisation in noisy and reverberant acoustic environments. In
typical video-conferencing locations, background noise is not extremely high
(SNR generally larger than 10 dB) and reverberation is quite limited (rever-
beration time smaller than 500 msec). Acoustic source localisation obviously
requires a multi-microphone solution and can be used both for correctly poin-
ting the video camera at the active speaker and for adaptively steering a mi-
crophone array which zooms in on the active speaker and which removes the
background noise.

Video-conferencing is a rapidly growing hands-free communication application.
A market research report states that the market for audio-, video- and web-
conferencing systems will reach US$ 9.8 billion by 2006, up from US$ 2.8 billion
in 2000 [219]. Powerful teleconferencing systems are already commercially avai-
lable. Polycom e.g. produces a range of full-duplex audio-conferencing equip-
ment, which range from limited bandwidth solutions, intended for small busi-
ness meetings, to larger systems, which provide integrated audio- and video-
conferencing and which offer better audio quality (e.g. Polycom iPowerTM).

Voice-controlled systems

Thanks to the significant progress that has been made in the last decades,
speech recognition is now sufficiently reliable to be integrated into commerci-
al systems [39]. More and more voice-controlled systems are encountered in
daily life, at home as well as at work. Voice-controlled domotic systems can
e.g. be used for switching lights on and off, for controlling the central heating,
for opening the curtains, etc. Also consumer electronics equipment (e.g. HiFi
systems, TV, PC software), where the user is interested in a fast, easy and
user-friendly interface, can be controlled using a limited number of voice com-
mands. Another emerging market is telematics for the automotive industry,
where speech recognition can e.g. be used to control non-critical cruise func-
tions (ventilation, wipers) or to request navigation information. The global
market for telematics equipment is expected to grow to US$ 12 billion in 2007,
up from US$ 2.2 billion in 2001 [74].

However, in order that voice-controlled systems provide an added value over
existing access techniques, the speech recognition system has to perform relia-
bly and robustly for all users and in all circumstances. It is well known that the
performance of speech recognition algorithms rapidly degrades with decreasing
SNR and increasing reverberation [96][201]. This is mainly caused by the fact
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that poor speech recognition models are generally trained on clean speech da-
ta. Instead of retraining the models for every conceivable noise situation and
acoustic environment, it is easier to apply a general preprocessing operation
which suppresses the noise and the reverberation. Depending on the specific
application and the user environment, both noise, echo and reverberation have
to be taken into account. When using voice control in large rooms (e.g. li-
ving rooms), reverberation times can go up to 700 msec and a large distance
normally exists between the user and the microphone array. When using voice
control for audio equipment, the sound level of the audio equipment is usual-
ly higher than the voice level of the user, such that the recorded microphone
signals generally have a quite low SNR.

Hearing aids and cochlear implants

Apart from the previously described ‘commercial’ applications, hearing aids
and cochlear implants represent important biomedical applications where multi-
microphone signal enhancement techniques can provide a significant performan-
ce improvement [149][234][245][266]. Hearing loss is one of the most prevalent
chronic conditions affecting more than 300 million people world-wide. Ap-
proximately 25% of all people will encounter significant hearing loss during
their lifetime. With the constantly aging Western population and more and
more people being subject to loud noises (music in disco, noisy work situations)
one can only expect this problem to increase. Most hearing impaired people
suffer from perceptual hearing loss. This kind of hearing loss is not only cau-
sed by the fact that all sounds are decreased in loudness, but mainly because
different sounds can not be distinguished any more from each other. Hence,
this problem can not be solved by merely amplifying the sounds, but only by
reducing the background noise with respect to the useful signal.

The main purpose of traditional hearing aids is pure amplification of all inco-
ming sound. Hearing aids using a single omni-directional microphone amplify
all sound, coming from all directions, such that the useful signal and the back-
ground noise are equally amplified. Despite their good performance in noise-free
environments, they are not able to selectively reduce background noise, such
that speech intelligibility considerably drops in noisy situations. In a recent
survey with hearing aid users, almost half of them claimed that their hearing
aid did not perform adequately in situations with background noise. However,
it is mainly this inability to communicate in noisy environments which causes
most people to purchase a hearing aid.

Recent developments in microphone manufacturing and micro-electronics ha-
ve made it possible to integrate two – and even three – microphones and a
small digital signal processor (DSP) into a single behind-the-ear (BTE) hea-
ring aid. However, existing multi-microphone hearing aids (e.g. GN Resound,
Phonak, Siemens) use rather simple digital signal processing algorithms (e.g.
fixed delay-and-sum beamforming, differential microphone array), which have
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limited noise reduction capabilities. The main reason is the limited processing
power of the DSP, partly due to power restrictions of the batteries inside the
hearing aid – in some hearing aids, batteries need to be replaced every week.
However, it is believed that further advances in battery technology and low-
power ASIC design will increase the processing power of the used DSP, such
that more advanced multi-microphone signal enhancement techniques - as de-
veloped in this thesis - can be implemented, increasing the performance and
the robustness.

As already mentioned, mainly background noise is a problem for hearing aid
applications. In most cases, one can safely assume that the desired speaker
is located in front of the hearing aid user, such that all sounds coming from
other directions may certainly be suppressed. Reducing reverberation is only
of secondary importance, since even without a hearing aid, the signal received
at the ear would sound reverberated. Because of the coupling between the
loudspeaker and the microphone(s), which are located very close to each other,
acoustic feedback will frequently occur [114][145][148][175][233][243]. In this
thesis, we will however not study feedback suppression algorithms. Due to the
limited size of a hearing aid, only a small number (2-3) of microphones can be
fitted in the hearing aid. Moreover, these microphones will be spaced very close
to each other (typically 1-2 cm). Because of the small inter-microphone distan-
ce, robustness against errors in the microphone characteristics (gain, phase)
and positions becomes very important. Hence, robustness will be an important
issue for most of the developed algorithms in this thesis.

A cochlear implant is a device which is implanted into the cochlea of a deaf
person (whose auditory nerves are still intact) and which allows this person
to perceive sounds again. An externally worn speech processor converts the
perceived sounds and speech to electrical stimuli, which are then applied to the
auditory nerves through intra-cochlear electrodes. In noise-free environments,
the recovered speech intelligibility for a substantial number of users (especially
children) is rather good, whereas the performance is considerably reduced –
even more than for hearing impaired persons – when background noise is pre-
sent. Since the same listening situations and noise sources are present as for
hearing aids, it is obvious that similar signal enhancement techniques can have
a tremendous impact for cochlear implant users.

At this moment, the total hearing aid industry is estimated at US$ 2 billion
[19]. Considering the fact that only about 5% of all people who can benefit
from a hearing aid actually uses one, there is still a big unexplored market.
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1.3 Characterisation of signals and the acoustic
environment

The characteristics of the speech and the noise signals and the properties of
the acoustic environment have a large influence on the type of signal enhance-
ment algorithm that has to be applied. In this section some properties of the
speech and the noise signals and characteristics of the acoustic environment are
discussed. Only the properties which are important for the signal processing
techniques considered in this thesis are mentioned. More details about speech
signal processing and acoustics can be found in [42][88][156][197][215].

1.3.1 Speech signals

Speech is a wideband signal, with frequency components ranging from 100 to
8000 Hz. According to its steady-state production model, a speech signal is
not inherently band-limited. For voiced sounds, very little energy is present
above 4 kHz, and the mean frequency envelope decays with about 6 dB/octave.
For unvoiced sounds however, the spectrum is much flatter and does not fall off
appreciably even above 8 kHz. For speech understanding mainly the frequencies
between 300 and 3400 Hz are of interest, i.e. the classical telephony bandwidth.
Hence, a sampling rate of 8 kHz is usually sufficient to obtain an acceptable
speech quality. However, because of the demand for higher quality nowadays,
higher sampling rates (e.g. 16 kHz) are used for so-called wideband speech
systems. In this thesis, we will generally use a sampling rate of 16 kHz.

Speech is also a non-stationary signal, with both time envelope and spectrum
continuously changing. Sometimes speech can be considered quasi-periodic
(e.g. vowels), at other times it resembles coloured noise (e.g. fricatives) or is
more impulse-like (e.g. plosives). Short-time stationarity in the order of 20-
30 msec can be assumed for speech analysis, but generally this property is not
relevant in multi-microphone speech enhancement algorithms. Furthermore,
speech is an intermittent signal, i.e. silences exist between the words and in
a typical conversation more than 50% of the time will consist of pauses. This
on/off characteristic of speech signals can be exploited by speech enhancement
algorithms e.g. by using a voice activity detection (VAD) algorithm which
classifies noise-only periods and speech-and-noise periods.

A low-rank linear model has often been attributed to clean speech signals. This
model assumes that each vector of the speech signal can be represented as the
linear combination of a finite number of basis vectors, i.e. the L-dimensional
speech vector s[k] =

[
s[k] s[k − 1] . . . s[k − L+ 1]

]T
can be written as

s[k] =

R∑

i=1

siai[k] , (1.1)
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with R ≤ L (if R = L, this representation is of course always possible) and
{s1, . . . , sR} the set of L-dimensional linearly independent basis vectors. For
the basis vectors, the complex exponential model is the best known model.
Other related models are the exponential model, the damped sinusoidal model
and the sinusoidal model [92][178]. Depending on the specific model and the
specific speech frame, typical values for R range from 12 to 20. Note that these
models have also been frequently used for speech coding algorithms [42].

1.3.2 Noise signals

In general, less is known about the noise sources. Background noise can ori-
ginate from a localised noise source or can be diffuse noise, coming from all
directions. E.g. in car applications, noise generated by the engine or the car
radio can be considered to be localised, whereas noise from the wind passing
around the car cabin or from the contact between the road and the tires can be
considered diffuse noise [257]. For hearing aid applications background noise
sources have been classified in [147].

Some of the noise sources are stationary (e.g. fans) or have a slowly varying
spectral content, whereas other noise sources can be highly non-stationary (e.g.
radio). The most difficult problem arises when the noise sources are also speech
signals (e.g. concurrent speakers), which are similar in structure to the desi-
red signal. Furthermore, the noise sources can be smallband (e.g. siren) or
wideband, intermittent or persistent, and they may have the same spectral
characteristics and/or angle of arrival as the desired speech signal. As already
mentioned, if a reference signal can be obtained for the noise sources, the noise
reduction problem is greatly simplified.

1.3.3 Acoustic environment

The acoustic environment plays an important role in hands-free communication
systems, affecting both speech intelligibility and the performance of speech
recognition systems [96][129][201][211]. Also the performance of most speech
enhancement and acoustic source localisation algorithms is strongly influenced
by the properties of the acoustic environment.

Reverberation is caused by the fact that acoustic waves are reflected by room
walls and by other objects present in the room, such that the signals recorded
by the microphone array consist of a direct path signal and multiple delay-
ed and attenuated versions. Obviously, the acoustic path is different for each
source-microphone pair. Since the positions of the sources are not necessarily
fixed and objects can also move around through the room, acoustic paths are
generally time-varying. It appears that the acoustic path can be modelled quite
well by a linear transfer function. In real-life, additional (non-linear) pheno-
mena occur [88], such as diffraction, diffusion, dissipation in the air, non-linear
absorption and temperature-dependent effects. Although the linear transfer
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function model therefore is only an approximation, it nevertheless represents a
useful tool for analysing and simulating many room acoustics problems.

Reverberation time

A global characterisation of a room can be given with a single parameter: the
reverberation time T60. The reverberation time is defined as the time needed
for the sound pressure level to decay to −60 dB of its original value. The
reverberation time is a function of the dimensions of the room and the materials
used for walls, floor and ceiling. A typical office room has a reverberation time
in the order of 200-500 ms, where T60 for a car is typically smaller than 200 ms
and T60 for a church can be several seconds.

W.C. Sabine, the Harvard pioneer in acoustics, who introduced this concept,
used a portable wind chest and organ pipes as a sound source, a stopwatch,
and a pair of keen ears to measure the time from the interruption of the source
to inaudibility [88]. Of course, today we have better techniques for measuring
acoustic impulse responses, e.g. using impulse sound sources (electrical spark
discharges, pistols, pricked balloons) or steady-state sound sources (frequency-
bands of random noise), and we have better techniques for computing the
reverberation time from the measured impulse responses [90].

If the dimensions of the room and the absorption (or reflection) coefficients of
the used materials are known [156], then the reverberation time of the room
can be calculated using different formulas. For a room with volume V [m3]
and absorption coefficient αi for each room surface Si [m2], an approximate
expression for T60 [sec] is given by Eyring’s formula [89], i.e.

T60 =
0.163 V

−S log(1 −
P
i Siαi
S )

, (1.2)

with S =
∑

i Si, or by Sabine’s formula, which is a further approximation for
small absorption coefficients,

T60 =
0.163 V
∑

i Siαi
. (1.3)

More advanced formulas for calculating the reverberation time have been de-
scribed in [189].

Acoustic impulse response

While a room can be globally characterised by its reverberation time T60, the
linear filter incorporating the reverberation effects between two points in the
room is described by an acoustic impulse response. Typical acoustic impulse
responses, for different reverberation times, are shown in Fig. 1.2 and consist
of three parts:
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Figure 1.2: Acoustic impulse responses simulated using the image method
[4][210] for different reverberation times. The simulated room has dimensi-
ons 6 × 3× 2.5 m, the source is located at [2.4 2 1.5] m and the microphone at
[3 1 1] m. The reverberation time T60 is equal to (a) 1000 ms, corresponding
to a large auditorium, and (b) 300 ms, corresponding to a typical office.

• a dead time, i.e. the time needed for the acoustic wave to propagate from
the source to the microphone along the shortest, direct acoustic path;

• a set of early reflections, whose amplitude and delay is strongly deter-
mined by the shape of the room and the positions of the source and the
microphone;

• a set of late reflections, also called reverberation, which decay exponen-
tially in time.

Acoustic impulse responses are typically modelled using finite impulse response
(FIR) filters, having several hundreds or thousands of filter taps, depending on
the room reverberation and the sampling frequency. In order to reduce the
filter order, infinite impulse response (IIR) models may also be used. Although
the filter order can indeed be reduced, it appears that it still remains large, i.e.
several hundreds of taps [118]. Moreover, IIR signal enhancement algorithms
typically lead to an increased computational load, stability problems or conver-
gence to local minima [176][230]. Hence, IIR models are not really appropriate
for modelling acoustic impulse responses.

Unfortunately, inverting an acoustic impulse response is not readily possible.
In [188] it has been shown that acoustic impulse responses are generally non-
minimum-phase systems. Non-minimum-phase systems have zeroes outside the
unit circle and do not have a stable causal inverse, but still an approximate de-
layed inverse can be constructed [213]. When considering multiple microphones
(and multiple impulse responses), it has been shown that the inverse system
can be computed under certain (mild) conditions, cf. Section 2.6.1 [180].
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A program for simulating acoustic impulse responses is of great help for speech
enhancement research. It allows to build simulation experiments in a much
wider variety of environments and situations than one would ever be able to
measure. Acoustic impulse responses in a rectangular room can be easily simu-
lated by the image method [4], which has been extended for microphone arrays
by applying an additional low-pass filtering [210]. The image method is an
elegant ray-tracing method. Instead of tracing all reflections, mirror images of
the sound source with respect to the room boundaries are created. From each
image source, a direct path is traced towards the receiving microphone. The
order of the image is related to the number of reflections that have occurred
and hence the ray can be multiplied with the correct attenuation factor. The
image method has been widely used and is known to be sufficiently accurate in
many applications. In this thesis, we will use the image method (up to order
3) for validating the signal enhancement algorithms in different environments.
Of course, we will also perform simulations using real-life recordings.

1.3.4 Microphones for speech recordings

The used microphones can be positioned in different microphone array confi-
gurations. The term ‘array’ does not necessarily stand for a one-dimensional
positioning, but the microphones can be positioned on a line, on an arc, in a
planar or even a 3-dimensional ordering. In general, the microphone array con-
figuration will have an influence on the performance of the multi-microphone
signal enhancement algorithms. In this thesis, we will however not study the
influence of the microphone array configuration on the performance.

Microphones are generally considered to be perfect point sensors with ideal
omni-directional properties and a flat frequency response equal to 1. However,
this is quite unrealistic, since generally the microphones also perform a spatial
and a spectral filtering operation.

In a real microphone array setup, different kinds of imperfections occur. A first
imperfection arises because the characteristics (gain, phase, directivity) of the
microphones and the preamplifiers deviate from the assumed nominal charac-
teristics. Moreover, the microphone and the preamplifier characteristics are
ideally assumed to be equal for all sensors in the microphone array. Matched
microphone pairs are commercially available, but these are difficult to produce
and therefore are extremely expensive. One should realise that the perfor-
mance of most microphone array algorithms is dependent on the individual
microphone characteristics. E.g., it is well known that fixed and adaptive be-
amforming techniques are highly sensitive to errors in the assumed microphone
array characteristics, especially for small-size microphone arrays (e.g. hearing
aids) [24][37][86][128][192]. In practice, it is however impossible to exactly know
the microphone array characteristics without a measurement or a calibration
procedure [24][248]. Obviously, the cost of such a measurement or calibration
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procedure for every individual microphone array is objectionable. Moreover,
after calibration the characteristics can still drift over time [137]. Therefore,
signal enhancement algorithms should be designed to be robust against these
(small) microphone array imperfections. Secondly, the mounting of the microp-
hones onto the array may not be perfect, i.e. the distance from one microphone
to another may also deviate from its nominal value. Again, fixed and adaptive
beamforming techniques are quite sensitive to errors in the array geometry,
as the complete filter design relies on it. Therefore, signal enhancement algo-
rithms should be designed to be robust against these imperfections and should
not critically rely on the exact mathematical relations derived from the ar-
ray geometry. Finally, one has to take into account the potential shadow effect
from each microphone on its adjacent microphones (especially for high frequen-
cies) and the shadow effect of the head for a microphone array mounted on a
BTE hearing aid. The average effect of the head shadow can e.g. be obtained
through measurements.

Speech and noise sources can either be located close to the microphone array or
far away from it. The former case is called a near-field situation, the latter a far-
field situation. In far-field situations, plane wave propagation can be assumed
and signal attenuation can be assumed to be equal for all microphones. In a
near-field situation, spherical wave propagation and signal attenuation have to
be taken into account. The typical rule of thumb is that far-field assumptions
are no longer valid [169] when

r <
d2
totfs
c

, (1.4)

with r the radial distance of the source to the centre of the microphone ar-
ray, dtot the total length (aperture) of the microphone array, fs the sampling
frequency and c the speed of sound (c = 340ms ). E.g. for dtot = 0.2 m and
fs = 8 kHz, the minimum source distance for the far-field assumptions to be
valid is r = 0.94 m. If the far-field assumption holds, this can seriously simplify
algorithm design. The speaker position with respect to the microphone array
may only be known approximately, but in some cases (e.g hearing aids and car
applications) more precise assumptions about the look direction and/or the
speaker position hold.

1.4 Overview of speech enhancement techniques

For each form of signal degradation (noise, echo, reverberation), a brief over-
view of existing single and multi-microphone algorithms is given in this section.
Chapter 2 discusses some noise reduction and dereverberation algorithms that
are important for the remainder of this thesis in more (mathematical) detail. A
good overview of several acoustic signal processing techniques and microphone
array algorithms can be found in [12][22][104].
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1.4.1 Acoustic noise reduction

Single-channel noise reduction

Single-channel noise reduction techniques have attracted a great deal of interest
in the last decades [161]. These techniques are also called speech enhancement
techniques, since their goal is to reduce as much noise as possible, without dis-
torting the speech signal. Single-microphone speech enhancement algorithms
can be broadly classified in parametric and non-parametric techniques. Para-
metric techniques model the noisy speech signal as a stochastic autoregressive
(AR) model embedded in coloured Gaussian noise [162]. Speech enhancement
then roughly consists of estimating the speech AR parameters and applying a
(non-causal) Wiener filter [119][244] or Kalman filter [97][99][107] to the noisy
signal, where the optimal filters are based on the estimated AR parameters.
Non-parametric techniques do not estimate the speech parameters, but re-
quire a noise fingerprint in a transform domain (mainly the Discrete Fourier
Transform (DFT) or the Karhunen-Loève Transform (KLT) domain). This
noise fingerprint is estimated during noise-only periods and used during sub-
sequent speech-and-noise periods in order to obtain an estimate of the clean
speech signal. Well-known non-parametric techniques include spectral subtrac-
tion [21][45][83][84][163][172][177][268][280] and signal subspace-based techni-
ques [43][49][61][85] [121][130][138][179][220]. These last two techniques will be
discussed in more mathematical detail in Section 2.3.

Single-microphone speech enhancement techniques can only exploit the tem-
poral and the spectral information of the speech and the noise signals and
can therefore be considered a signal-adaptive frequency filtering of the noisy
speech signal. Since the speech and the noise signal usually occupy overlapping
frequency bands, single-microphone speech enhancement techniques generally
have problems to reduce the background noise without introducing noticeable
artifacts (e.g. musical noise [28][109]) or speech distortion. However, when
the speech and the noise sources are physically located at different positions,
spatial diversity can be exploited by using multi-microphone noise reduction
techniques, such that both spectral and spatial characteristics of the signal
sources can be used.

Fixed and adaptive beamforming techniques

A first class of multi-microphone noise reduction techniques is fixed and adap-
tive beamforming. A good overview of beamforming techniques can be found
in [258][264]. Fixed beamforming techniques filter the microphone signals with
fixed filters and hence are data-independent. A fixed beamformer tries to ob-
tain spatial focusing on the speech source, thereby reducing reverberation and
suppressing the background noise not coming from the same direction as the
speech source. Typical fixed beamforming techniques include delay-and-sum
beamforming, differential microphone arrays [24][75], superdirective micropho-
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ne arrays [16][36][146] and frequency-invariant beamformers [274]. However,
using these types of fixed beamformers, it is generally not possible to design
arbitrary spatial directivity patterns for arbitrary microphone array configura-
tions. This is however possible using a general filter-and-sum structure, where
the filter coefficients of the fixed beamformer are calculated such that the spati-
al directivity pattern optimally fits the desired spatial directivity pattern with
respect to some cost function [65][59][144][155][157][159][192]. Part III discusses
several techniques for designing fixed far-field and near-field broadband beam-
formers, which additionally can be designed to be robust against errors in the
microphone array characteristics.

Adaptive beamforming techniques combine the spatial focusing of fixed beam-
formers with adaptive noise suppression. This typically gives rise to constrai-
ned optimisation problems, yielding constrained solutions for the filters. In an
LCMV (linearly constrained minimum variance) beamformer, i.e. the Frost be-
amformer [95], the energy of the output signal is minimised under the constraint
that signals arriving from the look direction, i.e. the direction of the speech
source, undergo a fixed filtering operation. A well-known alternative implemen-
tation of this LCMV beamformer is the Generalised Sidelobe Canceller (GSC),
i.e. the Griffiths-Jim broadband beamformer [116], where the constrained op-
timisation problem is reformulated as an unconstrained optimisation problem.
The GSC consists of a fixed beamformer, creating a so-called speech reference
signal; a blocking matrix, creating so-called noise reference signals; and a multi-
channel adaptive filter [123], eliminating the (noise) components in the speech
reference signal which are correlated with the noise reference signals. Because of
room reverberation, microphone mismatch and look direction error, the speech
signal may leak into the noise references, such that signal cancellation and sig-
nal distortion often cannot be avoided in the standard GSC. In order to limit
signal cancellation and signal distortion, different variants of the standard GSC
implementation exist, e.g. using a speech-controlled (VAD) adaptation algo-
rithm [113][128][194][254], a spatial filter designed blocking matrix [191][194],
norm-constrained [37] and coefficient-constrained adaptive filters [128] or in-
corporating a transfer function model [100]. Some of these variants will be
discussed in more detail in Section 2.5.3.

Adaptive beamforming techniques generally have a better noise reduction per-
formance than fixed beamforming techniques and are able to adapt to changing
acoustic environments. However, they are also quite sensitive to modelling
errors, resulting in speech distortion and cancellation. Therefore fixed be-
amforming techniques are sometimes preferred for their robustness and easy
implementation. Fixed beamformers are frequently used in highly reverberant
acoustic environments, in applications where the position of the speech sour-
ce is approximately known (e.g. hearing aids), for creating multiple beams
[150][259] and for creating the speech and noise reference signals in a GSC.
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Multi-channel Wiener filtering

A second class of multi-microphone noise reduction techniques is multi-channel
Wiener filtering [55][56][61][195][196][224][232][242]. These techniques are un-
constrained optimal filtering techniques, which compute an optimal, i.e. mi-
nimum mean square error (MMSE), estimate of either the speech component
in a microphone signal [56][61][224][242], the clean unreverberated speech sig-
nal [55][232] or a reference signal, which can e.g. be a linear combination of
pre-recorded speech signals [195][196]. In these techniques, inevitably some
linear speech distortion will be introduced, but speech distortion can be ea-
sily traded off with noise reduction [61]. Multi-channel Wiener filters can be
implemented in different ways. Part I discusses a full-band GSVD-based imple-
mentation, which can in fact be considered a multi-microphone extension of the
single-channel subspace-based speech enhancement algorithms. Other possible
implementations include a QR-based implementation [221][224] or subband im-
plementations [242][240]. Multi-channel unconstrained optimal filtering techni-
ques give rise to a higher noise reduction performance than standard fixed and
adaptive beamforming techniques and are more robust to deviations from the
assumed signal model (e.g. look direction error, microphone mismatch, speech
detection errors), but are computationally more demanding.

1.4.2 Acoustic echo cancellation

In order to suppress echo, several conventional acoustic echo cancellation tech-
niques can be applied [122]. E.g. highly directional loudspeakers and microp-
hones and sound absorbing materials can be used in order to avoid reflections.
In practice nowadays, acoustic echo cancellers are based on adaptive filtering
techniques [11][123][214]. Adaptive filtering techniques are a powerful signal
processing tool which can be used for system modelling and for signal enhance-
ment thanks to their self-learning capabilities. Adaptive filters can start from
zero a-priori knowledge and by their inherent feedback structure and conti-
nuous updating they are able to form a model for the unknown system and
track possible system variations.

Figure 1.3 depicts a typical adaptive filtering setup. The input signal x[k] passes
through an unknown system h[k], leading to the desired signal d[k] = h[k]⊗x[k],
with ⊗ denoting convolution between signals. The goal of the adaptive filter
w[k] is to model the unknown system h[k]. This can be achieved by updating
the adaptive filter such that the energy of the error signal e[k] = d[k] − y[k] is
minimised. If the adaptive filter perfectly models the unknown system, then
the error signal will be equal to 0. Hence, all adaptive filtering techniques
consist of two major parts : a filtering operation and a filter adaptation. The
adaptation is done continuously through feedback of the error signal.

A large set of adaptive filtering techniques has been developed during the last
decades, differing in terms of performance (convergence speed, tracking, delay),



1.4. Overview of speech enhancement techniques 19

adaptive

filter

unknown

system

Σ
+

− y[k]

x[k]

e[k]

w[k]

d[k] = h[k] ⊗ x[k]

h[k]

Figure 1.3: Adaptive filtering setup

complexity and stability. In general it is not easy to decide which algorithm
is ‘optimal’ for a certain application, as it strongly depends on the available
computational power and the designer’s preference. In acoustic echo cancella-
tion, the unknown system h[k] that has to be modelled by the adaptive filter
is the acoustic impulse response from the far-end echo loudspeaker to the mi-
crophone(s). Since this acoustic impulse response can be quite long and highly
time-varying, the adaptive filter will require several hundreds or thousands of
taps and high-performance (i.e. fast converging), but low complexity adap-
tive filtering algorithms are desirable. Moreover, the delay introduced by the
algorithm cannot be too large. Advanced adaptive algorithms with a high com-
plexity, such as the recursive least-squares (RLS) algorithm [123], are therefore
not often taken into consideration, unless fast versions [10][82][182][214] are
used. For acoustic applications, cheap algorithms, such as the least mean squa-
res (LMS) and normalised LMS (NLMS) algorithm [123], are typically used.
However, these algorithms exhibit a slow convergence behaviour, especially for
coloured signals such as speech. Therefore, also ‘in between’-solutions, such as
the affine projection algorithm (APA) and its variants [103][186][203][222][249],
have been investigated. These algorithms have a better convergence behaviour
than LMS-type algorithms but a lower complexity than RLS-type algorithms.

The complexity of adaptive algorithms can still be reduced by using frequency-
domain or subband algorithms [13][78][79][80][171][231]. Frequency-domain al-
gorithms mainly have two advantages over time-domain algorithms. First, a
considerable cost reduction can be obtained thanks to the block-processing and
the use of fast signal transforms (FFT). Secondly, a better convergence beha-
viour is expected due to the decorrelation properties of the signal transforms.
The main disadvantage is the quite large algorithmic delay, which can however
be reduced by using block partitioning [44][73][81][237].

In fact, we can state that conceptually (mono) echo cancellation is a ‘solved’
problem, and that nowadays research is mainly focused on the development
of less complex algorithms which provide the same (or better) performance.



20 Introduction

However, in present-day setups, all consumer equipment produces two (stereo)
or even more channels (surround sound), such that multiple loudspeaker signals
need to be cancelled. It can be proved that multi-channel acoustic echo cancel-
lation inherently suffers from a non-uniqueness problem, since the loudspeaker
signals are generally highly correlated [102][238]. In practice, a unique solution
for the multi-channel echo cancellation problem does exist, but the underlying
optimisation problem appears to be ill-conditioned. In order to improve the
conditioning of the problem, uncorrelated components can be introduced into
the different loudspeaker signals. These components should however be inau-
dible and should not affect the stereo perception. Different techniques have
been proposed for (partially) decorrelating the loudspeaker signals, e.g. using
a half-wave rectifier [15], complementary comb filters [14], time-varying all-pass
filters [3], or inserting psycho-acoustically-masked noise [108].

Traditionally, noise reduction and echo cancellation have been addressed in-
dependently, either by first cancelling the echo components in all micropho-
ne signals and then performing multi-microphone noise reduction, or vice-
versa, by first performing multi-microphone noise reduction, followed by a
single-channel echo canceller. Both schemes have their own advantages and
disadvantages with respect to performance and complexity. Recently, it has
been recognised that both problems are better solved using a combined ap-
proach, certainly when using multiple microphones. Initial results indicate
that a combined approach yields a better performance at a lower complexity
[47][125][126][151][152][158][173][174].

1.4.3 Dereverberation

Dereverberation consists of extracting the clean speech signal from the (rever-
berated) microphone signals, without any knowledge about neither the acoustic
impulse responses nor the clean speech signal. Therefore dereverberation is also
referred to as blind deconvolution.

For the single-microphone dereverberation problem, a direct solution is provided
by conventional inverse filtering techniques. If the acoustic impulse response
is known (from calculations or measurements), reverberation can be removed
by using the inverse filter or by MMSE deconvolution [180]. However, since
typical acoustic impulse responses are non-minimum-phase and therefore do
not have stable causal inverses [188], inverse filtering-based single-microphone
techniques have a limited scope in practice [180]. The situation is further
complicated by the difficulty of estimating and tracking the acoustic impulse
response in real-time applications. An alternative approach is provided by
cepstrum-based techniques [8][202][251]. The underlying motivation is the fact
that deconvolution in the time domain corresponds to division in the frequency-
domain and subtraction in the cepstrum domain. Since the complex cepstrum
of a speech signal is usually concentrated around the cepstral origin, while that



1.4. Overview of speech enhancement techniques 21

of its echoes is composed of pulses away from the origin, dereverberation can be
achieved by low-quefrency ‘liftering’ or peak-picking in the cepstrum domain.
While cepstrum filtering has been applied successfully for the enhancement of
speech degraded by simple echoes, its use for dereverberating single-microphone
speech signals poses several practical problems [8]. We can conclude that single-
microphone blind deconvolution techniques exhibit a limited performance.

On the other hand, multi-microphone dereverberation techniques provide spa-
tial processing, such that the reverberant part can be spatially separated from
the direct path signal. A first class of multi-microphone techniques is fixed
beamforming, as apart from suppressing background noise, these techniques
are also known to partially dereverberate the microphone signals. Fixed beam-
forming techniques try to capture the sound coming from the direction of the
speaker and attenuate sounds coming from other directions, thereby reducing
reverberation. In an early paper [5], a two-microphone fixed beamforming tech-
nique has been proposed which compensates for the phase and the amplitude
differences of the two microphones signals and sums them coherently. Adaptive
beamforming techniques have also been considered for the suppression of rever-
beration. However, the key assumption in adaptive beamforming algorithms
is that the desired speech signal is statistically independent from all sources of
interference, which means that the interference can not be due to delayed ver-
sions of the speech signal, as is the case in a reverberant room. Another class
of multi-microphone dereverberation techniques combines beamforming with
cepstrum-based processing. In [164] the different microphone signals are fac-
tored into a minimum-phase and an all-pass component, which are separately
processed in the cepstrum and in the frequency-domain.

Standard delay-and-sum beamforming techniques use a simple time-delay com-
pensation for aligning the different microphone signals, but do not achieve
substantial dereverberation. More sophisticated beamforming techniques use
matched filtering instead of this simple time-delay compensation [91]. When
the different acoustic impulse responses are known, matched filtering simply
consists of filtering the microphone signals with the time-reversed acoustic im-
pulse responses. When the acoustic impulse responses are not known, matched
filtering is still possible by e.g. estimating the acoustic impulse responses in
the frequency-domain using subspace-tracking techniques [2].

In the case of a single speaker and multiple microphones, the total system to be
identified and inverted can be considered a single-input multiple-output (SIMO)
system. Blind system identification techniques [1][7][101][117][187][252][265]
may therefore be used to estimate the different acoustic impulse responses, fol-
lowed by an inverse multi-channel filtering operation [180][272]. However, most
of these blind system identification techniques are not robust to over- and un-
derestimation of the length of the acoustic impulse responses – which cannot
be exactly estimated in practice – and furthermore have a high computational
complexity. Moreover, because of the low-rank model of speech (cf. Section
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1.3.1), these system identification problems become rank-deficient or at least
very ill-conditioned. Therefore it is quite difficult to estimate and track the
complete impulse responses, certainly when a large amount of background noi-
se is present [101]. Hence, blind channel estimation and dereverberation for
speech communication systems remains a topic of further research. In Part
II time-domain and frequency-domain techniques are discussed for estimating
and tracking the (partial) acoustic impulse responses in adverse acoustic envi-
ronments, which can either be used for dereverberation or for acoustic source
localisation.

1.5 Outline of the thesis and main contributions

In this section a chapter by chapter overview of the thesis is given, summarising
the main contributions. We also provide references to the publications that
have been produced in the frame of this work.

1.5.1 Objectives of the developed algorithms

In this thesis several multi-microphone signal enhancement techniques for noi-
se reduction and dereverberation are discussed. As already mentioned, back-
ground noise and reverberation can seriously degrade the speech intelligibility
and the performance of speech recognition systems in hands-free applications.
In order to improve the ‘quality’ of the recorded microphone signals, different
signal enhancement techniques are called for.

In this thesis we will focus on multi-microphone signal enhancement tech-
niques, since multi-microphone techniques can exploit both the spectral and
the spatial characteristics present in the microphone signals. Part I discusses
a GSVD-based unconstrained optimal filtering technique for multi-microphone
noise reduction. Part II describes an acoustic source localisation technique,
obviously requiring the use of multiple microphones, and a combined noise
reduction and dereverberation technique. In part III design procedures for
broadband beamformers are discussed.

Since the signals and the acoustic environment are highly time-varying, most
developed algorithms will be adaptive, enabling these algorithms to deal with
different noise situations and with changing acoustic environments. Generally,
we will assume that the background noise sources are unknown, i.e. that no
reference for these noise sources is available. We will also discuss the integra-
tion of different signal enhancement techniques, e.g. combined noise reduction
and echo cancellation in Part I and combined noise reduction and dereverbe-
ration in Part II.

Since most multi-microphone signal enhancement techniques are sensitive to
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errors in the microphone array characteristics (gain, phase, position) and other
deviations (e.g. look direction error, speech detection errors), we will analyse
the robustness of the developed algorithms against these deviations and whe-
re possible, we will take these deviations into account in the algorithm design.
In Part I we will analyse the robustness of the GSVD-based optimal filtering
technique with respect to deviations from the assumed signal model (micropho-
ne characteristics, look direction error, speech detection errors) and in Part III
we will discuss design procedures for broadband beamformers that are robust
against gain and phase errors in the microphone characteristics.

Finally, we will also consider the computational complexity of the developed
algorithms. E.g. it will be shown that the complexity of the GSVD-based
optimal filtering technique can be drastically reduced such that it becomes
suitable for real-time implementation. However, our main concern is to develop
algorithms that have a better performance and/or robustness than existing
techniques, where computational complexity is only of secondary importance.

1.5.2 Chapter by chapter overview and contributions

This thesis consists of three parts. Each of these parts is divided into two or
three chapters. A schematic overview of the thesis is given in Fig. 1.4.

In Chapter 2 several existing single- and multi-microphone noise reduction
and dereverberation techniques are briefly reviewed, i.e. single-microphone
signal subspace-based noise reduction, fixed and adaptive beamforming, and
inverse filtering and matched filtering techniques for dereverberation.

Part I: GSVD-Based Optimal Filtering for Multi-Microphone Noise
Reduction

In this part we present a Generalised Singular Value Decomposition (GSVD)
based optimal filtering technique for enhancing multi-microphone speech signals
which are degraded by additive coloured noise. Several techniques are discussed
for reducing the computational complexity and we show that the GSVD-based
optimal filtering technique can be integrated into a Generalised Sidelobe Can-
celler (GSC) type structure. Simulations show that the GSVD-based optimal
filtering technique achieves a larger SNR improvement than standard fixed and
adaptive beamforming techniques and that it is more robust against several
deviations from the assumed signal model. Publications related to this part of
the thesis are [47][48][49][50][51][52][53][54][56][61][67].

In Chapter 3 multi-channel Wiener filtering is discussed. This optimal filter
produces a minimum mean square error (MMSE) estimate of the speech compo-
nents in the microphone signals, thereby reducing the background noise but not
the reverberation. We also discuss a more general class of estimators, making it
possible to trade off speech distortion and noise reduction. When incorporating
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Figure 1.4: Schematic overview of the thesis

the low-rank model of the speech signal, this class of optimal filtering techni-
ques can be considered a multi-microphone extension of the single-microphone
subspace-based speech enhancement techniques. In practice, the optimal filter
matrix can be computed using the GSVD of a speech and a noise data ma-
trix. We derive a number of symmetry properties for this optimal filter matrix,
which are valid for the white noise case as well as for the coloured noise ca-
se. In addition, the averaging step of some single-microphone subspace-based



1.5. Outline of the thesis and main contributions 25

algorithms is examined, leading to the conclusion that this averaging opera-
tion is unnecessary and even suboptimal. When analysing the multi-channel
Wiener filter in the frequency-domain, we show that this filter can be decompo-
sed into a spectral and a spatial filtering term and we derive conditions under
which the noise sensitivity of the GSC and the multi-channel Wiener filter are
equal. Finally, we show that unconstrained optimal filtering can also be used
for combined noise and echo reduction. When assuming infinite-length filters,
we prove that the far-end echo source has no influence on the noise reduction
performance.

In Chapter 4 we present several techniques for reducing the computational
complexity of the GSVD-based optimal filtering technique, such that it beco-
mes suitable for real-time implementation. Instead of recomputing the GSVD
from scratch at each time step, recursive Jacobi-type GSVD-updating algo-
rithms can be used. The computational complexity can be further reduced
by using a square root-free implementation and by using sub-sampling tech-
niques. In addition, we show how to incorporate the GSVD-based optimal
filtering technique in a GSC-type structure with an ANC postprocessing sta-
ge. This ANC postprocessing stage can either be used for increasing the noise
reduction performance or for reducing the complexity without decreasing the
performance.

Chapter 5 analyses the performance of the GSVD-based optimal filtering tech-
nique for several simulated acoustic environments and for real-life recordings.
For higher filter lengths and for lower reverberation times, the SNR improve-
ment increases and the speech distortion decreases. Simulations show that the
SNR improvement of the GSVD-based optimal filtering technique outperforms
the SNR improvement of standard fixed and adaptive beamforming techniques
for all considered acoustic scenarios. In addition, robustness issues such as the
effect of speech detection errors and deviations from the assumed signal model
are analysed. It is shown that the SNR improvement is not degraded by speech
detection errors but that speech distortion increases with increasing error rate.
It is also shown that the GSVD-based optimal filter is more robust than the
GSC for microphone mismatch, microphone displacement and look direction
error.

Part II: Multi-Microphone Dereverberation and Source Localisation

In this part, multi-microphone algorithms are discussed for time-delay estima-
tion (TDE)1, dereverberation, and combined noise reduction and dereverbera-
tion. Since the presented TDE and dereverberation algorithms both require a
(partial) estimate of the acoustic impulse responses, we also present batch and
adaptive algorithms for (partially) estimating the acoustic impulse responses,
both in the time-domain and in the frequency-domain. Publications related to

1The estimated time-delays between the microphone signals can be used for acoustic
source localisation.
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this part of the thesis are [55][57][66].

In Chapter 6 two adaptive time-domain algorithms are presented for robust
TDE in noisy and reverberant acoustic environments. We first discuss batch,
i.e. non-adaptive, procedures for estimating the complete acoustic impulse
responses in the time-domain. These batch estimation procedures are based
on the generalised eigenvalue decomposition (GEVD) of the speech and the
noise correlation matrices and form the basis for deriving adaptive algorithms.
We extend a recently developed adaptive EVD algorithm for TDE to noisy
environments, by using an adaptive GEVD or by pre-whitening the microphone
signals. For the adaptive GEVD, we derive a stochastic gradient algorithm
which iteratively estimates the generalised eigenvector corresponding to the
smallest generalised eigenvalue. In addition, we extend all TDE algorithms to
the case of more than two microphones. Simulations show that the time-delays
can be estimated more robustly using the adaptive GEVD algorithm than using
the adaptive EVD algorithm and the adaptive pre-whitening algorithm.

In Chapter 7 frequency-domain algorithms for dereverberation and for com-
bined noise reduction and dereverberation are discussed. We first present a
frequency-domain technique for estimating the acoustic transfer functions when
the microphone signals are corrupted by spatially coloured noise. Unlike the
time-domain techniques presented in Chapter 6, this frequency-domain techni-
que requires some prior knowledge about the acoustic transfer functions. Using
the estimated transfer functions, dereverberation can be performed with a nor-
malised matched filtering approach. In addition, we show that the MMSE
estimate of the clean dereverberated speech signal can be obtained by derever-
berating the MMSE estimates of the speech components in the microphone sig-
nals. Hence, by combining the normalised matched filter with the multi-channel
Wiener filter, presented in Chapter 3, we obtain a combined noise reduction
and dereverberation technique. Simulations show that this combined techni-
que provides a trade-off between the noise reduction and the dereverberation
objectives.

Part III: Broadband Beamformer Design

In this part several design procedures are discussed for designing fixed broad-
band beamformers with an arbitrary desired spatial directivity pattern for a
given arbitrary microphone array configuration, using an FIR filter-and-sum
structure. We will present far-field, near-field and mixed near-field far-field
beamformers, and we will take into account robustness against errors in the
microphone characteristics. Publications related to this part of the thesis are
[58][59][60][64][65][62].

In Chapter 8 we assume that the speech source is located in the far-field of the
microphone array. Several cost functions are discussed for designing far-field
broadband beamformers: a weighted least-squares (LS), a maximum energy
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array and a non-linear cost function. Although in general we would like to use
the non-linear design procedure, this procedure gives rise to a high computa-
tional complexity, since it requires an iterative optimisation technique. Hence,
we will also consider non-iterative design procedures with a lower computati-
onal complexity. We present two novel non-iterative cost functions, which are
both based on eigenfilters. Eigenfilters have already been used for designing
1-D and 2-D linear-phase FIR filters and spatial filters; in this chapter we ex-
tend their usage to the design of broadband beamformers. In the conventional
eigenfilter technique a reference frequency-angle point is required, whereas in
the eigenfilter technique based on a Total Least Squares (TLS) error criterion,
this reference point is not required. Simulations show that among all conside-
red non-iterative design procedures the TLS eigenfilter technique has the best
performance, i.e. best resembling the performance of the non-linear design
procedure but having a significantly lower computational complexity.

In Chapter 9 the design of near-field broadband beamformers is discussed. It
is shown that the design of a near-field broadband beamformer operating at
one specific distance is very similar to the design of a far-field broadband beam-
former. The same design procedures and cost functions can be used, while the
only difference lies in the calculation of the double integrals involved in the de-
sign. Since the spatial directivity pattern of a near-field broadband beamformer
designed for one specific distance can be quite unsatisfactory at other distances,
we present design procedures for broadband beamformers which operate at se-
veral distances, e.g. mixed near-field far-field design. Simulations show that for
near-field broadband beamformer design the TLS eigenfilter technique again is
the preferred non-iterative design procedure and that mixed near-field far-field
design provides a trade-off between the near-field and the far-field performance.

In Chapters 8 and 9 it is assumed that the microphones are omni-directional
microphones with a flat frequency response equal to 1. Chapter 10 discus-
ses the design of broadband beamformers that are robust against errors in the
microphone array characteristics. First, we extend the broadband beamformer
design procedures in case the microphone characteristics, i.e. frequency- and
angle-dependent gain and phase, are exactly known. Since in many applicati-
ons these characteristics are not known in practice and can even change over
time, we present two procedures for designing broadband beamformers that
are robust against (unknown) gain and phase errors. The first design procedu-
re optimises the mean performance for all feasible microphone characteristics,
requiring the gain and the phase probability density functions, whereas the
second design procedure optimises the worst-case performance, leading to a
minimax problem. Simulations show that robust broadband beamformer de-
sign gives rise to a significant performance improvement when gain and phase
errors occur, especially when using small-size microphone arrays.

In Chapter 11 we give an overall conclusion and we list some suggestions for
further research.
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1.6 Conclusions

In general, the speech and audio preprocessing market is an expanding market.
People are requesting better sound quality, user-friendliness and interactivity
in digital signal processing applications. This implies that there will be an ever
growing demand for signal enhancement and signal conditioning techniques.

In Section 1.2 the advantages and the problems occurring in hands-free speech
acquisition systems have been described. In hands-free systems people are
allowed to walk around freely without wearing a headset or holding a microp-
hone. Hence, several types of signal degradation (noise, echo, reverberation)
occur in the microphone recordings. The need for adaptive and integrated
multi-microphone speech enhancement techniques has been discussed in order
to improve speech intelligibility and speech recognition performance and so-
me important applications (hands-free mobile telephony, voice control, hearing
aids) have been presented.

In Section 1.3 several important characteristics of the speech and the noise
signals and the acoustic environment have been discussed, since these properties
have a large influence on the signal degradation and on the performance of
speech enhancement algorithms. It has been shown that acoustic environments
can be highly time-varying and that the microphone array characteristics (gain,
phase, position) should be taken into account in the algorithm design.

In Section 1.4 a brief overview has been given of existing single- and multi-
microphone algorithms for noise reduction, echo cancellation and dereverbera-
tion. Some of these algorithms will be discussed in more mathematical detail
in Chapter 2.

Section 1.5 presents an outline of the thesis and summarises the main contri-
butions.



Chapter 2

Signal enhancement
techniques

This chapter briefly discusses some single- and multi-microphone signal enhan-
cement techniques for noise reduction and dereverberation that are important
for the remainder of the text.

Section 2.1 discusses some signal processing basics. Section 2.2 describes the
recording model for speech signals in a noisy acoustic environment, gives the
general setup for multi-microphone speech enhancement in the time-domain
and in the frequency-domain and defines some performance measures. Secti-
ons 2.3 and 2.4 discuss single-microphone speech enhancement techniques such
as spectral subtraction, signal subspace-based and cepstrum-based techniques,
whereas Sections 2.5 and 2.6 discuss multi-microphone speech enhancement
techniques, such as beamforming, inverse filtering and matched filtering.

2.1 Signal processing basics

The following basic signal processing definitions and theorems can be found in
any signal processing handbook, e.g. [42][213], but are repeated here for the sa-
ke of self-containedness. Linear algebra definitions and matrix decompositions
are reviewed in Appendix A.

Most of the signals, filters and systems that are used in this thesis are discrete-
time variables. They can be represented in the time-domain or in the frequency-
domain. The time-domain representation of a variable x,

x[k] = { . . . x[−1] x[0] x[1] x[2] . . . } , (2.1)

29
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depends on the discrete time k, which is related to the actual time t = k/fs
through the sampling frequency fs. The frequency-domain representation of
x[k] is obtained by applying the Discrete-Time Fourier Transform (DTFT),

X(ω) = F{x[k]} =

∞∑

k=−∞
x[k] e−jkω . (2.2)

The spectrum X(ω) is periodic in ω with period 2π. For the evaluation of
the frequency-domain characteristics, the fundamental interval is usually con-
sidered, i.e. −π < ω ≤ π or 0 ≤ ω < 2π, with ω = π representing the
Nyquist-frequency. The inverse transform, the Inverse Discrete-Time Fourier
Transform (IDTFT), can be used to transform X(ω) back to the time-domain,

x[k] = F−1{X(ω)} =
1

2π

∫ π

−π
X(ω) ejkω . (2.3)

In practice, the (continuous) spectrum X(ω) is approximated by considering
frames of x[k] with length L, multiplying these frames with a window function
(e.g. rectangular, Hanning, Kaiser) of length L, and applying the Discrete
Fourier Transform (DFT), also called short-time Fourier Transform (STFT).
The lth component of the DFT of the mth frame of x[k] is obtained as

X(l,m) =
L−1∑

k=0

w[k]x[mL+ k] e−j2πkl/L , l = 0 . . . L− 1 , (2.4)

with L the frame length and the size of the DFT and w[k] the window function.
In fact, this component is an approximation forX(l 2πL ). Fast Fourier Transform
(FFT) algorithms can be used for efficiently computing these DFT-components.
The inverse transform is the Inverse Discrete Fourier Transform (IDFT),

x[mL+ k] =
1

L

L−1∑

l=0

X(l,m) ej2πkl/L , k = 0 . . . L− 1 , (2.5)

which can be efficiently calculated using an Inverse Fast Fourier Transform
(IFFT) algorithm.

The autocorrelation function rx[l] of a wide-sense stationary (WSS) stochastic
process x[k] is defined as

rx[l] = E{x[k + l]x∗[k]} , (2.6)

with E{·} the expectation operator. The cross-correlation function rxy[l] of two
jointly WSS stochastic processes x[k] and y[k] is defined as

rxy[l] = E{x[k + l]y∗[k]} . (2.7)
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The Power Spectral Density (PSD) Px(ω) of x[k] is defined as the DTFT of the
autocorrelation function rx[l] (i.e. the Wiener-Khintchine theorem), and the
Cross-Power Spectral Density Pxy(ω) of x[k] and y[k] is defined as the DTFT of
the cross-correlation function rxy[l]. For ergodic processes (a property we will
assume to be valid for all considered stochastic processes), Px(ω) and Pxy(ω)
can be computed as

Px(ω) = E{|X(ω)|2} , (2.8)

Pxy(ω) = E{X(ω)Y ∗(ω)} . (2.9)

The complex coherence Γxy(ω) between the signals x[k] and y[k] is defined as

Γxy(ω) =
Pxy(ω)

√

Px(ω)Py(ω)
. (2.10)

The Power Transfer Function (PTF) Gxy(ω) between the (input) signal x[k]
and the (output) signal y[k] is defined as the ratio of their PSDs,

Gxy(ω) =
Py(ω)

Px(ω)
. (2.11)

2.2 Problem statement

2.2.1 Recording model

The recording of a speech signal in a noisy environment can be described as
follows. Consider an acoustic environment consisting of N microphones, one
speech source and multiple background noise sources and far-end echo sources
(see Fig. 1.1). Each microphone signal yn[k], n = 0 . . . N−1, at time k, consists
of a filtered version of the clean speech signal s[k] and additive noise,

yn[k] = hn[k] ⊗ s[k] + vn[k] = xn[k] + vn[k] (2.12)

with xn[k] and vn[k] the speech and the noise component received at the nth
microphone, hn[k] the acoustic impulse response (cf. Section 1.3.3) between
the speech source and the nth microphone and ⊗ denoting convolution. Re-
verberation can thus be considered a convolutional noise source. Generally the
acoustic impulse responses are modelled using FIR-filters hn[k] of length K,

hn[k] =
[
hn,0[k] hn,1[k] . . . hn,K−1[k]

]T
, (2.13)

such that nth microphone signal at time k can be written as

yn[k] =

K−1∑

i=0

hn,i[k] s[k − i] . (2.14)
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In this model we assume that the microphones are perfectly omni-directional
and have a flat frequency response equal to 1. If this is not the case, the
microphone characteristics are usually incorporated in the acoustic impulse
responses hn[k].

The additive noise component vn[k] in the nth microphone signal can be colou-
red and is assumed to be uncorrelated with the clean speech signal s[k]. This
noise component actually consists of three parts:

• a contribution vun[k] from the unknown noise sources (e.g. ventilator,
radio, wind, other people). In the case of localised noise sources this
contribution can be written as

vun[k] =
∑

j

hujn[k] ⊗ uj [k] , (2.15)

with uj [k] the jth localised (unknown) noise source and hujn[k] the acous-
tic impulse response between the jth noise source and the nth micropho-
ne. This contribution also includes diffuse noise sources.

• a contribution vfn[k] from the known noise sources (we will only consider
far-end echo sources). This contribution can be written as

vfn[k] =
∑

l

hfln[k] ⊗ fl[k] , (2.16)

with fl[k] the (known) loudspeaker signal of the lth echo source and hfln[k]
the acoustic impulse response between the lth echo source and the nth
microphone. In this model we assume that we can neglect the non-linear
characteristics of the loudspeakers.

• independent (uncorrelated) recording noise vrn[k]. The level of this sensor
noise depends on the type and the quality of the used microphones. In
general we will not consider sensor noise.

2.2.2 Noise reduction and dereverberation

Figure 2.1 depicts a general setup for multi-microphone speech enhancement,
where the microphone signals yn[k] are (adaptively) filtered with the filters
wn[k] and are combined in order to obtain the enhanced signal z[k],

z[k] =

N−1∑

n=0

wn[k] ⊗ yn[k] . (2.17)

The filters wn[k] generally are FIR filters wn[k] of length L, i.e.

wn[k] =
[
wn,0[k] wn,1[k] . . . wn,L−1[k]

]T
, (2.18)
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Figure 2.1: Multi-microphone filtering for speech enhancement

and if we consider the L-dimensional data vector yn[k] and the M -dimensional
stacked filter vector w[k] and stacked data vector y[k],

yn[k] =
[
yn[k] yn[k − 1] . . . yn[k − L+ 1]

]T
, (2.19)

w[k] =
[

wT
0 [k] wT

1 [k] . . . wT
N−1[k]

]T
, (2.20)

y[k] =
[

yT0 [k] yT1 [k] . . . yTN−1[k]
]T

, (2.21)

with M = LN , then the signal z[k] at time k can be written as

z[k] =

N−1∑

n=0

wT
n [k]yn[k] = wT [k]y[k] (2.22)

All signal enhancement algorithms discussed in this thesis can be described
by this equation and ‘merely’ differ in the way the filters wn[k] are computed.
By combining (2.12) and (2.17), the enhanced signal z[k] can be written as a
function of the speech and noise components,

z[k] = zx[k] + zv[k] =

N−1∑

n=0

wn[k] ⊗ hn[k]

︸ ︷︷ ︸

f [k]

⊗s[k] +

N−1∑

n=0

wn[k] ⊗ vn[k] , (2.23)

with zx[k] and zv[k] the speech and the noise component in the output signal
z[k] and f [k] the total transfer function for the clean speech signal s[k]. The
filters wn[k], n = 0 . . . N − 1 can be designed with different objectives in mind.

• The goal of noise reduction is to minimise the energy in the residual noise
component zv[k], which can e.g. be achieved by putting wn[k] = 0, n =
0 . . . N − 1. Clearly, in this case also all speech components are removed,
such that constraints should be introduced which take into account speech
distortion. E.g. in adaptive beamformers (cf. Section 2.5.3) a constraint
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is imposed such that all signals coming from the direction of the speech
source are not distorted, whereas in multi-channel Wiener filters (cf. Part
I) a trade-off can be made between speech distortion and noise reduction.

• The goal of dereverberation is to compute the filters wn[k] such that the
total speech transfer function f [k] is equal to 1 (or more realistically a
delay). However, since the residual noise component is not constrained in
any way, it is even possible that the noise components vn[k] are amplified.

• The goal of combined noise reduction and dereverberation is to extract
the clean speech s[k] from the noisy microphone signals yn[k], i.e. the
filters wn[k] should be designed such that both f [k] approximates a delay
and the energy of the residual noise component zv[k] is minimised.

One should keep in mind that only the noisy microphone signals yn[k] are avai-
lable, i.e. neither the acoustic impulse responses hn[k] nor the noise components
vn[k] are available and hence both should be estimated from the microphone
signals. Moreover, both the acoustic impulse responses and the noise sources
can be (highly) time-varying, necessitating the use of adaptive filters wn[k].

When a reference is available for the noise sources (as is the case for the far-
end echo signals fl[k]), these reference signals can also be used in the signal
enhancement algorithms, and additional terms are added to (2.17),

z[k] =
N−1∑

n=0

wn[k] ⊗ yn[k] +
∑

l

wfl [k] ⊗ fl[k] , (2.24)

with wfl [k] the filters applied to the reference signals fl[k]. This model will be
used in Section 3.6, where a combined noise reduction and echo cancellation
algorithm is discussed.

2.2.3 Frequency-domain representation

All previous expressions can also be represented in the frequency-domain1.
Using (2.12), the microphone signal Yn(ω), n = 0 . . . N − 1, can be written as

Yn(ω) = Hn(ω)S(ω) + Vn(ω) = Xn(ω) + Vn(ω) (2.25)

with Hn(ω) the acoustic transfer function between the speech source and the
nth microphone. The stacked vector of microphone signals can be written as

Y(ω) =








Y0(ω)
Y1(ω)

...
YN−1(ω)








=








H0(ω)
H1(ω)

...
HN−1(ω)







S(ω) +








V0(ω)
V1(ω)

...
VN−1(ω)








(2.26)

1For this frequency-domain representation, we assume that all signals are stationary and
the Discrete-Time Fourier Transform can be used.
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= H(ω)S(ω) + V(ω) = X(ω) + V(ω) . (2.27)

The general expression (2.17) for multi-microphone speech enhancement can
be written as

Z(ω) =

N−1∑

n=0

Wn(ω)Yn(ω) , (2.28)

with Wn(ω) =
∑L−1
k=0 wn[k]e

−jkω. Using (2.27), the output signal Z(ω) can
also be written as

Z(ω) = WT (ω)Y(ω) = WT (ω)H(ω)
︸ ︷︷ ︸

F (ω)

S(ω) + WT (ω)V(ω) , (2.29)

with F (ω) the total transfer function for the speech signal and

W(ω) =
[
W0(ω) W1(ω) . . . WN−1(ω)

]T
. (2.30)

For convenience, (2.29) is generally written as

Z(ω) = WH(ω)Y(ω) =

N−1∑

n=0

W ∗
n(ω)Yn(ω) (2.31)

which in the time-domain corresponds to a convolution with the time-reversed
filters wn[−k].

2.2.4 Performance measures

Noise reduction performance

The noise reduction performance will be described by the improvement in un-
biased signal-to-noise ratio (SNR) between the output signal z[k] and the input
signal, which is generally chosen to be the first microphone signal y0[k]. The
unbiased SNR of z[k] = zx[k] + zv[k] is defined as

SNRz = 10 log10

∑
z2
x[k]

∑
z2
v [k]

(2.32)

which is computed during speech-and-noise periods. The unbiased SNR impro-
vement is then given as the difference between the unbiased SNR of the input
and the output signal, i.e. SNRz − SNRy0 .

In the frequency-domain, the unbiased SNR is defined as

SNRz(ω) = 10 log10

Pzx(ω)

Pzv (ω)
(2.33)



36 Signal enhancement techniques

with Pzx(ω) and Pzv (ω) the PSD of the speech and the noise components of
z[k] (cf. Section 2.1). Using (2.31), the PSD Pzx(ω) can be written as

Pzx(ω) = E{|Zx(ω)|2} = Ps(ω)|WH(ω)H(ω)|2 , (2.34)

with Ps(ω) = E{|S(ω)|2}, while the PSD Pzv (ω) can be written as

Pzv (ω) = E{|Zv(ω)|2} = WH(ω)R̄vv(ω)W(ω) , (2.35)

with

R̄vv(ω)=E{V(ω)VH(ω)}=








Pv0(ω) Pv0v1(ω) . . . Pv0vN−1
(ω)

Pv1v0(ω) Pv1(ω) . . . Pv1vN−1
(ω)

...
...

...
PvN−1v0(ω) PvN−1v1(ω) . . . PvN−1

(ω)







.

(2.36)
If we assume that the noise-field is homogeneous, i.e. Pvn(ω) = Pv(ω), n =
0 . . . N − 1, then R̄vv(ω) can be written as a function of the noise coherence
matrix Γv(ω), cf. Section 2.1, i.e.

R̄vv(ω)=Pv(ω)Γv(ω)=Pv(ω)








1 Γv0v1(ω) . . . Γv0vN−1
(ω)

Γv1v0(ω) 1 . . . Γv1vN−1
(ω)

...
...

...
ΓvN−1v0(ω) ΓvN−1v1(ω) . . . 1







,

(2.37)
such that the unbiased output SNR in (2.33) can be written as

SNRz(ω) = 10 log10

Ps(ω)

Pv(ω)

|WH(ω)H(ω)|2
WH(ω)Γv(ω)W(ω)

. (2.38)

Speech distortion

Speech distortion can be analysed by considering the PTF between the speech
component of the input signal and the speech component of the output signal
zx[k]. For the GSVD-based optimal filtering technique (cf. Section 3), the
input signal is the first microphone signal y0[k], such that speech distortion
will be analysed by considering the PTF

Gx0zx(ω) =
Pzx(ω)

Px0
(ω)

=
|WH(ω)H(ω)|2

|H0(ω)|2 . (2.39)

The average speech distortion (SD) is computed as the average of the PTF (in
dB) over the full frequency band, i.e.

SD =
1

2π

∫ π

−π
|10 log10Gx0zx(ω)| dω (2.40)
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Noise reduction can also be analysed by considering the PTF between the noise
components of the input and the output signal, i.e.

Gv0zv (ω) =
Pzv (ω)

Pv0(ω)
= WH(ω)Γv(ω)W(ω) . (2.41)

Dereverberation

It is quite difficult to define a good performance measure for dereverberati-
on. We will analyse the dereverberation performance by considering the PTF
between the clean speech signal s[k] and the speech component of the output
signal zx[k], i.e.

Gszx(ω) =
Pzx(ω)

Ps(ω)
= |WH(ω)H(ω)|2 . (2.42)

The dereverberation index (DI) is computed as the average of the PTF (in dB)
over the full frequency band, i.e.

DI =
1

2π

∫ π

−π
|20 log10 |WH(ω)H(ω)| | dω (2.43)

We will use this performance measure, although it does not give full information
about the amount of reverberation present in the output signal (i.e. even if
DI = 0 dB, it is still possible that zx[k] 6= s[k], since phase information is
neglected in computing the dereverberation index).

2.3 Single-microphone noise reduction

In single-microphone speech enhancement the number of microphones N = 1,
such that the model (2.12) simplifies to

y0[k] = x0[k] + v0[k] . (2.44)

As already mentioned in Section 1.4.1, single-channel noise reduction techni-
ques can only exploit the temporal and the spectral information of the speech
and the noise signals. In this section we will briefly describe two non-parametric
techniques, which require a noise fingerprint in the Discrete Fourier Transform
(DFT) or the Karhunen-Loève Transform (KLT) domain.

2.3.1 Spectral subtraction techniques

Spectral subtraction is a well-known and commonly used single-microphone
speech enhancement technique. Transforming (2.44) to the frequency-domain
using an L-point short-time Fourier transform, cf. (2.4), gives

Y0(l,m) = X0(l,m) + V0(l,m), l = 0 . . . L− 1 , (2.45)
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Magnitude subtraction [21] W (l,m) =
[

1 − |µV (l)|
|Y0(l,m)|

]

Power subtraction [163][177] W (l,m) =
√

1 − |µV (l)|2
|Y0(l,m)|2

Wiener estimation [163][177] W (l,m) = 1 − |µV (l)|2
|Y0(l,m)|2

Generalised Spectral subtraction [163] W (l,m) =
[

1 − α
(

|µV (l)|
|Y0(l,m)|

)γ]β

Table 2.1: Common gain functions for spectral subtraction

with m the frame index. Typically frame lengths of 20 − 30 ms are used and
50 − 66% overlap between the frames is taken [42]. For each frame, the clean
speech spectrum X0(l,m) is estimated from the noisy speech spectrum Y0(l,m)
using an estimate of the noise spectrum µV (l), i.e.

µV (l) = E{V0(l,m)}, l = 0 . . . L− 1 . (2.46)

This noise fingerprint can be calculated by assuming that the noise characte-
ristics change slowly over time, such that the noise spectrum can be estimated
by averaging over the spectra of noise-only frames. This estimation procedure
obviously requires a voice activity detection (VAD) algorithm (cf. Section 5.3),
which classifies the frames into noise-only and speech-and-noise frames.

The estimate of the clean speech spectrum X̂0(l,m) is obtained by multiplying
the noisy speech spectrum Y0(l,m) with a gain function W (l,m), i.e.

X̂0(l,m) = W (l,m)Y0(l,m) , (2.47)

where the gain function W (l,m) depends on the noisy speech spectrum and on
the estimated noise spectrum, i.e.

W (l,m) = f(Y0(l,m), µV (l)) . (2.48)

Hence, all spectral subtraction techniques can be considered frequency-domain
techniques in which the STFT coefficients are multiplied with a noise-dependent
gain. Several gain functions have been proposed in the literature, of which some
common functions are listed in Table 2.1 [45]. More complicated functions
include non-linear gain functions [280] or the Ephraim-Malah gain functions
[83][84], which make a minimum mean square error (MMSE) estimate of the
amplitude of the clean speech spectrum in the spectral or in the log-spectral
domain and which are frequently used in practice. Other spectral subtraction
techniques incorporate properties of the human auditory system [268] or try to
estimate the noise spectrum even during speech-and-noise periods [172].

In all frames it is however possible that for some frequencies the estimated
amplitude of the noise spectrum |µV (l)| is larger than the instantaneous ampli-
tude of the noisy speech spectrum |Y0(l,m)|. Since this could lead to negative
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estimates for the amplitude of the clean speech spectrum |X̂0(l,m)|, for these
frequencies the gain function W (l,m) is usually put to zero (i.e. half-wave rec-
tification [21]) or equal to a small noise floor value [268]. However, because of
the non-stationary character of the speech signal, this non-linear rectification
mapping leads to a specific kind of residual noise, called musical noise, which
consists of short-lived tones with randomly distributed frequencies. Different
techniques have been proposed to eliminate this annoying residual noise, e.g.
by averaging the (instantaneous) noisy speech spectrum over a number of fra-
mes, by augmenting the gain function with a soft-decision VAD [83][177] or by
using non-linear spectral subtraction techniques [165][279][280].

2.3.2 Signal subspace-based techniques

Recently, several single-microphone signal subspace-based speech enhancement
techniques for additive (coloured) noise have been proposed. These techniques
are based on a (generalised) singular value decomposition (SVD) [43][49][121]
[138], which is also referred to as Karhunen-Loève transform (KLT) [85][130]
[179][220]. The main idea is to consider the noisy signal as a vector in an
L-dimensional vector space and to separate this space into 2 orthogonal sub-
spaces: the signal subspace (with dimension smaller than L, corresponding to
the clean signal) and the noise subspace, i.e. the orthogonal complement of
the signal subspace. Of course, this separation is only possible if the clean
signal can be modelled with a low-rank model (cf. Section 1.3.1). Signal en-
hancement is performed by removing the noise subspace and by estimating
the clean speech signal from the remaining signal subspace. Similar subspace-
based signal enhancement techniques have also been used in other applications,
e.g. biomedical and image processing applications, where the signals can be
modelled as the sum of a finite number of complex exponentials [69][70][247].

Signal subspace-based speech enhancement techniques can be classified accor-
ding to the noise assumptions (white noise vs. coloured noise), type of estimate
(least-squares, minimum variance, perceptually relevant criterion), type of pro-
cessing (block-based vs. adaptive) and on whether an additional averaging step
is performed or not.

In this section we will discuss two techniques, described in [85] and in [138],
which use a (slightly) different approach, but result in practically the same al-
gorithm. In [85] a statistical approach is followed, where the clean speech data
vector x0[k] is estimated from the noisy data vector y0[k] using the speech and
the noise correlation matrices. In [138] a deterministic approach is followed,
where the clean speech data matrix X0[k] is estimated from the noisy data
matrix Y0[k]. We will discuss two linear signal estimators for both approaches:
least-squares (LS) estimation and minimum-variance (MV) estimation. In [85]
another interesting linear estimator is described which trades off speech dis-
tortion and noise distortion. This estimator will be discussed in Section 3.2.3,
where the multi-microphone case is presented.
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Data model: statistical approach

Consider the L-dimensional data vectors y0[k], x0[k] and v0[k], with the speech
and the noise data vectors x0[k] and v0[k] similarly defined as in (2.19). Using
(2.44), we can write

y0[k] = x0[k] + v0[k] . (2.49)

We assume that each speech data vector x0[k] can be represented as a linear
combination ofR linearly independent L-dimensional basis vectors {x1, . . . ,xR},
with R < L (cf. Section 1.3.1), i.e.

x0[k] =
R∑

i=1

xiai[k] = XR aR[k] , (2.50)

with XR an L × R-dimensional matrix and aR[k] an R-dimensional vector2.
When R < L, the set of all possible signal vectors x0[k] lies in a subspace
of the Euclidean space R

L spanned by the columns of XR. This subspace is
referred to as the signal subspace. The L × L-dimensional correlation matrix
R̄xx[k] of the speech signal x0[k] is equal to

R̄xx[k] = E{x0[k]x
T
0 [k]} , (2.51)

which can be written, using (2.50), as R̄xx[k] = XRR̄a[k]X
T
R, with R̄a[k] =

E{aR[k]aTR[k]} the R × R-dimensional correlation matrix of the vector aR[k].
Hence, L−R eigenvalues of R̄xx[k] are equal to zero. The correlation matrices
R̄yy[k] and R̄vv[k] are similarly defined as in (2.51). The noise correlation
matrix R̄vv[k] is assumed to be known, but should not necessarily be equal
to σ2

v IL, i.e. no white Gaussian noise assumption is made here. Since the
noise correlation matrix is assumed to be positive definite, noise vectors have
a component in the signal subspace as well as in the complement of the signal
subspace, which is referred to as the noise subspace.

The generalised eigenvalue decomposition (GEVD) of R̄yy[k] and R̄vv[k] is
equal to (cf. Appendix A.2)

{

R̄yy[k] = Q̄ Λ̄yQ̄
T

R̄vv[k] = Q̄ Λ̄vQ̄
T ,

(2.52)

with Q̄ an L×L-dimensional invertible, but not necessarily orthogonal, matrix
and Λ̄y = diag{σ̄2

i }, i = 1 . . . L, and Λ̄v = diag{η̄2
i }, i = 1 . . . L. Since the

speech and the noise components are assumed to be uncorrelated, the correla-
tion matrix R̄xx[k] can be written using (2.52) as

R̄xx[k] = R̄yy[k] − R̄vv[k] = Q̄ (Λ̄y − Λ̄v) Q̄
T . (2.53)

2Typical values for R range from 12 to 20 (cf. Section 1.3.1), while typical values for L

range from 20 to 80.
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Since R̄xx[k] has rank R and all correlation matrices are assumed to be positive
semi-definite, it readily follows that

{

σ̄2
i > η̄2

i i = 1 . . . R ,

σ̄2
i = η̄2

i i = R+ 1 . . . L ,
(2.54)

such that R̄xx[k] can be decomposed as

R̄xx[k] =
[

Q̄1 Q̄2

]
[

Λ̄x 0
0 0

] [
Q̄T

1

Q̄T
2

]

= Q̄1Λ̄xQ̄
T
1 , (2.55)

with Q̄1 an L×R-dimensional matrix, whose columns span the signal subspace,
and Q̄2 an L × (L − R)-dimensional matrix. Note that Q̄2 is not necessarily
orthogonal to Q̄1, such that the columns of Q̄2 do not necessarily span the
noise subspace, which is defined as the orthogonal complement of the signal
subspace. Only in the white noise case, i.e. R̄vv[k] = σ2

v IL with σ2
v the noise

power, the matrix Q̄ is an orthogonal matrix.

Data model: deterministic approach

Instead of using correlation matrices, we can also consider data matrices. Con-
sider the P × L Toeplitz data matrix X0[k] (with P > L)3,

X0[k] =








x0[k − P + 1] x0[k − P ] . . . x0[k − P − L+ 2]
...

...
...

x0[k − 1] x0[k − 2] . . . x0[k − L]
x0[k] x0[k − 1] . . . x0[k − L+ 1]







, (2.56)

=








xT0 [k − P + 1]
...
xT0 [k − 1]

xT0 [k]








=








aTR[k − P + 1]
...
aTR[k − 1]

aTR[k]








XT
R , (2.57)

which clearly is rank-deficient (rank R), independent of the exact type of linear
model that is used in (2.50). One can also choose to work with Hankel matrices
instead of Toeplitz matrices [138], but there are no fundamental differences.
Using (2.44), we can write

Y0[k] = X0[k] + V0[k] , (2.58)

with Y0[k] and V0[k] Toeplitz data matrices, similarly defined as in (2.56).
We will assume that V0[k] and Y0[k] are full-rank matrices (rank L). In
addition, we assume that the speech and the noise matrices are orthogonal, i.e.
XT

0 [k]V0[k] = 0.

3Since short-time stationarity of speech is in the order of 20− 30 msec (cf. Section 1.3.1),
typical values for P range from 300 to 500 (fs = 16 kHz).
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The generalised singular value decomposition (GSVD) of the noisy speech and
the noise data matrices Y0[k] and V0[k] is equal to (cf. Appendix A.2),

{

Y0[k] = UY ΣY QT

V0[k] = UV ΣV QT ,
(2.59)

with UY and UV P×L-dimensional orthogonal matrices, Q an L×L-dimensional
invertible, but not necessarily orthogonal, matrix and ΣY = diag{σi}, i =
1 . . . L, and ΣV = diag{ηi}, i = 1 . . . L. If P → ∞ and assuming stationarity
for the considered signals, the generalised singular vectors and singular values
of Y0[k] and V0[k] converge to the generalised eigenvectors and eigenvalues
of R̄yy[k] and R̄vv[k]. Using (2.59) and the orthogonality assumption, we can
write

XT
0 X0 = YT

0 Y0 − VT
0 V0 = Q(Σ2

Y − Σ2
V )QT . (2.60)

Since X0 has rank R, it again follows that σi > ηi, i = 1 . . . R, and σi = ηi,
i = R+ 1 . . . L. Hence, the GSVD of Y0[k] and V0[k] can be rewritten as







Y0[k] =
[

UY 1 UY 2

]
[

ΣY 1 0
0 ΣV 2

] [
QT

1

QT
2

]

V0[k] =
[

UV 1 UV 2

]
[

ΣV 1 0
0 ΣV 2

] [
QT

1

QT
2

]

,

(2.61)

with Q1 an L×R-dimensional matrix, whose columns span the signal subspace,
and Q2 an L× (L−R)-dimensional matrix (not necessarily orthogonal to Q1).
Only in the white noise case, the matrix Q is an orthogonal matrix.

In the deterministic approach, we also require the QR-decomposition of the
noise data matrix V0[k], which is defined as (cf. Appendix A.2)

V0[k] = QV RV , (2.62)

with QV a P ×L-dimensional orthogonal matrix and RV an L×L-dimensional
upper-triangular matrix.

Least-squares (LS) estimation

Deterministic approach: in [138] the least-squares estimation problem is for-
mulated as estimating the clean speech data matrix X0[k] from Y0[k] by
approximating the pre-whitened matrix Y0[k]R

−1
V by a pre-whitened matrix

X̂LS
0 [k]R−1

V of rank R, i.e.

min
rank(X̂LS

0 [k])=R
||
(
Y0[k] − X̂LS

0 [k]
)
· R−1

V ||2F (2.63)

Using (2.62) and (2.59), the matrix R−1
V can be written as

R−1
V =

(
QT
V V0[k]

)−1
= Q−TΣ−1

V

(
QT
V UV

)−1
= Q−TΣ−1

V

(
QT
V UV

)T
, (2.64)



2.3. Single-microphone noise reduction 43

since QT
V UV is an orthogonal matrix (cf. Appendix B.1). Using (2.59) and

(2.64), the pre-whitened matrix Y0[k]R
−1
V can hence be written as

Y0[k]R
−1
V = UY · ΣYΣ−1

V ·
(
QT
V UV

)T
, (2.65)

which is the singular value decomposition (SVD) of Y0[k]R
−1
V . From this

equation it can be seen that the singular values of Y0[k]R
−1
V are equal to the

generalised singular values of Y0[k] and V0[k]. The rank-R approximation

X̂LS
0 [k]R−1

V of Y0[k]R
−1
V in the LS sense is obtained by putting the L − R

smallest (generalised) singular values in (2.65) to zero [110][228], i.e.

X̂LS
0 [k]R−1

V = UY

[
ΣY 1Σ

−1
V 1 0

0 0

]
(
QT
V UV

)T
, (2.66)

such that using (2.64)

X̂LS
0 [k] = UY

[
ΣY 1Σ

−1
V 1 0

0 0

]
(
QT
V UV

)−1 (
QT
V UV

)
ΣVQT (2.67)

= UY

[
ΣY 1 0
0 0

]

QT = UY 1ΣY 1Q
T
1 . (2.68)

Hence, the LS approximation X̂LS
0 [k] is obtained by truncating the GSVD in

(2.61) to order R, and can also be written as

X̂LS
0 [k] = Y0[k] · Q−T

[
IR 0
0 0

]

QT (2.69)

Statistical approach: in [85], the LS estimation problem is similarly formulated

using the pre-whitened data vectors R̄
−T/2
vv [k]y0[k], with R̄

T/2
vv [k] equal to the

square-root factor in the Cholesky-decomposition of R̄vv[k], i.e.

R̄vv[k] = R̄T/2
vv [k] R̄1/2

vv [k] . (2.70)

The LS estimation problem is then formulated as estimating the vector x̂LS0 [k]
in the signal subspace (i.e. calculating the coefficients âR[k]) from y0[k] using
the optimisation problem

min
x̂LS0 [k]=XRâR[k]

||R̄−T/2
vv [k]

(
y0[k] − x̂LS0 [k]

)
||2 (2.71)

which is equivalent to

min
âR[k]

||R̄−T/2
vv [k]

(
y0[k] − XRâR[k]

)
||2 , (2.72)

where the signal subspace XR is assumed to be known. The estimated coeffi-
cients âR[k] are given by

âR[k] =
(
XT
RR̄−1

vv [k]XR

)−1
XT
RR̄−1

vv [k]y0[k] , (2.73)
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such that

x̂LS0 [k] = XRâR[k] = XR

(
XT
RR̄−1

vv [k]XR

)−1
XT
RR̄−1

vv [k]y0[k] . (2.74)

The signal subspace is also spanned by the columns of Q̄1, cf. (2.55), which
can therefore be written as Q̄1 = XRT, with T an R×R-dimensional full-rank
matrix. Hence, x̂LS0 [k] is also equal to

x̂LS0 [k] = Q̄1

(
Q̄T

1 R̄−1
vv [k]Q̄1

)−1
Q̄T

1 R̄−1
vv [k]y0[k] . (2.75)

It can be proved that this expression can be simplified to

x̂LS0 [k] =
[

Q̄1 0
]
Q̄−1 y0[k] = Q̄

[
IR 0
0 0

]

Q̄−1 y0[k] (2.76)

yielding a similar result as (2.69), with the generalised eigenvectors Q̄ instead
of the generalised singular vectors Q. In the white noise case, this operation
boils down to projecting the noisy data vectors onto the signal subspace.

When using the LS estimator, no speech distortion is introduced, but the
amount of noise reduction achieved may be limited. A practical problem that
also arises is the proper determination of the rank R, which can change from
frame to frame in speech signals. This rank determination is not required in
the minimum-variance estimator (or one of its variants).

Minimum-variance (MV) estimation

Deterministic approach: in [40][138][261] the minimum-variance (MV) or mini-
mum mean square error (MMSE) estimation problem is formulated as calcula-
ting the L× L-dimensional matrix W that minimises

min
W

||Y0[k]W − X0[k]||2F (2.77)

for the time being assuming that X0[k] is known. The matrix W, minimising
this cost function is equal to (cf. Appendix B.2)

W =
(
YT

0 [k]Y0[k]
)−1

YT
0 [k]X0[k] . (2.78)

Using (2.59), (2.60) and (2.61), this matrix can be rewritten as

W =
(
QΣ2

YQT
)−1

XT
0 [k]X0[k] = Q−TΣ−2

Y Q−1Q(Σ2
Y − Σ2

V )QT (2.79)

= Q−T (IL − Σ−2
Y Σ2

V )QT = Q−T
[

IR − Σ−2
Y 1Σ

2
V 1 0

0 0

]

QT . (2.80)

Using (2.59), the minimum-variance estimate X̂MV
0 [k] can then be obtained as

X̂MV
0 [k] = Y0[k]W = UYΣY (IL − Σ−2

Y Σ2
V )QT

= UY 1ΣY 1

(
IR − Σ−2

Y 1Σ
2
V 1

)
QT

1

(2.81)
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Figure 2.2: LS/MV weighting factors (L = 20, R = 8)

Comparing (2.68) and (2.81), it can be seen that both the LS and the MV

estimate of the data matrix X̂0[k] can be written as

X̂0[k] = UY (ΣY∆)QT , (2.82)

i.e. the matrix X̂0[k] is constructed by multiplying the generalised singular
values ΣY with an L× L-dimensional diagonal matrix ∆ = diag{δi}, which is
equal to

∆LS =

[
IR 0
0 0

]

, ∆MV = IL − Σ−2
Y Σ2

V . (2.83)

In the MV estimation the rank R does not have to be determined beforehand,
since the diagonal elements δMV

i are automatically zero for i > R. Even when
the clean speech signal is not (perfectly) rank-deficient, the MV estimator will
still reduce noise. Figure 2.2 shows typical LS/MV weighting factors δi, i =
1 . . . L, for an example with L = 20 and R = 8 when the clean signal is not
(perfectly) rank-deficient.

Statistical approach: in [85] the MV estimation problem is similarly formulated
using data vectors. Suppose that x̂MV

0 [k] = WTy0[k] is the estimate for the
speech data vector x0[k]. The estimation error vector e[k] is defined as

e[k] = x0[k] − x̂MV
0 [k] = x0[k] − WTy0[k] , (2.84)

which is in fact the sum of a term ey[k] representing signal distortion and a
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term ev[k] representing the residual noise,

e[k] = x0[k] − WT (x0[k] + v0[k]) =
(
IL − WT

)
x0[k]

︸ ︷︷ ︸

ey[k]

−WTv0[k]
︸ ︷︷ ︸

ev [k]

. (2.85)

If we assign equal importance to signal distortion and noise reduction, and
hence minimise the mean square error (MSE)

E{||e[k]||22} = E{xT0 [k]x0[k]} − 2E{yT0 [k]Wx0[k]} + E{yT0 [k]WWTy0[k]} ,
(2.86)

the optimal filter matrix W̄ is the well-known Wiener filter [227],

W̄WF = R̄−1
yy [k] R̄yx[k] (2.87)

with R̄yx[k] = E{y0[k]x
T
0 [k]} the cross-correlation matrix between y0[k] and

x0[k]. Since the speech and the noise signal are uncorrelated and using (2.52)
and (2.53), this matrix can be written as

W̄WF = R̄−1
yy [k] R̄xx[k] = R̄−1

yy [k] (R̄yy[k] − R̄vv[k]) (2.88)

= Q̄−T Λ̄−1
y Q̄−1 Q̄(Λ̄y − Λ̄v)Q̄

T = Q̄−T (IL − Λ̄−1
y Λ̄v)Q̄

T , (2.89)

yielding a similar result as (2.80). The MV estimate x̂MV
0 [k] can now be written

as

x̂MV
0 [k] = W̄T

WFy0[k] = Q̄(IL − Λ̄−1
y Λ̄v)Q̄

−1 y0[k] (2.90)

As already mentioned, it is also possible to trade off the noise reduction term
ev[k] and the signal distortion term ey[k] of (2.85) in the estimation procedure.
This estimator will be discussed in Section 3.2.3.

Averaging operation

In order to extract the estimated speech signal x̂0[k] from the LS and MV

matrices X̂LS
0 [k] and X̂MV

0 [k], one can e.g. consider the first row and/or the

first column of these matrices. However, in general the matrices X̂LS
0 [k] and

X̂MV
0 [k] will have lost their Toeplitz structure. Therefore, some procedures

[43][49][121][138] first average along the diagonals in order to restore the Toe-
plitz matrix structure. After this averaging operation, the matrices will in
general not be rank-deficient (rank R) any more. Hence, one could iterate this
procedure (rank reduced LS/MV estimation and averaging along diagonals)
and it has been shown that this iterative procedure converges to a Toeplitz
matrix having rank R [27]. However, in Chapter 3 it will be shown that in fact
this averaging operation is unnecessary and often suboptimal, since it typically
gives rise to a larger MSE (when using the MV estimation) while it increases
the computational complexity.
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FIR filterbank interpretation

In [68] it has been shown that for the white noise case the overall procedure
of rank reduced LS/MV estimation and averaging along the diagonals, is equi-
valent to subtracting zero-phase filtered versions from the noisy speech signal
y0[k]. The used zero-phase filters are constructed from the singular vectors
corresponding to the L−R smallest singular values of the data matrix Y0[k].

In [120] a complete FIR filterbank representation is given for the LS/MV esti-
mation algorithms in terms of the SVD of Y0[k] (for the white noise case) or
the GSVD of Y0[k] and V0[k] (for the coloured noise case). From (2.82), the

matrix X̂0[k] of the enhanced signal can be decomposed as

X̂0[k] =

R∑

i=1

δiσiuY iq
T
i , (2.91)

with δi, i = 1 . . . R, the weighting factors for the LS/MV estimation, cf. (2.83).
If we define the matrix T = Q−T , containing the vectors ti, then Y0[k]ti =

σiuY i, cf. (A.30), such that X̂0[k] can be written as

X̂0[k] = Y0[k]

R∑

i=1

δitiq
T
i . (2.92)

When no averaging step is performed, we can e.g. choose the jth column of
X̂0[k] as the estimate for the speech signal x̂0[k]. This column is equal to

X̂0,j [k] = Y0[k]

R∑

i=1

δiqjiti , (2.93)

such that the enhanced speech signal x̂0[k] can be obtained by summing R
filtered versions of the noisy speech signal y0[k] (see Fig. 2.3). Each version
is obtained by passing the signal y[k] through an FIR filter qjiti having L
taps and multiplying the output with a weight δi. Since the filter coefficients
are derived from the generalised singular vectors of Y0[k] and V0[k] (which
converge to the generalised eigenvectors of R̄yy[k] and R̄vv[k] when P → ∞),
this filterbank is called an eigenfilterbank.

In [120] it is shown that when an additional averaging operation along the
diagonals is performed, the total estimation procedure can still be represented
using an eigenfilterbank (see Fig. 2.4). After passing the signal y0[k] through
the FIR filter ti, the result is now filtered with a second FIR filter JLqi having
L taps, with JL the L × L reversal matrix, cf. (A.8). This filtering operation
corresponds to a backward filtering with qi. After summing the R filtered ver-
sions, multiplication with a diagonal matrix D is necessary due to the different
lengths of the diagonals over which the averaging is performed,

D = diag
{

1,
1

2
,
1

3
, . . . ,

1

L
,
1

L
, . . . ,

1

L
, . . . ,

1

3
,
1

2
, 1
}

. (2.94)
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Figure 2.3: FIR filterbank representation (coloured noise case, no averaging)
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Figure 2.4: FIR filterbank representation (coloured noise case, with averaging)

In the white noise case, Q is an orthogonal matrix, such that ti = qi. The total
forward and backward filtering operation with qi corresponds to a zero-phase
filtering operation with an FIR filter having 2L− 1 taps. Hence, the enhanced
speech signal x̂0[k] consists of the sum of R zero-phase filtered versions of the
signal y0[k]. An interpretation of this algorithm in the frequency-domain can
now be given. Because the SVD can be considered as a signal decomposition
based on energetic criteria, the zero-phase filtered versions corresponding to the
largest singular values correspond to the frequency components with the largest
amplitudes. For speech this means that the zero-phase filters corresponding to
the largest singular values capture the formants of the speech with large energy,
whereas the other zero-phase filtered versions mainly contain noise.

Relation to spectral subtraction

Actually, spectral subtraction and signal subspace-based techniques are quite
related since they both transform the noisy signal y0[k] to a transform do-
main, multiply the transform domain coefficients with a certain weight, which
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Figure 2.5: Transform domain filter representation for spectral subtraction and
signal subspace-based techniques

depends on the speech and the noise characteristics, and finally perform a
transformation back to the time-domain (see Fig. 2.5). The main difference
between both techniques is the fact that spectral subtraction techniques use a
signal-independent transform (DFT-type), whereas signal subspace-based tech-
niques use a signal-dependent transform (KLT-type). However, since the DFT
and the KLT are related4, spectral subtraction can be considered an approxi-
mate signal subspace approach. In [85] it has been proved that if the Wiener
gain function is used (cf. Table 2.1), then spectral subtraction is optimal in an
asymptotic minimum mean square error (MMSE) sense when the frame length
P goes to infinity and the speech and the noise are assumed stationary, i.e.

lim
P→∞

1

P
E{||x̂MV

0 [k] − x̂SS0 [k]||22} = 0 , (2.95)

with x̂SS0 [k] the estimated speech signal using spectral subtraction.

2.4 Single-microphone dereverberation

In the single-microphone case (and assuming no background noise is present),
the microphone signal y0[k] consists of the filtered speech signal s[k] , cf. (2.12),

y0[k] = x0[k] = h0[k] ⊗ s[k] , (2.96)

with h0[k] the acoustic impulse response between the speech source and the
microphone. Dereverberation consists of extracting the clean speech signal s[k]
from y0[k] without any prior knowledge about the acoustic impulse response
h0[k]. In this section we will briefly discuss 2 techniques: inverse filtering
[42][180], which however assumes that h0[k] is known (from measurements or
calculations), and cepstrum-based techniques [8][42][202][251].

4Both transforms are equivalent when the correlation matrix Ryy [k] is circulant [111].
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2.4.1 Inverse filtering

If we assume that the acoustic impulse response h0[k] is known (e.g. from
measurements or an estimation procedure, cf. Section 6.2), reverberation can
be removed by filtering y0[k] with the inverse filter h−1

0 [k]. However, typical
acoustic impulse responses are non-minimum-phase and therefore do not have
stable causal inverses [188]. Using (2.13) and (2.14), the L-dimensional data
vector y0[k] can be written as

y0[k]=








y0[k]
y0[k − 1]

...
y0[k − L+ 1]








=











hT0 [k] 0 . . . 0

0 hT0 [k] . . . 0

. . .

0 0 . . . hT0 [k]











︸ ︷︷ ︸

H0[k]








s[k]
s[k − 1]

...
s[k −K − L+ 2]








︸ ︷︷ ︸

s[k]

,

(2.97)
with H0[k] an L×(K+L−1)-dimensional Toeplitz matrix and s[k] a (K+L−1)-
dimensional vector. Dereverberation consists of computing an L-dimensional
vector w0[k], such that

wT
0 [k]y0[k] = s[k], ∀k , (2.98)

i.e.

wT
0 [k]H0[k] =

[
1 0 . . . 0

]
= dT . (2.99)

However, in general no exact solution exists, since H0[k] has more columns
than rows. The LS solution of (2.99) is equal to

w0,LS [k] =
(
H†

0[k]
)T

d =
(
H0[k]H

T
0 [k]

)−1
H0[k]d (2.100)

with H†
0[k] the pseudo-inverse of H0[k], cf. Appendix A.2. However, in [180]

it has been proved that the average energy of the LS estimation error, i.e.
s[k] − wT

0,LS [k]y0[k], does not converge to 0 if h0[k] is non-minimum phase,
even when the filter length L goes to infinity. Moreover, in most cases the
acoustic impulse response h0[k] is not known, such that single-microphone in-
verse filtering techniques have a limited scope in practice.

2.4.2 Cepstrum-based techniques

Cepstrum-based techniques have been proposed for single-microphone derever-
beration when the acoustic impulse response h0[k] is unknown. The complex
cepstrum cy0 [k] of a signal y0[k] is defined as the inverse Fourier transform of
the (complex) logarithm of the Fourier transform of y0[k], i.e.

cy0 [k] = F−1
{

log
(
F{y0[k]}

)}
= F−1

{
log Y0(ω)

}
. (2.101)



2.5. Multi-microphone noise reduction 51

The complex cepstrum can therefore be considered as a spectral analysis of the
log-spectrum, consisting of low and high-‘quefrency’ components. Because of
the logarithm, operations in the cepstrum domain perform non-linear opera-
tions on the signal in the time-domain. As can be easily seen from (2.101),
convolution in the time-domain is equivalent to addition in the cepstrum do-
main, i.e.

cy0 [k] = F−1
{

log Y0(ω)
}

= F−1
{

log
(
H0(ω)S(ω)

)}
(2.102)

= F−1
{

logH0(ω)
}

+ F−1
{

logS(ω)
}

= ch0
[k] + cs[k] , (2.103)

such that dereverberation corresponds to subtraction in the cepstrum domain
[42]. Since the cepstrum of the clean speech signal cs[k] is usually concentrated
around the cepstral origin, while that of the acoustic impulse response ch0

[k] is
composed of pulses (far) away from the origin, dereverberation can be achieved
by low-quefrency filtering cy0 [k] (called ‘liftering’) or by peak-picking.

While cepstrum filtering has been successfully applied to the enhancement of
speech degraded by simple echoes [202], its use for the enhancement of speech
affected by room reverberation poses several practical problems. Typically,
frame-based processing is used to calculate the cepstrum of a signal. Since
reverberation effects are generally much longer than typical frame lengths, the
current frame m does not contain all the reverberation effects of this frame,
while it also contains reverberation effects from previous frames. Moreover, the
cepstrum of the clean speech signal cs[k] and the cepstrum of the acoustic im-
pulse response ch0

[k] typically have a large overlap, resulting in signal distortion
when using low-quefrency ‘liftering’. By using an exponential windowing proce-
dure and cepstral averaging in order to identify the room impulse response h0[k]
before inverse filtering, a significant improvement is possible [8][251]. However,
in practice single-microphone cepstrum based techniques for dereverberation
have a (very) limited performance, also since these techniques exhibit problems
when additive background noise is present. Cepstrum-based processing has al-
so been combined with microphone arrays. In [164] a technique is described,
where the different microphone signals are factored into their minimum-phase
and all-pass component, which are separately processed in the cepstrum and
in the frequency-domain. However, since better multi-microphone techniques
are available for dereverberation (e.g. fixed beamforming and dereverberati-
on techniques discussed in Chapter 7), we will not consider cepstrum-based
techniques in this thesis.

2.5 Multi-microphone noise reduction

As already mentioned, multi-microphone noise reduction techniques can exploit
the spatial information in the microphone signals when the speech and the noise
sources are located at different positions, and hence are able to perform both
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spectral and spatial filtering. In this section we will briefly discuss fixed and
adaptive beamforming techniques. Fixed beamforming techniques are data-
independent and try to obtain spatial focusing on the speech source, thereby
reducing reverberation and suppressing background noise not coming from the
same direction as the speech source. Adaptive beamforming techniques combine
the spatial focusing of fixed beamformers with adaptive noise suppression, such
that they are able to adapt to changing acoustic environments and generally
have a better noise reduction performance. First we discuss some commonly
used definitions and performance measures for beamformers.

2.5.1 Beamformer definitions and performance measures

In this section we will assume linear microphone arrays and sources in the
far-field of the microphone array (cf. Section 1.3.4), such that planar wave
propagation and equal signal attenuation for all microphones can be assumed.
However, all expressions can be easily extended to other microphone configu-
rations and to the near-field case (cf. Chapter 9).

Consider the microphone array depicted in Fig. 2.6, which is the frequency-
domain representation of Fig. 2.1, with N microphones and with dn the dis-
tance between the nth microphone and the centre of the microphone array.
The speech source S(ω) is located at an angle θ from the microphone array.
The direction θ = 90◦ is called broadside, whereas the directions θ = 0◦ and
θ = 180◦ are called endfire. For a uniform linear microphone array, the distance

Σ

θ

S(ω)

YN−1(ω, θ)

Y0(ω, θ)

Y1(ω, θ)

dn

x

x̄

W ∗

N−1(ω)

dn cos θ W ∗

n(ω)

W ∗

1 (ω)

W ∗

0 (ω)

Z(ω, θ)

Yn(ω, θ)

Figure 2.6: Linear microphone array configuration



2.5. Multi-microphone noise reduction 53

between adjacent microphones is equal, i.e. dn − dn−1 = d, n = 1 . . . N − 1.
Under far-field conditions, the microphone signals Yn(ω, θ) are delayed versions
of the speech source S(ω), and hence can be considered delayed versions of the
signal Ȳ (ω, θ), received at the centre of the array,

Yn(ω, θ) = S(ω)e−jωτ̄(θ)e−jωτn(θ) = Ȳ (ω, θ)e−jωτn(θ), −π ≤ θ ≤ π , (2.104)

with the delay τn(θ) in number of samples equal to

τn(θ) =
dn cos θ

c
fs , (2.105)

with c the speed of sound (c = 340 m
s ) and fs the sampling frequency. Using

(2.31), the output signal Z(ω, θ) can be written as

Z(ω, θ) = WH(ω)Y(ω, θ) = Ȳ (ω, θ)WH(ω)d(ω, θ) , (2.106)

with d(ω, θ) the steering vector, which is equal to

d(ω, θ) =
[
e−jωτ0(θ) e−jωτ1(θ) . . . e−jωτN−1(θ)

]T
. (2.107)

Spatial directivity pattern

The spatial directivity pattern H(ω, θ) of the beamformer W(ω) is defined as
the transfer function from the source S(ω) at an angle θ to the output signal
Z(ω, θ) of the microphone array, i.e.

H(ω, θ) =
Z(ω, θ)

Ȳ (ω, θ)
= WH(ω)d(ω, θ) (2.108)

Array gain

If background noise is present, the microphone signal Yn(ω, θ) is equal to

Yn(ω, θ) = S(ω)e−jωτ̄(θ)e−jωτn(θ)

︸ ︷︷ ︸

Xn(ω,θ)

+Vn(ω) , (2.109)

with Vn(ω) the noise received at the nth microphone. Using (2.38) with
Hn(ω) = e−jωτ̄(θ)e−jωτn(θ) and assuming a homogeneous noise-field (cf. Secti-
on 2.2.4), the unbiased output SNR is equal to

SNRz(ω, θ) = 10 log10

Ps(ω)

Pv(ω)

|WH(ω)d(ω, θ)|2
WH(ω)Γv(ω)W(ω)

, (2.110)

whereas the average unbiased input SNR is equal to

SNRin(ω, θ) = 10 log10

E{XH(ω, θ)X(ω, θ)}
E{VH(ω)V(ω)} (2.111)
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= 10 log10

E{|S(ω)|2}dH(ω, θ)d(ω, θ)
∑N−1
n=0 E{|Vn(ω)|2}

= 10 log10

Ps(ω)

Pv(ω)
. (2.112)

The array gain AG(ω, θ) is defined as the SNR improvement achieved by the
microphone array. Hence, using (2.110) and (2.112), the array gain is equal to

AG(ω, θ) = SNRz(ω, θ) − SNRin(ω, θ) = 10 log10

|WH(ω)d(ω, θ)|2
WH(ω)Γv(ω)W(ω)

(2.113)

Directivity and white noise gain

When the noise field is known, the array gain can be computed analytically.
E.g. for a localised noise source at an angle θv, the complex coherence Γmnv (ω) =
E{Vm(ω)V ∗

n (ω)} is equal to

Γmnv (ω) = e−jω
(
τm(θv)−τn(θv)

)

= e−jω(dm−dn) cos θvfs/c , (2.114)

while for a diffuse noise source, i.e. equally distributed uncorrelated white noise
coming from all directions, the complex coherence Γmnv (ω) is equal to [16]

Γmnv (ω) =
sin
(
ω(dm − dn)fs/c)

ω(dm − dn)fs/c
. (2.115)

The directivity DI(ω, θ) of a beamformer is defined as the array gain for diffuse
noise, whereas the white noise gain WNG(ω, θ) is defined as the array gain for
spatially uncorrelated noise (e.g. sensor noise), i.e. Γv(ω) = IN . The white
noise gain can be used as a measure for the robustness of a beamformer.

2.5.2 Fixed beamforming

In a fixed beamformer the filters wn[k], i.e. Wn(ω), are designed in a non-
adaptive way such that sounds coming from the direction of the speech source
(arriving from an angle θx) are passed without distortion, whereas sounds co-
ming from other directions are suppressed. If the speaker is moving, the speaker
position should be continuously tracked using an acoustic source localisation
algorithm (cf. Chapter 6) and for each speaker position different – fixed –
beamformer weights may be applied [150]. Alternatively, fixed beamformers
can be designed to be robust against (small) speaker movements (cf. Part
III). In this section we will discuss the delay-and-sum beamformer, differential
microphones, the filter-and-sum beamformer and superdirective beamformers.
These fixed beamformers will either be used as a building block in adaptive
beamformers, for comparison purposes with the GSVD-based optimal filtering
technique in Part I, or as a starting point for beamformer design in Part III.
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Delay-and-sum (DS) beamformer

A delay-and-sum (DS) beamformer is the simplest structure to obtain spatial
selectivity. The theory of DS beamforming originates from narrowband an-
tenna array processing, where the plane waves at different sensors are delayed
appropriately to be added exactly in phase. In this way, the array can be elec-
tronically steered towards a specific direction. This principle is also valid for
broadband signals, although the directivity will then be frequency-dependent.

A DS beamformer spatially aligns the microphone signals to the direction of
the speech source by delaying and summing the microphone signals [258][264],
i.e.

z[k] =
1

N

N−1∑

n=0

yn[k − δn] (2.116)

where the delays δn are computed as

δn = −dn cos θx
c

fs = −τn(θx) . (2.117)

Angular selectivity is obtained based on constructive interference (θ = θx) and
destructive interference (θ 6= θx). Apart from noise reduction, the DS beam-
former will therefore also perform some dereverberation, since the direct path
contribution is added in phase, whereas other reflections are typically added
randomly. Since the delays δn are generally non-integer values, the filtering
operation in (2.116) is generally implemented using interpolation filters [140].
In the frequency-domain, the filter W(ω) is equal to d(ω, θx)/N . For a uni-
form DS beamformer with inter-microphone distance d, the spatial directivity
pattern H(ω, θ) is equal to

H(ω, θ) =
1

N

N−1∑

n=0

e−jωnd(cos θ−cos θx)fs/c =
1

N

e−jNγ/2 sin(Nγ/2)

e−jγ/2 sin(γ/2)
, (2.118)

with γ = ωd(cos θ − cos θx)fs/c. Hence, H(ω, θ) has a sinc-like shape and is
frequency-dependent, i.e. not all frequency components of the speech signal
will undergo the same spatial filtering operation. For the parameters N = 4,
d = 0.03 m, θx = 60◦ and fs = 16 kHz, Fig. 2.7 plots the spatial directivity
pattern H(ω, θ) for all frequencies and for the specific frequency f = 5000 Hz.
As can be seen, the beamwidth of a DS beamformer is frequency-dependent
and for low frequencies the directivity is quite poor.

Because of the periodicity of H(ω, θ) in θ, for frequencies

f ≥ c

d(1 + | cos θx|)
(2.119)

an ambiguity, called spatial aliasing, occurs. This is analogous to time-domain
aliasing, where now the spatial sampling d is too large. The result is that high
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Figure 2.7: Spatial directivity pattern of a uniform DS beamformer (N = 4,
d = 0.03 m, θx = 60◦, fs = 16 kHz)

frequency noises (and reverberant components) pass without attenuation at
angles different from the steering angle θx. In order to avoid spatial aliasing
for all steering angles, the maximum inter-microphone distance is dmax = c/fs.
Hence, for broadband signals like speech, nested logarithmic array configura-
tions are typically used, with a large inter-microphone distance for the lower
frequencies and a small distance for the higher frequencies. However, in this
thesis we will not study the influence of the microphone array configuration on
the performance of the speech enhancement algorithms.

An additional beam shaping is possible when introducing a sensor-dependent
complex weight, also called tapering, before summation, i.e.

z[k] =
1

N

N−1∑

n=0

wn yn[k − δn] . (2.120)

Using these weights wn it is e.g. possible to design a beam pattern with a
uniform sidelobe level, i.e. Dolph-Chebyshev design [71].

Differential microphones

A good overview of first- and higher-order differential microphones can be found
in [75]. A first-order differential microphone is a directional microphone array
which consists of 2 closely spaced microphones at a distance d, where one
microphone is delayed – generally in hardware – and whose outputs are then
subtracted from each other (see Fig. 2.8). The spatial directivity pattern is
equal to

H(ω, θ) = 1 − e−jω(τ+d cos θ/c) (2.121)
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Figure 2.8: First-order differential microphone array configuration

Since the microphones are closely spaced, one can assume that ωd/c ≪ π and
ωτ ≪ π, such that H(ω, θ) can be approximated by

H(ω, θ) = ω(τ + d cos θ/c) . (2.122)

As one can see, a first-order differential microphone has a first-order high-
pass frequency characteristic. If we compensate for this high-pass frequency-
characteristic and introduce ατ = τ/(τ + d/c), then the normalised directional
response H(θ) can be written as

H(θ) = ατ + (1 − ατ ) cos θ , (2.123)

with 0 ≤ ατ ≤ 1, having a maximum at θ = 0◦ and a minimum or a zero
between 90◦ and 180◦. The delay τ (or equivalently ατ ) can be computed
for different objectives. The most commonly used first-order differential mi-
crophones are a dipole (ατ = 0) having a zero at 90◦, a cardioid microphone
(ατ = 0.5) having a zero at 180◦, a hypercardioid microphone (ατ = 0.25)
maximising the directivity index (DImax = 6.0 dB) and a supercardioid mi-
crophone (ατ ≈ 0.35) maximising the front-to-back ratio. However, all dif-
ferential microphones are quite sensitive to microphone imperfections (gain,
phase, position), as has e.g. been shown in [24].

Filter-and-sum beamformer

The filter-and-sum structure, depicted in Fig. 2.1 and 2.6, obviously is the
most general beamformer structure. Using this structure it is possible to de-
sign a fixed beamformer whose spatial directivity pattern optimally fits a (pre-
defined) desired spatial directivity pattern D(ω, θ), which can be an arbitra-
ry two-dimensional function in the variables ω and θ. The filter coefficients
wn[k], n = 0 . . . N − 1, of the fixed beamformer are computed such that a
specific cost function is minimised, e.g. the weighted LS cost function

min
wn[k]

∫ ω2

ω1

∫ θ2

θ1

F (ω, θ)|H(ω, θ) −D(ω, θ)|2 dωdθ , (2.124)

with F (ω, θ) a weighting function, or the non-linear cost function [144]

min
wn[k]

∫ ω2

ω1

∫ θ2

θ1

F (ω, θ) [|H(ω, θ)| − |D(ω, θ)|]2 dωdθ , (2.125)
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where only the error between the amplitudes of the spatial directivity patterns
is taken into account, since the phase is typically of less importance. Some
procedures use a frequency-domain approach and solve easier (decoupled) op-
timisation problems for separate frequencies ωi, i = 0 . . . L− 1,

min
Wn(ωi)

∫ θ2

θ1

|H(ωi, θ) −D(ωi, θ)|2 dθ . (2.126)

However, using this frequency-domain approach it is not possible to control the
spatial directivity pattern at intermediate frequencies and to apply a frequency-
dependent weighting function F (ω, θ). Many other cost functions have been
proposed, e.g. based on a maximum energy array [155], an eigenfilter approach
[65][59] or a non-linear minimax optimisation problem [157][159][192]. Some
of these cost functions will be discussed in more detail in Part III, where the
design of robust broadband beamformers in the far-field and the near-field of
a microphone array is discussed. A special type of filter-and-sum beamformer
is a frequency-invariant beamformer [274], which – as the name suggests – has
a spatial directivity pattern which is independent of ω, i.e. H(ω, θ) = H(θ).
Frequency-invariance is a desirable property for beamformers in speech commu-
nication applications, since all frequency components of the speech signal then
undergo the same spatial filtering operation. The design procedure in [274]
starts from a continuous sensor, for which a necessary condition for frequency-
invariance is derived and which is then discretised using a microphone array
with microphones at discrete positions.

Superdirective beamformer

The ‘super’-aspect of a superdirective beamformer lies in the fact that it maxi-
mises the directivity index DI(ω, θ) in the direction of the speech source for
a known (diffuse) noise field. A good overview of superdirective beamformers
is given in [16]. The filter W(ω) that maximises (2.113), with θ = θx, for
a known noise field Γv(ω), is given by the largest generalised eigenvector of
d(ω, θx)d

H(ω, θx) and Γv(ω), i.e.

W(ω) = αΓ−1
v (ω)d(ω, θx) , (2.127)

where α is usually determined such that the spatial directivity pattern H(ω, θ)
is equal to 1 for the steering angle, i.e. WH(ω)d(ω, θx) = 1, such that

W(ω) =
Γ−1
v (ω)d(ω, θx)

dH(ω, θx)Γ
−1
v (ω)d(ω, θx)

(2.128)

It can be shown that the maximum directivity for a diffuse noise field and for
endfire steering, i.e. θx = 0◦, is equal to 10 log10N

2 [75]. The beamformer
in (2.128) is also called an MVDR (minimum variance distortionless response)
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beamformer, since this beamformer minimises the signal output power, subject
to a unit response for the steering angle, i.e.

min
W(ω)

WH(ω)R̄yy(ω)W(ω), subject to WH(ω)d(ω, θx) = 1 (2.129)

with R̄yy(ω) similarly defined as in (2.36). The proof is given in Appendix B.3.

The same optimisation problem will be used for the adaptive Frost beamfor-
mer (cf. Section 2.5.3), where the noise field then is unknown and has to be
adaptively estimated from the microphone data. Superdirective beamformers
are known to be very sensitive to microphone mismatch and will boost uncor-
related noise at lower frequencies. Therefore an additional WNG constraint is
generally added to the optimisation problem (2.129) in order to enhance the
beamformer robustness [36][146], yielding

W(ω) =
(Γv(ω) + λIN )−1d(ω, θx)

dH(ω, θx)(Γv(ω) + λIN )−1d(ω, θx)
. (2.130)

For uncorrelated white noise, i.e. Γv(ω) = IN , the MVDR beamformer in
(2.128) is equal to

W(ω) = d(ω, θx)/N , (2.131)

which is in fact the delay-and-sum beamformer. Therefore the DS beamformer
is the beamformer which maximises the WNG. The maximum value for the
WNG is 10 log10N .

2.5.3 Adaptive beamforming

In practice, since the background noise is unknown and can change both spec-
trally and spatially, information about the noise field has to be adaptively
estimated from the microphone data. Adaptive beamformers combine the spa-
tial focusing of fixed beamformers with adaptive noise suppression, such that
they are able to adapt to changing acoustic environments and generally exhi-
bit a better noise reduction performance than fixed beamformers. Adaptive
beamformers typically give rise to constrained optimisation problems, in order
not to distort signals coming from the direction of the speech source. A good
overview of adaptive beamforming techniques can be found in [258][264].

Frost beamformer – LCMV-beamformer

Frost [95] was the first to formulate the adaptive beamforming problem as a
constrained optimisation problem. He however assumes that no reverberation
is present and that the speech source is located at broadside, i.e. θx = 90◦. If
this is not the case, delays can be added to the microphone signals in order to
steer the microphone array towards the direction of the speech source (cf. DS
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beamforming). The (adaptive) filters wn[k], n = 0 . . . N − 1, in the filter-and-
sum structure of Fig. 2.1 are computed such that the variance of the output
signal z[k], i.e.

E{z2[k]} = E{(wT [k]y[k])2} = wT [k]R̄yy[k]w[k] , (2.132)

with R̄yy[k] = E{y[k]yT [k]} and w[k] the stacked filter vector, is minimised.
In order to avoid that the speech signal is distorted or cancelled out, J linear
constraints are added, i.e.

Cw[k] = b , (2.133)

with C a J×M -dimensional constraint matrix and b a J-dimensional constraint
vector. These J linear constraints restrict the filter w[k] to lie in an (M −
J)-dimensional hyperplane, which is orthogonal to the subspace spanned by
the rows of C. In general the goal of these constraints is to obtain better
control over certain spectral and spatial regions and to obtain a solution that
is less sensitive to deviations from the assumed signal model. The optimisation
problem

min
w[k]

wT [k]R̄yy[k]w[k] subject to Cw[k] = b (2.134)

is in fact a time-domain formulation of (2.129) for a certain choice of C and b.
If the speech and the noise are uncorrelated (and no reverberation is assumed),
then constrained output energy minimisation corresponds to constrained noise
energy minimisation. The filter w[k] minimising (2.134) is given by

w[k] = R̄−1
yy [k]CT (CR̄−1

yy [k]CT )−1b (2.135)

cf. Appendix B.4. This filter is called an LCMV (linearly-constrained minimum-
variance) beamformer, of which the MVDR-beamformer is a special case. A

typical constraint is a predefined frequency response F (ω) =
∑L−1
k=0 f [k]e−jkω

in the direction of the speech source, which corresponds to J = L constraints
with

C =
[

IL IL . . . IL
]
, b =

[
f [0] f [1] . . . f [L− 1]

]T
. (2.136)

When the filter F (ω) = 1, the LCMV-beamformer corresponds to the MVDR-
beamformer. Other linear constraints typically include multiple-point, eigen-
vector and derivative constraints [87][264], cf. Section 8.5.

In practice, the correlation matrix R̄yy[k] is unknown and hence has to be
estimated using an adaptive technique. To this aim the optimisation problem
(2.134) can be solved using a gradient-descent optimisation technique, where
in each iteration step the filters are updated in the direction of the constrained
gradient, leading to the update equation (cf. Appendix B.5)

w[k + 1] = PC(w[k] − µR̄yy[k]w[k]) + bC , (2.137)
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with µ the step size of the adaptive algorithm and

PC = IM − CT (CCT )−1C , (2.138)

bC = CT (CCT )−1b . (2.139)

By using the instantaneous gradient, i.e. using a stochastic approximation for
the correlation matrix, R̄yy[k] ≈ yyT [k], the constrained LMS algorithm5 is
obtained,

w[k + 1] = PC(w[k] − µz[k]y[k]) + bC (2.140)

For a geometric interpretation of this equation, we refer to Appendix B.5. Using
this adaptive algorithm, it is possible to reduce background noise in unknown
noise fields and to adapt to changing acoustic environments.

Frost has developed this algorithm under the assumption that no reverberation
is present. However, in reverberant acoustic environments, only a portion of
the speech energy impinges on the array from the steering direction θx. Hence,
multi-path propagation combined with output energy minimisation will result
in signal distortion and even signal cancellation, because the filter coefficients
are partially adapted to minimise output power corresponding to the speech
signal s[k] itself. A possible solution is to switch off adaptation during speech-
and-noise periods.

Griffiths-Jim beamformer – Generalised Sidelobe Canceller (GSC)

Griffiths and Jim [116] reformulated the constrained LCMV optimisation pro-
blem (2.134) as an unconstrained optimisation problem, leading to an easier
adaptation scheme. Consider the M ×M -dimensional full-rank matrix Ct,

Ct =

[
C
Ca

]

, (2.141)

with Ca the (M − J) ×M -dimensional null-space of C. If we define the M -
dimensional vector

J l
M − J l

[
v[k]

−wa[k]

]

= C−T
t w[k] , (2.142)

such that the filter w[k] can be parametrised as

w[k] = CTv[k] − CT
awa[k] , (2.143)

then the linear constraint can be written as

Cw[k] = CCTv[k] − CCT
a

︸ ︷︷ ︸

0

wa[k] = b , (2.144)

5For a brief introduction on the LMS algorithm, we refer to page 66.
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Figure 2.9: Griffiths-Jim beamformer structure

such that
v[k] = (CCT )−1b . (2.145)

The filter w[k] can now be decomposed into a fixed (also called quiescent) part
wq and a variable part wa[k],

w[k] = CT (CCT )−1b
︸ ︷︷ ︸

wq

−CT
awa[k] , (2.146)

such that the constraint and the minimisation problem are naturally separated
and the constrained minimisation of w[k] is equivalent to the unconstrained
minimisation of wa[k] [25][116][123]. This Griffiths-Jim structure is depicted
in Fig. 2.9, with wq the fixed beamformer and Ca the blocking matrix, which
is orthogonal to wq.

When the constraint is a predefined frequency response F (ω) in the look direc-
tion, cf. (2.136), the fixed beamformer wq is equal to

wq = CT (CCT )−1b =
1

N

[
IL IL . . . IL

]T
b , (2.147)

which corresponds to summing the microphone signals yn[k] and filtering with
f [k], while the (N − 1)L×NL-dimensional blocking matrix Ca e.g. is equal to

Ca =








IL −IL 0 . . . 0
IL 0 −IL . . . 0
...

...
...

...
IL 0 0 . . . −IL







, (2.148)

which effectively corresponds to first creating N − 1 signals by subtracting
the microphone signals yn[k], n = 1 . . . N − 1, from y0[k] and applying an
L-dimensional filter wan[k] on each of these N − 1 signals. The resulting be-
amformer structure is also called a Generalised Sidelobe Canceller (GSC) and
is depicted in Fig. 2.10. The GSC consists of three parts:
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Figure 2.10: Generalised Sidelobe Canceller (GSC) structure

• a fixed DS beamformer, which spatially aligns the microphone signals to
the direction of the speech source and which creates a so-called speech
reference signal. This speech reference signal can be filtered with the
constraint filter f [k].

• a blocking matrix, usually orthogonal to the fixed beamformer, creating
so-called noise reference signals by forming spatial zeros in the direction
of the speech source. Maximally N−1 independent noise reference signals
can be created. Generally we will use the Griffiths-Jim blocking matrix,
creating the N − 1 noise reference signals as

rGSCnoise[k] =








y0[k − δ0] − y1[k − δ1]
y0[k − δ0] − y2[k − δ2]
...
y0[k − δ0] − yN−1[k − δN−1]







. (2.149)

• an adaptive noise cancellation (ANC) stage, using a multi-channel adapti-
ve filter, which removes the remaining correlation between the (residual)
noise component in the speech reference signal and the noise reference
signals. If the noise components in the microphone signals are correlated,
then the adaptive filter can reduce a considerable amount of noise from
the speech reference signal. A GSC will therefore perform considerably
better for highly correlated noise than for uncorrelated noise [17]. Gener-
ally we will use a time-domain NLMS adaptive algorithm (cf. page 66)
for adapting the filter coefficients and we will take f [k] = δ[k − LANC

2 ],
with LANC the length of the adaptive filters, such that some acausal taps
can be modelled by the adaptive filter.
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Frequency-domain representation

In the frequency-domain, the fixed beamformer is represented by the N -dimen-
sional vector Wq(ω), whereas the blocking matrix is represented by the J×N -
dimensional matrix Ca(ω), with J < N (usually J = N − 1). The speech
reference signal then is equal to WH

q (ω)Y(ω), whereas the noise reference sig-
nals are equal to Ya(ω) = Ca(ω)Y(ω). The J-dimensional filter Wa(ω) which
minimises the cost function

min
Wa(ω)

E{|WH
q (ω)Y(ω) − WH

a (ω)Ya(ω)|2} (2.150)

is equal to

Wa(ω) =
[
Ca(ω)R̄yy(ω)CH

a (ω)
]−1

Ca(ω)R̄yy(ω)Wq(ω) , (2.151)

with R̄yy(ω) = E{Y(ω)YH(ω)}. If we assume that no signal leakage is present
in the noise references, i.e. Ca(ω)X(ω) = 0 and hence Ca(ω)R̄xx(ω) = 0 (or
that the filters Wa(ω) are only calculated during noise-only periods) and if we
assume a homogeneous noise field, i.e. R̄vv(ω) = Pv(ω)Γv(ω), then

Wa(ω) =
[
Ca(ω)Γv(ω)CH

a (ω)
]−1

Ca(ω)Γv(ω)Wq(ω) . (2.152)

The overall filter W(ω) can then be written as

W(ω) = Wq(ω) − CH
a (ω)Wa(ω) (2.153)

=
[

IN − CH
a (ω)

[
Ca(ω)Γv(ω)CH

a (ω)
]−1

Ca(ω)Γv(ω)
]

Wq(ω) ,

which only depends on the spatial characteristics of the noise field. If the
blocking matrix and the fixed beamformer are orthogonal, i.e. Ca(ω)Wq(ω) =
0, and if CH

a (ω) and Wq(ω) span the entire N -dimensional space, i.e. J =
N − 1, then it has been proved in [139] that

IN − CH
a (ω)

[
Ca(ω)Γv(ω)CH

a (ω)
]−1

Ca(ω)Γv(ω) =

Γ−1
v (ω)Wq(ω)

[
WH

q (ω)Γ−1
v (ω)Wq(ω)

]−1
WH

q (ω) , (2.154)

such that the filter W(ω) can be written as

W(ω) =
WH

q (ω)Wq(ω)

WH
q (ω)Γ−1

v (ω)Wq(ω)
Γ−1
v (ω)Wq(ω) (2.155)

which is equal to the superdirective beamformer (2.128) if Wq(ω) = d(ω, θx)/N ,
i.e. if the fixed beamformer is a DS beamformer.

If we also assume that the speech field is homogeneous, i.e. that the PSD
of the speech components Pxn(ω) = Px(ω), n = 0 . . . N − 1, then Pyn(ω) =
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Py(ω) = Px(ω) + Pv(ω), n = 0 . . . N − 1, such that R̄yy(ω) = Py(ω)Γy(ω) and
R̄xx(ω) = Px(ω)Γx(ω), with the coherence matrices Γy(ω) and Γx(ω) similarly
defined as in (2.37). Using Z(ω) = WH(ω)Y(ω), the PSD Pz(ω) of the output
signal is equal to

Pz(ω) = WH(ω)R̄yy(ω)W(ω) = Py(ω)WH(ω)Γy(ω)W(ω) , (2.156)

such that, using (2.153), the PTF of the speech component is equal to

Gx0zx(ω) =
Pzx(ω)

Px0
(ω)

= WH(ω)Γx(ω)W(ω) = WH
q (ω)Γx(ω)Wq(ω) . (2.157)

and that, using (2.155), the PTF of the noise component is equal to

Gv0zv (ω) =
Pzv (ω)

Pv0(ω)
= WH(ω)Γv(ω)W(ω) =

[
WH

q (ω)Wq(ω)
]2

WH
q (ω)Γ−1

v (ω)Wq(ω)
.

(2.158)

Variants of standard GSC-implementation

Instead of using a simple DS beamformer and scalar elements in the blocking
matrix, it is also possible to use more advanced (fixed) filter-and-sum beamfor-
mers with FIR filters (cf. Section 2.5.2), in order to provide better spatial and
spectral control for the speech and the noise references [34][191]. Generally,
the blocking matrix and the fixed beamformer are designed to be orthogonal
to each other [191].

In the standard GSC-implementation, it is also assumed that no speech compo-
nents are present in the noise reference signals. However, this is only true when
no signal reflections (reverberation) occur, when the direction of the speech
source is exactly known (or is correctly estimated) and when the microphone
characteristics (gain, phase, position) do not deviate from the assumed charac-
teristics. Clearly, in a practical implementation these conditions will not be
satisfied. Therefore, signal leakage will occur in the noise references and the
adaptive filter will also remove part of the speech component from the speech
reference signal, leading to signal distortion or even signal cancellation. In or-
der to limit signal leakage and the resulting signal distortion, different variants
of the standard GSC-implementation have been proposed, which are based on:

• reducing the amount of signal leakage, e.g. by using a spatial filter de-
signed blocking matrix [191][194], creating better speech and (especially)
noise references covering a region around the speaker location. Although
the amount of signal leakage into the noise reference will be reduced (cer-
tainly when dealing with microphone mismatch, look direction error or
spatially distributed sources), it can never be completely avoided (cer-
tainly not in highly reverberant acoustic environments).
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• limiting the effect of the signal leakage on the adaptive filters, e.g. by using
a speech-controlled (VAD) adaptation algorithm, where the adaptive fil-
ter is only allowed to adapt during noise-only periods [46][113][128][194]
[254], by using norm-constrained [37] and coefficient-constrained adaptive
filters [128], or by using a leaky-LMS algorithm. In case of using a speech-
controlled adaptation algorithm with a perfect VAD, signal leakage will
have no effect on the adaptive filters, but of course signal distortion will
still occur (since speech components are present in the noise reference).

In the remainder of the thesis, we will use a standard GSC-implementation
with a Griffiths-Jim blocking matrix and a GSC-implementation with a spatial
filter designed blocking matrix. In both implementations, we will use a speech-
controlled adaptation algorithm, switching off the adaptation during speech-
and-noise periods, since signal leakage can never be completely avoided.

NLMS-algorithm

The least-mean-squares (LMS) algorithm, originally proposed by Widrow and
Hoff, is a simple but effective method for adapting the coefficients of an adaptive
FIR filter [123][277]. Consider Fig. 1.3, with d[k] the desired signal, x[k] the
input signal of the adaptive filter w[k] and y[k] = w[k]⊗x[k]. If we use an FIR
filter w[k] of length L, then the output signal y[k] at time k can be written as

y[k] = wT [k]x[k] , (2.159)

with x[k] =
[
x[k] x[k − 1] . . . x[k − L+ 1]

]T
. The goal of any adap-

tive filtering algorithm is to minimise the average energy of the error signal
e[k] = d[k] − y[k]. By using a gradient-descent algorithm and approximating
the gradient by its instantaneous value, the LMS algorithm is obtained as

w[k + 1] = w[k] + µx[k]e[k] (2.160)

with µ the step size of the adaptive algorithm. This step size controls the con-
vergence speed and the stability of the adaptive filter. It can be shown that the
LMS algorithm is stable if 0 ≤ µ < 2/λmax, with λmax the largest eigenvalue
of the correlation matrix R̄xx[k] = E{x[k]xT [k]}. It can also be shown that the
eigenvalue spread λmax/λmin, with λmin the smallest eigenvalue of R̄xx[k], es-
sentially determines the convergence speed. Therefore the LMS algorithm has a
better convergence speed for white noise (λmax/λmin = 1) than for speech-like
signals with a large eigenvalue spread. In order to obtain a better convergen-
ce speed for signals with a large eigenvalue spread, other adaptive algorithms,
such as RLS [123] and APA [103][186][203][222][249] should be used. These
algorithms however tend to have a large computational complexity, certainly
for large filter lengths L. Because of its small computational complexity and
its simplicity, the LMS algorithm therefore still is a commonly used adaptive
algorithm in acoustic applications, despite its slower convergence speed.
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Since the step size of the LMS algorithm is dependent on the signal statistics,
generally the normalised LMS (NLMS) algorithm is used, where an implicit
normalisation of the step size is performed with the signal energy, i.e.

w[k + 1] = w[k] +
µ

xT [k]x[k] + α
x[k]e[k] (2.161)

with α a small constant in order to prevent division by zero in case no input
signal is present. Since λmax ≤∑L

i=1 λi = E{xT [k]x[k]}, the NLMS algorithm
is stable if 0 ≤ µ < 2.

The NLMS adaptive filter can also be used with multiple input signals, as e.g.
in the ANC stage of the GSC (see Fig. 2.10). In that case the filter w[k] is
the stacked filter vector of all adaptive filters wan[k], n = 1 . . . N −1, while the
vector x[k] is the stacked data vector of all data vectors xan[k], n = 1 . . . N−1.
Only one error signal z[k] is used for updating all adaptive filters.

2.6 Multi-microphone dereverberation

As has been indicated in Section 2.4, single-microphone dereverberation tech-
niques have a limited scope in practice, even when the complete acoustic im-
pulse response between the speech source and the microphone is known. Using
multi-microphone fixed beamforming techniques, discussed in Section 2.5.2, it
is possible to obtain spatial focusing on the speech source, thereby reducing so-
me reverberation. However, since fixed beamforming techniques only take into
account the direct path of the acoustic impulse responses, their dereverberation
performance is limited, especially in highly reverberant acoustic environments.
If the complete acoustic impulse responses are known, more advanced multi-
microphone techniques can be used, such as inverse filtering (cf. Section 2.6.1)
and matched filtering (cf. Section 2.6.2). The acoustic impulse responses can
either be measured or can be estimated by blind system identification tech-
niques in the time-domain and in the frequency-domain. These blind system
identification techniques will be discussed in Chapters 6 and 7.

2.6.1 Inverse filtering

In Section 2.4.1 it has been shown that in the single-microphone case generally
no perfect dereverberation can be obtained using inverse filtering techniques,
even when the filter length L goes to infinity. However, in the multi-microphone
case, perfect dereverberation is always possible if the acoustic impulse responses
are known (even if the impulse responses are non-minimum-phase) [180]. As-
suming that no background noise is present6, the L-dimensional vector yn[k]

6Dereverberation when (coloured) noise is present and combined noise reduction and
dereverberation will be discussed in Chapter 7.
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can be written, using (2.97), as

yn[k] = Hn[k] s[k] , (2.162)

with Hn[k] an L× (K + L− 1)-dimensional Toeplitz matrix, consisting of the
coefficients of the K-dimensional acoustic impulse response hn[k], and s[k] a
(K + L − 1)-dimensional vector, consisting of the clean speech samples. The
M -dimensional stacked data vector y[k] can then be written as

y[k] =








H0[k]
H1[k]

...
HN−1[k]








s[k] = H[k] s[k] , (2.163)

with H[k] an M × (K + L − 1)-dimensional matrix. Dereverberation consists
of computing an M -dimensional vector w[k], such that

wT [k]y[k] = s[k], ∀k , (2.164)

i.e.
wT [k]H[k] =

[
1 0 . . . 0

]
= dT . (2.165)

If we assume that H[k] has full column rank, i.e. the acoustic impulse responses
do not have common zeros, it is clear that this set of equations can always be
solved when M ≥ K + L− 1, i.e.

L ≥ K − 1

N − 1
, (2.166)

and the solution is given by

wLS [k] =
(
H†[k]

)T
d = H[k]

(
HT [k]H[k]

)−1
d (2.167)

Obviously, the condition (2.166) can never be fulfilled in the single-microphone
case (N = 1). Although this condition can always be fulfilled in the multi-
microphone case, numerical problems may occur when calculating the pseudo-
inverse of H[k] and since the solution in (2.167) is quite sensitive to the accuracy
of the measured/estimated acoustic impulse responses (in Chapter 6 it will be
shown that it is quite difficult to accurately identify the complete acoustic
impulse responses in practice, especially when a large amount of background
noise is present).

2.6.2 Matched filtering

In [91] a multi-microphone matched filtering technique for dereverberation has
been presented. This technique requires the acoustic impulse responses to be
(partially) known and is less sensitive to the accuracy of the estimated impulse
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responses than inverse filtering. However, using this matched filtering technique
perfect dereverberation can never be obtained and a pre-echo problem occurs.

In [91] it is assumed that we can model the acoustic impulse responses hn[k]
as consisting of a direct path contribution and I images (reflections), all ha-
ving a comparable amplitude. The DS-beamformer, discussed in Section 2.5.2,
produces a beam in the direction of the speech source by spatially aligning
the direct path contributions of the microphone signals and hence attenua-
ting signals coming from other directions. The output of the DS beamformer
provides N coherent arrivals (direct path contributions) and IN incoherent
arrivals (images), which are distributed in time and typically add powerwise.
The direct-to-reverberant energy ratio (DR) for the DS beamformer is equal to

DR =
N2

NI
=
N

I
, (2.168)

which decreases monotonically with the number of images I, i.e. for highly
reverberant acoustic environments the dereverberation performance of the DS
beamformer is limited.

In [91] a multiple beamformer is proposed, which not only produces a beam in
the direction of the speech source (direct path), but also in the direction of B
major images. Hence, the output of the multiple beamformer provides (B+1)N
coherent arrivals and (B+1)IN incoherent arrivals. The direct-to-reverberant
energy ratio for the multiple beamformer is equal to

DR =
[(B + 1)N ]

2

(B + 1)IN
=

(B + 1)N

I
. (2.169)

In the matched filtering technique, the filters wn[k] on the microphone sig-
nals are equal to the time-reversed acoustic impulse responses hn[−k] (which
therefore need to be known), such that the output signal z[k] is equal to

z[k] =

N−1∑

n=0

hn[−k] ⊗ yn[k] =

N−1∑

n=0

hn[−k] ⊗ hn[k] ⊗ s[k] , (2.170)

which in the frequency-domain corresponds to

Z(ω) =

N−1∑

n=0

H∗
n(ω)Yn(ω) = ‖H(ω)‖2S(ω) . (2.171)

As can be clearly seen from these equations, no perfect dereverberation can
be obtained using this matched filtering technique. In Section 7.3.1 it will be
shown that using the normalised matched filter H(ω)/‖H(ω)‖2 perfect dere-
verberation is obtained. The direct-to-reverberant energy ratio is equal to

DR =
[(I + 1)N ]

2

(I + 1)IN
=

(I + 1)N

I
≈ N , (2.172)
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if the number of images I is large enough.

In Fig. 2.11a typical acoustic impulse responses hn[k] are depicted, which have
been constructed using the image method (cf. Section 1.3.3) with N = 4,
T60 = 300 ms, fs = 8 kHz and K = 1000. Using the inverse filtering technique,
perfect dereverberation can be obtained with filters wn[k] having a filter length
L = 333, cf. (2.166). These inverse filters are depicted in Fig. 2.11b. Note that
the filter coefficients of the inverse filters have quite large amplitudes, implying
that this inverse filtering technique is quite sensitive to errors (e.g. estimation
errors of the acoustic impulse responses hn[k]).

Figures 2.12a and 2.12b depict the matched filters wn[k] = hn[−k] with filter
length L = 1000 and the total transfer function f [k] for the speech component.
As can be clearly seen from Fig. 2.12b, no perfect dereverberation is obtained,
and also a pre-echo phenomenon occurs, i.e. a long impulse response tail is
present before the main peak, as indicated in this figure. In order to reduce
this pre-echo effect, the matched filters can be truncated [216]. Figure 2.13a
depicts the matched filters which have been truncated to L = 80, and Fig.
2.13b depicts the total transfer function f [k] using these truncated matched
filters. As can be seen from Fig. 2.13b, the pre-echo is reduced, but perfect
dereverberation can never be obtained using matched filtering techniques (with
or without truncation).

2.7 Conclusion

In this chapter, we have discussed the noise reduction problem and the dere-
verberation problem from a mathematical point of view and we have briefly
described several existing single- and multi-microphone signal enhancement
techniques, both in the time-domain and in the frequency-domain.

In Section 2.2 we have described the recording model for speech signals in noisy
acoustic environments, making a distinction between additive and convolutio-
nal noise (i.e. reverberation). Additive noise may consist of contributions from
both unknown and known noise sources, e.g. far-end echo. The goal of any
signal enhancement algorithm is to compute the filters wn[k], n = 0 . . . N − 1,
on the microphone signal(s) with either noise reduction, dereverberation or
combined noise reduction and dereverberation as the objective. In this section
we have also discussed a frequency-domain representation and we have defined
performance measures for the signal enhancement algorithms, such as unbiased
SNR improvement, average speech distortion and a dereverberation index.

In Section 2.3 two single-microphone noise reduction techniques have been dis-
cussed: spectral subtraction and signal subspace-based techniques. Both tech-
niques only exploit the temporal and the spectral information of the speech
and the noise signals. In spectral subtraction techniques the DFT-coefficients
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Figure 2.11: (a) Acoustic impulse responses hn[k] (N = 4, T60 = 300 ms,
fs = 8 kHz, K = 1000), (b) Inverse filters wn[k] (L = 333)
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Figure 2.12: (a) Matched filters hn[−k] (L = 1000), (b) Total impulse response
f [k] for the speech component using matched filters
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Figure 2.13: (a) Truncated matched filters hn[−k] (L = 80), (b) Total impulse
response f [k] for the speech component using truncated matched filters



72 Signal enhancement techniques

are multiplied with a noise-dependent gain, whereas in signal subspace-based
techniques the KLT-coefficients are modified. Since both techniques need an
estimate of the noise characteristics, a VAD algorithm is required. Signal
subspace-based techniques assume that the clean speech signal can be modelled
with a low-rank model and perform signal enhancement by removing the noise
subspace and by estimating the clean speech signal from the remaining signal
subspace, using a LS or a MV estimator. Both estimators can be represented
as an FIR eigenfilterbank (in the white noise case and in the coloured noise ca-
se). Actually, it can be proved that the signal-independent spectral subtraction
techniques and the signal-dependent subspace-based techniques asymptotically
produce the same result when the frame length goes to infinity and when the
speech and the noise signals are assumed to be stationary. In Part I the presen-
ted signal subspace-based techniques will be extended to the multi-microphone
case.

In Section 2.4 two single-microphone dereverberation techniques have been dis-
cussed: inverse filtering, requiring the acoustic impulse response to be known,
and cepstrum-based techniques, not requiring any prior knowledge about the
impulse response. In practice, single-microphone inverse filtering has a limi-
ted scope since the acoustic impulse response typically is non-minimum-phase,
while cepstrum-based techniques also have a limited performance since the cep-
strum of the clean speech signal and the acoustic impulse response typically
have a large overlap.

In Section 2.5 fixed and adaptive beamforming techniques for multi-microphone
noise reduction have been discussed. Fixed beamformers are data-independent
and try to obtain spatial focusing on the speech source, thereby reducing re-
verberation and suppressing noise not coming from the direction of the speech
source. We have discussed several types of fixed beamformers: the simple –
but still widely used – delay-and-sum beamformer; first-order differential mi-
crophones using 2 closely spaced microphones which are delayed and subtrac-
ted; superdirective beamformers maximising the directivity index for a known
noise field; and filter-and-sum beamformers, which will be discussed in mo-
re detail in Part III. Adaptive beamformers combine the spatial focusing of
fixed beamformers with adaptive noise suppression, such that they are ab-
le to adapt to changing acoustic environments and generally exhibit a better
noise reduction performance than fixed beamformers. We have discussed the
LCMV-beamformer, which minimises the output power under the constraint
that signals from the direction of the speech source are not distorted. This
constrained LCMV optimisation problem can be reformulated as an uncons-
trained optimisation problem, resulting in the Generalised Sidelobe Canceller,
which consists of a fixed beamformer, a blocking matrix and a multi-channel
adaptive filter (e.g. NLMS). Several variants of the standard GSC have been
discussed which reduce the amount of signal leakage and/or limit the effect of
the signal leakage on the adaptive filters. The performance of the GSVD-based
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optimal filtering techniques in Part I will be compared with the performance
of these fixed and adaptive beamformers.

In Section 2.6 two multi-microphone dereverberation techniques have been dis-
cussed: inverse filtering and matched filtering. Both techniques require the
acoustic impulse responses to be (partially) known. Using the inverse filtering
technique perfect dereverberation is possible. However, this technique is quite
sensitive to the accuracy of the measured/estimated acoustic impulse respon-
ses. In the matched filtering technique the microphone signals are filtered with
the time-reversed acoustic impulse responses. This technique is less sensitive
to the accuracy of the impulse responses, but no perfect dereverberation can
be obtained. In addition, a pre-echo problem occurs, which can be limited
by truncating the matched filters. This matched filtering technique forms the
basis for the frequency-domain dereverberation and combined noise reduction
and dereverberation technique discussed in Part II.
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Chapter 3

GSVD-Based Optimal
Filtering for Single and
Multi-Microphone Speech
Enhancement

In this chapter a Generalised Singular Value Decomposition (GSVD) based al-
gorithm is discussed for enhancing multi-microphone speech signals degraded
by additive coloured noise. This GSVD-based algorithm is a specific imple-
mentation of the multi-channel Wiener filter, taking into account the low-rank
model of the speech signal, and can be considered an extension of the single-
microphone signal subspace-based algorithms (cf. Section 2.3.2), now combi-
ning the spatio-temporal information of the speech and the noise sources.

In Section 3.2 unconstrained optimal filtering for enhancing multi-microphone
noisy speech signals is described. The MMSE estimator, i.e. the multi-channel
Wiener filter, as well as a more general class of estimators is discussed. Section
3.3 discusses the practical implementation using a GSVD and it is shown that
the optimal filter matrix can be written as a function of the generalised singular
vectors and singular values of a so-called speech and noise data matrix. In Sec-
tion 3.4 a number of symmetry properties are derived for the single-microphone
and the multi-microphone optimal filter, which are valid for the white noise ca-
se as well as for the coloured noise case. In addition, the averaging step of some
single-microphone signal subspace-based algorithms is re-examined, leading to
the conclusion that this averaging operation is unnecessary and typically even
suboptimal. In Section 3.5 a frequency-domain analysis is given for the un-
constrained optimal filtering technique, showing that the optimal filter can be

75
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decomposed into a spectral and a spatial filtering term, and in Section 3.6 it
is shown that this multi-microphone signal enhancement technique can also be
used for combined noise reduction and echo cancellation.

3.1 Introduction

In Section 2.3.2 single-microphone signal subspace-based speech enhancement
techniques have been discussed. The main idea is to consider the noisy signal in
a vector space and to separate this vector space into 2 orthogonal subspaces: the
signal subspace and the noise subspace. Signal enhancement is then performed
by removing the noise subspace and by estimating the clean speech signal
from the remaining signal subspace. Depending on the specific optimisation
criterion, different estimates for the clean speech signal can be obtained. In
Section 2.3.2 the least-squares (LS) and the minimum-variance (MV) estimator
have been discussed for the single-microphone case.

Single-microphone subspace-based speech enhancement techniques only use the
spectral information present in the microphone signal. These techniques can
be viewed as a (signal-dependent) frequency filtering operation on the noisy
speech signal [120], which adaptively extracts the most important, i.e. most
energetic, formants of the speech signal, thereby reducing the background noi-
se. When multiple microphones are available, both the spectral and the spatial
characteristics of the speech and the noise sources can be exploited. In the lite-
rature, signal subspace-based algorithms have already been used for processing
multi-channel signals. Hansen [121] suggests to use a single-channel subspace-
based speech enhancement algorithm on each microphone signal separately, fol-
lowed by a delay-and-sum beamformer. Jabloun and Champagne [135] exploit
the multi-microphone information to design a (single-channel) signal subspace-
based post-filter, following a delay-and-sum beamformer. However these techni-
ques cannot be considered integrated multi-microphone subspace-based speech
enhancement techniques. Subspace-based techniques have been used for proces-
sing (multi-channel) images and biomedical signals in [69][247], but for speech
applications these procedures do not allow to exploit the spatial information
present in the multi-microphone signals.

In this chapter we present a multi-microphone extension of the single-microphone
subspace-based speech enhancement techniques, combining the spatio-temporal
information of the speech and the noise sources. For the multi-microphone case,
we mainly consider the optimal estimator (in the MSE sense), which produces
an MMSE estimate of the speech component in one of the microphone signals,
but also a related estimator that trades off speech distortion and noise reduc-
tion. Since speech components in the microphone signals are estimated, no
dereverberation will be achieved and inevitably some (linear) speech distortion
will be introduced. It will be shown that the optimal filter can be written as a
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function of the generalised singular vectors and values of a speech and a noise
data matrix, where the specific function used provides a means to trade off noi-
se reduction and speech distortion. When analysing the multi-channel optimal
filter in the frequency domain, it will be shown that this filter can indeed be
decomposed into a spatial and a spectral filtering term.

3.2 Unconstrained optimal filtering

In this section we discuss the unconstrained optimal filtering technique for
multi-microphone speech enhancement. The optimal filter (in the MSE sense) is
the multi-channel Wiener filter, which produces an MMSE estimate for different
delayed versions of the speech components in the microphone signals. By using
the generalised eigenvalue decomposition (GEVD) of the speech and the noise
correlation matrices, the low-rank model of the speech signal can be easily taken
into account, such that this signal enhancement technique can be considered
a multi-microphone extension of the single-microphone signal subspace-based
techniques. We also discuss a more general class of estimators, which trades off
noise reduction and speech distortion and for which the filter parameters are
also obtained from the GEVD of the correlation matrices.

3.2.1 Multi-channel Wiener filter

Data Model

Consider again Fig. 2.1, which depicts the general setup for multi-microphone
speech enhancement using N microphones. Each microphone signal yn[k],
n = 0 . . . N − 1, consists of the filtered speech signal s[k] and additive noise,

yn[k] = hn[k] ⊗ s[k] + vn[k] = xn[k] + vn[k] , (3.1)

with xn[k] and vn[k] the speech and the noise component of the nth microphone
signal. The additive noise is assumed to be uncorrelated with the speech signal.
As shown in (2.22), the output signal z[k] at time k can be written as

z[k] =

N−1∑

n=0

wT
n [k]yn[k] = wT [k]y[k] , (3.2)

with the L-dimensional filter vector wn[k] and data vector yn[k] equal to

wn[k] =
[
wn,0[k] wn,1[k] . . . wn,L−1[k]

]T
, (3.3)

yn[k] =
[
yn[k] yn[k − 1] . . . yn[k − L+ 1]

]T
, (3.4)

and the M -dimensional stacked filter vector w[k] and stacked data vector y[k],
with M = LN , equal to

w[k] =
[

wT
0 [k] wT

1 [k] . . . wT
N−1[k]

]T
, (3.5)
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y[k] =
[

yT0 [k] yT1 [k] . . . yTN−1[k]
]T

. (3.6)

The goal of multi-microphone speech enhancement is to compute the filter vec-
tor w[k] such that the speech signal s[k] or one of the speech components xn[k]
is recovered. The GSC (LCMV beamformer) is formulated as a constrained op-
timal filtering problem, cf. (2.134), which attempts to recover the speech signal
s[k] by minimising the output energy and constraining the array response to
unity in the direction of the speech source. In this section we will discuss an
unconstrained optimal filtering problem, which ‘optimally’ estimates the speech
components xn[k] from the noisy microphone signals yn[k].

Optimal filtering – MMSE estimation

Consider the filtering problem depicted in Fig. 3.1: y[k] is the M -dimensional
filter input vector, z[k] = WT [k]y[k] is the filter output vector with W[k] an
M ×M filter matrix. The M -dimensional vector x[k] is the desired response
vector and e[k] = x[k]−z[k] is the estimation error vector. The optimal filter is
defined as the filter that minimises the MSE (mean square error) cost function

JMSE(W[k]) = E{||e[k]||22} = E{||x[k] − WT [k]y[k]||22} (3.7)

= E{xT [k]x[k]}− 2E{yT [k]W[k]x[k]}+E{yT [k]W[k]W[k]Ty[k]}.

The optimal filter matrix W̄WF [k] is found by setting the derivative

∂JMSE(W[k])

∂W[k]
= −2E{y[k]x[k]T } + 2E{y[k]yT [k]}W[k] (3.8)

to zero and is equal to the well-known multi-dimensional Wiener filter [227],

W̄WF [k] = R̄−1
yy [k] R̄yx[k] (3.9)

with R̄yy[k] = E{y[k]yT [k]} the M ×M correlation matrix of the input signal
and R̄yx[k] = E{y[k]xT [k]} the M ×M cross-correlation matrix of the input
and the desired signal. Note that for multiple microphones, both the correlation
and the cross-correlation matrix contain spatio-temporal information.

Σ−
+

x[k]

W[k]
z[k]

y[k]
e[k]

Figure 3.1: Optimal filtering problem with desired response vector x[k]
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When considering multi-microphone noisy speech signals, the input vector y[k]
consists of the speech component and the additive noise component,

y[k] = x[k] + v[k] , (3.10)

with y[k] defined in (3.6) and x[k] and v[k] similarly defined. Since the desired
signal x[k] is an unobservable signal, this poses a particular problem which
may be solved based on the on/off characteristics of the speech signal, cf.
Section 1.3.1. If we use a robust voice activity detection (VAD) algorithm [50]
[250][260], noise-only observations can be made during speech pauses (denoted
here with time index k′), where y[k′] = v[k′], which allows to estimate the
spatio-temporal correlation properties of the noise signal. The output of the
VAD-algorithm at time k is represented by ζ[k], where ζ[k] = 1 represents a
speech-and-noise observation and ζ[k] = 0 represents a noise-only observation.

We now make two assumptions: we assume that the second-order statistics
of the noise signal are sufficiently stationary such that the noise correlation
matrix R̄vv[k], which can be estimated during noise-only periods, can also be
used during subsequent speech-and-noise periods, i.e.

R̄vv[k] = E{v[k]vT [k]} = E{v[k′]vT [k′]} = R̄vv[k
′] , (3.11)

and secondly, we assume that the speech and the noise signals are statistically
independent, implying that

R̄xv[k] = E{x[k]vT [k]} = 0 . (3.12)

From the second assumption it is easily verified that

R̄yy[k] = R̄xx[k] + R̄vv[k], R̄yx[k] = R̄xx[k] , (3.13)

such that the optimal filter matrix in (3.9) can be written as

W̄WF [k] = R̄−1
yy [k]

(
R̄yy[k] − R̄vv[k]

)
(3.14)

where R̄yy[k] is estimated during speech-and-noise periods and R̄vv[k] is esti-
mated during noise-only periods.

By using the joint diagonalisation of the symmetric block-Toeplitz correlation
matrices R̄yy[k] and R̄vv[k], the low-rank model of the clean speech signal s[k]
can be easily taken into account (cf. Section 3.2.2) and one can also easily
provide a trade-off between noise reduction and speech distortion (cf. Section
3.2.3)1. The joint diagonalisation, i.e. generalised eigenvalue decomposition

1Note that it is also possible to implement the multi-dimensional Wiener filter W̄WF [k]
directly using (3.14) or using a QRD-based implementation (cf. Section 3.3.4). Using the
GEVD should be considered one possible way to implement the multi-dimensional Wiener
filter, enabling to easily incorporate a low-rank signal model, but is certainly not imperative.
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(GEVD), of R̄yy[k] and R̄vv[k] is defined as (cf. Appendix A.2)

{

R̄yy[k] = Q̄[k] Λ̄y[k] Q̄
T [k]

R̄vv[k] = Q̄[k] Λ̄v[k] Q̄
T [k] ,

(3.15)

with Q̄[k] an M ×M -dimensional invertible, but not necessarily orthogonal,
matrix and Λ̄y[k] = diag{σ̄2

i [k]}, i = 1 . . .M , and Λ̄v[k] = diag{η̄2
i [k]}, i =

1 . . .M . Substituting (3.15) into (3.14) gives an expression for the optimal
filter matrix,

W̄WF [k] = Q̄−T [k] diag
{

1 − η̄2
i [k]

σ̄2
i [k]

}

Q̄T [k] (3.16)

In the spatio-temporally white noise case, the noise correlation matrix is equal
to R̄vv[k] = σ̄2

v IM , with σ̄2
v the noise power. The matrix Q̄[k] then reduces to

an orthogonal matrix, such that W̄WF [k] is a symmetric matrix,

W̄WF [k] = Q̄[k] diag
{

1 − σ̄2
v

σ̄2
i [k]

}

Q̄T [k] . (3.17)

The enhanced speech vector x̂[k] = z[k] is obtained as

x̂[k] = W̄T
WF [k]y[k] , (3.18)

such that the M -dimensional vector x̂[k] contains an estimate for all the speech
samples xn[k− l], n = 0 . . . N − 1, l = 0 . . . L− 1, i.e. for all L delayed versions
of the speech components in all N microphone signals. The ith element of
x̂[k], which is obtained by filtering the microphone signals with the ith column
w̄WF,i[k] of W̄WF [k], represents an optimal estimate for the speech component
in the mth microphone signal with delay ∆,

x̂m[k − ∆] = yT [k] w̄WF,i[k] , (3.19)

with
m = div(i− 1, L), ∆ = mod(i− 1, L) , (3.20)

where div(i − 1, L) denotes the integer part of i−1
L and mod(i − 1, L) denotes

the remainder of this division.

Estimation error – speech distortion

The estimation error vector e[k] = x[k] − x̂[k], such that the error covariance
matrix R̄ee[k] = E{e[k] e[k]T } can be written using (3.14) as

R̄ee[k]=E{(x[k] − W̄T
WF [k]y[k]) (x[k] − W̄T

WF [k]y[k])T }
= R̄xx[k]− R̄xy[k]W̄WF [k]−W̄T

WF [k]R̄yx[k]+W̄T
WF [k]R̄yy[k]W̄WF [k]

= R̄xx[k] − R̄xx[k]W̄WF [k] − W̄T
WF [k] R̄xx[k] + W̄T

WF [k] R̄xx[k]
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= R̄xx[k] − R̄xx[k]W̄WF [k] = (R̄yy[k] − R̄vv[k]) (IM − W̄WF [k])

= R̄yy[k] − R̄vv[k] − R̄yy[k]W̄WF [k] + R̄vv[k]W̄WF [k]

= R̄vv[k]W̄WF [k] . (3.21)

The elements R̄ii
ee[k], i = 1 . . .M , on the diagonal of the error covariance matrix

indicate how well the ith component of x[k] is estimated. The smallest diagonal
element therefore corresponds to the ‘best’ estimator.

As already indicated in (2.85), when using an unconstrained MMSE optimal
filtering technique, some (linear) speech distortion cannot be avoided, since the
estimation error e[k] is the sum of a term ey[k] representing speech distortion
and a term ev[k] representing the residual noise, i.e.

e[k] = x[k] − W̄T
WF [k]y[k] =

(
IM − W̄T

WF [k]
)
x[k]

︸ ︷︷ ︸

ey [k]

−W̄T
WF [k]v[k]

︸ ︷︷ ︸

ev [k]

, (3.22)

The MMSE estimator attributes equal importance to noise reduction and speech
distortion. However, it is also possible to attribute more importance to either
speech distortion or noise reduction, cf. Section 3.2.3.

3.2.2 Low-rank modelling of speech signals

As for the single-microphone case, it is possible to simplify expression (3.16) for
the optimal filter matrix, when the signal to be estimated can be represented
using a low-rank model, which is the case for the speech components xn[k].
Using (2.163), the M -dimensional stacked data vector x[k] can be written as

x[k] = H[k] s[k] , (3.23)

with H[k] an M × (K + L − 1)-dimensional matrix (with typically K ≫ M),
consisting of the coefficients of the acoustic impulse response hn[k], and s[k]
a (K + L− 1)-dimensional vector, consisting of the clean speech samples. We
assume that the clean speech signal s[k] can be modelled with a low-rank model
of rank R, with R ≤ K +L− 1, such that the signal vector s[k] can be written
as a linear combination of R linearly independent basis vectors {s1, . . . , sR},
cf. Section 1.3.1. Since the correlation matrix R̄ss[k] = E{s[k] sT [k]} then is a
rank-R matrix2, also the correlation matrix R̄xx[k], which can be written as

R̄xx[k] = H[k] R̄ss[k]HT [k] , (3.24)

is a rank-R matrix (if R ≤ M and H[k] is assumed to be of full row-rank),
such that M − R eigenvalues of R̄xx[k] are equal to zero, independent of the

2In practice, R̄ss[k] has K + L − 1 − R eigenvalues which are very small, but which are
not exactly equal to zero. In this section, we will however assume that these eigenvalues are
exactly equal to zero. Recall from Chapter 2 that typical values for K range from 1000 to
2000, typical values for L range from 20 to 80 and typical values for R range from 12 to 20.
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exact type of linear model used. Hence, all possible vectors x[k] lie in an R-
dimensional subspace, which is referred to as the signal subspace. Since the
noise correlation matrix R̄vv[k] is assumed to be positive definite, noise vectors
have a component in the signal subspace as well as in the complement of the
signal subspace, which is referred to as the noise subspace.

The GEVD of R̄xx[k] and R̄vv[k] is equal to







R̄xx[k] = Q̄[k]

[
Λ̄x[k] 0

0 0

]

Q̄T [k]

R̄vv[k] = Q̄[k]

[
Λ̄v1[k] 0

0 Λ̄v2[k]

]

Q̄T [k] ,

(3.25)

with Λ̄x[k] and Λ̄v1[k] R × R-dimensional diagonal matrices and Λ̄v2[k] an
(M −R)× (M −R)-dimensional diagonal matrix. Since R̄xx[k] and R̄vv[k] can
be assumed to be positive (semi-)definite, all diagonal elements are positive or
equal to zero. The correlation matrix R̄yy[k] can now be written as

R̄yy[k] = R̄xx[k]+R̄vv[k] = Q̄[k]

[
Λ̄x[k] + Λ̄v1[k] 0

0 Λ̄v2[k]

]

Q̄T [k] . (3.26)

Comparing this equation to (3.15), we see that

{

σ̄2
i [k] > η̄2

i [k] i = 1 . . . R

σ̄2
i [k] = η̄2

i [k] i = R+ 1 . . .M .
(3.27)

implying that the diagonal matrix in (3.16) has R positive non-zero elements.
Even if the signal cannot be modelled with a low-rank model, i.e. R = M ,
none of the diagonal elements can ever become negative. This fact will be used
in the practical computation of the optimal filter matrix (cf. Section 3.3).

In the spatio-temporally white noise case, all η̄2
i [k], i = 1 . . .M , are equal to

σ̄2
v , such that the noise power σ̄2

v can be estimated from the smallest eigenvalues
of R̄yy[k] if the speech components can be modelled with a low-rank model.
This also implies that in this case no VAD is required.

We can conclude that the unconstrained MMSE optimal filtering technique
for multi-microphone speech enhancement comes down to removing the noise
subspace and estimating the speech components from the remaining signal
subspace using a MV estimator. Therefore this signal enhancement technique
can be considered a multi-microphone extension of the single-microphone signal
subspace-based techniques, now combining the spatio-temporal information of
the speech and the noise sources. In Section 3.5 it will be shown that this
multi-microphone optimal filtering operation can indeed be decomposed into a
spatial and a spectral filtering term.
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3.2.3 General class of estimators

The filter matrix W̄WF [k] in (3.16) in fact belongs to a more general class of
estimators, which can be represented as

W̄[k] = Q̄−T [k] diag
{

f(σ̄2
i [k], η̄

2
i [k])

}

Q̄T [k] (3.28)

with f(σ̄2
i [k], η̄

2
i [k]) a function of the generalised eigenvalues, depending on

the specific cost criterion that is being optimised. This formula can be in-
terpreted as an analysis filterbank Q̄−T [k] which performs a transformation
from the time-domain to a signal-dependent transform domain, a gain function
f(σ̄2

i [k], η̄
2
i [k]) which modifies the transform domain parameters and a synthe-

sis filterbank Q̄T [k] which performs a transformation back to the time domain.
This is similar to the eigenfilterbank interpretation which has been given for
the single-microphone signal subspace-based techniques [120], cf. Section 2.3.2.
In Section 3.4 we will prove symmetry properties for this filter matrix.

If the MSE criterion is optimised, then the filter W̄[k] is equal to (3.16). If
the output SNR is maximised, the solution corresponds to a least-squares (LS)
estimate of rank 1, where only the principal generalised eigenvector is retained,
such that the gain function is f(σ̄2

i [k], η̄
2
i [k]) =

[
1 0 . . . 0

]
. This gain

function will however introduce a significant amount of signal distortion.

For the single-microphone and white noise case, two perceptually relevant cost
criteria have been presented in [85], which trade off noise reduction and speech
distortion. This trade-off can be achieved by minimising the signal distortion
while keeping the residual noise energy below some given threshold (or vice
versa). We have extended the cost criteria presented in [85] to the multi-
microphone and the coloured noise case. Using (3.22), the signal distortion
energy is ǫ2y[k] = E{eTy [k] ey[k]}, while the residual noise energy is ǫ2v[k] =

E{eTv [k] ev[k]}. The goal is to minimise the signal distortion energy under the
constraint that the residual noise energy is smaller than a given threshold T ,
i.e.

min
W̄[k]

ǫ2y[k], subject to ǫ2v[k] ≤ T = αTmax , (3.29)

with 0 ≤ α ≤ 1 and the maximum threshold equal to the input noise energy
Tmax = E{vT [k]v[k]}, i.e. when W̄[k] = IM . Although this may seem trivial,
we have mathematically proved in Appendix C.1 that the smaller the signal
distortion energy ǫ2y[k], the larger the residual noise energy ǫ2v[k]. Hence, for

the filter matrix W̄[k] minimising (3.29), the residual noise energy ǫ2v[k] is
exactly equal to T , since otherwise the signal distortion energy ǫ2y[k] has not
been minimised. The optimisation problem (3.29) therefore is equivalent to

min
W̄[k]

ǫ2y[k], subject to ǫ2v[k] = T , (3.30)
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This optimisation problem can be solved by introducing the Lagrange multiplier
λ and by considering the cost function

J(W̄[k]) = ǫ2y[k] + λ
[
ǫ2v[k] − T

]
=E
{

xT [k]
(
IM − W̄T [k]

)T(
IM − W̄T [k]

)
x[k]

}

+λ
[

E
{

vT [k]W̄[k]W̄T [k]v[k]
}

− T
]

. (3.31)

The solution of the minimisation problem (3.30) can be found by setting the
derivative (see Appendix A.6)

∂J(W̄[k])

∂W̄[k]
= E

{

2x[k]xT [k]W̄[k] − 2x[k]xT [k]
}

+ λ E
{

2v[k]vT [k]W̄[k]
}

= 2
(
R̄xx[k] + λR̄vv[k]

)
W̄[k] − 2R̄xx[k] , (3.32)

to zero, yielding the solution

W̄[k] =
(
R̄xx[k] + λR̄vv[k]

)−1
R̄xx[k] (3.33)

=
(
R̄yy[k] + (λ− 1)R̄vv[k]

)−1 (
R̄yy[k] − R̄vv[k]

)
. (3.34)

Using (3.15), the filter matrix W̄[k] can also be written as

W̄[k] = Q̄−T [k] diag
{ σ̄2

i [k] − η̄2
i [k]

σ̄2
i [k] + (λ− 1) η̄2

i [k]

}

Q̄T [k] (3.35)

This formula can be interpreted as attributing more or less importance to the
noise using the factor λ. If λ = 1, then the MSE criterion is minimised and
W̄[k] is equal to (3.16). If λ > 1, then the noise level is assumed to be higher
than the actual level, such that the residual noise level is reduced at the expense
of increased signal distortion. On the contrary, taking λ < 1 assumes that the
noise level is lower than the actual level, such that signal distortion is reduced
at the expense of decreased noise reduction (in the extreme case, if λ = 0, then
W̄[k] = IM and no filtering is performed). In the remainder of the thesis, we
will generally assume MMSE estimation (λ = 1). For a specific speech-noise
example, we have plotted the signal distortion energy ǫ2y[k] versus the residual
noise energy ǫ2v[k] in Fig. 3.2, also indicating the MMSE solution. As can be
seen from this figure, this function is monotonically decreasing and the factor
λ trades off speech distortion and noise reduction. In Appendix C.1 it is shown
that the maximum value for ǫ2v[k] is equal to tr

{
R̄vv[k]

}
, whereas the maximum

value for ǫ2y[k] is equal to tr
{
R̄xx[k]

}
.

The Lagrange-multiplier λ can be related to the threshold T by satisfying the
constraint ǫ2v[k] = T , i.e.

T = ǫ2v[k] = E
{

vT [k]W̄[k]W̄T [k]v[k]
}

= tr
{

W̄T [k] R̄vv[k]W̄[k]
}

(3.36)
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Figure 3.2: Signal distortion energy ǫ2y[k] versus residual noise energy ǫ2v[k]

= tr

{

Q̄[k] diag

{(
σ̄2
i [k] − η̄2

i [k]

σ̄2
i [k] + (λ− 1) η̄2

i [k]

)2

η̄2
i [k]

}

Q̄T [k]

}

, (3.37)

which is a non-linear relation, such that it is generally impossible to compute λ
from T using a closed-form expression. Suffice it to say that similar expressions
can be obtained when minimising the residual noise energy ǫ2v[k] while keeping
the signal distortion energy ǫ2y[k] below some given threshold.

3.3 Practical computation using GSVD

In this section, we show that in practice the generalised singular value decom-
position of a speech and a noise data matrix can be used for computing (an
empirical estimate of) the optimal filter matrix. In Section 3.3.2 it is shown that
different estimates are obtained for the speech components in the microphone
signals, and a method is outlined for determining which estimate should be
used. Section 3.3.3 discusses the batch and the recursive version of the GSVD-
based optimal filtering technique and Section 3.3.4 gives a brief overview of
other possible implementations.

3.3.1 Empirical estimates using data matrices

In practice, the matrix Q̄[k] and the diagonal elements σ̄2
i [k] and η̄2

i [k] can be
estimated by a generalised singular value decomposition (GSVD), cf. Appendix
A.2, of a Pk ×M -dimensional speech data matrix Y[k], containing P speech
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data vectors, and a Qk ×M -dimensional noise data matrix V[k], containing Q
noise data vectors (with P and Q typically much larger than M)3, i.e.

Y[k] =








ζ[k − Pk + 1] yT [k − Pk + 1]
...

ζ[k − 1] yT [k − 1]
ζ[k] yT [k]







, (3.38)

V[k] =








(1 − ζ[k −Qk + 1]) yT [k −Qk + 1]
...

(1 − ζ[k − 1]) yT [k − 1]
(1 − ζ[k]) yT [k]








(3.39)

=








(1 − ζ[k −Qk + 1]) vT [k −Qk + 1]
...

(1 − ζ[k − 1]) vT [k − 1]
(1 − ζ[k]) vT [k]







, (3.40)

where Pk and Qk are chosen such that

k∑

l=k−Pk+1

ζ[l] = P

k∑

l=k−Qk+1

(1 − ζ[l]) = Q . (3.41)

Remember that ζ[k] = 1 for speech-and-noise observations (y[k] = x[k] + v[k]),
whereas ζ[k] = 0 for noise-only observations (y[k] = v[k]). The correlation ma-
trices R̄yy[k] and R̄vv[k] can now be approximated by the empirical correlation
matrices

Ryy[k] = YT [k]Y[k]/P, Rvv[k] = VT [k]V[k]/Q , (3.42)

which is an approximation because of the finite lengths P and Q.

The GSVD of the data matrices Y[k] and V[k] is defined as

{
Y[k] = UY [k] · ΣY [k] · QT [k]
V[k] = UV [k] · ΣV [k] · QT [k] ,

(3.43)

with ΣY [k] = diag{σi[k]}, ΣV [k] = diag{ηi[k]}, UY [k] and UV [k] orthogonal
matrices, Q[k] an invertible but not necessarily orthogonal matrix containing
the generalised singular vectors and σi[k]/ηi[k] the generalised singular values.

3In the multi-microphone GSVD-based optimal filtering technique, we are considering
larger data matrices than in the single-microphone case (cf. Section 2.3.2). Since typical
values for P range from 4000 to 8000, i.e. longer than the average short-time stationarity of
speech, and typical values for Q range from 20000 to 40000, the performance of the multi-
microphone GSVD-based optimal filtering technique is largely dependent on the average,
i.e. long-term, spectral and spatial characteristics of the speech and the noise sources (cf.
Section 5.2.4). Hence, no short-time effects, such as residual musical noise, will occur in this
multi-microphone technique.
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The generalised singular vectors and singular values converge to the generalised
eigenvectors and eigenvalues of R̄yy[k] and R̄vv[k] when P → ∞ and Q→ ∞.

Substituting these formulas into (3.14) gives an empirical estimate WWF [k]
for the optimal filter matrix W̄WF [k] at time k, i.e.

WWF [k] = Q−T [k] diag
{

1 − P

Q

η2
i [k]

σ2
i [k]

}

QT [k] (3.44)

showing that the optimal filter matrix estimate WWF [k] can be written as
a function of the generalised singular vectors and generalised singular values
of the speech and the noise data matrices. Also the more general estimators
discussed in Section 3.2.3 can be implemented using the GSVD of the speech
and the noise data matrices.

In Section 3.2.1 it has been shown that theoretically the diagonal elements
in (3.16) cannot become negative. However, since in practice the generalised
singular values are estimated from the empirical correlation matrices, it may
occur that some diagonal elements in (3.44) become negative. In [85] it has
already been noted that negative values will always be obtained when an un-
biased non-perfect estimator is used. Therefore these negative values, which
are in fact zero estimates, will be set to zero.

3.3.2 Different estimates of speech components

Using the speech data matrix Y[k] and the optimal filter matrix WWF [k], an
estimate can be obtained for the Pk×M speech data matrix X[k], which is defi-
ned similarly as (3.38). Without any loss of generality, it is assumed in this sec-
tion that all speech vectors in Y[k] are consecutive, i.e. ζ[l] = 1, l = k − Pk + 1 . . . k,

implying that Pk = P . The estimated speech data matrix X̂[k] can then be
written as

X̂[k] =








x̂T0 [k − P + 1] . . . x̂TN−1[k − P + 1]
...

...
x̂T0 [k − 1] . . . x̂TN−1[k − 1]
x̂T0 [k] . . . x̂TN−1[k]








= Y[k] WWF [k] . (3.45)

Using a more explicit notation, we can rewrite the P ×L sub-matrix X̂m[k] as

X̂m[k] =








x̂Tm[k − P + 1]
...
x̂Tm[k − 1]

x̂Tm[k]








(3.46)
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=









x̂k−L−P+2
m,k−P+1 [k − P + 1] x̂k−L−P+2

m,k−P+1 [k − P ] . . . x̂k−L−P+2
m,k−P+1 [k − L− P + 2]

.

.

.
.
.
.

.

.

.

x̂k−L−1
m,k−2 [k − 2] x̂k−L−1

m,k−2 [k − 3] . . . x̂k−L−1
m,k−2 [k − L− 1]

x̂k−L
m,k−1[k − 1] x̂k−L

m,k−1[k − 2] . . . x̂k−L
m,k−1[k − L]

x̂k−L+1
m,k

[k] x̂k−L+1
m,k

[k − 1] . . . x̂k−L+1
m,k

[k − L+ 1]









,

where x̂k−L+1
m,k [k] is the estimate of the speech component xm[k] in the mth

microphone signal at time k, obtained as a linear combination of the M noisy
microphone samples yn[k − L + 1] . . . yn[k], n = 0 . . . N − 1. As can be seen
from this matrix, several different estimates are available for the same speech
sample, e.g. L different estimates are available for xm[k−L+1]. If we subdivide
the ith column wWF,i[k] of WWF [k] into the L-dimensional filters wi,n[k], n =
0 . . . N − 1, similarly as in (3.5), i.e.

wWF,i[k] =
[

wT
i,0 wT

i,1 . . . wT
i,N−1

]T
, (3.47)

then the L different estimates for e.g. x0[k−L+1] can be explicitly written as

[ x̂k−L+1
0,k [k − L+ 1] x̂k−L0,k−1[k − L+ 1] . . . x̂k−2L+2

0,k−L+1[k − L+ 1] ]
T

= (3.48)26666666664 wT
L,0 0 . . . 0 . . . wT

L,N−1 0 . . . 0

0 wT
L−1,0 . . . 0 . . . 0 wT

L−1,N−1 . . . 0

. . .
. . .

0 0 . . . wT
1,0 . . . 0 0 . . . wT

1,N−1

37777777775| {z }
WT

0 [k]














y0[k]

.

.

.
y0[k − 2L+ 2]

.

.

.

yN−1[k]

.

.

.
yN−1[k − 2L+ 2]














.

with Wm[k] the filter matrix that is used for estimating speech components in
the mth microphone signal. The question now arises which of the L available
estimates in the mth microphone signal yields the lowest MSE. In addition, we
have to decide from which of the N microphone signals we will use the speech
estimates, leading to M possibilities. As already indicated in Section 3.2.1, the
diagonal elements of the error covariance matrix Ree[k] provide the answer.
The ith diagonal element Rii

ee[k] indicates how well the ith component of x[k]
is estimated. The smallest element on the diagonal, say element i, therefore
corresponds to the ‘best’ estimator, i.e. the column wWF,i[k] of WWF [k].
Using this filter, the enhanced speech signal can be computed as








x̂m[k − ∆ − P + 1]
...

x̂m[k − ∆ − 1]
x̂m[k − ∆]








= Y[k]wi
WF , (3.49)

with
m = div(i− 1, L), ∆ = mod(i− 1, L) . (3.50)
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As discussed in Section 2.3.2, some single-microphone signal subspace-based
techniques use an additional averaging step, thereby averaging out over all
available speech estimates [43][49][121][138]. However it will be shown in Sec-
tion 3.4.2 that this averaging step is unnecessary and even suboptimal. Other
procedures [85][130], which are block-based, use an overlap-add procedure on
the last row of X̂0[k], while the adaptive procedure in [220] only retains the
first element of this row at each time step, thereby implicitly taking i = 1.

The optimal procedure for minimising the MSE thus consists in computing the
error covariance matrix Ree[k] at each time step and choosing the column cor-
responding to its smallest diagonal element. However this is a computationally
very demanding procedure. Simulations have indicated that taking a fixed va-
lue i = L

2 , i.e. using the optimal estimate of the delayed speech component in

the first microphone signal x0[k − L
2 + 1], does not significantly decrease the

noise reduction performance and the speech intelligibility [56].

3.3.3 Batch and recursive algorithm

In the batch version of the algorithm, the speech and the noise data matrices
Y[k] and V[k] are constructed using all available speech and noise data vectors
in the considered signal frame. The optimal filter matrix WWF [k] (which is
then actually independent of k) is computed using the GSVD of Y[k] and V[k]
in (3.44) and the enhanced signal is obtained by filtering the microphone signals
with the filter wWF,i[k]. The batch version is not suitable for real-time imple-
mentation because of the large delay introduced by the frame-based processing.

In the recursive version, the speech and noise data matrices are updated for
each time step k with the newly available speech or noise data vector (depending
on the output of the VAD-algorithm). Depending on the specific implementa-
tion, a fixed length data window (with length P and Q for speech and noise
respectively), or an exponential weighting window (with exponential weighting
factors λy and λv, cf. Section 4.2.2) can be used. For each time k, the GSVD
of Y[k] and V[k] and the optimal filter matrix WWF [k] are recomputed and
the enhanced signal at time k is obtained by filtering the microphone signals
with the filter wWF,i[k]. The recursive version introduces only a small proces-
sing delay equal to ∆ = L

2 − 1 samples, and is able to track changing acoustic
environments and signal statistics faster than the batch version. However,
since at each time step the GSVD and the optimal filter need to be recalcula-
ted, the computational complexity is quite high. As will be shown in Chapter
4, this computational complexity can be drastically reduced by using recursive
GSVD-updating algorithms. In Section 5.2.2 it will be shown using simulations
that the batch and the recursive version of the GSVD-based optimal filtering
technique nearly have the same performance.
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3.3.4 Other implementations

Instead of using the discussed (fullband) GSVD-based implementation of the
multi-channel Wiener expression (3.14), other implementations exist, which
exhibit a lower computational complexity and/or a better performance. In
[221][224] a (fast) QRD-based implementation is proposed, leading to a lo-
wer complexity scheme having nearly the same performance. However, in this
QRD-based implementation it is not possible to incorporate the low-rank model
of the speech signal. In [94] a stochastic gradient LMS-based implementation
has been proposed, using circular data buffers and an instantaneous estimate
for the gradient (3.8). The computational complexity of this implementati-
on is very low, but the performance is also seriously degraded. In [242][240]
subband implementations of the GSVD-based optimal filtering technique have
been proposed, leading to lower complexity schemes with a better performance
than the fullband implementation, since the MSE can then be optimised in
each individual subband, which is perceptually more relevant.

3.4 Filter symmetry properties and averaging
operation

In this section a number of symmetry properties are derived for the single-
and multi-microphone optimal filter, which are valid for the white noise case
as well as for the coloured noise case and for any function f(σ̄2

i [k], η̄
2
i [k]). Also

the averaging operation of some single-microphone signal subspace-based algo-
rithms is examined, leading to the conclusion that this averaging operation is
unnecessary and often even suboptimal.

3.4.1 Single-microphone case

We refer to Appendices A.1 and A.5 for some definitions of structured matrices
and properties of their eigenvectors. In the single-microphone case, the cor-
relation matrices R̄yy[k] and R̄vv[k] are symmetric Toeplitz matrices. Hence,
these matrices belong to the class of double symmetric matrices, which are sym-
metric with respect to both the main and the secondary diagonal and whose
eigenvectors are either symmetric or skew-symmetric, cf. Theorem A.28.

Theorem 3.1 If W̄[k] is constructed using (3.28), then W̄[k] satisfies

W̄[k] = JL W̄[k]JL (W̄[k]T = JL W̄[k]T JL) , (3.51)

with JL the L × L-dimensional reversal matrix, defined in (A.8). These pro-
perties hold in the white noise case as well as in the coloured noise case and
for any function f(σ̄2

i [k], η̄
2
i [k]).
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Proof : Consider the joint diagonalisation of R̄yy[k] and R̄vv[k] in (3.15). One
can easily verify that

R̄−1
yy [k] R̄vv[k] = Q̄−T [k]Λ−1

y [k]Λv[k] Q̄
T [k] (3.52)

is the eigenvalue decomposition of R̄−1
yy [k] R̄vv[k]. Because R̄yy[k] and R̄vv[k]

are double-symmetric matrices, the following relations hold,

JL R̄yy[k]JL = R̄yy[k], JL R̄vv[k]JL = R̄vv[k] , (3.53)

such that also
R̄−1
yy [k] R̄vv[k] = JLR−1

yy [k]Rvv[k]JL . (3.54)

Therefore the eigenvectors of R̄−1
yy [k] R̄vv[k], i.e. the columns of Q̄−T [k], satisfy

the property (A.44),

JL Q̄−T [k] = Q̄−T [k] diag{±1} , (3.55)

such that

JL W̄[k]JL = JL Q̄−T diag{f(σ̄2
i [k], η̄

2
i [k])} Q̄T JL (3.56)

= Q̄−T diag{f(σ̄2
i [k], η̄

2
i [k])} Q̄T = W̄[k] . (3.57)

2

These symmetry properties imply that the ith row/column of W̄[k] is equal to
the (L+ 1 − i)th row/column in reverse order. For L odd, the middle column
in W̄[k] is symmetric, and hence represents a linear phase filter. This linear
phase property is an extension of the zero phase property that has already been
attributed to SVD and rank truncation based estimators for the white noise
case, if an additional averaging step is included [68] (cf. Section 3.4.2). The
above linear phase property is however also valid for the coloured noise case as
well as for a general function f(σ̄2

i , η̄
2
i ).

3.4.2 Single-microphone averaging operation

As already indicated in Section 2.3.2, some single-microphone procedures [43]
[49][121][138] use an additional averaging step for obtaining a final estimate
from the different available estimates for x0[k−L+1]. In the single-microphone
case, (3.48) reduces to









x̂k−L+1
0,k [k − L+ 1]

x̂k−L0,k−1[k − L+ 1]
...

x̂k−2L+2
0,k−L+1[k − L+ 1]









=












w̄T
L,0 0 . . . 0

0 w̄T
L−1,0 . . . 0

. . .

0 0 . . . w̄T
1,0












︸ ︷︷ ︸

W̄T
0 [k]









y0[k]

y0[k − 1]
...

y0[k − 2L+ 2]









.

(3.58)
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The filter w̄1,0 is a completely causal filter, whereas the filter w̄L,0 is a com-
pletely anti-causal filter and the other filters w̄i,0, i = 2 . . . L − 1, consist of a
combination of causal and anti-causal taps4.

From W̄[k]T = JL W̄[k]T JL, with W̄[k] =
[

w̄1,0 . . . w̄L−1,0 w̄L,0

]
, it

immediately follows that

W̄T
0 [k] = JL W̄T

0 [k]J2L−1 . (3.59)

The averaging operation can now be written as

x̃k−2L+2
0,k [k − L+ 1] =

[
1
L

1
L . . . 1

L

]









x̂k−L+1
0,k [k − L+ 1]

x̂k−L0,k−1[k − L+ 1]
...

x̂k−2L+2
0,k−L+1[k − L+ 1]









(3.60)

=
[

1
L

1
L . . . 1

L

]
W̄T

0 [k]
︸ ︷︷ ︸

w̃T [k]









y0[k]

y0[k − 1]
...

y0[k − 2L+ 2]









, (3.61)

with w̃[k] a (2L−1)-dimensional vector. The averaged value x̃k−2L+2
0,k [k−L+1]

is estimated from y0[k − L + 1] together with L − 1 past samples and L − 1
future samples. The filter w̃[k] is obtained by averaging over the available
L-dimensional filters w̄i,0, i = 1 . . . L. From the symmetry property of W̄0[k],
it is readily seen that w̃[k] represents a zero phase filter. The question now
is whether w̃[k] has a better performance than the individual filters w̄i,0 it
is computed from. Specifically, w̃[k] should be compared with the symmetric
middle row of W̄[k] (if L is odd), which represents a linear phase filter that
uses L−1

2 past samples and L−1
2 future samples.

First, it can be verified that w̃[k] is not the (2L−1)-dimensional optimal filter,
i.e.

x̃k−2L+2
0,k [k − L+ 1] 6= x̂k−2L+2

0,k [k − L+ 1] , (3.62)

since x̃k−2L+2
0,k [k − L+ 1] is obtained by averaging out over a collection of

L-dimensional optimal filters, whereas x̂k−2L+2
0,k [k − L+ 1] is obtained by ap-

plying the optimal filter formulas to a (2L − 1)-dimensional vector y0[k]. Se-
condly, simulations indicate that the obtained error variance for the (2L− 1)-
dimensional filter w̃[k] is consistently larger than the error variance for the
‘best’ L-dimensional filter w̄i,0, obtained by considering the smallest diagonal
element of the error covariance matrix R̄ee[k].

4Note that when the filter length L → ∞ (and assuming certain stationarity conditions),
the filters w̄i,0, i = 1 . . . L, are shifted versions of each other, implying that W̄[k] is a
Toeplitz matrix. Hence, since W̄[k] is a Toeplitz matrix and W̄[k] = JL W̄[k]JL, according
to (3.51), W̄[k] is a symmetric Toeplitz matrix, However, in general this is not true for finite
filter lengths.
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Example 3.1 Consider the following simulation: the input signal y0[k] is
constructed as the sum of two (stationary) unit-variance white noise signals
x0[k] and v0[k],

y0[k] = x0[k] + σvv0[k], k = 1 . . . P . (3.63)

Both the optimal filter matrix WWF [k], which consists of L-dimensional filters
wWF,i[k], i = 1 . . . L, and the (2L − 1)-dimensional filter w̃[k] are computed
from these signals. Also the enhanced signals x̂0,i[k] and x̃0[k] are computed
using the filters wWF,i[k] and w̃[k]. The error variances σ̂i, i = 1 . . . L, and σ̃
are defined as

σ̂i =
1

P

P∑

k=1

(x0[k] − x̂0,i[k])
2
, i = 1 . . . L, (3.64)

σ̃ =
1

P

P∑

k=1

(x0[k] − x̃0[k])
2
. (3.65)

For L = 9, P = 105 and σ2
v = 2, the error variances σ̂i, i = 1 . . . L, and σ̃

are compared in Fig. 3.3. As can be seen from this figure, the performance
of the (2L− 1)-dimensional filter w̃[k] is not always better than the individual
L-dimensional filters wWF,i[k] it is computed from. Moreover, there always
seems to exist an L-dimensional filter wWF,i[k] which leads to a lower error
variance. △
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Figure 3.3: Error variance comparison between (2L−1)-dimensional filter w̃[k]
and L-dimensional filters wWF,i[k], i = 1 . . . L
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Hence, averaging does not seem to be a well-founded operation, while on the
other hand it increases computational complexity, since it requires (2L−1)-taps
filtering instead of L-taps filtering. If minimal error variance is sought for, we
suggest to use the L-dimensional filter corresponding to the smallest diagonal
element in the error covariance matrix. However, as already indicated in Section
3.3, this is a computationally very demanding procedure, since for each time
step k the error covariance matrix R̄ee[k] needs to be computed. Therefore, in
practice we suggest to use the L-dimensional filter given by the middle column
of W̄WF [k], which provides both low error variance (albeit generally not the
lowest attainable error variance) and linear phase. It is unpredictable whether
this filter or the averaged filter yields the lowest error variance.

3.4.3 Multi-microphone case

In the multi-microphone case, similar and additional symmetry properties can
be derived, depending on the assumptions we make for the spatio-temporal
correlation matrices R̄xx[k] and R̄vv[k].

Without loss of generality we assume N = 2 in this section. However, the sym-
metry properties can be easily extended to the case of more than 2 microphones.
We will subdivide the 2L× 2L symmetric correlation matrices as

R̄xx[k] =

[

R̄00
xx[k] R̄01

xx[k]

R̄10
xx[k] R̄11

xx[k]

]

, R̄vv[k] =

[

R̄00
vv[k] R̄01

vv[k]

R̄10
vv[k] R̄11

vv[k]

]

, (3.66)

with R̄00
xx[k], R̄11

xx[k], R̄00
vv[k] and R̄11

vv[k] double-symmetric matrices, and

R̄01
xx[k] =

(
R̄10
xx[k]

)T
, R̄01

vv[k] =
(
R̄10
vv[k]

)T
. (3.67)

We also subdivide the filter matrix W̄[k] as

W̄[k] =

[
W̄00[k] W̄01[k]
W̄10[k] W̄11[k]

]

. (3.68)

If we assume that the speech and the noise correlation matrices for both mi-
crophones are equal, i.e. R̄00

xx[k] = R̄11
xx[k] and R̄00

vv[k] = R̄11
vv[k], and that

R̄01
xx[k] and R̄01

vv[k] are Toeplitz matrices, then

J2L R̄xx[k]J2L = R̄xx[k], J2L R̄vv[k]J2L = R̄vv[k] , (3.69)

such that the same symmetry properties as for the single-microphone case
apply, cf. Theorem 3.1.

Moreover, if R̄01
xx[k] and R̄01

vv[k] are symmetric Toeplitz matrices, then also

S2L R̄xx[k]S2L = R̄xx[k], S2L R̄vv[k]S2L = R̄vv[k] , (3.70)
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with S2L the block-reversal matrix, defined in (A.13). Using Theorem A.35, it
can be proved that the filter matrix W̄[k], constructed using (3.28), satisfies
the additional symmetry property

W̄[k] = S2L W̄[k]S2L (W̄T [k] = S2L W̄T [k]S2L) , (3.71)

such that

JL W̄00[k]JL = W̄00[k] = W̄11[k] , (3.72)

JL W̄01[k]JL = W̄01[k] = W̄10[k] . (3.73)

In this case, the middle columns (for L odd) of W̄00[k] and W̄10[k] again
correspond to linear phase filters.

The same properties hold when the 2 noise components v0[k] and v1[k] are
uncorrelated, since then R̄01

vv[k] = R̄10
vv[k] = 0. In the case of spatio-temporally

white noise, the noise correlation matrix is equal to

R̄vv[k] = σ2
v

[
IL 0
0 IL

]

, (3.74)

and the filter matrix W̄[k] has the additional property of being symmetric,
such that

W̄00[k] =
(
W̄00[k]

)T
, W̄01[k] =

(
W̄01[k]

)T
. (3.75)

3.5 Frequency-domain analysis

When analysing the multi-channel Wiener filter in the frequency-domain, it can
indeed be shown that (under mild assumptions) this filter can be decomposed
into a spectral and a spatial filtering term. We will discuss the power transfer
functions for the speech and the noise components and we will simplify all ex-
pressions for a single speech source. We will also discuss the noise sensitivity of
the GSC and the multi-channel Wiener filter and show under which conditions
they are equal.

3.5.1 Multi-channel Wiener filter

In the frequency-domain analysis we assume that all signals are stationary and
we consider the N -dimensional filter W(ω),

W(ω) =
[
W0(ω) W1(ω) . . . WN−1(ω)

]T
, (3.76)

which is equivalent to infinitely long filters wn[k], n = 0 . . . N − 1, in the time-
domain. Similarly as in the time-domain, the optimal frequency-domain filter
W(ω) minimises the MSE between the output signal Z(ω) = WH(ω)Y(ω)
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and the speech component X0(ω) in the first microphone signal (or any other
microphone signal)5. The frequency-domain cost function therefore is equal to

JMSE(W(ω)) = E{|X0(ω) − WH(ω)Y(ω)|2} (3.77)

= E{|X0(ω)|2} + E{YH(ω)W(ω)WH(ω)Y(ω)} (3.78)

−E{X0(ω)YH(ω)W(ω)} − E{WH(ω)Y(ω)X∗
0 (ω)} ,

which is minimised by setting the derivative

∂JMSE(W(ω))

∂W(ω)
= −2E{Y(ω)X∗

0 (ω)} + 2E{Y(ω)YH(ω)}W(ω) (3.79)

to zero. Because the speech and the noise are assumed to be uncorrelated, i.e.

E{Y(ω)X∗
0 (ω)} = E{X(ω)X∗

0 (ω)} , (3.80)

the multi-channel Wiener filter in the frequency-domain is equal to

WWF (ω) = R̄−1
yy (ω)R̄xx(ω) e1 (3.81)

with R̄yy(ω) and R̄xx(ω) similarly defined as in (2.36) and ei an N -dimensional
vector of which the ith element is equal to 1 and all other elements are equal
to 0, i.e.

ei =
[

0 . . . 0 1 0 . . . 0
]T

. (3.82)

If we assume that both the speech and the noise field are homogeneous, i.e.
that the PSD of the speech and the noise components Pxn(ω) = Px(ω) and
Pvn(ω) = Pv(ω), n = 0 . . . N − 1, then Pyn(ω) = Py(ω) = Px(ω) + Pv(ω), n =
0 . . . N − 1, such that R̄yy(ω) = Py(ω)Γy(ω) and R̄xx(ω) = Px(ω)Γx(ω), with
the coherence matrices Γy(ω) and Γx(ω) similarly defined as in (2.37). The
Wiener filter WWF (ω) can then be written as

WWF (ω) =
Px(ω)

Px(ω) + Pv(ω)
︸ ︷︷ ︸

spectral filtering

·Γ−1
y (ω)Γx(ω) e1
︸ ︷︷ ︸

spatial filtering

(3.83)

As can be seen from this equation, the multi-channel Wiener filter consists of
2 terms [241][240] :

• a single-channel Wiener filter, depending on the spectral characteristics
(PSD) of the speech and the noise sources;

• a spatial filtering operation, depending on the spatial characteristics (co-
herence) of the speech and the noise fields;

5Without loss of generality, we assume in the derivation of W(ω) that the delay ∆ is zero.
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Hence, it will be observed in the simulations in Section 5.4.1 that the perfor-
mance for a spectrally white noise source is better than the performance for
a speech-like noise source at the same position (due to the additional spec-
tral filtering) and that the performance for a single noise source is better than
for three simultaneous noise sources at different positions (due to the spatial
filtering term).

Let us reiterate that the GSC, on the contrary, only depends on the spatial
characteristics of the noise field, cf. (2.153) – under the condition that no
signal leakage into the noise references occurs.

3.5.2 Power Transfer Functions

Since R̄yy(ω) = R̄xx(ω) + R̄vv(ω), we can write

Γy(ω) =
Px(ω)

Py(ω)

[

Γx(ω) +
Pv(ω)

Px(ω)
Γv(ω)

]

=
Γx(ω) + β(ω)Γv(ω)

1 + β(ω)
, (3.84)

with β(ω) = Pv(ω)/Px(ω), such that (3.83) can be written as

WWF (ω) = [Γx(ω) + β(ω)Γv(ω)]
−1

Γx(ω) e1 (3.85)

Using Z(ω) = WH(ω)Y(ω), the PSD Pz(ω) of the output signal is equal to

Pz(ω) = WH(ω)R̄yy(ω)W(ω) = Py(ω)WH(ω)Γy(ω)W(ω) , (3.86)

such that the PTF of the speech component, cf. (2.39), is equal to

Gx0zx(ω) =
Pzx(ω)

Px0
(ω)

= WH(ω)Γx(ω)W(ω) , (3.87)

and the PTF of the noise component, cf. (2.41), is equal to

Gv0zv (ω) =
Pzv (ω)

Pv0(ω)
= WH(ω)Γv(ω)W(ω) . (3.88)

3.5.3 Single speech source

In the case of a single speech source S(ω) – the case which we will generally
consider – the correlation matrix R̄xx(ω) has rank 1, such that the coherence
matrix Γx(ω) can be written as

Γx(ω) = x(ω)xH(ω) , (3.89)

with x(ω) =
√

Ps(ω)/Px(ω)H(ω). Using the matrix inversion lemma (A.38),

the matrix [Γx(ω) + β(ω)Γv(ω)]
−1

can then be written as

[Γx(ω) + β(ω)Γv(ω)]
−1

=
1

β(ω)

[

Γ−1
v (ω) − Γ−1

v (ω)x(ω)xH(ω)Γ−1
v (ω)

xH(ω)Γ−1
v (ω)x(ω) + β(ω)

]

,

(3.90)
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such that WWF (ω) in (3.85) can be written as

WWF (ω) =
1

β(ω)

[

Γ−1
v (ω) − Γ−1

v (ω)x(ω)xH(ω)Γ−1
v (ω)

xH(ω)Γ−1
v (ω)x(ω) + β(ω)

]

x(ω)xH(ω)e1

=
Γ−1
v (ω)x(ω)xH(ω)e1

xH(ω)Γ−1
v (ω)x(ω) + β(ω)

. (3.91)

It will be proved in Section 3.5.4 that the noise sensitivity of the multi-channel
Wiener filter for a single speech source is independent of the factor β(ω) =
Pv(ω)/Px(ω), and is equal to the noise sensitivity of the GSC (for a certain
choice of the fixed beamformer and the blocking matrix in the GSC). Using
the fact that x(ω) =

√

Ps(ω)/Px(ω)H(ω), the Wiener filter WWF (ω) can be
written as

WWF (ω) =
Γ−1
v (ω)H(ω)H0(ω)

HH(ω)Γ−1
v (ω)H(ω) + Pv(ω)/Ps(ω)

(3.92)

such that, using (2.39), the PTF for the speech component, i.e. speech distor-
tion, is equal to

Gx0zx(ω) =
WH(ω)H(ω)HH(ω)W(ω)

|H0(ω)|2 (3.93)

=

[
HH(ω)Γ−1

v (ω)H(ω)

HH(ω)Γ−1
v (ω)H(ω) + Pv(ω)/Ps(ω)

]2

, (3.94)

which depends on the spatial characteristics HH(ω)Γ−1
v (ω)H(ω) and the spec-

tral characteristics Pv(ω)/Ps(ω) of the speech and the noise sources. One can
easily see that more speech distortion occurs at frequencies with a low SNR,
i.e. high Pv(ω)/Ps(ω), and when the spatial separation between the speech and
the noise sources is poor, i.e. low HH(ω)Γ−1

v (ω)H(ω) [195]. Using (3.88), the
PTF of the noise component is equal to

Gv0zv (ω) = WH(ω)Γv(ω)W(ω) =
|H0(ω)|2 HH(ω)Γ−1

v (ω)H(ω)
[
HH(ω)Γ−1

v (ω)H(ω) + Pv(ω)/Ps(ω)
]2 ,

(3.95)
such that more noise reduction occurs at frequencies with a low SNR, i.e. high
Pv(ω)/Ps(ω), and when the speech and the noise sources are spatially well
separated, i.e. high HH(ω)Γ−1

v (ω)H(ω).

3.5.4 Noise Sensitivity

In Section 5.4.3, the robustness of the multi-channel Wiener filter will be inves-
tigated for several types of deviations from the assumed signal model (microp-
hone gain and position mismatch, look direction error). Since the multi-channel



3.5. Frequency-domain analysis 99

Wiener filter does not rely on a-priori information about the signal model, it
will be shown by simulations that it is more robust than the GSC.

However, robustness can also be analysed theoretically. In order to quantify
the sensitivity to deviations in the assumed signal model, the noise sensitivity
Φ(ω) is often used [37][245], which is defined as the ratio of the white noise
gain (cf. Section 2.5.1) to the power transfer function of the speech signal (cf.
Section 2.2.4), i.e.

Φ(ω) =
WH(ω)W(ω)

Gx0zx(ω)
=

WH(ω)W(ω)

WH(ω)Γx(ω)W(ω)
, (3.96)

assuming a homogeneous speech sound field. The noise sensitivity for the GSC
and the multi-channel Wiener filter have already been studied in [240], where it
has been noted (but not proved) that the noise sensitivity of the GSC and the
multi-channel Wiener filter are equal under certain situations. In this section,
we will prove under which conditions these noise sensitivities are equal.

Using (2.155) and (2.156), the noise sensitivity of the GSC is equal to

ΦGSC(ω) =
WH

q (ω)Γ−1
v (ω)Γ−1

v (ω)Wq(ω)

WH
q (ω)Γ−1

v (ω)Γx(ω)Γ−1
v (ω)Wq(ω)

(3.97)

with Wq(ω) the fixed beamformer (assumed to be orthogonal to the blocking
matrix). Using (3.85) and (3.87), the noise sensitivity of the multi-channel
Wiener filter ΦWF (ω) is equal to

eH1 Γx(ω) [Γx(ω) + β(ω)Γv(ω)]
−1

[Γx(ω) + β(ω)Γv(ω)]
−1

Γx(ω)e1

eH1 Γx(ω) [Γx(ω) + β(ω)Γv(ω)]
−1

Γx(ω) [Γx(ω) + β(ω)Γv(ω)]
−1

Γx(ω)e1

.

(3.98)
At first sight, these noise sensitivities do not share many similarities. However,
first assume that a single speech source is present, i.e. Γx(ω) = x(ω)xH(ω) (cf.
Section 3.5.3). Using (3.91), the noise sensitivity ΦWF (ω) can be written as

ΦWF (ω) =
xH(ω)Γ−1

v (ω)Γ−1
v (ω)x(ω)

[
xH(ω)Γ−1

v (ω)x(ω)
]2 , (3.99)

which is independent of the spectral factor β(ω) = Pv(ω)/Px(ω). Secondly,
assume that the fixed beamformer Wq(ω) of the GSC is a matched filter, i.e.
Wq(ω) = αH(ω), with H(ω) the N -dimensional vector of acoustical transfer

functions. Since H(ω) =
√

Px(ω)/Ps(ω)x(ω) (cf. Section 3.5.3), it can be
shown that the noise sensitivity ΦGSC(ω) is also equal to

ΦGSC(ω) =
xH(ω)Γ−1

v (ω)Γ−1
v (ω)x(ω)

[
xH(ω)Γ−1

v (ω)x(ω)
]2 . (3.100)
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Hence, the noise sensitivity of the GSC and the multi-channel Wiener filter are
equal in the case of a single speech source and if the fixed beamformer of the
GSC is a matched filter.

In [240] it has been shown that the noise sensitivity Φ(ω) is large for low
frequencies ω, small microphone distances d, and in complicated noise scenarios
(e.g. multiple noise sources, noise source close to the speech source, diffuse
noise). A high noise sensitivity implies an increased sensitivity of the signal
enhancement algorithm to deviations from the assumed (nominal) signal model.

3.6 Combined noise and echo reduction

3.6.1 Introduction

In some speech communication applications, such as teleconferencing and hands-
free mobile telephony in car environments, a specific type of noise is present,
namely far-end echo signals coming from the remote site (see Fig. 1.1). Since
the far-end signals emitted by the loudspeakers are readily available, these sig-
nals can be used as a reference for the noise sources (unlike the noise sources
which we have considered until now, for which no reference is available). In this
section we will assume that a single far-end echo source is present, although the
presented results can be extended to the case of multiple far-end echo sources.
The nth microphone signal yn[k] can then be written as (cf. Section 2.2)

yn[k] = hn[k] ⊗ s[k] + vun[k] + hfn,0[k] ⊗ f0[k] = xn[k] + vun[k] + vfn[k]
︸ ︷︷ ︸

vn[k]

, (3.101)

with vun[k] the noise component from the unknown noise sources in the nth
microphone signal, hfn,0[k] the acoustic impulse response between the far-end
loudspeaker and the nth microphone, and f0[k] the far-end echo signal emitted
by the loudspeaker. Since the signal f0[k] is assumed to be known, it can
be used in the signal enhancement algorithms, such that we can design not
only the filters wn[k], n = 0 . . . N − 1 (on the microphone signals), but also an
additional filter wf [k] (on the far-end echo signal), cf. (2.24),

z[k] =

N−1∑

n=0

wn[k] ⊗ yn[k] + wf [k] ⊗ f0[k] . (3.102)

The goal of combined noise and echo reduction [152][158][174] is to cancel the
far-end echo components using the filter wf [k] and to reduce the noise com-
ponents (and possibly also far-end echo components to some extent) using the
filters wn[k]. Several solutions have been proposed, which can be classified into
three kinds of algorithms: multi-channel echo cancellation followed by noise
reduction (see Fig. 3.4), noise reduction followed by single-channel echo can-
cellation (see Fig. 3.5) and integrated noise and echo reduction (see Fig. 3.6).
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Figure 3.4: Combined noise and echo reduction scheme using multi-channel
echo cancellation

In the scheme presented in Fig. 3.4, first the echo components vfn[k] in all
microphone signals are cancelled using N filters wfn[k], n = 0 . . . N − 1. The
goal of each filter wfn[k] is to model the acoustic impulse response hfn[k], which
can be achieved by using an adaptive filtering algorithm (cf. Section 1.4.2).
Next, a multi-microphone noise reduction technique (e.g. GSC, multi-channel
Wiener filter) is applied to the echo-free microphone signals, yielding the same
noise reduction performance as if no echo source were present. However, the
computational complexity of this noise and echo reduction scheme is quite high,
since N adaptive filters (typically with large filter lengths) are required.

In the scheme presented in Fig. 3.5, a single-channel echo canceller wf [k] is
used after a multi-microphone noise reduction technique, thereby reducing the
computational complexity compared to the scheme in Fig. 3.4. A possible
implementation has been discussed in [125][126][151], where echo cancellation
is combined with the GSC. Since the multi-microphone noise reduction tech-
nique just considers the far-end echo source as an additional (unknown) noise
source, it now has to reduce both the noise and the far-end echo components.
Therefore, it is obvious that the noise reduction performance for the unknown
noise sources is worse than if no echo source were present. Of course, the
noise reduction technique now also reduces the far-end echo components to so-
me extent. The adaptive filter wf [k] has to model

∑N−1
n=0 wn[k] ⊗ hfn[k], with

wn[k], n = 0 . . . N −1, generally also adaptive filters. This cascade of 2 adapti-
ve filtering algorithms may give rise to problems when the adaptive filter wf [k]
can not track the changes of the adaptive filters wn[k]. Hence, an integrated
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Figure 3.5: Combined noise and echo reduction scheme using single-channel
echo cancellation
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Figure 3.6: Combined noise and echo reduction scheme using an integrated
approach

noise and echo reduction approach is called for, which is presented in Fig. 3.6.
It will be shown that by using a multi-channel Wiener filter, theoretically this
scheme can obtain the same noise reduction performance for the unknown noi-
se sources as if no echo source were present, and the far-end echo components
can be completely cancelled.

3.6.2 Integrated multi-channel Wiener filter approach
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When considering the far-end echo signal f0[k] in Fig. 3.6 merely as an addi-
tional input signal, we can again use the multi-channel Wiener filter discussed
in Sections 3.2 and 3.3 for computing an optimal estimate of the speech com-
ponents xn[k], by just redefining the filter vector in (3.5) as

wt[k] =

[
w[k]
wf [k]

]

, (3.103)

and by redefining the data vector in (3.6) as

yt[k] =

[
y[k]
f [k]

]

. (3.104)

The Lf -dimensional vectors wf [k] and f [k] are equal to

wf [k] =
[

wf0 [k] wf1 [k] . . . wfLf−1[k]
]T

, (3.105)

f [k] =
[
f0[k] f0[k − 1] . . . f0[k − Lf + 1]

]T
, (3.106)

with the filter length Lf typically larger than L, since the filter wf [k] needs to
model a long acoustic impulse response. The input vector yt[k] consists of a
speech and a noise component, i.e.

yt[k] = xt[k] + vt[k] =

[
x[k]
0

]

+

[
v[k]
f [k]

]

, (3.107)

where we obviously can assume that no speech components are present in the
far-end echo signal f0[k].

In the frequency-domain, the nth microphone signal Yn(ω) can be written as

Yn(ω) = Xn(ω) + Vn(ω) = Xn(ω) + V un (ω) + V fn (ω) , (3.108)

with V un (ω) the noise component from the unknown noise sources and V fn (ω)
the noise component from the far-end echo source. The noise component V fn (ω)
is equal to Hf

n,0(ω)F0(ω), with Hf
n,0(ω) the acoustic transfer function between

the far-end loudspeaker and the nth microphone and F0(ω) the far-end echo
signal emitted by the loudspeaker. The stacked vector of microphone signals
can then be written as

Y(ω) = X(ω) + V(ω) = X(ω) + Vu(ω) + Vf (ω) , (3.109)

with Vf (ω) = Hf (ω)F0(ω) and

Hf (ω) =
[

Hf
0,0(ω) Hf

1,0(ω) . . . Hf
N−1,0(ω)

]T

. (3.110)

Since the speech, noise and far-end echo components are assumed to be mutu-
ally uncorrelated, the correlation matrix R̄yy(ω) can be written as

R̄yy(ω) = R̄xx(ω)+R̄u
vv(ω)+R̄f

vv(ω) = R̄xx(ω)+R̄u
vv(ω)+Pf (ω)Hf (ω)HH

f (ω) ,
(3.111)
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with Pf (ω) = E{|F0(ω)|2}. Similarly as in (3.103) and (3.104), the (N + 1)-
dimensional filter vector in (3.76) can be redefined as

Wt(ω) =

[
W(ω)
W f (ω)

]

, (3.112)

with W f (ω) the filter applied to the far-end echo signal F0(ω), whereas the
(N + 1)-dimensional data vector can be redefined as

Yt(ω) =

[
Y(ω)
F0(ω)

]

=

[
X(ω)

0

]

+

[
V(ω)
F0(ω)

]

= Xt(ω) + Vt(ω) . (3.113)

Using (3.81), the Wiener filter for combined noise and echo reduction now is
equal to

Wt
WF (ω) =

[

WWF (ω)

W f
WF (ω)

]

= R̄−1
ytyt(ω)R̄xtxt(ω) e1 , (3.114)

with the matrices R̄ytyt(ω) and R̄xtxt(ω) defined as

R̄ytyt(ω) = E{Yt(ω)YH
t (ω)} (3.115)

R̄xtxt(ω) = E{Xt(ω)XH
t (ω)} . (3.116)

In Appendix C.2 it is shown that WWF (ω) is equal to

WWF (ω) =
[
R̄xx(ω) + R̄u

vv(ω)
]−1

R̄xx(ω) e1 (3.117)

which is the same formula for the multi-channel Wiener filter as if no echo
source were present, cf. (3.81), implying that the echo source has no influence

on WWF (ω)6. In Appendix C.2 it is also shown that W f
WF (ω) is equal to

W f
WF (ω) = −HH

f (ω)
[
R̄xx(ω) + R̄u

vv(ω)
]−1

R̄xx(ω) e1 = −HH
f (ω)WWF (ω)

(3.118)
such that the total filter operation on the far-end echo signal F (ω) is equal to

Wt,H
WF (ω)

[
Hf (ω)

1

]

= WH
WF (ω)Hf (ω) +W f,∗

WF (ω) = 0 , (3.119)

implying that the far-end echo components in the microphone signals are com-
pletely cancelled by the multi-channel Wiener filter Wt

WF (ω). This is not
surprising, since infinitely long filters are assumed in this theoretical analysis,

6Note that the multi-channel Wiener filter for the scheme in Fig. 3.5 is equal to
WWF (ω) = [R̄xx(ω) + R̄u

vv(ω) + R̄f
vv(ω)]−1 R̄xx(ω) e1, giving rise to a different noise re-

duction for the unknown noise sources and a different speech distortion than if no echo
source were present.
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and the filter W f
WF (ω) therefore can always model −HH

f (ω)WWF (ω), whate-
ver the filter matrix WWF (ω) is. However, in practice the filters have a finite
length (and the signals are not perfectly uncorrelated), such that the far-end
echo source will have an influence on WWF and the far-end echo components
(generally) will not be completely cancelled.

The described combined noise and echo reduction technique has been realised
using a GSVD-based implementation [47], and using a QRD-based implemen-
tation [223]. In [47] quite short filter lengths have been used (also for wf [k])
due to the large computational complexity of the GSVD-based implementa-
tion. Because the QRD-based implementation has a smaller computational
complexity, longer filter lengths have been used in [223], giving rise to an im-
proved noise and echo reduction performance. However, since echo cancellation
is not the main topic of this thesis, we will not further consider far-end echo
sources.

3.7 Conclusion

In this chapter we have discussed a class of unconstrained optimal filtering tech-
niques for multi-microphone speech enhancement, which combine the spatio-
temporal information of the speech and the noise sources. The optimal filter
in the MSE sense is the multi-channel Wiener filter, which produces an MM-
SE estimate of the speech components in the microphone signals. We have
shown that the multi-channel Wiener filter belongs to a more general class of
estimators where it is possible to trade off speech distortion and noise reduc-
tion. Although different possibilities exist for implementing the multi-channel
Wiener filter, we have considered a GEVD-based implementation, enabling to
easily incorporate the low-rank model of the speech signal . We have shown
that the described class of optimal filtering techniques hence can be considered
a multi-microphone extension of the single-microphone subspace-based techni-
ques.

In Section 3.3 it has been shown that an empirical estimate of the optimal filter
matrix can be computed using the GSVD of a speech and a noise data matrix.
These data matrices are constructed based on the output of a VAD algorithm,
which is the only a-priori information the GSVD-based optimal filtering tech-
nique relies on. We have shown that different estimates are obtained for the
same speech component, and a procedure has been given for determining which
estimate should be used (in practice typically the delayed speech component
x0[k − L

2 + 1] is selected). Both for the batch and for the recursive version
of the GSVD-based optimal filtering technique, the computational complexity
is quite high. Therefore, in Chapter 4 several techniques will be discussed for
reducing this complexity.
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In Section 3.4 we have derived a number of symmetry properties for the opti-
mal filter, which are valid for the white noise case as well as for the coloured
noise case and for any weighting function. In addition, we have examined the
averaging operation, leading to the conclusion that this averaging operation is
unnecessary and may even be suboptimal.

The unconstrained optimal filtering technique has been analysed in the time-
domain (Section 3.2) and in the frequency-domain (Section 3.5). We have
shown that the multi-channel Wiener filter in the frequency-domain can in-
deed be decomposed into a spectral and a spatial filtering term (under mild
assumptions). We have simplified the expressions for the case of a single speech
source and we have derived conditions under which the noise sensitivity of the
GSC and the multi-channel Wiener filter are equal. We have shown that more
speech distortion occurs at frequencies with a low SNR and when the spatial
separation between the speech and the noise sources is poor and that more
noise reduction occurs at frequencies with a low SNR and when the speech and
the noise sources are spatially well separated.

In Section 3.6 we have shown that the unconstrained optimal filtering techni-
que can also be used for combined noise and echo reduction. When assuming
infinite-length filters, we have proved that the far-end echo source has no in-
fluence on the filters applied to the microphone signals and the far-end echo
components in the microphone signals can be completely cancelled.



Chapter 4

Complexity reduction using
recursive GSVD and ANC
postprocessing stage

In this chapter, several techniques are discussed for reducing the computational
complexity of the GSVD-based optimal filtering technique described in the pre-
vious chapter. First, several techniques are discussed for efficiently calculating
the GSVD of the speech and the noise data matrix, making the GSVD-based
optimal filtering technique amenable to real-time implementation. Secondly, it
is shown that the GSVD-based optimal filtering technique can be incorporated
in a GSC-type structure by adding an adaptive noise cancellation (ANC) post-
processing stage. It will be shown by simulations in Chapter 5 that the same
noise reduction performance can then be achieved with shorter filter lengths
for the optimal filter, resulting in a lower overall complexity.

4.1 Introduction

In Chapter 3 a class of unconstrained optimal filtering techniques for multi-
microphone speech enhancement has been discussed, which can be realised in
practice using a GSVD-based implementation (cf. Section 3.3). In the recursive
version of this GSVD-based optimal filtering technique (cf. Section 3.3.3), for
each time step the speech and the noise data matrices are updated with the
newly available speech or noise data vector, depending on the output of the
VAD-algorithm. Since at each time step the GSVD and the optimal filter need
to be recalculated, the computational complexity is quite high.

107
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Section 4.2 describes several techniques for reducing the complexity by using
recursive and square root-free Jacobi-type GSVD-updating algorithms, and by
using sub-sampling. Instead of recomputing the GSVD from scratch for each
time step, recursive algorithms compute the GSVD at time k using the decom-
position at time k − 1. Sub-sampling in this context means that the GSVD
and the optimal filter are not updated for every sample. The computatio-
nal complexity is summarised for realistic parameter values, showing that the
complexity can be significantly reduced such that the recursive GSVD-based
optimal filtering technique indeed becomes suitable for real-time implementa-
tion.

Section 4.3 describes how the GSVD-based optimal filtering technique can be
incorporated in a GSC-type structure by creating speech and noise reference
signals and by using these signals in an ANC postprocessing stage. The output
of the GSVD-based optimal filtering technique is used as speech reference sig-
nal, whereas different possibilities exist for creating a noise reference. It will be
shown by simulations in Chapter 5 that the same noise reduction performance
can then be achieved with shorter filter lengths for the optimal filter, resulting
in a lower overall complexity.

4.2 Recursive GSVD and sub-sampling

As already stated, the recursive version of the GSVD-based optimal filtering
technique needs to recompute the GSVD of the speech and the noise data ma-
trices for each time step, leading to a high computational complexity, even
when using short filter lengths L. This section describes several techniques for
drastically reducing the computational complexity by using recursive GSVD-
updating algorithms and sub-sampling. Section 4.2.1 describes a Jacobi-type
algorithm for computing the GSVD of two matrices using Givens rotations.
This Jacobi-type algorithm lends itself well to a recursive GSVD-updating al-
gorithm with a significantly lower computational complexity, described in Sec-
tion 4.2.2. Section 4.2.3 discusses the square-root free implementation of this
recursive GSVD-updating algorithm. For stationary acoustic environments the
complexity can be further reduced by using sub-sampling, which is described
in Section 4.2.4. A summary of the overall computational complexity of the
considered algorithms for realistic parameter values is given in Section 4.2.5.

4.2.1 Jacobi-type algorithm for computing the GSVD

For conciseness the time index k will be omitted in this section. The GSVD of
the P ×M -dimensional matrix Y and the Q ×M -dimensional matrix V, cf.
(3.43), can be computed as follows (for details we refer to [110][168][205][206]
[262][263]). First, the matrices Y and V are reduced to upper-triangular form
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by a QR-decomposition,

Y = QY · RY , V = QV · RV , (4.1)

where RY and RV are M×M -dimensional upper-triangular matrices, and QY

and QV have orthonormal columns, i.e. QT
Y · QY = QT

V · QV = IM . The
GSVD of Y and V readily follows from the GSVD of RY and RV . The GSVD
of the square matrices RY and RV is computed by carrying out an iterative
procedure, where a series of orthogonal Givens transformations are applied to
RY and RV in order to yield M ×M -dimensional upper-triangular factors SY
and SV with parallel rows, i.e.

{

UT
RY

· RY · QR = SY = ΣY · R
UT
RV

· RV · QR = SV = ΣV · R ,
(4.2)

with URY
, URV

and QR M ×M -dimensional orthogonal matrices, ΣY and
ΣV M×M -dimensional diagonal matrices and R a M×M -dimensional upper-
triangular matrix. Combining (4.1) and (4.2), the GSVD of Y and V can be
written as

{

Y= QY · RY = UY · SY · QT
R , UY · ΣY · QT

V= QV · RV = UV · SV · QT
R , UV · ΣV · QT ,

(4.3)

with UY = QY URY
, UV = QV URV

and QT = RQT
R . The algorithm for

computing the matrices URY
, URV

, SY , SV and QR is presented in Table 4.1
(typically only SY , SV and QR are stored).

1. Initialisation: SY ⇐ RY URY
⇐ IM QR ⇐ IM

SV ⇐ RV URV
⇐ IM

2. Iterative GSVD-procedure:

for j = 1 . . . αM (sweeps)

for i = 1 . . . M − 1 (GSVD-steps)

SY ⇐ ΘT
i,j · SY · Qi,j URY ⇐ URY · Θi,j (4.4)

SV ⇐ ΦT
i,j · SV · Qi,j URV ⇐ URV · Φi,j (4.5)

QR ⇐ QR · Qi,j (4.6)

end
end

Table 4.1: Algorithm for computing the GSVD of RY and RV



110 Complexity reduction using recursive GSVD and ANC postprocessing

The orthogonal matrices Θi,j and Φi,j in (4.4) and (4.5) represent plane Givens
rotations with rotation angles θi,j and φi,j in the (i, i+ 1)-plane, i.e.

Θi,j =







Ii−1

− sin θi,j cos θi,j
cos θi,j sin θi,j

IM−i−1






, (4.7)

Φi,j =







Ii−1

− sinφi,j cosφi,j
cosφi,j sinφi,j

IM−i−1






. (4.8)

In each iteration, the computation of the rotation angles θi,j and φi,j and Qi,j ,
essentially reduces to the GSVD of the elementary 2 × 2-dimensional blocks
{SY }i,i+1 and {SV }i,i+1 on the main diagonal, where {A}i,i+1 denotes the
2 × 2-dimensional matrix on the intersection of the rows {i, i + 1} and the
columns {i, i + 1} of the matrix A. The pivot index i repeatedly takes up all
possible values i = 1 . . .M − 1 on the main diagonal. Here, one such sequence
is referred to as a sweep (= M − 1 GSVD-steps).

Since the GSVD of the upper-triangular matrices SY and SV corresponds to the
SVD of the upper-triangular matrix SC = SY S−1

V , it is possible to implicitly
apply a Jacobi-type SVD-algorithm to SC without explicitly having to compute
S−1
V and SC [168]. The GSVD of the 2 × 2-dimensional blocks {SY }i,i+1 and

{SV }i,i+1 corresponds to the SVD of the 2 × 2-dimensional block {SC}i,i+1,
since it can be easily proved that for the upper-triangular matrices SC , SY and
SV , the following relation holds,

{SC}i,i+1 = {SY }i,i+1 · {S−1
V }i,i+1 = {SY }i,i+1 · {SV }−1

i,i+1 , (4.9)

such that

{SC}i,i+1 =

[

si,iC si,i+1
C

0 si+1,i+1
C

]

=






si,i
Y

si,i
V

si,i+1
Y

si,i
V

−si,i
Y
si,i+1
V

si,i
V
si+1,i+1
V

0
si+1,i+1
Y

si+1,i+1
V




 . (4.10)

Calculating the SVD of {SC}i,i+1 comes down to calculating the Givens rota-
tion angles θi,j and φi,j in (4.4) and (4.5) such that
[

s̃i,iC 0

0 s̃i+1,i+1
C

]

︸ ︷︷ ︸

{Σ}i,i+1

= (4.11)

[
− sin θi,j cos θi,j

cos θi,j sin θi,j

]

︸ ︷︷ ︸

{ΘT
i,j}i,i+1

·
[

si,iC si,i+1
C

0 si+1,i+1
C

]

︸ ︷︷ ︸

{S
C
}i,i+1

·
[

− sinφi,j cosφi,j
cosφi,j sinφi,j

]

︸ ︷︷ ︸

{Φi,j}i,i+1

.
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Different possibilities for calculating these rotation angles have been discussed
in [31][168], and generally consist of a symmetrisation step and a diagonalisa-
tion step. The orthogonal transformations {Θi,j}i,i+1 and {Φi,j}i,i+1 are seen
to parallelise the rows of {SY }i,i+1 and {SV }i,i+1, i.e.

{ΘT
i,j}i,i+1 · {SY }i,i+1 = {Σ}i,i+1 · {ΦT

i,j}i,i+1 · {SV }i,i+1 , (4.12)

which then allows for a joint upper-triangularising orthogonal transformation
{Qi,j}i,i+1 in order to obtain the GSVD of {SY }i,i+1 and {SV }i,i+1,

{ΘT
i,j}i,i+1 · {SY }i,i+1 · {Qi,j}i,i+1

︸ ︷︷ ︸

upper-triangular

={Σ}i,i+1·{ΦT
i,j}i,i+1 · {SV }i,i+1 · {Qi,j}i,i+1

︸ ︷︷ ︸

upper-triangular

.

(4.13)
In each iteration, the sum-of-squares of the off-diagonal elements of SC is redu-
ced by (si,i+1

C )2, and it has been shown that after αM sweeps (with α typically
3 . . . 5) the algorithm converges, i.e. the sum-of-squares of the off-diagonal ele-
ments of SC is a very small number, such that SC can be considered to be a
diagonal matrix.

Table 4.2 summarises the computational complexity, defined as the number of
additions and multiplications, of the GSVD-calculation in iteration step i and
for one sweep, i.e. i = 1 . . .M − 1. The number of square-root operations is
also stated in Table 4.2. The computational complexity for one sweep is (ap-
proximately) equal to 18M2. Since computing a full GSVD first requires a QR-
decomposition of the P ×M -dimensional matrix Y and the Q×M -dimensional
matrix V and requires αM sweeps in the iterative GSVD-procedure, the total
computational complexity is equal to

3M2(P +Q− 2M/3)
︸ ︷︷ ︸

QR-decomposition

+ 18αM3
︸ ︷︷ ︸

GSVD-procedure

= (18α− 2)M3 + 3M2(P +Q) . (4.14)

For typical values of P , Q and M , the complexity of this algorithm is too high
to be suitable for real-time implementation (cf. Table 4.4).

Step i One sweep (i = 1 . . .M − 1)

Calculation θi,j and φi,j 43 + 3
√· 43(M − 1) + 3(M − 1)

√·
Calculation Qi,j 5 + 1

√· 5(M − 1) + (M − 1)
√·

Multiplication ΘT
i,j · SY 6(M − i) + 2 3M2 −M − 2

Multiplication ΦT
i,j · SV 6(M − i) + 2 3M2 −M − 2

Multiplication S̃Y · Qi,j 6i 3M2 − 3M

Multiplication S̃V · Qi,j 6i 3M2 − 3M
Multiplication QR · Qi,j 6M 6M2 − 6M

Total 18M2 + 34M − 52 + 4(M − 1)
√·

Table 4.2: Computational complexity for one sweep in GSVD-calculation
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4.2.2 Recursive GSVD-updating algorithm

Instead of recomputing the GSVD from scratch, recursive GSVD-updating al-
gorithms compute the GSVD at time k using the decomposition at time k− 1.
In [181][183][184] a Jacobi-type (G)SVD-updating algorithm has been descri-
bed. Suppose that at time k − 1 the upper-triangular factors are reduced to
SY [k − 1] and SV [k − 1] having approximately parallel rows, cf. (4.2),







Y[k − 1] = UY [k − 1] · SY [k − 1] · QT
R[k − 1]

, UY [k − 1] · ΣY [k − 1] · QT [k − 1]

V[k − 1] = UV [k − 1] · SV [k − 1] · QT
R[k − 1]

, UV [k − 1] · ΣV [k − 1] · QT [k − 1] ,

(4.15)

of which only the upper-triangular matrices SY [k − 1], SV [k − 1] and the or-
thogonal matrix QR[k − 1] are stored and updated.

At time k, a new data vector y[k] is present, such that we need to recompute
the GSVD of the updated data matrices Y[k] and V[k], which are constructed
by exponentially weighting Y[k − 1] and V[k − 1] (when using fixed length
data windows, also a down-date has to be performed, which is not numerically
stable). If y[k] is classified by the VAD-algorithm as a speech-and-noise vector
(ζ[k] = 1), only the speech data matrix Y[k] is updated, i.e.

Y[k] =

[
λy · Y[k − 1]

yT [k]

]

, V[k] = V[k − 1] , (4.16)

whereas if y[k] is classified as a noise-only vector (ζ[k] = 0), only the noise data
matrix V[k] is updated, i.e.

Y[k] = Y[k − 1], V[k] =

[
λv · V[k − 1]

yT [k]

]

, (4.17)

with λy an exponential weighting factor for speech and λv an exponential weigh-
ting factor for noise (if λ = 1, no weighting is performed). Assuming that y[k]
is classified as a speech-and-noise vector, the speech data matrix Y[k] can be
rewritten as

Y[k] =








UY [k − 1]
0
.
.
.
0

0 . . . 0 1







·
[

λy · SY [k − 1]

yT [k] · QR[k − 1]

]

· QT
R[k − 1] . (4.18)

First, the upper-triangular factor is restored by performing a QR-update with
the transformed input vector ỹT [k] = yT [k] · QR[k − 1]. QR-updating can be
performed by using orthogonal Givens rotations, zeroing the elements on the
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bottom row, yielding the upper-triangular matrix S̃Y [k],

Y[k] =








UY [k − 1]
0
.
.
.
0

0 . . . 0 1







· Q̃Y [k]

︸ ︷︷ ︸

Ũ
Y

[k]

·S̃Y [k] · QT
R[k − 1] . (4.19)

In this equation, Q̃Y [k] is an (M +1)×M -dimensional matrix with orthogonal
columns, which does not need to be computed explicitly. Note that the matrix
QR[k − 1] is not altered by the QR-update. If y[k] is classified as a noise-only
vector, a similar procedure needs to be performed for V[k] instead of for Y[k],
i.e.

V[k] =








UV [k − 1]
0
.
.
.
0

0 . . . 0 1







· Q̃V [k]

︸ ︷︷ ︸

Ũ
V

[k]

·S̃V [k] · QT
R[k − 1] . (4.20)

Secondly, the iterative GSVD-procedure is resumed in order to further paral-
lelise the rows of the square upper-triangular matrices S̃Y [k] and S̃V [k]. A
fixed number of sweeps (s) is performed, where the pivot index i takes up r
consecutive values. Typically one sweep is performed (s = 1), where the pivot
index takes up all possible values along the main diagonal (r = M − 1).

The complete procedure at time k, where only the square M ×M -dimensional
upper-triangular matrices SY [k] and SV [k] and the M ×M -dimensional ortho-
gonal matrix QR[k] are stored and updated, is summarised in Table 4.3. The
computational complexity of one GSVD-update then is equal to

0.5M2
︸ ︷︷ ︸

weighting

+ 2M2
︸︷︷︸

input vector

+ 3M2
︸︷︷︸

QR-update

+ s · r/(M − 1) · 18M2

︸ ︷︷ ︸

GSVD-procedure

, (4.21)

such that for s = 1 and r = M − 1 the complexity amounts to 23.5M2.

The optimal filter matrix WWF [k] in (3.44) can now be computed as

WWF [k] = Q−T [k] diag

{

1 − (1 − λ2
v)

(1 − λ2
y)

η2
i [k]

σ2
i [k]

}

QT [k] , (4.29)

where the factor P/Q has been replaced by (1−λ2
v)/(1−λ2

y), because exponen-
tial weighting factors λy and λv are used. Upon convergence of the recursive
GSVD-updating algorithm, it follows from (4.15) that

QT [k] = Σ−1
Y [k] · SY [k] · QT

R[k] , (4.30)
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1. matrix-vector multiplication and QR-update

if ζ[k] = 1 (speech-and-noise)

SY [k] ⇐ Q̃T
Y [k] ·

[
λy · SY [k − 1]

yT [k] · QR[k − 1]

]

(4.22)

SV [k] ⇐ SV [k − 1] (4.23)

else if ζ[k] = 0 (noise-only)

SY [k] ⇐ SY [k − 1] (4.24)

SV [k] ⇐ Q̃T
V [k] ·

[
λv · SV [k − 1]

yT [k] · QR[k − 1]

]

(4.25)

end

QR[k] ⇐ QR[k − 1]

2. GSVD-update procedure

rk+1 = mod(rk + r − 1,M − 1) + 1

for j = 1 . . . s (sweeps)

for i = rk . . . rk+1 − 1 (GSVD-steps)

SY [k] ⇐ ΘT
i,j [k] · SY [k] · Qi,j [k] (4.26)

SV [k] ⇐ ΦT
i,j [k] · SV [k] · Qi,j [k] (4.27)

QR[k] ⇐ QR[k] · Qi,j [k] (4.28)

end
end

Table 4.3: Algorithm for recursive GSVD-updating using Jacobi-rotations

and si,iY [k]/si,iV [k] = σi[k]/ηi[k], since SY [k] and SV [k] have parallel rows1.
Hence, WWF [k] can be computed as

WWF [k] = QR[k] · S−1
Y [k] · ΣY [k] diag

{

1 − (1 − λ2
v)

(1 − λ2
y)

η2
i [k]

σ2
i [k]

}

Σ−1
Y [k] ·

SY [k] · QT
R[k] (4.31)

= QR[k] · S−1
Y [k] diag

{

1 − (1 − λ2
v)

(1 − λ2
y)

(
si,iV [k]

)2

(
si,iY [k]

)2

}

SY [k] · QT
R[k] . (4.32)

1When the recursive GSVD-updating algorithm has not reached convergence, SY [k] and
SV [k] only have approximately parallel rows, such that (4.32) is an approximation of the
filter matrix WWF [k].
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Since only the ith column wWF,i[k] of WWF [k] needs to be computed (cf.
Section 3.3.2), this column can be computed as the solution of the linear set of
equations

SY [k] · QT
R[k] · wWF,i[k]

︸ ︷︷ ︸

w̃[k]

= diag
{

1 − (1 − λ2
v)

(1 − λ2
y)

(
si,iV [k]

)2

(
si,iY [k]

)2

}

· SY [k] · qR,i[k]
︸ ︷︷ ︸

q̃[k]

(4.33)
with qR,i[k] the ith column of QT

R[k]. The calculation of wWF,i[k] consists of
computing q̃[k], requiring M2 operations (multiplication of triangular matrix
with vector), solving the equation SY [k] · w̃[k] = q̃[k] by back-substitution,
requiring M2 operations, and computing wWF,i[k] as

wWF,i[k] = QR[k] · w̃[k] , (4.34)

requiring 2M2 operations. Hence, the total computational complexity for com-
puting wWF,i[k] from the GSVD of Y[k] and V[k] amounts to 4M2.

4.2.3 Square root-free implementation

The computational complexity can be further reduced by using a square root-
free implementation for the QR-updates and for the calculation of the elemen-
tary 2×2-dimensional GSVDs. The calculation of the rotation angles for a QR-
update and for an elementary 2 × 2 -dimensional GSVD respectively requires
one and three square roots [31][168] (cf. Table 4.2). Gentleman has developed
a square root-free procedure for QR-updating where a one-sided factorisati-
on of the upper-triangular R-matrix is used [105]. However, since the above
GSVD-schemes as such do not lend themselves to square root-free implemen-
tation, alternative schemes based on approximate formulas for the calculation
of the rotation angles θi,j and φi,j have to be considered [31]. When com-
bined with a generalised Gentleman procedure with a two-sided factorisation
of the upper-triangular S-factor, these schemes eventually yield square root-
free SVD-updating algorithms [185], which can easily be extended to square
root-free GSVD-updating algorithms [183].

For a square root-free QR-decomposition and QR-update of e.g. the speech
data matrix Y, the matrices QY and RY are factorised as

RY = D
1
2 · R̄Y , QY = Q̄Y · D 1

2 , (4.35)

with D a diagonal matrix, performing a row scaling for the upper-triangular
factor RY and a column scaling for the orthogonal matrix QY . In a square root-
free QR-update only the diagonal matrix D and the upper-triangular factor
R̄Y are stored and updated, without calculating square roots, i.e. D

1
2 is never

computed explicitly.



116 Complexity reduction using recursive GSVD and ANC postprocessing

For a square root-free 2×2-dimensional GSVD with approximate formulas, the
relevant transformation formula (4.11) becomes
[
s̃i,iC s̃i,i+1

C

0 s̃i+1,i+1
C

]

= (4.36)

[
− sin θi,j cos θi,j

cos θi,j sin θi,j

]

·
[
si,iC si,i+1

C

0 si+1,i+1
C

]

·
[

− sinφi,j cosφi,j
cosφi,j sinφi,j

]

,

where si,i+1
C is now only approximately annihilated, i.e. |s̃i,i+1

C | ≤ |si,i+1
C |.

Several approximate formulas exist for calculating tan θi,j and tanφi,j without
square roots. For details we refer to [31][185].

For the square root-free GSVD-update procedure, the matrices UY , UV , SY ,
SV and QR are factorised as

SY = (DY
row)

1
2 · S̄Y · (Dcol)

1
2 , SV = (DV

row)
1
2 · S̄V · (Dcol)

1
2 (4.37)

UY = ŪY · (DY
row)

1
2 , UV = ŪV · (DV

row)
1
2 , QR = Q̄R · (Dcol)

1
2 , (4.38)

with DY
row, DV

row and Dcol diagonal (row and column scaling) matrices. In a
GSVD-update only the diagonal matrices DY

row, DV
row and Dcol, the upper-

triangular matrices S̄Y and S̄V , and the matrix Q̄R are stored and updated,
without calculating any square roots [183][185]. The actual complexity reduc-
tion results from the fact that the 2 × 2-dimensional row and column trans-
formation matrices in the update formulas contain ones along the diagonal (or
anti-diagonal), hereby halving the number of multiplications required (for de-
tails we refer to [185]). If we substitute these factorisations into (4.15), the
GSVD of Y[k] and V[k] can be written as

{

Y[k] = ŪY [k] · DY
row[k] · S̄Y [k] · Dcol[k] · Q̄T

R[k]

V[k] = ŪV [k] · DV
row[k] · S̄V [k] · Dcol[k] · Q̄T

R[k] ,
(4.39)

such that the optimal filter WWF [k] in (4.32) can be computed as

WWF [k] = Q̄R[k] · S̄−1
Y [k] · diag

{

1 − (1 − λ2
v)

(1 − λ2
y)

dV,irow[k]

dY,irow[k]

(s̄i,iV [k])2

(s̄i,iY [k])2

}

·

S̄Y [k] · Dcol[k] · Q̄T
R[k] . (4.40)

Similarly to (4.21), the computational complexity of one square root-free GSVD-
update is equal to

0.5M2
︸ ︷︷ ︸

weighting

+ 2M2
︸︷︷︸

input vector

+ 2M2
︸︷︷︸

sqrt-free QR-update

+ s · r/(M − 1) · 12M2

︸ ︷︷ ︸

sqrt-free GSVD-procedure

, (4.41)

such that for s = 1 and r = M − 1 the complexity amounts to 16.5M2, which
is less expensive than the ‘conventional’ non square root-free GSVD-updating
procedure (23.5M2). The computational complexity for computing the column
wWF,i[k] from the GSVD of Y[k] and V[k] is again equal to 4M2.



4.3. ANC postprocessing stage 117

Non-recursive/Batch Recursive Square root-free

16M3+3M2(P+Q)
sg

23.5M2

sg
+ 4M2

sf
16.5M2

sg
+ 4M2

sf

sf = sg = 1 7504 Gflops 2.8 Gflops 2.1 Gflops

sf = sg = 20 375 Gflops 141 Mflops 105 Mflops

Table 4.4: Summary of overall complexity of GSVD-based optimal filtering
technique for batch and recursive versions using realistic parameter values

4.2.4 Sub-sampling techniques

For stationary acoustic environments, the computational complexity can be
reduced without any loss in performance by using sub-sampling techniques. In
this context sub-sampling means that the GSVD of Y[k] and V[k] and the
optimal filter wWF,i[k] are not updated for every sample, but that the GSVD
is updated every sg samples and that the optimal filter is updated every sf
samples. In Section 5.2.3 it will be shown that the convergence speed towards
the converged optimal filter (for stationary environments) is slower if higher
sub-sampling factors are used, implying that the amount of sub-sampling needs
to be limited in non-stationary acoustic environments.

4.2.5 Overall computational complexity

Table 4.4 summarises the total computational complexity in floating point ope-
rations per second (flops) for the batch and the recursive version of the GSVD-
based optimal filtering technique, assuming that s = 1, r = M − 1 and α = 1.
The numerical results are obtained for N = 4 microphones, filter length L = 20
(M = 80), sampling frequency fs = 16 kHz, data window lengths P = 4000
and Q = 20000 (for the batch version) and are shown both in case of no sub-
sampling and in case of sub-sampling with sg = sf = 20. By using the recursive
version of the GSVD-based optimal filtering technique, the computational com-
plexity can be significantly reduced such that the algorithm becomes suitable
for real-time implementation.

4.3 ANC postprocessing stage

As already discussed in Section 2.5.3, the GSC-structure depicted in Fig. 2.10
is a widely used structure in adaptive beamforming, where speech and noise
reference signals are created and then used in an adaptive noise cancellation
(ANC) stage [17][34][37][100][113][116][123][128][191][194][254][264]. The ob-
jective is to create a speech reference signal having a higher SNR than the
original microphone signals and to create one or more noise reference signals
containing as little speech energy as possible. A multi-channel adaptive filter
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Figure 4.1: GSVD-based optimal filtering technique incorporated in GSC-type
structure with ANC postprocessing stage

then removes the remaining correlation between the (residual) noise compo-
nent in the speech reference signal and the noise reference signals. In order to
avoid signal cancellation and distortion, signal leakage into the noise reference
(e.g. caused by reverberation, microphone mismatch, look direction error and
spatially distributed sources) needs to be minimised and the effect of the signal
leakage on the ANC adaptive filters needs to be limited (cf. Section 2.5.3). For
adaptive beamformers, signal leakage can be reduced by e.g. using a spatial fil-
ter designed blocking matrix [194][191], whereas the effect of the signal leakage
on the ANC adaptive filters can be limited by e.g. using a speech-controlled
adaptation algorithm [254][113][128][194].

However, instead of using a fixed beamformer to create the speech reference
signal, it is also possible to use the GSVD-based optimal filtering technique.
The complete noise reduction scheme, incorporating the GSVD-based optimal
filtering technique in a GSC-type structure with an ANC postprocessing stage,
is depicted in Fig. 4.1. The output signal of the GSVD-based optimal filter is
used as the speech reference signal, cf. (3.19),

rspeech[k] = x̂m[k − ∆] = yT [k]wWF,i[k] , (4.42)

which is the optimal estimate for the speech component in the mth microp-
hone signal (with delay ∆), obtained by filtering the microphone signals with
wWF,i[k], with i = mL + ∆ + 1. The residual noise level in the speech refe-
rence signal depends on the filter length L used for the GSVD-based optimal
filter. For the creation of a noise reference different possibilities exist. An
obvious choice consists in simply subtracting the speech reference signal from
the delayed mth microphone signal, i.e.

rnoise,1[k] = ym[k − ∆] − rspeech[k] = ym[k − ∆] − x̂m[k − ∆] . (4.43)
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Indeed, if WWF [k] is the optimal filter matrix for estimating the speech com-
ponents in the microphone signals, i.e.

x̂[k] = WT
WF [k]y[k] , (4.44)

then it is easily shown that (IM − WWF [k]) is the optimal filter matrix for
estimating the noise components in the microphone signals, i.e.

v̂[k] = (IM − WT
WF [k])y[k] . (4.45)

The ith element of v̂[k] is equal to the optimal estimate of the noise component
in the mth microphone signal (with delay ∆),

v̂m[k − ∆] = yT [k] (ei − wWF,i[k]) = ym[k − ∆] − x̂m[k − ∆] , (4.46)

with ei defined in Section 3.5.1. The creation of this noise reference signal for
the microphone signal y0[k] is depicted in Fig. 4.1. The adaptive filter wa0[k]
with filter length LANC is used for reducing the remaining correlation between
the residual noise component in the speech reference signal rspeech[k], which is
typically delayed with LANC

2 samples, and the noise reference signal rnoise,1[k].
Instead of only calculating a noise reference for one microphone signal, it is
also possible to calculate noise references for all microphone signals, i.e.

rnoise,2[k] =








v̂0[k − ∆]
v̂1[k − ∆]

...
v̂N−1[k − ∆]








=








y0[k − ∆] − x̂0[k − ∆]
y1[k − ∆] − x̂1[k − ∆]

...
yN−1[k − ∆] − x̂N−1[k − ∆]







. (4.47)

In order to construct rnoise,2[k], optimal estimates for the speech components
in all microphone signals x̂m[k − ∆], m = 0 . . . N − 1, need to be computed,
leading to an increased computational complexity.

Also for the ANC postprocessing stage of the GSVD-based optimal filtering
technique, signal leakage into the noise references will occur, since the estimate
of the speech component x̂m[k−∆] is generally not exactly equal to xm[k−∆].
Signal leakage can be reduced by using longer filter lengths L for the GSVD-
based optimal filter and the effect of the signal leakage on the ANC adaptive
filters can be limited by using a speech-controlled (VAD) adaptation algorithm,
where the ANC adaptive filters are only allowed to adapt during noise-only
periods [46][113][128][194] [254].

In Section 5.2.5 the noise reduction improvement and additional speech distor-
tion of the ANC postprocessing stage will be investigated experimentally for
different filter lengths of the GSVD-based optimal filter and the ANC adap-
tive filter and for the two different noise references rnoise,1[k] and rnoise,2[k].
It will be shown that the SNR of the enhanced signal improves with increa-
sing filter lengths and increasing number of noise reference signals. It will also
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be shown that the decrease in noise reduction performance due to short filter
lengths L can be fully compensated by adding the ANC postprocessing stage,
at a lower overall computational complexity. The ANC postprocessing stage
can therefore be used either for increasing the noise reduction performance or
for computational complexity reduction without decreasing the performance.
The ANC postprocessing stage will however give rise to a slight increase in
speech distortion, which can be limited by using longer filter lengths for the
GSVD-based optimal filter and for the ANC adaptive filter.

4.4 Conclusion

In this chapter we have discussed several techniques for reducing the overall
computational complexity of the GSVD-based optimal filtering technique.

In Section 4.2 several techniques have been discussed for efficiently calculating
the GSVD of the speech and the noise data matrix. Instead of recomputing the
GSVD from scratch at each time step, the GSVD can be updated using a re-
cursive Jacobi-type updating algorithm. The computational complexity can be
further reduced by using a square root-free implementation and by using sub-
sampling, where in this context sub-sampling means that the GSVD and the
optimal filter are not updated for every sample. The computational complexity
has been summarised for realistic parameter values, showing that the complexi-
ty can be significantly reduced such that the recursive GSVD-based optimal
filtering technique indeed becomes suitable for real-time implementation.

In Section 4.3 it has been shown how to incorporate the GSVD-based optimal
filtering technique into a GSC-type structure with an ANC postprocessing sta-
ge. The output of the GSVD-based optimal filtering technique is used as a
speech reference signal, whereas different possibilities exist for creating a noise
reference. In Chapter 5 it will be shown that the ANC postprocessing stage can
either be used for increasing the noise reduction performance or for reducing
the computational complexity without decreasing the performance. In order
to limit the effect of signal leakage in the noise reference on the ANC adaptive
filters, these adaptive filters are only adapted during noise-only periods.



Chapter 5

Simulation results and
control algorithm

For several simulated acoustic environments and for a real-life recording this
chapter discusses the performance of the GSVD-based implementation of the
multi-channel optimal filtering technique, in which the low-rank model of the
speech signal is implicitly incorporated. The performance of the GSVD-based
optimal filtering technique is compared with standard fixed and adaptive be-
amforming techniques and in addition, robustness issues such as the effect of
speech detection errors and deviations from the assumed signal model are ana-
lysed.

In Section 5.2 the performance, i.e. unbiased SNR improvement and speech dis-
tortion, of the GSVD-based optimal filtering technique with and without ANC
postprocessing stage is analysed for several algorithmic parameters (batch vs.
recursive version, filter lengths, sub-sampling) and for different reverberation
times. In addition, the spatial directivity pattern for simple acoustic scenarios
is discussed and it is shown that the GSVD-based optimal filtering technique
can also be used for suppressing a spectrally non-stationary noise source.

Section 5.3 analyses the effect of speech detection errors on the performance of
the GSVD-based optimal filtering technique. It is shown that speech detection
errors mainly have an influence on the speech distortion, and not on the SNR
improvement (unless the ANC postprocessing stage is added). This section
also evaluates the performance of the GSVD-based optimal filtering technique,
combined with several VAD algorithms, for different noise types, showing that
the log-energy and the log-likelihood VAD yield the best performance.

In Section 5.4 the performance of the GSVD-based optimal filtering technique

121



122 Simulation results and control algorithm

is compared with standard fixed and adaptive beamforming techniques for si-
mulated acoustic scenarios and for a real-life recording. The SNR improvement
of the GSVD-based optimal filtering technique with ANC postprocessing sta-
ge clearly outperforms the SNR improvement of the GSC. This section also
compares the robustness for several deviations from the assumed signal model
(microphone gain and position, look direction error), showing that the GSVD-
based optimal filtering technique is more robust than the GSC.

5.1 Implementation issues

This section first describes the used simulation environment and discusses some
implementation issues for the GSVD-based optimal filtering technique and for
the fixed and adaptive beamforming techniques.

5.1.1 Simulation environment

The simulation room is depicted in Fig. 5.1 and has dimensions 6 m × 3 m ×
2.5 m. It consists of a microphone array, a speech source and 3 noise sources.
Unless otherwise indicated, we will only use the noise source at position 1 (only
in Section 5.4.1, three simultaneous noise sources at different positions will be
used). In our simulations we have used a linear equi-spaced microphone array
with N = 4 microphones and the distance d between two adjacent microphones
is 5 cm. The speech source is located at 1.3 m from the centre of the microphone
array at an angle of 56◦.

Σ

θ

S(ω)

YN−1(ω, θ)

Y0(ω, θ)

Y1(ω, θ)

dn

x

x̄

W ∗

N−1(ω)

dn cos θ W ∗

n(ω)

W ∗

1 (ω)

W ∗

0 (ω)

Z(ω, θ)

Yn(ω, θ)

Figure 5.1: Simulation environment
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The used signals are a 16 kHz clean speech signal, consisting of English sen-
tences from the ‘Hearing in Noise Test’ [190], and 3 different noise signals:
stationary white noise, stationary speech noise from the NOISEX-92 databa-
se [267], having the same long-term spectrum as speech, and a non-stationary
music signal. The speech and the noise components received at the nth microp-
hone are filtered versions of the clean speech and noise signals with simulated
acoustic impulse responses, constructed using the image method (cf. Section
1.3.3) for different reverberation times T60. We will use (1.2) for computing the
reverberation time, where it is assumed that the absorption coefficients αi are
equal for each room surface Si. By using simulated acoustic impulse responses,
we can easily compare the performance for different reverberation conditions.

Since all described algorithms (GSVD-based optimal filter, ANC postprocessing
stage, fixed and adaptive beamforming) amount to linear filtering operations,
the speech and the noise components of the output signal and all intermediate
signals can be easily obtained by applying the computed filters to the speech
and the noise components of the microphone signals. The performance of the
GSVD-based optimal filtering technique will be described by the unbiased SNR
improvement and by the average speech distortion, defined in (2.32) and (2.40).

In our simulations we have constructed the noisy microphone signals such that
the unbiased SNR of the first microphone signal y0[k] equals 0 dB. Figures 5.2a
and 5.2b depict the speech component x0[k] and the noisy microphone signal
y0[k] for reverberation time T60 = 300 ms when using speech noise. Figure 5.2c
shows the enhanced signal z[k] after the recursive GSVD-based optimal filtering
technique with ANC postprocessing stage using all noise reference signals1.

5.1.2 GSVD-based optimal filtering technique

Both for the batch and the recursive implementation of the GSVD-based op-
timal filtering technique, a VAD algorithm determines when speech is present.
Figure 5.2a shows the output of a perfect VAD algorithm on the speech com-
ponent of the first microphone signal. In practice, the VAD should be tuned
such that especially the speech-and-noise periods are correctly classified, since
the effect of adding speech vectors to the noise data matrix is more harmful
than adding noise vectors to the speech data matrix, cf. Section 5.3.2. In the
simulations we will generally assume that a perfect VAD is available. However,
in Section 5.3.2 the effect of speech detection errors on the performance of the
GSVD-based optimal filtering technique is investigated, and in Section 5.4.2
simulations have been performed for a real-life recording using a (non-perfect)
energy-based VAD.

In the batch GSVD-based optimal filtering technique, the speech and the noise
data matrices Y[k] and V[k] are constructed from the noisy microphone signals

1For this specific simulation, sound files, spectrograms and power transfer functions are
available at http://www.esat.kuleuven.ac.be/~doclo/SA00061/audio.html
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Figure 5.2: (a) Speech component x0[k] and VAD, (b) Noisy microphone signal
y0[k] (speech noise, SNR=0 dB, T60 = 300 ms), (c) Enhanced signal z[k] using
recursive GSVD-based optimal filtering technique with ANC postprocessing
stage (L = 20, LANC = 400, no sub-sampling, all noise references)

yn[k], n = 0 . . . N − 1, using all available speech and noise samples. The filter
length of the optimal filter is denoted by L. The optimal filter matrix WWF [k]
is computed using (3.44), where all negative diagonal elements are put to zero.
The stacked filter w[k] is determined as the ith column wWF,i[k] of WWF [k],
with the fixed value i = L

2 (cf. Section 3.3.2). The enhanced signal z[k] is
obtained by filtering the microphone signals with wn[k], n = 0 . . . N − 1.

In the recursive GSVD-based optimal filtering technique, the data matrices are
updated according to (4.16) or (4.17), with λy = 0.99999 and λv = 0.999995.
Using the recursive techniques of Section 4.2, the GSVD and the optimal fil-
ter are updated for every sample. The ith column wWF,i[k] of WWF [k], with
i = L

2 , is computed using (4.33) or (4.40) and the enhanced signal at time k
is computed by filtering the microphone signals with wn[k], n = 0 . . . N − 1.
When using sub-sampling, the GSVD and the optimal filter are updated res-
pectively for every sg and sf samples. In order to avoid initial effects (initially
no knowledge about either the speech nor the noise data matrix is available),
signal segments twice as long as for the batch version are processed and only
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the last half is used for computing the performance measures.

For the ANC postprocessing stage, two possible noise references will be inves-
tigated: rnoise,1[k] in (4.43) with 1 noise reference signal, and rnoise,2[k] in
(4.47) with N = 4 noise reference signals. The adaptive filter used in the ANC
postprocessing stage is a time-domain NLMS algorithm (cf. Section 2.5.3).
The filter length of the adaptive filter is denoted by LANC and the step size
is µ = 0.05. The desired signal of the adaptive filter is delayed by LANC

2 sam-
ples in order for the adaptive filter to model some acausal taps. As already
mentioned in Section 4.3, in order to limit signal cancellation and distortion, a
speech-controlled adaptation algorithm will be used, where the ANC adaptive
filters are only allowed to adapt during noise-only periods.

5.1.3 Fixed and adaptive beamforming techniques

In Section 5.4, the performance of the GSVD-based optimal filtering techni-
que is compared with fixed and adaptive beamforming techniques. The fixed
delay-and-sum (DS) beamformer, discussed in Section 2.5.2, spatially aligns
the microphone signals to the direction of the speech source. The delays δn
in (2.117) are computed as δn = −nd cos θx

c fs, with θx = 56◦. The standard
Generalised Sidelobe Canceller (GSC), discussed in Section 2.5.3 and depicted
in Fig. 2.10, uses the output signal of a DS beamformer as speech reference
signal, and creates the noise reference rGSCnoise[k] in (2.149) using a Griffiths-Jim
blocking matrix. When using 1 noise reference signal, only the first element of
rGSCnoise[k] is considered. The used adaptive filter is a time-domain NLMS algo-
rithm, with filter length denoted by LANC and step size µ = 0.1. The speech
reference signal is delayed by LANC

2 samples in order for the adaptive filter to
model some acausal taps. In order to limit the effect of the signal leakage on the
adaptive filters, a speech-controlled adaptation algorithm will be used, where
the ANC adaptive filters are only allowed to adapt during noise-only periods.

As has already been mentioned in Section 2.5.3, it is possible to reduce the
amount of signal leakage in the noise reference by using a spatial filter desig-
ned blocking matrix [191][194] instead of the Griffiths-Jim blocking matrix. We
have designed a spatial filter for the blocking matrix using the non-linear design
criterion for far-field broadband beamformers, discussed in Section 8.3.4, with
stopband specifications (Ωs,Θs) =

(
0−7500Hz, (θx–20◦)−(θx+20◦)

)
, and pass-

band specifications (Ωp,Θp) = (0−7500Hz, 0◦−(θx–20◦) and (θx+20◦)−180◦).
We have designed this spatial filter with L = 20 taps per microphone and using
N−1 microphones, such that we are able to create 2 independent noise reference
signals [191]. The fixed beamformer for creating the speech reference signal has
inverse stopband and passband specifications and is designed to be orthogonal
to the blocking matrix, which can be achieved by imposing linear constraints in
the design procedure [191]. The spatial directivity pattern of the fixed beam-
former and the spatial filter designed blocking matrix are depicted in Fig. 5.3.
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Figure 5.3: Spatial directivity pattern of (a) fixed beamformer (speech referen-
ce) and (b) blocking matrix (noise reference)

Although the amount of signal leakage into the noise reference will be reduced,
it can never be completely avoided (certainly not in highly reverberant acous-
tic environments). Therefore, we will still use a speech-controlled adaptation
algorithm, switching off the adaptation during speech-and-noise periods.

The speech distortion measure, defined in (2.40), is not really useful for fixed
and adaptive beamformers, since this speech distortion measure considers the
PTF of the speech component in the first microphone signal x0[k], whereas the
DS beamformer and the GSC try to recover the speech signal s[k].

5.2 Performance of optimal filtering technique

This section discusses the performance (SNR improvement and speech distor-
tion) of the GSVD-based optimal filtering technique with and without ANC
postprocessing stage. In Section 5.2.1 the spatial directivity pattern for simple
acoustic scenarios is discussed, showing that the GSVD-based optimal filte-
ring technique then exhibits the desired beamforming behaviour. In Section
5.2.2 the performance of the batch and the recursive version is compared for
different filter lengths L and reverberation times T60, showing that these two
versions nearly have the same performance. In Section 5.2.3 the effect of several
parameters in the recursive GSVD-updating algorithms is analysed, showing
that a smaller number of GSVD-steps (or sweeps) and sub-sampling can be
used for stationary acoustic environments. In Section 5.2.4 it is shown that
the GSVD-based optimal filtering technique can also be used for suppressing a
spectrally non-stationary noise source. In Section 5.2.5 the effect of the ANC
postprocessing stage is analysed, showing that the ANC postprocessing stage
gives rise to an SNR improvement and a small increase in speech distortion.
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5.2.1 Spatial directivity pattern

When considering no multi-path propagation (T60 = 0), it can be shown that
the GSVD-based optimal filtering technique exhibits the desired beamforming
behaviour for simple acoustic scenarios.

First, consider spatio-temporally white noise (e.g. sensor noise), i.e. the noi-
se component vn[k] in the nth microphone signal is temporally white and is
uncorrelated with the noise components in all other microphone signals. The
speech source impinges on the microphone array at an angle θx = 45◦. Figure
5.4a shows the amplitude |H(ω, θ)| of the spatial directivity pattern, defined in
(2.108), for the frequencies ωi = 2π · 200 i, i = 1 . . . 40. For most frequencies,
|H(ω, θ)| attains its maximum for θx = 45◦, implying that the GSVD-based op-
timal filtering technique automatically finds the direction of the speech source.
However for low frequencies the spatial selectivity is rather poor.

Secondly, consider two localised white noise sources that impinge on the mi-
crophone array at angles θv1 = 60◦ and θv2 = 150◦. The speech source is
located at broadside, i.e. θx = 90◦. Fig. 5.4b shows the spatial directivity
pattern |H(ω, θ)| for the frequencies ωi = 2π · 200 i, i = 1 . . . 40. As can be
seen from this figure, |H(ω, θ)| is approximately equal to zero for θ = 60◦ and
θ = 150◦, i.e. the directions of the two noise sources. Although difficult to see
on this figure, |H(ω, θ)| in the direction of the speech source (θ = 90◦) is not
equal to 1, as is the case for the GSC, but depends on the spectral content of
the speech and the noise components, in accordance with (3.83).
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Figure 5.4: Spatial directivity pattern |H(ω, θ)| for (a) spatio-temporally white
noise and speech source at θx = 45◦ (L = 10) and (b) localised white noise
sources at θv1 = 60◦ and θv2 = 150◦ and speech source at θx = 90◦ (L = 20)
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We can conclude that the GSVD-based optimal filtering technique has the
desired beamforming behaviour for both simple scenarios. For more realistic
reverberant environments, it is rather difficult to interpret these spatial direc-
tivity patterns, since the GSVD-based optimal filtering technique computes an
estimate for the speech component in one microphone signal, thereby reducing
the additive noise but not the reverberation of the speech signal.

5.2.2 Batch vs. recursive processing

Figure 5.5 compares the unbiased SNR and the speech distortion (SD) of the
enhanced signal z[k] for the batch and for the recursive version of the GSVD-
based optimal filtering technique (without ANC postprocessing stage). The
noisy microphone signals have been constructed using a speech noise source at
position 1, and the simulations have been performed for different filter lengths
L and for different reverberation times T60. Low reverberation corresponds
to highly correlated signals, whereas high reverberation corresponds to highly
uncorrelated (diffuse) signals. No sub-sampling has been used in the recursive
version of the GSVD-based optimal filtering technique.

As can be seen from Fig. 5.5a and Fig. 5.5b, the unbiased SNR increases
and the speech distortion decreases for higher filter lengths L and for lower
reverberation times T60. This can be explained from the fact that in highly
reverberant acoustic environments the GSVD-based optimal filtering technique
will trade off noise reduction and cancellation of the reverberant part of the
speech signal, in order to make an optimal estimate of the speech component
x0[k]. As can also be seen from these figures, the unbiased SNR and the speech
distortion of the batch and the recursive version are practically equal for all
reverberation times and filter lengths.

5.2.3 Recursive GSVD-updating algorithms

As has been discussed in Sections 4.2.2 and 4.2.3, different implementations of
the recursive GSVD-updating algorithm exist: a ‘conventional’ implementation
and an approximate square root-free implementation, both with the possibility
to perform s sweeps and r GSVD-steps. Figure 5.6 shows the unbiased SNR of
the enhanced signal z[k] for different implementations of the recursive GSVD-
updating algorithms and for a different number of sweeps and GSVD-steps.
The noisy microphone signals have been constructed using a speech noise sour-
ce at position 1 and for reverberation time T60 = 300 ms. The simulations
have been performed with L = 20, without sub-sampling and without ANC
postprocessing stage. Figure 5.6 shows that there is practically no difference
in unbiased SNR between the ‘conventional’ and the square root-free imple-
mentation. When performing more than one sweep, the SNR only marginally
improves. When performing less than M − 1 GSVD-steps, the SNR gradually
decreases. However, when using a small number of GSVD-steps (or sweeps),
the optimal filter will adapt slower in non-stationary acoustic environments.
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Figure 5.5: Comparison of (a) unbiased SNR and (b) speech distortion (SD)
for batch and recursive version of GSVD-based filtering technique for different
filter lengths L and reverberation times T60 (speech noise, no sub-sampling)



130 Simulation results and control algorithm

1 2 3 4 5 6 7 8 9 10
8.675

8.68

8.685

8.69

8.695

8.7
Effect of number of sweeps and GSVD−steps

U
nb

ia
se

d 
S

N
R

 (
dB

)

Number of sweeps s

No square root−free      
Square root−free (exact) 
Square root−free (approx)

0 10 20 30 40 50 60 70 80
8.58

8.6

8.62

8.64

8.66

8.68

U
nb

ia
se

d 
S

N
R

 (
dB

)

Number of GSVD−steps r

No square root−free      
Square root−free (exact) 
Square root−free (approx)

Figure 5.6: Effect of number of sweeps, GSVD-steps and square root-free imple-
mentation on unbiased SNR for recursive GSVD-based optimal filtering tech-
nique (speech noise, T60 = 300 ms, L = 20, no sub-sampling)

In Section 4.2.4 the use of sub-sampling has been discussed for reducing the
computational complexity. Figure 5.7 shows the energy of the residual noise
z2
v [k] in the enhanced signal z[k] for different values of the sub-sampling factors
sg = sf . The noisy microphone signals have been constructed using a statio-
nary speech noise source. Figure 5.7 shows that a higher sub-sampling factor
results in a slower convergence towards the converged optimal filter (corres-
ponding to highest unbiased SNR), implying that the amount of sub-sampling
has to be limited in non-stationary acoustic environments.

5.2.4 Spectrally non-stationary noise source

In this section simulations are performed using a spectrally non-stationary noi-
se source, i.e. a noise source at a fixed position but with a changing spectrum.
Since we are considering quite long data blocks in the GSVD-based optimal fil-
tering technique, i.e. λv close to 1 or large Q, the noise reduction performance is
mainly dependent on the average, i.e. long-term, spectral (and spatial) charac-
teristics of the noise source, cf. (3.83). This implies that the GSVD-based
optimal filtering technique can also be used for suppressing non-stationary noi-
se sources.

In the simulations, the used non-stationary noise source has been created by
filtering a white noise source with a time-varying FIR-filter, represented by
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Figure 5.7: Effect of sub-sampling factors on convergence speed for recursive
GSVD-based optimal filtering technique (speech noise, T60 = 300 ms, L = 20)

the 10-dimensional vector f [k]. The filter f [k] varies between a low-pass fil-
ter fL (with cut-off frequency 2400 Hz) and a high-pass filter fH (with cut-off
frequency 1600 Hz) at different rates, i.e.

f [k] = ν[k] fH + (1 − ν[k]) fL , (5.1)

with 0 ≤ ν[k] ≤ 1 a time-varying parameter, determining how fast the filter
f [k] varies in time. The frequency response of fL, fH and of a number of
intermediate filters f [k] is plotted in Fig. 5.8a. The non-stationary noise source
is filtered with the simulated acoustic impulse responses between the position
of the noise source and the microphone array. The reverberation time is T60 =
300 ms. A non-stationarity factor indicates how many times the filter f [k] varies
between the low-pass and the high-pass filter (and back) over the total signal.
Figure 5.8b compares the unbiased SNR of the enhanced signal z[k] of the
batch GSVD-based optimal filtering technique for different filter lengths L at
different levels of non-stationarity. As can be seen from this figure, the unbiased
SNR is practically independent of the non-stationarity factor. Therefore we can
conclude that the GSVD-based optimal filtering technique is only dependent
on the average spectral (and spatial) characteristics of the noise source.
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Figure 5.8: (a) Frequency response of time-varying filter f [k], (b) Comparison
of unbiased SNR for non-stationary noise source (T60 = 300 ms, batch version)

5.2.5 Effect of ANC postprocessing stage

In this section, the effect of the ANC postprocessing stage, discussed in Section
4.3, is analysed. It will be shown that the ANC postprocessing stage can either
be used for increasing the noise reduction performance or for computational
complexity reduction without decreasing the performance. The ANC postpro-
cessing stage however also gives rise to a slight increase in speech distortion,
which can be limited by using longer filter lengths.

Figure 5.9 investigates the effect of the ANC postprocessing stage on the noise
reduction performance and on the speech distortion for different filter lengths L
and LANC and for a different number of noise reference signals. The noisy mi-
crophone signals have been constructed using a speech noise source at position 1
and for reverberation time T60 = 300 ms, and simulations have been performed
with the batch version of the GSVD-based optimal filtering technique.

Figure 5.9a shows that the unbiased SNR of the enhanced signal improves with
increasing filter lengths L and LANC and with increasing number of noise re-
ference signals. In addition, this figure shows that the same noise reduction
performance can be obtained either with large filter lengths L without ANC
postprocessing stage or with short filter lengths L and using the ANC postpro-
cessing stage. Since the total computational complexity is O(L2) + O(LANC),
using short filter lengths L with ANC postprocessing stage gives rise to a lo-
wer computational complexity. The ANC postprocessing stage can therefore be
used either for increasing the noise reduction performance or for computational
complexity reduction without decreasing the performance. Figure 5.9b shows
that the ANC postprocessing stage however also gives rise to a small increase
in speech distortion. However, speech distortion can be limited by using longer
filter lengths L (since signal leakage into the noise reference is then reduced)
and longer filter lengths LANC .
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5.3 Control algorithm: VAD

Many single- and multi-microphone speech enhancement techniques require a
voice activity detection (VAD) algorithm to classify the incoming samples into
speech-and-noise samples and noise-only samples. The main reason is that the-
se techniques require an estimate of the spectral and/or spatial characteristics
of the noise components, which can be estimated during speech inactivity and
which are assumed to remain valid during subsequent speech-and-noise peri-
ods. E.g. the GSVD-based optimal filtering technique requires a VAD in order
to estimate the spatio-temporal noise correlation matrix R̄vv[k], i.e. the VAD
algorithm determines whether a data vector belongs to the speech or the noise
data matrix. Other techniques, such as the GSC and the ANC postprocessing
stage, typically use a speech-controlled adaptation algorithm, where the ANC
adaptive filters are only allowed to adapt during noise-only periods. The per-
formance of most speech enhancement algorithms is strongly influenced by the
correct classification between speech-and-noise and noise-only periods, hence
the need for a robust VAD algorithm. Since in fact the GSVD-based optimal
filtering technique uses no other a priori information than the output of a VAD
algorithm, it is expected to be quite sensitive to speech detection errors (cf.
Section 5.4.3). The design of a robust VAD is particularly difficult when the
SNR is low (< 0 dB) and when the background noise is highly non-stationary
(e.g. music, cocktail party). However, these are the normal operational condi-
tions for hands-free mobile telephony and voice-controlled speech applications.

In Section 5.3.1 an overview is given of several (single-microphone) VAD algo-
rithms, whose performance has been tested for different noise types and signal-
to-noise ratios in [50]. In this thesis we will not consider multi-microphone
VAD algorithms, although it is expected that the performance and the robust-
ness of the VAD algorithms will increase when using more than 1 microphone
signal. In Section 5.3.2 the average effect of (manually introduced) VAD-errors
on the performance of the GSVD-based optimal filtering technique is analysed,
both theoretically and experimentally. It will be shown that speech detection
errors mainly have an influence on the speech distortion, and not on the SNR
improvement (unless the ANC postprocessing stage is added) and that speech
detection errors in the beginning of a speech segment have a larger effect than
at the end of a speech segment. In Section 5.3.3 we evaluate the performance
of the GSVD-based optimal filtering technique, combined with the VAD algo-
rithms from Section 5.3.1, for different noise types, showing that the log-energy
and the log-likelihood VAD algorithms yield the best performance.

5.3.1 VAD algorithms

The following (existing) single-microphone VAD algorithms have been analysed
in combination with the GSVD-based optimal filtering technique :
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1. Log-likelihood based method [72][235][236] : this VAD algorithm is based
on the log-likelihood ratio, which is defined as

log Λ =
1

L

L−1∑

l=0

log Λl , Λl =
1

1 + ξl
exp

{
γlξl

1 + ξl

}

, (5.2)

with Λl the likelihood ratio and ξl and γl the a priori and the a posteriori
SNR in frequency band l (l = 0 . . . L − 1). In order to estimate these
statistics, a noise spectrum adaptation algorithm has been developed.

2. Log-energy based methods [46][142][255][256][260] : Energy-based methods
assume that the short-time energy of a speech-and-noise segment is higher
than the short-time energy of a noise-only segment. By continuously
monitoring the signal energy on a frame-by-frame basis, the start and
the endpoint of speech can be found when the short-time energy is higher
than a certain (fixed or adaptive) threshold value. For this technique to
work in highly non-stationary noise, e.g. other speech signals, the energy
of the desired speaker must however be sufficiently larger than the energy
of the undesired speakers.

3. Zero Crossing Rate-based methods [42][143][226] : these methods are ba-
sed on the computation of the zero-crossing rate, i.e. the average number
of sign changes in the noisy speech signal y0[k], i.e.

ζc[k] =

L−1∑

l=0

|sign(sign(y0[k − l]) − sign(y0[k − l − 1]))| .

The zero crossing rate for noise is assumed to be considerably higher than
for speech. This assumption is however only accurate at high SNR. At
low SNR problems occur especially in the presence of periodic background
noise and speech with a high zero crossing rate (e.g. voiced speech).

4. Short-time amplitude based method : in [124] a double-talk detection al-
gorithm has been presented that computes short-time and long-time esti-
mates of the background noise and the far-end signal. This algorithm can
also be modified into a VAD algorithm [50].

5. Sample-based VAD method [226] : this rule-based algorithm continuously
generates speech and noise metrics from the noisy input signal, based on
statistical assumptions about the characteristics of the speech and the
noise signal. The algorithm is sample-based, hence the decision delay is
small. However, as a consequence the computational complexity is higher
than for the other VAD algorithms, which are typically frame-based.

6. Spectral entropy based method [131][229] : Spectral entropy-based me-
thods first estimate the probability density function (pdf) of the spectrum
for each frame of the signal. Using this pdf the spectral entropy measure



136 Simulation results and control algorithm

can be computed [229]. The (weighted) spectral entropy is assumed to
be higher for speech than for background noise (except if the background
noise is another speech-like signal). In [131] the spectral entropy and
the log-energy features have been combined to form a new feature that
possesses the advantages of both VAD algorithms.

7. Geometric VAD algorithm [204][250] : this method builds on the diffe-
rences between the probability distribution properties of the amplitudes
of the speech and the noise components. A so-called modified amplitude
pdf (MAPD) is defined and it is observed that the speech and the noise
samples can be partially separated on this MAPD plot.

In [50] the performance of all presented VAD algorithms has been analysed for
different noise types (stationary white noise and speech noise; non-stationary
car noise, babble noise and traffic noise) at different signal-to-noise ratios (from
−5 dB to 15 dB). Different performance measures have been used: onset error,
offset error, global error, noise detected as speech, speech detected as noise.
In general, the log-likelihood and the log-energy VAD algorithms provide the
best performance, whereas the performance of the zero crossing rate, short-time
amplitude and sample-based VAD methods simply is unsatisfactory.

5.3.2 Effect of VAD-errors on performance

Before analysing the performance of the GSVD-based optimal filtering techni-
que in combination with the VAD algorithms from the previous section, we will
first theoretically analyse its performance when manually introducing a certain
amount of speech detection errors.

Theoretical analysis

In [239] the average effect of speech detection errors on the performance of the
GSC and the multi-channel Wiener filter has been theoretically analysed. This
can be done by modifying the coherence matrices Γx(ω) and Γv(ω) in the for-
mulas for the GSC and the multi-channel Wiener filter, cf. (2.155) and (3.85).

If the blocking matrix Ca of the GSC would be perfect such that the noise
references do not contain any speech components, then the performance of the
GSC would be independent of the VAD. However, in practice signal leakage in-
to the noise references occurs. Since the ANC adaptive filters are only adapted
during noise-only periods, the performance of the GSC – apart from a slower
convergence – will not degrade when noise is wrongly detected as speech. On
the contrary, when speech is wrongly detected as noise, the ANC may additi-
onally cancel the speech signal. The impact of speech detection errors on the
performance of the GSC therefore depends on the quality of the noise refe-
rences: the larger the ratio of speech leakage to noise in the noise references,
the larger the impact of speech detection errors. Simulations show that the
performance of the GSC is strongly affected by speech detection errors.
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Since the multi-channel Wiener filter does not require any other a priori in-
formation, its reliance on the VAD algorithm would be expected to be crucial.
However, it can be shown that the unbiased SNR improvement of the multi-
channel Wiener filter is not degraded by speech detection errors, neither when
speech is wrongly detected as noise nor when noise is wrongly detected as
speech. When speech is wrongly detected as noise, the speech distortion howe-
ver increases with 20 log10(1 − δ) dB, with δ the percentage of the ‘noise-only’
samples that contain speech components. This additional speech distortion is
independent of the noise scenario and the input SNR. For error rates δ < 0.2,
speech distortion however remains limited. When noise is wrongly detected
as speech, the speech distortion only slightly increases with increasing error
rate δ. The multi-channel Wiener filter with ANC postprocessing stage is more
strongly affected by speech detection errors, especially when δ > 0.2. The SNR
improvement then decreases and the speech distortion increases with increa-
sing error rate δ and increasing input SNR. However, simulations have shown
that the multi-channel Wiener filter with or without ANC postprocessing stage
preserves its potential benefit over the GSC for a reasonable speech detection
error rate of 0.2 or less, even when the GSC is supplied with a noise sensitivity
constraint [239].

Experimental validation

In [50] the effect of manually introducing speech detection errors on the perfor-
mance of the GSVD-based optimal filtering technique has been experimentally
verified. The noisy microphone signals have been constructed using a white
noise source at position 1 and for reverberation time T60 = 200 ms. We have in-
vestigated the performance of the batch and the recursive version of the GSVD-
based optimal filtering technique, both with and without ANC postprocessing
stage. The simulations have been performed with L = 20, and for the recursive
version the subsampling factors are sf = sg = 5 and different weighting fac-
tors {λx, λv} =

[
{1, 1},{0.99999, 0.999995}, {0.9999, 0.99995}, {0.999, 0.9995}

]

have been used. We will only consider speech detection errors where speech
is wrongly classified as noise (since the effect of these errors is the largest).
Speech detection error rates ranging from δ = 0.1 to δ = 0.5 have been applied
at the beginning and at the end of the speech segments. For these experiments,
speech distortion has been measured by the distance measure D,

D = 10 log10

∑
x2

0[k]
∑

(zx[k] − x0[k])2
, (5.3)

which is computed during speech-and-noise periods. A large distance measure
D corresponds to little speech distortion.

Figure 5.10 shows the unbiased SNR improvement and the speech distance me-
asure for all considered error rates δ and for all algorithms. From this figure,
it can indeed be seen that for the batch GSVD-based optimal filtering techni-
que (without ANC postprocessing stage), the SNR improvement is practically
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unaffected by the speech detection errors and the speech distortion only sub-
stantially increases when δ > 0.2. For the recursive version, essentially the same
conclusions hold, but speech detection errors will have a larger effect for smal-
ler weighting factors, since the effective speech and noise data windows in that
case are smaller. This is especially noticeable for {λx, λv} = {0.999, 0.9995}.

From this figure it can also be seen that the GSVD-based optimal filtering
technique (both the batch and the recursive version) with ANC postprocessing
stage is more strongly affected by speech detection errors, especially when
δ > 0.2. The SNR improvement decreases and the speech distortion increases
with increasing error rate δ. For all considered algorithms, speech detection
errors at the beginning of a speech segment seem to have a larger effect on the
SNR improvement and the speech distortion than speech detection errors at the
end of a speech segment. This is probably due to the higher energy portions
at the beginning of the speech segments. However, when only considering
the misclassified parts of the speech segments, also speech detection errors at
the end of a speech segment clearly have a (negative) influence on the SNR
improvement and the speech distortion in these misclassified parts.

5.3.3 Combination of GSVD-based optimal filtering tech-
nique and VAD algorithms

In this section, we evaluate the performance (unbiased SNR improvement and
speech distance measure) of the GSVD-based optimal filtering technique in
combination with the different VAD algorithms discussed in Section 5.3.1. The
output of the VAD on the noisy first microphone signal y0[k] is used. The
performance is evaluated for several noise types (white noise, speech noise, car
noise, babble noise and traffic noise), such that a mean performance can be
calculated. The simulations have been performed with L = 20, and for the
recursive version the subsampling factors are sf = sg = 10 and the weighting
factors are {λx, λv} = {0.9999, 0.99995}.

In general, the best SNR improvement and speech distortion is obtained for
the stationary white noise and for the (low-frequency) car noise, whereas the
(stationary) speech noise proves to be more difficult, since it has the same long-
term spectrum as the desired speech signal, and the non-stationary babble noise
and traffic noise are the most difficult noise types.

Figure 5.11 shows the unbiased SNR improvement and the speech distance me-
asure for all considered noise types and for all algorithms. If we analyse the
unbiased SNR improvement for the recursive version, then the log-energy, the
log-likelihood and the geometric VAD provide the best performance, whereas
the zero-crossing VAD has the worst performance. If we analyse the speech
distortion for the recursive version, then the zero-crossing and the geometric
VAD provide the least speech distortion, whereas the log-likelihood and the log-
energy VAD perform quite reasonably (in comparison with the perfect VAD).
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Figure 5.10: Effect of speech detection errors on (a) unbiased SNR improvement
and (b) speech distance measure D
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Figure 5.11: (a) Unbiased SNR improvement and (b) speech distance measure
D for different VAD algorithms and different noise types
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VAD-algorithm Unbiased SNR Speech distortion
Log-likelihood Good Good
Log-energy (1/2) Good/Moderate Good/Moderate
Zero-Crossing Bad Good
Short-Time Amplitude Moderate Good
Sample-based Moderate Moderate
Geometric Good Good

Table 5.1: Classification of VAD algorithms based on unbiased SNR improve-
ment and speech distortion (different noise types)

VAD-algorithm Unbiased SNR Speech distortion
Log-likelihood Good Good
Log-energy (1/2) Good/Moderate Good/Moderate
Zero-Crossing Bad Bad
Short-Time Amplitude Good Good
Sample-based Bad Moderate
Geometric Bad Good

Table 5.2: Classification of VAD algorithms based on unbiased SNR improve-
ment and speech distortion during misclassified part of speech segments

These results are summarised in Table 5.1. When analysing the performan-
ce only in the misclassified parts of the speech segments, the best unbiased
SNR performance is produced by the log-likelihood, the log-energy and the
short-time amplitude VAD, whereas the worst performance is produced by the
zero-crossing, the sample-based and the geometric VAD. However, the geome-
tric VAD produces not much speech distortion, as do the log-likelihood, the
log-energy and the short-time amplitude VAD. These results are summarised
in Table 5.2. In conclusion, the best trade-off between unbiased SNR impro-
vement and speech distortion for the different noise types is provided by the
log-likelihood and the log-energy VAD algorithms.

5.4 Performance comparison with beamforming
techniques

In this section the performance of the GSVD-based optimal filtering techni-
que is compared with standard fixed and adaptive beamforming techniques.
Section 5.4.1 compares the performance for simulated acoustic scenarios (as-
suming a perfect VAD), whereas Section 5.4.2 compares the performance for
a real-life recording (using a non-perfect VAD). The SNR improvement of the
GSVD-based optimal filtering technique with ANC postprocessing stage clear-
ly outperforms the SNR improvement of the GSC for all reverberation times
and all considered acoustic scenarios. Section 5.4.3 compares the robustness
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for several deviations from the assumed signal model (microphone gain and
position, look direction error), showing that the GSVD-based optimal filtering
technique is more robust than the GSC.

5.4.1 Simulated acoustic scenarios

In this section, the noise reduction performance and the speech distortion of
the GSVD-based optimal filtering technique with and without ANC postpro-
cessing stage is compared with standard beamforming techniques for three si-
mulated acoustic scenarios: white noise source at position 1 (Fig. 5.12), speech
noise source at position 1 (Fig. 5.13) and 3 simultaneous noise sources (whi-
te+speech+music) at the 3 noise positions (Fig. 5.14). In all scenarios the noisy
microphone signals are constructed such that the unbiased SNR of y0[k] is 0 dB.
The following multi-microphone signal enhancement techniques are compared:
DS-beamformer, GSC (LANC = 400, 1 and all noise reference signals), GSC
with spatial filter designed blocking matrix (LANC = 400), recursive GSVD-
based optimal filtering technique (L = 20, no sub-sampling) with and without
ANC postprocessing stage (LANC = 400, 1 and all noise reference signals).
This comparison is performed for different reverberation conditions. The situ-
ation of the 3 simultaneous noise sources in a highly reverberant environment
can actually be considered quite a good approximation of a diffuse noise field.

Figures 5.12a, 5.13a and 5.14a show that for low T60 the SNR improvement of
the GSC-based techniques is better than the SNR improvement of the GSVD-
based optimal filtering technique without ANC postprocessing stage. When ad-
ding the ANC postprocessing stage using all noise reference signals, the SNR
improvement of the GSVD-based optimal filtering technique clearly outper-
forms the SNR improvement of the GSC (both using Griffiths-Jim and spatial
filter designed blocking matrix) for all reverberation times and all considered
acoustic scenarios. In addition, the performance for the white noise source is
better than for the speech noise source and the performance for a single noise
source is better than for 3 simultaneous noise sources at different positions.
This can be explained by the fact that the GSVD-based optimal filter can be
decomposed as the combination of a spatial filtering operation, depending on
the spatial characteristics (coherence) of the speech and the noise field, and a
single-channel Wiener filter, depending on the spectral characteristics of the
speech and the noise sources, cf. (3.83) in Section 3.5.1.

Figures 5.12b, 5.13b and 5.14b show the speech distortion introduced by the
recursive GSVD-based optimal filtering technique with and without ANC post-
processing stage for different reverberation times. More speech distortion oc-
curs for higher reverberation times and when using more noise reference signals.
This can also be seen from Fig. 5.15, where the PSD and the PTF of the speech
and the noise components, defined in (2.39) and (2.41), have been plotted for 3
different reverberation times. For reverberation time T60 = 300 ms, Fig. 5.15a
shows the PSD of the speech and the noise components of the first microphone
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Figure 5.12: Comparison of (a) unbiased SNR and (b) speech distortion for DS,
GSC and recursive GSVD-based optimal filtering technique with and without
ANC postprocessing stage (white noise, L = 20, LANC = 400, no sub-sampling)
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Figure 5.13: Comparison of (a) unbiased SNR and (b) speech distortion for
DS, GSC and recursive GSVD-based optimal filtering technique with and wit-
hout ANC postprocessing stage (speech noise, L = 20, LANC = 400, no sub-
sampling)
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signal and Figure 5.15c shows the PTF for the speech and the noise components
of the output signal of the recursive GSVD-based optimal filtering technique
with and without ANC postprocessing stage. As can be seen from Fig. 5.15c,
speech distortion is limited, mainly occurs in frequency regions having a low
input SNR and is slightly higher when using an ANC postprocessing stage
(which however also reduces a large amount of noise). Figures 5.15b and 5.15d
show the PTFs for reverberation times T60 = 130 ms and T60 = 800 ms. By
comparing these figures, one can see that more speech distortion and less noi-
se reduction occurs for higher reverberation times (both in the GSVD-based
optimal filter and in the ANC postprocessing stage).

5.4.2 Real-life recording and energy-based VAD

We have also compared the performance of the different multi-microphone
speech enhancement algorithms for a real-life recording, performed in the Speech
Lab at our department2. The reverberation time of the used room is approxi-
mately 500 ms. We have used a linear equi-spaced microphone array withN = 3
omni-directional microphones (Sennheiser ME-102) and inter-microphone dis-
tance d = 5 cm. The speech source is located at approximately 1 m from the
centre of the microphone array at an angle of 110◦, whereas 3 noise sources
are located at different positions in the room. We have used the same speech
signal as for the simulated acoustic environments and for all noise sources we
have used speech noise from the NOISEX-92 database.

The parameters for the speech enhancement algorithms are the same as for the
simulated acoustic environments (cf. Sections 5.1.2 and 5.1.3). We have used a
non-perfect energy-based VAD, cf. Section 5.3.1, on the noisy microphone sig-
nal y0[k]. For the design of the spatial filter designed blocking matrix (and the
associated fixed beamformer), we have again considered the non-linear criteri-
on, but we have now used a robust design procedure, taking into account some
errors in the microphone characteristics (cf. Chapter 10). We have used a uni-
form gain and phase probability density function (pdf), assuming a maximum
gain and phase deviation of ±2 dB and ±10◦.

The unbiased SNR of the first microphone signal is 0 dB, and the unbiased
SNRs of the output signal for the DS beamformer, the GSC with Griffiths-Jim
blocking matrix and the spatial filter designed blocking matrix respectively are
0.46 dB, 7.43 dB and 6.67 dB. For the recursive GSVD-based optimal filtering
technique, the unbiased SNR is 6.25 dB, and when adding the ANC postpro-
cessing stage using all noise reference signals, the unbiased SNR is 9.02 dB.
The GSVD-based optimal filtering technique also introduces some amount of
speech distortion, which is higher when adding the ANC postprocessing stage.

5.4.3 Robustness issues
2For this recording, sound files, spectrograms and power transfer functions are available

at http://www.esat.kuleuven.ac.be/~doclo/SA00061/audio.html
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Figure 5.15: (a) PSD of speech and noise components of first microphone signal
(T60 = 300 ms), (b) PTF of speech and noise components for recursive GSVD-
based optimal filtering technique with and without ANC postprocessing stage
for T60 = 130 ms (speech noise, L = 20, no sub-sampling, LANC = 400, all
noise references)
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Figure 5.15: PTF of speech and noise components for recursive GSVD-based
optimal filtering technique with and without ANC postprocessing stage for
(c) T60 = 300 ms, (d) T60 = 800 ms (speech noise, L = 20, no sub-sampling,
LANC = 400, all noise references)
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As mentioned in Section 1.3.4, in a real microphone array setup different kinds
of imperfections occur (e.g. microphone gain and phase mismatch, deviati-
ons from the assumed array geometry). Multi-microphone signal enhancement
techniques should be robust against (small) deviations from the assumed sig-
nal model. In this section, we investigate the robustness of the GSVD-based
optimal filtering technique and the GSC for several types of deviations.

Many multi-microphone noise reduction techniques, e.g. GSC, rely on a priori
assumptions about the position of the speech source and about the microphone
array configuration. These techniques therefore tend to be rather sensitive to
deviations from the assumed signal model, as e.g. encountered when incor-
rectly estimating the direction of the speech source or when using uncalibrated
microphone arrays. Since the GSVD-based optimal filtering technique does
not make any a priori assumptions about the location of the speaker and the
microphone characteristics, it is expected to be more robust to deviations.

In [240] robustness has been analysed theoretically, i.e. using infinitely long
filters (cf. Section 3.5) and not taking into account reverberation, for 3 types
of model errors: (a) microphone gain and phase mismatch, (b) microphone
displacement, and (c) incorrect estimation of the direction of the speech source.
These types of deviations can be analysed by modifying the coherence matrices
Γx(ω) and/or Γv(ω), cf. [240]. It has been shown that the GSC is extremely
sensitive to microphone gain and phase mismatch (and to a smaller extent to
the other two types of deviations) when the noise sensitivity Φ(ω), cf. Section
3.5.4, is high. It has also been shown that the multi-channel Wiener filter is
more robust than the GSC (even when adding a noise sensitivity constraint
to the GSC [37][127][128][134]) for all 3 types of deviations. It can e.g. be
proved that the performance of the multi-channel Wiener filter is independent
of a deviation in microphone gain and phase. Suppose that the microphone
characteristics of the nth microphone are independent of the angle of incidence
θ and can be described by the function

An(ω) = an(ω)e−jψn(ω) , (5.4)

with an(ω) and ψn(ω) the frequency-dependent gain and phase. The nth mi-
crophone signal Ỹn(ω) can then be written as Ỹn(ω) = An(ω)Yn(ω), with Yn(ω)
the microphone signal assuming a flat frequency response equal to 1. The vec-
tor of microphone signals Ỹ(ω) can now be written as Ỹ(ω) = A(ω)Y(ω),
with A(ω) = diag{An(ω)}, such that the correlation matrix R̃yy(ω) is equal to

R̃yy(ω) = E{Ỹ(ω)ỸH(ω)} = A(ω)R̄yy(ω)AH(ω) . (5.5)

Using (5.5) and a similar definition for R̃xx(ω), the multi-channel Wiener filter
in (3.81) can then be written as

W̃WF (ω) = R̃−1
yy (ω)R̃xx(ω) e1 = A−H(ω)R̄−1

yy (ω)R̄xx(ω)AH(ω) e1 (5.6)

= A∗
0(ω)A−H(ω)WWF (ω) , (5.7)
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such that the output signal Z̃(ω) is equal to

Z̃(ω) = W̃H
WF (ω)Ỹ(ω) = A0(ω)WH

WF (ω)Y(ω) = A0(ω)Z(ω) , (5.8)

which is a scaled version of Z(ω). Therefore the power transfer functions for
the speech and the noise components and hence also the performance measures
(unbiased SNR, speech distortion) of the multi-channel Wiener filter are inde-
pendent of the microphone gain and phase. For the GSC, the filter in (2.155)
now is equal to (assuming it is only calculated during noise-only periods)

W̃(ω)=
WH

q (ω)Wq(ω)

WH
q (ω)A−H(ω)Γ−1

v (ω)A−1(ω)Wq(ω)
A−H(ω)Γ−1

v (ω)A−1(ω)Wq(ω).

(5.9)
However, since Ca(ω)X̃(ω) 6= 0 and Ca(ω)R̃xx(ω) 6= 0, signal leakage and
hence signal distortion occurs.

For simulated acoustic environments (with reverberation), we have compared
the robustness of the GSVD-based optimal filtering technique with the GSC in
[51]. It has been shown that for all three considered deviations the GSVD-based
optimal filtering technique is more robust than the GSC. In this section we
present results for microphone gain mismatch and for microphone displacement.
Fig. 5.16a shows the difference in unbiased SNR of the output signal between
the GSVD-based optimal filtering technique and the GSC for different gains a1

of the second microphone (this gain is assumed to be frequency-independent).
For most reverberation times – especially higher reverberation times – the
larger the deviation of the gain a1 from the assumed nominal gain anom1 = 1,
the larger the difference in performance between the two techniques. Hence,
the GSVD-based optimal filtering technique is more robust than the GSC for
microphone gain mismatch. Fig. 5.16b shows the difference in unbiased SNR
of the output signal for different positions p1 of the second microphone. The
larger the deviation of the microphone position p1 from the assumed nominal
position pnom1 = 3.05 m, the larger the difference in performance. Hence, the
GSVD-based optimal filtering technique is also more robust than the GSC for
microphone displacement.

5.5 Conclusion

In this chapter the performance (unbiased SNR improvement, speech distortion
and robustness) of the GSVD-based implementation of the multi-channel opti-
mal filtering technique has been analysed for several acoustic environments and
has been compared with standard fixed and adaptive beamforming techniques.

In Section 5.2 the performance of the GSVD-based optimal filtering technique
has been analysed for several algorithmic parameters. For higher filter lengths
L and for lower reverberation times T60, the unbiased SNR increases and the
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Figure 5.16: Unbiased SNR difference between GSVD-based optimal filtering
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speech distortion decreases. It has been shown that the batch and the recursive
version (both ‘conventional’ and square root-free implementation) nearly have
the same performance. For stationary acoustic environments, a small number of
GSVD-steps (and sweeps) and a higher sub-sampling factor can be used without
decreasing the performance. The ANC postprocessing stage can either be used
for increasing the noise reduction performance or for computational complexity
reduction without decreasing the performance. The ANC postprocessing stage
however also gives rise to a slight increase in speech distortion, which can be
limited by using longer filter lengths. It has also been shown that the GSVD-
based optimal filtering technique exhibits the desired beamforming behaviour
for simple acoustic scenarios and that this technique can be used for suppressing
a spectrally non-stationary noise source.

Since the GSVD-based optimal filtering technique uses no other a priori infor-
mation than the output of a VAD algorithm, it is expected to be quite sensitive
to speech detection errors. However, in Section 5.3 it has been shown (both
theoretically and experimentally) that the unbiased SNR improvement is not
degraded by speech detection errors, but that the speech distortion increases
with increasing error rate δ. For error rates δ < 0.2, speech distortion remains
limited (also when adding the ANC postprocessing stage). When evaluating
the performance of the GSVD-based optimal filtering technique in combination
with different VAD algorithms, it has been shown that the best performance
for different noise types is achieved using the log-likelihood and the log-energy
VAD algorithms.

In Section 5.4 the performance of the GSVD-based optimal filtering technique
has been compared with standard beamforming techniques for various acous-
tic scenarios (single and multiple noise sources, real-life recording). The SNR
improvement of the GSVD-based optimal filtering technique with ANC post-
processing stage outperforms the SNR improvement of the GSC for all reverbe-
ration times and for all considered acoustic scenarios. More speech distortion
occurs for higher reverberation times and when adding the ANC postprocessing
stage using multiple noise reference signals. In addition, the robustness of the
GSC and the GSVD-based optimal filter has been analysed for several deviati-
ons from the assumed signal model. It has been shown that the performance of
the GSVD-based optimal filter is independent of a deviation in the microphone
gain and phase and that the GSVD-based optimal filter is more robust than the
GSC for microphone mismatch, microphone displacement and look direction error.
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Chapter 6

Robust Time-Delay
Estimation for Acoustic
Source Localisation

In this chapter two adaptive algorithms are presented for robust time-delay
estimation (TDE) in acoustic environments where a large amount of additive
background noise and reverberation is present.

Section 6.1 gives an introduction to the acoustic source localisation problem
and gives a brief overview of existing methods for acoustic source localisation
and time-delay estimation. Generally we will consider time-delay estimation
between two microphone signals in this chapter.

Section 6.2 discusses the batch, i.e. non-adaptive, estimation of the complete
acoustic impulse responses from the microphone signals. It is shown that if the
length of the acoustic impulse responses is either known or can be overestima-
ted, the complete acoustic impulse responses can be identified from the eigenva-
lue decomposition (EVD) of the speech correlation matrix (in the noiseless case
and in the spatio-temporally white noise case) or from the generalised eigen-
value decomposition (GEVD) of the speech and the noise correlation matrices
(in the coloured noise case).

These batch impulse response estimation procedures form the basis for deri-
ving stochastic gradient algorithms which iteratively estimate the (generalised)
eigenvector corresponding to the smallest (generalised) eigenvalue. These adap-
tive EVD and GEVD algorithms are discussed in Section 6.3. In [9] it has been
shown that the adaptive EVD algorithm can be used for TDE, remarkably
even when underestimating the length of the acoustic impulse responses. We
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will show that this result can be extended to the spatio-temporally coloured
noise case, by using an adaptive GEVD algorithm (and an adaptive prewhite-
ning algorithm) for TDE. In Section 6.4 it is shown that these adaptive TDE
algorithms can be straightforwardly extended to the case of more than two
microphones.

Section 6.5 describes the simulation results, using different reverberation con-
ditions (ideal and realistic), different SNRs and different microphone configu-
rations. For all conditions it is shown that the time-delays can be estimated
more robustly using the adaptive GEVD algorithm than using the adaptive
EVD algorithm and the adaptive prewhitening algorithm.

6.1 Introduction

In many applications, such as teleconferencing, hands-free voice-controlled sys-
tems and hearing aids, it is desirable to localise the dominant speaker. By using
a microphone array, it is possible to determine the position of this speaker, such
that the microphone array then can be electronically steered using fixed (and
adaptive) beamforming techniques, cf. Section 2.5 and Part III. In multimedia
teleconferencing systems, the position of the dominant speaker can be used not
only for microphone array beamforming, but also for automatic video camera
steering [132][271] and for determining binaural cues for stereo imaging.

It has been shown that it is possible to calculate the position of a speaker,
e.g. using maximum likelihood or least-squares methods, when the time-delays
between the different microphone signals are known [23][30][133][276]. However,
accurate estimation of the time-delays between the different microphone signals
is not an easy task because of the room reverberation, the acoustic background
noise and the non-stationary character and the low-rank model of the speech
signal. Generally, room reverberation is considered to be the main problem
for TDE [29], but acoustic background noise can also considerably decrease
the performance of time-delay estimators. Whereas highly noisy situations are
not very common in teleconferencing applications, they frequently occur in e.g.
hearing aid applications.

Most TDE methods are based on the generalised cross-correlation (GCC) or the
cross-power spectrum phase (CSP) between the microphone signals [106][154]
[200][217]. However, since most of these methods assume an ideal room model
without reverberation, i.e. only a direct path between the speech source and
the microphone array, they can not handle reverberation well. In order to make
TDE more robust to reverberation, a cepstral pre-filtering technique has been
proposed in [246] and techniques have been developed that use a more realis-
tic room model incorporating reverberation [9][33]. In [9] an adaptive EVD
algorithm has been developed for (partial) estimation of two acoustic impul-
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se responses, using a stochastic gradient algorithm that iteratively estimates
the eigenvector corresponding to the smallest eigenvalue. From the estimated
acoustic impulse responses, the time-delay can be calculated as the time diffe-
rence between the first peak (direct path) of the two impulse responses or as
the peak of the correlation function between the two impulse responses. Since
only the time difference between the first peak (direct path) of the acoustic
impulse responses is required, it is therefore not necessary for TDE to estimate
the complete acoustic impulse responses.

The adaptive EVD algorithm for TDE performs much better in highly rever-
berant environments than the GCC-based methods. However, the adaptive
EVD algorithm is - strictly speaking - only valid if either no noise or if spatio-
temporally white noise is present. In this chapter we extend the adaptive EVD
algorithm to the spatio-temporally coloured noise case, by deriving an (adapti-
ve) stochastic gradient algorithm for the GEVD or by prewhitening the noisy
microphone signals. In addition, we extend all adaptive TDE algorithms to the
case of more than two microphones.

6.2 Batch estimation of two impulse responses

This section discusses the batch, i.e. non-adaptive, estimation of the complete
acoustic impulse responses from the recorded microphone signals. The techni-
ques discussed in this section are based on the subspace method, e.g. used in
[1][7][101][117][187][252][265] for different applications. We will briefly review
these well-known techniques, because they form the basis for deriving the sto-
chastic gradient algorithms which iteratively estimate the (generalised) eigen-
vector corresponding to the smallest (generalised) eigenvalue. These adaptive
techniques will be used for TDE in practice (cf. Section 6.3).

Section 6.2.1 discusses the estimation of the acoustic impulse responses using
correlation matrices for the noiseless case, whereas the spatio-temporally white
noise and coloured noise case are discussed in Sections 6.2.2 and 6.2.3. Section
6.2.4 discusses the practical computation using data matrices and Section 6.2.5
gives some simulation results.

Recall from the recording model of Section 2.2 that each microphone signal
yn[k] consists of a filtered version of the speech signal s[k] and additive noise,
i.e.

yn[k] = hn[k] ⊗ s[k] + vn[k] = xn[k] + vn[k] . (6.1)

The goal is to estimate the acoustic impulse responses hn[k] from the microp-
hone signals yn[k] without any a priori knowledge about the speech signal s[k].
After estimating the complete impulse responses, it is then trivial to compute
the time-delays between the direct paths. The acoustic impulse response hn[k]
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can generally be modelled using an FIR-filter hn of length K, cf. (2.13),

hn =
[
hn,0 hn,1 . . . hn,K−1

]T
. (6.2)

Since hm[k] ⊗ xn[k] = hm[k] ⊗ hn[k] ⊗ s[k] = hn[k] ⊗ xm[k], the relation

xTn,K [k] hm = xTm,K [k] hn , m, n = 0 . . . N − 1 , (6.3)

holds [9], with the K-dimensional data vector xn,K [k] defined as

xn,K [k] =
[
xn[k] xn[k − 1] . . . xn[k −K + 1]

]T
. (6.4)

Although we do not explicitly attribute a time index k to the impulse responses,
this does not imply that these are time-invariant. In addition, in the remainder
of this section we will assume N = 2, although it is quite easy to extend all
algorithms to the case of more than two microphones (cf. Section 6.4).

6.2.1 Noiseless case

Similarly as in Section 3.4.3, the 2L×2L-dimensional correlation matrix R̄xx[k]
is defined as

R̄xx[k] = E{x[k]xT [k]} =

[

R̄00
xx[k] R̄01

xx[k]

R̄10
xx[k] R̄11

xx[k]

]

, (6.5)

with the 2L-dimensional stacked data vector x[k] equal to

x[k] =

[
x0,L[k]
x1,L[k]

]

, (6.6)

and the L× L-dimensional sub-matrix R̄mn
xx [k] equal to

R̄mn
xx [k] = E{xm,L[k] xTn,L[k]} . (6.7)

Using (3.24), i.e. R̄xx[k] = H[k] R̄ss[k]HT [k], with H[k] a 2L × (K + L − 1)-
dimensional matrix, one can see that when the true acoustic impulse response
length K is overestimated, i.e. L ≥ K, the correlation matrix R̄xx[k] has rank
K + L− 1 and its null-space has dimension L−K + 1, provided that [187]

1. the acoustic impulse responses h0 and h1 do not have common zeros;

2. the (K + L− 1) × (K + L− 1)-dimensional correlation matrix R̄ss[k] of
the clean speech signal s[k] has full rank. Although it has been assumed
in Section 3.2.2 that this matrix has rank R, with R ≤ K + L − 1, the
low-rank model of the speech signal is only approximately valid, i.e. we
can assume that R̄ss[k] has K + L − 1 − R eigenvalues which are very
small, but which are not exactly equal to zero.
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If L = K, the null-space of R̄xx[k] has dimension 1, and the 2K-dimensional
vector

v̄ =

[
−h1

h0

]

(6.8)

belongs to this null-space, since, using (6.3), R̄xx[k]v̄ = 0. Consider the EVD
of R̄xx[k], cf. Appendix A.2,

R̄xx[k] = V̄x∆̄xV̄
T
x , (6.9)

with V̄x an orthogonal matrix, containing the eigenvectors, and ∆̄x a diagonal
matrix, containing the eigenvalues. Hence, the unit-norm eigenvector, corres-
ponding to the only zero eigenvalue of R̄xx[k], contains a scaled version of the
two acoustic impulse responses h0 and h1.

If L > K, the null-space of R̄xx[k] is spanned by L − K + 1 eigenvectors,
corresponding to the L−K+1 zero eigenvalues. All these eigenvectors contain
a different filtered version of the acoustic impulse responses. By extracting
the common part of the eigenvectors, which can e.g. be done by performing a
QR-decomposition of the full null-space or by using a least-squares approach
[101][117], the correct acoustic impulse responses of length K can be identified.

If L < K, the rank of R̄xx[k] is equal to 2L and the null-space of R̄xx[k] is
empty, such that generally the acoustic impulse responses can not be correctly
identified.

6.2.2 Spatio-temporally white noise

When additive noise is present, consider the 2L × 2L-dimensional speech and
noise correlation matrices R̄yy[k] and R̄vv[k], defined as in (6.5), i.e.

R̄yy[k] =

[

R̄00
yy[k] R̄01

yy[k]

R̄10
yy[k] R̄11

yy[k]

]

, R̄vv[k] =

[

R̄00
vv[k] R̄01

vv[k]

R̄10
vv[k] R̄11

vv[k]

]

, (6.10)

with the L× L-dimensional sub-matrices R̄mn
yy [k] and R̄mn

vv [k] equal to

R̄mn
yy [k] = E{ym,L[k] yTn,L[k]}, R̄mn

vv [k] = E{vm,L[k] vTn,L[k]} , (6.11)

and the L-dimensional vectors yn,L[k] and vn,L[k] defined as in (6.4). Since
the speech and the noise components are assumed to be uncorrelated, we can
write

R̄yy[k] = R̄xx[k] + R̄vv[k] . (6.12)

If the noise is spatio-temporally white, i.e. R̄vv[k] = σ̄2
v I2L, with σ̄2

v the noise
power, the acoustic impulse responses can still be identified from the EVD of
the speech correlation matrix, i.e.

R̄yy[k] = V̄y∆̄yV̄
T
y . (6.13)
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Using (6.9) and (6.12), we can write R̄yy[k] in the spatio-temporally white
noise case as

R̄yy[k] = V̄x(∆̄x + σ̄2
v I2L)V̄T

x , (6.14)

such that V̄y = V̄x and ∆̄y = ∆̄x+ σ̄2
v I2L. If L = K, only one of the diagonal

elements of ∆̄y is equal to σ̄2
v (smallest eigenvalue), and the eigenvector in

V̄y, corresponding to this eigenvalue, again contains a scaled version of the
acoustic impulse responses. If L > K, the procedure for estimating the impulse
responses of length K is similar to the procedure in the noiseless case, and is
now based on the L−K+1 eigenvectors in V̄y corresponding to the eigenvalues
which are equal to σ̄2

v .

6.2.3 Spatio-temporally coloured noise

If spatio-temporally coloured noise is present, the acoustic impulse responses
can not be identified from the EVD of R̄yy[k], but they can still be identified
from the GEVD of R̄yy[k] and R̄vv[k] or from the EVD of the pre-whitened

speech correlation matrix R̃yy[k]. In both cases, the noise correlation matrix
R̄vv[k] needs to be known in advance or we have to be able to estimate R̄vv[k]
from noise-only periods, requiring a VAD-algorithm (cf. Section 5.3).

1. GEVD-procedure: The GEVD of R̄yy[k] and R̄vv[k] is equal to, cf. (3.15),

{

R̄yy[k] = Q̄ Λ̄y Q̄T

R̄vv[k] = Q̄ Λ̄v Q̄T ,
(6.15)

with Q̄ a 2L× 2L-dimensional invertible, but not necessarily orthogonal,
matrix and Λ̄y and Λ̄v diagonal matrices. From (6.12) and (6.15), it
follows that

R̄−1
vv [k] R̄xx[k] = R̄−1

vv [k] (R̄yy[k] − R̄vv[k]) = Q̄−T (Λ̄−1
v Λ̄y − I2L) Q̄T .

Since R̄−1
vv [k] R̄xx[k] has rank K + L− 1 (R̄vv[k] is assumed to be of full

rank), L − K + 1 diagonal elements of the diagonal matrix Λ̄−1
v Λ̄y are

equal to 1. Hence, L−K + 1 columns q̄ of Q̄−T exist for which

R̄−1
vv [k] R̄xx[k] q̄ = 0 , (6.16)

such that R̄xx[k] q̄ = 0. If L = K, the null-space of R̄xx[k] has dimen-
sion 1, and the 2K-dimensional vector q̄ contains a scaled version of the
acoustic impulse responses. If L > K, the L − K + 1 vectors q̄ again
contain different filtered versions of the acoustic impulse responses, and
the procedure for estimating the correct acoustic impulse responses of
length K is similar to the procedure in the noiseless case.
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2. Prewhitening procedure: The 2L × 2L-dimensional pre-whitened speech
correlation matrix R̃yy[k] is defined as

R̃yy[k] , R̄−T/2
vv [k] R̄yy[k] R̄

−1/2
vv [k] , (6.17)

with R̄
1/2
vv [k] the 2L × 2L-dimensional upper-triangular Cholesky-factor

[110] of the noise correlation matrix R̄vv[k], i.e. R̄vv[k] = R̄
T/2
vv [k] R̄

1/2
vv [k].

From the EVD of R̃yy[k], i.e.

R̃yy[k] = ṼyΛ̃yṼ
T
y , (6.18)

it follows, using (6.12), that the pre-whitened matrix R̃xx[k] can be writ-
ten as

R̃xx[k] , R̄−T/2
vv [k] R̄xx[k] R̄

−1/2
vv [k] = Ṽy(Λ̃y − I2L)ṼT

y . (6.19)

Since R̃xx[k] has rank K + L − 1, this implies that L −K + 1 diagonal
elements of the diagonal matrix Λ̃y are equal to 1 and L−K+1 columns
ṽ of Ṽy exist for which

R̃xx[k] ṽ = R̄−T/2
vv [k] R̄xx[k] R̄

−1/2
vv [k] ṽ = 0 , (6.20)

such that R̄xx[k] R̄
−1/2
vv [k] ṽ = 0. If L = K, the null-space of R̄xx[k] has

dimension 1, and the vector R̄
−1/2
vv [k] ṽ contains a scaled version of the

acoustic impulse responses. If L > K, the L−K + 1 vectors R̄
−1/2
vv [k] ṽ

again contain different filtered versions of the acoustic impulse responses,
and the procedure for estimating the correct acoustic impulse responses
of length K is similar to the procedure in the noiseless case.

It is readily verified that the batch GEVD-procedure and the batch prewhite-
ning procedure are in fact equivalent, since

Λ̃y = Λ̄−1
v Λ̄y, Q̄−T = R̄−1/2

vv [k]Ṽy . (6.21)

However, the adaptive versions of both algorithms, which will be used in prac-
tice for TDE and which are discussed in Section 6.3, can produce different
results.

6.2.4 Practical computation

As for the GSVD-based optimal filtering technique discussed in Chapter 3, in
practice we do not work with correlation matrices but with data matrices. The
P × 2L-dimensional speech data matrix Y[k] is defined as, cf. (3.38),

Y[k] =








yT [k − P + 1]
...
yT [k − 1]

yT [k]








=








yT0,L[k − P + 1] yT1,L[k − P + 1]
...
yT0,L[k − 1] yT1,L[k − 1]

yT0,L[k] yT1,L[k]







, (6.22)
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assuming without loss of generality that all speech vectors are consecutive. The
number of speech vectors P is typically much larger than L, such that the em-
pirical speech correlation matrix can be computed as Ryy[k] = YT [k]Y[k]/P .
The Q×2L-dimensional noise data matrix V[k] is defined similarly as in (6.22).

1. GSVD-procedure: Instead of computing the GEVD of R̄yy[k] and R̄vv[k],
we compute the GSVD of the data matrices Y[k] and V[k], cf. (3.43),

{
Y[k] = UY ΣY QT

V[k] = UV ΣV QT ,
(6.23)

with UY and UV orthogonal matrices, ΣY and ΣV diagonal matrices
and Q an invertible, but not necessarily orthogonal, matrix. The acoustic
impulse responses are estimated from the columns of Q−T .

2. Prewhitening procedure: The pre-whitened speech data matrix Ỹ[k] is
defined as

Ỹ[k] = Y[k]R−1/2
vv [k] , (6.24)

where the Cholesky-factor R
1/2
vv [k] can be computed using the QR-decom-

position of the noise data matrix, i.e. V[k] = QV [k]R
1/2
vv [k]. The SVD

of Ỹ[k] is defined as
Ỹ[k] = ŨY Σ̃Y ṼT

Y , (6.25)

with ŨY and ṼY orthogonal matrices and Σ̃Y a diagonal matrix. The
acoustic impulse responses are estimated from the columns of R

−1/2
vv [k] ṼY .

6.2.5 Simulation results

We have filtered a 16 kHz speech segment of 160000 samples (10 sec) with 2
artificially generated impulse responses (K = 20), which are depicted in Fig.
6.1a. Stationary speech noise, having the same long-term spectrum as speech,
has been added and the SNR of y0[k] is 10 dB.

Figures 6.1b and 6.1c show the estimated impulse responses for the SVD-
procedure and for the GSVD-procedure, using all microphone samples and
L = K (for the GSVD-procedure, the noise components vn[k] are assumed
to be available in order to compute R

1/2
vv [k]). As can be clearly seen, the

impulse responses are almost correctly estimated using the GSVD-procedure,
but not using the SVD-procedure, because this procedure assumes that spatio-
temporally white noise is present. However, since the assumption of uncor-
related speech and noise segments is not perfectly satisfied in practice due to
the data-based estimation, i.e. XT [k]V[k] 6= 0, small estimation errors occur
in the GSVD-procedure and it appears that the estimation procedure is quite
sensitive to this assumption. During the simulations we have noticed that the
better this independence assumption is satisfied, i.e. the higher the SNR and
the longer the speech and the noise segments, the smaller the estimation error
becomes. This has also been observed in [101].



6.3. Adaptive procedure for TDE 161

−0.5

0

0.5

1
Impulse response 1

−0.5

0

0.5

1
Impulse response 2

−0.5

0

0.5

1
Estimated response 1 (SVD)

−0.5

0

0.5

1
Estimated response 2 (SVD)

1 5 10 15 20
−0.5

0

0.5

1
Estimated response 1 (GSVD)

1 5 10 15 20
−0.5

0

0.5

1
Estimated response 2 (GSVD)

Figure 6.1: (a) Impulse responses h0 and h1, (b) Estimated impulse responses
for SVD-procedure and (c) GSVD-procedure

6.3 Adaptive procedure for TDE

In practice, acoustic impulse responses may have thousands of taps, depending
on the amount of room reverberation. Because of the (approximate) low-rank
model of the speech signal, correspondingly large correlation matrices R̄ss[k]
of the clean speech signal s[k] will be rank-deficient or at least ill-conditioned
[92][178]. Therefore it is quite difficult in practice to identify the complete
acoustic impulse responses, especially when a large amount of background noi-
se is present [101]. However, if we underestimate the length of the impulse
responses (L < K), the impulse responses estimated with the batch procedures
are biased and do not necessarily exhibit any resemblance to the actual impulse
responses. This makes it difficult (and impossible in practice) to calculate the
correct time-delays from these estimated impulse responses.

In [9] an adaptive EVD algorithm has been presented, which iteratively estima-
tes the eigenvector corresponding to the smallest eigenvalue. Remarkably, even
when underestimating the length of the acoustic impulse responses, simulations
show that this adaptive EVD algorithm is still able to identify the main peak
of the impulse responses, where it is assumed that this main peak corresponds
to the first peak (direct path) of the acoustic impulse response. Obviously, for
TDE only the time difference between the first peak of the acoustic impulse
responses is required.
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Strictly speaking, the adaptive EVD algorithm is only valid when no noise or
when spatio-temporally white noise is present. In this section, we will therefo-
re extend the adaptive EVD algorithm to the coloured noise case, by deriving
a stochastic gradient algorithm for the procedures presented in Section 6.2.3,
i.e. an algorithm which iteratively estimates the generalised eigenvector corres-
ponding to the smallest generalised eigenvalue. Using simulations with spatio-
temporally coloured noise, it will be shown that - as for the adaptive EVD
algorithm - it is possible to correctly estimate the time-delays with the adap-
tive GEVD algorithm, even when underestimating the length of the acoustic
impulse responses (cf. Section 6.5).

In the remainder of this chapter we assume that the length of the acoustic
impulse responses is underestimated (L < K), and hence derive algorithms
which estimate the one-dimensional subspace corresponding to the smallest
(generalised) eigenvalue1.

6.3.1 Adaptive EVD algorithm [9]

The eigenvector corresponding to the smallest eigenvalue of the empirical cor-
relation matrix Ryy[k] can be iteratively estimated by minimising the cost
function vTRyy[k]v, subject to the constraint vTv = 1. A cheap procedure
consists in minimising the mean square value of the error signal e[k], defined
as

e[k] =
vT [k]y[k]

‖v[k]‖ , (6.26)

with y[k] =
[

yT0,L[k] yT1,L[k]
]T

. This can e.g. be done using a gradient-
descent LMS-procedure, where normalisation is included in each iteration step
in order to avoid roundoff error propagation [218], i.e.

v[k + 1] =
v[k] − µe[k] ∂e[k]∂v[k]

‖v[k] − µe[k] ∂e[k]∂v[k]‖
, (6.27)

with µ the step size of the adaptive algorithm. The gradient of e[k] is equal to

∂e[k]

∂v[k]
=

1

‖v[k]‖

(

y[k] − e[k]
v[k]

‖v[k]‖

)

. (6.28)

In [9] it has been assumed that the smallest eigenvalue of Ryy[k] is very small
(in the noiseless case), such that the gradient eventually reduces to ∂e[k]

∂v[k] ≈ y[k],

1It would also be possible to use the recursive updating procedures presented in Section
4.2. However, since we only need to estimate/update a one-dimensional subspace, namely the
(generalised) eigenvector corresponding to the smallest (generalised) eigenvalue, stochastic
gradient algorithms constitute a far less computationally complex alternative to updating
the full (generalised) eigenvalue decomposition.
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and the update formulas become

e[k] = vT [k]y[k]

v[k + 1] =
v[k] − µe[k]y[k]

‖v[k] − µe[k]y[k]‖
(6.29)

In [9] it has been indicated that a good initialisation of v and a proper choice
of the parameters L and µ are essential for a good convergence behaviour. It
has also been shown by simulations that the adaptive EVD algorithm performs
more robustly in highly reverberant environments than GCC-based methods.

6.3.2 Adaptive GEVD and prewhitening algorithm

For the batch GEVD and prewhitening procedures, described in Section 6.2.3,
it is also possible to derive stochastic gradient algorithms, which iteratively
estimate the generalised eigenvector corresponding to the smallest generalised
eigenvalue. It will be assumed that the empirical noise correlation matrix
Rvv[k] (or its Cholesky-factor) is either known or is updated during noise-only
periods. Since the noise correlation matrix can not be updated during speech-
and-noise periods, we assume that the noise is stationary enough, such that
the noise correlation matrix computed during noise-only periods can be used
in the update formulas during subsequent speech-and-noise periods.

1. Adaptive GEVD algorithm: The generalised eigenvector corresponding to
the smallest generalised eigenvalue of the empirical correlation matrices
Ryy[k] and Rvv[k] can be iteratively estimated by minimising the cost
function qTRyy[k]q, subject to the constraint qTRvv[k]q = 1. A cheap
procedure consists in minimising the mean square value of the error signal
e[k], defined as

e[k] =
qT [k]y[k]

√

qT [k]Rvv[k]q[k]
=

qT [k]y[k]

‖R1/2
vv [k]q[k]‖

, (6.30)

which can e.g. be done using a gradient-descent LMS-procedure, i.e.

q[k + 1] = q[k] − µe[k]
∂e[k]

∂q[k]
, (6.31)

with µ the step size of the adaptive algorithm. The gradient of e[k] is
equal to

∂e[k]

∂q[k]
=

1
√

qT [k]Rvv[k]q[k]

(

y[k] − e[k]
Rvv[k]q[k]

√

qT [k]Rvv[k]q[k]

)

. (6.32)

Substituting (6.30) and (6.32) into (6.31) gives

q[k + 1] = q[k] − µ

qT [k]Rvv[k]q[k]

(

y[k]yT [k]q[k] − e2[k]Rvv[k]q[k]
)

,

(6.33)
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such that, when taking expectation after convergence, we obtain

R̄yy[k]q[∞] = E{e2[k]}R̄vv[k]q[∞] . (6.34)

This is exactly what is desired, i.e. q[∞] is the generalised eigenvector
corresponding to the smallest generalised eigenvalue of the correlation
matrices R̄yy[k] and R̄vv[k].

Since the smallest generalised eigenvalue is equal to 1 (cf. Section 6.2.3),
we can not further simplify the expression in (6.33). In order to avoid
roundoff error propagation, we include an additional normalisation in
each iteration step, such that the update formulas can be written as

e[k] = qT [k]y[k]

q′[k + 1] = q[k] − µe[k]
{
y[k] − e[k]Rvv[k]q[k]

}

q[k + 1] =
q′[k + 1]

√

q′T [k + 1]Rvv[k]q′[k + 1]

(6.35)

2. Adaptive prewhitening algorithm: The batch prewhitening procedure can
be made adaptive by using pre-whitened data vectors ỹ[k] = R

−T/2
vv [k]y[k]

in the adaptive EVD-procedure. The update formulas then become

e[k] = ṽT [k]ỹ[k]

ṽ[k + 1] =
ṽ[k] − µe[k]

(
ỹ[k] − e[k]ṽ[k]

)

‖ṽ[k] − µe[k]
(
ỹ[k] − e[k]ṽ[k]

)
‖

(6.36)

Note that the gradient ∂e[k]
∂ṽ[k] can not be approximated by ỹ[k] (as in

the adaptive EVD algorithm), since the smallest eigenvalue of R̃yy[k]
is not equal to zero. The impulse response at time k is estimated as
R

−1/2
vv [k] ṽ[k]. If the empirical noise correlation matrix Rvv[k] is not

known in advance, the Cholesky-factor R
−1/2
vv [k] can be updated by in-

verse QR-updating of the noise data matrix during noise-only periods.

The computational complexity of the adaptive GEVD and the adaptive pre-
whitening algorithm is higher than the complexity of the adaptive EVD algo-
rithm, since in each iteration step two additional matrix-vector multiplications
(with the noise correlation matrix or with the inverse Cholesky factor) have to
be performed. Reducing the computational complexity of these algorithms is
a topic of further research. One could e.g. replace the empirical noise corre-
lation matrix in the adaptive GEVD algorithm by an instantaneous estimate
v[k′]vT [k′], where v[k′] is a noise data vector which is stored in a buffer during
noise-only periods and which is used in the update equations during subse-
quent speech-and-noise periods. In addition, the computational complexity of
all presented adaptive TDE algorithms can be reduced by using sub-sampling
(cf. Section 4.2.4), i.e. the estimated impulse response vectors are not updated
for every time step, at the expense of slower convergence and tracking.
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6.4 Extension to more than two microphones

All previously presented (batch and adaptive) algorithms can be easily ex-
tended to the case of more than two microphones, either by constructing
P (N−1)×NL-dimensional data matrices, considering the time-delays between
every microphone and the first microphone, or by constructing P C2

N × NL-
dimensional data matrices (with C2

N all possible combinations of 2 out of N ,
i.e. C2

N = N(N−1)/2), considering the time-delays between every combination
of 2 microphones. E.g. if N = 3, the speech data matrix Y[k] in (6.22) can be
redefined by replacing each vector yT [k] by the matrix

[

0 yT0,L[k] yT1,L[k]

yT0,L[k] 0 yT2,L[k]

]

, (6.37)

considering time-delays between every microphone and the first microphone,
or by the matrix






0 yT0,L[k] yT1,L[k]

yT0,L[k] 0 yT2,L[k]

yT1,L[k] −yT2,L[k] 0




 , (6.38)

considering time-delays between every combination of 2 microphones. The
noise data matrix V[k] is constructed similarly. It can be easily verified that,
if L = K and for the noiseless case, the NK-dimensional vector consisting of
the impulse responses

v =








−hN−1

...
−h1

h0








(6.39)

belongs to the null-space of the speech data matrix. Therefore all previously
presented (batch and adaptive) algorithms can be used with the redefined data
matrices and data vectors. For the adaptive algorithms, several updates now
need to be performed in each iteration step, either with N − 1 or with C2

N

data vectors. However, the computational complexity can be reduced by only
performing an update with one data vector in each iteration step, i.e. by using
consecutive rows of the matrices (6.37) or (6.38) in each iteration step.

6.5 Simulations

We have performed several simulations, analysing the performance of the diffe-
rent adaptive TDE algorithms (EVD, GEVD, prewhitening) for different rever-
beration conditions (ideal and realistic), different SNRs and different microp-
hone configurations. In all simulations the sampling frequency fs = 16 kHz and
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Figure 6.2: (a) Speech component x0[k], (b) Noisy microphone signal y0[k]
(SNR=−5 dB)

the length of the used signals is 160000 samples (10 sec). We have used a con-
tinuous clean speech signal (see Fig. 6.2a), such that no VAD is required and
we can continuously estimate the time-delays. We have calculated the noise
correlation matrix Rvv[k] in advance from the noise components vn[k] of the
microphone signals, which are assumed to be known. The time-delay between
the different microphone signals is computed using the peak of the correlation
function between the different estimated acoustic impulse responses.

6.5.1 No reverberation, 2-microphone case

In a first simulation, we have assumed no reverberation and N = 2 micropho-
nes. We have used a coloured noise signal, constructed by filtering white noise
with the five-tap FIR filter

[
1 −4 6 4 0.5

]
. The microphone signals

are constructed such that the time-delay between the speech components is −8
samples, whereas the time-delay between the noise components is 5 samples.
We have performed simulations using the adaptive EVD, prewhitening and GE-
VD algorithms for different SNRs (−5 dB, 0 dB, 5 dB). The used filter length
L = 40, the sub-sampling factor for the update formulas is 10 and the step
size µ of the adaptive algorithms is chosen such that the optimal performance
is obtained, i.e. such that most of the estimated time-delays are close to the
correct time-delay (in this case µ = 1e− 7 for all algorithms).

Figure 6.3 shows the TDE convergence plots for the different adaptive algo-
rithms for different SNRs. The correct time-delay is indicated by the dashed
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Figure 6.3: TDE convergence plots for adaptive EVD, prewhitening and GEVD
algorithms for different SNRs without reverberation (N = 2, L = 40, sub-
sampling = 10, µ = 1e− 7)

line. As can be seen, the adaptive EVD algorithm converges to the correct
time-delay for SNR = 5 dB, but converges to the (wrong) time-delay of the
noise source for lower SNRs. Both the adaptive prewhitening and the adaptive
GEVD algorithm converge to the correct time-delay for all SNRs. The adaptive
GEVD algorithm converges faster than the adaptive prewhitening algorithm.

6.5.2 Realistic conditions, 2-microphone case

In order to simulate realistic reverberation conditions, we have simulated a
room with dimensions 5 m × 4 m × 2 m, having a reverberation time T60 =
250 msec. The room consists of a microphone array withN = 2 omni-directional
microphones at positions

[
1 1 1

]
and

[
1.5 1 1

]
, a speech source at

position
[

2 2 1.7
]

and a noise source at position
[

4 1.5 1
]
. The used

noise signal is stationary speech noise. The speech and the noise components
of the nth microphone signal are filtered versions of the clean speech and noise
signals with simulated acoustic impulse responses, constructed using the image
method (cf. Section 1.3.3) with K = 1000. The two acoustic impulse responses
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Figure 6.4: Acoustic impulse responses for the speech source

for the speech source are plotted in Fig. 6.4. The exact time-delay between
the speech components of the microphone signals is −12.18 samples, which has
been obtained by a simple geometrical calculation.

We have performed simulations using the adaptive EVD, prewhitening and
GEVD algorithms for different SNRs (−5 dB, 0 dB) and different sub-sampling
factors (1, 10). The noisy microphone signal y0[k] with SNR = −5 dB is plotted
in Fig. 6.2b. The used filter length L = 40 and for each algorithm we have
chosen the step size µ which gives rise to the best result.

Figure 6.5 shows the TDE convergence plots for SNR = −5 dB and sub-
sampling factor 1, i.e. no sub-sampling. The correct time-delay is indicated
by the dashed line. As can be seen, the adaptive EVD algorithm does not
converge to the correct time-delay (except for the signal segment between 1.5
and 3 sec, where the segmental SNR is quite high, see Fig. 6.2), whereas both
the adaptive prewhitening and the adaptive GEVD algorithm converge to the
correct time-delay.

Figure 6.6 shows the TDE convergence plots for SNR = −5 dB and sub-
sampling factor 10 (i.e. the estimated impulse responses are updated every
10 samples). Again, the adaptive EVD algorithm does not converge to the
correct time-delay, whereas both the adaptive prewhitening and the adaptive
GEVD algorithm converge to the correct time-delay. By comparing Fig. 6.5
and 6.6, it can be observed that the adaptive prewhitening and the adaptive
GEVD algorithms exhibit a slower convergence for sub-sampling factor 10 than
for sub-sampling factor 1.
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Figure 6.5: TDE convergence plots of adaptive EVD, prewhitening and GEVD
algorithms (N = 2, L = 40, SNR = −5 dB, T60 = 250 msec, sub-sampling = 1)
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Figure 6.6: TDE convergence plots of adaptive EVD, prewhitening and GEVD
algorithms (N = 2, L= 40, SNR =−5 dB, T60 = 250 msec, sub-sampling = 10)
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Figure 6.7: TDE convergence plots of adaptive EVD, prewhitening and GEVD
algorithms (N = 2, L = 40, SNR = 0 dB, T60 = 250 msec, sub-sampling = 1)

Figure 6.7 shows the TDE convergence plots for SNR = 0 dB and sub-sampling
factor 1. In this case all algorithms converge to the correct time-delay, but both
the adaptive prewhitening and the adaptive GEVD algorithm converge faster
than the adaptive EVD algorithm. Note that it is still quite remarkable that
the adaptive EVD algorithm converges to the correct time-delay for SNR =
0 dB, without any knowledge of the noise characteristics. This can be partly
explained by the room reverberation, which approximately turns the noise field
into a diffuse sound field.

6.5.3 Realistic conditions, 3-microphone case

For the same acoustical conditions as in Section 6.5.2, we have performed simu-
lations using N = 3 microphones, where the position of the third microphone
is
[

1 1 1.5
]
. We consider the time-delays between every combination of

2 microphones and in each iteration step we have performed updates using
all three data vectors from (6.38). The exact time-delay between the speech
components of the first and the second microphone signal is −12.18 samples,
between the first and the third microphone signal −7.04 samples, and between
the second and the third microphone signal 5.14 samples. We have performed
simulations for different SNRs (−5 dB, 0 dB), the used filter length L = 40, the
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Figure 6.8: TDE convergence plots of adaptive EVD, prewhitening and GEVD
algorithms (N = 3, L = 40, SNR = −5 dB, T60 = 250 msec, sub-sampling =
10). TDE mic1-mic2 solid line, TDE mic1-mic3 dotted line, TDE mic2-mic3
thick solid line.

sub-sampling factor is 1 and for each algorithm we have chosen the step size µ
which gives rise to the best result.

Figure 6.8 shows the TDE convergence plots for SNR = −5 dB. As can be seen,
the adaptive EVD algorithm does not converge to the correct time-delays,
whereas both the adaptive prewhitening and the adaptive GEVD algorithm
converge to the correct time-delays. The adaptive GEVD algorithm exhibits a
better and a faster convergence than the adaptive prewhitening algorithm.

Figure 6.9 shows the TDE convergence plots for SNR = 0 dB. In this case
all algorithms converge to the correct time-delays, although the time-delay
between the second and the third microphone signal is only correctly estimated
by the adaptive EVD algorithm in signal segments with a high segmental SNR.

From these simulations, we can conclude that for all SNRs, sub-sampling factors
and microphone configurations, the adaptive prewhitening and the adaptive
GEVD algorithms converge more robustly to the correct time-delays than the
adaptive EVD algorithm, certainly in low SNR conditions. In addition, the
adaptive GEVD algorithm exhibits a slightly better and faster convergence
than the adaptive prewhitening algorithm.
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Figure 6.9: TDE convergence plots of adaptive EVD, prewhitening and GEVD
algorithms (N = 3, L = 40, SNR = 0 dB, T60 = 250 msec, sub-sampling = 10).
TDE mic1-mic2 solid line, TDE mic1-mic3 dotted line, TDE mic2-mic3 thick
solid line.

6.6 Conclusion

In this chapter we have presented two adaptive algorithms for robust TDE in
adverse acoustic environments, where a large amount of reverberation and ad-
ditive noise is present. We have extended a recently developed adaptive EVD
algorithm for TDE to noisy environments, by using an adaptive GEVD or by
prewhitening the microphone signals. For the adaptive GEVD, we have derived
a stochastic gradient algorithm which iteratively estimates the generalised ei-
genvector corresponding to the smallest generalised eigenvalue. In addition, we
have extended all TDE algorithms to the case of more than two microphones.
It has been shown by simulations that for all conditions the time-delays can be
estimated more robustly using the adaptive GEVD algorithm than using the
adaptive EVD algorithm and the adaptive prewhitening algorithm.



Chapter 7

Combined noise reduction
and dereverberation

In this chapter a combined frequency-domain noise reduction and dereverbe-
ration technique is discussed which produces an MMSE estimate of the clean
dereverberated speech signal. It is shown that this combined technique provides
a trade-off between the noise reduction and the dereverberation objectives.

Section 7.1 gives a brief introduction of the dereverberation and the combined
noise reduction and dereverberation problem.

Section 7.2 describes a frequency-domain technique for estimating the acoustic
transfer functions from the microphone signals which are corrupted by spatially
coloured noise. This technique is an extension of the frequency-domain techni-
que presented in [2], which is only optimal in the case of spatially white noise.
However, unlike the time-domain techniques presented in the previous chap-
ter, these frequency-domain techniques require some prior knowledge about the
acoustic transfer functions.

In Section 7.3 it is shown that using the estimated acoustic transfer functions,
dereverberation can be performed with a normalised matched filtering appro-
ach. It is also shown that the MMSE estimate of the clean dereverberated
speech signal can be obtained by matched filtering of the MMSE estimates of
the speech components in the microphone signals. Hence, by integrating the
normalised matched filter with the multi-channel Wiener filter, discussed in
Chapter 3, we obtain a combined noise reduction and dereverberation techni-
que. Since both algorithms essentially require the same decomposition, i.e. a
GSVD of a speech and a noise data matrix, they can easily be combined.

173
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Section 7.4 discusses some practical implementation issues. Since essentially
a convolution in the frequency-domain is performed, the corresponding time-
domain filters need to be constrained in order to avoid circular convolutions.

Section 7.5 describes the simulation results, showing that the GSVD-based
noise reduction technique yields the best SNR and the GSVD-based derever-
beration technique has the best dereverberation performance, while the combi-
ned noise reduction and dereverberation technique provides a trade-off between
both objectives.

7.1 Introduction

As already indicated in Section 2.2.2, the objective of multi-microphone signal
enhancement can be either noise reduction (not caring about residual reverbe-
ration), dereverberation (not caring about residual noise), or combined noise
reduction and dereverberation. For dereverberation the total speech transfer
function should be equal to 1 (or more realistically a delay), while for combined
noise reduction and dereverberation the total speech transfer function should
approximate a delay and the energy of the residual noise should be minimised
at the same time.

Many multi-microphone dereverberation algorithms require an estimate of the
acoustic impulse responses, either in the time-domain or in the frequency-
domain [2][91][101][117][180]. By using the batch or the adaptive estimation
techniques discussed in Chapter 6, a time-domain estimate of the acoustic im-
pulse responses can be obtained. This estimate can then be used in an inverse
filtering or a matched filtering algorithm for multi-microphone dereverberati-
on, cf. Section 2.6. However, as already indicated in Section 6.3, because of
the length of the acoustic impulse responses and the low-rank model of the
speech signal, it is quite difficult in practice to identify the complete acoustic
impulse responses, especially when a large amount of background noise is pre-
sent. Moreover, time-domain subspace techniques appear to be quite sensitive
to underestimation of the length of the acoustic impulse responses, such that
the length of the acoustic impulse responses needs to be known in advance,
which is often not possible in practice.

Hence, frequency-domain techniques have been proposed for estimating the
acoustic transfer functions. In [2] a procedure has been proposed for iden-
tifying and tracking the acoustic transfer functions in the frequency-domain.
Although frequency-domain estimation techniques have the advantage to be
less sensitive to order estimation errors, an (unknown) scaling ambiguity ari-
ses in each frequency bin. In order to eliminate this scaling ambiguity, prior
knowledge about the acoustic transfer functions is required, which clearly is
a disadvantage and which limits the practical use of these frequency-domain
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estimation techniques.

Strictly speaking, the procedure in [2] is only valid when spatially white noise is
present. In Section 7.2 we extend this procedure to the spatially coloured noise
case. In Section 7.3 it is shown that after estimating the acoustic transfer func-
tions, dereverberation can be performed with a normalised matched filtering
approach. It is also shown that combined noise reduction and dereverberation
can be performed by integrating this matched filtering approach for derever-
beration with the multi-channel Wiener filter for noise reduction. Note that
both for dereverberation and for combined noise reduction and dereverberation
again some prior knowledge about the acoustic transfer functions is required.
Eliminating this need for prior knowledge is a topic of further research.

7.2 Estimation of acoustic transfer functions

In this section a frequency-domain technique is presented for estimating the
acoustic transfer functions when spatially coloured noise is present. Moreover,
in the spatially white noise case a computationally efficient subspace tracking
algorithm can be used for estimating and tracking the acoustic transfer functi-
ons [2]. It is however not trivial to extend this subspace tracking algorithm to
the coloured noise case.

7.2.1 Frequency-domain signal model

Consider again Fig. 2.1, depicting a microphone array which records a speech
source and background noise. In the frequency-domain, the stacked vector of
microphone signals Y(ω) can be written as (2.27), i.e.

Y(ω) = H(ω)S(ω) + V(ω) = X(ω) + V(ω) (7.1)

=








H0(ω)
H1(ω)

...
HN−1(ω)







S(ω) +








V0(ω)
V1(ω)

...
VN−1(ω)







, (7.2)

with Hn(ω) the acoustic transfer function between the speech source and the
nth microphone. Although we assume here that the acoustic transfer functions
Hn(ω) are time-invariant, in Section 7.2.3 a subspace tracking algorithm is dis-
cussed which is able to track time-variations of the acoustic transfer functions.

Using (2.31), the output signal Z(ω) of a multi-microphone signal enhancement
algorithm can be written as

Z(ω) = WH(ω)Y(ω) = WH(ω)H(ω)
︸ ︷︷ ︸

F (ω)

S(ω) + WH(ω)V(ω) , (7.3)
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with F (ω) the total speech transfer function and

W(ω) =
[
W0(ω) W1(ω) . . . WN−1(ω)

]T
. (7.4)

The filter W(ω) can be designed with different objectives in mind:

• The objective of dereverberation is to compute the filter Wd(ω) such
that the total speech transfer function F (ω) = WH

d (ω)H(ω) = 1 (or a
delay). Clearly, the normalised matched filter Wd(ω) = H(ω)/‖H(ω)‖2

is a possible solution (cf. Section 7.3.1).

• The multi-channel Wiener filter WWF (ω) discussed in Section 3.5 pro-
duces an MMSE estimate of the speech component Xn(ω) in one (or all)
of the microphone signals and can therefore be used for noise reduction,
but not for dereverberation (cf. Section 7.3.2).

• The goal of combined noise reduction and dereverberation is to compute
the filter Wc(ω) such that the output signal Z(ω) is the MMSE estima-
te of the clean speech signal S(ω), thereby both reducing reverberation
and background noise, but also introducing some speech distortion (cf.
Section 7.3.3).

Both for dereverberation and for combined noise reduction and dereverberati-
on, an estimate of the acoustic transfer function vector H(ω) is required, cf.
Section 7.3. This section discusses a frequency-domain technique for estimating
H(ω) without any knowledge of the speech signal S(ω). This frequency-domain
estimation technique is quite similar to the batch time-domain estimation tech-
nique discussed in Section 6.2.3, now using the generalised eigenvector corres-
ponding to the largest generalised eigenvalue of the frequency-domain speech
and noise correlation matrices.

Using (7.1) and assuming that the speech and the noise components are un-
correlated, the N×N -dimensional frequency-domain speech correlation matrix
R̄yy(ω) = E{Y(ω)YH(ω)} is equal to

R̄yy(ω) = R̄xx(ω) + R̄vv(ω) = Ps(ω)H(ω)HH(ω) + R̄vv(ω) , (7.5)

with Ps(ω) = E{|S(ω)|2}. In case of a single speech source, the correlation ma-
trix R̄xx(ω) has rank 1. The noise correlation matrix R̄vv(ω) can be estimated
during noise-only periods and reduces to σ̄2

v(ω) IN for spatially white noise.

The transfer function vector H(ω) can be computed using the GEVD of the
speech and the noise correlation matrices R̄yy(ω) and R̄vv(ω), cf. (6.15),

{

R̄yy(ω) = Q̄(ω) Λ̄y(ω) Q̄H(ω)

R̄vv(ω) = Q̄(ω) Λ̄v(ω) Q̄H(ω) ,
(7.6)
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with Q̄(ω) an N × N -dimensional invertible, but not necessarily orthogonal
matrix and Λ̄y(ω) and Λ̄v(ω) diagonal matrices. Since the correlation matrix

R̄xx(ω) = R̄yy(ω) − R̄vv(ω) = Q̄(ω)
[
Λ̄y(ω) − Λ̄v(ω)

]
Q̄H(ω) (7.7)

has rank 1, it is equal to R̄xx(ω) = σ̄2
x(ω)q̄(ω)q̄H(ω), with q̄(ω) the N -

dimensional principal generalised eigenvector, corresponding to the largest ge-
neralised eigenvalue. Using (7.5), R̄xx(ω) can be written as

R̄xx(ω) = Ps(ω)H(ω)HH(ω) = σ̄2
x(ω)q̄(ω)q̄H(ω) , (7.8)

such that the vector H(ω) can be estimated up to a phase shift ejφ(ω) as

H(ω) =
‖H(ω)‖
‖q̄(ω)‖ q̄(ω)ejφ(ω) (7.9)

We will assume that the human auditory system is not very sensitive to this
phase shift. As can be seen from (7.9), the vector H(ω) can only be estimated
up to a frequency-dependent scaling factor, resulting in an ambiguity which
can only be resolved if the norm ‖H(ω)‖ is known. Hence, unlike the time-
domain estimation techniques presented in Section 6.2, where the (unknown)
scaling factor is frequency-independent and hence irrelevant, frequency-domain
subspace-based estimation techniques require some prior knowledge about the
acoustic transfer functions.

7.2.2 Practical computation

In practice, the continuous speech and noise spectra Yn(ω) and Vn(ω) are ap-
proximated by their DFT-components, which can be efficiently computed using
an FFT algorithm (cf. Section 2.1). The lth (frequency-)component of the DFT
of the mth frame of yn[k] is equal to

Yn(l,m) =

L−1∑

k=0

yn[mL+ k] e−j2πkl/L , l = 0 . . . L− 1 , (7.10)

with L the size of the DFT and for the time being considering no overlap
between the frames. The stacked vector of microphone signals Y(l,m) is equal
to

Y(l,m) =
[
Y0(l,m) Y1(l,m) . . . YN−1(l,m)

]T
. (7.11)

If we assume that Xn(l,m) = Hn(l)S(l,m), which is actually only true when
L→ ∞, then the vector Y(l,m) can be written as

Y(l,m) = X(l,m)+V(l,m) = H(l)S(l,m)+V(l,m) , l = 0 . . . L−1 . (7.12)

The acoustic transfer function vector H(l) for the lth frequency-component
can now be estimated (up to a phase shift) as the generalised singular vector
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q(l,m), corresponding to the largest generalised singular vector in the GSVD of
the frequency-domain speech and the noise data matrices Y(l,m) and V(l,m),
which are defined as

Y(l,m) =








YH(l,m− P + 1)
...

YH(l,m− 1)

YH(l,m)








V(l,m) =








VH(l,m−Q+ 1)
...

VH(l,m− 1)

VH(l,m)







.

7.2.3 White noise case: subspace tracking algorithm

In the spatially white noise case, the matrix Q̄(ω) is orthogonal, and the acous-
tic transfer function vector H(ω) can be estimated from the principal eigenvec-
tor q̄(ω) of R̄yy(ω), corresponding to its largest eigenvalue. Since ‖q̄(ω)‖ = 1,
the expression in (7.9) reduces to

H(ω) = ‖H(ω)‖ q̄(ω)ejφ(ω) . (7.13)

For the practical computation of q(l,m), a subspace tracking procedure can
be used which adaptively estimates and tracks the principal singular vector of
Y(l,m), corresponding to its largest singular value1. In the literature different
subspace tracking procedures have been proposed [41][199][281]. In [281], where
the PAST (Projection Approximation Subspace Tracking) algorithm is derived,
it has been shown that the vector q(l), minimising the cost function

J
(
q(l)

)
= E{‖Y(l) − q(l)qH(l)Y(l)‖2

F } (7.14)

is equal to the principal eigenvector of R̄yy(l) = E{Y(l)YH(l)}. By using
a gradient-descent procedure and approximating the gradient by its instanta-
neous value, the following adaptive subspace tracking algorithm is obtained

z(l,m) = qH(l,m)Y(l,m) (7.15)

q(l,m+ 1) = q(l,m) + µ
[
2Y(l,m) − Y(l,m)qH(l,m)q(l,m)−
q(l,m)z(l,m)] z∗(l,m) , (7.16)

with µ the step size of the adaptive algorithm. By additionally assuming that
qH(l,m)q(l,m) = 1, which is true upon convergence, the expression in (7.16)
reduces to

q(l,m+ 1) = q(l,m) + µ [Y(l,m) − q(l,m)z(l,m)] z∗(l,m) (7.17)

1Note that in this case we can not use the adaptive (time-domain) algorithms presen-
ted in Section 6.3, since these algorithms estimate and track the subspace corresponding
to the smallest (generalised) singular value. For estimating the acoustic transfer function
vector in the frequency-domain, we require an adaptive algorithm which tracks the subspace
corresponding to the largest (generalised) singular value.
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which is equal to Oja’s learning rule [199] and which strongly resembles the
LMS-algorithm, cf. (2.160). The computational complexity of this adaptive
subspace tracking algorithm is only O(N).

Strictly speaking, the described subspace tracking procedure is only valid for
spatially white noise. For the spatially coloured noise case, the full GSVD of
Y(l,m) and V(l,m) needs to be updated, which can e.g. be done using the
recursive GSVD-updating algorithms discussed in Section 4.2.2. However, the
computational complexity of these recursive (full) GSVD-updating algorithms
is much larger than the complexity of the subspace tracking procedure in (7.15)
and (7.17). Extending this adaptive subspace tracking procedure to the colou-
red noise case remains a topic of further research.

7.3 Noise reduction and dereverberation

Using the estimated acoustic transfer function vector H(ω), it is shown in
Section 7.3.1 that dereverberation can be performed with a normalised matched
filtering approach. In Section 7.3.2 the multi-channel Wiener filter for noise
reduction is briefly reviewed. In Section 7.3.3 it is shown that combined noise
reduction and dereverberation can be performed by integrating the normalised
matched filter for dereverberation with the multi-channel Wiener filter.

7.3.1 Speech dereverberation

As has been shown in Section 7.2.1, a possible dereverberation filter Wd(ω)
is the normalised matched filter Wd(ω) = H(ω)/‖H(ω)‖2. Using (7.9) and
assuming φ(ω) = 0, this filter can be computed using the principal generalised
eigenvector q̄(ω) as

Wd(ω) =
q̄(ω)

‖q̄(ω)‖‖H(ω)‖ (7.18)

However, as can be seen from this expression, prior knowledge about the acous-
tic transfer functions, i.e. the norm ‖H(ω)‖, is required for computing Wd(ω).
Although it has been indicated in [2] that ‖H(ω)‖ is less affected by small spea-
ker movements than the individual transfer functions Hn(ω), this norm will
nevertheless drastically change when the speaker moves around in the room.
Hence, the practical use of this dereverberation algorithm is limited to e.g.
desktop or car applications, where the speaker position is roughly fixed and
‖H(ω)‖ can be measured beforehand. Using this normalised matched filtering
approach, the output signal Zd(ω) is equal to

Zd(ω) = WH
d (ω)Y(ω) = S(ω) +

q̄H(ω)

‖q̄(ω)‖‖H(ω)‖V(ω) . (7.19)
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As can be seen, the speech component of the output signal Zd(ω) is equal to the
clean dereverberated signal S(ω). However, since no attention has been given
to the residual noise component, it is possible that the noise components of
the microphone signals are even amplified by the dereverberation filter Wd(ω).
In the case of spatially white noise, the matrix Q̄(ω) is orthogonal, such that
‖q̄(ω)‖ = 1 and the filter Wd(ω) reduces to

Ww
d (ω) =

q̄(ω)

‖H(ω)‖ . (7.20)

Among all filters Wd(ω) which perform perfect dereverberation, i.e. F (ω) = 1,
the filter which leads to the smallest residual noise energy is given by

min
Wd(ω)

WH
d (ω)R̄vv(ω)Wd(ω), subject to F (ω) = WH

d (ω)H(ω) = 1 . (7.21)

This problem formulation is very similar to the superdirective or the MVDR
beamformer formulation (cf. Section 2.5.3), now using the actual acoustic
transfer function vector H(ω) instead of the steering vector d(ω, θx) for free-
field conditions. Similarly as the derivation in Appendix B.3, it can be shown
that the solution of this optimisation problem is given by

W̃d(ω) =
R̄−1
vv (ω)H(ω)

HH(ω)R̄−1
vv (ω)H(ω)

. (7.22)

Using (7.9), this filter can be computed as

W̃d(ω) =
‖q̄(ω)‖
‖H(ω)‖

R̄−1
vv (ω)q̄(ω)

q̄H(ω)R̄−1
vv (ω)q̄(ω)

(7.23)

again requiring prior knowledge of the norm ‖H(ω)‖.

7.3.2 Noise reduction

In Section 3.5 the multi-channel Wiener filter WWF (ω) has been discussed.
This filter produces an MMSE estimate of the speech component in one of
the microphone signals and can therefore be used for noise reduction, but not
for dereverberation. Using (3.81), it can be seen that the N ×N -dimensional
multi-channel Wiener filter matrix WWF (ω), which makes an MMSE estimate
of the speech components X(ω) in all microphone signals, is given by

WWF (ω) = R̄−1
yy (ω)R̄xx(ω) . (7.24)

Using the rank-1 definition for R̄xx(ω) in (7.5), this filter can be written as

WWF (ω) = Ps(ω)R̄−1
yy (ω)H(ω)HH(ω) , (7.25)
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such that the MMSE estimate of the (reverberated) speech components X̂(ω)
in all microphone signals is equal to

X̂(ω) = WH
WF (ω)Y(ω) = Ps(ω)H(ω)HH(ω)R̄−1

yy (ω)Y(ω) . (7.26)

Using the GEVD of R̄yy(ω) and R̄vv(ω) in (7.6), the filter matrix WWF (ω) in
(7.24) can be computed as

WWF (ω) = Q̄−H(ω)Λ̄−1
y (ω)

(
Λ̄y(ω) − Λ̄v(ω)

)
Q̄H(ω)

=
σ̄2
x(ω)

σ̄2
y1(ω)

q̃(ω)q̄H(ω)
(7.27)

with σ̄2
y1(ω) the principal generalised eigenvalue of R̄yy(ω) and q̃(ω) the cor-

responding column of Q̄−H(ω) 2.

Using the matrix inversion lemma (A.38), the matrix R̄−1
yy (ω) in (7.5) can be

written as

R̄−1
yy (ω) = R̄−1

vv (ω) − Ps(ω)R̄−1
vv (ω)H(ω)HH(ω)R̄−1

vv (ω)

1 + Ps(ω)HH(ω)R̄−1
vv (ω)H(ω)

, (7.28)

such that, similarly to (3.92), the filter matrix WWF (ω) in (7.25) is equal to

WWF (ω) =
Ps(ω)R̄−1

vv (ω)H(ω)HH(ω)

1 + Ps(ω)HH(ω)R̄−1
vv (ω)H(ω)

(7.29)

7.3.3 Combined noise reduction and dereverberation

The objective of combined noise reduction and dereverberation is to compute
the filter Wc(ω) such that the output signal

Zc(ω) = WH
c (ω)Y(ω) (7.30)

is the MMSE estimate of the clean dereverberated speech signal S(ω), thereby
taking into account both noise reduction and dereverberation. The optimal
filter Wc(ω) is equal to

Wc(ω) = R̄−1
yy (ω)r̄ys(ω) , (7.31)

with the N -dimensional vector r̄ys(ω) = E{Y(ω)S(ω)} = Ps(ω)H(ω), such
that the filter Wc(ω) can be written as

Wc(ω) = Ps(ω)R̄−1
yy (ω)H(ω) . (7.32)

The MMSE estimate of S(ω) now is equal to

Ŝ(ω) = WH
c (ω)Y(ω) = Ps(ω)HH(ω)R̄−1

yy (ω)Y(ω) . (7.33)

2Recall that q̄(ω) is a column of the matrix Q̄(ω).
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When comparing (7.26) and (7.33), we notice that

X̂(ω) = H(ω)Ŝ(ω) (7.34)

which implies that the MMSE estimate Ŝ(ω) of the clean speech signal can be
obtained by applying the normalised matched filter Wd(ω) for dereverberation

(cf. Section 7.3.1) to the MMSE estimate X̂(ω) of the speech components.
Since essentially the same decomposition is used both for dereverberation and
for noise reduction, these two procedures can be easily combined. Using (7.18)
and (7.27), the combined filter Wc(ω) can be computed as

Wc(ω) = WWF (ω)Wd(ω) =
σ̄2
x(ω)

σ̄2
y1(ω)

q̃(ω)q̄H(ω)
q̄(ω)

‖q̄(ω)‖‖H(ω)‖
=

‖q̄(ω)‖
‖H(ω)‖

σ̄2
x(ω)

σ̄2
y1(ω)

q̃H(ω)

(7.35)
In the case of spatially white noise, the matrix Q̄(ω) is orthogonal, such that
q̃(ω) = q̄(ω) and ‖q̄(ω)‖ = 1, such that the filter Wc(ω) reduces to

Ww
c (ω) =

σ̄2
x(ω)

σ̄2
y1(ω)

q̄H(ω)

‖H(ω)‖ , (7.36)

which is equal to the normalised matched filter Ww
d (ω) for spatially white noise,

up to the spectral weighting term σ̄2
x(ω)/σ̄2

y1(ω).

Using (7.28) in (7.32), the combined filter Wc(ω) can also be written as

Wc(ω) =
Ps(ω)R̄−1

vv (ω)H(ω)

1 + Ps(ω)HH(ω)R̄−1
vv (ω)H(ω)

(7.37)

=
Ps(ω)

Ps(ω) +
[
HH(ω)R̄−1

vv (ω)H(ω)
]−1

R̄−1
vv (ω)H(ω)

HH(ω)R̄−1
vv (ω)H(ω)

︸ ︷︷ ︸

W̃d(ω)

, (7.38)

such that the combined filter Wc(ω) can be decomposed as the product of the
dereverberation filter W̃d(ω) and a scalar factor. This scalar factor can be
interpreted as a postfilter for the dereverberation filter [232], giving rise to an
improved noise reduction performance at the expense of speech distortion.

7.4 Practical implementation issues

In (7.10) we have assumed non-overlapping frames. However, in practice we will
use frames of length L with an overlap of L−R samples for computing the filters
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Figure 7.1: Practical block-processing implementation for combined noise re-
duction and dereverberation

and for filtering the microphone signals. For such a block-processing scheme
it is well known that the underlying fast convolutions in the frequency-domain
should be constrained to be linear [231]. Hence, in order to avoid circular
convolutions, we put the last R − 1 taps of the corresponding time-domain
filters to zero and only keep the last R samples of the filtered microphone
signals in an overlap-save procedure. This procedure is depicted in Fig. 7.1 for
the combined noise reduction and dereverberation algorithm.

TheN -dimensional stacked microphone signals Y(l,m), l = 0 . . . L−1, are com-
puted as the FFT of the frames

[
yn[mR] . . . yn[mR+ L− 1]

]
, n = 0 . . . N−1.

The N -dimensional frequency-domain filters Wc(l), l = 0 . . . L − 1, are com-
puted using (7.35). The corresponding L-dimensional time-domain filters are
obtained as the IFFT of Wc(l), l = 0 . . . L− 1. These time-domain filters are
constrained by putting the last R − 1 taps to zero and are transformed back
to the constrained frequency-domain filters W̄c(l), l = 0 . . . L− 1. The enhan-
ced speech signal is computed as Ŝ(l,m) = W̄H

c (l)Y(l,m). From the IFFT of
Ŝ(l,m), l = 0 . . . L−1, the lastR samples

[
ŝ[(m− 1)R+ L] . . . ŝ[mR+ L− 1]

]

are kept in an overlap-save procedure.

7.5 Simulations

In our simulations we have filtered a 16kHz continuous speech signal and a
white noise source with acoustic impulse responses that are constructed using
the image method (K = 1000). The room dimensions are 3 m × 3 m × 4 m, the
position of the speech source is

[
1 2 2

]
and the position of the noise source
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SNR (dB) SNRw (dB) DI (dB)

Noisy microphone signal y0[k] 0 2.88 4.74
GSVD-based noise reduction x̂0[k] 17.81 16.82 4.73
SVD-based dereverberation ŝwd [k] 11.99 -0.30 1.86
GSVD-based dereverberation ŝd[k] 15.10 2.30 0.86
Noise and dereverberation ŝ[k] 20.15 10.12 1.35

Table 7.1: Dereverberation and noise reduction performance measures for the
different algorithms (L = 1024, R = 16)

is
[
0.5 1 1

]
. We have used an array of N = 4 omni-directional microphones

and the distance between adjacent microphones is d = 2 cm. The positions of
the microphones are

[
1 1 1

]
,
[
1.02 1 1

]
,
[
1.04 1 1

]
, and

[
1.06 1 1

]
. The

reverberation time of the room is T60 = 400 msec. We have used these acousti-
cal conditions, since the smaller the microphone distance and the reverberation
time, the more the frequency-domain signals are spatially correlated. The un-
biased SNR of the first microphone signal y0[k] is 0 dB. In all algorithms we
have used a frame length (FFT-size) L = 1024 and overlap R = 16.

As objective measures for the noise reduction performance we use the unbiased
SNR, defined in (2.32), and the frequency-weighted signal-to-noise ratio SNRw,
defined in [112], which is a weighted subband SNR. As an objective measure
for dereverberation we use the dereverberation index (DI), defined in (2.43).

Table 7.1 gives an overview of the objective noise reduction and dereverberation
performance measures for the different algorithms. Figure 7.2 plots the noisy
microphone signal y0[k] and the enhanced microphone signal x̂0[k] using the
GSVD-based noise reduction technique. As can be seen in Table 7.1, this tech-
nique produces the highest SNRw, but does not achieve any dereverberation,
since the DI of x̂0[k] and y0[k] are almost equal (DI ≈ 4.7 dB).

Figures 7.3a and 7.3b show the amplitude responses of the total speech transfer
function F (ω) between S(ω) and the speech component in the output signal
for the SVD-based and the GSVD-based dereverberation algorithms. Figures
7.4a and 7.4b depict the time-domain output signals ŝwd [k] and ŝd[k] for these
algorithms. As can be seen, the filter Wd(ω) computed using the GEVD of
R̄yy(ω) and R̄vv(ω) produces the flattest amplitude response (DI = 0.86), and
has a better dereverberation performance than the filter Ww

d (ω) computed
using the EVD of R̄yy(ω) (DI = 1.86). However, as can be seen in Table 7.1,
the noise reduction performance of both algorithms is quite poor, since SNRw
is smaller than for the noisy microphone signal.

Figures 7.3c and 7.4c show the amplitude response of the total speech transfer
function F (ω) and the time-domain output signal ŝ[k] for the combined noise
reduction and dereverberation technique. From Table 7.1 it can be seen that
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Figure 7.2: (a) Noisy microphone signal y0[k], (b) Enhanced microphone signal
x̂0[k] with GSVD-based noise reduction technique (L = 1024, R = 16)
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Figure 7.3: Total speech transfer function F (ω) computed with (a) SVD-based
dereverberation technique, (b) GSVD-based dereverberation technique, (c)
combined noise reduction and dereverberation technique (L = 1024, R = 16)
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Figure 7.4: (a) SVD-based dereverberated signal ŝwd [k], (b) GSVD-based dere-
verberated signal ŝd[k], (b) Enhanced signal ŝ[k] with combined dereverbera-
tion and noise reduction technique (L = 1024, R = 16)

the dereverberation performance is not as good as for the GSVD-based dere-
verberation technique (but it produces a better SNR), while its noise reduction
performance is not as good as for the GSVD-based noise reduction technique
(but is has a better dereverberation index DI). It is therefore clear that the com-
bined noise reduction and dereverberation technique makes a trade-off between
the noise reduction and the dereverberation objectives.

7.6 Conclusion

In this chapter we have presented frequency-domain GSVD-based signal en-
hancement techniques for noise reduction and for dereverberation. It has been
shown that the optimal MMSE estimate of the clean speech signal can be ob-
tained by matched filtering of the MMSE estimate of the speech components in
the microphone signals. By simulations it has been shown that the combined
noise reduction and dereverberation algorithm makes a trade-off between the
dereverberation and noise reduction objectives.
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Chapter 8

Far-Field Broadband
Beamforming

This chapter discusses several design procedures for designing broadband beam-
formers with an arbitrary desired spatial directivity pattern for a given arbitrary
microphone array configuration, using an FIR filter-and-sum structure. In this
chapter, we assume that the speech source is in the far-field of the micropho-
ne array and that the microphones are (perfect) omni-directional microphones
with a flat frequency response equal to 1. In Chapter 9 we will discuss near-field
and mixed near-field far-field broadband beamformers and in Chapter 10 we
will discuss robust broadband beamformers, taking into account the (frequency-
and angle-dependent) microphone characteristics.

Section 8.1 gives a brief overview of fixed beamforming for speech applications.
In Section 8.2 the far-field broadband beamforming problem is introduced and
some definitions and notational conventions are given.

Section 8.3 discusses several cost functions that can be used for designing far-
field broadband beamformers. In general we would like to use the non-linear
cost function that minimises the error between the amplitudes of the actual
and the desired spatial directivity pattern. However, for this cost function
no closed-form solution is available and an iterative non-linear optimisation
procedure is required, giving rise to a high computational complexity. Hence,
we will also consider other cost functions with a lower computational complexity
that can be solved using non-iterative optimisation techniques, such as the
weighted least-squares (LS) and the maximum energy array cost function. For
all considered cost functions, we first discuss the general design procedure for
an arbitrary spatial directivity pattern and we then focus on the specific design
case of a beamformer having a passband and a stopband region. For all cost
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functions, it will also be shown how linear constraints can be imposed on the
filter coefficients.

In section 8.4 two novel non-iterative cost functions are discussed, which are
both based on eigenfilters. In the conventional eigenfilter technique a reference
point is required, whereas in the eigenfilter technique based on a TLS (Total
Least Squares) error criterion, this reference point is not required.

In Section 8.5 different linear constraints are considered which can be impo-
sed on the filter coefficients. Point constraints, line constraints and derivative
constraints will be discussed.

Section 8.6 gives simulation results for the different cost functions and design
cases. It is shown that among the considered non-iterative design procedures
the TLS eigenfilter technique has the best performance, i.e. best resembling
the performance of the non-linear design procedure but having a significantly
lower computational complexity.

8.1 Introduction

Well-known multi-microphone signal enhancement techniques are fixed and
adaptive beamforming (cf. Sections 2.5.2 and 2.5.3). Adaptive beamformers,
generally have a better noise reduction performance than fixed beamformers
and are able to adapt to changing acoustic environments. However, adaptive
beamformers are quite sensitive to modelling errors [37][240], cf. Section 5.4.3,
resulting in speech distortion and cancellation if no countermeasures are ta-
ken [100][128][191][194][254]. Therefore, fixed beamforming techniques (with a
fixed spatial directivity pattern) are sometimes preferred because they do not
require a control algorithm and because of their easy implementation and low
computational complexity. Fixed beamformers are frequently used in highly re-
verberant environments, in applications where the position of the speech source
is assumed to be known (e.g. hearing aids [146][234][245]), for creating multiple
beams [150][259] and for creating the speech reference signal in a GSC.

In general, fixed beamforming techniques try to obtain spatial focusing on the
speech source, thereby reducing reverberation and suppressing background noi-
se not coming from the same direction as the speech source. In order to obtain
some robustness against estimation errors for the direction of the speech source
(cf. Chapter 6) and – small – speaker movements, a region of angles around the
direction of the speech source should be passed without distortion. It should
even be possible to design a broadband beamformer with an arbitrary spati-
al directivity pattern. However, using most fixed beamformers discussed in
Section 2.5.2, such as DS beamforming, differential microphones [75], super-
directive microphone arrays [16][36][146] and frequency-invariant beamforming
[274][275], it is not possible to design arbitrary spatial directivity patterns
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for an arbitrary microphone array configuration. Differential microphones e.g.
require a small-size microphone array, superdirective microphone arrays are de-
signed using an assumption about the noise field, and for frequency-invariant
beamformers the desired spatial directivity pattern is equal for all frequencies.

Using the most general beamformer structure, i.e. the FIR filter-and-sum struc-
ture (cf. Section 2.5.2), it is possible to design a fixed broadband beamformer
whose spatial directivity pattern optimally fits a (predefined) desired spatial
directivity pattern, by minimising some specific cost function. Several design
procedures exist, which are e.g. based on weighted least-squares (LS) filter de-
sign [167], a maximum energy array [155] or non-linear optimisation techniques
[144][157][159][192]. Although in general we would like to use the non-linear
design procedure, this procedure gives rise to a high computational complexi-
ty, since it requires an iterative optimisation technique. In this chapter two
novel non-iterative design procedures are presented, which are based on eigen-
filters. In the conventional eigenfilter technique, a reference point is required,
whereas in the eigenfilter technique based on a TLS error criterion, this refe-
rence point is not required. Eigenfilters have already been used for designing
1-D linear-phase FIR filters [209][253] and for designing 2-D and spatial filters
[32][208][209]. In this chapter we extend their usage to the design of far-field
broadband beamformers. It will be shown by simulations that the TLS eigen-
filter technique has a better performance than the weighted LS, the maximum
energy array and the conventional eigenfilter technique.

Many broadband beamformer design procedures either perform the design indi-
vidually for separate frequencies or approximate the double integrals that arise
in the design by a finite sum over a grid of frequencies and angles. However, in
this thesis we will always calculate such integrals exactly over the frequency-
angle plane and hence perform a true broadband design. Note that in typical
speech communication applications, broadband design implies a design over
several octaves (e.g. 300 − 3500 Hz with sampling frequency fs = 8 kHz).

8.2 Far-field beamforming: configuration

In this chapter, we assume that the sources are in the far-field of the microphone
array, such that planar wave propagation and equal signal attenuation for all
microphones can be assumed. For the near-field case, we refer to Chapter 9.

Consider the linear microphone array depicted in Fig. 8.1, with N microp-
hones and dn the distance between the nth microphone and the centre of the
microphone array. The spatial directivity pattern H(ω, θ) for a source S(ω) at
an angle θ from the microphone array is defined as, cf. Section 2.5.1,

H(ω, θ) =
Z(ω, θ)

Ȳ (ω, θ)
=

∑N−1
n=0 Wn(ω)Yn(ω, θ)

Ȳ (ω, θ)
, (8.1)
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Figure 8.1: Linear microphone array configuration

with Wn(ω) the frequency response of the real-valued L-dimensional FIR filter
wn,

Wn(ω) =
L−1∑

l=0

wn,l e
−jlω = wT

ne(ω) , (8.2)

with

wn =








wn,0
wn,1
...
wn,L−1








e(ω) =








1
e−jω

...
e−j(L−1)ω







. (8.3)

Under far-field conditions, the microphone signals Yn(ω, θ), n = 0 . . . N−1, are
delayed versions of the signal Ȳ (ω, θ) received at the centre of the microphone
array, i.e.

Yn(ω, θ) = Ȳ (ω, θ)e−jωτn(θ), −π ≤ ω ≤ π, −π ≤ θ ≤ π , (8.4)

with the delay τn(θ) in number of samples equal to

τn(θ) =
dn cos θ

c
fs , (8.5)

with c the speed of sound (c = 340ms ) and fs the sampling frequency.

In fact, for a random two-dimensional (planar) microphone configuration (see
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Figure 8.2: Two-dimensional microphone array configuration

Fig. 8.2), the microphone signals Yn(ω, θ) can also be written as (8.4), with

τn(θ) =
dn cos(θ − φn)

c
fs, dn =

√

(xn − x̄)2 + (yn − ȳ)2, tanφn =
yn − ȳ

xn − x̄
,

with (x̄, ȳ) the centre of the planar array. Without loss of generality we will
assume a linear array (φn = 0 or φn = π) in the remainder of the text.

Combining (8.1) and (8.4), the spatial directivity pattern H(ω, θ) can be writ-
ten as

H(ω, θ) =

N−1∑

n=0

Wn(ω)e−jωτn(θ) =

N−1∑

n=0

wT
ne(ω)e−jωτn(θ) = wTg(ω, θ) (8.6)

with the M -dimensional filter vector w and steering vector g(ω, θ) equal to

w =








w0

w1

...
wN−1








g(ω, θ) =








e(ω)e−jωτ0(θ)

e(ω)e−jωτ1(θ)

...
e(ω)e−jωτN−1(θ)







. (8.7)

The steering vector g(ω, θ) can be decomposed into a real and an imagina-
ry part, g(ω, θ) = gR(ω, θ) + jgI(ω, θ). Using (8.6), the spatial directivity
spectrum |H(ω, θ)|2 can be written as

|H(ω, θ)|2 = H(ω, θ)H∗(ω, θ) = wTG(ω, θ)w , (8.8)

with
G(ω, θ) = g(ω, θ)gH(ω, θ) . (8.9)

The matrix G(ω, θ) can be decomposed into a real and an imaginary part,
G(ω, θ) = GR(ω, θ) + jGI(ω, θ). Since GI(ω, θ) is anti-symmetric (cf. Appen-
dix E.2), the spatial directivity spectrum |H(ω, θ)|2 is equal to (E.15),

|H(ω, θ)|2 = wTGR(ω, θ)w (8.10)
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8.3 Broadband beamforming procedures

8.3.1 Overview

The design of a broadband beamformer consists of the calculation of the fil-
ter w, such that H(ω, θ) optimally fits a desired spatial directivity pattern
D(ω, θ), where D(ω, θ) is an arbitrary two-dimensional function in ω and θ.
Several design procedures exist, depending on the specific cost function which
is optimised. In this section three different cost functions will be considered:

• a weighted least-squares (LS) cost function JLS , minimising the weighted
least-squares error between the actual and the desired spatial directivity
pattern, which can be written as a quadratic function (cf. Section 8.3.2);

• a maximum energy array cost function JME , maximising the energy ratio
between the passband and the stopband region. Maximising this cost
function leads to a generalised eigenvalue problem (cf. Section 8.3.3);

• a non-linear cost function JNL, minimising the error between the ampli-
tudes of the actual and the desired spatial directivity pattern, not taking
into account the phase of the spatial directivity patterns. Minimising this
cost function leads to a non-linear optimisation problem, which can be
solved using iterative optimisation techniques (cf. Section 8.3.4).

In general we would like to use the non-linear cost function JNL. However,
since optimising this cost function requires an iterative non-linear optimisation
technique (cf. Section 8.3.4), giving rise to a large computational complexity,
we will also consider non-iterative design procedures with a lower computatio-
nal complexity. In Section 8.4 two non-iterative eigenfilter-based cost functions
will be defined and in Section 8.6 the performance of all considered non-iterative
design procedures will be compared with the non-linear design procedure.

We will consider the design of broadband beamformers over the total frequency-
angle plane of interest, i.e. we will not split up the fullband problem into
separate smallband problems for different frequencies. Moreover, we will not
approximate the double integrals over the frequency-angle plane by a finite
Riemann-sum over a grid of frequencies and angles, as e.g has been done in
[144] for the non-linear cost function. For all cost functions, we will first discuss
the general design procedure for an arbitrary function D(ω, θ), and we will then
focus on the specific design case of a broadband beamformer having a desired
response D(ω, θ) = 0 in the stopband region (Ωs,Θs) and D(ω, θ) = 1 in the
passband region (Ωp,Θp). For the specific design case, the weighting function
is F (ω, θ) = 1 in the passband and F (ω, θ) = α in the stopband. We will also
discuss how linear constraints of the form Cw = b (cf. Section 8.5) can be
imposed on the filter w.
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8.3.2 Weighted least-squares

The weighted least-squares (LS) cost function is a well-known cost function
from literature, which can e.g. be used for designing FIR filters [167], 2D-
filters [208] and broadband beamformers.

General design

Considering the LS error |H(ω, θ)−D(ω, θ)|2, the weighted LS cost function is
defined as

JLS(w) =

∫

Θ

∫

Ω

F (ω, θ)|H(ω, θ) −D(ω, θ)|2dωdθ , (8.11)

where both the phase and the amplitude of H(ω, θ) are taken into account.
F (ω, θ) is a positive real weighting function, assigning more or less importance
to certain frequencies or angles. Using F (ω, θ) it is e.g. possible to use a
speech-intelligibility motivated frequency weighting [198]. The weighted LS
cost function can be written as

JLS(w) =

∫

Θ

∫

Ω

F (ω, θ)|H(ω, θ)|2dωdθ +

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2dωdθ

−2

∫

Θ

∫

Ω

F (ω, θ)Re{D(ω, θ)H∗(ω, θ)} . (8.12)

Using (8.10) and the fact that

Re{D(ω, θ)H∗(ω, θ)} = wT [DR(ω, θ)gR(ω, θ) +DI(ω, θ)gI(ω, θ)] , (8.13)

this cost function can be rewritten as the quadratic function

JLS(w) = wTQLSw − 2wTa + dLS (8.14)

with

QLS =

∫

Θ

∫

Ω

F (ω, θ)GR(ω, θ)dωdθ (8.15)

a =

∫

Θ

∫

Ω

F (ω, θ) [DR(ω, θ)gR(ω, θ) +DI(ω, θ)gI(ω, θ)] dωdθ (8.16)

dLS =

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2dωdθ . (8.17)

The weighted LS cost function JLS(w) is minimised by setting the derivative
∂JLS(w)
∂w equal to 0, such that the solution wLS is given by

wLS = Q−1
LS a (8.18)
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Specific design case

For the specific design case where D(ω, θ) = 1 and F (ω, θ) = 1 in the passband
and D(ω, θ) = 0 and F (ω, θ) = α in the stopband, equations (8.15), (8.16) and
(8.17) can be written as

QLS =

∫

Θp

∫

Ωp

GR(ω, θ)dωdθ

︸ ︷︷ ︸

Q
p
e

+α

∫

Θs

∫

Ωs

GR(ω, θ)dωdθ

︸ ︷︷ ︸

Qs
e

(8.19)

a =

∫

Θp

∫

Ωp

gR(ω, θ)dωdθ (8.20)

dLS =

∫

Θp

∫

Ωp

1 dωdθ . (8.21)

The quantity wTQp
ew is equal to the energy in the passband, whereas wTQs

ew
is equal to the energy in the stopband. The calculation of the integrals in (8.20)
and (8.19) is discussed in Appendix E.1 and E.2.

Linear constraints

Different linear constraints of the form Cw = b, with C a J ×M -dimensional
matrix and b a J-dimensional vector, will be discussed in Section 8.5. When
imposing linear constraints on the weighted LS criterion, the constrained opti-
misation problem has the form

min
w

wTQLSw − 2wTa + dLS , subject to Cw = b (8.22)

This constrained minimisation problem can be transformed into an unconstrai-
ned minimisation problem, cf. Appendix D.1 (similar to the derivation of the
Generalised Sidelobe Canceller, cf. Section 2.5.3). The solution wc

LS of the
constrained minimisation problem is equal to (D.10),

wc
LS = Q−1

LSC
T (CQ−1

LSC
T )−1(b − CQ−1

LSa) + Q−1
LSa (8.23)

8.3.3 Maximum energy array

In [155] a so-called maximum energy cost function has been defined. Since in
the design of a maximum energy array broadband beamformer it is assumed
that a passband region and a stopband region are present, we can only consider
the specific design case for this design procedure.

Specific design case

The maximum energy cost function JME(w) is defined as the ratio of the
energy in one frequency-angle region (passband) and the energy in another
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frequency-angle region (stopband), i.e.

JME(w) =

∫

Θp

∫

Ωp
|H(ω, θ)|2dωdθ

∫

Θs

∫

Ωs
|H(ω, θ)|2dωdθ . (8.24)

Maximising this ratio can actually be considered as a broadband generalisation
of the (smallband) superdirective beamformer formulation [16]. Using (8.19),
this cost function can be written as

JME(w) =
wTQp

ew

wTQs
ew

(8.25)

with Qp
e and Qs

e defined in (8.19). The filter wME which maximises JME(w) is
equal to the generalised eigenvector corresponding to the maximum generalised
eigenvalue in the generalised eigenvalue decomposition (GEVD) of Qp

e and Qs
e.

However, as will be shown in the simulations, the spatial directivity pattern
corresponding to this filter mainly amplifies the high frequencies, since it is
easier to obtain a large directivity for high frequencies than for low frequencies
(cf. delay-and-sum beamformer). Hence, a frequency-dependent angle integra-
tion interval has to be used with a larger integration interval at low frequencies
[155], or alternatively, linear constraints have to be imposed (cf. Section 8.6).

Linear constraints

When imposing linear constraints of the form Cw = b, the constrained opti-
misation problem can be written as

max
w

wTQp
ew

wTQs
ew

, subject to Cw = b (8.26)

with b generally not equal to 0. This constrained ratio maximisation problem
can be rewritten as the extended constrained ratio maximisation problem

max
ŵ

ŵT Q̂p
eŵ

ŵT Q̂s
eŵ

, subject to Ĉŵ = 0 , (8.27)

with the extended vector ŵ and matrices Ĉ, Q̂p
e and Q̂s

e defined as

ŵ =

[
w
−1

]

, Ĉ =
[

C b
]
, Q̂p

e =

[
Qp
e 0

0T 0

]

, Q̂s
e =

[
Qs
e 0

0T 0

]

,

The constrained optimisation problem (8.27) can be transformed into the un-
constrained optimisation problem

max
w̃

w̃TBQ̂p
eB

T w̃

w̃TBQ̂s
eB

T w̃
, (8.28)
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with ŵ = BT w̃ and B the (M + 1 − J) × (M + 1)-dimensional null space

of Ĉ and w̃ an (M + 1 − K)-dimensional vector. The solution w̃ME of the
unconstrained optimisation problem (8.28) is the generalised eigenvector of

BQ̂p
eB

T and BQ̂s
eB

T , corresponding to the maximum generalised eigenvalue,
such that the solution ŵc

ME of the constrained optimisation problem (8.27) is
equal to

ŵc
ME = BT w̃ME . (8.29)

After scaling the last element of ŵc
ME to −1, the actual solution wc

ME of (8.26)

is obtained as the first M elements of ŵc
ME . The fact that the matrices Q̂p

e

and Q̂s
e are singular does not give rise to problems, since the matrices BQ̂p

eB
T

and BQ̂s
eB

T are in general not singular.

Single linear constraint

The constrained ratio maximisation problem (8.26) is however simplified when
a single linear constraint is present, i.e. J = 1. In this case the solution is given
by the scaled generalised eigenvector υumax, corresponding to the maximum
generalised eigenvalue of Qp

e and Qs
e, where the scaling factor υ is determined

such that the linear constraint equation Cw = b (with C a row vector and b a
scalar) is satisfied, i.e.

υ =
b

Cumax
. (8.30)

8.3.4 Non-linear criterion

Different non-linear cost functions for broadband beamforming have been pro-
posed in literature, leading to a minimax problem [157][192] or requiring itera-
tive optimisation techniques [144][159]. In this section we will slightly modify
the non-linear cost function presented in [144], such that the double integrals
arising in the optimisation problem only need to be computed once.

General design

Instead of minimising the LS error |H(ω, θ) − D(ω, θ)|2, it is also possible to
minimise the error between the amplitudes |H(ω, θ)| − |D(ω, θ)|, because in
general the phase of the spatial directivity pattern is of no relevance. This
problem formulation leads to the cost function [144]

J̄NL(w) =

∫

Θ

∫

Ω

F (ω, θ) [|H(ω, θ)| − |D(ω, θ)|]2 dωdθ , (8.31)

which can be rewritten as

J̄NL(w) =

∫

Θ

∫

Ω

F (ω, θ)|H(ω, θ)|2dωdθ +

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2dωdθ −

2

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)||H(ω, θ)|dωdθ (8.32)
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= wTQLSw + dLS − 2

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)||H(ω, θ)|dωdθ
︸ ︷︷ ︸

Jabs(w)

, (8.33)

with QLS and dLS defined in (8.15) and (8.17). Minimising J̄NL(w) leads to
a non-linear optimisation problem, which can be solved using iterative opti-
misation techniques. These optimisation techniques generally involve several
evaluations of J̄NL(w) in each iteration step. A complexity problem now ari-
ses in the computation of Jabs(w). Without loss of generality, assume that
F (ω, θ) = 1 and |D(ω, θ)| = 1 over some frequency-angle region and that
D(ω, θ) = 0 elsewhere. Jabs(w) can then be written using (8.10) as

Jabs(w) = 2

∫

Θp

∫

Ωp

|H(ω, θ)|dωdθ = 2

∫

Θp

∫

Ωp

√

wTGR(ω, θ)w dωdθ .

(8.34)
Because of the square root, the filter coefficients can not be extracted from
the double integral (cf. Appendix E.4), and for every w the double integrals
need to be recomputed numerically, which is a computationally very demanding
procedure. However, by slightly modifying the non-linear cost function, it is
possible to overcome this computational problem.

Instead of minimising the error between the amplitudes |H(ω, θ)| and |D(ω, θ)|,
we propose a novel non-linear criterion which minimises the error between the
square of the amplitudes |H(ω, θ)|2 and |D(ω, θ)|2, i.e.

JNL(w) =

∫

Θ

∫

Ω

F (ω, θ)
[
|H(ω, θ)|2 − |D(ω, θ)|2

]2
dωdθ (8.35)

which is also independent of the phase of the spatial directivity patterns. The
cost function JNL(w) can be written (without square-roots) as

JNL(w) =

∫

Θ

∫

Ω

F (ω, θ)
(
wTG(ω, θ)w

)2
dωdθ +

∫

Θ

∫

Ω

F (ω, θ) |D(ω, θ)|4 dωdθ

−2

∫

Θ

∫

Ω

F (ω, θ) |D(ω, θ)|2
(
wTGR(ω, θ)w

)
dωdθ (8.36)

= Jsum(w) + dNL − 2wTQNLw , (8.37)

with

Jsum(w) =

∫

Θ

∫

Ω

F (ω, θ)
(
wTG(ω, θ)w

)2
dωdθ (8.38)

dNL =

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|4dωdθ (8.39)

QNL =

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2GR(ω, θ)dωdθ . (8.40)
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In Appendix E.4 it is shown that the function Jsum(w) – and therefore the total
cost function JNL(w) – can be evaluated without having to calculate double
integrals for every w, since w can be extracted from the double integrals.

Specific design case

For the specific design case where F (ω, θ) = 1 and D(ω, θ) = 1 in the passband
and D(ω, θ) = 0 and F (ω, θ) = α in the stopband, equations (8.38), (8.39) and
(8.40) can be written as

Jsum(w) =

∫

Θp

∫

Ωp

(
wTG(ω, θ)w

)2
dωdθ

︸ ︷︷ ︸

Jpsum(w)

+α

∫

Θs

∫

Ωs

(
wTG(ω, θ)w

)2
dωdθ

︸ ︷︷ ︸

Jssum(w)

dNL =

∫

Θp

∫

Ωp

1 dωdθ = dLS (8.41)

QNL =

∫

Θp

∫

Ωp

GR(ω, θ)dωdθ = Qp
e . (8.42)

We refer to appendix E.4 for the calculation of Jsum(w).

Non-linear optimisation technique

Minimising JNL(w) requires an iterative non-linear optimisation technique. We
have used the MATLAB-function fminunc [35], which finds the minimum of
an unconstrained multi-variable function (both a medium-scale quasi-Newton
method with cubic polynomial line search and a large-scale subspace trust
region method have been used [93]). In order to improve numerical robustness,
the gradient

∂JNL(w)

∂w
=
∂Jsum(w)

∂w
− 4QNLw (8.43)

can be supplied analytically. In Appendix E.4 the calculation of the gradient
∂Jsum(w)

∂w is discussed and it is shown that, cf. (E.70) and (E.71),

∂Jsum(w)

∂w
= 4Qsum(w) · w (8.44)

with

Qsum(w) = Re

{∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
G(ω, θ)dωdθ

}

. (8.45)

Hence, the total gradient ∂JNL(w)
∂w can be written as

∂JNL(w)

∂w
= 4
(
Qsum(w) − QNL

)
w . (8.46)

Stationary points ws, i.e. filter coefficients w for which the gradient is 0, satisfy

(
Qsum(ws) − QNL

)
ws = 0 (8.47)
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This implies that for a stationary point, either ws = 0, Qsum(ws) = QNL

or ws lies in the null space of the matrix Qsum(ws) − QNL. Simulations
indicate that the several stationary points exist and that the latter condition is
prevalent. Since Jsum(w) = wTQsum(w)w, the cost function in a stationary
point ws is equal to

JNL(ws) = wT
s Qsum(ws)ws + dNL − 2wT

s QNLws (8.48)

= dNL − wT
s QNLws ≤ dNL . (8.49)

Since JNL(ws) ≥ 0, all stationary points are located in the region

wTQNLw ≤ dNL . (8.50)

In order to improve the convergence speed and the numerical robustness of the
large-scale algorithms, also the Hessian

HNL(w) =
∂2JNL(w)

∂2w
=
∂2Jsum(w)

∂2w
− 4QNL (8.51)

can be provided. In Appendix E.4 the calculation of the Hessian ∂2Jsum(w)
∂2w

is
discussed. Using (E.88),

wT ∂
2Jsum(w)

∂2w
w = 12wTQsum(w)w = 12Jsum(w) , (8.52)

the quadratic form wTHNL(w)w can be written as

wTHNL(w)w = 12wTQsum(w)w − 4wTQNLw = 12Jsum(w) − 4wTQNLw ,

which can be either positive or negative. Since JNL(w) ≥ 0, it follows from
(8.37) that

Jsum(w) ≥ 2wTQNLw − dNL , (8.53)

such that
wTHNL(w)w ≥ 20wTQNLw − 12dNL . (8.54)

Hence, if

wTQNLw ≥ 3

5
dNL , (8.55)

then the quadratic form wTHNL(w)w is positive (leading to a convex optimi-
sation problem). However, no conclusions can be drawn for w where this condi-
tion is not satisfied. In a stationary point ws, the quadratic form wTHNL(w)w
is equal to

wT
s HNL(ws)ws = 12wT

s Qsum(ws)ws−4wT
s QNLws = 8wT

s QNLws . (8.56)

Since in general the matrix QNL, defined in (8.40), is positive definite (only in
very special cases QNL is singular and hence positive semi-definite), the qua-
dratic form wT

s HNL(ws)ws is strictly positive in all stationary points except
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for ws = 0, where it is equal to zero. Hence, all stationary points are either
local minima or saddle points. For ws = 0, the Hessian HNL(0) = −4QNL is
negative definite, such that ws = 0 is the only local maximum.

Simulations have indicated that for each design problem a number of local
minima exist, related to the symmetry present in the considered problem. E.g.
if wm is a local minimum, then −wm is a local minimum and for a symmetric
linear array JMwm also is a local minimum, with JM the M × M reversal
matrix, cf. (A.8). In these local minima the cost function has the same value,
since (for a symmetric linear array)

dNL−wT
mQNLwm = dNL− (−wT

m)QNL(−wm) = dNL−wT
mJMQNLJMwm .

Simulations have also shown that other local minima exist, which appear not
to be (easily) related to wm. However, the cost function in all local minima
seems to be approximately equal, such that any of these local minima can be
used as the final solution for the broadband beamformer.

Linear constraints

Incorporating linear constraints Cw = b can be done by using the MAT-
LAB function fmincon [35], which finds the minimum of a constrained nonli-
near multi-variable function (we have used the large-scale subspace trust region
method, based on the interior-reflective Newton method using preconditioned
conjugate gradients [93]).

8.4 Eigenfilter design procedures

In this section we present two novel non-iterative design procedures for broad-
band beamformers, which are based on eigenfilters. Eigenfilters have been
introduced for designing 1-dimensional linear phase FIR filters [253]. Their
main advantage is the fact that no matrix inversion is required (as in LS fil-
ter design) and that time-domain and frequency-domain constraints are easily
incorporated. Eigenfilter techniques have also been applied for designing 2-
dimensional FIR and spatial filters [32][208]. In this section, we extend the
application domain of eigenfilters to the design of broadband beamformers.

In this section two eigenfilter cost functions will be considered:

• the conventional eigenfilter cost function Jeig, minimising the error bet-
ween the spatial directivity patternsD(ω, θ)H(ωc, θc)/D(ωc, θc) andH(ω, θ).
Note that a reference frequency-angle point (ωc, θc) is required for this
technique. Minimising this cost function with/without additional cons-
traints leads to a (generalised) eigenvalue problem (cf. Section 8.4.1);
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• the TLS eigenfilter cost function JTLS , minimising the total least-squares
(TLS) error between the actual and the desired spatial directivity pattern.
This cost function does not require a reference point and also leads to a
generalised eigenvalue problem (cf. Section 8.4.2).

8.4.1 Conventional eigenfilter technique

General design

In the conventional eigenfilter technique first a reference frequency-angle point
(ωc, θc) is chosen and the filter w is calculated such that the error between
the spatial directivity patterns H(ω, θ) and D(ω, θ)H(ωc, θc)/D(ωc, θc) is mi-
nimised. Note that we do not specify the exact value of H(ωc, θc), which can
however be done at a later stage by imposing a linear point constraint, cf.
Section 8.5. The eigenfilter cost function is defined as

Jeig(w) =

∫

Θ

∫

Ω

F (ω, θ)
∣
∣
∣
D(ω, θ)

D(ωc, θc)
H(ωc, θc) −H(ω, θ)

∣
∣
∣

2

dωdθ , (8.57)

Using (8.6) it can be shown that Jeig(w) is equal to the quadratic form

Jeig(w) = wTQeigw (8.58)

with Qeig equal to

∫

Θ

∫

Ω

F (ω, θ)Re
{[ D(ω, θ)

D(ωc, θc)
g(ωc, θc) − g(ω, θ)

]

·
[ D(ω, θ)

D(ωc, θc)
g(ωc, θc) − g(ω, θ)

]H}

dωdθ . (8.59)

When minimising the cost function Jeig(w), an additional constraint is requi-
red in order to avoid the trivial solution w = 0. Both a quadratic (energy)
constraint and a linear constraint are possible.

Specific design case

For the specific design case, assuming that the reference point (ωc, θc) does not
belong to the stopband region (Θs,Ωs), the cost function Jeig(w) in (8.57) can
be written as

Jeig(w) =

∫

Θp

∫

Ωp

|H(ωc, θc) −H(ω, θ)|2dωdθ + α

∫

Θs

∫

Ωs

|H(ω, θ)|2dωdθ ,

(8.60)
such that the matrix Qeig is equal to

Qeig =

∫

Θp

∫

Ωp

Re
{
[g(ωc, θc) − g(ω, θ)][g(ωc, θc) − g(ω, θ)]H

}
dωdθ

︸ ︷︷ ︸

Qp

+
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α

∫

Θs

∫

Ωs

GR(ω, θ)dωdθ

︸ ︷︷ ︸

Qs
e

(8.61)

The quantity wTQpw is equal to the error in the passband, whereas wTQs
ew

is equal to the energy (=error) in the stopband, such that

Jeig(w) = wT (Qp + αQs
e)

︸ ︷︷ ︸

Qeig

w (8.62)

is a weighted error function over passband and stopband. The calculation of
the integrals in (8.61) is discussed in Appendix E.2 and E.3.

Quadratic energy constraint

The most common constraint on the filter w is the unit-norm (quadratic) con-
straint wTw = 1, which leads to the following eigenvalue problem,

min
w

wTQeigw, subject to wTw = 1 (8.63)

of which the solution is the eigenvector corresponding to the smallest eigenvalue
of Qeig (hence the name eigenfilters).

In the 1-dimensional FIR filter design-case [253], this unit-norm constraint
corresponds to the total area under the frequency response |W (ω)|2 being equal
to 1, since using Parseval’s theorem we can write

∫ π

0

|W (ω)|2 dω
π

= wTw . (8.64)

In broadband beamformer design, a unit-norm constraint apparently does not
have a physical meaning any more. Hence, we have modified this quadratic
constraint by constraining the total area under the spatial directivity spectrum
|H(ω, θ)|2 to be equal to 1, i.e.

∫ π

0

∫ π

0

|H(ω, θ)|2dωdθ = wTQtot
e w = 1 , (8.65)

with

Qtot
e =

∫ π

0

∫ π

0

GR(ω, θ)dωdθ . (8.66)

The calculation of this integral is discussed in Appendix E.2. This constraint
gives rise to the following constrained optimisation problem,

min
w

wTQeigw, subject to wTQtot
e w = 1 (8.67)

of which the solution weig is the generalised eigenvector, corresponding to the
minimum generalised eigenvalue in the GEVD of Qeig and Qtot

e .
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Linear constraints

Instead of imposing a quadratic constraint, it is also possible to impose linear
constraints Cw = b in order to avoid the trivial solution w = 0. We then have
to solve the constrained optimisation problem

min
w

wTQeigw, subject to Cw = b , (8.68)

which is the same optimisation problem as (8.22) with a = 0 and dLS = 0,
such that the solution (8.23) becomes

wc
eig = Q−1

eigC
T (CQ−1

eigC
T )−1b . (8.69)

8.4.2 Eigenfilter based on TLS error

General design

Recently, an eigenfilter, based on a TLS error criterion, has been described in
[209] for designing 2-dimensional FIR filters. The advantage of this eigenfilter
is that no reference point is required. We have extended this TLS eigenfilter
technique to the design of broadband beamformers. Instead of minimising the
LS error (cf. Section 8.3.2), the TLS error

|D(ω, θ) −H(ω, θ)|2
wTw + 1

(8.70)

is used and the cost function to be minimised can be written as

J̄TLS(w) =

∫

Θ

∫

Ω

F (ω, θ)
|D(ω, θ) −H(ω, θ)|2

wTw + 1
dωdθ . (8.71)

As in the conventional eigenfilter technique (cf. Section 8.4.1), we replace wTw
with wTQtot

e w, which has a physical meaning, and instead minimise the cost
function

JTLS(w) =

∫

Θ

∫

Ω

F (ω, θ)
|D(ω, θ) −H(ω, θ)|2

wTQtot
e w + 1

dωdθ , (8.72)

which can be written as

JTLS(w) =
ŵT Q̂TLSŵ

ŵT Q̂tot
e ŵ

(8.73)

with the extended vector ŵ and matrices Q̂TLS and Q̂tot
e defined as

ŵ =

[
w
−1

]

, Q̂TLS =

[

QLS a

aT dLS

]

, Q̂tot
e =

[

Qtot
e 0

0T 1

]

. (8.74)

The definitions of QLS , a and dLS are given in Section 8.3.2, while the defini-
tion of Qtot

e is given in Section 8.4.1. The filter ŵTLS minimising (8.73) is the
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generalised eigenvalue of Q̂TLS and Q̂tot
e , corresponding to the smallest gene-

ralised eigenvalue. After scaling the last element of ŵTLS to −1, the actual
solution wTLS is obtained as the first M elements of ŵTLS .

It will be shown by simulations that the TLS eigenfilter technique has a bet-
ter performance than the weighted LS, the maximum energy array and the
conventional eigenfilter technique and therefore appears to be the preferred
non-iterative design procedure.

Linear constraints

In [209] it is shown that linear constraints Cw = b can be easily rewritten as

Ĉŵ = 0, Ĉ =
[

C b
]
, (8.75)

such that the constrained optimisation problem can be rewritten as

min
ŵ

ŵT Q̂TLSŵ

ŵT Q̂tot
e ŵ

, subject to Ĉŵ = 0 (8.76)

which is similar to (8.27) in Section 8.3.3. The solution w̃TLS of the unconstrai-
ned optimisation problem is given by the generalised eigenvector corresponding
to the minimum generalised eigenvalue of BQ̂TLSB

T and BQ̂tot
e BT (with B

the null space of Ĉ), such that the solution ŵc
TLS of the constrained optimisa-

tion problem (8.76) is equal to

ŵc
TLS = BT w̃TLS . (8.77)

After scaling the last element of ŵc
TLS to −1, the actual solution wc

TLS is
obtained as the first M elements of ŵc

TLS .

8.5 Linear constraints

In this section several types of linear constraints are discussed, which can be
imposed on the filter w. These linear constraints can always be written in the
form

Cw = b (8.78)

with C a J ×M -dimensional matrix (with the number of constraints J ≤ M)
and b a J-dimensional vector. In this section point constraints, line constraints
and derivative constraints are discussed.

8.5.1 Point constraints

Point constraints can be used for constraining the spatial directivity pattern
H(ω, θ) to some predefined value at a specific frequency-angle point. The
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absolute point constraint H(ωf , θf ) = b, with b = bR + jbI a complex scalar,
corresponds to 2 real-valued constraints,

[

gTR(ωf , θf )

gTI (ωf , θf )

]

︸ ︷︷ ︸

C

w =

[

bR

bI

]

︸ ︷︷ ︸

b

, (8.79)

whereas the relative point constraint H(ωf1 , θf1) = bH(ωf2 , θf2) can be written
as

[

gTR(ωf1 , θf1) − bR gTR(ωf2 , θf2) + bI gTI (ωf2 , θf2)

gTI (ωf1 , θf1) − bI gTR(ωf2 , θf2) − bR gTI (ωf2 , θf2)

]

︸ ︷︷ ︸

C

w =

[

0

0

]

︸ ︷︷ ︸

b

. (8.80)

8.5.2 Line constraint

Constraining the spatial directivity pattern H(ω, θ) at the angle θf to a prede-

fined frequency response B(ω) =
∑L−1
l=0 bl e

−jlω = bTe(ω), with b a real-valued
vector defined similarly as in (8.3), corresponds to

H(ω, θf ) =

N−1∑

n=0

Wn(ω)e−jωτn(θf ) =

L−1∑

l=0

(
N−1∑

n=0

wn,l e
−jωτn(θf )

)

e−jlω

, B(ω) =

L−1∑

l=0

bl e
−jlω . (8.81)

Obviously, this can be done by putting

N−1∑

n=0

wn,l e
−jωτn(θf ) = bl , l = 0 . . . L− 1 , (8.82)

which can be written as
[
e−jωτ0(θf ) · IL e−jωτ1(θf ) · IL . . . e−jωτN−1(θf ) · IL

]
w = b , (8.83)

and corresponds to 2L real-valued constraints,
[

cos
(
ωτ0(θf )

)
IL cos

(
ωτ1(θf )

)
IL . . . cos

(
ωτN−1(θf )

)
IL

sin
(
ωτ0(θf )

)
IL sin

(
ωτ1(θf )

)
IL . . . sin

(
ωτN−1(θf )

)
IL

]

w=

[

b

0

]

.

(8.84)
This equation has to hold for all ω. However, since J = 2L ≤ M , in general
these constraints can be satisfied maximally for N/2 frequency points. An
exception is θf = π/2 (i.e. broadside direction), since in this case τn(θf ) =
0, n = 0 . . . N − 1, such that (8.84) reduces to

[
IL IL . . . IL

]

︸ ︷︷ ︸

C

w = b . (8.85)
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8.5.3 Derivative constraints

In order to smoothen the spatial directivity pattern H(ω, θ), we can introduce
derivative constraints, e.g. flattening the spatial directivity pattern at certain
frequencies and angles by putting the frequency and/or angle derivatives to 0
[87], i.e.

∂H(ω, θ)

∂θ

∣
∣
∣
∣ ω = ωf
θ = θf

= 0,
∂H(ω, θ)

∂ω

∣
∣
∣
∣ ω = ωf
θ = θf

= 0 . (8.86)

Since H(ω, θ) = wTg(ω, θ), these derivatives are equal to

∂H(ω, θ)

∂θ
= wT ∂g(ω, θ)

∂θ
︸ ︷︷ ︸

g′

θ
(ω,θ)

,
∂H(ω, θ)

∂ω
= wT ∂g(ω, θ)

∂ω
︸ ︷︷ ︸

g′

ω(ω,θ)

. (8.87)

Using (8.5) and (8.7), the derivative g′
θ(ω, θ) can be written as

g′
θ(ω, θ) =

∂

∂θ








e(ω)e−jωτ0(θ)

e(ω)e−jωτ1(θ)

...
e(ω)e−jωτN−1(θ)








= jω
fs
c

sin θ








e(ω)e−jωτ0(θ)d0

e(ω)e−jωτ1(θ)d1

...
e(ω)e−jωτN−1(θ)dN−1








= jω
fs
c

sin θ ∆θ g(ω, θ) , (8.88)

with ∆θ an M ×M -dimensional diagonal matrix, containing the microphone
distances,

∆θ =








d0 IL
d1 IL

. . .

dN−1 IL







. (8.89)

If sin θf = 0, i.e. θf = 0 or θf = π, the first-order angle derivative constraint
wTg′

θ(ωf , θf ) = 0 is satisfied for all frequencies. For all other angles, this
constraint can be written as

[
eH(ωf )e

jωfτ0(θf )d0 eH(ωf )e
jωfτ1(θf )d1 . . . eH(ωf )e

jωfτN−1(θf )dN−1

]
w=0,

which corresponds to 2 real-valued linear constraints,

[

gTR(ωf , θf )

gTI (ωf , θf )

]

∆θ

︸ ︷︷ ︸

C

w =

[

0

0

]

︸ ︷︷ ︸

b

. (8.90)
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The derivative g′
ω(ω, θ) can be written as

g′
ω(ω, θ) =

∂

∂ω








e(ω)e−jωτ0(θ)

e(ω)e−jωτ1(θ)

...
e(ω)e−jωτN−1(θ)







=











e−jωτ0(θ)
(

e′(ω) − e(ω)jτ0(θ)
)

e−jωτ1(θ)
(

e′(ω) − e(ω)jτ1(θ)
)

...

e−jωτN−1(θ)
(

e′(ω) − e(ω)jτN−1(θ)
)











,

with

e′(ω) =








0
−j e−jω
...
−j(L− 1) e−j(L−1)ω








= −jDe(ω) , (8.91)

and D an L× L diagonal matrix,

D =








0
1

. . .

L− 1







, (8.92)

such that
g′
ω(ω, θ) = −j∆ω(θ)g(ω, θ) , (8.93)

with ∆ω(θ) an M ×M diagonal matrix,

∆ω(θ) =








D + τ0(θ) IL
D + τ1(θ) IL

. . .

D + τN−1(θ) IL







. (8.94)

The first-order frequency derivative constraint wTg′
ω(ωf , θf ) = 0 now corres-

ponds to 2 linear constraints
[

gTR(ωf , θf )

gTI (ωf , θf )

]

∆ω(θf )

︸ ︷︷ ︸

C

w =

[

0

0

]

︸ ︷︷ ︸

b

. (8.95)

In order to further smoothen the spatial directivity pattern, higher-order fre-
quency and/or angle derivatives can be set to zero. Using (8.88), the second-
order angle derivative g′′

θ (ω, θ) can be written as

g′′
θ (ω, θ) =

∂g′
θ(ω, θ)

∂θ
= jω

fs
c

∆θ

(

cos θ g(ω, θ) + sin θ g′
θ(ω, θ)

)

(8.96)

= jω
fs
c

∆θ

(

cos θ IM + jω
fs
c

sin2 θ∆θ

)

g(ω, θ) . (8.97)
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Similar expressions can be derived for higher-order angle derivatives. Using
(8.93), the rth-order frequency derivative g

(r)
ω (ω, θ) can be written as

g(r)
ω (ω, θ) =

(
− j∆ω(θ)

)r
g(ω, θ) . (8.98)

8.6 Simulations

In this section, simulation results for far-field broadband beamformer design
are discussed for the specific design case with D(ω, θ) = 1 in the passband
and D(ω, θ) = 0 in the stopband. We have performed simulations for all
cost functions, which have been discussed in Sections 8.3 and 8.4, using a
linear uniform microphone array with N = 5 microphones, an inter-microphone
distance d = 4 cm and sampling frequency fs = 8 kHz. Two specifications for
the passband and the stopband regions have been considered:

• specification 1: passband (Ωp,Θp) = (300–4000Hz, 70◦–110◦) and stop-
band (Ωs,Θs) = (300–4000Hz, 0◦–60◦ + 120◦–180◦)

• specification 2: passband (Ωp,Θp) = (300–4000Hz, 40◦–80◦) and stop-
band (Ωs,Θs) = (300–4000Hz, 0◦–30◦ + 90◦–180◦)

For the first specification, we have performed simulations without linear cons-
traints and with a line constraint at 90◦, whereas for the second specification,
we have only performed simulations without linear constraints. For the con-
ventional eigenfilter technique, the reference point for the first specification is
(ωc, θc) = (1500Hz, 90◦) and the reference point for the second specification is
(ωc, θc) = (1500Hz, 60◦). Both for the conventional eigenfilter technique and
for the TLS eigenfilter technique, the matrix Qtot

e is computed with frequency
and angle specifications (Ω,Θ) = (300–4000Hz, 0◦–180◦).

All broadband beamformers have been designed using the following parame-
ters: filter length L = 20 and stopband weight α = 0.1, 1, 10. For all be-
amformers we have computed the different cost functions JLS , Jeig, JTLS ,
JME and JNL, which have been defined in Sections 8.3 and 8.4. We will
plot the total spatial directivity pattern H(ω, θ) in the frequency-angle regi-
on (Ω,Θ) = (300–3500Hz, 0◦–180◦) and the angular pattern for the specific
frequencies (500, 1000, 1500, 2000, 2500, 3500) Hz.

8.6.1 Design specification 1

Considering the first design specification without linear constraints, the different
cost functions for the different beamformer design procedures are summarised
in Table 8.1. Obviously, the design procedure optimising a specific cost function
gives rise to the best value for this particular cost function (bold values).
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Cost function
Design α JLS Jeig JTLS JME JNL
LS 0.1 0.07015 0.02688 0.01803 3.87628 0.07734
EIG 0.1 0.08169 0.02179 0.02008 4.02636 0.06917
TLS 0.1 0.07234 0.02593 0.01752 3.51239 0.06759
ME 0.1 2824.61 0.92219 0.92061 130.189 5.10 107

NL 0.1 0.63243 0.15624 0.14475 2.97090 0.02540
LS 1 0.32012 0.12644 0.10712 7.82490 0.24624
EIG 1 0.44332 0.10786 0.12097 10.9793 0.29769
TLS 1 0.34927 0.12651 0.09851 7.72356 0.18891
ME 1 2844.15 0.92856 0.92698 130.189 5.10 107

NL 1 0.84110 0.24517 0.22330 5.24686 0.10301
LS 10 1.00743 0.58272 0.56422 17.83966 0.97683
EIG 10 2.10339 0.44667 0.51747 35.37774 2.52124
TLS 10 1.35343 0.54114 0.44637 22.22030 0.37251
ME 10 3039.51 0.99225 0.99065 130.189 5.10 107

NL 10 4.08658 1.61600 1.29464 18.66897 0.21410

Table 8.1: Different cost functions for design specification 1 without linear
constraints (N = 5; L = 20; α = 0.1, 1, 10)

We will now compare the performance of the non-iterative design procedures
(LS, EIG, TLS, ME) with the non-linear design procedure (NL) and determi-
ne which non-iterative design procedure has the best performance, using the
non-linear cost function JNL as a performance criterion. The maximum energy
array technique has a quite poor performance (this can also be seen from the
spatial directivity pattern in Fig. 8.6). In addition, the TLS eigenfilter techni-
que always has a better performance than the weighted LS technique (this is
also true for other filter lengths and number of microphones). For small stop-
band weights α, the conventional eigenfilter technique also gives rise to a better
performance than the weighted LS technique (and even the TLS eigenfilter tech-
nique), but this is not true any more for large stopband weights. Therefore,
the TLS eigenfilter technique appears to be the preferred non-iterative design
procedure, best resembling the performance of the non-linear design procedure
but having a significantly lower computational complexity.

Figures 8.3, 8.4, 8.5, 8.6 and 8.7 show the spatial directivity patterns for all
design procedures with α = 1. Figures 8.8 and 8.9 show the spatial directivity
pattern for the TLS eigenfilter technique and the non-linear criterion with
α = 0.1. Figures 8.10 and 8.11 show the spatial directivity pattern for the TLS
eigenfilter technique and the non-linear criterion with α = 10.

When a line constraint at 90◦ is imposed, one can see by comparing Tables 8.1
and 8.2 that the cost functions with a line constraint are worse than the cost
functions without constraints, but that all design procedures now give rise to
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Figure 8.3: Weighted LS technique (design specification 1, no linear constraints,
α = 1, N = 5, L = 20)
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Figure 8.4: Conventional eigenfilter technique (design specification 1, no linear
constraints, α = 1, N = 5, L = 20)
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Figure 8.5: TLS eigenfilter technique (design specification 1, no linear cons-
traints, α = 1, N = 5, L = 20)
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Figure 8.6: Maximum energy array technique (design specification 1, no linear
constraints, α = 1, N = 5, L = 20)
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Figure 8.7: Non-linear criterion (design specification 1, no linear constraints,
α = 1, N = 5, L = 20)
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Figure 8.8: TLS eigenfilter technique (design specification 1, no linear cons-
traints, α = 0.1, N = 5, L = 20)
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Figure 8.9: Non-linear criterion (design specification 1, no linear constraints,
α = 0.1, N = 5, L = 20)
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Figure 8.10: TLS eigenfilter technique (design specification 1, no linear cons-
traints, α = 10, N = 5, L = 20)
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Figure 8.11: Non-linear criterion (design specification 1, no linear constraints,
α = 10, N = 5, L = 20)
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Cost function
Design α JLS Jeig JTLS JME JNL
LS 10 3.96204 1.74435 1.21113 4.05166 1.85361
EIG 10 3.96204 1.74435 1.21113 4.05166 1.85361
TLS 10 3.99103 1.72361 1.20375 4.06720 1.83286
ME 10 3.97901 1.72672 1.20416 4.06885 1.84120
NL 10 5.01514 2.09900 1.47970 3.19583 1.29136

Table 8.2: Different cost functions for design specification 1 with line constraint
(N = 5; L = 20; α = 10)

Cost function
Design α JLS Jeig JTLS JME JNL
LS 1 0.50350 0.24804 0.18191 4.62621 0.40657
EIG 1 3.54617 0.15078 0.94322 8.06733 0.29521
TLS 1 0.58258 0.24821 0.15872 4.58828 0.25312
ME 1 287.043 0.89290 0.87877 38.9523 252775
NL 1 1.98809 0.86805 0.54727 6.58217 0.10891

Table 8.3: Different cost functions for design specification 2 without linear
constraints (N = 5; L = 20; α = 1)

quite similar results (also the maximum energy array technique). Again, the
TLS eigenfilter technique has a better performance, i.e. non-linear cost function
JNL, than the weighted LS, the maximum energy array and the conventional ei-
genfilter technique, such that it appears to be the preferred non-iterative design
procedure. Figure 8.12 shows the spatial directivity pattern of the maximum
energy array technique with α = 10.

8.6.2 Design specification 2

Considering the second design specification without linear constraints, the dif-
ferent cost functions for the different beamformer design procedures are sum-
marised in Table 8.3 (α = 1). Again, the maximum energy array technique
has a quite poor performance. In addition, the TLS eigenfilter technique again
has a better performance, i.e. non-linear cost function JNL, than the weighted
LS, the maximum energy array and the conventional eigenfilter technique and
therefore appears to be the preferred non-iterative design procedure. Figures
8.13 and 8.14 show the spatial directivity patterns for the TLS eigenfilter tech-
nique and the non-linear criterion with α = 1. Figures 8.15 and 8.16 show the
spatial directivity patterns for the TLS eigenfilter technique and the non-linear
criterion with α = 0.1.
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Figure 8.12: Maximum energy array technique (design specification 1, line
constraint, α = 10, N = 5, L = 20)
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Figure 8.13: TLS eigenfilter technique (design specification 2, no linear cons-
traints, α = 1, N = 5, L = 20)

0

1000

2000

3000

4000 0
50

100
150

−20

−15

−10

−5

0

Angle (deg)

Far−field response − Spec 2 unconstrained − NL (N=5, L=20, α=1)

Frequency (Hz)

 −20

 −10

 0
90

270

180 0

Frequency: 500 Hz

 −20

 −10

 0
90

270

180 0

Frequency: 1000 Hz

 −20

 −10

 0
90

270

180 0

Frequency: 1500 Hz

 −20

 −10

 0
90

270

180 0

Frequency: 2000 Hz

 −20

 −10

 0
90

270

180 0

Frequency: 2500 Hz

 −20

 −10

 0
90

270

180 0

Frequency: 3500 Hz

Figure 8.14: Non-linear criterion (design specification 2, no linear constraints,
α = 1, N = 5, L = 20)
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Figure 8.15: TLS eigenfilter technique (design specification 2, no linear cons-
traints, α = 0.1, N = 5, L = 20)
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Figure 8.16: Non-linear criterion (design specification 2, no linear constraints,
α = 0.1, N = 5, L = 20)

8.7 Conclusion

In this chapter we have described several design procedures for designing far-
field broadband beamformers with an arbitrary spatial directivity pattern using
an arbitrary microphone configuration and an FIR filter-and-sum structure. In
Section 8.3 several cost functions have been defined: a weighted LS cost func-
tion, a maximum energy array cost function, and a non-linear criterion, not
taking into account the phase of the spatial directivity patterns. In Section
8.3.4 we have proposed a modified non-linear cost function, such that the dou-
ble integrals arising in the optimisation problem only need to be computed
once. However, optimising this non-linear cost function requires an iterative
optimisation technique, giving rise to a large computational complexity. In
Section 8.4 we have presented two novel non-iterative design procedures, which
are based on eigenfilters. In the conventional eigenfilter technique, a reference
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frequency-angle point is required, whereas this reference point is not required
in the TLS eigenfilter technique, which minimises the TLS error between the
actual and the desired spatial directivity pattern. In Section 8.5 several linear
constraints (point, line and derivative constraints) have been discussed that
can be imposed on the filter coefficients. In Section 8.6 different simulations
have shown that among all considered non-iterative design procedures the TLS
eigenfilter technique has the best performance, i.e. best resembling the per-
formance of the non-linear design procedure but having a significantly lower
computational complexity.



Chapter 9

Near-Field Broadband
Beamforming

This chapter discusses the design of near-field broadband beamformers. The
ultimate goal is to design a broadband beamformer whose spatial directivity
pattern optimally fits a desired spatial directivity pattern for all distances from
the microphone array. However, in this chapter we will only consider the design
of near-field broadband beamformers which operate at one specific distance or
at a limited number of distances from the microphone array.

Section 9.1 describes the near-field configuration. In Section 9.2 it is shown
that the design of near-field beamformers for one specific distance is very simi-
lar to the design of far-field beamformers. The same design procedures and cost
functions can be used; the only difference lies in the calculation of the double
integrals involved. This section also discusses design procedures for broadband
beamformers which operate at several distances. Although this extension is
straightforward for most cost functions, for the TLS eigenfilter and the maxi-
mum energy array cost function this extension leads to a significantly different
optimisation problem, for which no closed-form solution is available.

Section 9.3 discusses linear constraints for the near-field case. Only point con-
straints and derivative constraints are discussed, since line constraints can not
be defined for the near-field case.

Section 9.4 gives simulations results for near-field broadband beamformers ope-
rating at one specific distance and for mixed near-field far-field broadband
beamforming. It is shown that the TLS eigenfilter technique again is the pre-
ferred non-iterative design procedure and that mixed near-field far-field design
provides a trade-off between the near-field and the far-field performance.

217
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9.1 Near-field configuration

When the speech source is close to the microphone array, the far-field assump-
tions are no longer valid and spherical wavefronts and signal attenuation have
to be taken into account. Consider the linear microphone array depicted in
Fig. 9.1, where the speech source S(ω) is located at a distance r from the
centre of the microphone array and with the angle θ as defined in the figure.
As already mentioned in Section 1.3.4, the typical rule of thumb is that the
far-field assumptions are no longer valid when

r <
d2
totfs
c

, (9.1)

with r the distance of the speech source to the centre of the microphone array
and dtot = dN−1 − d0 the total length of the (linear) microphone array [169].
Hence, in the near-field of a microphone array, not only the direction θ of the
speech source, but also its distance r to the microphone array has to be taken
into account. E.g. in [153][225] superdirective beamformers and frequency-
invariant beamformers have been designed for the near-field case .

In this chapter we will discuss the design of near-field broadband beamformers
with an arbitrary desired spatial directivity pattern using an FIR filter-and-sum
structure. It will be shown that the design of near-field broadband beamformers
is very similar to the design of far-field broadband beamformers (which are
actually a special case for r = ∞). All the cost functions in Sections 8.3 and
8.4 remain valid, whereas only the steering vector g(ω, θ) in (8.7) and all related
quantities are defined differently for the near-field case.

Using simple geometrical relationships, the distance rn(θ, r) from the signal
source to the nth microphone is equal to

rn(θ, r) =
√

(r sin θ)2 + (dn + r cos θ)2 =
√

r2 + d2
n + 2dnr cos θ . (9.2)

For convenience this equation can be rewritten as

rn(θ, r) =
√

pn + qn cos θ (9.3)

with
pn = r2 + d2

n, qn = 2dnr . (9.4)

Taking into account spherical wavefronts and signal attenuation, the micropho-
ne signals Yn(ω, θ, r) are delayed and attenuated versions of the signal Ȳ (ω, θ, r)
at the centre of the microphone array, i.e.

Yn(ω, θ, r) = an(θ, r)e
−jωτn(θ,r)Ȳ (ω, θ, r), −π ≤ ω ≤ π, −π ≤ θ ≤ π , (9.5)

with the attenuation an(θ, r) and the delay τn(θ, r) equal to

an(θ, r) =
r

rn(θ, r)
τn(θ, r) =

rn(θ, r) − r

c
fs (9.6)
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Figure 9.1: Linear microphone array configuration for near-field

Remark 9.1 For r → ∞, i.e. far-field assumptions, it can be proved that

lim
r→∞

an(θ, r) = lim
r→∞

r
√

r2 + d2
n + 2dnr cos θ

= 1 (9.7)

lim
r→∞

τn(θ, r) = lim
r→∞

√

r2 + d2
n + 2dnr cos θ − r

c
fs

= lim
r→∞

r
[

1 + 1
2

(d2n
r2 + 2dn cos θ

r

)
− 1
]

c
fs =

dn cos θ

c
fs , (9.8)

which are the far-field expressions. △

The spatial directivity pattern H(ω, θ, r) is defined as

H(ω, θ, r) =
Z(ω, θ, r)

Ȳ (ω, θ, r)
=

∑N−1
n=0 Wn(ω)Yn(ω, θ, r)

Ȳ (ω, θ, r)
. (9.9)

Using (9.6), the spatial directivity pattern H(ω, θ, r) can be written as

H(ω, θ, r) =

N−1∑

n=0

an(θ, r)Wn(ω)e−jωτn(θ,r) = wTg(ω, θ, r) (9.10)

with the M -dimensional steering vector g(ω, θ, r) now dependent of r,

g(ω, θ, r) =








a0(θ, r)e(ω)e−jωτ0(θ,r)

a1(θ, r)e(ω)e−jωτ1(θ,r)

...
aN−1(θ, r)e(ω)e−jωτN−1(θ,r)







. (9.11)
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As in the far-field case, the steering vector g(ω, θ, r) can be decomposed into a
real part gR(ω, θ, r) and an imaginary part gI(ω, θ, r). Using (9.10), the spatial
directivity spectrum |H(ω, θ, r)|2 can be written as

|H(ω, θ, r)|2 = H(ω, θ, r)H∗(ω, θ, r) = wTG(ω, θ, r)w , (9.12)

with
G(ω, θ, r) = g(ω, θ, r)gH(ω, θ, r) , (9.13)

which can also be decomposed into a real part GR(ω, θ, r) and an imaginary
part GI(ω, θ, r). Since GI(ω, θ, r) is anti-symmetric (cf. Appendix G.2), the
spatial directivity spectrum |H(ω, θ, r)|2 is equal to (G.13),

|H(ω, θ, r)|2 = wTGR(ω, θ, r)w (9.14)

9.2 Near-field beamformer design procedures

The ultimate goal of broadband beamformer design is to design a beamfor-
mer such that the spatial directivity pattern H(ω, θ, r) optimally fits a desired
spatial directivity pattern D(ω, θ, r) for all distances r, i.e.

min
w

∫

r

∫

Θ

∫

Ω

F (ω, θ, r)|H(ω, θ, r) −D(ω, θ, r)|2dωdθdr (9.15)

However, since this is quite a difficult task, near-field broadband beamformers
are generally designed for one or a limited number of predefined distances, i.e.
the outer integral in (9.15) is approximated by a finite sum.

9.2.1 Design for one distance

If the near-field broadband beamformer design is performed for one fixed dis-
tance r, the cost functions and derivations in Sections 8.3 and 8.4 remain valid,
but the following substitutions have to be made

H(ω, θ),g(ω, θ),G(ω, θ) → H(ω, θ, r),g(ω, θ, r),G(ω, θ, r) . (9.16)

The only difference lies in the calculation of the double integrals, which is
discussed in Appendices G and H.

9.2.2 Mixed near-field far-field beamforming

The spatial directivity pattern of a near-field broadband beamformer designed
for one specific distance can be quite unsatisfactory at other distances (cf.
simulations in Section 9.4.2). If the broadband beamformer should be able
to operate at several distances – possibly having a different desired spatial
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directivity pattern D(ω, θ, r) at these distances – we can define the total cost
function

Jtot(w) =

R∑

r=1

αrJr(w) (9.17)

with αr a positive weighting factor, assigning more or less importance to the
cost function Jr(w). The cost function Jr(w) can be any of the cost functions
discussed in Sections 8.3 and 8.4, defined at distance r. If one of the considered
distances is r = ∞, this is called mixed near-field far-field beamforming.

For most design procedures (weighted LS, non-linear criterion, conventional
eigenfilter), this extension is straightforward. E.g. in [273] mixed near-field
far-field beamforming has been discussed for the weighted LS cost function.
However, for the TLS eigenfilter and the maximum energy array cost functions
this extension gives rise to a significantly different optimisation problem, for
which no closed-form solution is available.

Weighted least-squares

The weighted LS cost function is equal to (cf. Section 8.3.2)

J totLS(w) =

R∑

r=1

αrJLS,r(w) =

R∑

r=1

αr
(
wTQLS,rw − 2wTar + dLS,r

)
(9.18)

= wT
( R∑

r=1

αrQLS,r

)

w − 2wT
( R∑

r=1

αrar

)

+
R∑

r=1

αrdLS,r , (9.19)

with QLS,r, ar and dLS,r defined at the distance r. This equation is equivalent
to the cost function in (8.14), with

QLS =

R∑

r=1

αrQLS,r, a =

R∑

r=1

αrar, dLS =

R∑

r=1

αrdLS,r . (9.20)

The solution of the constrained and the unconstrained weighted LS cost func-
tion has been discussed in Section 8.3.2.

Non-linear criterion

The non-linear cost function is equal to (cf. Section 8.3.4)

J totNL(w) =
R∑

r=1

αrJNL,r(w) =
R∑

r=1

αr
(
J totsum,r(w) + dNL,r − 2wTQNL,rw

)
,

where J totsum,r(w) can be written as (cf. Appendix E.4)

J totsum,r(w) =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl ρijkl,r , (9.21)
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with J totsum,r(w), ρijkl,r, QNL,r and dNL,r defined at the distance r. The non-
linear cost function can now be written as

J totNL(w) =
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl

( R∑

r=1

αrρijkl,r

)

+
( R∑

r=1

αrdNL,r

)

−

2wT
( R∑

r=1

αrQNL,r

)

w . (9.22)

This equation is equivalent to the cost function in (8.37), with

ρijkl =

R∑

r=1

αrρijkl,r, dNL =

R∑

r=1

αrdNL,r, QNL =

R∑

r=1

αrQNL,r . (9.23)

The solution of the unconstrained and the unconstrained non-linear cost func-
tion using iterative optimisation techniques has been discussed in Section 8.3.4.

Conventional eigenfilter technique

The conventional eigenfilter cost function is equal to (cf. Section 8.4.1)

J toteig(w) =
R∑

r=1

αrJeig,r(w) =
R∑

r=1

αrw
TQeig,rw = wT

( R∑

r=1

αrQeig,r

)

w ,

with Qeig,r defined at the distance r. This equation is equivalent to the cost
function in (8.58), with

Qeig =

R∑

r=1

αrQeig,r . (9.24)

The solution of the eigenfilter cost function with a quadratic energy constraint
and with linear constraints is discussed in Section 8.4.1 (where only one qua-
dratic energy constraint wTQtot

e,rw = 1 at one distance r is allowed).

TLS eigenfilter technique

The TLS eigenfilter cost function is equal to (cf. Section 8.4.2)

J totTLS(w) =

R∑

r=1

αrJTLS,r(w) =

R∑

r=1

αr
ŵT Q̂TLS,rŵ

ŵT Q̂tot
e,rŵ

, (9.25)

with

ŵ =

[
w
−1

]

, Q̂TLS,r =

[

QLS,r ar

aTr dLS,r

]

, Q̂tot
e,r =

[

Qtot
e,r 0

0T 1

]

,

and Q̂LS,r, ar, dLS,r and Q̂tot
e,r defined at the distance r.
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The TLS eigenfilter cost function with linear constraints Cw = b can be trans-
formed into the unconstrained cost function (cf. Section 8.4.2)

R∑

r=1

αr
w̃TBQ̂TLS,rB

T w̃

w̃TBQ̂tot
e,rB

T w̃
. (9.26)

Both minimising (9.25) and (9.26) can be considered to be special cases of
minimising the cost function

Jm(w) =

R∑

r=1

wTArw

wTBrw
(9.27)

with Ar and Br symmetric positive-definite matrices. When Br = B, r =
1 . . . R, this problem is a generalised eigenvalue problem and the solution is gi-
ven by the generalised eigenvector, corresponding to the minimum generalised
eigenvalue of

∑R
r=1 Ar and B. In general however, minimising Jm(w) appa-

rently cannot be transformed into a generalised eigenvalue problem. Hence,
we have used an iterative non-linear optimisation technique for minimising this
cost function. In order to improve the numerical robustness and the conver-
gence speed of the optimisation technique, both the gradient

∂Jm(w)

∂w
= 2

R∑

r=1

(wTBrw)Ar − (wTArw)Br

(wTBrw)2
w (9.28)

and the Hessian

∂2Jm(w)

∂2w
= 2

R∑

r=1

(wTBrw)Ar − (wTArw)Br + 2(ArwwTBr − BrwwTAr)

(wTBrw)2

−4

[
Arw(wTBrw) − Brw(wTArw)

]
wTBr

(wTBrw)3
(9.29)

can be provided analytically. Although we have not been able to prove that
this optimisation procedure converges to the global minimum, no problems
with local minima have occurred during simulations.

Maximum energy array

The maximum energy array cost function is equal to (cf. Section 8.3.3)

J totME(w) =

R∑

r=1

αrJME,r(w) =

R∑

r=1

αr
wTQp

e,rw

wTQs
e,rw

, (9.30)

with Qp
e,r and Qs

e,r defined at the distance r. The maximum energy array
cost function with linear constraints Cw = b can be transformed into the
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unconstrained cost function (cf. Section 8.3.3)

R∑

r=1

αr
w̃TBQ̂p

e,rB
T w̃

w̃TBQ̂s
e,rB

T w̃
. (9.31)

Both maximising (9.30) and (9.31) can be considered to be a special case of
maximising the cost function Jm(w) in (9.27).

9.3 Linear constraints

For the far-field case, linear constraints of the form Cw = b have been de-
fined in Section 8.5. For the near-field case, point constraints and derivative
constraints can be defined similarly as for the far-field case. However, a line
constraint of the form (8.85) can not be imposed for the near-field case, since
for θf = π/2 and r 6= ∞, the delays τn(θf , r) are not equal to 0.

Linear constraints at a distance r can be written as Crw = br, such that the
linear constraints for all R distances together can be written as

[
CT

1 CT
2 . . . CT

R

]T

︸ ︷︷ ︸

C

w =
[

bT1 bT2 . . . bTR
]T

︸ ︷︷ ︸

b

. (9.32)

9.3.1 Point constraint

Similar to (8.79) and (8.80), the absolute point constraint H(ωf , θf , r) = b
corresponds to

[

gTR(ωf , θf , r)

gTI (ωf , θf , r)

]

︸ ︷︷ ︸

Cr

w =

[

bR

bI

]

︸ ︷︷ ︸

br

, (9.33)

whereas the relative point constraint H(ωf1 , θf1 , r1) = b ·H(ωf2 , θf2 , r2) corres-
ponds to
[

gTR(ωf1 , θf1 , r1) − bR gTR(ωf2 , θf2 , r2) + bI gTI (ωf2 , θf2 , r2)

gTI (ωf1 , θf1 , r1) − bI gTR(ωf2 , θf2 , r2) − bR gTI (ωf2 , θf2 , r2)

]

︸ ︷︷ ︸

Cr

w =

[

0

0

]

︸ ︷︷ ︸

br

.

9.3.2 Derivative constraint

The derivative constraints for the near-field case are defined similarly as for the
far-field case in Section 8.5.3. In Appendix D.2 it is shown that the first-order
angle derivative g′

θ(ω, θ, r) can be written as

g′
θ(ω, θ, r) = sin θ ∆θ(ω, θ, r) g(ω, θ, r) , (9.34)
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with ∆θ(ω, θ, r) a complex-valued M ×M -dimensional diagonal matrix,

∆θ(ω, θ, r) = ∆θ,R(θ, r) + j∆θ,I(ω, θ, r) , (9.35)

defined in (D.14). If sin θf = 0, i.e. θf = 0 or θf = π, the first-order angle
derivative constraint wTg′

θ(ωf , θf , r) = 0 is satisfied for all frequencies and
distances. For all other angles, this constraint can be written as
[

gTR(ωf , θf , r)∆θ,R(θf , r) − gTI (ωf , θf , r)∆θ,I(ωf , θf , r)

gTR(ωf , θf , r)∆θ,I(ωf , θf , r) + gTI (ωf , θf , r)∆θ,R(θf , r)

]

︸ ︷︷ ︸

Cr

w =

[
0

0

]

︸ ︷︷ ︸

br

.

The first-order frequency derivative g′
ω(ω, θ, r) can be written as

g′
ω(ω, θ, r) = −j∆ω(θ, r)g(ω, θ, r) , (9.36)

with ∆ω(θ, r) a real-valued M ×M -dimensional diagonal matrix,

∆ω(θ, r) =








D + τ0(θ, r) IL
D + τ1(θ, r) IL

. . .

D + τN−1(θ, r) IL







,

with D defined in (8.92). The frequency derivative constraint wTg′
ω(ωf , θf , r) =

0 corresponds to 2 linear constraints,
[

gTR(ωf , θf , r)

gTI (ωf , θf , r)

]

∆ω(θf , r)

︸ ︷︷ ︸

Cr

w =

[

0

0

]

︸ ︷︷ ︸

br

. (9.37)

9.4 Simulations

In this section simulation results are presented for near-field broadband beam-
forming at one specific distance and for mixed near-field far-field broadband
beamformer design. It will be shown that the TLS eigenfilter technique is
the preferred non-iterative design procedure and that mixed near-field far-field
design provides a trade-off between near-field and far-field performance.

9.4.1 Near-field broadband beamformer

For the near-field broadband beamformer design, we have used the same de-
sign criteria (microphone array, stopband/passband specifications, filter length,
stopband weights) as for the far-field design (cf. Section 8.6), but we have de-
signed the beamformer for a distance r = 0.2 m from the microphone array. We
will only present results for the first specification without linear constraints.
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Cost function
Design α JLS Jeig JTLS JME JNL
LS 0.1 0.03991 0.02244 0.01112 10.5245 0.06909
EIG 0.1 0.04676 0.01466 0.01267 9.62192 0.06473
TLS 0.1 0.04055 0.02177 0.01095 9.45334 0.06613
ME 0.1 3905.35 0.87992 0.87758 43.6125 5.41 107

NL 0.1 0.07700 0.02373 0.01774 2.92942 0.03369
LS 1 0.14284 0.06894 0.04468 18.11551 0.12597
EIG 1 0.16050 0.05918 0.04595 17.91655 0.11590
TLS 1 0.14818 0.06879 0.04309 17.99989 0.11903
ME 1 3985.72 0.89799 0.89564 43.61245 5.41 107

NL 1 0.23852 0.09870 0.06649 9.13160 0.08441
LS 10 0.73287 0.45994 0.35987 19.15062 0.72276
EIG 10 1.13534 0.45116 0.32303 19.41230 0.25785
TLS 10 0.87317 0.45928 0.30815 19.33174 0.26571
ME 10 4789.42 1.07863 1.07624 43.61245 5.44 107

NL 10 1.12420 0.51194 0.34444 17.50699 0.16281

Table 9.1: Different cost functions for design specification 1 without linear
constraints (N = 5; L = 20; α = 0.1, 1, 10)

The different cost functions for the different beamformer designs are summari-
sed in Table 9.1. Similar conclusions as for the far-field case hold. Obviously,
the design procedure optimising a specific cost function gives rise to the best va-
lue for this particular cost function (bold values). The maximum energy array
technique has a quite poor performance (this can also be seen from the spati-
al directivity pattern in Fig. 9.2). In addition, the TLS eigenfilter technique
always has a better performance, i.e. non-linear cost function JNL, than the
weighted LS technique, and therefore appears to be the preferred non-iterative
design procedure1. Figures 9.2(a)-(e) show the near-field spatial directivity
patterns for all design procedures with α = 0.1.

9.4.2 Mixed near-field far-field design

Using the same configuration, we have performed a mixed near-field far-field
broadband beamformer design for r = 0.2 m (near-field) and r = ∞ (far-field)
using the weighted LS cost function, the TLS eigenfilter technique and the non-
linear criterion. The near-field weighting factor in (9.17) is αr = 0.4. We will
only present results for the first design specification without linear constraints.

Table 9.2 summarises the different cost functions (far-field, near-field, total) for
the different design procedures (weighted LS, TLS eigenfilter and non-linear

1Recall from Chapter 8 that although we would actually like to use the non-linear design
procedure, this design procedure gives rise to a high computational complexity and hence
we compare the performance of the non-iterative design procedures using the non-linear cost
function as a performance criterion.
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Figure9.2:Near-fieldspatialdirectivitypatternfor(a)weightedLS,(b)con-
ventionaleigenfilter,(c)maximumenergyarray,(d)TLSeigenfilterand(e)
non-linearcriterion(designspecification1,nolinearconstraints,r=0.2m,
α=0.1,N=5,L=20)
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Cost function
Design procedure α J∞ (far-field) Jr (near-field) Jtot (mixed)
LS far-field 1 0.32012 1.68710 0.99496
LS near-field 1 0.97135 0.14284 1.02849
LS mixed 1 0.42277 0.45489 0.60472
TLS far-field 1 0.09851 0.40205 0.25933
TLS near-field 1 0.28515 0.04309 0.30239
TLS mixed 1 0.12873 0.14564 0.18698
NL far-field 1 0.10301 3.50694 1.50578
NL near-field 1 0.45379 0.08441 0.48756
NL mixed 1 0.15304 0.16557 0.21926

Table 9.2: Near-field, far-field and total cost function for different design pro-
cedures (N = 5; L = 20; α = 1; αr = 0.4; r = 0.2 m)

design procedure for far-field, near-field and mixed near-field far-field) and for
α = 1. As can be seen, the far-field design yields the best far-field cost function,
but gives rise to a poor near-field response. On the contrary, the near-field
design yields the best near-field cost function, but gives rise to a poor far-field
response. The mixed near-field far-field design provides a trade-off between the
near-field and the far-field performance. It yields a better far-field cost function
than the near-field design but worse than the far-field design, whereas it yields
a better near-field cost function than the far-field design but worse than the
near-field design.

Figure 9.3 shows the far-field and the near-field spatial directivity patterns for
the TLS eigenfilter technique designed for the far-field (with α = 1, N = 5,
L = 20). As can be seen from this figure, the near-field response is quite
unsatisfactory. Figure 9.4 shows the far-field and the near-field spatial directi-
vity patterns for the TLS eigenfilter technique designed for the near-field (with
α = 1, N = 5, L = 20). As can be seen from this figure, the far-field res-
ponse now is quite unsatisfactory. Providing a trade-off between far-field and
near-field performance, Figure 9.5 shows the far-field and the near-field spatial
directivity patterns for the TLS eigenfilter technique that has been designed
both for far-field and near-field (with α = 1, N = 5, L = 20). Figures 9.6, 9.7
and 9.8 show similar results when the broadband beamformers are designed
using the non-linear criterion.

9.5 Conclusion

In this chapter we have shown that the design of near-field broadband beam-
formers is very similar to the design of far-field broadband beamformers. When
designing a near-field broadband beamformer for one specific distance, the sa-
me design procedures and cost functions as for the far-field case can be used
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Figure 9.3: (a) Far-field and (b) near-field spatial directivity pattern for TLS
eigenfilter far-field design (design spec 1, r = 0.2 m, α = 1, N = 5, L = 20)
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Figure 9.4: (a) Far-field and (b) near-field spatial directivity pattern for TLS
eigenfilter near-field design (design spec 1, r = 0.2 m, α = 1, N = 5, L = 20)
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Figure 9.5: (a) Far-field and (b) near-field spatial directivity pattern for TLS
eigenfilter mixed near-field far-field design (design spec 1, r = 0.2 m, α = 1,
N = 5, L = 20)
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Figure 9.6: (a) Far-field and (b) near-field spatial directivity pattern for non-
linear far-field design (design spec 1, r = 0.2 m, α = 1, N = 5, L = 20)

(a)

0

1000

2000

3000

4000 0
50

100
150

−20

−15

−10

−5

0

Far−field response (near) − NL (N=5, L=20, α=1)

(b)

0

1000

2000

3000

4000 0
50

100
150

−20

−15

−10

−5

0

Near−field response (near) − NL (N=5, L=20, α=1)

Figure 9.7: (a) Far-field and (b) near-field spatial directivity pattern for non-
linear near-field design (design spec 1, r = 0.2 m, α = 1, N = 5, L = 20)
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Figure 9.8: (a) Far-field and (b) near-field spatial directivity pattern for non-
linear mixed near-field far-field design (design spec 1, r = 0.2 m, α = 1, N = 5,
L = 20)
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and the only difference lies in the calculation of the double integrals involved.
However, the spatial directivity pattern of a near-field broadband beamformer
designed for one specific distance can be quite unsatisfactory at other distan-
ces. Hence, design procedures have been discussed for designing broadband
beamformers that operate at several distances, e.g. mixed near-field far-field
beamformers. Although for most cost functions this extension is straightfor-
ward, for the TLS eigenfilter and the maximum energy array cost functions this
extension gives rise to a significantly different optimisation problem, requiring
the use of an iterative non-linear optimisation technique. The simulations in
Section 9.4 have shown that the TLS eigenfilter technique again is the preferred
non-iterative design procedure for near-field broadband beamformer design and
that mixed near-field far-field design provides a trade-off between the near-field
and the far-field performance.
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Chapter 10

Robust Broadband
Beamforming for gain and
phase errors

In the previous chapters we have assumed that the microphones are (perfect)
omni-directional microphones with a flat frequency response equal to 1. This
chapter discusses the design of broadband beamformers that are robust against
unknown gain and phase errors in the microphone array characteristics.

In Section 10.2 the broadband beamformer expressions and cost functions are
redefined, taking into account the microphone characteristics. In general, the
microphone characteristics consist of a gain and a phase, which can both be fre-
quency and angle dependent. Using these redefined expressions, it is possible to
design broadband beamformers when the microphone characteristics are exact-
ly known. We will also simplify all expressions for microphone characteristics
which are independent of frequency and angle.

However, in many applications the microphone characteristics are not exactly
known and can even change over time. Section 10.3 describes two procedures
for designing broadband beamformers that are robust against (unknown) gain
and phase errors in the microphone array characteristics. The first design
procedure optimises the mean performance of the broadband beamformer for
all feasible microphone characteristics, whereas the second design procedure
optimises the worst-case performance, leading to a minimax problem.

In Section 10.4 simulation results for the different design procedures and cost
functions are presented. It is shown that robust beamformer design gives rise
to a significant performance improvement when gain and phase errors occur.

233
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10.1 Introduction

It is well known that fixed and adaptive beamformers can be highly sensitive
to errors in the microphone array characteristics (gain, phase, microphone po-
sition), cf. Section 5.4.3 [24][36][137][240]. Small deviations from the assumed
microphone characteristics can lead to large deviations in the spatial directivi-
ty pattern, especially when using small-size microphone arrays, e.g. in hearing
aids and cochlear implants (cf. Section 10.4). Since in practice it is difficult to
manufacture microphones having exactly the same characteristics, it is practi-
cally impossible to exactly know the microphone array characteristics without
a measurement or a calibration procedure [24][248]. However, a measurement
or calibration procedure will only limit the error sensitivity for the specific
microphone array used and the cost of such a procedure for every individu-
al microphone array clearly is objectionable. Moreover, after calibration the
microphone characteristics can still drift over time [137].

For superdirective beamformers, robustness against random errors has been im-
proved by limiting the white noise gain (WNG) of the beamformer, i.e. impo-
sing a norm constraint or a general quadratic constraint on the filter coefficients
[16][36][86][146]. Limiting the WNG has also been applied in order to enhance
the robustness of adaptive beamformers [37]. In this chapter, we specifically
consider (random) gain and phase errors in the microphone characteristics,
and we discuss design procedures for designing broadband beamformers with
an arbitrary desired spatial directivity pattern that are robust against these
specific errors. Since we consider small-size microphone arrays in this chapter,
we will assume that the far-field assumptions are valid. However, all derived
expressions can be easily extended to the near-field case.

10.2 Known microphone characteristics

In Section 10.2.1 we redefine the beamformer expressions, taking into account
the microphone characteristics. Using these expressions, it is possible to de-
sign broadband beamformers when the microphone characteristics are exactly
known. In Section 10.2.2 the redefined cost functions for the weighted LS, the
TLS eigenfilter and the non-linear criterion are discussed. In addition, these
expressions are simplified for omni-directional, frequency-flat microphones.

10.2.1 Configuration

When the microphones perform a spatial and a spectral filtering operation on
the received signals, their microphone characteristics have to be taken into ac-
count in the design of broadband beamformers. The microphone characteristics
of the nth microphone are described by the function

An(ω, θ) = an(ω, θ)e
−jψn(ω,θ) = an(ω, θ) cosψn(ω, θ) − jan(ω, θ) sinψn(ω, θ) ,



10.2. Known microphone characteristics 235

where both the gain an(ω, θ) and the phase ψn(ω, θ) can be frequency and
angle-dependent. The function An(ω, θ) is symmetric in ω, i.e.

An(−ω, θ) = An(ω, θ), an(−ω, θ) = an(ω, θ), ψn(−ω, θ) = ψn(ω, θ) .

In Chapters 8 and 9 we have considered perfect microphones with equal mi-
crophone characteristics, i.e. An(ω, θ) = 1, n = 0 . . . N − 1. Most expressions
discussed in these chapters will remain valid when taking into account the
microphone characteristics. However, some expressions need to be redefined.

Since the microphone signals Yn(ω, θ) in (8.4) now are equal to

Yn(ω, θ) = An(ω, θ)e
−jωτn(θ)Ȳ (ω, θ), −π ≤ ω ≤ π, −π ≤ θ ≤ π , (10.1)

the spatial directivity pattern H(ω, θ) in (8.6) can be written as

H(ω, θ) =
N−1∑

n=0

Wn(ω)An(ω, θ)e
−jωτn(θ) = wT ḡ(ω, θ) , (10.2)

with the M -dimensional steering vector ḡ(ω, θ) now equal to

ḡ(ω, θ) =








e(ω)A0(ω, θ) e
−jωτ0(θ)

e(ω)A1(ω, θ) e
−jωτ1(θ)

...
e(ω)AN−1(ω, θ) e

−jωτN−1(θ)







. (10.3)

The steering vector ḡ(ω, θ) can be written as

ḡ(ω, θ) = A(ω, θ) · g(ω, θ) , (10.4)

with g(ω, θ) the steering vector defined in (8.7), assuming omni-directional
microphones with a flat frequency response equal to 1, and A(ω, θ) an M ×M -
dimensional diagonal matrix consisting of the microphone characteristics,

A(ω, θ) =








A0(ω, θ) IL
A1(ω, θ) IL

. . .

AN−1(ω, θ) IL







. (10.5)

The steering vector ḡ(ω, θ) can be decomposed into a real and an imaginary
part, ḡ(ω, θ) = ḡR(ω, θ) + jḡI(ω, θ). The real part ḡR(ω, θ) is equal to

ḡR(ω, θ) = AR(ω, θ)gR(ω, θ) − AI(ω, θ)gI(ω, θ) , (10.6)

with AR(ω, θ) and AI(ω, θ) the real and the imaginary part of A(ω, θ). Using
(10.2), the spatial directivity spectrum |H(ω, θ)|2 can be written as

|H(ω, θ)|2 = H(ω, θ)H∗(ω, θ) = wT Ḡ(ω, θ)w (10.7)
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with Ḡ(ω, θ) = ḡ(ω, θ)ḡH(ω, θ), which can be written, using (10.4), as

Ḡ(ω, θ) = A(ω, θ) · G(ω, θ) · AH(ω, θ) , (10.8)

with G(ω, θ) = g(ω, θ)gH(ω, θ). Since the imaginary part ḠI(ω, θ) again is
anti-symmetric, the spatial directivity spectrum |H(ω, θ)|2 can be written as

|H(ω, θ)|2 = wT ḠR(ω, θ)w (10.9)

with the real part ḠR(ω, θ) equal to

ḠR(ω, θ) = AR(ω, θ)GR(ω, θ)AR(ω, θ) + AI(ω, θ)GR(ω, θ)AI(ω, θ) −
AI(ω, θ)GI(ω, θ)AR(ω, θ) + AR(ω, θ)GI(ω, θ)AI(ω, θ) . (10.10)

10.2.2 Cost functions

Considering the redefined expressions for the steering vector and the spatial
directivity pattern, it is now possible to design broadband beamformers using
the cost functions discussed in Chapter 8, when the microphone characteristics
A(ω, θ) are exactly known. E.g. in [60] a design example using first-order
differential microphones has been given. The only difference lies in the calcu-
lation of the double integrals involved. We will briefly discuss the redefined
cost functions for the weighted LS, the TLS eigenfilter and the non-linear cri-
terion. In addition, all expressions can be significantly simplified – certainly
for the robust broadband beamformer design discussed in Section 10.3 – when
we assume that the microphone characteristics are independent of frequen-
cy and angle, i.e. for omni-directional, frequency-flat microphones, such that
A(ω, θ) = A = AR + jAI . Even if this assumption is not exactly satisfied
in practice, it is generally possible to split up the considered frequency-angle
region into several (small) frequency-angle regions where this assumption does
hold.

Weighted LS cost function

When taking into account the microphone characteristics, the weighted LS cost
function JLS(w) in (8.14) is equal to

JLS(w) = wT Q̄LSw − 2wT ā + dLS , (10.11)

with

Q̄LS =

∫

Θ

∫

Ω

F (ω, θ)ḠR(ω, θ)dωdθ (10.12)

ā =

∫

Θ

∫

Ω

F (ω, θ) [DR(ω, θ)ḡR(ω, θ) +DI(ω, θ)ḡI(ω, θ)] dωdθ , (10.13)

and dLS defined in (8.17).
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Using (10.6) and (10.10), for omni-directional, frequency-flat microphones these
expressions can be simplified to (assuming D(ω, θ) to be real-valued)

ā = AR a − AI a◦

Q̄LS = ARQLSAR + AIQLSAI − AIQ
◦
LSAR + ARQ◦

LSAI
(10.14)

with QLS defined in (8.15) and

Q◦
LS =

∫

Θ

∫

Ω

F (ω, θ)GI(ω, θ)dωdθ (10.15)

a =

∫

Θ

∫

Ω

F (ω, θ)D(ω, θ)gR(ω, θ)dωdθ (10.16)

a◦ =

∫

Θ

∫

Ω

F (ω, θ)D(ω, θ)gI(ω, θ)dωdθ . (10.17)

The ith element of ā and the (i, j)-th element of Q̄LS are equal to

āi = an
(
cosψn ai + sinψn a◦,i) (10.18)

Q̄ij
LS = anam

(

cos
(
ψn − ψm

)
Qij
LS + sin

(
ψn − ψm

)
Q◦,ij
LS

)

, (10.19)

with n = ⌊ i−1
L ⌋ and m = ⌊ j−1

L ⌋.

TLS eigenfilter technique

When taking into account the microphone characteristics, the TLS eigenfilter
cost function JTLS(w) in (8.72) is equal to

JTLS(w) =

∫

Θ

∫

Ω

F (ω, θ)
|D(ω, θ) −H(ω, θ)|2

wT Q̄tot
e w + 1

dωdθ , (10.20)

with

Q̄tot
e =

∫

Θ

∫

Ω

ḠR(ω, θ)dωdθ . (10.21)

This cost function can be written as

JTLS(w) =
ŵT ˆ̄QTLSŵ

ŵT ˆ̄Qtot
e ŵ

, (10.22)

with

ŵ =

[
w
−1

]

, ˆ̄QTLS =

[

Q̄LS ā

āT dLS

]

, ˆ̄Qtot
e =

[

Q̄tot
e 0

0T 1

]

. (10.23)
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Non-linear criterion

When taking into account the microphone characteristics, the non-linear crite-
rion JNL(w) in (8.37) is equal to

JNL(w) = J̄sum(w) + dNL − 2wT Q̄NLw , (10.24)

with

J̄sum(w) =

∫

Θ

∫

Ω

F (ω, θ)|H(ω, θ)|4dωdθ =

∫

Θ

∫

Ω

F (ω, θ)
(
wT Ḡ(ω, θ)w

)2
dωdθ

Q̄NL =

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2ḠR(ω, θ)dωdθ , (10.25)

and dNL defined in (8.39).

For omni-directional, frequency-flat microphones the matrix Q̄NL can be com-
puted similarly as Q̄LS in (10.14) as

Q̄NL = ARQNLAR + AIQNLAI − AIQ
◦
NLAR + ARQ◦

NLAI , (10.26)

with QNL defined in (8.40) and

Q◦
NL =

∫

Θ

∫

Ω

F (ω, θ)|D(ω, θ)|2GI(ω, θ)dωdθ . (10.27)

In Appendix E.4 it is shown that J̄sum(w) can be written as

J̄sum(w) =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl aijkl

(

cosψijkl · ρijkl − sinψijkl · ρ◦ijkl
)

︸ ︷︷ ︸

ρ̄ijkl

(10.28)
with aijkl and ψijkl defined in (E.61) and ρijkl and ρ◦ijkl defined in (E.64) and
(E.65).

10.3 Robust broadband beamforming

Using the cost functions defined in Section 10.2.2, it is possible to design broad-
band beamformers with an arbitrary desired spatial directivity patternD(ω, θ),
when the microphone characteristics An(ω, θ), n = 0 . . . N − 1, are exactly
known (and fixed). However, these fixed broadband beamformers are known
to be highly sensitive to errors in the microphone array characteristics (gain,
phase, microphone position) [24][36][137]. Small deviations from the assumed
microphone array characteristics can lead to large deviations from the desired
spatial directivity pattern, especially when using small-size microphone arrays,
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e.g. in hearing aids and cochlear implants (cf. Section 10.4). Since in practice it
is difficult to manufacture microphones having exactly the same characteristics,
it is practically impossible to exactly know the microphone array characteristics
without a measurement or a calibration procedure. Obviously, the cost of such
a calibration procedure for every individual microphone array is objectionable.
Moreover, after calibration the characteristics can still drift over time [137].

Instead of measuring or calibrating every individual microphone array, it is
better to consider all feasible microphone characteristics (in this chapter we
only consider gain and phase1) and to either optimise:

• the mean performance, i.e. the weighted sum of the cost functions for
all feasible microphone characteristics, using the probability of the mi-
crophone characteristics as weights (cf. Section 10.3.1). This procedure
requires knowledge of the gain and the phase probability density functi-
ons (pdf). It will be shown that for gain errors only the moments of the
gain pdf are required, whereas for phase errors in general complete know-
ledge of the phase pdf is required. We will apply this mean performance
criterion to the weighted LS and the non-linear cost function, whereas it
is not straightforward to apply this criterion to the TLS eigenfilter cost
function. When optimising this mean performance criterion, it is howe-
ver still possible that for some specific gain/phase combination (typically
with a low probability), the cost function is quite high.

• the worst-case performance, i.e. the maximum cost function for all feasi-
ble microphone characteristics, leading to a minimax problem (cf. Section
10.3.2). This is a stronger criterion, since the cost for the worst-case sce-
nario is minimised. We will apply this criterion to all cost functions.

The same problem of gain and phase errors has been studied in [86]. However, in
[86] only the narrowband case for a specific directivity pattern, with a uniform
pdf and a LS cost function has been considered. The approach presented here
is more general in the sense that we consider broadband beamformers with
an arbitrary spatial directivity pattern, arbitrary probability density functions
and several cost functions.

10.3.1 Weighted sum using probability density functions

The mean cost function Jmean is defined as the weighted sum of the cost func-
tions for all feasible microphone characteristics, using the probability of the
microphone characteristics as weights, i.e.

Jmean(w) =

∫

A0

. . .

∫

AN−1

J(w,A) fA(A0) . . . fA(AN−1) dA0 . . . dAN−1

(10.29)

1A microphone position error can be considered as a frequency- and angle-dependent
phase error [63].
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with J(w,A) the cost function for a specific characteristic {A0, . . . , AN−1}
and fA(A) the probability density function (pdf) of the stochastic variable
A = ae−jψ, i.e. the joint pdf of the stochastic variables a (gain) and ψ (phase),
fA(A) = fα,Ψ(a, ψ). We assume that fA(A) is independent of frequency and
angle, or that fA(A) is available for several frequency-angle regions. Without
loss of generality, we also assume that all microphone characteristics An, n =
0 . . . N − 1, are described by the same pdf fA(A). Furthermore, we assume
that a and ψ are independent stochastic variables, such that the joint pdf is
separable, i.e.

fA(A) = fα(a)fΨ(ψ) , (10.30)

with fα(a) the pdf of the gain a and fΨ(ψ) the pdf of the phase ψ. For these
pdfs the relation

∫

a

fα(a) da = 1,

∫

ψ

fΨ(ψ) dψ = 1 (10.31)

holds. We will consider 2 cost functions from Section 10.2.2: the weighted LS
and the non-linear cost function (it is not straightforward to apply this criterion
to the TLS eigenfilter cost function). Remarkably, the same design procedures
as for the non-robust design in Section 8.3 can be used, and we only require
some additional parameters which can be easily calculated from the gain and
the phase pdf.

Weighted LS cost function

The mean performance weighted LS cost function can be written as

JmeanLS (w) =

∫

A0

. . .

∫

AN−1

JLS(w,A) fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 .

(10.32)
The cost function JLS(w,A) for a specific microphone characteristic is equal
to (10.11), i.e.

JLS(w,A) = wT Q̄LSw − 2wT ā + dLS . (10.33)

By combining (10.32) and (10.33), the mean performance weighted LS cost
function can be written as

JmeanLS (w) = wT

∫

A0

. . .

∫

AN−1

Q̄LS fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 w −

2wT

∫

A0

. . .

∫

AN−1

ā fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 +

∫

A0

. . .

∫

AN−1

dLSfA(A0) . . . fA(AN−1) dA0 . . . dAN−1 (10.34)

= wT Q̄meanw − 2wT āmean + dLS , (10.35)
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which has the same form as (10.11) and (8.14). Using (10.18), the ith element
of āmean is equal to

āimean =

∫

A0

. . .

∫

AN−1

an
(
cosψn ai + sinψn a◦,i)fA(A0) . . . fA(AN−1)

dA0 . . . dAN−1

=

∫

An

an
(
cosψn ai + sinψn a◦,i)fA(An)dAn (10.36)

=

∫

an

anfα(an)dan

[∫

ψn

cosψnfΨ(ψn)dψn ai+

∫

ψn

sinψnfΨ(ψn)dψn a◦,i
]

(10.37)

= µa
[
µcψ ai + µsψ a◦,i] , (10.38)

with

µa =

∫

a

afα(a)da, µcψ =

∫

ψ

cosψfΨ(ψ)dψ, µsψ =

∫

ψ

sinψfΨ(ψ)dψ

(10.39)
such that

āmean = µaµ
c
ψ a + µaµ

s
ψ a◦ (10.40)

Using (10.19), the (i, j)-th element of Q̄mean is equal to

Q̄ij
mean =

∫

A0

. . .

∫

AN−1

anam

(

cos
(
ψn − ψm

)
Qij
LS + sin

(
ψn − ψm

)
Q◦,ij
LS

)

fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 (10.41)

=

∫

an

∫

am

anamfα(an)fα(am)dandam ·
[∫

ψn

∫

ψm

cos
(
ψn − ψm

)
·

fΨ(ψn)fΨ(ψm)dψndψmQij
LS +

∫

ψn

∫

ψm

sin
(
ψn − ψm

)
·

fΨ(ψn)fΨ(ψm)dψndψmQ◦,ij
LS

]

. (10.42)

If n = m, Q̄ij
mean is equal to

Q̄ij
mean =

∫

an

a2
nfα(an)danQij

LS = σ2
aQij

LS , (10.43)

with σ2
a the variance of the gain pdf,

σ2
a =

∫

a

a2fα(a)da (10.44)
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whereas, if n 6= m, Q̄ij
mean is equal to

Q̄ij
mean = µ2

a

[

σcψQ
ij
LS + σsψQ

◦,ij
LS

]

, (10.45)

with µa the mean of the gain pdf and

σcψ =

∫

ψ1

∫

ψ2

cos
(
ψ1 − ψ2

)
fΨ(ψ1)fΨ(ψ2)dψ1dψ2 (10.46)

=

∫

ψ1

∫

ψ2

(
cosψ1 cosψ2 + sinψ1 sinψ2

)
fΨ(ψ1)fΨ(ψ2)dψ1dψ2

σsψ =

∫

ψ1

∫

ψ2

sin
(
ψ1 − ψ2

)
fΨ(ψ1)fΨ(ψ2)dψ1dψ2 (10.47)

=

∫

ψ1

∫

ψ2

(
sinψ1 cosψ2 − cosψ1 sinψ2

)
fΨ(ψ1)fΨ(ψ2)dψ1dψ2 ,

such that

σcψ =
(
µcψ
)2

+
(
µsψ
)2
, σsψ = µsψµ

c
ψ − µcψµ

s
ψ = 0 (10.48)

The matrix Q̄mean can now be easily computed as

Q̄mean =








σ2
a 1L µ2

aσ
c
ψ 1L . . . µ2

aσ
c
ψ 1L

µ2
aσ

c
ψ 1L σ2

a1L . . . µ2
aσ

c
ψ 1L

...
...

...
µ2
aσ

c
ψ 1L µ2

aσ
c
ψ . . . σ2

a 1L







⊙ QLS (10.49)

with 1L an L × L-dimensional matrix with all elements equal to 1 and ⊙
denoting element-wise multiplication. As can be seen, we only need the mean
and the variance of the gain pdf fα(a), whereas in general complete knowledge
of the phase pdf fΨ(ψ) is required.

Frequently used probability density functions are a uniform distribution (with
boundary values amin and amax),







fα(a) =
1

amax − amin
, amin ≤ a ≤ amax

= 0 , a < amin, a > amax ,

(10.50)

and a Gaussian distribution (with mean µa and standard deviation sa),

fα(a) =
1

√

2πs2a
e
− (a−µa)2

2s2a . (10.51)
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For a uniform distribution the gain and phase parameters are equal to

µa =
amin + amax

2
σ2
a =

a2
min + aminamax + a2

max

3

µcψ =
sinψmax − sinψmin

ψmax − ψmin
µsψ =

cosψmin − cosψmax
ψmax − ψmin

σcψ =
2 − 2 cos

(
ψmax − ψmin

)

(
ψmax − ψmin

)2 σsψ = 0 .

For a Gaussian distribution with mean µa and standard deviation sa, the va-
riance is equal to σ2

a = µ2
a + s2a, whereas the phase parameters µcψ, µsψ and σcψ

have to be calculated numerically.

Non-linear criterion

The mean performance non-linear cost function can be written as

JmeanNL (w) =

∫

A0

. . .

∫

AN−1

JNL(w,A) fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 .

(10.52)
The cost function JNL(w,A) for a specific microphone characteristic is equal
to (10.24),

JNL(w,A) = J̄sum(w) + dNL − 2wT Q̄NLw . (10.53)

By combining (10.52) and (10.53), the mean performance non-linear cost func-
tion can be written as

JmeanNL (w) =

∫

A0

. . .

∫

AN−1

J̄sum(w) fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 −

2wT

∫

A0

. . .

∫

AN−1

Q̄NL fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 w +

∫

A0

. . .

∫

AN−1

dNL fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 (10.54)

= J̄meansum (w) − 2wT Q̄mean
NL w + dNL . (10.55)

Similar to (10.49), the matrix Q̄mean
NL is equal to

Q̄mean
NL =








σ2
a 1L µ2

aσ
c
ψ 1L . . . µ2

aσ
c
ψ 1L

µ2
aσ

c
ψ 1L σ2

a1L . . . µ2
aσ

c
ψ 1L

...
...

...
µ2
aσ

c
ψ 1L µ2

aσ
c
ψ . . . σ2

a 1L







⊙ QNL (10.56)
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Using (10.28), J̄meansum (w) can be written as

J̄meansum (w) =
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l)

∫

A0

. . .

∫

AN−1

aijkl

(

cosψijkl ·

ρijkl − sinψijkl · ρ◦ijkl
)

fA(A0) . . . fA(AN−1) dA0 . . . dAN−1

=

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l) δaijkl

(

δcψ,ijkl · ρijkl −

δsψ,ijkl · ρ◦ijkl
)

, (10.57)

with ρijkl and ρ◦ijkl defined in (E.64) and (E.65) and

δaijkl =

∫

a0

. . .

∫

aN−1

aijkl fα(a0) . . . fα(aN−1) da0 . . . daN−1

δcψ,ijkl =

∫

ψ0

. . .

∫

ψN−1

cosψijkl fΨ(ψ0) . . . fΨ(ψN−1) dψ0 . . . dψN−1

δsψ,ijkl =

∫

ψ0

. . .

∫

ψN−1

sinψijkl fΨ(ψ0) . . . fΨ(ψN−1) dψ0 . . . dψN−1 ,

with aijkl and ψijkl defined in (E.61). The expression J̄meansum (w) in (10.57)
has the same form as (10.28) and (E.52), such that the same non-linear opti-
misation techniques as described in Section 8.3.4 can be used for minimising
JmeanNL (w). The calculation of the parameters δaijkl, δ

c
ψ,ijkl and δsψ,ijkl is dis-

cussed in Appendix D.3. For the calculation of δaijkl, we only need the (higher
order) moments of the gain pdf fα(a), whereas for the calculation of δcψ,ijkl and
δsψ,ijkl, in general complete knowledge of the phase pdf fΨ(ψ) is required. In
Appendix D.3 it is shown that for a symmetric phase pdf δsψ,ijkl = 0, such that

J̄meansum (w) =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l) δaijkl · δcψ,ijkl · ρijkl (10.58)

10.3.2 Minimax criterion

For the minimax criterion, which optimises the worst-case performance, we first
have to define a (finite) set of microphone characteristics (Ka gain values and
Kψ phase values),

{amin = a1, a2, . . . , aKa = amax}, {ψmin = ψ1, ψ2, . . . , ψKψ = ψmax} ,
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as an approximation for the continuum of feasible microphone characteristics,
and use this set to construct the (KaKψ)N -dimensional vector F(w), i.e.

F(w) =








F1(w,A)
F2(w,A)

...
F(KaKψ)N (w,A)







, (10.59)

which consists of the used cost function (weighted LS, TLS eigenfilter, non-
linear, or any other cost function, e.g. defined in [65][157][159][192]) at each
possible combination of gain and phase values. The goal then is to minimise
the L∞-norm of F(w), i.e. the maximum value of the elements Fk(w),

min
w

‖F(w)‖∞ = min
w

max
k

Fk(w) (10.60)

We have used the MATLAB-function fminimax [35], which uses a sequential
quadratic programming (SQP) method [93]. For the maximum-energy array
cost function, the minimum value of F(w) has to be maximised, or alternatively,
the vector −F(w) can be used. In order to improve the numerical robustness
and the convergence speed, the gradient

[

∂F1(w,A)
∂w

∂F2(w,A)
∂w . . .

∂F(KaKψ)N (w,A)

∂w

]

, (10.61)

which is an M × (KaKψ)N -dimensional matrix, can be supplied analytically.
As can be seen, the larger the values Ka and Kψ, the denser the grid of feasible
microphone characteristics, and the higher the computational complexity for
solving the minimax problem. However, when only considering gain errors
and using the weighted LS cost function, the number of grid points can be
drastically reduced.

Theorem 10.1 When considering only gain errors and using the weigh-
ted LS cost function, the maximum value of F(w), for any w, occurs on a
boundary point (of an N -dimensional hypercube), i.e. an = amin or an = amax,
n = 0 . . . N − 1. This implies that Ka = 2 suffices and F(w) only consists of
2N elements. This is not necessarily the case for the TLS eigenfilter and the
non-linear cost function.

Proof : Appendix D.4 2

10.4 Simulations

This section discusses the simulation results of robust broadband beamformer
design for gain and phase errors in the microphone characteristics. Since the ef-
fect of gain and phase errors is more profound for small-size microphone arrays,
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we have performed simulations for a small-size linear non-uniform microphone
array consisting of N = 3 microphones at positions [ −0.01 0 0.015 ] m, cor-
responding to a typical configuration for a next-generation multi-microphone
BTE hearing aid. The nominal gains and phases of the microphones are an = 1
and ψn = 0◦, n = 0 . . . N − 1. We have designed an end-fire broadband
beamformer for a sampling frequency fs = 8 kHz with passband specificati-
ons (Ωp,Θp) = (300–4000Hz, 0◦–60◦) and stopband specifications (Ωs,Θs) =
(300–4000Hz, 80◦–180◦). For the TLS eigenfilter, the matrix Q̄tot

e is computed
with frequency and angle specifications (Ω,Θ) = (300–4000Hz, 0◦–180◦), cf.
Section 10.2.2. The used filter length L = 20 and the stopband weight α = 1.

We have designed several types of beamformers using the weighted LS cost
function and the non-linear criterion:

1. a non-robust broadband beamformer (not taking into account errors, i.e.
assuming an = 1, ψn = 0◦)

2. a robust broadband beamformer using a uniform gain pdf (amin = 0.85,
amax = 1.15)

3. a robust broadband beamformer using a uniform phase pdf (ψmin = −5◦,
ψmax = 10◦)

4. a robust broadband beamformer using a uniform gain/phase pdf (amin =
0.85, amax = 1.15, ψmin = −5◦, ψmax = 10◦)

5. a robust broadband beamformer using the minimax criterion (only gain
errors are taken into account, amin = 0.85, amax = 1.15, Ka = 5)

Using the TLS eigenfilter cost function, we have designed a non-robust beamfor-
mer and a robust beamformer using the minimax criterion. For all beamformer
designs, we have computed the following cost functions:

1. the cost function J without phase and gain errors (an = 1, ψn = 0◦)

2. the cost function Jdev for microphone gains [ 0.9 1.1 1.05 ]

3. the mean cost function J tota for the uniform gain pdf

4. the mean cost function J totψ for the uniform phase pdf

5. the mean cost function J totA for the uniform gain/phase pdf

6. the maximum cost function Jmax when the gain varies between amin =
0.85 and amax = 1.15

We will plot the spatial directivity pattern in the frequency-angle region (300–
3500Hz, 0◦–180◦) and the angular pattern for the specific frequencies (500, 1000,
1500, 2000, 2500, 3500) Hz.

Table 10.1 summarises the different cost functions for the weighted LS, the
non-linear and the TLS eigenfilter non-robust and robust broadband beamfor-
mer design procedures. Obviously, the design procedure optimising a specific
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Cost function
Design procedure J Jdev J tota J totψ J totA Jmax
LS Non-robust 0.313 220.1 123.3 62.67 185.7 961.3
LS Gain 0.474 0.685 0.642 0.576 0.744 1.441
LS Phase 0.431 0.700 0.666 0.557 0.791 1.749
LS Gain/phase 0.518 0.652 0.653 0.596 0.732 1.368
LS Minimax 0.747 0.843 0.804 0.792 0.849 1.035
NL Non-robust 0.159 87.13 124.6 70.19 275.4 3624
NL Gain 0.176 0.188 0.218 0.339 0.393 0.505
NL Phase 0.207 0.236 0.259 0.300 0.357 0.502
NL Gain/phase 0.219 0.222 0.248 0.304 0.337 0.499
NL Minimax 0.171 0.199 0.230 0.340 0.411 0.417
TLS Non-robust 0.075 0.840 0.936
TLS Minimax 0.167 0.196 0.246

Table 10.1: Different cost functions for weighted LS, non-linear and TLS ei-
genfilter robust broadband beamformer design (α = 1; N = 3; L = 20)

cost function leads to the best value for this cost function (bold values). This
implies that when no gain and phase errors occur, the robust design proce-
dures lead to a higher cost function J than the non-robust design procedure.
However, the non-robust design procedure leads to very poor results whenever
gain and/or phase errors occur (e.g. compare Jmax for the non-robust and
the robust design procedures and see figures). All robust design procedures
(using pdf and minimax criterion) yield satisfactory results when gain and/or
phase errors occur. For the cost function Jdev, the gain/phase-robust beam-
former produces the best result for the weighted LS cost function, whereas the
gain-robust beamformer produces the best result for the non-linear cost func-
tion. This can be explained by the fact that none of the beamformer designs
is actually optimised for these specific microphone gains.

Figure 10.1 shows the spatial directivity pattern of the non-robust beamfor-
mer, designed with the non-linear cost function, when no gain and phase errors
occur. Figure 10.2 shows the spatial directivity pattern for microphone gains
[ 0.9 1.1 1.05 ]. As can be seen from this figure, the beamformer perfor-
mance dramatically degrades, especially for the lower frequencies. Figure 10.3
shows the spatial directivity pattern for microphone gains [ 0.9 1.1 1.05 ]
and phases [ 5◦ −2◦ 5◦ ], i.e. small deviations from the nominal gains and
phases. As can be seen from this figure, the beamformer performance dramati-
cally degrades, especially for the lower frequencies, where the spatial directivity
pattern is almost omni-directional and the amplification is very high.

Figures 10.4, 10.5 and 10.6 show the spatial directivity pattern of the gain/phase-
robust beamformer, designed with the non-linear cost function, when no errors
occur, when gain errors occur and when gain and phase errors occur. As can be
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seen from Figure 10.4, the performance of this beamformer is worse than the
performance of the non-robust beamformer when no errors occur. However, as
can be clearly seen from Figures 10.5 and 10.6, when gain and/or phase errors
occur, the performance of the gain/phase-robust beamformer is much better
than the performance of the non-robust beamformer.

Figures 10.7, 10.8 and 10.9 show the spatial directivity pattern of the minimax
beamformer, designed with the non-linear cost function, when no errors occur,
when gain errors occur and and when gain and phase errors occur. Similar
conclusions can be drawn for the minimax beamformer as for the gain/phase-
robust beamformer.

10.5 Conclusions

In this chapter two design procedures have been presented for designing fixed
broadband beamformers that are robust against unknown gain and phase er-
rors in the microphone array characteristics. The first design procedure op-
timises the mean performance, by minimising a weighted sum using the gain
and the phase probability density functions. When assuming omni-directional,
frequency-flat microphones, similar design procedures as for the non-robust
design can be used, where we only require some additional parameters which
are easily calculated from the gain and the phase pdf (e.g. higher-order mo-
ments of the gain pdf). The second design procedure optimises the worst-case
performance, by minimising the maximum cost function over a finite set of
feasible microphone characteristics. The denser the grid of feasible microp-
hone characteristics, the higher the computational complexity for solving the
minimax problem. However, it has been shown that when considering only
gain errors and using the weighted LS cost function, the number of grid points
can be drastically reduced to 2N . We have used the weighted LS, the TLS
eigenfilter and the non-linear cost function for designing broadband beamfor-
mers with an arbitrary spatial directivity pattern. Simulation results for the
different design procedures and cost functions have shown that robust broad-
band beamformer design for a small-size microphone array indeed leads to a
significant performance improvement when gain and/or phase errors occur.
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Figure 10.1: Spatial directivity pattern of non-linear non-robust design for no
gain and phase errors (α = 1, N = 3, L = 20)
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Figure 10.2: Spatial directivity pattern of non-linear non-robust design for gain
errors (α = 1, N = 3, L = 20)

0
1000

2000
3000

4000

0
50

100
150

−20

−15

−10

−5

0

5

10

15

Frequency (Hz)

Gain and phase deviation (Non−robust)  − NL (N=3, L=20, α=1)

Angle (deg)

 −20

 −10

 0

 10
90

270

180 0

Frequency: 500 Hz

 −20

 −10

 0

 10
90

270

180 0

Frequency: 1000 Hz

 −20

 −10

 0

 10
90

270

180 0

Frequency: 1500 Hz

 −20

 −10

 0

 10
90

270

180 0

Frequency: 2000 Hz

 −20

 −10

 0

 10
90

270

180 0

Frequency: 2500 Hz

 −20

 −10

 0

 10
90

270

180 0

Frequency: 3500 Hz

Figure 10.3: Spatial directivity pattern of non-linear non-robust design for gain
and phase errors (α = 1, N = 3, L = 20)
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Figure 10.4: Spatial directivity pattern of non-linear gain/phase-robust design
for no gain and phase errors (α = 1, N = 3, L = 20)
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Figure 10.5: Spatial directivity pattern of non-linear gain/phase-robust design
for gain errors (α = 1, N = 3, L = 20)
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Figure 10.6: Spatial directivity pattern of non-linear gain/phase-robust design
for gain and phase errors (α = 1, N = 3, L = 20)
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Figure 10.7: Spatial directivity pattern of non-linear minimax design for no
gain and phase errors (α = 1, N = 3, L = 20)
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Figure 10.8: Spatial directivity pattern of non-linear minimax design for gain
errors (α = 1, N = 3, L = 20)
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Figure 10.9: Spatial directivity pattern of non-linear minimax design for gain
and phase errors (α = 1, N = 3, L = 20)



252 Robust Broadband Beamforming for gain and phase errors



Chapter 11

Conclusions and Further
Research

In this chapter we summarise the main conclusions of this thesis and we list
some suggestions for further research.

11.1 Conclusion

In many speech communication applications, the recorded microphone signals
are corrupted by background noise, room reverberation and far-end echo sig-
nals. This signal degradation may lead to total unintelligibility of the speech
signal and decreases the performance of automatic speech recognition systems.
Hence, high-performance signal enhancement procedures are called for.

In this thesis we have developed several noise reduction and dereverberation
techniques. All presented algorithms are multi-microphone signal enhancement
algorithms, exploiting both spectral and spatial characteristics. In addition,
most algorithms are adaptive, enabling these algorithms to deal with different
noise situations and with changing acoustic environments. Generally, we have
assumed that the noise sources and the acoustic impulse responses are un-
known, requiring ‘blind’ estimation techniques. Where possible, we have also
incorporated robustness against errors in the microphone array characteristics
(gain, phase, position) and against other deviations from the assumed signal
model (e.g. look direction error, speech detection errors).

In Part I we have presented a class of unconstrained optimal filtering techni-
ques for multi-microphone speech enhancement. The optimal filter in the MSE
sense is the multi-channel Wiener filter, which produces an MMSE estimate of
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the speech components in the microphone signals. Using a more general class
of estimators, it is possible to trade off speech distortion and noise reduction.
Although different possibilities exist to implement the multi-channel Wiener
filter, we have considered a GEVD-based implementation, which enables us to
easily incorporate the low-rank speech signal model. We have shown that hence
the described class of optimal filtering techniques can be considered a multi-
microphone extension of the single-microphone subspace-based techniques. An
empirical estimate of the optimal filter matrix can be computed using the GS-
VD of a speech and a noise data matrix. These data matrices are constructed
based on the output of a VAD algorithm, which is the only a-priori information
the GSVD-based optimal filtering technique relies on. We have derived a num-
ber of symmetry properties for the optimal filter, which are valid for the white
noise case as well as for the coloured noise case and for any weighting function.
When analysing the multi-channel Wiener filter in the frequency-domain, it
can be decomposed into a spectral and a spatial filtering term. Furthermore,
we have shown that the unconstrained optimal filtering technique can also be
used for combined noise and echo reduction.

Both for the batch and the recursive version of the GSVD-based optimal filte-
ring technique, the computational complexity is quite high. Therefore, several
techniques have been developed for reducing the overall complexity (recursive
GSVD-updating, square root-free implementation, sub-sampling). When con-
sidering realistic parameter values, the recursive GSVD-based optimal filtering
technique indeed becomes suitable for real-time implementation. In additi-
on, we have shown that the GSVD-based optimal filtering technique can be
incorporated into a GSC-type structure with an ANC postprocessing stage.

The performance (unbiased SNR improvement, speech distortion and robust-
ness) of the GSVD-based implementation of the multi-channel optimal filte-
ring technique has been analysed for several acoustic environments (including
a real-life recording) and has been compared with standard fixed and adaptive
beamforming techniques. For higher filter lengths and for lower reverberati-
on times, the unbiased SNR improvement increases and the speech distortion
decreases. The ANC postprocessing stage can either be used for increasing
the noise reduction performance or for complexity reduction without decrea-
sing the performance. The ANC postprocessing stage however also gives rise
to a slight increase in speech distortion, which can be limited by using longer
filter lengths. Since the GSVD-based optimal filtering technique uses no other
a-priori information than the output of a VAD algorithm, it is expected to be
quite sensitive to speech detection errors. However, it has been shown that
the unbiased SNR improvement is not degraded by speech detection errors,
but that speech distortion increases with increasing error rate (for error rates
smaller than 0.2, speech distortion however remains limited). When comparing
the performance of the GSVD-based optimal filtering technique with standard
beamforming techniques, the SNR improvement of the GSVD-based optimal
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filtering technique with ANC postprocessing stage outperforms the SNR im-
provement of the GSC for all considered scenarios. In addition, the robustness
of the GSC and the GSVD-based optimal filter have been analysed for several
deviations from the assumed nominal signal model. It has been shown that the
performance of the GSVD-based optimal filter is independent of a deviation in
the microphone gain and phase and that the GSVD-based optimal filter is more
robust than the GSC for microphone mismatch, microphone displacement and
look direction error.

In Part II we have discussed multi-microphone algorithms for time-delay esti-
mation (TDE), dereverberation, and combined noise reduction and derever-
beration. Since the presented algorithms require a (partial) estimate of the
acoustic impulse responses, we have also developed batch and adaptive algo-
rithms for (partially) estimating the acoustic impulse responses, both in the
time-domain and in the frequency-domain. We have extended a recently de-
veloped adaptive EVD algorithm for TDE to noisy environments, by using an
adaptive GEVD or by pre-whitening the microphone signals. For the adapti-
ve GEVD, we have derived a stochastic gradient algorithm which iteratively
estimates the generalised eigenvector corresponding to the smallest generalised
eigenvalue. In addition, we have extended all TDE algorithms to the case of
more than two microphones. Simulations show that the time-delays can be
estimated more robustly using the adaptive GEVD algorithm than using the
adaptive EVD algorithm and the adaptive pre-whitening algorithm.

We have presented a frequency-domain technique for estimating the acoustic
transfer functions when the microphone signals are corrupted by spatially co-
loured noise. The acoustic transfer function vector can be calculated from the
generalised eigenvector, corresponding to the largest generalised eigenvalue of
the speech and the noise correlation matrices. However, unlike time-domain
subspace-based techniques, this frequency-domain technique requires some pri-
or knowledge, i.e. the norm of the transfer function vector, limiting its practical
use to rather time-invariant acoustic environments. Using the estimated trans-
fer function vector, dereverberation can be performed with a normalised mat-
ched filtering approach. We have shown that the MMSE estimate of the clean
dereverberated speech signal can be obtained by matched filtering of the MM-
SE estimates of the speech components in the microphone signals. Hence, by
integrating the normalised matched filter with the multi-channel Wiener filter,
we have developed a combined noise reduction and dereverberation technique.
Simulations show that this combined technique provides a trade-off between
SNR improvement and dereverberation.

In Part III we have discussed design procedures for fixed broadband beam-
formers, which can be used both for noise reduction and for dereverberation.
We have presented several cost functions for designing far-field and near-field
broadband beamformers with an arbitrary spatial directivity pattern using an
arbitrary microphone configuration and an FIR filter-and-sum structure. We
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have discussed the weighted least-squares, the maximum energy array and a
modified non-linear cost function and we have developed two novel cost functi-
ons, which are based on eigenfilters. In the conventional eigenfilter technique a
reference frequency-angle point is required, whereas in the eigenfilter technique
based on a TLS error criterion, this reference point is not required. Although
in general we would like to use the non-linear design procedure, this procedu-
re gives rise to a high computational complexity, since it requires an iterative
optimisation technique. Hence, we have compared the performance of the non-
iterative design procedures, having a lower computational complexity, using
the non-linear cost function as a performance criterion. Using simulations with
different passband and stopband specifications, we have shown that the TLS
eigenfilter technique is the preferred non-iterative design procedure.

We have also presented design procedures for broadband beamformers which
operate at several distances from the microphone array. Although this ex-
tension is straightforward for most cost functions, for the TLS eigenfilter and
the maximum energy array cost function this extension leads to a significantly
different optimisation problem, for which no closed-form solution is available.
Using simulations we have shown that mixed near-field far-field design provides
a trade-off between the near-field and the far-field performance.

Since in many applications the microphone characteristics are not exactly
known and can even change over time, we have developed two design procedu-
res for designing broadband beamformers that are robust against (unknown)
gain and phase errors in the microphone characteristics. The first design proce-
dure optimises the mean performance, requiring knowledge about the gain and
the phase pdfs. When assuming omni-directional, frequency-flat microphones,
similar design procedures as for the non-robust design can be used, where we
only require some additional parameters which are easily calculated from the
gain and the phase pdf. The second design procedure optimises the worst-case
performance, by minimising the maximum cost function over a finite set of
feasible microphone characteristics. The denser the grid of feasible microp-
hone characteristics, the higher the computational complexity for solving the
minimax problem. However, it has been shown that when considering only
gain errors and using the weighted LS cost function, the number of grid points
can be drastically reduced. Simulation results have shown that robust broad-
band beamformer design for a small-size microphone array indeed leads to a
significant performance improvement when gain and/or phase errors occur.

11.2 Suggestions for further research

In Part I the GSVD-based optimal filtering technique for multi-microphone
noise reduction has been discussed. It has been shown that the noise reduction
performance of this technique is better than the noise reduction performance
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of standard fixed and adaptive beamforming techniques and that it is more
robust against deviations from the assumed signal model. Although several
techniques have been discussed for reducing the overall computational com-
plexity (cf. Chapter 4), the complexity remains quite high – in fact much
higher than the complexity of standard beamforming techniques. In additi-
on to the presented techniques, it would therefore be interesting to investigate
other techniques for reducing the computational complexity (using e.g. subband
QR-decomposition-based techniques or stochastic gradient, i.e. LMS-type, al-
gorithms) without severely reducing the performance and the robustness.

Furthermore, when the SNR of the microphone signals is very low or when
highly non-stationary noise sources are present, it is possible that the VAD-
algorithm completely fails. In this case, the performance of the multi-channel
Wiener filter becomes unreliable, i.e. resulting in an unacceptably large speech
distortion or slow convergence. Hence, it is necessary to incorporate a larger
robustness for these scenarios. On the other hand, fixed broadband beamfor-
ming techniques, cf. Part III, do not rely on the output of a VAD-algorithm
and hence are very robust in scenarios where the VAD fails. Therefore, an
interesting research topic would be the combination of multi-channel Wiener
filtering and fixed broadband beamforming techniques. We expect the combined
technique to be more robust than the multi-channel Wiener filter in scenarios
where the VAD fails, and the performance of the combined technique to be bet-
ter than the performance of fixed broadband beamforming techniques in other
scenarios. Combining multi-channel Wiener filtering and fixed broadband be-
amforming may be possible by adding a (regularisation) term, which is related
to fixed broadband beamforming, to the MSE cost function in (3.7).

As already mentioned in Chapter 6, the computational complexity of the adap-
tive GEVD and the adaptive pre-whitening algorithm for time-delay estimation
is much higher than the complexity of the adaptive EVD algorithm, since in
each iteration step two additional matrix-vector multiplications need to be per-
formed. Reducing the computational complexity of these algorithms is a topic
of further research. One could e.g. replace the empirical noise correlation
matrix Rvv[k] in the adaptive GEVD algorithm by an instantaneous estimate
v[k′]vT [k′], where v[k′] is a noise data vector which is stored in a buffer during
noise-only periods and which is used in the update equations during subsequent
speech-and-noise periods.

In Section 6.3.2 we have developed a stochastic gradient algorithm which esti-
mates and tracks the generalised singular vector corresponding to the smallest
generalised singular value. In Section 7.2.3 a stochastic gradient algorithm is re-
quired which estimates and tracks the generalised singular vector corresponding
to the largest generalised singular value. Such subspace tracking algorithms do
exist for the SVD [41][199][281], but it remains a topic of further research to
extend these subspace tracking algorithms to the GSVD, while still maintaining
the O(N) computational complexity.
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We believe that acoustic impulse response estimation and dereverberation still
require much research attention, since some fundamental issues still need to be
resolved. Both time-domain and frequency-domain techniques experience ma-
jor problems in accurately estimating the complete acoustic impulse responses,
cf. Chapter 6 and 7. The main problem for the time-domain subspace-based
techniques is the length of the acoustic impulse responses in combination with
the low-rank model of the speech signal and the presence of background noise.
Moreover, time-domain subspace-based techniques appear to be very sensiti-
ve to underestimating the length of the acoustic impulse responses, while the
underlying reason for this sensitivity is not well understood. The effect of so-
me of these problems can be reduced by using frequency-domain techniques.
However, frequency-domain techniques require some prior knowledge about the
acoustic transfer functions in order to resolve a scaling problem which occurs
in each frequency bin (cf. Section 7.2). Solving this scaling problem remains
a topic of further research. A similar scaling problem however also occurs in
frequency-domain blind source separation (BSS) techniques. Recently, using re-
lations between BSS and (adaptive) beamforming techniques, algorithms have
been developed which (partially) solve the scaling and the permutation pro-
blem occurring in BSS [6][207]. It would be interesting to investigate if these
BSS-algorithms can also be used for solving the scaling problem occurring in
frequency-domain acoustic transfer function estimation. Also other blind sy-
stem identification techniques (e.g. based on multi-channel linear prediction
[160][166][282] or non-linear Kalman filtering [98][141][270]) should be further
investigated, since these techniques have already proved their usefulness in
other applications (e.g. digital communications).
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[28] O. Cappé. Elimination of the musical noise phenomenon with the
Ephraim and Malah noise suppressor. IEEE Trans. Speech and Audio
Processing, 2(2):345–349, April 1994.

[29] B. Champagne, S. Bédard, and A. Stéphenne. Performance of time-delay
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: Nieuwe algebräısche signaalbewerkingsmethoden voor mobiele commu-
nicatie en audiotoepassingen, chapter 8, pages 173–198. cursus PATO,
Delft, September 1996.

[137] L. B. Jensen. Hearing aid with adaptive matching of input transducers.
United Stated Patent No. 6,741,714, May 25, 2004.

[138] S. H. Jensen, P. C. Hansen, S. D. Hansen, and J. A. Sørensen. Reduction
of Broad-Band Noise in Speech by Truncated QSVD. IEEE Trans. Speech
and Audio Processing, 3(6):439–448, November 1995.



271

[139] C. W. Jim. A comparison of two LMS constrained optimal array struc-
tures. Proc. IEEE, 65(12):1730–1731, December 1977.

[140] D. H Johnson and D. E. Dudgeon. Array Signal Processing: Concepts
and Techniques. Prentice Hall, Englewood Cliffs, New Jersey, 1st edition,
1993.

[141] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new method for the
nonlinear transformation of means and covariances in filters and estima-
tors. IEEE Trans. on Automatic Control, 45(3):477–482, March 2000.

[142] J. C. Junqua, B. Mak, and B. Reaves. A Robust Algorithm for Word
Boundary Detection in the Presence of Noise. IEEE Trans. Speech and
Audio Processing, 2(3):406–412, April 1994.

[143] J. C. Junqua, B. Reaves, and B. Mak. A study of endpoint detection algo-
rithms in adverse conditions: Incidence on a DTW and HMM recognizer.
In Proc. EUROSPEECH, pages 1371–1374, 1991.
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Appendices

A Linear algebra definitions

In this appendix some linear algebra definitions and properties are briefly re-
viewed. A good reference text on linear algebra and matrix decompositions
that focuses on numerical aspects and implementation issues is [110].

A.1 Structured real matrices

Consider the N ×N -dimensional real matrix A, the N -dimensional real vector
v and the NL×NL-dimensional real block-matrix B,

A = [aij ] =








a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

...
aN1 aN2 . . . aNN







, (A.1)

v = [vi] =
[
v1 v2 . . . vN

]T
, (A.2)

B = [Bij ] =








B11 B12 . . . B1N

B21 B22 . . . B2N

...
...

...
BN1 BN2 . . . BNN







, (A.3)

with Bij L× L-dimensional matrices and T denoting the transpose operation.

Definition A.1 The matrix A is symmetric iff (if and only if) A is symmetric
along its main diagonal (aij = aji),

A is symmetric ⇔ A = AT . (A.4)

Definition A.2 The matrix A is orthogonal iff

AAT = ATA = IN , (A.5)

with IN the N×N identity matrix. Hence, the inverse of an orthogonal matrix
is equal to its transpose, A−1 = AT .

Definition A.3 The matrix A is positive definite iff all its eigenvalues are
strictly positive, i.e.

A is positive definite ⇔ vTAv > 0, ∀v ∈ R
N . (A.6)



284 Appendices

The matrix A is positive semi-definite iff all its eigenvalues are positive, i.e.

A is positive semi-definite ⇔ vTAv ≥ 0, ∀v ∈ R
N . (A.7)

Definition A.4 The N ×N -dimensional reversal matrix JN is a matrix with
ones along the secondary diagonal and zeros everywhere else,

JN =








0 0 . . . 1
...

...
...

0 1 . . . 0
1 0 . . . 0







. (A.8)

JNA reverses the rows of A, AJN reverses the columns of A and JNAJN re-
verses both the rows and the columns of A. JN is an orthogonal and symmetric
matrix, hence JN = JTN , JNJN = IN and J−1

N = JN .

Definition A.5 The matrix A is centro-symmetric iff A is symmetric along
its secondary diagonal (aij = aN−j+1,N−i+1),

A is centro-symmetric ⇔ JNA = ATJN . (A.9)

Definition A.6 The matrix A is double-symmetric (or symmetric centro-
symmetric) iff A is symmetric and centro-symmetric (aij =aji=aN−i+1,N−j+1),

A is double-symmetric ⇔
{

A = AT

JNA = ATJN
⇒ JNAJN = A .

(A.10)

Remark A.7 From the property JNAJN = A, nothing can be concluded
about the symmetry nor the centro-symmetry of the matrix A. E.g. consider
the matrix

A =





1 2 3
4 5 4
3 2 1



 .

If JNAJN = A, this simply means that the ith row/column of A is equal to
the (N − i+ 1)th row/column of A in reverse. For N odd, this implies that
the middle row/column of A is symmetric. △

Definition A.8 The vector v is called symmetric iff JNv = v and skew-
symmetric iff JNv = −v.
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Definition A.9 The matrix A is a Toeplitz matrix iff the elements along the
diagonals of A are equal,

A =










a11 a12 a13 . . . a1N

a21 a11 a12 . . . a1,N−1

a31 a21 a11 . . . a2,N−2

...
...

...
...

aN1 aN−1,1 aN−2,1 . . . a11










. (A.11)

As can be readily verified, all Toeplitz matrices are centro-symmetric.

Definition A.10 The matrix A is symmetric Toeplitz iff it is both symmetric
and Toeplitz,

A =










a11 a12 a13 . . . a1N

a12 a11 a12 . . . a1,N−1

a13 a12 a11 . . . a2,N−2

...
...

...
...

a1N a1,N−1 a1,N−2 . . . a11










. (A.12)

As can be readily verified, all symmetric Toeplitz matrices are double-symmetric.

Definition A.11 The NL × NL-dimensional block-reversal matrix SNL is a
matrix with identity matrices IL along its secondary diagonal and zeros every-
where else.

SNL =








0 0 . . . IL
...

...
...

0 IL . . . 0
IL 0 . . . 0








(A.13)

SNL is an orthogonal and a symmetric matrix, hence SNL = STNL, S−1
NL = SNL

and SNLSNL = INL.

Definition A.12 The block-matrix B is block-symmetric iff the L×L matrices
Bij are symmetric along the main diagonal of the block-matrix B (Bij = Bji),

B = [Bij ] =










B11 B12 B13 . . . B1N

B12 B22 B23 . . . B2N

B13 B23 B33 . . . B3N

...
...

...
...

B1N B2N B3N . . . BNN










. (A.14)
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In general, block-symmetric matrices are not symmetric. If all block-matrices
Bij are symmetric (Bij = BT

ij), the block-symmetric matrix B is symmetric.

Definition A.13 The block-matrix B is called block-Toeplitz iff the L × L
matrices Bij along the diagonals of B are equal,

B = [Bij ] =










B11 B12 B13 . . . B1N

B21 B11 B12 . . . B1,N−1

B31 B21 B11 . . . B1,N−2

...
...

...
...

BN1 BN−1,1 BN−2,1 . . . B11










. (A.15)

In general, block-Toeplitz matrices are not Toeplitz.

A.2 Matrix decompositions

Definition A.14 Given the N ×N -dimensional real matrix A, all (complex)
N -dimensional vectors vi 6= 0 and (complex) scalars λi that satisfy

Avi = λivi (A.16)

are called eigenvectors and eigenvalues of the matrix A.

Definition A.15 If the N × N -dimensional real matrix A has N linearly
independent eigenvectors, then the eigenvalue decomposition (EVD) of A is
given by

A = V∆V−1 , (A.17)

with V an N × N -dimensional matrix containing the eigenvectors vi as co-
lumns and ∆ a diagonal matrix containing the eigenvalues λi. Normally, the
eigenvectors are normalised such that ||vi||2 = 1, i = 1 . . . N . It can be shown
that the EVD of a symmetric matrix A is equal to

A = V∆VT , (A.18)

with V an orthogonal matrix and all eigenvalues real scalars.

Definition A.16 Given the P × N -dimensional real matrices A and B, all
(complex) N -dimensional vectors xi 6= 0 and (complex) scalars λi that satisfy

Axi = λiBxi (A.19)

are called generalised eigenvectors and generalised eigenvalues of the matrices
A and B.
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Definition A.17 If the P × N -dimensional real matrices A and B have N
linearly independent generalised eigenvectors, then the generalised eigenvalue
decomposition (GEVD) of A and B is given by

AX = BXΛ , (A.20)

with X an N × N -dimensional (invertible) matrix containing the generalised
eigenvectors xi as columns and Λ a diagonal matrix containing the generalised
eigenvalues λi. Alternatively, the GEVD of A and B can be written as

{

A = QΛAX−1

B = QΛBX−1 ,
(A.21)

with Q a P × N matrix and Λ = ΛAΛ−1
B . The GEVD of two symmetric

N ×N -dimensional matrices A and B is given by

{

A = QΛAQT

B = QΛBQT ,
(A.22)

with Q an invertible, but not necessarily orthogonal, matrix.

Definition A.18 The singular value decomposition (SVD) of the P × N -
dimensional real matrix A (with P ≥ N) is given by

A = UΣVT , (A.23)

with U a P ×N -dimensional orthogonal matrix containing the (left) singular
vectors ui, V an N ×N -dimensional orthogonal matrix containing the (right)
singular vectors vi, and Σ an N ×N -dimensional diagonal matrix containing
the singular values σi, with σ1 ≥ σ2 . . . ≥ σN ≥ 0. The matrix A can be
written as the dyadic decomposition

A =
N∑

i=1

σiuiv
T
i , (A.24)

such that

Avi = σiui, ATui = σivi . (A.25)

If the matrix A has rank R < N , then N −R singular values are equal to zero,
such that the SVD of A can be written as

A = U1Σ1V
T
1 , (A.26)

with U1 a P ×R-dimensional and V1 an R×R-dimensional orthogonal matrix,
and Σ1 = diag{σ1, . . . , σR} an R×R-dimensional diagonal matrix.
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Definition A.19 The (Moore-Penrose) pseudo-inverse of the P×N -dimensional
real matrix A with rank R is defined using (A.26) as

A† = V1Σ
−1
1 UT

1 . (A.27)

Definition A.20 The generalised singular value decomposition (GSVD) of the
P × N -dimensional real matrix A and the Q × N -dimensional real matrix B
(with P ≥ N and Q ≥ N) is given by

{

A = UAΣAQT

B = UBΣBQT ,
(A.28)

with UA a P × N -dimensional orthogonal matrix, UB a Q × N -dimensional
orthogonal matrix, Q an N × N -dimensional invertible, but not necessarily
orthogonal, matrix containing the (right) generalised singular vectors qi and
ΣA and ΣB N × N -dimensional diagonal matrices containing σAi and σBi,
with σA1 ≥ σA2 . . . ≥ σAN ≥ 0 and 0 ≤ σB1 ≤ σB2 . . . ≤ σBN . The generalised
singular values are equal to σAi/σBi. The matrices A and B can be written as
the dyadic decomposition







A =
N∑

i=1

σAiuAiq
T
i

B =

N∑

i=1

σBiuBiq
T
i .

(A.29)

If we define the matrix T = Q−T , containing the vectors ti, such that qi
T tj =

δij , with δij the Kronecker-delta, then
{

Ati = σAiuAi, ATuAi = σAiqi

Bti = σBiuBi, BTuBi = σBiqi .
(A.30)

Definition A.21 The QR-decomposition of the P × N real matrix A (with
P ≥ N) is defined

A = QARA , (A.31)

with QA a P×N orthogonal matrix and RA an N×N upper-triangular matrix.

A.3 Matrix and vector norms

Definition A.22 The 2-norm of an N -dimensional vector v is equal to

||v||2 =

√
√
√
√

N∑

j=1

v2
j . (A.32)

Generally, we will write ||v|| instead of ||v||2.
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Definition A.23 The 2-norm of an M ×N -dimensional matrix A is defined
as

||A||2 = max
x6=0

||Ax||2
||x||2

. (A.33)

It can be shown that the 2-norm of A is equal to its largest singular value, i.e.

||A||2 = σ1(A) . (A.34)

Definition A.24 The Frobenius-norm of an M ×N -dimensional matrix A is
defined as

||A||F =

√
√
√
√

M∑

i=1

N∑

j=1

a2
ij . (A.35)

It can be shown that the Frobenius-norm of A is related to its singular values
as

||A||F =

√
√
√
√

N∑

j=1

σ2
j (A) . (A.36)

A.4 Matrix inversion lemma

Lemma A.25 The inverse of the N ×N -dimensional matrix A+BDC, with
A a full-rank N ×N -dimensional matrix, B an N ×R-dimensional matrix, C
an R×N -dimensional matrix and D a full-rank R×R-dimensional matrix, is
equal to

(A + BDC)−1 = A−1 − A−1B(CA−1B + D−1)−1CA−1 . (A.37)

Corollary A.26 Using (A.37), the inverse of the rank-1 update A + uvH ,
with u and v complex N -dimensional vectors, is equal to

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u
. (A.38)

Corollary A.27 It can be proved that

[
A b
bH c

]−1

=

[ (
A − bbH

c

)−1 − A−1b
c−bHA−1b

− bHA−1

c−bHA−1b
1

c−bHA−1b

]

, (A.39)

with A an N × N -dimensional matrix, b an N -dimensional vector and c a
scalar.
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Proof : Using (A.38),

[
A b
0 c

]−1

=

([
A 0
0 c

]

+

[
b
0

]
[

0 1
]
)−1

=

[

A−1 −A−1b
c

0 1
c

]

,

(A.40)
such that

[
A b
bH c

]−1

=

([
A b
0 c

]

+

[
0
1

]
[

bH 0
]
)−1

(A.41)

=

[

A−1 −A−1b
c

0 1
c

]

−

[

−A−1bbHA−1 A−1b (bHA−1b)
c

bHA−1 −bHA−1b
c

]

c− bHA−1b

=

[ (
A − bbH

c

)−1 − A−1b
c−bHA−1b

− bHA−1

c−bHA−1b
1

c−bHA−1b

]

. (A.42)

2

A.5 Symmetry properties of eigenvectors

Theorem A.28 If the N × N -dimensional matrix A satisfies JNAJN = A
and has N distinct eigenvalues, then A has ⌈N/2⌉ symmetric eigenvectors and
⌊N/2⌋ skew-symmetric eigenvectors which span the eigenspace of A, where ⌈x⌉
represents the smallest integer greater than or equal to x and ⌊x⌋ represents the
largest integer smaller than or equal to x.

Proof [26] : The matrix A has N orthonormal eigenvectors vi which are
unique apart from their sign. Therefore, for any eigenvector vi, i = 1 . . . N ,

Avi = λivi ⇒ JNAvi = λiJNvi ⇒ AJNvi = λiJNvi (A.43)

holds. Hence JNvi is an eigenvector of A corresponding to λi. Since the
N eigenvalues of A are distinct and JNvi has the same norm as vi, then
JNvi = ±vi, such that vi is either symmetric or skew-symmetric. The only
possible way for the eigenspace to consist of N mutually orthogonal, symmetric
(skew-symmetric) nonzero eigenvectors, is that is consists of ⌈N/2⌉ symmetric
eigenvectors and ⌊N/2⌋ skew-symmetric eigenvectors. 2

In [26] it has been proved that when the multiplicity of some eigenvalues is lar-
ger than 1, the matrix A can have eigenvectors which are a linear combination
of symmetric and skew-symmetric vectors, and hence, are neither symmetric
nor skew-symmetric.
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Corollary A.29 If A = V∆V−1 is the eigenvalue decomposition of A, then

JNV = Vdiag{±1} . (A.44)

Corollary A.30 Since JNAJN = A is true for all double-symmetric and sym-
metric Toeplitz matrices A, all eigenvectors of double-symmetric and symme-
tric Toeplitz matrices generally are symmetric or skew-symmetric.

Lemma A.31 If JNAJN = A, then JNATJN = AT and JNA−1JN = A−1

(if A is invertible).

Proof :

AT = (JNAJN )T = JTNATJTN = JNATJN (A.45)

A−1 = (JNAJN )−1 = J−1
N A−1J−1

N = JNA−1JN . (A.46)

2

Lemma A.32 The inverse of a nonsingular double-symmetric matrix is al-
so double-symmetric [170]. The inverse of a nonsingular symmetric Toeplitz
matrix is double symmetric, but not necessarily Toeplitz.

Lemma A.33 Consider A ∈ R
N×N and B ∈ R

N×N . If JNAJN = A and
JNBJN = B, then JN (A + B)JN = A + B and JN (AB)JN = AB.

Lemma A.34 The sum of two double-symmetric matrices A and B is also
double-symmetric. The sum of two symmetric Toeplitz matrices A and B is
also symmetric Toeplitz. The product of two double-symmetric matrices A and
B is double-symmetric, only if AB = BA. The product of two symmetric
Toeplitz matrices A and B is double-symmetric, only if AB = BA, and is not
necessarily Toeplitz.

Theorem A.35 If the block-matrix B ∈ R
NL×NL satisfies SNLBSNL = B

and has NL distinct eigenvalues, then all NL eigenvectors vi of B satisfy the
property SNLvi = ±vi.

Proof : B has NL orthonormal eigenvectors vi which are unique apart from
their sign. For any eigenvector vi, i = 1 . . . NL,

Bvi = λivi ⇒ SNLBvi = λiSNLvi ⇒ BSNLvi = λiSNLvi (A.47)

holds. Hence SNLvi is an eigenvector of B corresponding to λi. The NL
eigenvalues of B are distinct and SNLvi has the same norm as vi, such that
SNLvi = ±vi. 2
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Corollary A.36 If B = V∆V−1 is the eigenvalue decomposition of B, then

SNLV = Vdiag{±1} . (A.48)

Corollary A.37 Since SNLBSNL = B is true for all matrices B which are
both block-symmetric and block-Toeplitz, all eigenvectors vi of these matrices
generally satisfy SNLvi = ±vi.

Lemma A.38 If SNLBSNL = B, then SNLB
TSNL = BT and SNLB

−1SNL =
B−1 (if B is invertible).

Proof :

BT = (SNLBSNL)T = STNLB
TSTNL = SNLB

TSNL (A.49)

B−1 = (SNLBSNL)−1 = S−1
NLB

−1S−1
NL = SNLB

−1SNL . (A.50)

2

Lemma A.39 Consider B ∈ R
NL×NL and C ∈ R

NL×NL. If SNLBSNL = B
and SNLCSNL = C, then SNL(B + C)SNL = B + C and SNL(BC)SNL =
BC.

Lemma A.40 The sum of two block-symmetric matrices B and C is also
block-symmetric. The sum of two block-Toeplitz matrices B and C is also
block-Toeplitz.

The properties proved in theorems A.28 and A.35 and lemmas A.31, A.33, A.38
and A.39 hold for any transformation matrix T and matrix A which satisfy







TAT = A
T = TT

T = T−1
(A.51)

A.6 Derivative to vectors and matrices

Consider the vectors u ∈ R
N , d ∈ R

N and w ∈ R
N , and the matrices A ∈

R
N×N and W ∈ R

N×N ,

w =








w1

w2

...
wN








u =








u1

u2

...
uN








d =








d1

d2

...
dN







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A =








a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

...
aN1 aN2 . . . aNN








W =








w11 w12 . . . w1N

w21 w22 . . . w2N

...
...

...
wN1 wN2 . . . wNN







.

We can prove the following properties (these properties are easily extendible
to the complex-valued case).

Property A.41 J = wTu = uTw, ∂J
∂w = u

Proof : J = wTu =

N∑

i=1

uiwi ⇒
∂J

∂wk
= uk

∂J

∂w
=









∂J
∂w1

∂J
∂w2

...
∂J
∂wN









=








u1

u2

...
uN








= u .

2

Property A.42 J = wTAw, ∂J
∂w = (A + AT )w

J = wTuuTw, ∂J
∂w = 2uuTw

Proof : J = wTAw =

N∑

i=1

N∑

j=1

wiaijwj

∂J

∂wk
=

∂

∂wk



wkakkwk +
N∑

j=1,j 6=k
wkakjwj +

N∑

i=1,i 6=k
wiaikwk





=

N∑

j=1

akjwj +

N∑

i=1

wiaik = A(1, :)w + A(:, 1)Tw

∂J

∂w
=









∂J
∂w1

∂J
∂w2

...
∂J
∂wN









=








A(1, :)
A(2, :)

...
A(N, :)








w +








A(:, 1)T

A(:, 2)T

...
A(:, N)T








w

= (A + AT )w .

For symmetric A :
∂J

∂w
= 2Aw . 2
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Property A.43 J = uTWd, ∂J
∂W = udT

Proof :

J = uTWd =

N∑

i=1

N∑

j=1

uiwijdj ⇒
∂J

∂wkl
= ukdl

∂J

∂W
=









∂J
∂w11

∂J
∂w12

. . . ∂J
∂w1N

∂J
∂w21

∂J
∂w22

. . . ∂J
∂w2N

...
...

...
∂J

∂wN1

∂J
∂wN2

. . . ∂J
∂wNN









=








u1d1 u1d2 . . . u1dN
u2d1 u2d2 . . . u2dN
...

...
...

uNd1 uNd2 . . . uNdN








= udT .

2

Property A.44 J = uTWWTu, ∂J
∂W = 2uuTW

Proof :

J = uTWWTu=
N∑

i=1





N∑

j=1

ujwji





(
N∑

k=1

wkiuk

)

=
N∑

i=1

N∑

j=1

N∑

k=1

ujwjiwkiuk

∂J

∂wpq
=

∂

∂wpq



upwpqwpqup +
N∑

j=1,j 6=p
ujwjqwpqup +

N∑

k=1,k 6=p
upwpqwkquk





=

N∑

j=1

ujwjqup +

N∑

k=1

upwkquk = 2up

N∑

j=1

ujwjq = 2upuW(:, q)

∂J

∂W
=









∂J
∂w11

∂J
∂w12

. . . ∂J
∂w1N

∂J
∂w21

∂J
∂w22

. . . ∂J
∂w2N

...
...

...
∂J

∂wN1

∂J
∂wN2

. . . ∂J
∂wNN









= 2








u1u
TW(:, 1) u1u

TW(:, 2) . . . u1u
TW(:, N)

u2u
TW(:, 1) u2u

TW(:, 2) . . . u2u
TW(:, N)

...
...

...
uNuTW(:, 1) uNuTW(:, 2) . . . uNuTW(:, N)








= 2
[

uuTW(:, 1) uuTW(:, 2) . . . uuTW(:, N)
]

= 2uuTW

2
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B Appendix to Chapter 2

B.1 Orthogonality of QT
V UV

Using (2.62), the matrix RT
VRV can be both written as

RT
VRV = V0[k]

TQVQT
VV0[k] = QTΣV UT

VQVQT
VUV

︸ ︷︷ ︸
ΣVQ (B.1)

and
RT
VRV = V0[k]

TV0[k] = QTΣ2
VQ , (B.2)

such that UT
VQVQT

VUV =
(
QT
V UV

)T (
QT
V UV

)
= IL. Hence, QT

V UV is an
orthogonal matrix.

B.2 Minimisation of ||Y0[k]W − X0[k]||2F
The cost function JMV (W) in (2.77) can be written as

JMV (W) = ||Y0[k]W − X0[k]||2F (B.3)

=

P−1∑

i=0

||yT0 [k − i]W − xT0 [k − i] ||22 (B.4)

=

P−1∑

i=0

yT0 [k − i]WWTy0[k − i] − 2yT0 [k − i]Wx0[k − i] (B.5)

+xT0 [k − i]x0[k − i] , (B.6)

which can be minimised by putting the derivative (cf. Appendix A.6)

∂JMV (W)

∂W
=

P−1∑

i=0

2y0[k − i]yT0 [k − i]W − 2y0[k − i]xT0 [k − i] (B.7)

= 2YT
0 [k]Y0[k]W − 2YT

0 [k]X0[k] (B.8)

to zero, such that

W =
(
YT

0 [k]Y0[k]
)−1

YT
0 [k]X0[k] . (B.9)

B.3 Solution of optimisation problem (2.129)

The optimisation problem

min
W(ω)

WH(ω)R̄yy(ω)W(ω), subject to WH(ω)d(ω, θx) = 1 , (B.10)

can be solved by introducing the Lagrange multiplier λ and considering the
cost function1

J(W) = WHR̄yyW + λ(WHd − 1)H(WHd − 1) . (B.11)

1For the sake of conciseness the frequency parameter ω and the angle parameter θx will
be frequently omitted in the following equations.
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Putting the derivative of J(W) with respect to W, i.e.

∂J(W)

∂W
= 2R̄yyW + 2λ(ddHW − d) (B.12)

to zero, yields the solution

W = (R̄yy + λddH)−1d , (B.13)

which can be rewritten, using the matrix inversion lemma (A.38), as

W =

[

R̄−1
yy −

λR̄−1
yy ddHR̄−1

yy

1 + λdHR̄−1
yy d

]

d . (B.14)

The parameter λ can be calculated by satisfying the constraint WHd = 1, i.e.

WHd = dHR̄−1
yy d −

λ(dHR̄−1
yy d)2

1 + λdHR̄−1
yy d

=
dHR̄−1

yy d

1 + λdHR̄−1
yy d

= 1 , (B.15)

such that

λ =
dHR̄−1

yy d − 1

dHR̄−1
yy d

. (B.16)

The filter W in (B.14) can now be written as

W =

[

R̄−1
yy −

dHR̄−1
yy d − 1

dHR̄−1
yy d

·
R̄−1
yy ddHR̄−1

yy

1 + (dHR̄−1
yy d − 1)

]

d (B.17)

= R̄−1
yy d −

(dHR̄−1
yy d − 1)R̄−1

yy d

dHR̄−1
yy d

(B.18)

=
R̄−1
yy d

dHR̄−1
yy d

. (B.19)

Using (2.109), the signal vector Y(ω) can be written as

Y(ω) = S(ω)e−jωτ̄(θx)d(ω, θx) + V(ω) , (B.20)

such that the correlation matrix R̄yy is equal to

R̄yy = E{YYH} = PsddH + R̄vv . (B.21)

Using the matrix inversion lemma (A.38), R̄−1
yy can be written as

R̄−1
yy = R̄−1

vv − PsR̄
−1
vv ddHR̄−1

vv

1 + PsdHR̄−1
vv d

, (B.22)

such that R̄−1
yy d is equal to

R̄−1
yy d = R̄−1

vv d − PsR̄
−1
vv ddHR̄−1

vv d

1 + PsdHR̄−1
vv d

=
R̄−1
vv d

1 + PsdHR̄−1
vv d

, (B.23)
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and the filter W in (B.14) can be written as

W =
R̄−1
vv d

1 + PsdHR̄−1
vv d

· 1 + Psd
HR̄−1

vv d

dHR̄−1
vv d

=
R̄−1
vv d

dHR̄−1
vv d

. (B.24)

If we assume a homogeneous noise field, such that R̄vv = PvΓv, cf. (2.37), then
W can be written as

W =
Γ−1
v d

dHΓ−1
v d

. (B.25)

B.4 Solution of optimisation problem (2.134)

The optimisation problem

min
w[k]

wT [k]R̄yy[k]w subject to Cw[k] = b , (B.26)

can be solved by introducing the J-dimensional vector of Lagrange multipliers
λ and considering the cost function

J(w[k]) = wT [k]R̄yy[k]w[k] + λ
T (Cw[k] − b) . (B.27)

Putting the derivative of J(w[k]) with respect to w[k], i.e.

∂J(w[k])

∂w[k]
= 2R̄yy[k]w[k] + 2CT

λ (B.28)

to zero, yields the solution

w[k] = −R̄−1
yy [k]CT

λ . (B.29)

The parameter vector λ can be calculated by satisfying the constraint Cw[k] =
b, i.e.

Cw[k] = −CR̄−1
yy [k]CT

λ = b , (B.30)

such that

λ = −(CR̄−1
yy [k]CT )−1b , (B.31)

and hence the solution w[k] is equal to

w[k] = R̄−1
yy [k]CT (CR̄−1

yy [k]CT )−1b . (B.32)

B.5 Constrained gradient-descent procedure (2.137)

The constrained optimisation problem

min
w[k]

wT [k]R̄yy[k]w subject to Cw[k] = b , (B.33)
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can be adaptively solved using a gradient-descent optimisation technique, where
in each iteration step the filters are updated in the direction of the constrained
gradient, i.e. using (B.28),

w[k + 1] = w[k] − µ

2

∂J(w[k])

∂w[k]
= w[k] − µ(R̄yy[k]w[k] + CT

λ[k]) , (B.34)

with µ the step size of the adaptive algorithm. Since the filter w[k + 1] also
has to satisfy the constraint

Cw[k + 1] = Cw[k] − µC(R̄yy[k]w[k] + CT
λ[k]) = b , (B.35)

the parameter vector λ[k] should be equal to

λ[k] = (µCCT )−1(Cw[k] − b
︸ ︷︷ ︸

−µCR̄yy[k]w[k]) (B.36)

Note that we do not assume the term Cw[k]−b to be exactly equal to zero, in
order to prevent error accumulation. Using (B.36), the filter update can now
be written as

w[k + 1]=w[k]−µ
[

R̄yy[k]w[k] + CT (µCCT )−1(Cw[k] − b
︸ ︷︷ ︸

−µCR̄yy[k]w[k])

]

=
[
IM − µR̄yy[k] − CT (CCT )−1C + µCT (CCT )−1CR̄yy[k]

]
w[k]

+CT (CCT )−1b

=PC(w[k] − µR̄yy[k]w[k]) + bC ,

with

PC = IM − CT (CCT )−1C , (B.37)

bC = CT (CCT )−1b . (B.38)

By using the instantaneous gradient, i.e. approximating R̄yy[k] ≈ yyT [k], the
constrained LMS algorithm can be written as

w[k + 1] = PC(w[k] − µz[k]y[k]) + bC . (B.39)

In fact, a geometrical interpretation can be given (see Fig. B.1a). The J linear
constraints restrict the filter w[k] to lie in an (M −J)-dimensional hyperplane,
i.e. the constraint hyperplane Λ = {w : Cw = b}, which is orthogonal to the
subspace spanned by the rows of C. The matrix PC is the projection matrix
on the constraint subspace Σ = {w : Cw = 0}, while the vector bC is the
shortest vector orthogonal to the constraint subspace Σ which terminates on
the constraint hyperplane Λ. The constrained LMS algorithm is geometrically
depicted in Fig. B.1b. It can be easily seen that by using this approach, no
error accumulation occurs and all vectors w[k] lie in the constraint hyperplane.
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bC = CT (CCT )−1b

w

PCw

Λ = {w : Cw = b}

Σ = {w : Cw = 0}

Σ : constraint subspace

Λ : constraint hyperplane

Λ

Σ

w[k]
PC(w[k] − µz[k]y[k])

w[k + 1]

w[k] − µz[k]y[k]

bC

Figure B.1: Constrained gradient-descent procedure (Frost beamformer)
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C Appendix to Part I

C.1 Signal distortion ǫ
2
y[k] versus residual noise ǫ

2
v[k]

Using the filter matrix W̄[k] in (3.33),

W̄[k] =
(
R̄xx[k] + λR̄vv[k]

)−1
R̄xx[k] , (C.1)

with the Lagrange-multiplier λ ≥ 0, it can be easily proved that

IM − W̄T [k] =
(
R̄xx[k] + λR̄vv[k]

) (
R̄xx[k] + λR̄vv[k]

)−1 −
R̄xx[k]

(
R̄xx[k] + λR̄vv[k]

)−1
(C.2)

= λR̄vv[k]
(
R̄xx[k] + λR̄vv[k]

)−1
. (C.3)

Using (3.15) and (C.3), the signal distortion energy ǫ2y[k] can be written in
function of λ as

ǫ2y[k]= E
{

xT [k]
(
IM − W̄T [k]

)T (
IM − W̄T [k]

)
x[k]

}

(C.4)

= tr
{(

IM − W̄T [k]
)
R̄xx[k]

(
IM − W̄T [k]

)T
}

(C.5)

= tr
{

λ2R̄vv[k]
(
R̄xx[k]+λR̄vv[k]

)−1
R̄xx[k]

(
R̄xx[k]+λR̄vv[k]

)−1
R̄vv[k]

}

= tr

{

Q̄[k] diag

{(
σ̄2
i [k] − η̄2

i [k]
) (
λη̄2

i [k]
)2

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)2

}

Q̄T [k]

}

, (C.6)

whereas the residual noise energy ǫ2v[k] can be written as in (3.37),

ǫ2v[k] = tr

{

Q̄[k] diag

{ (
σ̄2
i [k] − η̄2

i [k]
)2
η̄2
i [k]

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)2

}

Q̄T [k]

}

. (C.7)

Since we want to prove that the smaller the signal distortion ǫ2y[k] is, the larger
the residual noise ǫ2v[k] is, this is equivalent to proving that the derivative
∂ǫ2y[k]/∂ǫ

2
v[k] is always negative. This derivative can be computed as

∂ǫ2y[k]

∂ǫ2v[k]
=
∂ǫ2y[k]

∂λ

(
∂ǫ2v[k]

∂λ

)−1

. (C.8)

Using (C.6), the derivative ∂ǫ2y[k]/∂λ is equal to

∂ǫ2y[k]

∂λ
= tr

{

Q̄[k] diag

{

∂

∂λ

(
σ̄2
i [k] − η̄2

i [k]
) (
λη̄2

i [k]
)2

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)2

}

Q̄T [k]

}

(C.9)

= tr

{

Q̄[k] diag

{

−2λ
(
σ̄2
i [k] − η̄2

i [k]
)2 (

η̄2
i [k]

)2

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)3

}

Q̄T [k]

}

, (C.10)
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whereas using (C.7), the derivative ∂ǫ2v[k]/∂λ is equal to

∂ǫ2v[k]

∂λ
= tr

{

Q̄[k] diag

{

∂

∂λ

(
σ̄2
i [k] − η̄2

i [k]
)2
η̄2
i [k]

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)2

}

Q̄T [k]

}

(C.11)

= tr

{

Q̄[k] diag

{

2
(
σ̄2
i [k] − η̄2

i [k]
)2 (

η̄2
i [k]

)2

(
σ̄2
i [k] + (λ− 1) η̄2

i [k]
)3

}

Q̄T [k]

}

, (C.12)

such that using (C.8)
∂ǫ2y[k]

∂ǫ2v[k]
= −λ , (C.13)

which is always negative. For a specific speech-noise example, we have plotted
the signal distortion energy ǫ2y[k] versus the residual noise energy ǫ2v[k] in Fig.
3.2, where it can be seen that this function is monotonically decreasing.

When λ = 0, i.e. W̄[k] = IM , it can be seen from (C.6) and (C.7) that the
signal distortion energy ǫ2y[k] = 0 and that the residual noise energy reaches its
maximum value, i.e.

ǫ2v,max[k] = tr
{
Q̄[k] diag{η̄2

i [k]} Q̄T [k]
}

= tr
{
R̄vv[k]

}
. (C.14)

When λ = ∞, i.e. W̄[k] = 0, it can be seen from (C.6) and (C.7) that the
residual noise energy ǫ2v[k] = 0 and that the signal distortion energy reaches its
maximum value, i.e.

ǫ2y,max[k] = tr
{
Q̄[k] diag{(σ̄2

i [k] − η̄2
i [k])} Q̄T [k]

}
= tr

{
R̄xx[k]

}
. (C.15)

C.2 Wiener filter for combined noise and echo reduction

Using (3.113) and (3.115), the matrix R̄ytyt(ω) can be written as

R̄ytyt(ω) = E{Yt(ω)YH
t (ω)} = E

{[
Y(ω)
F (ω)

]
[

YH(ω) F ∗(ω)
]
}

(C.16)

=

[

R̄yy(ω) r̄yf (ω)

r̄Hyf (ω) Pf (ω)

]

, (C.17)

with Pf (ω) = E{|F (ω)|2} and

r̄yf (ω) = E{Y(ω)F ∗(ω)} = E{Vf (ω)F ∗(ω)} = Hf (ω)Pf (ω) , (C.18)

since the speech components X(ω) and the unknown noise components Vu(ω)
are assumed to be uncorrelated with the far-end echo signal F (ω). Using (3.113)
and (3.116), the matrix R̄xtxt(ω) can be written as

R̄xtxt(ω) = E{Xt(ω)XH
t (ω)} =

[
R̄xx(ω) 0

0 0

]

. (C.19)
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Using (A.39), the matrix R̄−1
ytyt(ω) can be written as

R̄−1
ytyt(ω) =






(

R̄yy(ω) − r̄yf (ω)r̄Hyf (ω)

Pf (ω)

)−1

− R̄−1
yy (ω)r̄yf (ω)

Pf (ω)−r̄H
yf

(ω)R̄−1
yy (ω)r̄yf (ω)

− r̄Hyf (ω)R̄−1
yy (ω)

Pf (ω)−r̄H
yf

(ω)R̄−1
yy (ω)r̄yf (ω)

1
Pf (ω)−r̄H

yf
(ω)R̄−1

yy (ω)r̄yf (ω)




 ,

(C.20)
such that the Wiener filter Wt

WF (ω) in (3.114) can be written as

Wt
WF (ω) =

[

WWF (ω)

W f
WF (ω)

]

=






(

R̄yy(ω) − r̄yf (ω)r̄Hyf (ω)

Pf (ω)

)−1

− r̄Hyf (ω)R̄−1
yy (ω)

Pf (ω)−r̄H
yf

(ω)R̄−1
yy (ω)r̄yf (ω)




 R̄xx(ω) e1 .

(C.21)
Using (C.18) and (3.111), the filter WWF (ω) can be written as

WWF (ω) =
[
R̄yy(ω) − Pf (ω)Hf (ω)HH

f (ω)
]−1

R̄xx(ω) e1 (C.22)

=
[
R̄xx(ω) + R̄u

vv(ω)
]−1

R̄xx(ω) e1 , (C.23)

which is the same formula for the multi-channel Wiener filter as if no echo
source were present, cf. (3.81), implying that the echo source has no influence

on WWF (ω). Using (C.18), the filter W f
WF (ω) can be written as

W f
WF (ω) = −

HH
f (ω)R̄−1

yy (ω) R̄xx(ω) e1

1 − Pf (ω)HH
f (ω)R̄−1

yy (ω)Hf (ω)
. (C.24)

Using (3.111) and the matrix inversion lemma in (A.38), the matrix R̄−1
yy (ω) is

equal to

R̄−1
yy (ω) =

[
R̄xx(ω) + R̄u

vv(ω) + Pf (ω)Hf (ω)HH
f (ω)

]−1
(C.25)

=
[
R̄xx(ω) + R̄u

vv(ω)
]−1 −

Pf (ω)
[
R̄xx(ω) + R̄u

vv(ω)
]−1

Hf (ω)HH
f (ω)

[
R̄xx(ω) + R̄u

vv(ω)
]−1

1 + Pf (ω)HH
f (ω)

[
R̄xx(ω) + R̄u

vv(ω)
]−1

Hf (ω)
,

such that

HH
f (ω)R̄−1

yy (ω) =
HH
f (ω)

[
R̄xx(ω) + R̄u

vv(ω)
]−1

1 + Pf (ω)HH
f (ω)

[
R̄xx(ω) + R̄u

vv(ω)
]−1

Hf (ω)
. (C.26)

Inserting (C.26) into (C.24) yields

W f
WF (ω) = −HH

f (ω)
[
R̄xx(ω) + R̄u

vv(ω)
]−1

R̄xx(ω) e1 = −HH
f (ω)WWF (ω) .

(C.27)
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D Appendix to Part III

D.1 Weighted LS criterion with linear constraint

The constrained minimisation problem

min
w

wTQLSw − 2wTa + dLS , subject to Cw = b , (D.1)

with C a J×M -dimensional constraint matrix and b a J-dimensional constraint
vector, can easily be transformed into an unconstrained minimisation problem.
Using (2.146), the filter w can be parametrised as

w = wq − CT
awa , (D.2)

with wq the fixed (quiescent) part, equal to

wq = CT (CCT )−1b , (D.3)

wa the (M−J)-dimensional variable part, and Ca the (M−J)×M -dimensional
null-space of C. The cost function JLS(w) = wTQLSw−2wTa+dLS can now
be written as

JLS(w) = (wq − CT
awa)

TQLS(wq − CT
awa) − 2(wq − CT

awa)
Ta + dLS

= wT
q QLSwq − 2wT

aCaQLSwq + wT
aCaQLSC

T
awa − 2wT

q a +

2wT
aCaa + dLS

and can be minimised by setting the derivate

∂JLS(w)

∂wa
= −2CaQLSwq + 2CaQLSC

T
awa + 2Caa (D.4)

equal to 0, yielding the solution

wmin
a = (CaQLSC

T
a )−1Ca(QLSwq − a) , (D.5)

such that the solution wc
LS of the constrained minimisation problem is equal

to

wc
LS = wq − CT

awmin
a = wq − CT

a (CaQLSC
T
a )−1Ca(QLSwq − a) (D.6)

=
[
IM − CT

a (CaQLSC
T
a )−1CaQLS

]
(wq − Q−1

LSa) + Q−1
LSa . (D.7)

In [139] it has been proved that

IM − CT
a (CaACT

a )−1CaA = A−1CT (CA−1CT )−1C , (D.8)

such that using (D.2) wc
LS can be rewritten as

wc
LS = Q−1

LSC
T (CQ−1

LSC
T )−1C

[

CT (CCT )−1b − Q−1
LSa

]

+ Q−1
LSa , (D.9)
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such that

wc
LS = Q−1

LSC
T (CQ−1

LSC
T )−1(b − CQ−1

LSa) + Q−1
LSa (D.10)

which can be written in function of the unconstrained solution as

wc
LS = wLS + Q−1

LSC
T (CQ−1

LSC
T )−1(b − CwLS) . (D.11)

D.2 Derivative constraints for near-field case

The first-order angle derivative g′
θ(ω, θ, r) is equal to

g′
θ(ω, θ, r) =

∂g(ω, θ, r)

∂θ
=

∂

∂θ








a0(θ, r)e(ω)e−jωτ0(θ,r)

a1(θ, r)e(ω)e−jωτ1(θ,r)

...
aN−1(θ, r)e(ω)e−jωτN−1(θ,r)







, (D.12)

with

∂an(θ, r)

∂θ
=

∂

∂θ

r√
pn + qn cos θ

=
rqn sin θ

2(pn + qn cos θ)3/2
=

qn sin θ

2r2n(θ, r)
an(θ, r) ,

∂τn(θ, r)

∂θ
=

∂

∂θ

√
pn + qn cos θ

c
fs =

−qn sin θ

2c
√
pn + qn cos θ

fs =
−qn sin θ

2rn(θ, r)c
fs ,

and

∂

∂θ
an(θ, r)e(ω)e−jωτn(θ,r) = an(θ, r)e(ω)e−jωτn(θ,r) qn sin θ

2rn(θ, r)

(
1

rn(θ, r)
+j

ωfs
c

)

,

such that the first-order angle derivative g′
θ(ω, θ, r) can be written as

g′
θ(ω, θ, r) = sin θ ∆θ(ω, θ, r) g(ω, θ, r) , (D.13)

with ∆θ(ω, θ, r) a complex-valued M ×M -dimensional diagonal matrix,

∆θ(ω, θ, r) =









q0
2r20(θ,r)

IL
q1

2r21(θ,r)
IL

. . .
qN−1

2r2
N−1(θ,r)

IL









+

j
ωfs
c









q0
2r0(θ,r)

IL
q1

2r1(θ,r)
IL

. . .
qN−1

2rN−1(θ,r)
IL









= ∆θ,R(θ, r) + j∆θ,I(ω, θ, r) . (D.14)
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Hence, g′
θ(ω, θ, r) can be written as

g′
θ(ω, θ, r) = sin θ

[(

∆θ,R(θ, r)gR(ω, θ, r) − ∆θ,I(ω, θ, r)gI(ω, θ, r)
)

+

j
(

∆θ,I(ω, θ, r)gR(ω, θ, r) + ∆θ,R(θ, r)gI(ω, θ, r)
)]

. (D.15)

Remark D.1 For r → ∞, i.e. far-field assumptions,

lim
r→∞

qn
2rn(θ, r)

= lim
r→∞

2rdn

2
√

r2 + d2
n + 2rdn cos θ

= dn (D.16)

lim
r→∞

qn
2r2n(θ, r)

= lim
r→∞

2rdn
2(r2 + d2

n + 2rdn cos θ)
= 0 , (D.17)

such that g′
θ(ω, θ, r) in (D.13) for the near-field case reduces to g′

θ(ω, θ) in
(8.88) for the far-field case. △

D.3 Expressions for robust non-linear criterion

Depending on the values of ⌊ i−1
L ⌋, ⌊ j−1

L ⌋, ⌊k−1
L ⌋ and ⌊ l−1

L ⌋, different cases have
to be considered:

• 4 equal values: γijkl = 0

δaijkl =

∫

a

a4 fα(a) da, δcγ,ijkl = 1, δsγ,ijkl = 0 (D.18)

• 3 equal values, 1 different value: aijkl = a3
1a2, γijkl = ±(γ1 − γ2)

δaijkl =

∫

a1

∫

a2

a3
1a2 fα(a1)fα(a2) da1da2 = µa

∫

a

a3 fα(a) da (D.19)

δcγ,ijkl =

∫

γ1

∫

γ2

cos
[
±
(
γ1 − γ2

)]
fG(γ1)fG(γ2)dγ1dγ2 = σcγ (D.20)

δsγ,ijkl =

∫

γ1

∫

γ2

sin
[
±
(
γ1 − γ2

)]
fG(γ1)fG(γ2)dγ1dγ2 = 0 (D.21)

• 2 equal values, 2 equal values: aijkl = a2
1a

2
2

δaijkl =

∫

a1

∫

a2

a2
1a

2
2 fα(a1)fα(a2) da1da2 = σ4

a (D.22)

⌊ i−1
L ⌋ = ⌊k−1

L ⌋ 6= ⌊ j−1
L ⌋ = ⌊ l−1

L ⌋ : γijkl = 2(γ1 − γ2)

δcγ,ijkl =

∫

γ1

∫

γ2

cos 2
(
γ1 − γ2

)
fG(γ1)fG(γ2)dγ1dγ2
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=

∫

γ1

∫

γ2

(
cos 2γ1 cos 2γ2 + sin 2γ1 sin 2γ2

)
fG(γ1)fG(γ2)dγ1dγ2

=
(
µc2γ
)2

+
(
µs2γ
)2

(D.23)

δsγ,ijkl =

∫

γ1

∫

γ2

sin 2
(
γ1 − γ2

)
fG(γ1)fG(γ2)dγ1dγ2 = 0 (D.24)

with

µc2γ =

∫

γ

cos 2γ fG(γ)dγ, µs2γ =

∫

γ

sin 2γ fG(γ)dγ (D.25)

⌊ i−1
L ⌋=⌊ j−1

L ⌋ 6=⌊k−1
L ⌋=⌊ l−1

L ⌋, ⌊ i−1
L ⌋=⌊ l−1

L ⌋ 6=⌊ j−1
L ⌋=⌊k−1

L ⌋ : γijkl=0

δcγ,ijkl = 1, δsγ,ijkl = 0 (D.26)

• 2 equal values, 2 different values: aijkl = a2
1a2a3

δaijkl =

∫

a1

∫

a2

∫

a3

a2
1a2a3 fα(a1)fα(a2)fα(a3) da1da2da3 = σ2

aµ
2
a (D.27)

⌊ i−1
L ⌋ = ⌊k−1

L ⌋ 6= ⌊ j−1
L ⌋ 6= ⌊ l−1

L ⌋ : γijkl = 2γ1 − γ2 − γ3

δcγ,ijkl =

∫

γ1

∫

γ2

∫

γ3

cos
(
2γ1 − γ2 − γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3

=

∫

γ1

∫

γ2

∫

γ3

cos 2γ1

(
cos γ2 cos γ3 − sin γ2 sin γ3

)
+ sin 2γ1 ·

(
sin γ2 cos γ3 + cos γ2 sin γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3

= µc2γ

[(
µcγ
)2 −

(
µsγ
)2
]

+ 2µs2γµ
c
γµ

s
γ = δ̄cγ (D.28)

δsγ,ijkl =

∫

γ1

∫

γ2

∫

γ3

sin
(
2γ1 − γ2 − γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3

=

∫

γ1

∫

γ2

∫

γ3

sin 2γ1

(
cos γ2 cos γ3 − sin γ2 sin γ3

)
− cos 2γ1 ·

(
sin γ2 cos γ3 + cos γ2 sin γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3

= µs2γ

[(
µcγ
)2 −

(
µsγ
)2
]

− 2µc2γµ
c
γµ

s
γ = δ̄sγ (D.29)

⌊ j−1
L ⌋ = ⌊ l−1

L ⌋ 6= ⌊ i−1
L ⌋ 6= ⌊k−1

L ⌋ : γijkl = −2γ1 + γ2 + γ3

δcγ,ijkl = δ̄cγ , δsγ,ijkl = −δ̄sγ (D.30)

all other cases : γijkl = ±(γ1 − γ2)

δcγ,ijkl = σcγ , δsγ,ijkl = 0 (D.31)
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• 4 different values: aijkl = a1a2a3a4, γijkl = γ1 − γ2 + γ3 − γ4

δaijkl =

∫

a1

∫

a2

∫

a3

∫

a4

a1a2a3a4 fα(a1)fα(a2)fα(a3)fα(a4) da1da2da3da4

= µ4
a (D.32)

δcγ,ijkl =

∫

γ1

∫

γ2

∫

γ3

∫

γ4

cos
(
γ1 − γ2 + γ3 − γ4

)
fG(γ1)fG(γ2)fG(γ3)fG(γ4) ·

dγ1dγ2dγ3dγ4

=

∫

γ1

∫

γ2

∫

γ3

∫

γ4

[
cos
(
γ1 − γ2

)
cos
(
γ3 − γ4

)
− sin

(
γ1 − γ2

)
·

sin
(
γ3 − γ4

)]
fG(γ1)fG(γ2)fG(γ3)fG(γ4)dγ1dγ2dγ3dγ4

=
(
σcγ
)2

(D.33)

δsγ,ijkl =

∫

γ1

∫

γ2

∫

γ3

∫

γ4

sin
(
γ1 − γ2 + γ3 − γ4

)
fG(γ1)fG(γ2)fG(γ3)fG(γ4) ·

dγ1dγ2dγ3dγ4

=

∫

γ1

∫

γ2

∫

γ3

∫

γ4

[
sin
(
γ1 − γ2

)
cos
(
γ3 − γ4

)
+ cos

(
γ1 − γ2

)
·

sin
(
γ3 − γ4

)]
fG(γ1)fG(γ2)fG(γ3)fG(γ4)dγ1dγ2dγ3dγ4 = 0 (D.34)

For a symmetric phase pdf fG(γ), i.e. a function fG(γc + γ) = fG(γc − γ), ∀γ,
for a certain γc, it can easily be proved that δ̄sγ = 0, since

δ̄sγ =

∫ ∫ ∫ γc+γI

γc−γI
sin
(
2γ1 − γ2 − γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3

=

∫ ∫ ∫ 0

−γI
sin
(
2γ1 − γ2 − γ3

)
fG(γc + γ1)fG(γc + γ2)fG(γc + γ3) ·

dγ1dγ2dγ3 +

∫ ∫ ∫ γI

0

sin
(
2γ1 − γ2 − γ3

)
fG(γc + γ1)fG(γc + γ2) ·

fG(γc + γ3)dγ1dγ2dγ3

=

∫ ∫ ∫ 0

γI

− sin
(
2γ1 − γ2 − γ3

)
fG(γc − γ1)fG(γc − γ2)fG(γc − γ3) ·

(−dγ1)(−dγ2)(−dγ3) +

∫ ∫ ∫ γI

0

sin
(
2γ1 − γ2 − γ3

)
fG(γc + γ1) ·

fG(γc + γ2)fG(γc + γ3)dγ1dγ2dγ3 = 0 ,

such that for γI = ∞ we obtain

δ̄sγ =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
sin
(
2γ1 − γ2 − γ3

)
fG(γ1)fG(γ2)fG(γ3)dγ1dγ2dγ3 = 0 .
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For a uniform distribution the phase parameters µc2γ and µs2γ are equal to

µc2γ =
sin 2γmax − sin 2γmin

2(γmax − γmin)
, µs2γ =

cos 2γmin − cos 2γmax
2(γmax − γmin)

, (D.35)

whereas for a Gaussian distribution these parameters have to be calculated
numerically.

D.4 Proof of Theorem 10.1

When considering only gain errors, the weighted LS cost function in (10.33)
can be written as

JLS(w,A) = wT Q̄LSw − 2wT ā + dLS , (D.36)

with ā = AR a and Q̄LS = ARQLSAR, and AR equal to

AR =








a0 IL
a1 IL

. . .

aN−1 IL







. (D.37)

The expression wT Q̄LSw can be rewritten as

wT Q̄LSw = wTARQLSARw =

N−1∑

m=0

N−1∑

n=0

amanw
T
m [QLS ]mnwn , (D.38)

with [QLS ]mn an L× L-dimensional sub-matrix of QLS ,

[QLS ]mn = Q
mL+1:(m+1)L , nL+1:(n+1)L
LS , m = 0 . . . N − 1, n = 0 . . . N − 1 .

If we substitute wT
m [QLS ]mnwn by bmn(w), then wT Q̄LSw in (D.38) can be

rewritten as

wT Q̄LSw =

N−1∑

m=0

N−1∑

n=0

amanbmn(w) = α
TBLS(w)α , (D.39)

with α an N -dimensional vector, consisting of the microphone gains,

α =
[
a0 a1 . . . aN−1

]T
. (D.40)

Similarly, if we define cn(w) by wT
n [a]n, with [a]n an L-dimensional sub-vector

of a,
[a]n = anL+1:(n+1)L, n = 0 . . . N − 1 , (D.41)

then the weighted LS cost function can be written as

JLS(α) = α
TBLS(w)α − 2α

T c + dLS . (D.42)
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Since QLS is a positive-(semi)definite matrix, wTQLSw ≥ 0, ∀w, such that

wT Q̄LSw = wTARQLSARw = α
TBLS(w)α ≥ 0, ∀w,∀α (D.43)

and hence BLS(w) is a positive-(semi)definite matrix for every w. Therefore
the weighted LS cost function JLS(α) is a quadratic function (with a single
minimum), such that the maximum value of JLS(α) for all points inside an N -
dimensional hypercube, defined by amin ≤ an ≤ amax, n = 0 . . . N − 1, occurs
on one of the 2N boundary points of the hypercube.

Considering only gain errors, the TLS eigenfilter cost function in (10.22) can
be written as

JTLS(w,A) =
ŵT ˆ̄QTLSŵ

ŵT ˆ̄Qtot
e ŵ

=
ŵT ÂRQ̂TLSÂRŵ

ŵT ÂRQ̂tot
e ÂRŵ

=
α̂
T B̂TLS(w)α̂

α̂
T B̂tot

e (w)α̂
, (D.44)

with Q̂TLS and Q̂tot
e defined in (8.74) and

ÂR =

[
AR 0
0 1

]

, α̂ =

[
α

1

]

. (D.45)

For this cost function, the maximum value of F(w) does not necessarily occur
on one of the boundary points of the hypercube. This is also not necessarily
the case for the non-linear cost function.
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E Calculation of expressions for far-field broad-
band beamforming

In this appendix, the calculation of the following expressions is discussed:

• Appendix E.1 (WLS criterion) : weighted LS, TLS eigenfilter

∫

Θp

∫

Ωp

Re
{
H(ω, θ)

}
dωdθ = wT ·

∫

Θp

∫

Ωp

gR(ω, θ)dωdθ = wTa

• Appendix E.2 (Energy criterion): weighted LS, conventional eigenfilter,
TLS eigenfilter, maximum energy array, non-linear criterion

∫

Θ

∫

Ω

|H(ω, θ)|2dωdθ = wT ·
∫

Θ

∫

Ω

GR(ω, θ)dωdθ · w = wTQew

• Appendix E.3 (Passband error) : conventional eigenfilter

∫

Θp

∫

Ωp

|H(ωc, θc) −H(ω, θ)|2dωdθ = wTQpw =

wT ·
∫

Θp

∫

Ωp

Re
{
[g(ωc, θc) − g(ω, θ)][g(ωc, θc) − g(ω, θ)]H

}
dωdθ · w

• Appendix E.4 (Non-linear criterion) : non-linear criterion

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ)|4dωdθ =

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)2
dωdθ

E.1 WLS criterion

The vector a which needs to be calculated in the weighted LS cost function
and the TLS eigenfilter is equal to

a =

∫

Θp

∫

Ωp

gR(ω, θ)dωdθ . (E.1)

Using (8.7), the ith element of gR(ω, θ) is equal to

giR(ω, θ) = cos

[

ω
(

k +
dn cos θ

c
fs

)]

, i = 1 . . .M , (E.2)

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ . (E.3)
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The ith element of a therefore is equal to

ai =

∫

Θp

∫

Ωp

giR(ω, θ)dωdθ =

∫

Θp

∫

Ωp

cos

[

ω
(

k +
dn cos θ

c
fs

)]

dωdθ . (E.4)

This integral can be considered to be a special case of the integral

∫ θ2

θ1

∫ ω2

ω1

cos
[
ω
(
αi + βi cos θ

)
+ γi

]
dωdθ , (E.5)

with

αi = k βi =
dn
c
fs γi = 0 (E.6)

Solving integrals of the type (E.5) is discussed in Appendix F. Since αi can take
on L distinct values and βi can take on N distinct values, LN = M different
integrals need to be calculated.

E.2 Energy criterion

The energy (both in the stopband as in the passband) is defined as

∫

Θ

∫

Ω

|H(ω, θ)|2dωdθ = wT ·
∫

Θ

∫

Ω

G(ω, θ)dωdθ · w . (E.7)

Using (8.7) and (8.9), the (i, j)-th element of G(ω, θ) is equal to

Gij(ω, θ) = gi(ω, θ)gj(ω, θ)∗ = e−jω
(
(k−l)+ (dn−dm) cos θ

c
fs

)

, i, j = 1 . . .M ,

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ (E.8)

l = mod(j − 1, L) m = ⌊j − 1

L
⌋ . (E.9)

The (i, j)-th element of the real part GR(ω, θ) and the imaginary part GI(ω, θ)
then are equal to

Gij
R(ω, θ) = [GR]

kl
nm (ω, θ) = cos

[

ω
(

(k − l) +
(dn − dm) cos θ

c
fs

)]

(E.10)

Gij
I (ω, θ) = [GI ]

kl
nm (ω, θ) = − sin

[

ω
(

(k − l) +
(dn − dm) cos θ

c
fs

)]

. (E.11)

The real part GR(ω, θ) is symmetric, since

Gji
R(ω, θ) = [GR]

lk
mn (ω, θ) = [GR]

kl
nm (ω, θ) = Gij

R(ω, θ) , (E.12)
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whereas the imaginary part GI(ω, θ) is anti-symmetric, since

Gji
I (ω, θ) = [GI ]

lk
mn (ω, θ) = − [GI ]

kl
nm (ω, θ) = −Gij

I (ω, θ) . (E.13)

The spatial directivity spectrum |H(ω, θ)|2 can be written as

|H(ω, θ)|2 = wTG(ω, θ)w = wTGR(ω, θ)w + jwTGI(ω, θ)w (E.14)

Since GI(ω, θ) is anti-symmetric, wTGI(ω, θ)w = 0, such that the spatial
directivity spectrum can be written as

|H(ω, θ)|2 = wTGR(ω, θ)w (E.15)

which implies that |H(ω, θ)|2 is symmetric in both variables ω and θ, i.e.

|H(ω, θ)|2 = |H(−ω, θ)|2 = |H(ω,−θ)|2 = |H(−ω,−θ)|2 . (E.16)

The energy criterion (E.7) can now be written as
∫

Θ

∫

Ω

|H(ω, θ)|2dωdθ = wT ·
∫

Θ

∫

Ω

GR(ω, θ)dωdθ · w = wTQew , (E.17)

with the (i, j)-th element of Qe is equal to

Qij
e =

∫

Θ

∫

Ω

Gij
R(ω, θ)dωdθ=

∫

Θ

∫

Ω

cos

[

ω
(

(k − l) +
(dn − dm) cos θ

c
fs

)]

dωdθ.

(E.18)
This integral can be considered to be a special case of the integral

∫ θ2

θ1

∫ ω2

ω1

cos
[
ω
(
αij + βij cos θ

)
+ γij

]
dωdθ , (E.19)

with

αij = k − l βij =
(dn − dm)

c
fs γij = 0 (E.20)

Solving integrals of the type (E.19) is discussed in Appendix F. Since αij can
take on 2L−1 distinct values and βij can take on N2−N+1 distinct values (for
the most general microphone configuration), (2L − 1)(N2 − N + 1) different
integrals need to be calculated. For a symmetric microphone array, βij can

only take on N2

2 +1 (for even N) or N2−1
2 +1 (for odd N) distinct values, while

for a uniform microphone array, βij can only take on 2N − 1 distinct values.

Quadratic energy constraint

A special case of the energy criterion is the quadratic energy constraint in the
conventional eigenfilter technique in Section 8.4.1, where the matrix Qtot

e is
defined as

Qtot
e =

∫ π

0

∫ π

0

GR(ω, θ)dωdθ . (E.21)
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The (i, j)-th element of Qtot
e is equal to

Qtot,ij
e =

∫ π

0

∫ π

0

cos
[
ω
(
αij + βij cos θ

)]
dωdθ , (E.22)

which can be further simplified. Since






∫ π

0

sin(p cos θ)dθ = 0

∫ π

0

cos(p cos θ)dθ = πJ0(p) ,

(E.23)

with Jr(·) the Bessel function of the first kind of order r, we can write
∫ π

0

cos
[
ω
(
αij + βij cos θ

)]
dθ =

∫ π

0

cos(βijω cos θ + αijω)dθ (E.24)

=

∫ π

0

cos(βijω cos θ) cos(αijω)dθ −
∫ π

0

sin(βijω cos θ) sin(αijω)dθ

︸ ︷︷ ︸

0

(E.25)

= πJ0(βijω) cos(αijω) , (E.26)

such that

Qtot,ij
e = π

∫ π

0

J0(βijω) cos(αijω)dω , (E.27)

which has to be integrated numerically.

E.3 Passband error

The passband error, used in the conventional eigenfilter technique, is defined
as ∫

Θp

∫

Ωp

|H(ωc, θc) −H(ω, θ)|2dωdθ . (E.28)

The integrand |H(ωc, θc) −H(ω, θ)|2 of (E.28) can be written as

|H(ωc, θc) −H(ω, θ)|2 = |wTg(ωc, θc) − wTg(ω, θ)|2 (E.29)

= wT [g(ωc, θc) − g(ω, θ)] [g(ωc, θc) − g(ω, θ)]
H

w

= wT
[
g(ωc, θc)g

H(ωc, θc) − g(ω, θ)gH(ωc, θc)

− g(ωc, θc)g
H(ω, θ) + g(ω, θ)gH(ω, θ)

]
w . (E.30)

If we define G̃(ω1, θ1, ω2, θ2) as

G̃(ω1, θ1, ω2, θ2) = g(ω1, θ1)g
H(ω2, θ2) , (E.31)

then we can write (E.30) as

wT
[

G(ωc, θc) − G̃(ω, θ, ωc, θc) − G̃(ωc, θc, ω, θ) + G(ω, θ)
]

︸ ︷︷ ︸

Ĝ(ωc,θc,ω,θ)=Ĝ(ω,θ,ωc,θc)

w . (E.32)
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The (i, j)-th element of G̃(ω1, θ1, ω2, θ2) is equal to

G̃ij(ω1, θ1, ω2, θ2) = e−jω1

(
k+

dn cos θ1
c

fs

)

· ejω2

(
l+

dm cos θ2
c

fs

)

, (E.33)

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ (E.34)

l = mod(j − 1, L) m = ⌊j − 1

L
⌋ . (E.35)

The matrix Ĝ(ωc, θc, ω, θ) is complex Hermitian, since Ĝji(ωc, θc, ω, θ)
∗ =

Ĝij(ωc, θc, ω, θ), because







Gji(ωc, θc)
∗ = ejωc

(
l+ dm cos θc

c
fs

)

· e−jωc
(
k+ dn cos θc

c
fs

)

= Gij(ωc, θc)

G̃ji(ω, θ, ωc, θc)
∗ = ejω

(
l+ dm cos θ

c
fs

)

· e−jωc
(
k+ dn cos θc

c
fs

)

= G̃ij(ωc, θc, ω, θ)

G̃ji(ωc, θc, ω, θ)
∗ = ejωc

(
l+ dm cos θc

c
fs

)

· e−jω
(
k+ dn cos θ

c
fs

)

= G̃ij(ω, θ, ωc, θc)

Gji(ω, θ)∗ = ejω
(
l+ dm cos θ

c
fs

)

· e−jω
(
k+ dn cos θ

c
fs

)

= Gij(ω, θ) .

This implies that the real part ĜR(ωc, θc, ω, θ) is symmetric and the imaginary

part ĜI(ωc, θc, ω, θ) is anti-symmetric, such that wT ĜI(ωc, θc, ω, θ)w = 0, and
(E.30) can be written as

|H(ωc, θc) −H(ω, θ)|2 = wT ĜR(ωc, θc, ω, θ)w

= wT
[

GR(ωc, θc) − G̃R(ω, θ, ωc, θc)

− G̃R(ωc, θc, ω, θ) + GR(ω, θ)
]

w .

(E.36)

The (i, j)-th element of G̃R(ω1, θ1, ω2, θ2) is equal to

G̃ij
R(ω1, θ1, ω2, θ2) = cos

[

ω1

(

k +
dn cos θ1

c
fs

)

− ω2

(

l +
dm cos θ2

c
fs

)]

,

(E.37)
such that the following symmetry properties hold,

G̃R(ωc, θc, ω, θ) = G̃R(−ωc, θc,−ω, θ)
= G̃R(ωc,±θc, ω,±θ) = G̃R(−ωc,±θc,−ω,±θ) .

The passband error (E.28) can now be written as

∫

Θp

∫

Ωp

|H(ωc, θc) −H(ω, θ)|2dωdθ = wT ·
∫

Θp

∫

Ωp

ĜR(ωc, θc, ω, θ)dωdθ · w

= wTQpw . (E.38)
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The (i, j)-th element of Qp is equal to

Qij
p =

∫

Θp

∫

Ωp

Ĝij
R(ωc, θc, ω, θ)dωdθ (E.39)

=

∫

Θp

∫

Ωp

cos

[

ωc

(

(k − l) +
(dn − dm) cos θc

c
fs

)]

dωdθ

−
∫

Θp

∫

Ωp

cos

[

ω
(

k +
dn cos θ

c
fs

)

− ωc

(

l +
dm cos θc

c
fs

)]

dωdθ

−
∫

Θp

∫

Ωp

cos

[

ω
(

l +
dm cos θ

c
fs

)

− ωc

(

k +
dn cos θc

c
fs

)]

dωdθ

+

∫

Θp

∫

Ωp

cos

[

ω
(

(k − l) +
(dn − dm) cos θ

c
fs

)]

dωdθ . (E.40)

All these integrals can again be considered to be special cases of the integral

∫ θ2

θ1

∫ ω2

ω1

cos
[
ω
(
αij + βij cos θ

)
+ γij

]
dωdθ , (E.41)

with

αij = 0 αij = k

βij = 0 βij = dn
c fs

γij = ωc

(

(k − l) + (dn−dm) cos θc
c fs

)

γij = −ωc
(

l + dm cos θc
c fs

)

αij = l αij = k − l

βij = dm
c fs βij = dn−dm

c fs

γij = −ωc
(

k + dn cos θc
c fs

)

γij = 0

(E.42)

Solving integrals of the type (E.41) is discussed in Appendix F. For computing
the passband error 2(2L− 1)(N2 −N + 1) + 2(LN)2 different integrals need to
be calculated.

E.4 Non-linear criterion

Calculation of the cost function Jabs(w)

For calculating the non-linear cost function J̄NL(w) in (8.31), the criterion

Jabs(w) = 2

∫

Θ

∫

Ω

|H(ω, θ)|dωdθ (E.43)

needs to be computed (assuming F (ω, θ) = 1 and |D(ω, θ)| = 1 without loss of
generality). Using (E.15), the integrand |H(ω, θ)| can be written as

|H(ω, θ)| =
√

wTGR(ω, θ)w =

√
√
√
√

M∑

i=1

M∑

j=1

wiwjG
ij
R(ω, θ) , (E.44)
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with wi the ith element of w. Using (E.10) and (E.20), Jabs(w) can be written
as

Jabs(w) = 2

∫

Θ

∫

Ω

√
√
√
√

M∑

i=1

M∑

j=1

wiwj cos
[
ω
(
αij + βij cos θ

)]
dωdθ . (E.45)

Because of the square root, the filter coefficients can not be extracted from
the double integral, and for every w the double integrals need to be recomputed
numerically.

Calculation of cost function Jsum(w)

For calculating the non-linear cost function JNL(w) in (8.35), the criterion

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ)|4dωdθ =

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)2
dωdθ (E.46)

needs to be calculated (both for the passband and for the stopband). In this
section we will show that is possible to calculate Jsum(w) without having to
recalculate double integrals for every w.

Using (8.8) and (8.9), the integrand |H(ω, θ)|4 can be written as

|H(ω, θ)|4 =
(
wTG(ω, θ)w

)(
wTG(ω, θ)w

)
(E.47)

=

( M∑

i=1

M∑

j=1

wiwjG
ij(ω, θ)

)( M∑

k=1

M∑

l=1

wkwlG
kl(ω, θ)

)

(E.48)

=
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl g
i(ω, θ)gj(ω, θ)∗ gk(ω, θ)gl(ω, θ)∗

=

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl e
−jω
(
αijkl+βijkl cos θ

)

, (E.49)

with

αijkl = mod(i− 1, L) − mod(j − 1, L) + mod(k − 1, L) − mod(l − 1, L)

βijkl =
fs
c

(

d⌊ i−1
L

⌋ − d⌊ j−1
L

⌋ + d⌊ k−1
L

⌋ − d⌊ l−1
L

⌋

)

(E.50)
Since |H(ω, θ)|4 is real (and the filter coefficients are real), only the real part
of the exponential function has to be considered, such that

|H(ω, θ)|4 =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl cos
[
ω
(
αijkl + βijkl cos θ

)]
, (E.51)
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and Jsum(w) can be written as

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ)|4dωdθ =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwlρijkl (E.52)

with

ρijkl =

∫

Θ

∫

Ω

cos
[
ω
(
αijkl + βijkl cos θ

)]
dωdθ . (E.53)

These integrals are discussed in Appendix F and only need to be computed
once (since ρijkl is independent of w).

As can be seen, αijkl can take on 4L − 3 distinct values (−4L + 2 . . . 4L − 2)
and since

βijkl = βkjil = βilkj = βklij , (E.54)

βijkl can only take on N4−2N3+7N2−6N
4 + 1 distinct values for the most general

microphone configuration. Moreover, since αjilk = −αijkl and βjilk = −βijkl,
the following symmetry properties hold for ρijkl,

ρijkl = ρkjil = ρilkj = ρklij = ρjilk = ρlijk = ρjkli = ρlkji . (E.55)

Therefore (2L − 2)
(
N4−2N3+7N2−6N

4 + 1
)

different integrals ρijkl need to be
computed.

Remark E.1 Although |H(ω, θ)|4 is equal to (wTG(ω, θ)w)(wTG(ω, θ)w), it
is not possible to represent Jsum(w) in the form (wTAw)(wTBw), since it is
not possible to write ρijkl as aij · bkl. △

Calculation of J̄sum(w) for omni-directional, frequency-flat microp-
hones

When taking into account the microphone characteristics (cf. Section 10.2.2),
the criterion

J̄sum(w) =

∫

Θ

∫

Ω

F (ω, θ)|H(ω, θ)|4dωdθ =

∫

Θ

∫

Ω

F (ω, θ)
(
wT Ḡ(ω, θ)w

)2
dωdθ

needs to be calculated. Using (10.8), the (i, j)-th element of Ḡ(ω, θ) for omni-
directional, frequency-flat microphones is equal to

Ḡij(ω, θ) = aname
−j(ψn−ψm)Gij(ω, θ) (E.56)

= aname
−j

h
ω
(
(k−l)+ (dn−dm) cos θ

c
fs

)
+(ψn−ψm)

i
. (E.57)
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Hence, the expression |H(ω, θ)|4 can be written as

|H(ω, θ)|4 =
(
wT Ḡ(ω, θ)w

)(
wT Ḡ(ω, θ)w

)
(E.58)

=

( M∑

i=1

M∑

j=1

wiwjḠ
ij(ω, θ)

)( M∑

k=1

M∑

l=1

wkwlḠ
kl(ω, θ)

)

(E.59)

=
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl aijkl e
−j

h
ω
(
αijkl+βijkl cos θ

)
+ψijkl

i
, (E.60)

with αijkl and βijkl defined in (E.50) and

aijkl = a⌊ i−1
L

⌋ · a⌊ j−1
L

⌋ · a⌊ k−1
L

⌋ · a⌊ l−1
L

⌋
ψijkl = ψ⌊ i−1

L
⌋ − ψ⌊ j−1

L
⌋ + ψ⌊ k−1

L
⌋ − ψ⌊ l−1

L
⌋

(E.61)

Since |H(ω, θ)|4 is real (and the filter coefficients are real), only the real part
of the exponential function in (E.60) has to be considered, i.e.

|H(ω, θ)|4 =
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl aijkl

(

cos
[
ω
(
αijkl + βijkl cos θ

)]
·

cosψijkl − sin
[
ω
(
αijkl + βijkl cos θ

)]
· sinψijkl

)

. (E.62)

Hence, J̄sum(w) can be written as

J̄sum(w) =
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwl aijkl

(

cosψijkl · ρijkl − sinψijkl · ρ◦ijkl
)

︸ ︷︷ ︸

ρ̄ijkl

(E.63)
with

ρijkl =

∫

Θ

∫

Ω

F (ω, θ) cos
[
ω
(
αijkl + βijkl cos θ

)]
dωdθ (E.64)

ρ◦ijkl =

∫

Θ

∫

Ω

F (ω, θ) sin
[
ω
(
αijkl + βijkl cos θ

)]
dωdθ . (E.65)

The calculation of these integrals is discussed in Appendix F.

Calculation of gradient ∂Jsum(w)
∂w

In many optimisation techniques the gradient of the cost function is required.
This gradient can either be approximated numerically or can be supplied in
analytical form, which is more robust. The gradient ∂Jsum(w)

∂w is equal to

∂Jsum(w)

∂w
=









∂Jsum(w)
∂w1

∂Jsum(w)
∂w2

...
∂Jsum(w)
∂wM









, (E.66)
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and can be calculated by taking the derivative of Jsum(w) in (E.46), i.e.

∂Jsum(w)

∂w
=

∫

Θ

∫

Ω

∂

∂w

(
wTG(ω, θ)w

)2
dωdθ (E.67)

= 2

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)(
G(ω, θ) + GT (ω, θ)

)
wdωdθ (E.68)

= 4

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
GR(ω, θ)dωdθ · w , (E.69)

such that
∂Jsum(w)

∂w
= 4Qsum(w) · w (E.70)

with

Qsum(w) = Re

{∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
G(ω, θ)dωdθ

}

. (E.71)

The (m,n)-th element of Qsum(w) is equal to

Qmn
sum(w) = Re

{∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
Gmn(ω, θ)dωdθ

}

(E.72)

=
M∑

i=1

M∑

j=1

wiwj

∫

Θ

∫

Ω

Re
{
gi(ω, θ)gj(ω, θ)∗gm(ω, θ)gn(ω, θ)∗

}
dωdθ

=

M∑

i=1

M∑

j=1

wiwjρijmn , (E.73)

such that the nth element of the gradient ∂Jsum(w)
∂w can be computed as

∂Jsum(w)

∂wn
= 4

M∑

k=1

Qkn
sum(w)wk , (E.74)

which can eventually be written as

∂Jsum(w)

∂wn
= 4

M∑

i=1

M∑

j=1

M∑

k=1

wiwjwkρijkn (E.75)

The matrix Qsum(w) is a symmetric positive-definite matrix, since

Qnm
sum(w) =

M∑

i=1

M∑

j=1

wiwjρijnm =
M∑

i=1

M∑

j=1

wiwjρijmn = Qmn
sum(w) , (E.76)

and since

Qsum(w) =

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
GR(ω, θ)dωdθ (E.77)
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is the integral, i.e. the infinite summation of the positive-definite matrices
(
wTG(ω, θ)w

)
GR(ω, θ). Only for w = 0, the matrix Qsum(w) = 0 becomes

positive semi-definite.

Calculation of Hessian ∂2Jsum(w)
∂2w

For large-scale (constrained) optimisation methods, it is advisable also to pro-
vide the Hessian of the cost function, which is a symmetric matrix defined
as

∂2Jsum(w)

∂2w
=










∂2Jsum(w)
∂2w1

∂2Jsum(w)
∂w1∂w2

. . . ∂2Jsum(w)
∂w1∂wM

∂2Jsum(w)
∂w2∂w1

∂2Jsum(w)
∂2w2

. . . ∂2Jsum(w)
∂w2∂wM

...
...

...
∂2Jsum(w)
∂wM∂w1

∂2Jsum(w)
∂wM∂w2

. . . ∂2Jsum(w)
∂2wM










. (E.78)

The Hessian can be calculated by taking the derivative of ∂Jsum(w)
∂w in (E.68),

∂2Jsum(w)

∂2w
= 2

∫

Θ

∫

Ω

∂

∂w

(
wTG(ω, θ)w

)(
G(ω, θ) + GT (ω, θ)

)
wdωdθ

= 2

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)(
G(ω, θ) + GT (ω, θ)

)
dωdθ +

2

∫

Θ

∫

Ω

(
G(ω, θ) + GT (ω, θ)

)
wwT

(
G(ω, θ) + GT (ω, θ)

)
dωdθ

= 4Re

{∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
G(ω, θ) + G(ω, θ)wwTG(ω, θ) +

GT (ω, θ)wwTG(ω, θ)dωdθ

}

, (E.79)

such that the (m,n)-th element of ∂2Jsum(w)
∂2w

is equal to

∂2Jsum(w)

∂wm∂wn
= 4Re

{∫

Θ

∫

Ω

( M∑

i=1

M∑

j=1

wiwjG
ij(ω, θ)

)

Gmn(ω, θ)dωdθ

}

+

4Re

{∫

Θ

∫

Ω

( M∑

i=1

wiG
mi(ω, θ)

)( M∑

j=1

wjG
jn(ω, θ)

)

dωdθ

}

+

4Re

{∫

Θ

∫

Ω

( M∑

i=1

wiG
im(ω, θ)

)( M∑

j=1

wjG
jn(ω, θ)

)

dωdθ

}

= 4

M∑

i=1

M∑

j=1

wiwj
(
ρijmn + ρmijn + ρimjn

)
, (E.80)
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which can eventually be written, using (E.55), as

∂2Jsum(w)

∂wm∂wn
= 4

M∑

i=1

M∑

j=1

wiwj
(
2ρijmn + ρimjn

)

(E.81)

The Hessian ∂2Jsum(w)
∂2w

is a positive-definite matrix, since

∂2Jsum(w)

∂2w
= 4

∫

Θ

∫

Ω

(
wTG(ω, θ)w

)
GR(ω, θ)+2GR(ω, θ)wwTGR(ω, θ)dωdθ

(E.82)
is the integral, i.e. infinite summation, of positive-definite matrices. It can
easily be shown that GR(ω, θ)wwTGR(ω, θ) is a positive-definite matrix, since

w̄TGR(ω, θ)wwTGR(ω, θ)w̄ =
(
w̄TGR(ω, θ)w

)2
> 0, ∀w, w̄ 6= 0 . (E.83)

In order to perform a local stability analysis, the quadratic form wT ∂
2Jsum(w)
∂2w

w
can be calculated as

wT ∂
2Jsum(w)

∂2w
w =

M∑

m=1

M∑

n=1

wmwn
∂2Jsum(w)

∂wm∂wn
(E.84)

= 4
M∑

i=1

M∑

j=1

M∑

m=1

M∑

n=1

wiwjwmwn
(
2ρijmn + ρimjn

)
(E.85)

= 12

M∑

i=1

M∑

j=1

M∑

m=1

M∑

n=1

wiwjwmwnρijmn , (E.86)

using the expression

M∑

i=1

M∑

j=1

w(i)w(j)ρijkn =
M∑

i=1

M∑

j=1

w(i)w(j)ρjikn =
M∑

i=1

M∑

j=1

w(i)w(j)ρijnk .

(E.87)
Hence, the quadratic form can be written as

wT ∂
2Jsum(w)

∂2w
w = 12wTQsum(w)w = 12Jsum(w) (E.88)

This quantity is always positive (or equal to zero), since

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ)|4dωdθ (E.89)

is an integral, i.e. infinite summation, of positive values.
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F Solving integrals for far-field assumption

The integral

I =

∫ θ2

θ1

∫ ω2

ω1

cos
[
ω
(
α+ β cos θ

)
+ γ
]
dωdθ (F.1)

is equal to

∫ θ2

θ1

sin
[
ω2

(
α+ β cos θ

)
+ γ
]

α+ β cos θ
dθ −

∫ θ2

θ1

sin
[
ω1

(
α+ β cos θ

)
+ γ
]

α+ β cos θ
dθ , (F.2)

such that in fact we need to solve integrals of the type (F.2),

Iθ(ω) =

∫ θ2

θ1

sin
[
ω
(
α+ β cos θ

)
+ γ
]

α+ β cos θ
dθ (F.3)

Normally this integral can be computed numerically without any problem (e.g.
using the MATLAB commands quad or quad8), but some special cases occur.

In robust broadband beamformer design, also integrals of the type

I =

∫ θ2

θ1

∫ ω2

ω1

sin
[
ω
(
α+ β cos θ

)
+ γ
]
dωdθ , (F.4)

arise. However, these can be considered to be special case of (F.1), where γ
has been replaced by γ − π/2.

CASE 1: β = 0, α 6= 0

The integral I now reduces to

I =

∫ ω2

ω1

cos(ωα+ γ)dω · (θ2 − θ1) =
sin(ω2α+ γ) − sin(ω1α+ γ)

α
· (θ2 − θ1) .

(F.5)

CASE 2: β = 0, α = 0

The integral I now reduces to

I =

∫ θ2

θ1

∫ ω2

ω1

cos γ dωdθ = cos γ · (θ2 − θ1) · (ω2 − ω1) . (F.6)

CASE 3: ∃ θn ∈ ]θ1, θ2[, α+ β cos θn = 0

The singularity θn in the denominator will occur at

cos θn = −α
β
, (F.7)
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Figure F.1: Function f(ω, θ) with singularity at θn = 2.09 (α = 1, β = 2,
ω = 2) with (a) γ = 0 and (b) γ = 0.1

and hence will only occur if |α| ≤ |β|. Because all considered functions are
symmetric in θ, we do not need to consider negative angles θ and can assume
that 0 ≤ θ ≤ π. Hence, sin θn will always be positive and can be written as

sin θn =

√

1 − α2

β2
, β sin θn = β

√

1 − α2

β2
. (F.8)

Because of the singularity θn in the denominator, numerically calculating the
integral Iθ(ω) can give rise to numerical problems. Figure F.1a depicts the
function

f(ω, θ) =
sin
[
ω
(
α+ β cos θ

)
+ γ
]

α+ β cos θ
(F.9)

for α = 1, β = 2, ω = 2 and γ = 0 in the range [0, π], while figure F.1b depicts
f(ω, θ) for γ = 0.1. As can be seen, if γ = 0, lim

θ→θn
f(ω, θ) = ω, whereas if γ 6= 0,

lim
θ→θn

f(ω, θ) = ±∞. Numerically, this implies that there only exists a problem

in calculating Iθ(ω) if γ 6= 0, so from now on we will assume that γ 6= 0.

If the singularity θn exists in the integration interval ]θ1, θ2[, the integral Iθ(ω)
can be split up as

Iθ(ω) =

∫ θn−ǫ

θ1

f(ω, θ) dθ

︸ ︷︷ ︸

Iθ,1(ω)

+

∫ θn+ǫ

θn−ǫ
f(ω, θ) dθ

︸ ︷︷ ︸

Iθ,2(ω)

+

∫ θ2

θn+ǫ

f(ω, θ) dθ

︸ ︷︷ ︸

Iθ,3(ω)

. (F.10)

The integrals Iθ,1(ω) and Iθ,3(ω) can be calculated numerically without any
problem, such that we will concentrate on the calculation of the integral Iθ,2(ω),
containing the singularity θn.
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First, we derive a function g(θ) which is a good approximation for f(ω, θ)
around θn. The Taylor-expansions of cos θ and sin θ around 0 are

cos θ =

∞∑

k=0

(−1)k
θ2k

(2k)!
= 1 + O(θ2) (F.11)

sin θ =

∞∑

k=0

(−1)k
θ2k+1

(2k + 1)!
= θ + O(θ3) , (F.12)

such that the Taylor-expansion of cos θ around θn is

cos θ = cos [θn + (θ − θn)] (F.13)

= cos θn · cos(θ − θn) − sin θn · sin(θ − θn) (F.14)

= −α
β

[
1 + O

(
(θ − θn)

2
)]

−
√

1 − α2

β2

[
(θ − θn) + O

(
(θ − θn)

3
)]

,

such that

α+ β cos θ = −β
√

1 − α2

β2
(θ − θn) + O

(
(θ − θn)

2
)
. (F.15)

In a first approximation the function f(ω, θ) can be approximated by

sin
[

ωβ
√

1 − α2

β2 (θ − θn) − γ
]

β
√

1 − α2

β2 (θ − θn)
, (F.16)

which can be further simplified (since we assumed γ 6= 0) to

g(θ) = − sin γ

β
√

1 − α2

β2 (θ − θn)
(F.17)

Note that g(θ) is independent of ω. We now define the function

f̄(ω, θ) = f(ω, θ) − g(θ) . (F.18)

Figure F.2a depicts the function f̄(ω, θ) for α = 1, β = 2, ω = 2 and γ = 0 in
the range [0, π], while figure F.1b depicts f̄(ω, θ) for γ = 0.1. As can be seen,
for any γ, lim

θ→θn
f̄(ω, θ) is finite.

The integral Iθ,2(ω) can now be written as

Iθ,2(ω) =

∫ θn+ǫ

θn−ǫ
f(ω, θ) dθ =

∫ θn+ǫ

θn−ǫ
f̄(ω, θ) dθ +

∫ θn+ǫ

θn−ǫ
g(θ) dθ (F.19)
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Figure F.2: Function f̄(ω, θ) with singularity at θn = 2.09 (α = 1, β = 2,
ω = 2) with (a) γ = 0 and (b) γ = 0.1

The integral
∫ θn+ǫ

θn−ǫ g(θ) dθ is equal to 0, since

∫ θn+ǫ

θn−ǫ
g(θ) dθ = −

∫ θn+ǫ

θn−ǫ

sin γ

β
√

1 − α2

β2 (θ − θn)
dθ = − sin γ

β
√

1 − α2

β2

∫ ǫ

−ǫ

dφ

φ
= 0 ,

(F.20)

such that we can approximate the integral
∫ θn+ǫ

θn−ǫ f̄(ω, θ) dθ and hence Iθ,2(ω)
as

Iθ,2(ω) =

∫ θn+ǫ

θn−ǫ
f̄(ω, θ) dθ ≈ 2ǫ · lim

θ→θn
f̄(ω, θ) . (F.21)

We will now derive an expression for this (finite) limit value. The function
f̄(ω, θ) can be written as

f̄(ω, θ) =
sin
[
ω
(
α+ β cos θ

)
+ γ
]

α+ β cos θ
+

sin γ

β
√

1 − α2

β2 (θ − θn)
(F.22)

=
sin
[
ω
(
α+ β cos θ

)
+ γ
]
β
√

1 − α2

β2 (θ − θn) + sin γ
(
α+ β cos θ

)

(
α+ β cos θ

)
β
√

1 − α2

β2 (θ − θn)

=
gD(θ)

gN (θ)
. (F.23)

Since

lim
θ→θn

f̄(ω, θ) =
gD(θn)

gN (θn)
=

0

0
, (F.24)

we need L’Hôpital’s rule to calculate the limit, i.e.

lim
θ→θn

gD(θ)

gN (θ)
=

lim
θ→θn

g′D(θ)

lim
θ→θn

g′N (θ)
. (F.25)
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The first order derivatives g′D(θ) and g′N (θ) are equal to

g′D(θ) = cos
[
ω
(
α+ β cos θ

)
+ γ
]
(−βω sin θ)β

√

1 − α2

β2
(θ − θn)

+ sin
[
ω
(
α+ β cos θ

)
+ γ
]
β

√

1 − α2

β2
− sin γ(β sin θ) (F.26)

g′N (θ) = −β2 sin θ

√

1 − α2

β2
(θ − θn) +

(
α+ β cos θ

)
β

√

1 − α2

β2
. (F.27)

Since g′D(θn) = g′N (θn) = 0, we need L’Hôpital’s rule once more and have to
calculate the second-order derivatives g′′D(θ) and g′′N (θ),

g′′D(θ) = − sin
[
ω
(
α+ β cos θ

)
+ γ
]
(βω sin θ)2β

√

1 − α2

β2
(θ − θn)

+ cos
[
ω
(
α+ β cos θ

)
+ γ
]
(−βω cos θ)β

√

1 − α2

β2
(θ − θn)

+2 cos
[
ω
(
α+ β cos θ

)
+ γ
]
(−βω sin θ)β

√

1 − α2

β2

− sin γ(β cos θ) (F.28)

g′′N (θ) = −β2 cos θ

√

1 − α2

β2
(θ − θn) − 2β2 sin θ

√

1 − α2

β2
. (F.29)

The second-order derivatives g′′D(θ) and g′′N (θ) evaluated at θn give

g′′D(θn) = 2ω cos γ(α2 − β2) + α sin γ (F.30)

g′′N (θn) = 2(α2 − β2) , (F.31)

such that

lim
θ→θn

f̄(ω, θ) = ω cos γ +
α sin γ

2(α2 − β2)
, (F.32)

and

Iθ,2(ω) ≈ ǫ

[

2ω cos γ +
α sin γ

α2 − β2

]

(F.33)

If γ = 0, this integral reduces to Iθ,2(ω) ≈ 2ǫω.

Remark F.1 Since for any γ, lim
θ→θn

f̄(ω, θ) is finite, the function f̄(ω, θ) can

be integrated numerically without any problem. In fact the total integral I can
be written as

I = Iθ(ω2) − Iθ(ω1) =

∫ θ2

θ1

f(ω2, θ) dθ −
∫ θ2

θ1

f(ω1, θ) dθ (F.34)
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=

∫ θ2

θ1

f̄(ω2, θ) dθ −
∫ θ2

θ1

f̄(ω1, θ) dθ , (F.35)

which can be calculated numerically without any problem. △

Remark F.2 If θ1 = θn or θ2 = θn, then the integral Iθ(ω) cannot be decom-
posed as in (F.10), but is decomposed as (assuming θ2 = θn)

Iθ(ω) =

∫ θn−ǫ

θ1

f(ω, θ) dθ

︸ ︷︷ ︸

Iθ,1

+

∫ θn

θn−ǫ
f(ω, θ) dθ

︸ ︷︷ ︸

Iθ,2

. (F.36)

According to (F.19), the integral Iθ,2(ω) is equal to

Iθ,2(ω) =

∫ θn

θn−ǫ
f̄(ω, θ) dθ +

∫ θn

θn−ǫ
g(θ) dθ , (F.37)

but since
∫ θn
θn−ǫ g(θ) dθ is equal to ±∞ if γ 6= 0 and equal to 0 if γ = 0, the

integral Iθ,2(ω) = ±∞ if γ 6= 0 and Iθ,2(ω) = ǫω if γ = 0. However, the case
θ1 = θn or θ2 = θn is very unlikely to occur (and slightly changing the value of
θ1 or θ2 actually solves the problem). △

CASE 4: α = β 6= 0

In this case, there is a singularity at θn = π, such that sin θn = 0 and (F.14)
becomes

cos θ = cos θn · cos(θ − θn) (F.38)

= −
[

1 − (θ − θn)
2

2
+ O

(
(θ − θn)

4
)
]

, (F.39)

such that

α+ β cos θ = α(1 + cos θ) = α
(θ − θn)

2

2
+ O

(
(θ − θn)

4
)
. (F.40)

In a first approximation the function f(ω, θ) now can be approximated by

sin
[

ωα (θ−θn)2

2 + γ
]

α (θ−θn)2

2

, (F.41)

which can be further simplified to

g(θ) =
2 sin γ

α(θ − θn)2
. (F.42)
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A problem now arises if θ2 = θn = π and γ 6= 0 (cf. remark F.2), since then
the integral

∫ π

π−ǫ g(θ) dθ = ±∞. Therefore the integral Iθ,2(ω) = ±∞ if γ 6= 0
and Iθ,2(ω) = ǫω if γ = 0. However, the case α = β 6= 0 is very unlikely to
occur, since α is always an integer number, whereas

β =
∆d

c
fs , (F.43)

with ∆d a value related to inter-microphone distances.
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G Calculation of expressions for near-field broad-
band beamforming

In this appendix, the calculation of the following expressions is discussed:

• Appendix G.1 (WLS criterion) : weighted LS, TLS eigenfilter

∫

Θp

∫

Ωp

Re
{
H(ω, θ, r)

}
dωdθ = wT ·

∫

Θp

∫

Ωp

gR(ω, θ, r)dωdθ = wTa

• Appendix G.2 (Energy criterion): weighted LS, conventional eigenfilter,
TLS eigenfilter, maximum energy array, non-linear criterion

∫

Θ

∫

Ω

|H(ω, θ, r)|2dωdθ = wT ·
∫

Θ

∫

Ω

GR(ω, θ, r)dωdθ · w = wTQew

• Appendix G.3 (Passband error) : conventional eigenfilter

∫

Θp

∫

Ωp

|H(ωc, θc, r) −H(ω, θ, r)|2dωdθ = wTQpw =

wT

∫

Θp

∫

Ωp

Re
{
[g(ωc, θc, r) − g(ω, θ, r)][g(ωc, θc, r) − g(ω, θ, r)]H

}
dωdθw

• Appendix G.4 (Non-linear criterion) : non-linear criterion

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ, r)|4dωdθ =

∫

Θ

∫

Ω

(
wTG(ω, θ, r)w

)2
dωdθ

G.1 WLS criterion

Using (9.4), (9.6) and (9.11), the ith element of gR(ω, θ, r) is equal to

giR(ω, θ, r) =
r cos

[

ω
(

k +
√
pn+qn cos θ−r

c fs

)]

√
pn + qn cos θ

, i = 1 . . .M , (G.1)

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ . (G.2)

The ith element of a therefore is equal to

ai =

∫

Θp

∫

Ωp

giR(ω, θ, r)dωdθ =

∫

Θp

∫

Ωp

r cos
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)]

√
pn + qn cos θ

dωdθ .

(G.3)
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M different integrals need to be calculated. The integral in (G.3) can be
calculated as

I =

∫ θ2

θ1

∫ ω2

ω1

r cos
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)]

√
pn + qn cos θ

dωdθ = IWLS(ω2) − IWLS(ω1) ,

with

IWLS(ω) =

∫ θ2

θ1

r sin
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)]

√
pn + qn cos θ

(

k +
√
pn+qn cos θ−r

c fs

)dθ , (G.4)

which can be integrated numerically without any problem. A special case
occurs when dn = 0, since then

√
pn + qn cos θ = r.

Special case 1: dn = 0, k 6= 0.

In this case the integral I reduces to

I =

∫ θ2

θ1

∫ ω2

ω1

cos(ωk)dωdθ =
sin(ω2k) − sin(ω1k)

k
· (θ2 − θ1) . (G.5)

Special case 2: dn = 0, k = 0.

In this case the integral I reduces to

I =

∫ θ2

θ1

∫ ω2

ω1

1 dωdθ = (ω2 − ω1) · (θ2 − θ1) . (G.6)

G.2 Energy criterion

Using (9.11) and (9.13), the (i, j)-th element of G(ω, θ, r) is equal to

Gij(ω, θ, r) = gi(ω, θ, r)gj(ω, θ, r)∗ (G.7)

=
r2 e−jω

(
(k−l)+ rn(θ,r)−rm(θ,r)

c
fs

)

rn(θ, r)rm(θ, r)
(G.8)

=
r2 e−jω

(
(k−l)+

√
pn+qn cos θ−

√
pm+qm cos θ

c
fs

)

√
pn + qn cos θ

√
pm + qm cos θ

,

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ (G.9)

l = mod(j − 1, L) m = ⌊j − 1

L
⌋ . (G.10)

The (i, j)-th element of the real and the imaginary part of G(ω, θ, r) then are
equal to

Gij
R(ω, θ, r) = [GR]

kl
nm (ω, θ, r) =

r2 cos
[

ω
(

(k − l) + rn(θ,r)−rm(θ,r)
c fs

)]

rn(θ, r)rm(θ, r)
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Gij
I (ω, θ, r) = [GI ]

kl
nm (ω, θ, r) = −

r2 sin
[

ω
(

(k − l) + rn(θ,r)−rm(θ,r)
c fs

)]

rn(θ, r)rm(θ, r)
.

The real part is symmetric and the imaginary part is anti-symmetric, since

Gji
R(ω, θ, r) = [GR]

lk
mn (ω, θ, r) = [GR]

kl
nm (ω, θ, r) = Gij

R(ω, θ, r) (G.11)

Gji
I (ω, θ, r) = [GI ]

lk
mn (ω, θ, r) = − [GI ]

kl
nm (ω, θ, r) = −Gij

I (ω, θ, r) . (G.12)

The spatial directivity spectrum |H(ω, θ, r)|2 therefore can be written as

|H(ω, θ, r)|2 = wTGR(ω, θ, r)w (G.13)

which is symmetric in both ω and θ. The (i, j)-th element of Qe is equal to

Qij
e =

∫

Θ

∫

Ω

r2 cos
[

ω
(

(k − l) +
√
pn+qn cos θ−

√
pm+qm cos θ

c fs

)]

√
pn + qn cos θ

√
pm + qm cos θ

dωdθ . (G.14)

Independent of the microphone configuration, (2L − 1)N2 different integrals
need to be calculated. The integral in (G.14) can be calculated as

I =

∫ θ2

θ1

∫ ω2

ω1

r2 cos
[

ω
(

(k − l) +
√
pn+qn cos θ−

√
pm+qm cos θ

c fs

)]

√
pn + qn cos θ

√
pm + qm cos θ

dωdθ

= Ien(ω2) − Ien(ω1) , (G.15)

with Ien(ω) equal to

∫ θ2

θ1

r2 sin
[

ω
(

(k − l) +
√
pn+qn cos θ−

√
pm+qm cos θ

c fs

)]

√
pn + qn cos θ

√
pm + qm cos θ

(

(k − l) +
√
pn+qn cos θ−

√
pm+qm cos θ

c fs

)dθ ,

which can be integrated numerically without any problem. A special case
occurs when dn = dm, since then

√
pn + qn cos θ =

√
pm + qm cos θ.

Special case 1: dn = dm, k 6= l.

In this case the integral I reduces to

I =

∫ θ2

θ1

∫ ω2

ω1

r2 cos [ω(k − l)]

pn + qn cos θ
dωdθ (G.16)

= r2
sin [ω2(k − l)] − sin [ω1(k − l)]

k − l
·
∫ θ2

θ1

1

pn + qn cos θ
dθ . (G.17)

Special case 2: dn = dm, k = l.

In this case the integral I reduces to

I =

∫ θ2

θ1

∫ ω2

ω1

r2

pn + qn cos θ
dωdθ = r2 (ω2 − ω1) ·

∫ θ2

θ1

1

pn + qn cos θ
dθ . (G.18)
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G.3 Passband error

For calculating the passband error, the integrand |H(ωc, θc, r) − H(ω, θ, r)|2
can be written as

|H(ωc, θc, r) −H(ω, θ, r)|2 = |wTg(ωc, θc, r) − wTg(ω, θ, r)|2 (G.19)

= wT
[
g(ωc, θc, r)g

H(ωc, θc, r) − g(ω, θ, r)gH(ωc, θc, r)

− g(ωc, θc, r)g
H(ω, θ, r) + g(ω, θ, r)gH(ω, θ, r)

]
w . (G.20)

If we define G̃(ω1, θ1, ω2, θ2, r) as

G̃(ω1, θ1, ω2, θ2, r) = g(ω1, θ1, r)g
H(ω2, θ2, r) , (G.21)

then we can write (G.20) as

wT
[

G(ωc, θc, r) − G̃(ω, θ, ωc, θc, r) − G̃(ωc, θc, ω, θ, r) + G(ω, θ, r)
]

︸ ︷︷ ︸

Ĝ(ωc,θc,ω,θ,r)=Ĝ(ω,θ,ωc,θc,r)

w .

The (i, j)-th element of G̃(ω1, θ1, ω2, θ2, r) is equal to

G̃ij(ω1, θ1, ω2, θ2, r) =
r2 e−jω1

(
k+

√
pn+qn cos θ1−r

c
fs

)

ejω2

(
l+

√
pm+qm cos θ2−r

c
fs

)

√
pn + qn cos θ1

√
pm + qm cos θ2

,

with

k = mod(i− 1, L) n = ⌊ i− 1

L
⌋ (G.22)

l = mod(j − 1, L) m = ⌊j − 1

L
⌋ . (G.23)

Since Ĝ(ωc, θc, ω, θ, r) is complex Hermitian, the real part ĜR(ωc, θc, ω, θ, r)

is symmetric and the imaginary part ĜI(ωc, θc, ω, θ, r) is anti-symmetric, such
that (G.20) can be written as

|H(ωc, θc, r) −H(ω, θ, r)|2 = wT ĜR(ωc, θc, ω, θ, r)w

= wT
[

G̃R(ωc, θc, ωc, θc, r) − G̃R(ω, θ, ωc, θc, r)

− G̃R(ωc, θc, ω, θ, r) + G̃R(ω, θ, ω, θ, r)
]

w .

(G.24)
The (i, j)-th element of the real part G̃R(ω1, θ1, ω2, θ2, r) is equal to

r2 cos
[

ω1

(

k +
√
pn+qn cos θ1−r

c fs

)

− ω2

(

l +
√
pm+qm cos θ2−r

c fs

)]

√
pn + qn cos θ1

√
pm + qm cos θ2

, (G.25)

such that the (i, j)-th element of Qp is equal to
∫

Θp

∫

Ωp

Ĝij
R(ωc, θc, ω, θ, r)dωdθ =



G. Calculation of expressions for near-field broadband beamforming 333

(a)

∫

Θp

∫

Ωp

r2 cos
[

ωc

(

(k − l) +
√
pn+qn cos θc−

√
pm+qm cos θc

c fs

)]

√
pn + qn cos θc

√
pm + qm cos θc

dωdθ

(b) −
∫

Θp

∫

Ωp

r2 cos
[

ω
(

k+
√
pn+qn cos θ−r

c fs

)

−ωc
(

l+
√
pm+qm cos θc−r

c fs

)]

√
pn + qn cos θ

√
pm + qm cos θc

dωdθ

(c) −
∫

Θp

∫

Ωp

r2 cos
[

ω
(

l+
√
pm+qm cos θ−r

c fs

)

−ωc
(

k+
√
pn+qn cos θc−r

c fs

)]

√
pm + qm cos θ

√
pn + qn cos θc

dωdθ

(d) +

∫

Θp

∫

Ωp

r2 cos
[

ω
(

(k − l) +
√
pn+qn cos θ−

√
pm+qm cos θ

c fs

)]

√
pn + qn cos θ

√
pm + qm cos θ

dωdθ .

The integrals (a) and (d) can be calculated numerically without any problem,
whereas the integrals (b) and (c) are seen to be special cases of the integral

Kij

∫ θ2

θ1

∫ ω2

ω1

cos

[

ω
(

αij +

√
δij+ǫij cos θ−r

c fs

)

+ γij

]

√
δij + ǫij cos θ

dωdθ, (G.26)

with

αij = k αij = l
δij = pn δij = pm
ǫij = qn ǫij = qm
Kij = r2√

pm+qm cos θc
Kij = r2√

pn+qn cos θc

γij = −ωc
(

l +
√
pm+qm cos θc−r

c fs

)

γij = −ωc
(

k +
√
pn+qn cos θc−r

c fs

)

Solving integrals of type (G.26) is discussed in Appendix H. For computing the
passband error, 2(2L−1)N2 +2(LN)2 different integrals need to be calculated.

G.4 Non-linear criterion

For the non-linear criterion, the integrand |H(ω, θ, r)|4 can be written as

(
wTG(ω, θ, r)w

)(
wTG(ω, θ, r)w

)
(G.27)

=

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l)gi(ω, θ, r)gj(ω, θ, r)∗ gk(ω, θ, r)gl(ω, θ, r)∗

=

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l) ·

r4 e−jω
(
αijkl+

√
δi+ǫi cos θ−

√
δj+ǫj cos θ+

√
δk+ǫk cos θ−

√
δl+ǫl cos θ

c
fs

)

√
δi + ǫi cos θ

√
δj + ǫj cos θ

√
δk + ǫk cos θ

√
δl + ǫl cos θ

, (G.28)
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with

αijkl = mod(i− 1, L) − mod(j − 1, L) + mod(k − 1, L) − mod(l − 1, L)

δi = p⌊ i−1
L

⌋ = r2 + d2
⌊ i−1
L

⌋

ǫi = q⌊ i−1
L

⌋ = 2rd⌊ i−1
L

⌋

Since |H(ω, θ, r)|4 is real (and the filter coefficients are real), only the real part
of the exponential function has to be considered, such that

|H(ω, θ)|4 =
M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

w(i)w(j)w(k)w(l) ·

r4 cos

[

ω
(

αijkl +
√
δi+ǫi cos θ−

√
δj+ǫj cos θ+

√
δk+ǫk cos θ−

√
δl+ǫl cos θ

c fs

)]

√
δi + ǫi cos θ

√
δj + ǫj cos θ

√
δk + ǫk cos θ

√
δl + ǫl cos θ

,

and Jsum(w) can be written as

Jsum(w) =

∫

Θ

∫

Ω

|H(ω, θ, r)|4dωdθ =

M∑

i=1

M∑

j=1

M∑

k=1

M∑

l=1

wiwjwkwlρijkl (G.29)

with ρijkl equal to

∫

Θ

∫

Ω

r4cos

[

ω
(

αijkl+
√
δi+ǫi cos θ−

√
δj+ǫj cos θ+

√
δk+ǫk cos θ−

√
δl+ǫl cos θ

c fs

)]

√
δi + ǫi cos θ

√
δj + ǫj cos θ

√
δk + ǫk cos θ

√
δl + ǫl cos θ

dωdθ,

which can be calculated numerically without any problem and which only need
to be computed once (since ρijkl is independent of w). As can be seen, αijkl
can take on 4L − 3 distinct values (−4L + 2 . . . 4L − 2) and because of the
symmetry properties of ρijkl,

ρijkl = ρkjil = ρilkj = ρklij = ρjilk = ρlijk = ρjkli = ρlkji , (G.30)

only (4L− 3)N
4

4 different integrals need to be calculated.

A special case occurs when
√

δi + ǫi cos θ −
√

δj + ǫj cos θ +
√

δk + ǫk cos θ −
√

δl + ǫl cos θ = 0 , (G.31)

which occurs when ⌊ i−1
L ⌋ = ⌊ j−1

L ⌋ and ⌊k−1
L ⌋ = ⌊ l−1

L ⌋ or when ⌊ i−1
L ⌋ = ⌊ l−1

L ⌋
and ⌊ j−1

L ⌋ = ⌊k−1
L ⌋. Suppose that ⌊ i−1

L ⌋ = ⌊ j−1
L ⌋ and ⌊k−1

L ⌋ = ⌊ l−1
L ⌋, then

ρijkl reduces to

ρijkl =

∫

Ω

cos(ωαijkl)dω

∫

Θ

r4

(δi + ǫi cos θ) (δk + ǫk cos θ)
dθ . (G.32)
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H Solving integrals for near-field assumption

This appendix discusses the calculation of the integral

I = K

∫ θ2

θ1

∫ ω2

ω1

cos
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)

+ γ
]

√
pn + qn cos θ

dωdθ , (H.1)

which is required for computing the passband error in the near-field case (cf.
Appendix G.3), with

pn = r2 + d2
n qn = 2rdn

pm = r2 + d2
m qm = 2rdm

K =
r2√

pm + qm cos θc
γ = −ωc

(

l +

√
pm + qm cos θc − r

c
fs

)
(H.2)

or with the indices n-m and k-l interchanged. The integral I can be calculated
as

I = Iθ(ω2) − Iθ(ω1) , (H.3)

with

Iθ(ω) = K

∫ θ2

θ1

sin
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)

+ γ
]

√
pn + qn cos θ

(

k +
√
pn+qn cos θ−r

c fs

)dθ (H.4)

Normally this integral can be computed numerically without any problem (e.g.
using the MATLAB commands quad or quad8), but some special cases occur.

CASE 1: dn = 0, k 6= 0

If dn = 0, then
√
pn + qn cos θ = r, such that the integral I now reduces to

I =
K

r

∫ θ2

θ1

∫ ω2

ω1

cos(ωk + γ)dωdθ (H.5)

=
K

r
· sin(ω2k + γ) − sin(ω1k + γ)

k
· (θ2 − θ1) . (H.6)

CASE 2: dn = 0, k = 0

The integral I now reduces to

I =
K

r

∫ θ2

θ1

∫ ω2

ω1

cos γ dωdθ =
K

r
· cos γ · (θ2 − θ1) · (ω2 − ω1) . (H.7)
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CASE 3: ∃ θn ∈ ]θ1, θ2[, k +
√
pn+qn cos θ−r

c fs = 0

The singularity θn in the denominator will occur when

√

pn + qn cos θn = r − kc

fs
, ξ , (H.8)

i.e.

cos θn =
ξ2 − pn
qn

=

(
kc
fs

)2 − 2kcfs r − d2
n

2rdn
, ν (H.9)

Therefore a singularity will only occur if both conditions,

ξ ≥ 0, |ν| ≤ 1, (H.10)

are satisfied. Because all considered functions are symmetric in θ, we do not
need to consider negative angles θ and can assume 0 ≤ θ ≤ π. Therefore sin θn
will always be positive and can be written as

sin θn =
√

1 − cos2 θn =
√

1 − ν2 . (H.11)

Because of the singularity θn in the denominator, numerically calculating the
integral Iθ(ω) can give rise to some numerical problems (assuming that γ 6= 0).
Similarly as for the far-field case, we can derive a function g(θ) which is an
approximation for the function

f(ω, θ) = K
sin
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)

+ γ
]

√
pn + qn cos θ

(

k +
√
pn+qn cos θ−r

c fs

) (H.12)

around the singularity θn. Using (F.14), the Taylor expansion of cos θ around
θn is equal to

cos θ = cos θn · cos(θ − θn) − sin θn · sin(θ − θn) (H.13)

= cos θn − sin θn · (θ − θn) + O
(
(θ − θn)

2
)
, (H.14)

such that

√

pn + qn cos θ =
√

pn + qn cos θn − qn sin θn · (θ − θn) + O
(
(θ − θn)2

)
(H.15)

= ξ

√

1 − qn sin θn
ξ2

· (θ − θn) + O
(
(θ − θn)2

)
(H.16)

= ξ

[

1 − qn sin θn
2ξ2

· (θ − θn) + O
(
(θ − θn)

2
)
]

, (H.17)

and

k+

√
pn + qn cos θ − r

c
fs = k+

fs
c

[

ξ− qn sin θn
2ξ

· (θ−θn) − r

]

+O
(
(θ−θn)2

)
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= k − fs
c

[
kc

fs
+
qn sin θn

2ξ
· (θ − θn)

]

+ O
(
(θ − θn)

2
)

(H.18)

= −fs
c

qn sin θn
2ξ

· (θ − θn) + O
(
(θ − θn)

2
)
. (H.19)

In a first approximation the function f(ω, θ) can be approximated by

K
sin
[

ω
(

− fs
c
qn sin θn

2ξ · (θ − θn)
)

+ γ
]

ξ
(

− fs
c
qn sin θn

2ξ · (θ − θn)
) , (H.20)

which can be further simplified (since we assumed γ 6= 0) to

g(θ) = −K c

fs

2 sin γ

qn sin θn · (θ − θn)
(H.21)

Note that g(θ) is independent of ω. We now define the function

f̄(ω, θ) = f(ω, θ) − g(θ) , (H.22)

and will show that lim
θ→θn

f̄(ω, θ) is finite. The function f(ω, θ) can be written

as

f(ω, θ) = K
sin
[

ω
(

k +
√
pn+qn cos θ−r

c fs

)

+ γ
]

√
pn + qn cos θ

(

k +
√
pn+qn cos θ−r

c fs

) (H.23)

= K
c

fs

sin
(

ω fsc
(√
pn + qn cos θ − ξ

)
+ γ
)

pn + qn cos θ − ξ
√
pn + qn cos θ

, (H.24)

such that the function f̄(ω, θ) can be written as

f̄(ω, θ) = K
c

fs




sin
(

ω fsc
(√
pn + qn cos θ − ξ

)
+ γ
)

pn + qn cos θ − ξ
√
pn + qn cos θ

+
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qn sin θn(θ − θn)




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(
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)
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(H.25)

= K
c

fs

gD(θ)

gN (θ)
. (H.26)

Since

lim
θ→θn

f̄(ω, θ) = K
c

fs

gD(θn)

gN (θn)
=

0

0
, (H.27)
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we need L’Hôpital’s rule to calculate the limit, i.e.

lim
θ→θn

gD(θ)

gN (θ)
=

lim
θ→θn

g′D(θ)

lim
θ→θn

g′N (θ)
. (H.28)

The first-order derivatives g′D(θ) and g′N (θ) are equal to

g′D(θ) = −q
2
n sin θn

2

ωfs
c

(θ − θn) cos
(

ω
fs
c

(√

pn + qn cos θ − ξ
)

+ γ
)

·
sin θ√
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(

ω
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c

(√

pn + qn cos θ − ξ
)
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)
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2
√
pn + qn cos θ

)

(H.29)

g′N (θ) = −q2n sin θn(θ − θn) sin θ
(

1 − ξ

2
√
pn + qn cos θ

)

+qn sin θn
(
pn + qn cos θ − ξ

√

pn + qn cos θ
)

(H.30)

Since g′D(θn) = g′N (θn) = 0, we need L’Hôpital’s rule once more and have to
calculate the second-order derivatives g′′D(θ) and g′′N (θ),

g′′D(θ) = −q
2
n sin θn

2

ωfs
c

[
ωfs
c
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(

ω
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(√
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(H.31)

g′′N (θ) = −2q2n sin θ sin θn

(
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2
√
pn + qn cos θ
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− q2n sin θn(θ − θn) ·
[

cos θ
(
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2
√
pn + qn cos θ
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− qnξ sin2 θ

4(pn + qn cos θ)3/2

]

. (H.32)

The second-order derivatives g′′D(θ) and g′′N (θ) evaluated at θn give

g′′D(θn) = −q
2
n sin2 θn cos γ

ξ

ωfs
c

− qn sin γ

[

cos θn − qn sin2 θn
2ξ2

]

(H.33)

g′′N (θn) = −q2n sin2 θn , (H.34)
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such that

lim
θ→θn

f̄(ω, θ) = K
c

fs

g′′D(θn)

g′′N (θn)
= K

ω cos γ

ξ
+K sin γ

c
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[
cos θn

qn sin2 θn
− 1

2ξ2

]

(H.35)
Since for any γ, lim

θ→θn
f̄(ω, θ) is finite, the function f̄(ω, θ) can be integrated

numerically without any problem, and because g(θ) is independent of ω, the
total integral I can be written as

I = Iθ(ω2) − Iθ(ω1) =

∫ θ2

θ1

f̄(ω2, θ) dθ −
∫ θ2

θ1

f̄(ω1, θ) dθ . (H.36)

H.1 Far-field assumptions

When r → ∞, i.e. for far-field, it can be shown that the near-field equations
reduce to the far-field equations derived in Appendix F.

Singularity

For the singularity θn defined in (H.9),

lim
r→∞

cos θn = lim
r→∞

(
kc
fs

)2 − 2kcfs r − d2
n

2rdn
= − kc

fsdn
, (H.37)

which corresponds to (F.7) in the far-field case.

Approximating function

For the approximating function g(θ) defined in (H.21),

lim
r→∞

g(θ) = lim
r→∞

− r2
√
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(
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fsdn

)2 · (θ − θn)
, (H.38)

which corresponds to (F.17) in the far-field case.

Limit value

For the limit value L = lim
θ→θn

f̄(ω, θ) defined in (H.35),

lim
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] ,

which corresponds to (F.32) in the far-field case.
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