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Abstract— This paper discusses the design and low-cost implementati
of a robust multi-microphone noise reduction scheme, callethe Spatially
Pre-processed Speech Distortion Weighted Multi-channel \ner Filter
(SP-SDW-MWEF). This scheme consists of two parts: a robust fed spatial
pre-processor and a robust adaptive Multi-channel Wiener Hter (MWF).
Robustness against signal model errors is achieved by inqoorating
statistical information about the microphone characteridics into the
design procedure of the spatial pre-processor and by takingspeech
distortion explicitly into account in the optimisation cri terion of the MWF.
Experimental results using a hearing aid show that the propeed scheme
achieves a better noise reduction performance for a given ma@mum
speech distortion level, compared to the widely studied Garalised Side-
lobe Canceller (GSC) with Quadratic Inequality Constraint (QIC). For
implementing the adaptive SDW-MWEF, an efficient stochasticgradient
algorithm in the frequency-domain can be derived, whose coputational
complexity and memory usage is comparable to the NLMS-base8caled
Projection Algorithm for implementing the QIC-GSC.

|. INTRODUCTION

Noise reduction algorithms in hearing aids and cochleadantp
are crucial for hearing impaired persons in order to imprspeech
intelligibility in background noise. Multi-microphone stems exploit
spatial in addition to spectro-temporal information of tHesired
and the noise signals and are hence preferred to singl@pficne
systems. For small-sized microphone arrays such as tjypiaakd
in hearing instruments, multi-microphone noise reductimvever
goes together with an increased sensitivity to errors inagsumed
signal model such as microphone mismatch (gain, phasetigysi
reverberation, speech detection errors, etc. [1]-[8].

In [9] a generalised multi-microphone noise reduction sohe
called the Spatially Pre-processed Speech Distortion hteigMulti-

channel Wiener Filter (SP-SDW-MWF), has been proposed (%

Section 1), whose structure strongly resembles the widesed
Generalised Sidelobe Canceller (GSC) [10]-[17]. It cassi$ a fixed
spatial pre-processor, generating speech and noise meé&xeand an
adaptive stage, reducing the residual noise in the spedetenee.

This generalised scheme encompasses both the GSC and the MWF

[18]-[20] as extreme cases and allows for in-between smistsuch
as the Speech Distortion Regularised GSC (SDR-GSC).

Both the fixed spatial pre-processor and the adaptive steqegdy
rely on a-priori assumptions (e.g. about the microphoneather-
istics). When these assumptions are not satisfied, both xeel fi
and the adaptive stage give rise to undesired speech @st@md
to a reduced noise reduction performance. Hence, for beathest
the robustness against signal model errors needs to be \iathro
The robustness of théixed spatial pre-processatan be improved
e.g. by limiting the white noise gain [1] or by calibratingetlused
microphone array [3]. However, when statistical knowledfeut the
microphone deviations (gain, phase, position) is avadlalve propose
to incorporate this knowledge directly into the design pabare [21],

Jan Wouter$
2Katholieke Universiteit Leuven
Laboratory for Exp. ORL
Kapucijnenvoer 33, 3000 Leuven, Belgium
j an. wout er s@iz. kul euven. ac. be

[22] (cf. Section 1ll). The robustness of thadaptive stagecan be
improved e.g. by using a Quadratic Inequality ConstrainC()J5]
or coefficient constraints [16] on the adaptive filter. Hoae\these
are quite conservative approaches since the constraiot iglated to
the amount of speech leakage actually present in the ndsenees.
Hence, we propose to take speech distortion explicitly &moount in
the design criterion of the adaptive stage, resulting inSB&V-MWF
and the SDR-GSC [9] (cf. Section V). Experimental resuksg a
hearing aid show that, compared to the QIC-GSC, the SP-SDMFM
achieves a better noise reduction performance for a givetnnuen
speech distortion level (cf. Section V).

Different implementations exist for updating the adapfilter in
the SDW-MWEF. In [19], [20] recursive matrix-based implertagions
(using GSVD and QRD) have been proposed, while in [23], [24]
cheap stochastic gradient implementations in the timeaio@nd the
frequency-domain have been developed (cf. Section VI). ddre-
putational complexity and memory usage of the frequenayaln
algorithm in [24] is comparable to the NLMS-based algoritfon
implementing the QIC-GSC, while experimental results shioat it
preserves the robustness benefit of the SP-SDW-MWF.

Il. GENERAL STRUCTURE AND NOTATIONAL CONVENTIONS

The Spatially Pre-processed Speech Distortion Weightedti-Mu
channel Wiener Filter (SP-SDW-MWF) is depicted in Figurert a
consists of afixed spatial pre-processpii.e. a fixed beamformer
A(z) and a blocking matrisB(z), and anadaptive Speech Distortion
Weighted Multi-channel Wiener Filter (SDW-MWBJ. Note that this
%tructure strongly resembles the GSC-structure [10]+[dREre the
tandard adaptive filter has been replaced by an adaptive BIN.

The desired speaker is assumed to be in front of the micraphon
array (havingM microphones), and an endfire array is used. The

spatial preprocessing multi-channel Wiener filter

(speech distortion weighted)
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Fig. 1. General structure of the SpatiaB®ye-processed Speech Distortion

Weighted Multi-channel Wiener Filter



fixed beamformer creates a so-called speech referenfd

zolk] + vo[k] (with zo[k] andvg[k] respectively the speech and the
noise component ofj[k]) by steering a beam towards the front,
whereas the blocking matrix creatd$— 1 so-called noise references
yilk] = x;[k]+wvi[k],i =1 ... M—1, by steering zeroes towards the
front. Duringspeech-periodthese reference signals consist of speech
and noise components, i.9;[k] = x:[k] + v;[k], whereas during
noise-only-periodsnly the noise components|k] are observed. We
assume that the second-order statistics of the noise afieiesutly
stationary such that they can be estimated during noisgeqmetiods
and used during subsequent speech-periods. This reqhieesse
of a voice activity detection (VAD) mechanism [25]-[27], izh
determines whether speech is present or not.

Let N be the number of input channels to the multi-channel
Wiener filter in Figure 1 IV = M if wo is presentN = M — 1
otherwise). Let the FIR filtersv;[k] have lengthL, and consider the
L-dimensional data vectoss; [k], the N L-dimensional stacked filter

S(w)

w|[k] and theN L-dimensional stacked data vectpfk|, defined as Fig. 2. Microphone array configuration (far-field assummp}io
k] = ilk ilk—1 ilk—L+1 T, 1
yilkl [ v [T] il T} bl T] } T ) w at an angle from the microphone array is defined as
wlk] = [ wy-nlkl wWy_nalkl oo Wi [R] ] , (2) T
T T T T H(wa 9) =f g(wa 9) ) (6)
ylk] = [ yu-n~lkl yu-nualk] oo yaoalk] ] ) . . . )
o . with f the M K-dimensional real-valued stacked filter vectbr=
ywth denoting transpo;e. The data vec.wk} can be decomppsed (€7 ... £, ]T, and the steering vectgs(w, 0) equal to
into a speech and a noise component, y.g&] = x[k] + v[k], with e
x[k] andv[k] defined similarly as in (3). The goal of the filter[k] e(w) Ao(w,0) e 7«0
is to estimate the delayed noise componesit — A] in the speech g(w,0) = : ; (7)
reference (cf. Section IV). As can be seen from Figure 1, thtpud N a1 (6)
signal z[k] is then computed by subtracting the filtered (speech and e(w) Au-1(w,0)e e
noise) reference signals from the delayed speech refereace withe(w) =11 e ... e i(K—1w ]T and
Z[k] :yo[k_A] _WT[k]y[k} . (4) Am(w,e) :a,m(u),0)67].1117"(“)’9)7 m=0...M—1 , (8)
Hence, the speech component of the output signg] is equal to  representing the frequency- and angle-dependent chestic(gain,
2o [k] = wo[k — A — w [k]x[k] - (5) phase) of thenth microphone. The delay,,(0) is equal to
dm cos 0
This equation shows thapeech distortiorin the output signal can Tm(0) = 2 fs s 9

originate both from distortion of the speech component exgpeech ggth the speed of sound{0™) andf the sampling frequency.
(& s
referencexq[k] and from speech leakage into the noise referenc When a microphone position error occurs and the distan

(x[k] # 0), e.g. caused by microphone mismatch and reverber%
- emth microphone and the centre of the arraylis+ ., thls can
tion. Section Ill describes a procedure for designing robiixed be seen as a frequency- and angle-dependent phases &hi f S0,

beamformers, hence limiting speech distortion in the dpeeference for the mth microhone. which hen nb ilv incornorated int
(and to some extent speech leakage into the noise refejemdeke or them crophone, which heénce can be easily Incorporate °
the microphone characteristics in (8) as

Section IV describes a procedure for limiting speech distnrcaused

T = _ . Omcosb
by the termw” [k]x][k]. A (w,0) = am(w,0) ¢ IV 0 v (1)
—_—
Ill. ROBUST FIXED SPATIAL PREPROCESSOR gain phase position

This section describes a design procedure for making the fixglsing (7), (9) and (10), théth element ofg(w, 8) is equal to
beamformerA (z) and the blocking matriB(z) more robust against
microphone mismatch (gain, phase, position) [21], [22hdeelim- &' (w,0)=e¢
iting speech distortion in the speech reference and reducirsome ) (11)
extent speech leakage into the noise references. with k = mod(i—1, K') andm = | ‘% ]. The steering vectag(w, §)
can be decomposed into a real and an imaginary parg(e.0) =
gR(w’ 0) + ng(UJ, 9)

Consider the linear microphone array depicted in Figureith W/ Using (6), the spatial directivity spectrufiif (w, 6)|? is equal to
microphones,M K-taps FIR filtersf,, (with real coefficients) and 9 N T
dnm the distance between theth microphone and the centre of the [ (w, )" = H(w, 0)H" (w,0) =" G(w, O)f , (12)
microphone array. Assuming far-field conditidnshe spatial direc- with G(w, ) = g(w, 0) g (w, §). Using (11), the(s, j)-th element
tivity pattern H(w, 0) for a sourceS(w) with normalised frequency of G(w, 6) is equal to

_jw(kﬁ»i@fs)am(w’g) —j¢m (w,0) _mef

A. Broadband beamforming: configuration

L. . dm —dn) cos b
LAlthough far-field conditions are usually valid for heariigstruments G (w, ) = o= (k=4 (m=dp)cost f'“)am(w,ﬁ) an(w,0) -
because of the small size of the used microphone array, tpoged methods ( 0 0 ) (g —8p) cos §
can easily be extended to near-field conditions [28], [29]. eI Wm (@, 0)=¥n(w.0)) g=iw ° fe (13)

’



with I = mod(j — 1,K) andn = L%J. The matrix G(w,0) D. Mean performance criterion

can be decomposed into a real and an ir_naginary@?{(wﬁ) and  Applied to the weighted LS cost function of Section I1I-B eth
Gi1(w,0). SinceG(w, 0) is anti-symmetric|H (w, 0)|” is equal 10 mean performance cost function can be written as

|H(w,0))” = ' Gr(w,0)f . (14) s L E A (A N
B. Weighted least-squares cost function Ls(®) = /Aom/AM 1 vs(F, A) fa{o)..- falAr—)

The design of a broadband beamformer consists of calcglétia dAg...dAn-1, (21)
filter £, such thatd (w, #) optlmally fits the desired spatial d.lrectlwty with J.s(f,A) the weighted LS cost function (16) for a specific
pattern D(w, 6), where D(w, 6) is allowed to be an arbitrarg- . = T
dimensional function. Several desian procedures existeding on microphone characteristi§ Ao, ..., Ayp—1} and f4(A) the joint

ensional function. Several design procedures exigts 9o pdf of the stochastic variables (gain), ¢» (phase) and) (position

LZ?};EZ?ILZ%VDSF f#{zgtlloe Z‘St:zt Lljsarzgtlgyssfgjngiéwslp%’_g"g error). Without loss of generality, we assume that all nmptrane
9 q ek characteristicsA,,,m = 0... M — 1, are described by the same pdf

alSé)oilgi(ceiZ?ilrgzr-t?lzsligsatl?szSgrne-: QE;; Zﬁ%(fzng;lo_n[s) (fe;?ﬁ)e?ﬁe and thata, ¢» andé are independent stochastic variables, such that the
weighted LS cost function is defined as 7 S joint pdf is separable, I.f4(A) = fala)fu(¥)fa(6), With fa(a)
the gain pdf,fw(¢) the phase pdf anda (d) the position error pdf.

Jrs(w / / F(w,0)|H(w,0) — D(w,0)*dwdd ,  (15) By combining (16) and (21), the mean performance cost foncti
can be written as

whereF'(w, 6) is a positive real weighting function, assigning more or

t _ T _ opT
less importance to certain frequencies and angles. Thisfwostion Jis(f) =17 Qif —2f"a, +dvs (22)
can be written as the quadratic function which has the same form as (16), with
Jos(f) = £7Qrsf —2fTa+dys 16
Ls(f) = £ Qus aTars (16) - // afa(Ao)... fa(Arr—1)dAo. .. .dAy—1,
with (assumingD(w, #) to be real-valued) Ao JAM
Qs = //F w,0) Gr(w,0) dwdd an Q= /A{/AMA Qrs fa(Ao) ... fa(Ay-1)dAo...dAn-1.
a — / / F(w,8)D(w, ) gr(w, 8) dwdd (18) The calculation of these expressions (_both for uniform amad<Sian
pdfs) has been thoroughly discussed in [21], [22], [29].
drs = / / F(w,0) D" (w, 0) dwdd . (19) E. Minimax criterion
The filter 1.5, minimising the weighted LS cost function, is given When optimising the mean performance, it is however stiisiole
by - although typically with a low probability - that for some esyific

fro = QZéa. (20) microphone mismatch the cost function is quite high. If tids
) ) ) considered to be a problem, the worst-case performancedsheu
C. Robustness against microphone mismatch optimised using the minimax criterion.

Using the procedure described in Section III-B, it is polsib For the minimax criterion, we first have to define a (finite) skt
to design beamformers when the microphone characteri@@®, microphone characteristicss(, gain values,K., phase values and
phase, position) are exactly known. However, small demtifrom K position error values),
the assumed characteristics can lead to large deviatiams the
desired spatial directivity pattern [1]-[4]. Since in piiae it is {amin=0a1,..., 0K, =amaz}, {Ymin =715+, YK, =Ymaz},
difficult to manufacture microphones with the same nomiah@nd  {6,nin=901,...,0K5 =0mac } , (23)
phase characteristics and microphone position errorsiémtty occur,
a measurement or calibration procedure is required in dodebtain
the true microphone characteristics [3]. However, aftéibcation the
microphone characteristics can still drift over time [33].

Wh(_en stgtlstlcal knowled_ge, eg. a probap_lllty den_sﬂyctmn F(f) = [ ) Fa(f) ... Flseo s, seaye (f) ]T (@)
(pdf), is available for the gain, phase and position errthris, knowl-
edge can be incorporated into a robust design procedurg1]n[R2] which consists of the used cost function (weighted LS or aimgro
two robust design procedures have been presented. Cangidgk cost function) at each possible combination of gain, phaseé a
feasible characteristics, the first design procedure apdisnthemean position error values. The goal then is to minimise thg-norm
performancei.e. the weighted sum of the cost functions, using thef F(f), i.e. the maximum value of the elemenfts(f),
probability of the microphone characteristics as weightsereas the
second design procedure optimises wharst-case performance.e.
the maximum cost function.

The same problem of gain and phase errors has been studigld in
where however only the narrowband case for a specific digcpat-
tern and a uniform pdf has been considered. The approachntess
here is more general because we consider broadband beasnsorm [ OFL(f)  OFx(f) F ko xM ) ] , (26)
with an arbitrary spatial directivity pattern, arbitraryropability of of T of
density functions and we also take into account micropharsitipn  which is anM K x (K, K., K5)" -dimensional matrix, can be supplied
errors. analytically. As can be seen, the largey,, K, and K;, the denser

as an approximation for the continuum of feasible microghon
characteristics, and use this set of gain, phase and posstimr
values to construct theK, i, K5)™ -dimensional vectoF (f),

mfin |IF(f)||loc = minm]?ka(f) , (25)

hich can e.g. be done using a sequential quadratic progirzgnm
SQP) method [34]. In order to improve the numerical robessn
and the convergence speed, the gradient



Freq: 500 Hz Freq: 1000 Hz Freq: 1500 Hz
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the grid of feasible microphone characteristics, and tighdni the
computational complexity for solving the minimax problem.

When only considering gain errors and using the weightedas$
function, it has been proved in [21] that for afighe maximum value
of F(f) occurs on a boundary point of d-dimensional hypercubelso
i.8. Am = Amin OF Gm = Gmaz, m = 0... M — 1. This implies that
K, = 2 suffices andF(f) consists o2 elements.

F. Simulations Freq: 2000 Hz Freq: 2500 Hz Freq: 3500 Hz
We have performed simulations using a small-sized noreumif 5 5
linear microphone array consisting 8f = 3 microphones at posi ) o ; 0
tions[—0.01 0 0.015] m. We have designed an endfire broadbz ~ ( ‘
beamformer with passband specificatiéfis, ©,) = (3004000 Hz, 18 3 0 180 0 180 0
0°-60°) and stopband specification$2s,©;) = (3004000 Hz, k k

80°-180°) and f; = 8kHz. The filter lengthL = 20 and the
weighting functionF'(w, 0) = 1.
In the first experimentwe have investigated the effect of only . e . .
. . . . Fig. 3. Spatial directivity plots, no gain and phase erra@n¢robust: thick
gain and phase errors, hence assuming no microphone positiars solid, gain/phase-robust: dashed, minimax: solid)
(0m =0, m =0...M — 1). We have designed several types of

broadband beamformers using the weighted LS cost function: Freq: 500 Hz Freq: 1000 Hz Freq: 1500 Hz

1) a non-robust beamformer (i.e. assuming no mismatch)

2) arobust beamformer using a uniform gain p@Bg, 1.15), and
a uniform phase pdf4{5°,10°)?

3) a robust beamformer using the minimax criterion (onlyngg,
errors,amin = 0.85, amaz = 1.15, K, = 2)

Figure 3 shows the spatial directivity plots of the non-retht
the gain/phase-robust and the minimax beamformer for abfes-
guencies, when no gain and phase errors occur. As can be
the performance of the non-robust beamformer is the bedt,
the performance of the robust beamformers is certainly pabée.
Figure 4 shows the spatial directivity plots in case of (dynghin
and phase errors (microphone gaing 69 1.1 1.05] and phasesiso
= [5° —2° 5°]). As can be seen, the performance of the n
robust beamformer deteriorates considerably. Certaiofyttie low
frequencies, the spatial directivity pattern is almost adirectional
and the amplification is very high. On the other hand, the sbbu_ o ) o
beamformers retain the desired spatial directivity pafteven when Eéglid,4Qain?gﬁssé-(rjggfgt\{lgaglrloetzi Eﬂg’l‘mmzr;d spc?liilsie errorsnénabust: thick
gain and phase errors occur.

In the second experimentve have investigated the effect of only
microphone position errors, hence the microphones arevessiio

0 180

Freq: 3500 Hz

0 180

Freq: 500 Hz Freq: 1000 Hz Freq: 1500 Hz

10

be omni-directional microphones with a frequency respatel to mel 0,-nl
1, i.e.am(w,0) =1 andy,(w,0) =0, m =0... M — 1. We have b .
designed 2 types of broadband beamformers: 1801 Yo 180 o
1) anon-robust beamformer, i.e. assuming no microphonéqos 5, K :
errors ¢, =0, m=0...M — 1) N
2) a robust beamformer using a Gaussian microphone positio
Freq: 2000 Hz Freq: 2500 Hz Freq: 3500 Hz
error pdf
1 _ (5—ug)? 10 10 10
fa(6) = e o, (27) ;
with us = 0 and ss = 0.003%. Ry P o °

Figures 5 and 6 show the spatial directivity plots of the nolpust
beamformer and the robust beamformer for several freqaenci
both when no microphone position errors occur and when ()smdfig- 5.‘ Spatial direc‘ti_vity plots for non-ropust beamfom(eo errors: solid
microphone position errorf).002 —0.002 0.002] m occur. When line, microphone position errors: dashed line)
no errors occur, the performance of the non-robust beangfoim
the best, but the performance of the robust beamformer tainbr

acceptable. However, when microphone position errors rodbe performance of the non-robust beamformer deterioratesiden

ably, certainly at low frequencies. On the other hand, thieuso

2These values for the probability density functions depemdhe accuracy Peamformer retains the desired spatial directivity pafteven when
of the manufacturing process of the microphone arrays. microphone position errors occur.
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Fig. 6. Spatial directivity plots for robust beamformer (@wors: solid line,
microphone position errors: dashed line)

IV. ROBUST ADAPTIVE STAGE SPEECH DISTORTION WEIGHTED
MULTI-CHANNEL WIENER FILTER

This section describes a procedure for limiting speechodish
in the output signal due to the term” [k]x[k] in the adaptive stage
of the SP-SDW-MWEF, cf. (5). A common approach to limit thisnte
is to use a Quadratic Inequality Constraint (QIC) on the nafm
the filter [5], i.e. ||w[k]|| < 8. However - as will be shown in the
simulations in Section V - this is a conservative approagitesthe
constraint is not dependent on the actual amount of speagade

x[k] present in the noise references. In [9] a novel approach é&s b

presented where speech distortion is taken directly intowaat in the
optimisation criterion of the adaptive stage. The goal & 8peech
Distortion Weighted Multi-channel Wiener Filter (SDW-MVY/kn

Figure 1 is to provide an estimate of the delayed noise coemton

presence/absence of the filtet, on the speech reference, different
algorithms are obtained [9].

A. SP-SDW-MWEF without filtew, (SDR-GSC)

When no filterwg is present, the Speech Distortion Regularised
GSC (SDR-GSC) is obtained, where the standard adaptivee nois
cancellation design criterion of the GSC (i.e. minimisihg tesidual
noise energy:?) is supplemented with aegularisation term%si
that takes into account speech distortion due to signal herders.

For 1 = oo, the standard GSC is obtained, and speech distortion
is completely ignored. Whep # oo, the regularisation term adds
robustness to the GSC, while not affecting the noise reduocti
performance in the absence of speech leakage:

« In the absence of speech leakage. x[k] = 0, the regularisa-
tion term equal® for all w[k]. Hence the residual noise energy
€2 is effectively minimised or, in other words, the GSC-sauti
is obtained.

« In the presence of speech leakagee. x[k] # 0, speech
distortion is explicitly taken into account in the optintise
criterion, hence limiting speech distortion while redgcimoise.
The larger the amount of speech leakage, the more atterstion i
paid to speech distortion.

In contrast to the SDR-GSC, the QIC acts irrespective of theumt

of speech leakage present. The constraint vales to be chosen
based on the largest model errors that may occur. Hencee nois
reduction performance is compromised even when no or vegtlsm
model errors are present, such that the QIC is more congerthain

the SDR-GSC (cf. Section V).

B. SP-SDW-MWF with filtew,

When the filterw, is present, the SP-SDW-MWF is obtained.
Again, the regularisation parametetrades off speech distortion and
noise reduction (forx = 1, we obtain an MWF, where the output

vo[k — A] in the speech reference by minimising the cost funCtionsignalz[k] is the MMSE estimate of the speech componesit — A

J(w(k])

e { [ it e { ool - A1 - w7 iivin

j
(28)

wheree2 represents the speech distortion eneedyrepresents the

residual noise energy and the regularisation parameter [0, oo)

provides a trade-off between noise reduction and speedbriilis
[19], [35]. The filterw[k] minimising this cost function is given by

2
x

2

€ €

1 T o)
w[k‘]f(ug {x[k]x [k]}+£ {V[k}v [k]}) & {v[kJvolk — AJ}.
(29)
In practice, the clean speech correlation maffigx[k]x" [k]} obvi-
ously is unknown. Assuming that speech and noise are uhatade
this correlation matrix can be estimated as

& {xIWp N} = & {y My K} — € VIRV IR) L 30)

in the speech reference). In addition, we can make the failpw
statements:

« In the absence of speech leakaged for infinitely long filters,
the SP-SDW-MWF corresponds to a cascade of an SDR-GSC
and an SDW single-channel Wiener postfilter [36], [37].

« In the presence of speech leakagbe SP-SDW-MWF tries to
preserve its performance, i.e. the SP-SDW-MWF then cositain
extra filtering operations that compensate for the perfocea
degradation of the SDR-GSC with postfilter due to speech
leakage [9]. It can be proved that for infinite filter lengths,
the SP-SDW-MWF is not affected by microphone mismatch as
long as the speech component in the speech reference remains
unaltered.

V. EXPERIMENTAL RESULTS

In this section it is shown by experimental results usingringa
aid recordings that in comparison with the QIC-GSC, the SBE&R=
obtains a better noise reduction performance for small ineders,

where 5T{Y[k]}_’TU€]} is estimated during speech-periods angyhile guaranteeing robustness against large model eraoi,that
& {v[k]v'[k]} is estimated during noise-only-periods. The secongh comparison with the SDR-GSC, the performance of the SR:SD

order statistics of the noise are assumed to be quite sajiosuch
that they can be estimated during noise-only-periods aad daring
subsequent speech-periods. Similarly as for the GSC, &stoAD-
mechanism is hence required [25]-[27].

As depicted in Figure 1, the noise estimaté [k]y[k] is then

MWEF is even less affected by signal model errors.

A. Set-up and performance measures

A 3-microphone BTE (‘behind the ear’) hearing aid has been
mounted on a dummy head in an office room. The desired signal

subtracted from the speech reference in order to obtain the @nd the noise signals are uncorrelated, stationary anccisyiée.

hanced output signat[k]. Depending on the setting gf and the

The desired signal and the total noise signal both have d tdve



70dB SPL at the centre of the head. The desired source is pusitio 400000000 _ 1
in front of the head (at0°). Five noise sources are positioned g T et ity
at 75°, 120°, 180°, 240° and 285°. For evaluation purposes, the ‘02&?@2832&6 """"""""""""""" O i )
speech and the noise signals have been recorded sepahatéig m% 4 :Z‘ SDR-GSC: Y§:4dB ]
experiments, the microphones have been calibrated in achaite z 4. SP-SDW-MWF (with w): Y, = 0 dB
room with the BTE mounted on the head. A delay-and-sum beam ~ 2|, 4 SP-SDW-MWF (with wy): Y, =4 dB 1
former is used as fixed beamforma&r(z). The blocking matrixB(z) o5 s n " . w 5
pairwise subtracts the time-aligned calibrated microghsignals. In ’ e '
order to investigate the effect of different parameterisgst (i.e. u, 15 ‘ ‘
wy) on the performance of the SP-SDW-MWEF, the filter coefficent “o. SDR-GSC:Y,=0dB
are computed using (29) wher& {x[k]x"[k]} is estimated by _ |- +@ SDR-GSC:Y,=4dB
means of the clean speech components of the microphonelssigna=, 10 & + zzjgxmwi m: ﬁf?jijg |
In practice £ {x[k]x" [k]} is approximated using (30). The effect of E ® + v 2
the approximation (30) on the performance was found to bdlsma & ° ‘ ‘ )
for the given data set. The used filter lendih= 96. The QIC-GSC oo eoozg%wwwwuw e -
has been implemented using variable loading RLS [38]. % o5 1 s 5 25 3
To assess the performance, the intelligibility weighteghal-to- Up[-]
noise ratio improvemenASNReiig is used, defined as
ASNRelig = Z I1,(SNR.out — SNR.n), 31) gig;;bw_SMstFimprovement and speech distortion of the SDR-@8€ the
where I; expresses the importance for intelligibility of thie¢h one- 8l ;_*‘_*‘_*_*__; % %% % *
third octave band with centre frequen¢§ [39], and where SNRout ) ol % e |
and SNR;,, are respectively the output and the input SNR (in dB) "= Iy . g
in this band. Similarly, we define an intelligibility weigid spectral D:E at 3/ 000000 0000009
distortion measure, called kg, of the desired signal as z 2—r£ ¥ QCGSCY,=048 ||
S .o QIC-GSC:Y,=4dB
SDineelig = » _ IiSD; 32) [ ‘ ‘ ‘ ‘ ‘ ‘
i 0 0.5 1 15 2 25 3 35 4

with SD; the average spectral distortion (dB) in th#h one-third

15 T T T T T T T

band, calculated as % QCGSCY, =008 | | o o 0.0 0. 0.0 000
1 21/6fic g 0 .o QIC-GSC: Y2=4dB \®
SD; = —/ 10log,o G=(f)|df,  (33) o e
(21/6 — 2-1/6) fe ts 1/6 g | 10 (Hl é \._\o
with G, (f) the power transfer function of speech from the input to ? .,‘
the output of the noise reduction algorithm. To exclude tffece e b B R i
of the spatial pre-processor, the performance measureskxdated 0 0.5 1 15 2 25 3 35 4
with respect to the output of the fixed beamformer, i.e. theesp B[

reference.

B. Experimental results Fig. 8. SNR improvement and speech distortion of the QIC-GSC

Figure 7 depicts the SNR improvement and the speech distaofi
the SDR-GSC (withoutv,) and the SP-SDW-MWF (withwo) as a mismatch occurs). Similarly, for the same maximum allowageech
function of the regularisation parametefy. These figure also depict distortion, it can be observed from Figure 7 ti@p > 0.6, such that
the effect of a gain mismatclf, of 4dB at the second microphone.the maximum SNR improvement for the SDR-GSC is equal ¢
For comparison, Figure 8 plots the performance of the QIG@&h  with gain mismatch and’.5dB without gain mismatch, while the
QIC w'[k]w[k] < 5%, as a function of3”. SNR improvement for the SP-SDW-MWF is equal 1 dB (with
From these figures, it can be observed that the standard G&C @nd without gain mismatch). This can be explained by the thzat
the SDR-GSC withl /. = 0 or the QIC-GSC with3*> = co0) gives the SDR-GSC and the SP-SDW-MWF only put emphasis on speech
rise to a smaller SNR improvement and a large speech distortidistortion when actually required, i.e. when the amount méesh
when a gain mismatch afdB occurs. Both the SP-SDW-MWF andleakage is large.
the QIC-GSC increase the robustness of the standard GS, t5ie  Hence, for a given maximum allowable distortion, the SDREGS
speech distortion in the presence of signal model erroredsiced and the SP-SDW-MWF achieve a better noise reduction pesioce
with increasingl /. or decreasings®. than the QIC-GSC. Furthermore, the performance of the SBR-SD
However, the QIC-GSC is more conservative than the SDRAWF is - in contrast to the SDR-GSC and the QIC-GSC - hardly
GSC and the SP-SDW-MWF, since the constraint vaideis not affected by microphone mismatch.
dependent on the amount of speech leakage actually present i
the noise references. E.g. suppose that the maximum allewab  VI- EFFICIENT IMPLEMENTATION USING STOCHASTIC
speech distortion SRsiig is 3dB for a gain mismatch up td dB. GRADIENT (SG)ALGORITHMS
From Figure 8 it can be observed that < 0.25, such that the  Different implementations exist for computing and updatthe
maximum SNR improvemenh SNRyelig is 4 dB (even when no gain filter w[k]. In [19], [20] recursive matrix-based implementations



(using GSVD and QRD) have been proposed, while in [23], [24owever, as will be shown in the next paragraph, this assiomii

efficient stochastic gradient implementations in the toloesain and
in the frequency-domain have been developed.
A. Time-Domain (TD) implementation

In [23] a stochastic gradient algorithm in the time-domaas been
developed for minimising the cost functioR(w(k]) in (28), i.e.

wlk+1] = wlk] + p [v[k} (volk — A] — v [K]wlk]) — r[k]] (34)
rlk] = [kl [Klwlk] (35)
_ r
r= v [k]v[k] + %XT[/C]X[M +46’ (36)
with p the normalised step size of the adaptive algorithna, small

positive constant, anav[k], v[k], x[k] and r[k] N L-dimensional
vectors. Forl/u = 0 and no filter wo present, (34) reduces
to an NLMS-type update formula often used in GS@herated
during noise-only-period$11]-[13]. For 1/ # 0, the additional
regularisation ternr[k] limits speech distortion due to signal model
errors.

In order to compute (35), knowledge about the (instantasieou
correlation matrixx[k]x” [k] of the clean speech signal is required,
which is obviously not available. In order to avoid the needdali-
bration, it is suggested in [23] to stofedimensional speech+noise-
vectorsy;[k], i = M — N ... M — 1 during speech-periods in a
circular speech+noise-buffeB, € RNL*Lv (similar as in [40]}
and to adapt the filtew[k] using (34) duringnoise-only-periods
based on approximating the regularisation term in (35) by

vlk] = — [vo, Ik, ] — VIV (k] wik]

with yz,[k] a vector from the circular speech+noise-bufiBr,.

(37)

However, this estimate af[k] is quite bad, resulting in a large excess
error, especially for smajt and largey’. Hence, it has been suggested
to use an estimate of the average clean speech correlatitik ma

E{x[k]xT[k]} in (35), such that[k] can be computed as

k
1 < Sk—
ek = = (10 DN [y, 1~ VIV 1] - wik], (38)
=0
with X an exponential weighting factor and the step sizin (36)
now equal to

/

p
VT [k]v[k]+ 2 (1= ) ;A vh, Wys, [1—vT VI +3

p:

For stationary noisea small ), i.e. 1/(1 — X) ~ NL, suffices.

actually not required in a frequency-domain implementatio

B. Efficient Frequency-Domain (FD) implementation

In [23] the SG-TD algorithm has been converted to a frequency
domain implementation by using a block-formulation and ramg
save procedures (similar to standard FD adaptive filtegapriques
[41]). However, the SG-FD algorithm in [23P{gorithm 1) requires
the storage of large data buffers (with typical buffer ldrsgf, =
10000 ... 20000). In [24] it has been shown that a substantial
memory (and computational complexity) reduction can beexet
by the following two steps:

« When using (38) instead of (39) for calculating the regskion
term, correlation matricesinstead of data buffers need to be
stored. The FD implementation of the total algorithm is then
summarised iMlgorithm 2, where2 L x 2 L-dimensional speech
and noise correlation matrice% (k] and S¥ [k], 4,5 = M —

N ... M — 1 are used for calculating the regularisation term

R;[k] and (part of) the step siz&[k]. These correlation matrices
are updated respectively during speech-periods and ooiye-
period4. However, this first step does not necessarily reduce the
memory usageN L, for data buffers vs2(NL)? for correlation
matrices) and will even increase the computational coniyiex
since the correlation matrices are not diagonal.

The correlation matrices in the frequency-domain can becegpp
imated by diagonal matrices, sin&&k”kF~! in Algorithm 2
can be well approximated i, /2 [42]. Hence, the speech and
the noise correlation matrices are updated as

Sy[Kl = ASY[k—1]+ (1 - NY.[KY,[k]/2, (40)
SUK = ASY[k =1+ (1 - NV [KV;[k]/2, (41)
leading to a significant reduction in memory usage (and com-

putational complexity), cf. Section VI-C. We will refer this
algorithm asAlgorithm 3. This algorithm is in fact quite similar
to [43], which is derived directly from a frequency-domaist
function. Some major differences however exist, e.g. in] [43
the regularisation teriR,; k] is absent, the terffgF ! is also
approximated byl2;, /2 and the speech and the noise correlation
matrices are block-diagonal.

In [24] it has been shown by simulations that approximatimg t
regularisation term in Algorithm 3 only results in a smaltfoemance
difference (smaller thaf.5 dB) in comparison with Algorithm 1. For
some scenarios the performance is even better for Algorghiman
for Algorithm 1, probably since in Algorithm 1 it is assumeuat
the filter w[k] varies slowly in time. Hence, when implementing the

However, in practice the speech and the noise signals aem ofSDW-MWEF using Algorithm 3, it still preserves its robustedsenefit

spectrally highly non-stationary(e.g. multi-talker babble noise),

whereas theilong-term spectral and spatial characteristics usuall

vary more slowly in time. Spectrally highly non-stationargise can
still be spatially suppressed by using an estimate ofltimg-term
correlation matrix inr[k], i.e. 1/(1 — X) > NL.

In order to avoid expensive matrix operations for compu(i3g),
itis assumed in [23] thaw k] varies slowly in time, i.ew[k] ~ w]l],
such that (38) can be approximated without matrix operatias

vlk] = Aol = 1+ (1= 0 [y, iy, ] = vIAlv" 1] wik]
(39)

3In [23] it has been shown that storing noise-only-vectergk], i =
M — N... M — 1 during noise-only-periods in a circulamoise-buffer
B, € RMLxLyv additionally allows adaptation during speech+noisequisi

over the GSC (and the QIC-GSC).

%. Memory and computational complexity

Table | summarises the computational complexity and the ongm
usage for the FD implementation of the QIC-GSC (computedgusi
the NLMS-based Scaled Projection Algorithm (SPA45]) and the
SDW-MWF (Algorithm 1 and 3). The computational complexity i
expressed as the number of operations (i.e. real multtjita and
additions (MAC) per second) in MIPS and the memory usage is

4When using correlation matrices, filter adaptation can dake place
during noise-only-periods, since during speech-peribdsiesired signad[%]
cannot be constructed from the noise-bufi@y any more.

5The complexity of the FD GSC-SPA also represents the coritpleshen
the adaptive filter is only updated during noise-only-pésio



Algorithm 2 FD implementation (without approximation)
Initialisation and matrix definitions:

w0 =[ 0 0], i=M-N ...
Pn[0] = 6m, m=0...2L —1
F = 2L x 2L-dimensional DFT matrix

g:{IL OL}, k=[0, I.]

0; O
0, = L x L matrix with zerosI; = L x L identity matrix

M-1

For each new block of L samples (per channel):
dk] = [ yo[kL — A] wolkL —A+L—1] ]"
Yilk] = diag{F [ yi[kL - I] wlkL+1-1] 17}
Output signal:

M-1
elk] =d[k] —~kF™' > Y;[k|W;,[k], E[k]=Fk’ e[k
j=M—-N
If speech detected:
SJ[k] = Z/\’“ YRR KETY )
If noise detectedVZ [k] =Y;[k]
SV [k] = ZA’“ WV NFK KFV, )
Update formula (onIy during noise-only-periods):
M-—-1
1 1, ’L
Rk = > [SVIK -~ SIK] Wilk
j=M—-N
W[k + 1] = Wi[k] + FgF ' A[k] {v E[k] — Ri[k}}
with o ) )
Alk] = = diag {Py Py [}
Polk] = vPulk—1]+ (1 =7) (Pom[k] + Pr,m[k])
M—-1
Pomlk] = D |Vimlk]
j=M-N
1 M—-1 -
Pemlk] = —=| > Syulk] — Si%.[k]
H j=M—-N

expressed in kWords. We assume that one complex multijgicé
equivalent to4 real multiplications and real additions and that a
2L-point FFT of a real input vector required.log, 2L real MACs

(assuming the radig-FFT algorithm). From this table we can draw [1] H. Cox, R. Zeskind, and T. Kooi,

the following conclusions:

« The computational complexitgf the SDW-MWF (Algorithm 1)

with filter w is about twice the complexity of the GSC-SPA

(and even less withouvy). The approximation in the SDW-

MWF (Algorithm 3) further reduces the complexity. However, [3]
this only remains true for a small number of input channels,

since the approximation introduces a quadratic t€iNV?).

Due to the storage of the speech+noise-buffernteenory usage
of the SDW-MWEF (Algorithm 1) is quite high in comparison
with the GSC-SPA (depending on the size of the data buffe
L, of course). By using the approximation in the SDW-MWF

O(N?) is introduced.

Algorithm Complexity MIPS
GSC-SPA (3M —1)FFT+ 14M — 12 2.02
MWF (Algo1) (3N +5)FFT+28N +6 3.10@, 4.130)
MWF (Algo3) | (3N + 2)FFT+ 8N?2 + 14N + 3 | 2.54®@), 3.98®)
Memory kWords

GSC-SPA 4(M —1)L + 6L 0.45

MWF (Algo1) 2NL, +6LN +7L 40.61®, 60.80®)
MWF (Algo3) ALN? 4+ 6LN + 7L 1.12®), 1,950

TABLE |
COMPUTATIONAL COMPLEXITY AND MEMORY USAGE FORM = 3,
L =32, fs =16KHz, Ly, = 10000, A) N =M —1,B) N =M

VII. CONCLUSION

In this paper we have presented a robust multi-microphone
noise reduction technique, called the Spatially Pre-maeg Speech
Distortion Weighted Multi-channel Wiener Filter (SP-SDVWNV/F),
which consists of a robust fixed spatial pre-preprocesstraambust
adaptive stage. Robustness in the fixed spatial pre-pregsoc is
achieved by incorporating statistical information abolé tmicro-
phone characteristics into the design procedure, whilegimiess in
the adaptive stage is achieved by taking speech distortplicély
into account in the optimisation criterion of the MWF. Foreth
implementation of the adaptive SDW-MWF an efficient stoticas
gradient algorithm in the frequency-domain has been deeeloUs-
ing simulations with hearing aid recordings we have denratet the
robustness benefit of the presented multi-microphone methéction
technique against microphone mismatch.
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