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Multimicrophone Noise Reduction Using Recursive
GSVD-Based Optimal Filtering With ANC

Postprocessing Stage
Simon Doclo, Member, IEEE, and Marc Moonen, Member, IEEE

Abstract—Recently, a generalized singular value decomposition
(GSVD)-based optimal filtering technique has been proposed for
enhancing multimicrophone speech signals degraded by additive
colored noise. The GSVD-based optimal filtering technique has a
better noise reduction performance than standard beamforming
techniques provided that the used filter length is large enough.
In this paper, it is shown that the same noise reduction perfor-
mance can be obtained with shorter filter lengths at a lower com-
putational complexity by incorporating the GSVD-based optimal
filtering technique in a generalized sidelobe canceller type struc-
ture, i.e., by adding an adaptive noise cancellation (ANC) post-
processing stage. Even when using short filter lengths, the total
computational complexity is essentially determined by the calcu-
lation of the GSVD of a speech and a noise data matrix. It is shown
that the complexity can be significantly reduced by using recursive
GSVD-updating algorithms and by using subsampling.

Simulations have been performed for various acoustic scenarios
(different and multiple noise sources and different reverberation
conditions), where both the improvement in signal-to-noise ratio
and speech distortion have been analyzed. These simulations show
that the GSVD-based optimal filtering technique with an ANC
postprocessing stage has a better noise reduction performance
than standard fixed and adaptive beamforming techniques while
introducing an acceptable amount of speech distortion.

Index Terms—Generalized sidelobe canceller, generalized sin-
gular value decomposition (GSVD), multichannel Wiener filter,
optimal filtering, recursive algorithms, speech enhancement.

I. INTRODUCTION

I N MANY speech communication applications, such as
hands-free mobile telephony, hearing aids, and voice-con-

trolled systems, the recorded speech signals are often corrupted
by a considerable amount of acoustic background noise. Since
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the desired speech signal and the undesired noise signal usu-
ally occupy overlapping frequency bands, single-microphone
speech enhancement techniques (e.g., spectral subtraction [1],
Kalman filtering [2], signal subspace-based techniques [3],
[4]) generally have problems to reduce the background noise
without introducing noticeable artifacts (e.g., musical noise)
or speech distortion. However, when the speech and noise
sources are physically located at different positions, this spatial
diversity can be exploited by using a microphone array (see
Fig. 1), such that both the spectral and the spatial characteristics
of the signal sources can be used.

Well-known multimicrophone speech enhancement tech-
niques are fixed and adaptive beamforming techniques [5].
A fixed delay-and-sum (DS) beamformer spatially aligns the
microphone signals to the direction of the speech source. In
a minimum-variance distortionless response (MVDR) beam-
former, the energy of the output signal is minimized under the
constraint that signals arriving from the look direction, i.e., the
direction of the speech source, are processed without distortion.
A well-known adaptive implementation of this beamformer is
the generalized sidelobe canceller (GSC) [6], which consists
of a fixed beamformer, creating a so-called speech reference
signal; a blocking matrix, creating so-called noise reference
signals; and a multichannel adaptive filter [7]–[8], eliminating
the noise components in the speech reference signal which are
correlated with the noise reference signals. However, because of
room reverberation, microphone mismatch, and look direction
error, the speech signal leaks into the noise references, such
that signal cancellation occurs in the standard GSC. In order to
limit signal cancellation, different variants of the standard GSC
implementation exist, e.g., using a speech-controlled adaptation
algorithm [9]–[12], a spatial filter designed blocking matrix
[11], [13], norm-constrained [14] and coefficient-constrained
adaptive filters [12], or incorporating a transfer function model
[15].

Recently, a generalized singular value decomposition
(GSVD)-based optimal filtering technique has been proposed
for enhancing multimicrophone speech signals degraded by ad-
ditive colored noise [16]–[18]. This optimal filtering technique
makes a minimum mean square error (MMSE) estimate of the
speech component in one of the microphone signals. Hence,
the reverberation present in the microphone signals will not be
suppressed and inevitably some (linear) speech distortion will
be introduced. The GSVD-based optimal filtering technique is
in fact a multimicrophone extension of the single-microphone
signal subspace-based techniques for speech enhancement [3],
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Fig. 1. Typical speech communication environment with desired speech source and undesired noise sources recorded with a microphone array.

[4], now combining the spatio-temporal information of the
speech and noise sources. In [16], it has been shown that the
optimal filter can be written as a function of the generalized
singular vectors and generalized singular values of a so-called
speech and noise data matrix, where the specific function used
provides a means to trade off noise reduction versus speech
distortion. It has also been shown that the GSVD-based optimal
filtering technique has a better noise reduction performance
than standard beamforming techniques (DS beamformer, GSC)
for all reverberation times, if the used filter length is large
enough. In addition, since the GSVD-based optimal filtering
technique does not make any a priori assumptions about the
location of the speaker, the microphone characteristics, and
the room reverberation, it is more robust to deviations from
the nominal situation [16], [19]. However, the computational
complexity of this technique is quite high, since it requires
calculating the GSVD of two matrices.

In this paper, several techniques are discussed for reducing
the total computational complexity of the GSVD-based optimal
filtering technique described in [16]. First, it is shown that the
same noise reduction performance can be obtained with shorter
filter lengths by incorporating the GSVD-based optimal filtering
technique in a GSC-type structure, i.e., adding an ANC postpro-
cessing stage. Second, several techniques are discussed for ef-
ficiently calculating the GSVD of the speech and the noise data
matrix, making this multimicrophone noise reduction technique
amenable to real-time implementation.

The paper is organized as follows. In Section II, the GSVD-
based optimal filtering technique is briefly reviewed and it is
shown that the optimal filter can be written as a function of the
generalized singular vectors and generalized singular values of
a speech and a noise data matrix. Section III describes how the
GSVD-based optimal filtering technique can be incorporated in
a GSC-type structure by creating speech and noise reference sig-
nals and by using these signals in an adaptive noise cancellation
(ANC) postprocessing stage. The output of the GSVD-based
optimal filtering technique is used as speech reference signal,
while different possibilities exist for creating a noise reference.
Since the total computational complexity is essentially deter-
mined by the calculation of the GSVD, Section IV describes
several techniques for reducing the complexity by using recur-

sive GSVD-updating algorithms (Section IV-B) and subsam-
pling (Section IV-C). In Section IV-D the computational com-
plexity is summarized for realistic parameter values, showing
that the computational complexity can be significantly reduced
such that the proposed signal enhancement technique indeed
becomes suitable for real-time implementation. Section V de-
scribes several simulation results. In Sections V-A, V-B, and
V-C, the used simulation environment and implementation is-
sues of the different signal enhancement techniques are dis-
cussed. In Section V-D it is shown that the batch and the re-
cursive version of the GSVD-based optimal filtering technique
nearly have the same performance. Section V-E describes the
effect of several parameters in the recursive GSVD-updating al-
gorithms. In Section V-F, the effect of the ANC postprocessing
stage on the noise reduction performance and the speech dis-
tortion is investigated for different filter lengths and number of
noise references. It is shown that the decrease in noise reduction
performance due to short filter lengths for the GSVD-based op-
timal filter can be fully compensated by adding the ANC post-
processing stage, at a lower total computational complexity and
causing a small increase in speech distortion. In Sections V-G
and V-H, simulations are performed for various acoustic sce-
narios, showing that the GSVD-based optimal filtering tech-
nique with an ANC postprocessing stage outperforms standard
fixed and adaptive beamforming techniques.

II. GSVD-BASED OPTIMAL FILTERING

A. Problem Formulation and Notation

Consider microphones, where each microphone signal
, at time , consists of a filtered version

of the clean speech signal and additive noise

(1)

where and are, respectively, the speech and the noise
component received at the th microphone, is the acoustic
room impulse response between the speech source and the th
microphone and denotes convolution. The additive noise can
be colored and is assumed to be uncorrelated with the speech
signal.
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Fig. 2. Multimicrophone filtering for speech enhancement.

Fig. 3. Optimal filtering problem with desired response vector x[k].

The goal of multimicrophone speech enhancement is to com-
pute filters (see Fig. 2), such that the
speech signal (GSC) or one of the speech components
(GSVD-based optimal filtering technique) is recovered. Let the
FIR filters have length , and consider the -dimensional
data vectors , the -dimensional stacked filter (with

) and the -dimensional stacked data vector , de-
fined as

(2)

(3)

(4)

with denoting transpose, such that the output signal can
be written as

(5)

In the next section, a method will be described for computing
the stacked filter such that is an optimal estimate for
one of the speech components .

B. Unconstrained Optimal Filtering

Consider the filtering problem in Fig. 3: is the -di-
mensional filter input vector, and is the filter
output vector, where is an -dimensional filter ma-
trix. The -dimensional vector is the desired response
vector and is the estimation error vector. The
mean square error (MSE) cost function leads to the well-known
multidimensional Wiener filter [20]

(6)

where is the -dimensional
correlation matrix of the input signal,
is the -dimensional cross-correlation matrix of the input
signal and the desired signal, and denotes the expectation
operator.

When considering multimicrophone noisy speech signals, the
input vector consists of the speech component and the ad-
ditive noise component, , with de-
fined in (4) and and similarly defined. Since the de-
sired signal is an unobservable signal, this poses a partic-
ular problem which may be solved based on the on/off charac-
teristics of the speech signal. If we use a robust voice activity
detection (VAD) algorithm [21], [22], noise-only observations
can be made during speech pauses (time ), where

, which allows estimation of the spatio-temporal correla-
tion properties of the noise signal. The output of the VAD-al-
gorithm at time is represented by , where repre-
sents a speech-and-noise observation and represents a
noise-only observation.

We now make two assumptions: We assume that the second-
order statistics of the noise signal are sufficiently stationary such
that the noise correlation matrix , which can be estimated
during noise-only periods, can also be used during subsequent
speech-and-noise periods, i.e.,

(7)

and we also assume that the speech and noise signals are statis-
tically independent, implying that

(8)

From the second assumption it is easily verified that
and , such that the optimal

filter matrix in (6) can be written as

(9)

with estimated during speech-and-noise periods and
estimated during noise-only periods.

For calculating the multidimensional Wiener filter ,
the expression in (9) can generally be used directly without any
numerical problem. However, in [3] and [16], it has been shown
that by using the joint diagonalization of the symmetric cor-
relation matrices and , the low-rank model of
the clean speech signal can easily be taken into account
and one can easily provide a tradeoff between noise reduction
and speech distortion. The joint diagonalization of and

is defined as

diag
diag

(10)
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where is an invertible, but not necessarily orthogonal, ma-
trix [23]. Substituting (10) into (9) gives an expression for the
optimal filter matrix

diag (11)

The enhanced speech vector is obtained
as , such that the -dimensional
vector contains an estimate for all speech samples

, i.e., for all
delayed versions of the speech components in all micro-
phone signals. The th element of , which is obtained by
filtering the microphone signals with the th column
of , represents an optimal estimate for the speech
component in the th microphone signal with delay , i.e.,

(12)

with

(13)

where denotes the integer part of and
denotes the remainder of the division. The ques-

tion now arises which of the columns of yields the
lowest MSE. In [16] it has been shown that the smallest diagonal
element of the error covariance matrix ,
with , corresponds to the “best” estimator.
However, computing at each time step and choosing the
column corresponding to its smallest diagonal element is a com-
putationally very demanding procedure. Simulations have indi-
cated that taking a fixed value , i.e., using the optimal
estimate of the delayed speech component in the first micro-
phone signal , does not have a significant
effect on the noise reduction performance and the speech intel-
ligibility [17].

In [16] it has already been indicated that, when using the
GSVD-based optimal filter for noise reduction, some speech
distortion cannot be avoided, since the estimation error is
the sum of a term representing speech distortion and a
term representing the residual noise, i.e.,

(14)

where is the -dimensional identity matrix. In [16]
it has also been shown that it is possible to provide a tradeoff
between noise reduction and speech distortion.

C. Practical Computation Using GSVD

In practice, the matrix and the diagonal elements
and can be estimated by a GSVD [24], [25] of a

-dimensional speech data matrix , containing speech
data vectors, and a -dimensional noise data matrix ,

containing noise data vectors (with and typically much
larger than ), i.e.,

... (15)

...

... (16)

where and are chosen such that

(17)

Recall that for speech-and-noise observations
, whereas for noise-only

observations . The correlation matrices
and can now be approximated by the em-

pirical correlation matrices and
.

The GSVD of the data matrices and is defined as

(18)

with diag diag
and orthogonal matrices, an invertible but not
necessarily orthogonal matrix containing the generalized sin-
gular vectors and the generalized singular values.
Substituting these formulas into (9) gives an empirical estimate

for the optimal filter matrix at time

diag (19)

showing that the optimal filter matrix estimate can be
written as a function of the generalized singular vectors and gen-
eralized singular values of the speech and the noise data ma-
trices.

Since in practice the generalized singular values are estimated
from the empirical correlation matrices, it may occur that some
diagonal elements in (19) become negative. In [3] and [16] it has
already been noted that negative values will always be obtained
since an unbiased nonperfect estimator is used. Therefore, these
negative values, which are in fact zero estimates, will be set to
zero.

D. Batch and Recursive Algorithm

In the batch version of the algorithm, the speech and the noise
data matrices and are constructed using all available
speech and noise data vectors in the considered signal frame.
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Fig. 4. GSVD-based optimal filtering technique with an ANC postprocessing stage.

The optimal filter matrix (which is then actually inde-
pendent of ) is computed using the GSVD of and
in (19), and the total enhanced signal is obtained by filtering the
microphone signals with the filter . The batch version
is not suitable for real-time implementation because of the large
delay introduced by the frame-based processing.

In the recursive version, the speech and the noise data ma-
trices are updated for each time step with the newly avail-
able speech or noise data vector (depending on the output of the
VAD-algorithm). Depending on the specific implementation, a
fixed length data window (with length and for speech and
noise respectively), or an exponential weighting window (with
exponential weighting factors and , cf. Section IV-B) can
be used. For each time , the GSVD of and and the
optimal filter matrix are recomputed and the enhanced
signal at time is obtained by filtering the microphone signals
with the filter . The recursive version introduces only
a small processing delay equal to samples, and is
able to track changing acoustic environments and signal statis-
tics faster than the batch version. However, since at each time
step the GSVD and the optimal filter need to be recalculated,
the computational complexity is quite high. As will be shown
in Section IV, the computational complexity can be drastically
reduced by using recursive GSVD-updating algorithms.

In Sections V-D it will be shown using simulations that the
batch and the recursive version of the GSVD-based optimal fil-
tering technique nearly have the same performance.

E. Other Implementations

Instead of using the discussed fullband GSVD-based imple-
mentation of the multichannel Wiener expression (9), other im-
plementations exist, which exhibit a lower computational com-
plexity and/or a better performance. In [26], a subband imple-
mentation of the GSVD-based optimal filtering technique has
been proposed, leading to a better performance than the full-
band implementation, since the MSE can be optimized in each
individual subband, which is perceptually more relevant. In [27]
and [28] a (fast) QRD-based implementation has been proposed,
leading to a lower complexity scheme having nearly the same
performance. However, in this QRD-based implementation it is
not possible to incorporate the low-rank model of the speech
signal. In [29]–[30] stochastic gradient LMS-based implemen-
tations in the frequency-domain have been proposed with an
even lower computational complexity.

III. ANC POSTPROCESSING STAGE

In [16]–[18] and [26], it has been shown that the GSVD-
based optimal filtering technique has a better noise reduction
performance than standard beamforming techniques, if the used
filter length is large enough. However, the same noise re-
duction performance can be obtained with shorter filter lengths
at a lower total computational complexity by incorporating the
GSVD-based optimal filtering technique in a GSC-type struc-
ture, i.e., by adding an ANC postprocessing stage.

This postprocessing stage is a widely used structure in adap-
tive beamforming, where speech and noise reference signals are
created and then used in an adaptive noise cancellation algo-
rithm [5]–[15]. The objective is to create a speech reference
signal having a higher signal-to-noise ratio (SNR) than the orig-
inal microphone signals and to create one or more noise refer-
ence signals containing as little speech energy as possible. A
multichannel adaptive filter (e.g., NLMS, APA, RLS [7]–[8])
then removes the remaining correlation between the (residual)
noise component in the speech reference signal and the noise
reference signals. In order to avoid signal cancellation and dis-
tortion, signal leakage into the noise reference (e.g., caused by
reverberation, microphone mismatch, look direction error and
spatially distributed sources) needs to be minimized and the ef-
fect of the signal leakage on the ANC adaptive filters needs to
be limited. For adaptive beamformers, signal leakage can be re-
duced by e.g., using a spatial filter designed blocking matrix
[11], [13], whereas, the effect of the signal leakage on the ANC
adaptive filters can be limited by e.g., using a speech-controlled
(VAD) adaptation algorithm [9]–[12] or constrained adaptive
filters [12], [14].

However, instead of using a fixed beamformer to create the
speech reference signal, it is also possible to use the GSVD-
based optimal filtering technique. The complete noise reduction
scheme, incorporating the GSVD-based optimal filter in a GSC-
type structure with an ANC postprocessing stage, is depicted in
Fig. 4. The output signal of the GSVD-based optimal filter is
used as the speech reference signal

(20)

which is the optimal estimate for the speech component in the
th microphone signal (with delay ), obtained by filtering the

microphone signals with , with . The
residual noise level in the speech reference signal depends on
the filter length used for the GSVD-based optimal filter. For
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the creation of a noise reference different possibilities exist. An
obvious choice consists in simply subtracting the speech refer-
ence signal from the delayed th microphone signal, i.e.,

(21)

Indeed, if is the optimal filter matrix for estimating
the speech components in the microphone signals, i.e.,

, then it is easily shown that is
the optimal filter matrix for estimating the noise components in
the microphone signals, i.e., . The
th element of is equal to the optimal estimate of the noise

component in the th microphone signal (with delay ), i.e.,

(22)

where is an -dimensional vector with all zeros, except for
the th element which is equal to 1. Instead of only calculating
a noise reference for one microphone signal, it is also possible
to calculate noise references for all microphone signals, i.e.,

...

...
(23)

In order to construct , optimal estimates for the speech
components in all microphone signals need to be computed.

Also for the ANC postprocessing stage of the GSVD-based
optimal filtering technique, signal leakage into the noise ref-
erence will occur, since the estimate of the speech component

is generally not exactly equal to . How-
ever, signal leakage can be reduced by using longer filter lengths

for the GSVD-based optimal filter and the effect of the signal
leakage on the ANC adaptive filters can be limited by using a
speech-controlled (VAD) adaptation algorithm, where the ANC
adaptive filters are only allowed to adapt during noise-only pe-
riods [9]–[12].

In Section V-F the noise reduction improvement and the ad-
ditional speech distortion of the ANC postprocessing stage will
be investigated experimentally for different filter lengths of the
GSVD-based optimal filter and the ANC adaptive filter and for
the two different noise references and . It
will be shown that the SNR of the enhanced signal improves
with increasing filter lengths and increasing number of noise
reference signals. It will also be shown that the decrease in
noise reduction performance due to short filter lengths can be
fully compensated by adding the ANC postprocessing stage, at a
lower total computational complexity. The ANC postprocessing
stage will however give rise to a slight increase in speech distor-
tion, which can be limited by using longer filter lengths for the
GSVD-based optimal filter and for the ANC adaptive filter.

IV. RECURSIVE GSVD-UPDATING AND SUBSAMPLING

As already stated in Section II-D, in the recursive version of
the GSVD-based optimal filtering technique, the GSVD of the
speech and the noise data matrices needs to be recomputed at
each time step, giving rise to a high computational complexity,
even when using short filter lengths . This section describes
several techniques for drastically reducing the computational
complexity by using recursive Jacobi-type GSVD-updating al-
gorithms and by using subsampling. In addition, a summary of
the total computational complexity is given for realistic param-
eter values.

A. Jacobi-Type Algorithm for Computing GSVD

For conciseness, the time index will be omitted in this sec-
tion. The GSVD of two matrices and can be computed as
follows (for details, see [24] and [25]). First, the matrices and

are reduced to upper triangular form by a QR-decomposition

(24)

where and are square upper triangular matrices, and
and have orthonormal columns, i.e.,

. The GSVD of and readily follows from the
GSVD of and , which is computed by carrying out an
iterative procedure, where a series of orthogonal Givens trans-
formations are applied to and in order to yield square
upper triangular factors and with parallel rows, i.e.,

(25)

where , and are orthogonal matrices, and
diagonal matrices and a square upper triangular matrix.

Combining (24) and (25), the GSVD of and can be written
as

(26)

with and .
The algorithm for computing the matrices

, and is presented below (typi-
cally only , and are stored).

1) Initialization:

2) Iterative GSVD-procedure
for (sweeps)

for (GSVD-steps)

(27)

(28)

(29)

end
end
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The orthogonal matrices and in (27) and (28) rep-
resent plane Givens rotations with rotation angles and
in the -plane, i.e.,

(30)

In each iteration, the computation of the rotation angles
and and , essentially reduces to the GSVD of the el-
ementary 2 2-dimensional blocks and
on the main diagonal, where denotes the 2 2-dimen-
sional matrix on the intersection of rows and columns

of the matrix . The pivot index repeatedly takes
up all possible values on the main diagonal.
Here, one such sequence is referred to as a sweep (
GSVD-steps).

Since the GSVD of the upper triangular matrices and
corresponds to the SVD of the upper triangular matrix

, it is possible to implicitly apply a Jacobi-type SVD-al-
gorithm to without explicitly having to compute and
[24]. The GSVD of the 2 2-dimensional blocks and

corresponds to the SVD of the 2 2-dimensional
upper triangular matrix

(31)

which comes down to calculating the Givens rotation angles
and (cf., [24], [31]) such that

(32)

These orthogonal transformations are seen to parallelize the
rows of and , i.e.,

(33)

TABLE I
SUMMARY OF TOTAL COMPLEXITY OF GSVD-BASED OPTIMAL FILTERING

TECHNIQUE FOR BATCH AND RECURSIVE VERSIONS USING REALISTIC

PARAMETER VALUES

which then allows for a joint upper triangularizing orthogonal
transformation in order to obtain the GSVD of

and , i.e.,

(34)

Since computing a full GSVD requires sweeps
(with typically for convergence [32]), the total
computational complexity, defined as the total number of
additions and multiplications, amounts to

QR-decomposition (GSVD-procedure),
such that the total complexity is equal to

. For typical values of , and , the complexity
of this algorithm is too high to be suitable for real-time imple-
mentation (see Table I).

B. Recursive GSVD-Updating Algorithm

Instead of recomputing the GSVD from scratch at each time
step, recursive GSVD-updating algorithms compute the GSVD
at time using the decomposition at time . In [33] and [34]
a Jacobi-type (G)SVD-updating algorithm has been described.
Suppose that at time the upper triangular factors are re-
duced to and having approximately parallel
rows, cf. (25), shown in

(35)

of which only and the orthogonal matrix
are stored and updated.

At time , a new data vector is present, such that we need
to recompute the GSVD of the updated data matrices and

, which are constructed by weighting and
and adding the new data vector (when using fixed length data
windows, also a down-date has to be performed, which is not
numerically stable). If is classified by the VAD-algorithm
as a speech-and-noise vector , only the speech data
matrix is updated, i.e.,

(36)
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whereas if is classified as a noise-only vector ,
only the noise data matrix is updated, i.e.,

(37)

with the exponential weighting factor for speech and the
exponential weighting factor for noise (if , no weighting
is performed). Assuming that is classified as a speech-and-
noise vector, the speech data matrix can be rewritten as

...

(38)

First, the upper triangular factor is restored by performing a
QR-update with the transformed input vector

. QR-updating can be performed by using orthog-
onal Givens rotations, zeroing the elements on the bottom row,
yielding the upper triangular matrix

...

(39)

In this equation, is an -dimensional matrix
with orthogonal columns, which does not need to be computed
explicitly. The matrix is not altered by the QR-update.
If is classified as a noise-only vector, a similar procedure
needs to be performed for instead of for .

Second, the iterative GSVD-procedure is resumed in order to
further parallelise the rows of the square upper triangular ma-
trices and . A fixed number of sweeps is per-
formed, where the pivot index takes up consecutive values.
Typically one sweep is performed , where the pivot
index takes up all possible values along the main diagonal

.
The complete procedure at time , where only the square

upper triangular matrices and and the orthogonal
matrix are stored and updated, can be summarized as fol-
lows:

1) matrix-vector multiplication and QR-update
if (speech-and-noise)

(40)

(41)

else if (noise-only)

(42)

(43)

end

2) GSVD-update procedure

for (sweeps)
for (GSVD-steps)

(44)

(45)

(46)

end
end

The computational complexity of one GSVD-update is equal
to matrix-vector multiplication QR-update

(GSVD-update procedure). For and
, the total complexity amounts to .

The optimal filter matrix in (19) can now be com-
puted as

diag

(47)

where the factor has been replaced by ,
because exponential weighting is used. Upon convergence of
the recursive GSVD-updating algorithm, it follows from (35)
that and

, since and have parallel rows. Hence,
can be computed as

diag

(48)

diag

(49)

Since only the th column of needs to be
computed, this column can be computed as the solution of the
linear set of equations

diag (50)
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Fig. 5. Simulation environment.

where is the th column of . The calculation of
consists of computing , requiring operations

(multiplication of triangular matrix with vector), solving the
equation by back-substitution, requiring

operations, and computing as

(51)

requiring operations. Hence, the total computational com-
plexity for computing from the GSVD of and

amounts to .
The computational complexity can be further reduced by

using a square root-free implementation for the QR-updates
and for the calculation of the elementary 2 2-dimensional
GSVD’s. Since the above GSVD-schemes as such do not lend
themselves to square root-free implementation, alternative
schemes based on approximate formulas for the calculation of
the rotation angles and have to be considered [31].
These schemes eventually yield square root-free SVD-up-
dating algorithms [35], which can be easily extended to
square root-free GSVD-updating algorithms [34]. It can be
shown that the complexity of one square root-free GSVD-up-
date is equal to matrix-vector multiplication

square root-free QR-update
(square root-free GSVD-update procedure). For and

, the total computational complexity amounts
to , which is less expensive than the “conventional”
GSVD-updating procedure.

C. Subsampling Techniques

For stationary acoustic environments the computational com-
plexity can be reduced without any loss in performance by using
subsampling techniques. In this context subsampling means that
the GSVD of and and the optimal filter
are not updated for every sample, but that the GSVD is updated
every samples and that the optimal filter is updated every

samples. If a higher subsampling factor is used, the conver-
gence speed toward the converged optimal filter is slower, im-
plying that the amount of subsampling should be limited in non-
stationary acoustic environments.

D. Total Computational Complexity

Table I summarizes the total complexity in floating point op-
erations per second (flops) for the batch and the recursive ver-
sion of the GSVD-based optimal filtering technique, assuming
that and . The numerical results are
obtained for microphones, filter length

, sampling frequency kHz, data window lengths
and (for the batch version) and are

shown both in case of no subsampling and in case of subsam-
pling with . By using the recursive version of
the GSVD-based optimal filtering technique, the computational
complexity can be significantly reduced such that the algorithm
becomes suitable for real-time implementation.

V. SIMULATION RESULTS

This section discusses the performance (SNR improvement
and speech distortion) of the GSVD-based optimal filtering
technique with and without an ANC postprocessing stage.
First, the simulation environment and the implementation
details of the considered algorithms are described. Then, the
performance difference between the batch and the recursive
version of the GSVD-based optimal filtering technique and the
effect of different parameters in the recursive GSVD-updating
algorithms are discussed. The effect of the ANC postpro-
cessing stage on the noise reduction performance and speech
distortion is also analyzed. Finally, the performance of the
recursive GSVD-based optimal filtering technique is compared
with standard beamforming techniques for various simulated
acoustic scenarios and a real-life recording.

A. Simulation Environment

The simulation room is depicted in Fig. 5 and has dimen-
sions 6 3 2.5 m. It consists of a microphone array, a speech
source and 3 noise sources. Unless otherwise indicated, we will
only use the noise source at position 1 (only in Section V-G,
three simultaneous noise sources at different positions will be
used). In our simulations we have used a linear equi-spaced mi-
crophone array with microphones and the distance
between two adjacent microphones is 5 cm. The speech source
is located at m from the centre of the microphone array at
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an angle of 56 . The used signals are a 16 kHz clean speech
signal, consisting of english sentences from the “Hearing in
Noise Test” [36], and three different noise signals: stationary
white noise, stationary speech noise from the NOISEX-92 data-
base [37], having the same long-term spectrum as speech, and a
nonstationary classical music signal. The speech and the noise
components received at the th microphone are filtered versions
of the clean speech and noise signals with simulated acoustic
room impulse responses, constructed using the image method
[38], [39] for different reverberation times . The reverbera-
tion time can be expressed as a function of the absorption
coefficient of the walls, according to Eyring’s formula [40]

(52)

where is the volume of the room and the total surface of
the room. Using simulated acoustic impulse responses, we can
easily compare the performance for different reverberation con-
ditions.

Since all described algorithmic operations (GSVD-based op-
timal filter, ANC postprocessing stage and fixed and adaptive
beamforming) amount to linear filtering operations, the speech
and the noise components of the output signal and all interme-
diate signals can be easily obtained by applying the computed
filters separately to the speech and the noise components of the
microphone signals. The performance of the GSVD-based op-
timal filtering technique will be described by the unbiased SNR
improvement and by the introduced speech distortion. The un-
biased SNR of a signal can be computed
during speech-and-noise periods as

SNR (53)

with and , respectively, the speech and the noise com-
ponent of the considered signal . Speech distortion will be
analyzed by considering the Power Transfer Function (PTF)

between the speech component of the first microphone
signal and the speech component of the considered signal

(54)

with the power spectral density (PSD) of and
the PSD of . The average speech distortion (SD)

is computed as the average of the PTF in dB over the
full frequency band, i.e.,

(55)

We also consider the Itakura-Saito distance [41] between the
speech component of the first microphone signal and
the speech component of the considered signal . We have
calculated this distance for consecutive frames of 480 samples
(with an overlap of 360 samples) and an LPC-order of 12 and
we will use the average Itakura-Saito distance over all frames
as an additional measure for describing speech distortion.

In our simulations, we have constructed the noisy mi-
crophone signals such that the unbiased SNR of the first

Fig. 6. (a) Speech component x [k] and voice activity detection. (b) Noisy
microphone signal y [k] (speech noise, SNR = 0 dB, T = 300 ms).
(c) Enhanced signal z[k] using recursive GSVD-based optimal filtering
technique with an ANC postprocessing stage (L = 20; L = 400, no
subsampling, all noise references).

microphone signal equals 0 dB. Figs. 6(a) and (b) depict
the speech component and the noisy microphone signal

for reverberation time ms when using speech
noise. Fig. 6(c) shows the enhanced signal processed by
the recursive GSVD-based optimal filtering technique with an
ANC postprocessing stage using all noise reference signals.1

B. Implementation Issues for the GSVD-Based Optimal
Filtering Technique

Both for the batch and for the recursive version of the
GSVD-based optimal filtering technique, a voice activity de-
tection (VAD) algorithm determines when speech is present.
Fig. 6(a) shows the output of a perfect VAD algorithm on the
speech component of the first microphone signal. In [42] the
effect of speech detection errors on the performance has been
theoretically analyzed, and it has been shown that the unbiased
SNR improvement of the optimal filtering technique is not
degraded by speech detection errors, neither when speech is
wrongly detected as noise nor when noise is wrongly detected as
speech. However, speech distortion dramatically increases with
speech detection error rate when speech is wrongly detected as
noise, whereas speech distortion only slightly increases when
noise is wrongly detected as speech. Hence, the VAD should
be tuned such that especially the speech-and-noise periods are
correctly classified. Both the theoretical analysis in [42] and
an experimental validation in [18] have shown that the effect
of speech detection errors on the speech distortion remains
small when the speech detection error rate is smaller than 20%.
In this paper, we will generally assume that a perfect VAD is
available. Only for the real-life recordings in Section V-H, a
(nonperfect) energy-based VAD will be used [21].

In the batch GSVD-based optimal filtering technique,
the speech and the noise data matrices and are

1For this specific simulation, sound files, spectrograms, and power
transfer functions are available at http://www.esat.kuleuven.ac.be/~doclo/
SA00061/audio.html.
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Fig. 7. Generalized sidelobe canceller (GSC).

constructed from the noisy microphone signals
, using all available speech and noise samples. The

filter length of the optimal filter is denoted by . The optimal
filter matrix is computed using (19), where all nega-
tive diagonal elements are put to zero. The stacked filter
is determined as the th column of , with
the fixed value (cf. Section II-B). The total enhanced
signal is obtained by filtering the microphone signals with

.

In the recursive GSVD-based optimal filtering technique, the
data matrices are updated according to (36) or (37), with

and . Using the recursive techniques
of Section IV, the GSVD and the optimal filter are updated
for every sample. The th column of , with

, is computed using (50), and the enhanced signal at
time is computed by filtering the microphone signals with

. When using subsampling, the GSVD
and the optimal filter are updated, respectively, for every and

samples. In order to avoid initial effects (initially no knowl-
edge about either the speech nor the noise data matrix is avail-
able), signal segments twice as long as for the batch version are
processed and only the last half is used for computing the per-
formance measures.

For the ANC postprocessing stage, two possible noise
references will be investigated: in (21) with one
noise reference signal and in (23) with
noise reference signals. The adaptive filter used in the ANC
postprocessing stage is a time-domain NLMS algorithm [7].
The filter length of the adaptive filter is denoted by
and the step size . The speech reference signal is
delayed by samples in order for the adaptive filter to
be able to model some acausal taps. As already mentioned in
Section III, in order to limit signal cancellation and distortion, a
speech-controlled adaptation algorithm will be used, where the
ANC adaptive filter is only allowed to adapt during noise-only
periods.

C. Implementation Issues for the Fixed and Adaptive
Beamforming Techniques

The performance of the GSVD-based optimal filtering tech-
nique will be compared with fixed and adaptive beamforming
techniques. A fixed delay-and-sum (DS) beamformer spatially

aligns the microphone signals to the direction of the speech
source by delaying and summing the microphone signals, i.e.,

(56)

where the delays are computed as ,
with the direction of the speech source.

The standard GSC [6], depicted in Fig. 7, uses the output
signal of a DS beamformer as speech reference signal, and cre-
ates a noise reference by combining the delayed microphone
signals using a blocking matrix (e.g., Griffiths-Jim), blocking
out signals arriving from the direction of the speech source

...
(57)

A multichannel adaptive filter then removes the correlation be-
tween the (residual) noise component in the speech reference
signal and the noise reference signals. When using 1 noise ref-
erence signal, only the first element of is considered.
The used adaptive filter is a time-domain NLMS algorithm [7],
with filter length denoted by and step size . The
speech reference signal is delayed by samples in order
for the adaptive filter to be able to model some acausal taps.

As already mentioned in Section III, because of room rever-
beration, microphone mismatch and look direction error, signal
leakage into the noise reference occurs. In order to limit the
effect of the signal leakage on the adaptive filters, a speech-
controlled (VAD) adaptation algorithm will be used, where the
ANC adaptive filter is only allowed to adapt during noise-only
periods [9]–[12].

However, it is also possible to reduce the amount of signal
leakage in the noise reference by using a spatial filter designed
blocking matrix [11], [13] instead of the standard Griffiths-Jim
blocking matrix. We have designed a spatial filter for the
blocking matrix using a nonlinear design criterion for far-field
broadband beamformers [43] with stopband specifications

and
passband specifications Hz

and . We have designed this spatial
filter with taps per microphone and using
microphones, such that we are able to create two independent
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Fig. 8. Spatial directivity pattern of (a) fixed beamformer (speech reference) and (b) blocking matrix (noise reference).

Fig. 9. Comparison of unbiased SNR for batch and recursive version of
GSVD-based optimal filtering technique for different filter lengths L (speech
noise, no subsampling).

noise reference signals [13]. The fixed beamformer for creating
the speech reference signal has inverse stopband and passband
specifications and is designed to be orthogonal to the blocking
matrix, which can be achieved by imposing linear constraints
in the design procedure [13]. The spatial directivity pattern of
the fixed beamformer and the spatial filter designed blocking
matrix are depicted in Fig. 8. Although the amount of signal
leakage into the noise reference will be reduced, it can never be
completely avoided (certainly not in highly reverberant acoustic
environments). Therefore, we will still use a speech-controlled
(VAD) adaptation algorithm, switching off the adaptation
during speech-and-noise periods.

The speech distortion measures, defined in Section V-A, are
not really useful for fixed and adaptive beamformers, since these
speech distortion measures consider the speech component in
the first microphone signal , whereas the DS beamformer
and the GSC try to recover the signal .

D. Batch versus Recursive Version

Fig. 9 compares the unbiased SNR of the enhanced signal for
the batch and the recursive version of the GSVD-based optimal

Fig. 10. Effect of number of sweeps, GSVD-steps and square root-free
implementation on unbiased SNR for recursive GSVD-based optimal filtering
technique (speech noise, T = 300 ms, L = 20, no subsampling).

filtering technique (without an ANC postprocessing stage). The
noisy microphone signals have been constructed using a speech
noise source at position 1, and the simulations have been per-
formed for different reverberation times and for different
filter lengths of the GSVD-based optimal filter and without
subsampling. As can be seen from Fig. 9, the unbiased SNR in-
creases for higher filter lengths and for lower reverberation
times . This can be explained from the fact that in highly re-
verberant acoustic environments the GSVD-based optimal fil-
tering technique will tradeoff noise reduction and cancellation
of the reverberant part of the speech signal, in order to make an
optimal estimate of the speech component . As can also be
seen from this figure, the performance of the batch and the recur-
sive version are practically equal for all reverberation times and
filter lengths. The performance of the recursive version is even
slightly better, because it is able to adapt to (local) changes in the
spatio-temporal statistics of the speech and the noise sources.

E. Recursive GSVD-Updating Algorithms

As discussed in Section IV-B, different implementations of
the recursive GSVD-updating algorithm exist: a “conventional”
implementation and a square root-free implementation, both
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Fig. 11. Effect of the ANC postprocessing stage on (a) unbiased SNR and (b)
speech distortion for different filter lengths and for different number of noise
references (speech noise, T = 300 ms, batch version).

with the possibility to perform sweeps and GSVD-steps.
Fig. 10 shows the unbiased SNR of the enhanced signal for
different implementations of the recursive GSVD-updating al-
gorithms and for a different number of sweeps and GSVD-steps.
The noisy microphone signals have been constructed using
a speech noise source at position 1 and for reverberation
time ms. The simulations have been performed
with , without subsampling and without the ANC
postprocessing stage. Fig. 10 shows that there is practically
no difference in noise reduction performance between the
“conventional” and the square root-free implementation. When
performing more than one sweep, the SNR only marginally
improves. When performing less than GSVD-steps, the
SNR gradually decreases.

F. Effect of the ANC Postprocessing Stage

Fig. 11 investigates the effect of the ANC postprocessing
stage on the noise reduction performance and the speech

Fig. 12. Comparison of (a) unbiased SNR and (b) speech distortion
for delay-and-sum, GSC and recursive GSVD-based optimal filtering
technique with and without an ANC postprocessing stage (white noise,
L = 20; L = 400, no subsampling).

distortion for different filter lengths and and for a dif-
ferent number of noise reference signals. The noisy microphone
signals have been constructed using a speech noise source at po-
sition 1 and for reverberation time ms, and simula-
tions have been performed with the batch version of the GSVD-
based optimal filtering technique.

Fig. 11(a) shows that the SNR of the enhanced signal im-
proves with increasing filter lengths and and with in-
creasing number of noise reference signals. In addition, this
figure shows that the same noise reduction performance can be
obtained either with large filter lengths without an ANC post-
processing stage or with short filter lengths and using anANC
postprocessing stage. Since the total computational complexity
is , using short filter lengths with an ANC
postprocessing stage gives rise to a lower computational com-
plexity. The ANC postprocessing stage can therefore be used ei-
ther for increasing the noise reduction performance or for com-
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Fig. 13. Comparison of (a) unbiased SNR and (b) speech distortion
for delay-and-sum, GSC and recursive GSVD-based optimal filtering
technique with and without an ANC postprocessing stage (speech noise,
L = 20; L = 400, no subsampling).

putational complexity reduction without decreasing the perfor-
mance.

Fig. 11(b) shows that the ANC postprocessing stage gives
rise to a small increase in speech distortion (spectral distortion
and Itakura–Saito distance), compared to not using the ANC
postprocessing stage. However, speech distortion can be limited
by using longer filter lengths (since signal leakage into the
noise reference is then reduced) and longer filter lengths .

G. Comparison for Simulated Acoustic Scenarios

In this section, the noise reduction performance and the
speech distortion of the GSVD-based optimal filtering tech-
nique with and without an ANC postprocessing stage is
compared with standard beamforming techniques for three
simulated acoustic scenarios: a white noise source at position
1 (Fig. 12), a speech noise source at position 1 (Fig. 13) and

Fig. 14. Comparison of (a) unbiased SNR and (b) speech distortion for
delay-and-sum, GSC and recursive GSVD-based optimal filtering technique
with and without an ANC postprocessing stage (three noise sources,
L = 20; L = 400, no subsampling).

three simultaneous noise sources (white+speech+music) at
the three noise positions (Fig. 14). In all scenarios the noisy
microphone signals are constructed such that the unbiased SNR
of is 0 dB. The following signal enhancement techniques
are compared: DS-beamformer, GSC ( , 1 and
all noise reference signals), GSC with spatial filter designed
blocking matrix, recursive GSVD-based optimal filtering tech-
nique ( , no subsampling) with and without an ANC
postprocessing stage ( , 1 and all noise reference
signals). This comparison is performed for different reverber-
ation conditions. The scenario of the three simultaneous noise
sources in a highly reverberant environment can actually be
considered quite a good approximation of a diffuse noise field.

Figs. 12(a), 13(a), and 14(a) show that for low the SNR
improvement of the GSC-based techniques is better than the
SNR improvement of the GSVD-based optimal filtering tech-
nique without an ANC postprocessing stage. When adding the
ANC postprocessing stage using all noise reference signals, the
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Fig. 15. (a) PSD of speech and noise components of first microphone signal (T = 300 ms), PTF of speech and noise components for recursive GSVD-based
optimal filtering technique with and without an ANC postprocessing stage for (b) T = 130 ms, (c) T = 300 ms, (d) T = 800 ms (speech noise, L = 20,
no subsampling, L = 400, all noise references).

SNR improvement of the GSVD-based optimal filtering tech-
nique clearly outperforms the SNR improvement of the GSC
(both Griffiths-Jim and spatial filter designed blocking matrix)
for all reverberation times and all considered acoustic scenarios.
In addition, the performance for the white noise source is better
than for the speech noise source and the performance for a single
noise source is better than for three simultaneous noise sources
at different positions. This can be explained by the fact that
the GSVD-based optimal filter can actually be decomposed as
a spatial filtering operation, depending on the spatial charac-
teristics (coherence) of the speech and the noise field, and a
single-channel Wiener filter, depending on the spectral charac-
teristics of the speech and the noise sources [19].

Figs. 12(b), 13(b), and 14(b) show the speech distortion
(spectral distortion and Itakura–Saito distance) introduced by
the recursive GSVD-based optimal filtering technique with and
without an ANC postprocessing stage for different reverberation
times. More speech distortion occurs for higher reverberation
times and when using more noise reference signals. This can
also be seen from Fig. 15, where the PSD and the PTF of the
speech and the noise components have been plotted for three
different reverberation times. For reverberation time
ms, Fig. 15(a) shows the PSD of the speech and the noise
components of the first microphone signal and Fig. 15(c) shows
the PTF for the speech and the noise components of the output

signal of the recursive GSVD-based optimal filtering technique
with and without an ANC postprocessing stage. As can be seen
from Fig. 15(c), spectral distortion is limited, mainly occurs
in frequency regions having a low SNR and is slightly higher
when using an ANC postprocessing stage (which however also
reduces a large amount of noise). Fig. 15(b) and (d) show the
PTF’s for reverberation times ms and
ms. By comparing these figures, it is clear that more spectral
distortion occurs for higher reverberation times (both in the
GSVD-based optimal filter and in the ANC postprocessing
stage).

H. Comparison for Real-Life Recording and
Energy-Based VAD

We have also compared the performance of the different
speech enhancement algorithms for a real-life recording,
performed in the Speech Lab at our department.2 The rever-
beration time of the used room is approximately 500 ms.
We have used a linear equi-spaced microphone array with

omnidirectional microphones (Sennheiser ME-102)
and inter-microphone distance cm. The speech source is
located at approximately 1 m from the center of the microphone

2Sound files and results are available at http://www.esat.kuleuven.ac.be/
~doclo/SA00061/audio.html
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array at an angle of , and three noise sources are located
at different positions. We have used the same speech signal as
for the simulated acoustic environments and speech noise from
the NOISEX-92 database for all noise sources. We have used
a nonperfect energy-based VAD [21] on the noisy microphone
signal and we have used a robust design procedure for the
spatial filter designed blocking matrix [44], taking into account
some gain and phase errors in the microphone characteristics.
The parameters for the speech enhancement algorithms are
the same as for the simulated acoustic environments (cf. Sec-
tions V-B and V-C).

The unbiased SNR of the first microphone signal is 0 dB,
and the SNR’s for the DS-beamformer, GSC with Griffiths-Jim
blocking matrix and spatial filter designed blocking matrix are
0.46, 7.43, and 6.67 dB, respectively. For the recursive GSVD-
based optimal filtering technique, the SNR is 6.25 dB, and when
adding the ANC postprocessing stage using all noise reference
signals, the SNR is 9.02 dB. The GSVD-based optimal filtering
technique also introduces some amount of speech distortion,
which increases when adding the ANC postprocessing stage.

VI. CONCLUSION

In this paper, we have shown that the GSVD-based optimal
filtering technique can be incorporated in a GSC-type struc-
ture, creating speech and noise reference signals and using these
signals in an ANC postprocessing stage. This ANC postpro-
cessing stage can either be used for increasing the noise re-
duction performance or for computational complexity reduc-
tion, since shorter filter lengths can be used for the GSVD-based
optimal filter. In addition, the computational complexity of the
GSVD-based optimal filtering technique can be drastically re-
duced by using recursive GSVD-updating algorithms and sub-
sampling (in stationary acoustic environments) without any loss
in performance.

Simulations have been performed for various acoustic sce-
narios, where both the SNR improvement and the speech dis-
tortion have been analyzed. These simulations show that the
SNR improvement of the GSVD-based optimal filtering tech-
nique with an ANC postprocessing stage is better than the SNR
improvement of standard fixed and adaptive beamforming tech-
niques, while introducing an acceptable amount of speech dis-
tortion.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their valuable
comments and suggestions.

REFERENCES

[1] Y. Ephraim and D. Malah, “Speech enhancement using a minimun
mean-square error log-spectral amplitude estimator,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 443–445, Apr.
1985.

[2] S. Gannot, D. Burshtein, and E. Weinstein, “Iterative and sequential
Kalman filter-based speech enhancement algorithms,” IEEE Trans.
Speech Audio Processing, vol. 6, pp. 373–385, Jul. 1998.

[3] Y. Ephraim and H. L. Van Trees, “A signal subspace approach for speech
enhancement,” IEEE Trans. Speech Audio Process., vol. 3, no. 4, pp.
251–266, Jul. 1995.

[4] S. H. Jensen, P. C. Hansen, S. D. Hansen, and J. A. Sørensen, “Reduction
of broad-band noise in speech by truncated QSVD,” IEEE Trans. Speech
Audio Processing, vol. 3, pp. 439–448, Nov. 1995.

[5] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Mag., vol. 5, pp. 4–24, Apr. 1988.

[6] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Trans. Antennas Propagat., vol.
AP-30, no. 1, pp. 27–34, Jan. 1982.

[7] S. Haykin, Adaptive Filter Theory, 4th ed, ser. Information and system
sciences series. Englewood Cliffs, NJ: Prentice-Hall, 2001.

[8] J. Benesty et al., “General Derivation of Frequency-Domain Adaptive
Filtering,” in Advances in Network and Acoustic Echo Cancella-
tion. New York: Springer-Verlag, 2001, ch. 8, pp. 157–176.

[9] D. Van Compernolle, “Switching adaptive filters for enhancing noisy
and reverberant speech from microphone array recordings,” in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 2,
Albuquerque, NM, Apr. 1990, pp. 833–836.

[10] J. E. Greenberg and P. M. Zurek, “Evaluation of an adaptive beam-
forming method for hearing aids,” J. Acoust. Soc. Amer., vol. 91, no.
3, pp. 1662–1676, Mar. 1992.

[11] S. Nordholm, I. Claesson, and B. Bengtsson, “Adaptive array noise sup-
pression of handsfree speaker input in cars,” IEEE Trans. Veh. Technol.,
vol. 42, no. 4, pp. 514–518, Nov. 1993.

[12] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beam-
former for microphone arrays with a blocking matrix using constrained
adaptive filters,” IEEE Trans. Signal Processing, vol. 47, no. 10, pp.
2677–2684, Oct. 1999.

[13] S. Nordebo, I. Claesson, and S. Nordholm, “Adaptive beamforming:
Spatial filter designed blocking matrix,” IEEE J. Oceanic Eng., vol. 19,
no. 4, pp. 583–590, Oct. 1994.

[14] H. Cox, R. M. Zeskind, and M. M. Owen, “Robust adaptive beam-
forming,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-35,
no. 10, pp. 1365–1376, Oct. 1987.

[15] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” IEEE
Trans. Signal Processing, vol. 49, pp. 1614–1626, Aug. 2001.

[16] S. Doclo and M. Moonen, “GSVD-based optimal filtering for single and
multimicrophone speech enhancement,” IEEE Trans. Signal Process.,
vol. 50, no. 9, pp. 2230–2244, Sep. 2002.

[17] , “GSVD-based optimal filtering for multi-microphone speech
enhancement,” in Microphone Arrays: Signal Processing Techniques
and Applications, M. S. Brandstein and D. B. Ward, Eds. New York:
Springer-Verlag, May 2001, ch. 6, pp. 111–132.

[18] S. Doclo, “Multimicrophone noise reduction and dereverberation tech-
niques for speech applications,” Ph.D. dissertation, Dept. Elect. Eng.,
Katholieke Univ. Leuven, Leuven, Belgium, May 2003.

[19] A. Spriet, M. Moonen, and J. Wouters, “Robustness analysis of GSVD
based optimal filtering and generalized sidelobe canceller for hearing aid
applications,” in Proc. IEEE Workshop Applications Signal Processing
Audio Acoustics (WASPAA), New Paltz, NY, Oct. 2001, pp. 31–34.

[20] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and
Time Series Analysis, First ed. Reading, MA: Addison Wesley, July
1991.

[21] S. Van Gerven and F. Xie, “A comparative study of speech detection
methods,” in Proc. EUROSPEECH, vol. 3, Rhodos, Greece, Sept. 1997,
pp. 1095–1098.

[22] S. G. Tanyer and H. Özer, “Voice activity detection in nonstationary
noise,” IEEE Trans. Speech Audio Process., vol. 8, no. 4, pp. 478–482,
Jul. 2000.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Balti-
more, MD: John Hopkins Univ. Press, 1996.

[24] F. T. Luk, “A parallel method for computing the generalized singular
value decomposition,” J. Parallel Distrib. Comput., vol. 2, pp. 250–260,
1985.

[25] C. C. Paige, “Computing the generalized singular value decomposition,”
SIAM J. Sci. Stat. Comput., vol. 7, pp. 1126–1146, 1986.

[26] A. Spriet, M. Moonen, and J. Wouters, “A multi-channel subband gener-
alized singular value decomposition approach to speech enhancement,”
Eur. Trans. Telecommun., vol. 13, no. 2, pp. 149–158, Mar.–Apr. 2002.

[27] G. Rombouts and M. Moonen, “QRD-based unconstrained optimal fil-
tering for acoustic noise reduction,” Signal Process., vol. 83, no. 9, pp.
1889–1904, Sept. 2003.

[28] , “Fast QRD-lattice-based unconstrained optimal filtering for
acoustic noise reduction,” IEEE Trans. Speech Audio Process., to be
published.



DOCLO AND MOONEN: MULTIMICROPHONE GSVD-BASED OPTIMAL FILTERING 69

[29] A. Spriet, M. Moonen, and J. Wouters, “Stochastic gradient implemen-
tation of spatially pre-processed multi-channel Wiener filtering for noise
reduction in hearing aids,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP), vol. 4, Montreal, Canada, May 2004, pp.
57–60.

[30] S. Doclo, A. Spriet, and M. Moonen, “Efficient frequency-domain im-
plementation of speech distortion weighted multi-channel Wiener fil-
tering for noise reduction,” in Proc. Eur. Signal Processing Conf. (EU-
SIPCO), Vienna, Austria., Sep. 2004, pp. 2007–2010.

[31] J. P. Charlier, M. Vanbegin, and P. Van Dooren, “On efficient implemen-
tations of Kogbetliantz’s algorithm for computing the singular value de-
composition,” Numerische Mathematik, vol. 52, pp. 279–300, 1988.

[32] M. Moonen, “Jacobi-Type updating algorithms for signal processing,
systems identification and control,” Ph.D. dissertation, Dept. Elect. Eng.,
Katholieke Univ. Leuven, Leuven, Belgium, 1990.

[33] M. Moonen, P. Van Dooren, and J. Vandewalle, “A singular value de-
composition updating algorithm for subspace tracking,” SIAM J. Matrix
Anal. Applicat., vol. 13, no. 4, pp. 1015–1038, Oct. 1992.

[34] , “A systolic algorithm for QSVD updating,” Signal Process., vol.
25, pp. 203–213, 1991.

[35] , “A systolic array for SVD updating,” SIAM J. Matrix Anal. Appl.,
vol. 14, no. 2, pp. 353–371, 1993.

[36] M. Nilsson, S. D. Soli, and A. Sullivan, “Development of the hearing in
noise test for the measurement of speech reception thresholds in quiet
and in noise,” J. Acoust. Soc. Amer., vol. 95, no. 2, pp. 1085–1099, Feb.
1994.

[37] A. Varga and H. J. M. Steeneken, “Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study
the effect of additive noise on speech recognition systems,” Speech
Commun., vol. 12, no. 3, pp. 247–251, 1993.

[38] J. Allen and D. Berkley, “Image method for efficiently simulating small-
room acoustics,” J. Acoust. Soc. Amer., vol. 65, pp. 943–950, Apr. 1979.

[39] P. M. Peterson, “Simulating the response of multiple microphones to a
single acoustic source in a reverberant room,” J. Acoust. Soc. Amer., vol.
80, no. 5, pp. 1527–1529, 1986.

[40] The Master Handbook of Acoustics, Fourth ed., McGraw Hill, New
York, 2001.

[41] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements, Objective Mea-
sures of Speech Quality. Englewood Cliffs, NJ: Prentice Hall, 1988.

[42] A. Spriet, M. Moonen, and J. Wouters, “The impact of speech detection
errors on the noise reduction performance of multi-channel Wiener fil-
tering and Generalized Sidelobe Cancellation,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), Hong Kong, Apr. 2003,
pp. 501–504.

[43] S. Doclo and M. Moonen, “Design of far-field and near-field broadband
beamformers using eigenfilters,” Signal Process., vol. 83, no. 12, pp.
2641–2673, Dec. 2003.

[44] , “Design of broadband beamformers robust against gain and phase
errors in the microphone array characteristics,” IEEE Trans. Signal
Process., vol. 51, no. 10, pp. 2511–2526, Oct. 2003.

Simon Doclo (S’95–M’03) was born in Wilrijk,
Belgium, in 1974. He received the M.Sc. degree in
electrical engineering and the Ph.D. degree in applied
sciences from the Katholieke Universiteit Leuven,
Leuven, Belgium, in 1997 and 2003, respectively.

Currently, he is a post-doctoral researcher with
the Electrical Engineering Department, Katholieke
Universiteit Leuven. His research interests are in
microphone array processing for acoustic noise
reduction, dereverberation and sound localization,
adaptive filtering, speech enhancement, and hearing

aid technology. He served as Guest Editor for a special issue on DSP in Hearing
Aids and Cochlear Implants of the EURASIP Journal on Applied Signal
Processing.

Dr. Doclo received the first prize “KVIV-Studentenprijzen” (with E. De
Clippel) for his M.Sc. thesis in 1997, a Best Student Paper Award at the
International Workshop on Acoustic Echo and Noise Control in 2001, and the
EURASIP Signal Processing Best Paper Award 2003 (with M. Moonen). He
was secretary of the IEEE Benelux Signal Processing Chapter from 1998 to
2002.

Marc Moonen (M’94) received the electrical en-
gineering degree and the Ph.D. degree in applied
sciences from the Katholieke Universiteit Leuven,
Leuven, Belgium, in 1986 and 1990, respectively.

Since 2000, he has been an Associate Pro-
fessor with the Electrical Engineering Department,
Katholieke Universiteit Leuven, where he is
currently heading a research team of 16 Ph.D. can-
didates and postdocs, working in the area of signal
processing for digital communications, wireless
communications, DSL, and audio signal processing.

He is Editor-in-Chief for the EURASIP Journal on Applied Signal Processing,
and a Member of the editorial board of Integration, the VLSI Journal and the
EURASIP Journal on Wireless Communications and Networking.

Dr. Moonen received the 1994 KU Leuven Research Council Award and
the 1997 Alcatel Bell (Belgium) Award (with P. Vandaele) and was a 1997
“Laureate of the Belgium Royal Academy of Science.” He was Chairman
of the IEEE Benelux Signal Processing Chapter from 1998 to 2002, and is
currently secretary/treasurer of European Association for Signal, Speech, and
Image Processing (EURASIP). He is a Member of the editorial board of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II and the IEEE SIGNAL

PROCESSING MAGAZINE.


	toc
	Multimicrophone Noise Reduction Using Recursive GSVD-Based Optim
	Simon Doclo, Member, IEEE, and Marc Moonen, Member, IEEE
	I. I NTRODUCTION

	Fig.€1. Typical speech communication environment with desired sp
	II. GSVD-B ASED O PTIMAL F ILTERING
	A. Problem Formulation and Notation


	Fig.€2. Multimicrophone filtering for speech enhancement.
	Fig.€3. Optimal filtering problem with desired response vector $
	B. Unconstrained Optimal Filtering
	C. Practical Computation Using GSVD
	D. Batch and Recursive Algorithm

	Fig.€4. GSVD-based optimal filtering technique with an ANC postp
	E. Other Implementations
	III. ANC P OSTPROCESSING S TAGE
	IV. R ECURSIVE GSVD-U PDATING AND S UBSAMPLING
	A. Jacobi-Type Algorithm for Computing GSVD


	TABLE I S UMMARY OF T OTAL C OMPLEXITY OF GSVD-B ASED O PTIMAL F
	B. Recursive GSVD-Updating Algorithm

	Fig.€5. Simulation environment.
	C. Subsampling Techniques
	D. Total Computational Complexity
	V. S IMULATION R ESULTS
	A. Simulation Environment


	Fig.€6. (a) Speech component $x_0[k]$ and voice activity detecti
	B. Implementation Issues for the GSVD-Based Optimal Filtering Te

	Fig.€7. Generalized sidelobe canceller (GSC).
	C. Implementation Issues for the Fixed and Adaptive Beamforming 

	Fig.€8. Spatial directivity pattern of (a) fixed beamformer (spe
	Fig.€9. Comparison of unbiased SNR for batch and recursive versi
	D. Batch versus Recursive Version

	Fig.€10. Effect of number of sweeps, GSVD-steps and square root-
	E. Recursive GSVD-Updating Algorithms

	Fig.€11. Effect of the ANC postprocessing stage on (a) unbiased 
	F. Effect of the ANC Postprocessing Stage
	Fig.€12. Comparison of (a) unbiased SNR and (b) speech distortio


	Fig.€13. Comparison of (a) unbiased SNR and (b) speech distortio
	G. Comparison for Simulated Acoustic Scenarios

	Fig.€14. Comparison of (a) unbiased SNR and (b) speech distortio
	Fig.€15. (a) PSD of speech and noise components of first microph
	H. Comparison for Real-Life Recording and Energy-Based VAD
	VI. C ONCLUSION
	Y. Ephraim and D. Malah, Speech enhancement using a minimun mean
	S. Gannot, D. Burshtein, and E. Weinstein, Iterative and sequent
	Y. Ephraim and H. L. Van Trees, A signal subspace approach for s
	S. H. Jensen, P. C. Hansen, S. D. Hansen, and J. A. Sørensen, Re
	B. D. Van Veen and K. M. Buckley, Beamforming: A versatile appro
	L. J. Griffiths and C. W. Jim, An alternative approach to linear
	S. Haykin, Adaptive Filter Theory, 4th ed, ser. Information and 
	J. Benesty et al., General Derivation of Frequency-Domain Adapti
	D. Van Compernolle, Switching adaptive filters for enhancing noi
	J. E. Greenberg and P. M. Zurek, Evaluation of an adaptive beamf
	S. Nordholm, I. Claesson, and B. Bengtsson, Adaptive array noise
	O. Hoshuyama, A. Sugiyama, and A. Hirano, A robust adaptive beam
	S. Nordebo, I. Claesson, and S. Nordholm, Adaptive beamforming: 
	H. Cox, R. M. Zeskind, and M. M. Owen, Robust adaptive beamformi
	S. Gannot, D. Burshtein, and E. Weinstein, Signal enhancement us
	S. Doclo and M. Moonen, GSVD-based optimal filtering for single 
	S. Doclo, Multimicrophone noise reduction and dereverberation te
	A. Spriet, M. Moonen, and J. Wouters, Robustness analysis of GSV
	L. L. Scharf, Statistical Signal Processing: Detection, Estimati
	S. Van Gerven and F. Xie, A comparative study of speech detectio
	S. G. Tanyer and H. Özer, Voice activity detection in nonstation
	G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Bal
	F. T. Luk, A parallel method for computing the generalized singu
	C. C. Paige, Computing the generalized singular value decomposit
	A. Spriet, M. Moonen, and J. Wouters, A multi-channel subband ge
	G. Rombouts and M. Moonen, QRD-based unconstrained optimal filte
	A. Spriet, M. Moonen, and J. Wouters, Stochastic gradient implem
	S. Doclo, A. Spriet, and M. Moonen, Efficient frequency-domain i
	J. P. Charlier, M. Vanbegin, and P. Van Dooren, On efficient imp
	M. Moonen, Jacobi-Type updating algorithms for signal processing
	M. Moonen, P. Van Dooren, and J. Vandewalle, A singular value de
	M. Nilsson, S. D. Soli, and A. Sullivan, Development of the hear
	A. Varga and H. J. M. Steeneken, Assessment for automatic speech
	J. Allen and D. Berkley, Image method for efficiently simulating
	P. M. Peterson, Simulating the response of multiple microphones 
	The Master Handbook of Acoustics, Fourth ed., McGraw Hill, New Y
	S. R. Quackenbush, T. P. Barnwell, and M. A. Clements, Objective
	A. Spriet, M. Moonen, and J. Wouters, The impact of speech detec
	S. Doclo and M. Moonen, Design of far-field and near-field broad



