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GSVD-Based Optimal Filtering for Single and
Multimicrophone Speech Enhancement
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_ Abstract—in this paper, a generalized singular value decompo- sources as well. Generally speaking, acoustic background noise
sition (GSVD) based algorithm is proposed for enhancing multimi- js a broadband and nonstationary signal, and the signal-to-noise
crophone speech signals degraded by additive colored noise. Th'sratio (SNR) of the microphone signals can be quite low (down

GSVD-based multimicrophone algorithm can be considered to be to 0 dB). Back d noi . Id dati hich
an extension of the single-microphone signal subspace algorithms 0 )- Background noise causes a signal degradation, whic

for enhancing noisy speech signals and amounts to a specific op-can lead to total unintelligibility of the speech and which

timal filtering problem when the desired response signal cannot be substantially decreases the performance of speech coding and

observed. _ ) ) automatic speech recognition systems. Therefore, efficient
The optimal filter can be written as a function of the general- noise reduction algorithms are required.

ized singular vectors and singular values of a speech and noise In the last f d dessinal . h h
data matrix. A number of symmetry properties are derived for the n the last tew decadessingle-micropnonespeecnh en-

single-microphone and multimicrophone optimal filter, which are hancement algorithms have attracted a great deal of interest.
valid for the white noise case as well as for the colored noise case. InSingle-microphone speech enhancement algorithms can be
addition, the averaging step of some single-microphone signal sub- proadly classified in parametric and nonparametric techniques.
space algorithms is examined, leading to the conclusion that this Parametric techniques model the speech signal as a stochastic

averaging operation is unnecessary and even suboptimal. . - . .
For simple situations, where we consider localized sources and autoregressive (AR) model embedded in Gaussian noise.

no multipath propagation, the GSVD-based optimal filtering Speech enhancement then roughly consists of estimating the
technique exhibits the spatial directivity pattern of a beamformer. speech AR parameters and applying a (noncausal) Wiener
When comparing the noise reduction performance for realistic filter [1], [2] or Kalman filter [3], [4] to the noisy signal,

situations, simulations show that the GSVD-based optimal fil- where the optimal filters are based on the estimated AR

tering technique has a better performance than standard fixed t N tric techni d t estimate th
and adaptive beamforming techniques for all reverberation times parameters. Non-parametnc techniques ao not estimaté e

and that it is more robust to deviations from the nominal situation, SP€ech parameters and require a noise fingerprint in a trans-

as, e.g., encountered in uncalibrated microphone arrays. form domain (mainly DFT or KLT-domain), which is used
Index Terms—Generalized singular value decomposition, during speech-and-noise periods to obtain an estimate of the
optimal filtering, robust beamforming, speech enhancement. clean speech signal. Well-known nonparametric techniques
include spectral subtraction [5], [6] and signhal subspace-based
techniques.
|. INTRODUCTION

Several signal subspace-based single-microphaseech
N many speech communication applications, such ashancement techniques for additive (colored) noise have
hands-free mobile telephony, hearing aids, and voice-caecently been proposed. These techniques are based on a
trolled systems, the recorded and transmitted speech sigr(glsneralized) singular value decomposition (SVD) [7]-[10] or
are often corrupted by a considerable amount of acousticarhunen—Loeve transform (KLT) [11]-[14]. The main idea
background noise. This is mainly due to the fact that the to consider the noisy signal as a vector infddadimensional
speaker is located at a certain distance from the recordimgctor space and to separate this space into two orthogonal
microphones, allowing the microphones to record the noisabspaces: the signal-plus-noise subspace (with dimension
smaller thanM, corresponding to the clean signal), and the
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whether an additional averaging step is included or not. For all al. [21] have designed a minimum-variance beamformer
techniques, the resulting filter matrix can be written as a funi;t the signal-plus-noise subspace, which is constructed using
tion of the (generalized) singular vectors and singular valuestbe coherent subspace method. By splitting the problem into
a so-called speech and noise data matrix. different frequency bands, only spatial information is used in

Dendrinoset al.[7] assume white noise, make a least-squaresich frequency band.
(LS) estimate of the Toeplitz-structured speech data matrix byThis paper discusses a class of multimicrophone speech
removing the smallest singular values, and restore the Toeplénhancement techniques that are based on the signal subspace
structure of the rank-reduced matrix by arithmetically averaginmgethod and combine the spatio-temporal information of the
along the diagonals. Jensenal. [8] have extended this tech-speech and noise sources. The paper is organized as follows.
nigue to the colored noise case by using a quotient singular Section Il, the optimal filtering technique for enhancing
value decomposition (QSVD), which implicitly includes noisenultimicrophone noisy speech signals is described. The MSE
prewhitening. They make a minimum-variance (MV) estimatestimator, as well as a more general class of estimators, is
of the Toeplitz-structured speech data matrix and average alahigcussed. Section Il discusses the practical computation using
the diagonals. For the white noise case, Ephraim and Van Treegeneralized singular value decomposition (GSVD), and it
[11] have introduced two perceptually relevant estimation cris shown that the optimal filter matrix can be written as a
teria, which minimize the signal distortion while keeping théunction of the generalized singular vectors and singular values
residual noise energy below some given threshold. They do wfta so-called speech and noise data matrix. In Section IV, a
use an additional averaging step. Huang and Zhao [12] hawgmber of symmetry properties are derived for the single-mi-
slightly modified this procedure by adding an energy-constraigtophone and multimicrophone optimal filter, which are valid
that matches the short-time energy of the enhanced signafaothe white noise case as well as for the colored noise case.
an estimate of the short-time energy of the clean speech. Mital addition, the averaging step of some single-microphone
and Phamdo [13] have extended the technique of Ephraim aiginal subspace-based algorithms is examined, leading to the
Van Trees to the colored noise case without using prewhiteniagnclusion that this averaging operation is unnecessary and
by making a distinction in processing speech-dominated aéden suboptimal. Section V compares the performance of the
noise-dominated speech frames. Rezayee and Gazor [14] handtimicrophone GSVD-based optimal filtering technique
reduced the computational complexity of the signal subspaseith standard fixed and adaptive beamforming techniques. It
based speech enhancement technigues by using an adaptive iKL.3hown that for simple situations, the GSVD-based optimal
tracking algorithm, namely, the projection approximation sulfitering technique exhibits the spatial directivity pattern of a
space tracking (PAST) with deflation [17]. All authors claimbeamformer. It will also be shown that the GSVD-based optimal
a better speech intelligibility and/or speech recognition perfdittering technique has a better noise reduction performance
mance when comparing signal subspace-based algorithms Wiithn standard fixed and adaptive beamforming techniques
spectral subtraction algorithms. (delay-and-sum beamformer, Generalized Sidelobe Canceller)

However, all single-microphone speech enhancement teé®r all reverberation times. This section also discusses the ro-
niques only use the time-frequency information present in tieistness of the GSVD-based optimal filtering technique, which
signals and can therefore be considered a (signal-adaptive) féean important issue when, e.g., the position of the speech
quency filtering of the noisy speech signal [18]. This filteringource is incorrectly estimated or when using uncalibrated
operation can be interpreted as an adaptive extraction of thicrophone arrays. Section VI discusses the computational
most important formants of the speech signal, thereby reduciegmplexity of the GSVD-based optimal filtering technique,
the amount of noise. showing that the complexity can be drastically reduced using

In many applications, such as hands-free mobile telephofgeursive GSVD-updating techniques and subsampling.
and hearing aidsnultiple microphoneare nowadays available
for recording and enhancing the noisy speech signals. When [I. OpTIMAL FILTERING FOR MULTIPLE MICROPHONES
multiple microphones are available, both frequency and spatial . . . o .
characteristics of the speech and noise sources can be explo%tgrl h:g;tsms]ggoﬂ’o;h: sei\e/gr;beansr?;nzgggﬁi ?gj;gg;?g dm?:l:rest
resulting in a procedure that combines spatio-temporal infi- | pbl : pt ted. and tational : i '
mation. Some authors have already used signal subspace-b Lggenera Ero err]n IS st el %.lan some _noda 'Pn?j COW?” lons
algorithms for processing multichannel signals. Hansen [Eg]g'fvtin' Tnenr, }izegpgma |Iter matélx.|s erlvte asfa unc- h
suggests the use of a single-channel subspace-based spe 8?? ne ge e? cdeigenva ueg a[? ilgkenv_eﬁ ohrs %.; speec
enhancement algorithm on each microphone signal separat‘ré‘& noise corre at|0_n matrix, and the fin W't. the " erent
followed by delay-and-sum beamforming. Jabloun and chas) gle-microphone signal subspace-based estimators is further
pagne [19] exploit the multimicrophone information to desigﬁXplored'
a (single-channel) signal subspace post-filter, following a i i
delay-and-sum beamformer. However, these techniques carfiof_ "0Plém Formulation and Notation
be considered integrated multimicrophone subspace-base@onsider N microphones, where each microphone signal
speech enhancement techniques. Dologlmal.[20] have used ¥, [k],» =0,..., N —1, attimek, consists of a filtered version
subspace-based ideas for processing (multichannel) imag#she clean speech signgk] and additive noise (see Fig. 1)
but their procedure does not allow the exploitation of the spatial
information present in the multi-microphone signals. Asano Ynlk] = hn[F] © s[k] + vn[k] = @n[k] + va[k] (1)
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Fig. 1. Typical speech communication environment with desired speech source and undesired noise sources recorded with a microphone array.
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Fig. 2. Multimicrophone filtering for speech enhancement.

where and consider thé.-dimensional data vectoss, %], the M -di-
x,[k] andwv,[k] speech and noise component received atensional stacked filtew[k] (with A/ = LN), and theM -di-
thenth microphone, respectively; mensional stacked data vecidi], defined as
halk] acoustic room impulse response between
the speech source and thih microphone; Volk] =[unlk] wlk—1 ... wik—L+1]]" @)
O o comoltten. wikl =[wilk] wilk] ... wi_jK]" (5)
The additive noise can be colored and is assumed to be uncorre- T T T T
lated with the clean speech signal. In single-microphone speech vyl =[yo k] vilk] ... yx.[H] (6)

enhancement, the number of microphoned’is= 1 such that

the model (1) simplifies to such that the output signalk] can be written as

N-1
ol#] = wolk] + volf]. @ M= 3 Wiy = w By )
The goal of multimicrophone speech enhancement is to com- n=0

pute the filtersw, [k], » = 0,..., N — 1 (see Fig. 2) such that |, gection 11-B, a method will be described for computing the
the speech signa] or one of the received speech componentg, cied filterw[] such that[] is an optimal estimate for one
z,[k] is recovered. A generalized sidelobe canceller (GSC) [28] ihe speech componenis[k]. The same method can be used

attempts to recover the speech sigsdl by constraining the ¢, single-microphone speech enhancement, by taking 1
array response to unity in the direction of the speech source qﬁl%” obtained formulas.

by minimizing the energy coming from all other directions. The
GSVD-based optimal filtering technique estimates the speelgh

components:,, [k] in an optimal way, using all the microphone ) o o ) )
signalsy, [£]. Consider the filtering problem in Fig. 3. is the M -dimen-

Let the filtersw,,[k] have lengthL sional filter input vector, ang = Wy is the filter output
vector, whereW is an M x M filter matrix. The AM-dimen-
wolk] = [wOk] wilk] ... wlt[k]]" (3) sional vectod is the desired response vector, ang d — z is

Optimal Filtering
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d R,.[k] = R..[k] such that theoptimal filter matrix can be
written as
S Wirvr = Ry (K] (Ryy [F] — Rou[k]) (13)
> W -
y \Z/ where, againR,,[k] = E{y[kly*[k]} is estimated during

speech-and-noise periods, dRg, (k] = E{v[F'[vI[k']} is es-
timated during noise-only periods.

By using the joint diagonalization of the symmetric block-
_ _ Toeplitz correlation matriceR,,,, [k] andR.,,[%] in the calcula-
the M -dimensional error vector. The MSE (mean square errfyn of the optimal filtefWyy -, the low-rank model of the clean
cost function for optimal filtering is speech signai[k] can be taken into account (cfr. Section II-C).

The joint diagonalization oR,,[k] and R, [k] is defined as
Inse(W) =E{]lellz} (we assume full-rank matriceiy)[ ] a
=p{d¥d} - 2E{y*Wd}

+BE{ly"WwWTy} 8) { Ry, [F] = Q diag{o? } Q7 (14)

R,.[k] = Q diag{7?} Q*
whereF is the expected value operator. The optimal filter matrix _ ] ] ) )
is readily found by setting the derivativeJ yisp(W)/dW) to whereQ is an !nvert|blg, but not n_ecessanly orthqgonal, matrix
zero. The optimal filte@Wsy - is the well-known multidimen- [26]- Substituting (14) into (13) gives an expression for the op-

sional Wiener filter timal filter matrix

Fig. 3. Optimal filtering problem with unknown desired response vedtor

2 -
Wwr =R, Ry (9) Wy r = QTdiag{l - %} QT. (15)

whereR,, = E{yy”}is theM x M correlation matrix ofthe |, yne spatio-temporathite noise casehe noise correlation
input signal, an@®,,q = E{yd" } is theM x M cross-correla- 4trix is R,.[k] = 721y, wherei? is the noise power. The
tion matrix of the input signal and the desired signal [23]. If both, 5¢rix Q then reduces to an orthogonal matri such ¥ég; &
matricesR,,, andR,4 are known, the problem is solved conyg 4 symmetric matrix
ceptually. Note that for multiple microphones, both the corre-

: : . ; : ,
:?]tclc;)rr;]zggr:he cross-correlation matrix contain spatio-temporal Wir = Q diag{l _ 71_2} Qr. (16)

a,
When considering multimicrophone noisy speech signals, the ' ] .
input vectory[k] consists of a speech componeit] and an  The enhanced speech vectafk] = z[k] is obtained as
additive noise componemk] x[k] = W, -y[k]. TheM-dimensional vectag[k] contains an
estimate for all the speech samplggk—1],» =0,...,N—1,
yvlk] = x[k] + v[k] (10) I =o0,...,.L-1.

The estimation errog[k] is defined as[k] = x[k] — x[k] =
with y[~] defined in (6) andk[k] andv[k] similarly defined. If w7 _v[k] — x[k] such that the error covariance matRb.[k]
we use a robust voice activity detection (VAD) algorithm [24]¢an be written as
[25], noise-only observations can be made during speech pauses
(timek’), wherey[k'] = v[k’]. This allows the estimation ofthe R, [k] =F {(W%,Fy[k] —x[k]) (Wi py[k] — X[k])T}
spatio-temporal correlation properties of the noise signal. The
goal is to reconstruct the speech sigaft] from y[%] during =Wy rRao[k] = Rew MW s = Wiy pRea[K]

speech-and-noise periods by means of the linear filter matrix + Rz [K]

W. In the optimal filtering context, this means that the desired =Ryylk] — Ruo[k]) (I — Wwp)

signal is equal to the signal of intereHt:] = x[£], but this also —R, [H] W . (17)

implies that the desired signdlk] is in fact an unobservable

signal. The element$R...[k]}ii, ¢ = 1, ..., M onthe main diagonal of
We now make two assumptions: short-term stationarity of thige error covariance matrix indicate how well #ie component

noise of x[k], i.e., a delayed speech sample in a certain microphone

signal, is estimated. The smallest element on the diagonal, say,
element;, therefore corresponds to the best estimator, namely,
the columnwi,, .. of Wy .
and statistical independence of the speech and noise signals wE wE
R, [k] = E {x[k]vT[k]} -0 (12) C. Low-Rank Modeling of Speech

If we model the acoustic room impulse response with an FIR-
The first assumption allows to estimate the noise correlatigifter h,,[k] of length K
matrix R.,,,[k] during speech pauses. From the second assump-
tion, it is easily verified thaR,,[k] = R..[k] + R,,[k] and h,[k] = [RO[K] AL[K] ... RELE]]T (18)

R, [k] = E{v[k]vI[k]} = E{v[F']VI ]} = R, [}]
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then the speech componeni[k] can be written as elements are positive. The correlation matiy, [k] can now
K1 be written as
wlk] =) hE[K]s[k —i]. 19 ~[Az+An 0 |4
zn[k] ; vy, [k]s[k — ] (19) R, [k] = Reulk] + Ruu[k] = Q o 1 i, Q.
(25)

The data vectok,,[k] and stacked data vectafk], which are

similarly defined as in (6), can be written as Comparing this equation with (14), we see that

72 72 .
- z [k a;>mn; i=1,... R
T [k[—]l] {03:773 t=R+1,...,M. (26)
X, [k] = : This implies that the diagonal matrix in (15) h#s positive
[k —.L +1] nonzero elements. Even if the signal cannot be modeled with
- Ln _ a low-rank model, i.e.R = M, none of the diagonal elements
hl'[k] 0 0 can ever become negative. This fact will be used in the practical

pe computation of the optimal filter matrix (cfr. Section IlI).
_lo by, K] 0 In the spatio-temporathite noise caseall 77, i = 1,..., M
are equal ta7? such that the noise powgFf can be estimated

T‘ from the smallest eigenvalues Bf,,[%] if the speech compo-
0 0. h;, [£] nents can be modeled with a low-rank model. This also implies
— ~ = that in this case, no voice activity detection is required.
H, [K]
slk] T D. General Class of Estimators
slk — 1] The filter matrixW g in fact belongs to a more general class
X ) (20) : .
: of estimators, which can be represented as
slk— K —L+2]] W = Q “diag{f (57, 7})} Q7 (27)
s[h] where f(c?,7?7) is a function of the generalized eigenvalues,
Holk] depending on the specific cost criterion being optimized. This
. H,[k] formula can be interpreted as an analysis filterb@k! that
x[k] = ) s[k] (21) . X . .
: performs a transformation from the time domain to a signal-de-
Hy_1[K] pendent transform domain, a gain functifi@?, 77) that modi-

fies the transform domain parameters, and a synthesis filterbank

QT that performs a transformation back to the time domain [18].

whereH,[k] is anL x (K + L — 1) matrix, andH[k] is an If the MSE criterion is optimized, the filteW is equal

M x (K + L — 1) matrix (with typically K > M). to (15). If the SNR is optimized and a least-squares (LS)
If the clean speech signglk] can be modeled with a low-rank estimate of rank 1 is made, only the principal generalized

model of rankR [15], [16] with R < K + L — 1, then the signal eigenvector should be considered, such that the gain function

H[K]

vectors(k] can be written as a linear combination Bflinear is f(52,77) =[1 0 ... 0]. This will, however, introduce
independent basis vectofs; [%], . . ., sr[k]} a significant amount of signal distortion. In [11], two percep-
R tually relevant cost criteria that minimize the signal distortion
s[k] = Zsr[k]%- (22) while keeping the residual noise energy below some given
] threshold have been presented. In fact, the estimationeitpr

is the sum of a terne, [k] representing signal distortion and a

: . . B T .
Since the correlation matriR.;[k] = E{s[k]|s* [k]} is then terme, [¥] representing the residual noise

a rank matrix, the correlation matriR ,.[k], which can be

written as elk] = Why[k] — x[k] = (W' — L) x[k] + WTv[k].
—_— Y/
Reoo[M] = HIK]Rqs [MHT K] 23) e o lH] o8

is also a rankk matrix (if R < M andH[k] is assumed to be If we want to minimize the energy of the signal distqrtion
of full row rank). The generalized eigenvalue decomposition 63[k] = £{e; [k]e,[k]} under the constraint that the residual

R...[k] andR.,[k] is then given by noise energy’[k] = E{el[k]e,[k]} is kept below some given
_ thresholdT’
R..[k] =Q Hf 8} Qr o4 min e2[k], subject toe2[k] < T (29)
R,.[k]=Q [Agl A?LJ QT we can easily prove that the filtd¥ is equal to
W= (wa [k] + 1Ry [k])_l R.. [k] (30)

whereA, andA,,; areR x R diagonal matrices, andl,,., is an it
(M — R) x (M — R) diagonal matrix. Sinc®[k] andR.,[k] =Ryy k] + (1 = DR [E]) ™ (Ryy[k] — R [R])
can be assumed positive (semi-)definite matrices, all diagonal (31)
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AT of — 7} AT whereXy = diag{s;}, Xy = diag{n;}, Uy and Uy are
a7+ (p— D7 orthogonal matrices is an invertible but not necessarily or-
with the Lagrange-multiplier, > 0 related tol” as thogonal matrix contglmng_the generalized smgl_JIar. vectors, and
o, /n; are the generalized singular values. Substituting these for-

T =tr {W'R,,[k]W} mulas into (13) gives an estimate for the optimal filter matrix
—trd Q- Pdiag) (% T g Q" l. 33 Wi p ~ Q- Tdiagl1— 2% L qr (36)
F+p-niE) " ' e g

In fact, a similar expression can be obtained when the residgdpwing that the optimal filter matrix estimate is a function
noise energy:2[k] is minimized while keeping the signal dis-of the generali_zed singular yectors and singular values of the
tortion ¢2[k] below a given threshold. | = 1, then the MSE Speech and noise data matrices. _
criterion is minimized, andW is equal to (15). Ifx > 1, the Because, in practice, the generalized singular values are es-
residual noise level will be lower, at the expense of increaséifnated from the empirical correlation matrices, it occurs that
signal distortion. Taking: < 1 reduces the signal distortion(26) is no longer satisfied, and hence, some diagonal elements
at the expense of decreased noise reductiop (i 0, then in (36) may become negative. In [11], it has already been noted
W = I,). In the rest of the paper, we will assume MSE edhat these negative values will always be obtained when an un-
timation (1 = 1). biased nonperfect estimator is used. Therefore, these negative
In all Subspace_based Sing|e_microphone Speech enhaﬁ@:éues, which are in fact zero estimates, will be put to zero.
ment techniques [7]-[9], [11]-[14], the resulting filter matrix Using the speech data matikk] and the optimal filter ma-

can be written as in (27). In Section IV, we will prove symmetr{fiX Ww r, an estimate can be obtained for fhex M clean
properties for this filter matrix. speech data matriX[%], which is defined similarly to (34) as

xFk—p+1] ... X_k—p+1]

I1l. PRACTICAL COMPUTATION USING GSVD . . .

In practice, the matriQ and the diagonal elemernit$ and#? X[k = &I [k' _1] T [k _ 1
are estimated by means of a generalized singular value decom- O)A(T[k.] o ];(E“l [A]
position (GSVD) [26], [27] of @ x M speech data matriY k] —Y[k]Wov o N=t (37)
containingp speech data vectors recorded during speech-and- o WE:
noise periods and @ x M noise data matri¥ %] containing Using a more explicit notation, we can rewrite thex L sub-
g noise data vectors recorded during noise-only periods (withmatrix Xj [k] as, (38), shown at the bottom of the page, where

andgq typically larger thani/) 2%, 1+ k] is the estimate for the speech componeyik] in
yT [k — p+ 1] VI — g+ 1] the jth mmrpphpne signal at. tlmé,_ which is obtained as a
. ) linear combination of the noisy microphone sample§t —
Y[k] = : VK] = : . L+1],...,yan[k], n = 0,...,N — 1. As can be easily seen
y' [k —1] vk —1] from this matrix, several different estimates are available for the
y* (k] vI[k] same speech sample, e g different estimates are available for

o , (34) o[k — L + 1]. If we subdivide thath columnwi,, . of Wiy
For the sake of a simple interpretation, we assume here tnﬂ the L-dimensional filtersv® 7 = 0. .... N — 1. which is

the time indices i [k] and V[£’] are consecutive. These timeg;milar to (5)

indices do not need to be consecutive, as lony g9 contains ‘ ‘ ‘ ‘ -

speech data vectors aM{4’] contains noise data vectors. Wiy p = [ng wf e wﬁ_l ]
Both the speech and the noise data matrix are block-Toep -FFen the different estimates fop

(and Toeplitz in the single-microphone case). The correlati

matricesR.,,[k] andR.,,[k] can be approximated by the em

pirical correlation matrice¥ 2 [k]Y[k]/p and VL [K'|V[K']/q

(39)

[k — L + 1] can be explicitly
Ultitten as (40), shown at the bottom of the next page, where
W; is the filter matrix used for estimating speech components
L L ;. in the jth microphone signal. The question now arises as to

(which is an approximation be_cause of the f|£1|Fe Ien_gihmd which of theL available estimates in thygh microphone signal
9). The GSVD of the data matricas[+] andV[+] is defined as is the best estimate. In addition, we have to decide from which
{Y[k] =Uy Iy Q7 (35) of the N microphone signals we are going to use the speech

V[K] = Uy Zy QT estimates, which in fact leads & possibilities. As already

~k—L— 2 Ak—IL— 2 kT — 5
%7k — p+ 1] Pk —p+1] PP R—p] . AN L—p+2]
J . '
X; [k — 1] k2 k2 2
)A(T[/{}] szk—l[k - 1] xj,k—l[k - 2] . xj,k—l[k _ L]

phT ph—1 Ak—T,
.Ij?kf-l-l[k] xj,kr—i—l[k _ 1] $j7kr+1[k_ L+ 1]
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indicated in Section 1I-B, the answer is given by the error co- IV. SYMMETRY PROPERTIES ANDAVERAGING OPERATION
variance matrixR..[k]. Theith diagonal element of this ma-
trix indicates how well theth component ok[k] is estimated. ) ) ) _
The smallest element on the diagonal, say, elemeherefore _ In the single-microphone case, the correlation matrices
corresponds to the best estimator, namely, the cohriyn, of Ryy[k] and R,,[k] are symmetric Toeplitz matrices. These

Wy r (1 < i< M). The enhanced speech sigrt] can now matrices belong to the class of double symmetric matrices,
be computed as which are symmetric with respect to both the main and the

secondary diagonal and whose eigenvectors have special
symmetry properties [29], i.e., every eigenvector is either
i symmetric or skew-symmetric.
= Y[klwyy (41) 4 y

A. Single-Microphone Case

&k —A—p+1]

2k — A —1]

Theorem 1:1f W is constructed according to (27), th&¥
[k — A satisfies
where W=JWJ (W' =JwW"J) (44)
j=div(i—1,L 42
J IV(L‘ L) (42) whereJ = J7 is the M x M reverse identity matrix. These
A =remi—1,L). (43) properties hold in the white noise case as well as in the colored

In the single-microphone case, some procedures [7]-[10gise case for any functiof (77,77)-

use an additional averaging step, thereby averaging out over Proof: Considering the joint diagonalization d,,[k]
all available speech estimates. However, it will be showdR..[k] in (14), one can easily verify that

in Section IV-B that this averaging step is unnecessary and o

even suboptimal. Other procedures [11], [12], which are R, [k]R,,[k] = Q‘Tdiag{n—g} Qr (45)
block-based, use an overlap-add procedure on the last row of i

Xo[k], whereas the adaptive procedure in [14] only retains thean eigenvalue decomposition. BecaBsg [k] andR.,,[k] are
first element of this row at each time step, thereby implicittdouble-symmetric matrices

using the first column oWy g (1 = 1).

The optimal procedure for minimizing the MSE thus consists JRyy [kl =Ry [k], JR,[K]J =R, [k]  (46)
of computingR... [k] at each time step and choosing the column
corresponding to its smallest diagonal element. However, thisSi4ch that
a computationally very demanding procedure. Simulations indi-
cate that taking a fixed valde= L /2, i.e., using the optimal es-
timate of the delayed speech component in the first microphofigerefore, the eigenvectors, which are the columnof
signalzo[k — (L/2) + 1], instead of the optimal value does nokgagisfy the property [29]
decrease the noise reduction performance and the speech intel-

R, [k]R..[k] = JR,, [F]R..[k]J. (47)

ligibility considerably [28]. JQ T = Q Tdiag{+1} (48)
B T WLrT 1
E Tk — L+ 1) ™ | o 0 R 0
ok — ... —
Toamlb =L+l o we™ | o L]
R L] o | —
K 0 ... L° 0 0 ... LM
V;;T
i Yo[k] T
X : (40)
yn—1[k]
_y]\r_l[k' — 2L + 2]_
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such that ¢t =1,..., L. From the symmetry property at/, it is readily
A T 9 o\ AT seen thatv represents a@ero phase filterThe question now
JWJ =JQ "diag{f (a7,7;); Q" J (49) s whetherw has a better performance than the individual fil-

=Q "diag{f (57,7)} Q" = W. (50) terswi, . from which it is computed. Specificallyy should
be compared with the symmetric middle rowW -5 (if L is
odd), which represents a linear phase filter that (des 1/2)
past samples and. — 1/2) future samples.

First, it can be verified thak is not the(2L — 1)-dimensional
optimal filter, i.e.,

]
These symmetry properties imply that ttle row/column of

W is equal to thé L 4+ 1 — ¢)th row/column in reversed order.
For L odd, the middle column iW is symmetric and, hence,
represents dinear phase filter This linear phase property is
an extension of the zero phase property that has already been jgﬁ2L+2[/€ —L+1]# 53’5;2L+2[k —L+1] (56)
attributed to SVD and rank truncation based estimators for the ’
white noise case if an additional averaging step is included [:%S]']wcei’g k2L+2 [k—L+1] is obtained by averaging out over a col-
(cfr. Section 1V-B). However, the above linear phase propertgction of L-dimensional optimal filters, wherea% ,fL*Q k—
is also valid for the colored noise case as well as for a genefak- 1] is obtained by applying the optimal filter formulas to a

function f (57,72). (2L — 1)-dimensional vectoy[k].
_ ) Second, simulations indicate that the obtained error variance
B. Averaging Operation for the (2L — 1)-dimensional filterw is always larger than the

As already indicated in Section I1l, some single-microphorerror variance for the bedt-dimensional filterw?, ., which is
procedures [7]-[10] use an averaging step for obtaining a firabtained by considering the smallest diagonal element of the
estimate from the different available estimatesdgit — L +1].  error covariance matriR.[£].

In the single-microphone case, (40) reduces to (51), shown at th€onsider the following simulation example: The input signal
bottom of the page. FrofV? = JWZ'J, with y[k] is constructed as the sum of two (stationary) unit-variance
white noise signals[k] andv[k]

ylk] = z[k] +no[k], k=1,...,p. (57)

W=[w) ... wi ™t wi] (52)

it immediately follows that
Both the optimal filter matrixXW -z, which consists of.-di-

T _ T .
Wo =IWo J. (53)  mensional filterswiy -, ¢ =1,..., L, and the(2L — 1)-dimen-
The averaging operation can now be written as sional filterw are computed from these signals. In addition, the
h—2L42 enhanced signalg’[k] andz[k] are computed using the filters
To.k (k= L+1] st wi, - andw. The error variances’, i = 1,..., L, ands are
ton k= L+1] defined as
Ak L
Zo ik — L+ 1] 12
=1 1 ] . (54) 51 == (alk] - i=1,....L  (58)
h—2042 Pim
Lo g L+1[k_L+1] 1 o
wolk] &= («lk] - #[H])°. (59)
p k=1
11 11T [k —1] . ‘
=z z 71 Wo : 55 Forr = 9, p = 10°, andn? = 2, the error variances®,
W wolk — 2L + 2] t =1,...,L, ands are compared in Fig. 4. As can be seen

from Fig. 4, the performance of tHeé L — 1)-dimensional filter
where the averaged valag , 22 t2[k — L.+ 1] is estimated from W is not always better than the individugtdimensional filters
yolk — L + 1] together withL — 1 past samples anf — 1w, from which itis computed. Moreover, there always seems
future samples. Th&L — 1)-dimensional filterw is obtained to exist anL-dimensional filterw?,, . that gives rise to a lower
by averaging out over the availabledimensional filtersvi, ., error variance.

_ — _
Ak L-I—l[k L+1] 0 TO 0 yo[k]
‘%S,kll[k L+1] _ o wi! 0 yolk — 1] -
G — L+ 1] e yolk —2L +2]
L0 0 i
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Error variance comparison (L=9, p=10%, n?=2)
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Fig. 5. Simulation environment.
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If we assume that the speech and noise correlation matrices for
;: : : 3 : : ] both microphones are equak{l[k] = R22[k] andRli[k] =
065 : : ' L L : L s RZ[k]) and thaR12[k] andR12[k] are Toephtz matnces then

Ro.[k]7 = Ruolk], JRu[k] = Ruo[k]  (62)

o
3

Fig.4. Error variance comparison betweerl — 1)-dimensional filtewv and

L-dimensional filtersws, ., i = 1,..., L. such that the same symmetry properties as for the single-channel
case apply. Moreover, iR}2[k] and R}%[k] are symmetric

Hence, averaging does not seem to be a well-founded dgeplitz matrices, then in addition

eration, yvhe_reas on the_ other hand, it increases _computanonal SRuu[k]S = Ruslk], SRuu[k]S = Ruu[k] (63)

complexity since it require2L — 1)-taps filtering instead of

L-taps filtering. If minimal error variance is sought, we suggesthereS = S is the reverse block-identity matrix, i.e.,

the use of thé.-dimensional filter corresponding to the smallest 0o I

. . . . L

diagonal element in the error covariance matrix. However, as al- S = [I 0 } (64)

ready indicated in Section lll, this is a computationally very de- _ o _

manding procedure since in each time step, the error covariafcatrix A satisfying SAS = A is called a double block-

matrix R.. k] needs to be computed. Therefore, in practice, w&ymmetric matrix. Using the same arguments as in [29], it can

suggest the use of the-dimensional filter given by the middle be proven that any eigenvectarof a double block-symmetric

column of Wy &, which provides both low error variance (al-matrix is elther. block symmetric or block skgvy-symmetnc, ie.,

beit mostly not the lowest attainable error variance) and linedr = Fu. Using this symmetry property, it is easy to prove

phase. Itis unpredictable whether this filter or the averaged filtdat the filter matrixW, which is constructed according to (27),

yields the lowest error variance. satisfies the additional symmetry property

=SWS (W =s5w7g) (65)

C. Multimicrophone Case such that

In the multichannel case, similar and additional symmetry JWHJ = W — W2, JwWi2y = W2 = W2 (66)
properties can be derived, depending on the assumptions we
make for the spatio-temporal correlation matri®s., [k] and In this case, the middle columns (férodd) of Wl andW?!
R..[k]. are again two linear phase filters.

In the following, we will assumeV = 2. However, the sym- The same properties hold when the two noise com-
metry properties can easily be extended to the case of more thanents v, [k] and v»[k] are uncorrelated because then,
two microphones. We will subdivide thel, x 2L symmetric R;2[k] = R7.[k] = 0. In the case of spatio-temporal white
correlation matrices as noise, the noise correlation matrix reduces to

o | I 0
1 12 R,.[k] = 67
R..[k] = {321 F/j 322 F]j” [k = [ 0 IL} (67)
RUME R [k]}
[ (%]

and the filter matrixW has the additional property of being
Ro.lk] = [R‘ﬂ k] RZ

(60) symmetric such that

wlil — W11T w2 — WlQT. (68)
whereRLL[k], R22[k], RLL[K], andR 2[k] are double- -sym-
metric matncesRﬁ[ | = Rii (%], andR,lj.[ ] = R2"[x].

We will also subdivide the filter matrifV as V. PERFORMANCE OFGSVD-BASED OPTIMAL FILTERING

This section discusses the performance of the GSVD-based
(61) optimal filtering technique for noise reduction in multimicro-
phone speech signals. First, the used simulation environment is

Wll W12
W = [Wm W22:|
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Clean speech — noisy microphone signal - Enhanced signal

! : i I 1 i | 1 1
0 2 4 6 8 10 12 14 16 18 20
TIme (sec)

Fig. 6. (a) Speech componeni[k] and voice activity detection. (b) Noisy microphone signgk] (SNR= 0 dB). (c) Enhanced signallk] (N = 4, L = 80,
Teo = 130 ms).

described, and some implementation details are given. Then, $peech and noise components of all signals are at hand, the un-
spatial directivity pattern, noise reduction performance (for stafiased SNR of a signafk] can be computed as
tionary and nonstationary noise sources), and robustness of the

GSVD—pased optimal filtering tgchnique _is discussed and com- SNR= 10log,, 2 i (%] (70)
pared with standard beamforming techniques. > v?[k]
A. Simulation Environment wherez[k] ando[k] are the speech and noise component of the

considered signaj[4].

Sin our simulations, we have constructed the noisy mi-
. ) . @?ophone signals such that the unbiased SNR of the first
sources[k], and a noise soure€k]. In our simulations, we have microphone signali[k] is O dB. Fig. 6(a) and (b) depicts the

uied a |II"|€3I’ r(]aqmspgceldd!'mcrophone array \M(;h: 4 micro- speech component[k] and the noisy microphone signal[£]
phones, and the nominal distantieetween two a jacentmicro-¢ o erberation timego = 130 ms.

phones is 5 cm. The speech source is located 0.6 m from the mi-
crophone array. Broadside direction is representeti-a90°,
whereas endfire direction is represented?as 0°. The used ] ] )
signals are an 8 kHz clean speech signal and stationary tempd-i'st: the speech and noise data matridei#] and V[#']
rally white noise (in Section V-E, a nonstationary noise souré&€ constructed from the noisy microphone signalg], n =
will be used). The speech and noise components received atdhe - - &V — 1. In order to construct these data matrices, a voice
nth microphone are filtered versions of the clean speech a@gfVity detection (VAD) algorithm needs to determine when
noise signals with simulated acoustic room impulse respons€8€€ch is present [24], [25]. Fig. 6(a) shows the output of such
The acoustic room impulse responses are calculated using@fle?!gorithm on the speech component of the first microphone
image method [31], [32], with a filter length of 1500 taps ang!gnal (whlch is, of course, not available in practice). In our
for different reverberation time&s,. The reverberation tim@;, Simulations, we have constructed the speech data itk

can be expressed as a function of the reflection coeffigjeoft USing all available speech samples and the noise data matrix
the walls, according to Eyring’s formula [33] V[&] using all available noise samples. As already indicated

in Section 111, the time indices in the data matrices do not need
0.163V .
= - (69) to be consecutive.

—Slog(1 - ) From the GSVD of the speech and noise data matrices,
whereV is the volume of the room, antlis the total surface of cfr. (35), the optimal filter matrixXWyy r is computed using
the room. (36), where all negative diagonal elements are put to zero. The

Since we are using simulations, we can easily compare tstacked filterw[k] = [wi[k] wZ[k] ... wk_,[k]]" is
performance for different reverberation tinf&g and since the determined as thih columnwi;. . of Wy g, using the fixed

The simulation room is depicted in Fig. 5 and has dimensio
6 mx 3 mx 2.5 m. It consists of a microphone array, a spee

B. Implementation Details

T5s0
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180

Fig. 7. Spatial directivity patterpH ( f, 6)| for (a) spatio-temporal white noise and speech sour@e-att5° (N = 4, L = 10, SNR= 0 dB) and (b) localized
white noise sources &t= 60° andf = 150° and speech source &t= 90° (N = 4, L = 20, and SNR= 0 dB).

valuei = L/2 (cfr. Section Ill). The enhanced signglk] is filtering technique automatically finds the direction of the de-
obtained by filtering the microphone signals with the filtersired speech source. However, for low frequencies, the spatial
wylk], n = 0,...,N — 1. Hence, in our simulations, theselectivity is rather poor.
enhanced signal is the optimal estimate for the delayed speecBecond, we consider two localized white noise sources that
component in the first microphone[k — (L/2) + 1]. Fig. 6(c) impinge on the microphone array at angfes= 60° andf =
shows the enhanced signak] for filter length L = 80. 150°. The speech source is located in front of the microphone
In this paper, we will only discuss the noise reductioarray(é = 90°). Fig. 7(b) shows the directivity pattern for the
performance of the batch version of the GSVD-based sigrfe@quenciesf; = j - 100, 7 = 1,...,40. As can be seen, for
enhancement technique, where the data matrices and dhlerequencies, the directivity gain is approximately zero for
optimal filter are computed using all available data during = 60° andf = 150°, i.e., the directions of the two noise
speech-and-noise periods and noise-only periods. Some iss@msgces. Although difficult to see on this figure, the directivity
regarding computational complexity reduction are brieflgainin the direction of the speech sou(ée= 90°) is not equal

discussed in Section VI. to unity, as is the case for a GSC, but depends on the frequency
content of the speech and noise signals.
C. Spatial Directivity Pattern We can conclude that the GSVD-based optimal filtering tech-

When considering localized sources and no multipath prod?;{gue has the desired beamforming behavior for both simple

gation, it can be shown that the GSVD-based optimal filterirs enarios. For more realistic reverberant situations, it is rather
' %ﬁfﬁcult to interpret the spatial directivity plots since the GSVD-

techni hibits a b forming behavior. Th tial di o ) . .
echnique exnibits a bearmiorming behavior. 10e spatia Irebased filtering technique computes an optimal estimate for the

tivity pattern of the filterw[k] = wi,, - is defined as . . .
Mty p ! ] = wiyp i I speech component of one microphone signal, thereby reducing

No1 the additive noise but not the reverberation of the speech signal.

. ndcos @
H(F,6) = 3" Wa(f) - exp (mf ) (71) | |
"0 ¢ D. Noise-Reduction Performance
Where In this section, the noise-reduction performance of the
H(f,8) spatial directivity pattern (function of frequengy GSVD-based optimal filtering technique is compared for dif-

’ and angles): ferent filter length<. and for different reverberation timé&%.
W.(f) frequenc résponse of the filter, [k]; Low reverberation corresponds to highly correlated signals,
d " distance)l/)etween adjacent mic?bpﬁoneS' whereas high reverberation corresponds to highly uncorrelated
. speed of sound wave propagatian= 340 m/s). (diffuse) signals. The noise reduction performance is also

compared with standard fixed and adaptive beamforming

First, we consider spatio-temporal white noise, i.e., the n0i§eeChni ues. ie. delav-and-sum beamformer and generalized
componenty,,[k] present in every microphone signal[k] is 'deloge ca,m.:e.llyer [2231/ 9

temporally white and is uncorrelated with the noise componerﬁ's . .
. . . . . In a delay-and-sum beamformer, the different microphone
in the other microphone signals (e.g., sensor noise). We consider

the situation where the speech source impinges on the mic%’nals are spatially aligned to an anglée.g., the direction of

phone array at an angte= 45°. Fig. 7(a) shows the spatial di_{he_sgeech]\ioijrfe\?vili[)r)]/ delaying each microphone sigrial,
rectivity pattern for the frequencies = j-100, 5 =1, ... ,40. = '
For most frequencies, the directivity gain is maximal for the di- dcos

rectiond = 45°, which implies that the GSVD-based optimal bn=m . (72)
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Multi~channel
adaptive filter

Fig. 8. Generalized sidelobe canceller (GSC).

However, the position of the speech source needs to be de ? = Microphone signal

mined beforehand, e.g., using some generalized CroSS-CorTt 5[ 8 - oo b ey e obe Canceler |
tion method. A delay-and-sum beamformer offers limited spi © : -# GSVD (L=5)

tial selectivity, especially in the low-frequency region. In ou % 5 TT Gevp 2'[258%

simulations, the speech source is at broadéfde: 90°) such 207 ¢ S ]

GSVD (L=80)
that the output of the delay-and-sum beamformer is simply og :
tained by summing the microphone signals.

The GSC, which is an adaptive beamformer, is depicted
Fig. 8 and consists of three parts:

Unbiased SNR
&
T

Py
(=

1) a fixed delay-and-sum beamformer, which spatiall
aligns the microphone signals to the direction of th
speech source and which creates a so-called sper 5 s
reference;

2) a blocking matrixB, which creates so-called noise ref- | ; ;
erences by blocking the direction of the speech sour o 1000
(N — 1 independent noise references can be created); Reverberation time Ty, (ms)

3) a standard multichannel adaptive filter, using the noise _ _
reference as input signal and the speech reference as’t -g_‘baggéngriﬁ‘;?ﬁ|gn€ri"f‘;d,\lRSEFS dfg; delay-and-sum, GSC, and
sired signal [34] (to allow some acausal taps, the speech
reference is delayed).

1500

. : . . . i f better than the GSC if the filter lengtts |
If the noise components in the different microphone signals el € periorms betier than the ifthe filter lengtts large

correlated and the speech component is assumed to be uncorre-

lated with the noise components, then the adaptive filter reducEes

a considerable amount of noise from the speech reference”A

GSC will therefore perform considerably better for highly cor- In this section, we discuss simulations with a temporally non-

related noise than for uncorrelated noise [35]. A problem arisgf@itionary noise source, i.e., a noise source at a fixed position

when the noise references also contain part of the speech sigwith a changing frequency spectrum. It will be demonstrated

so-called signal leakage. In that case, the adaptive filter will alftat the noise reduction performance of the GSVD-based

remove part of the speech signal from the speech referenceoptimal filtering technique is mainly dependent on the spatial

order to avoid this signal cancellation and distortion, no filtetharacteristics of the noise source and not on the temporal

adaptation is allowed during speech-and-noise periods [36].dharacteristics.

our simulations, we have used an NLMS-procedure (step sizelhe nonstationary noise source has been created by filtering

A = 0.2) for updating an adaptive filter of length 800. a white noise source with a time-varying FIR-filter, which is
Fig. 9 compares the unbiased SNR of the enhanced sigregresented by the ten-dimensional vegfi]. The filter g[&]

for reverberation times up to 1500 ms. The unbiased SNRVigries between a lowpass filtgg;, (with cut-off frequency

plotted for the original microphone signéBNR = 0 dB), the 2400 Hz) and a highpass filteg; (with cut-off frequency

delay-and-sum beamformer, the GSC, and the GSVD-based 300 Hz) at different rates

timal filtering technique (with filter length& = 5, 20, 50, 80).

As expected, for smally,, the GSC performs much better than glk] = afklgy + (1 — ofk])gL (73)

for highTgo. Unlike the GSC, the GSVD-based optimal filtering

technique still performs well for higliso. As can be seen, for where0 < «[k] < 1 is a time-varying parameter determining

all reverberation times, the GSVD-based optimal filtering tectirow fast the filterg[k] varies in time. The frequency response

Nonstationary Noise Source
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2l GSVD (Lo10) GSC (Vv = 4, L = 80, SNR= 0 dB) for different microphone positions. .

..... 1 -*- GSVD (L=20)
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--------- ee----------------------t--¢  gpeech source and the microphone array configuration. These
5 5 : : : techniques therefore tend to be rather sensitive to deviations
from the nominal situation, as, e.g., encountered when incor-
rectly estimating the position of the speech source or when
using uncalibrated microphone arrays. The GSVD-based
optimal filtering technique does not rely on any assumptions of
this kind. Therefore, we can expect the GSVD-based optimal
filtering technique to be less sensitive to deviations from the
nominal situation.

In [37], we have compared the robustness of the GSVD-based
; : ; ; : : optimal filtering technique with the GSC for three kinds of de-
i i i * ‘ i viations from the nominal situation:

-
L

Unbiased SNR (dB)
] >

-
o

iy
(=]

SO 10 20 30 40 50 60
Nonstationarity factor . . . L.
a) incorrect estimation of the position of the speech source;
Fig.11. Comparison of unbiased SNR for nonstationary noise sobiree ¢, b) microphone displacement;
SNR = 0 dB, Tso = 300 ms). c¢) different microphone amplification.

_ _ _ _ It has been shown that for all three deviations, the GSVD-based
of g, g, and a number of intermediate filtegg#| is plotted  gptimal filtering technique is more robust than the GSC.
in Fig. 10. The nonstationary noise source is filtered with th(_e Fig. 12 shows the difference in noise-reduction performance

(simulated) acoustic room impulse responses between the NQfithiased SNR) between the GSVD-based optimal filtering
source position and the microphone array. In our SimUIaﬂor}échnique and the GSC for a different positipa of the

we have used a reverberation tifigy = 300 ms and SNR= " go04n4 microphone. Because the difference in performance
Q dB. A nons_tatlonarlty factor indicates how many times t,hﬁlcreases the more the microphone positiondeviates from
filter g[k] varies between the lowpass and the highpass filtg§{a nominal positiopie™ = 3.05 m, we can conclude that the

(a”‘,’ back) over the total signal (20s). . GSVD-based optimal filtering technique is more robust than
Fig. 11 compares the unbiased SNR of the enhanced &gﬂ@ GSC for microphone displacement.
for different filter lengthsL = 5, 20, 50, and 80 at different g 13 shows the difference in noise-reduction performance

levels of nonstationarity. As can be seen, the noise-reducti&mbiased SNR) for different amplifications of the second
performance of the GSVD-based optimal filtering technique [§jcrophone. For most reverberation times (especially higher re-

practically independent of the nonstationarity factor. Therefor\?erberation), the difference in performance increases the more

we can conclude that the noise-reduction procedure mainly @z ampiificationg, deviates from the nominal amplification
ploits the spatial characteristics of the noise source, rather ti‘@nm — 1. Therefore, we can conclude that the GSVD-based
its spectral characteristics. optimal filtering technique is more robust than the GSC for dif-
ferent microphone amplifications. It can, in fact, be proven that
the noise-reduction performance of the GSVD-based optimal

Many multimicrophone noise-reduction techniques, e.diltering technique is insensitive to variations in the amplifica-
GSC, rely ona priori assumptions about the position of thdion and phase difference of the microphones.

F. Robustness Issues
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6 ! ﬁ TABLE |
. : COMPUTATIONAL COMPLEXITY OF GSVD-BASED OPTIMAL FILTERING
TECHNIQUE (N = 4, L. = 20, p = 4000, f, = 8 kHz)

Non-recursive | Recursive | Square root-free

17TM3+-3pM? 27.5M2 21.5M2
T T r

r=1 684 Gflops | 1408 Mflops 1101 Mfiops
r=201| 342 Gflops | 70.4 Mflops 55.0 Mflops

Unbiased SNR difference (dB)

17.5M? using a square-root free implementation). The compu-
tational complexity of computing one columnWfy 7 is 432,
For stationary acoustic environments, the computational com-
plexity can be further reduced by using subsampling techniques
500 1000 1m0 Without any loss in performance [40], [41]. In this context, sub-
Reverberation time Tg, (ms) sampling means that the GSVD and the filfy - are only
updated every- samples. The total computational complexity
Fig. 13 Unbiased SNR-difference between GSVD-based optimal filtering aggy the nonrecursive and the recursive algorithms is summarized
GSC (V = 4, L = 80, SNR = 0 dB) for different microphone amplification . .
s in Table I, showing that, e.g., fa¥ = 4 andL = 20, the com-
plexity can be reduced from 684 Gflops to 55 Mflops, practi-
cally without any reduction in noise reduction performance. Al-
though the complexity of the recursive GSVD-updating algo-
The VAD should be tuned such that speech-and-noise periqiims is still quite high, suffice it to say that we have succeeded
are always correctly classified. When speech-and-noise periggiinplementing this GSVD-based multimicrophone speech en-
are wrongly classified, speech vectors are added to the ndiggcement algorithm in real time on a Pentium-Ill 450 MHz
data matrix, resulting in signal cancellation and signal distopC. Recently, a subband implementation of this GSVD-based
tion, which is equivalent to signal leakage in the noise refegptimal filtering technique has been described in [42], showing
ences of a GSC. This can be seen from (15), where the diagogalimproved performance at a further reduced computational
elements{1 — (77 /07)} decrease. On the other hand, addingomplexity.
noise vectors to the speech data matrix is less harmful since this

VI. COMPUTATIONAL COMPLEXITY

only gives rise to less noise reduction but no signal cancella- VII. CONCLUSION
tion. This can be seen from (15), where the diagonal elements . ) o )
{1—(72/52)} increase. In this paper, a class of optimal multimicrophone signal

In a real-time implementation, the data matrices and the gp?hancement techniques has been described, which are
timal filter need to be updated at every time step. DependiRgsed on the generalized singular value decomposition. The
on whether the VAD classifies the samples at tilng- 1 as GSVD-based optimal filtering technique can be considered
speech or noise, the stacked data vegtidr + 1] is added to to be an extension of the signal subspace algorithms for
either the speech or the noise data matrix. If, e.g., the sampl@abancing single-microphone noisy speech signals. A number
time %k + 1 is classified as speech, then the updated speech deftaymmetry properties have been derived for the optimal filter
matrix Y[k + 1] is equal to matrix, and the averaging step of some single-microphone
signal subspace algorithms has been examined. When com-

yilk—p+2] . . : : -
paring the noise-reduction performance in multimicrophone
Y[k +1] = : . Y[k+1] = { )\T Y/[k] } §pe§ch signal;, simulations show thgt the GS\(D—based optimal
vy [k] y' [k+1] filtering technique has a better noise-reduction performance

yvIk +1] than standard beamforming techniques for all reverberation

(74)  times and that it is more robust to deviations from the nominal
depending on whether a fixed length data window or exponentigfyation.

weighting is used.

From the GSVD of thg updateq data matri®pg: + 1] and ACKNOWLEDGMENT
VI[k' + 1], the optimal filter matrixWyy = and the enhanced ) ) )
signal Z[k + 1] can be computed. Calculating the GSVD of The authors would like to thank the reviewers for their valu-
two p x M matrices using Jacobi-rotations typically requiregble comments and suggestions.
17M? + 3pM? operations (additions and multiplications) [27],
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