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GSVD-Based Optimal Filtering for Single and
Multimicrophone Speech Enhancement
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Abstract—In this paper, a generalized singular value decompo-
sition (GSVD) based algorithm is proposed for enhancing multimi-
crophone speech signals degraded by additive colored noise. This
GSVD-based multimicrophone algorithm can be considered to be
an extension of the single-microphone signal subspace algorithms
for enhancing noisy speech signals and amounts to a specific op-
timal filtering problem when the desired response signal cannot be
observed.

The optimal filter can be written as a function of the general-
ized singular vectors and singular values of a speech and noise
data matrix. A number of symmetry properties are derived for the
single-microphone and multimicrophone optimal filter, which are
valid for the white noise case as well as for the colored noise case. In
addition, the averaging step of some single-microphone signal sub-
space algorithms is examined, leading to the conclusion that this
averaging operation is unnecessary and even suboptimal.

For simple situations, where we consider localized sources and
no multipath propagation, the GSVD-based optimal filtering
technique exhibits the spatial directivity pattern of a beamformer.
When comparing the noise reduction performance for realistic
situations, simulations show that the GSVD-based optimal fil-
tering technique has a better performance than standard fixed
and adaptive beamforming techniques for all reverberation times
and that it is more robust to deviations from the nominal situation,
as, e.g., encountered in uncalibrated microphone arrays.

Index Terms—Generalized singular value decomposition,
optimal filtering, robust beamforming, speech enhancement.

I. INTRODUCTION

I N many speech communication applications, such as
hands-free mobile telephony, hearing aids, and voice-con-

trolled systems, the recorded and transmitted speech signals
are often corrupted by a considerable amount of acoustic
background noise. This is mainly due to the fact that the
speaker is located at a certain distance from the recording
microphones, allowing the microphones to record the noise
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sources as well. Generally speaking, acoustic background noise
is a broadband and nonstationary signal, and the signal-to-noise
ratio (SNR) of the microphone signals can be quite low (down
to 0 dB). Background noise causes a signal degradation, which
can lead to total unintelligibility of the speech and which
substantially decreases the performance of speech coding and
automatic speech recognition systems. Therefore, efficient
noise reduction algorithms are required.

In the last few decades,single-microphonespeech en-
hancement algorithms have attracted a great deal of interest.
Single-microphone speech enhancement algorithms can be
broadly classified in parametric and nonparametric techniques.
Parametric techniques model the speech signal as a stochastic
autoregressive (AR) model embedded in Gaussian noise.
Speech enhancement then roughly consists of estimating the
speech AR parameters and applying a (noncausal) Wiener
filter [1], [2] or Kalman filter [3], [4] to the noisy signal,
where the optimal filters are based on the estimated AR
parameters. Non-parametric techniques do not estimate the
speech parameters and require a noise fingerprint in a trans-
form domain (mainly DFT or KLT-domain), which is used
during speech-and-noise periods to obtain an estimate of the
clean speech signal. Well-known nonparametric techniques
include spectral subtraction [5], [6] and signal subspace-based
techniques.

Several signal subspace-based single-microphonespeech
enhancement techniques for additive (colored) noise have
recently been proposed. These techniques are based on a
(generalized) singular value decomposition (SVD) [7]–[10] or
a Karhunen–Loève transform (KLT) [11]–[14]. The main idea
is to consider the noisy signal as a vector in an-dimensional
vector space and to separate this space into two orthogonal
subspaces: the signal-plus-noise subspace (with dimension
smaller than , corresponding to the clean signal), and the
noise subspace, which is the orthogonal complement of the
signal-plus-noise subspace. Of course, this separation is only
possible if the clean signal can be modeled with a low-rank
model, which is a model that has often been attributed to
clean speech [15], [16]. Signal enhancement is performed
by removing the noise subspace and by estimating the clean
speech signal from the remaining signal-plus-noise subspace.
Depending on the specific optimization criterion, different
clean speech estimates can be obtained.

Signal subspace-based single-microphonespeech enhance-
ment techniques can be classified according to the noise as-
sumptions (white noise versus colored noise), type of estimate
(least-squares, minimum variance, perceptually relevant crite-
rion), type of processing (block-based versus adaptive), and on
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whether an additional averaging step is included or not. For all
techniques, the resulting filter matrix can be written as a func-
tion of the (generalized) singular vectors and singular values of
a so-called speech and noise data matrix.

Dendrinoset al.[7] assume white noise, make a least-squares
(LS) estimate of the Toeplitz-structured speech data matrix by
removing the smallest singular values, and restore the Toeplitz-
structure of the rank-reduced matrix by arithmetically averaging
along the diagonals. Jensenet al. [8] have extended this tech-
nique to the colored noise case by using a quotient singular
value decomposition (QSVD), which implicitly includes noise
prewhitening. They make a minimum-variance (MV) estimate
of the Toeplitz-structured speech data matrix and average along
the diagonals. For the white noise case, Ephraim and Van Trees
[11] have introduced two perceptually relevant estimation cri-
teria, which minimize the signal distortion while keeping the
residual noise energy below some given threshold. They do not
use an additional averaging step. Huang and Zhao [12] have
slightly modified this procedure by adding an energy-constraint
that matches the short-time energy of the enhanced signal to
an estimate of the short-time energy of the clean speech. Mittal
and Phamdo [13] have extended the technique of Ephraim and
Van Trees to the colored noise case without using prewhitening
by making a distinction in processing speech-dominated and
noise-dominated speech frames. Rezayee and Gazor [14] have
reduced the computational complexity of the signal subspace-
based speech enhancement techniques by using an adaptive KLT
tracking algorithm, namely, the projection approximation sub-
space tracking (PAST) with deflation [17]. All authors claim
a better speech intelligibility and/or speech recognition perfor-
mance when comparing signal subspace-based algorithms with
spectral subtraction algorithms.

However, all single-microphone speech enhancement tech-
niques only use the time-frequency information present in the
signals and can therefore be considered a (signal-adaptive) fre-
quency filtering of the noisy speech signal [18]. This filtering
operation can be interpreted as an adaptive extraction of the
most important formants of the speech signal, thereby reducing
the amount of noise.

In many applications, such as hands-free mobile telephony
and hearing aids,multiple microphonesare nowadays available
for recording and enhancing the noisy speech signals. When
multiple microphones are available, both frequency and spatial
characteristics of the speech and noise sources can be exploited,
resulting in a procedure that combines spatio-temporal infor-
mation. Some authors have already used signal subspace-based
algorithms for processing multichannel signals. Hansen [9]
suggests the use of a single-channel subspace-based speech
enhancement algorithm on each microphone signal separately,
followed by delay-and-sum beamforming. Jabloun and Cham-
pagne [19] exploit the multimicrophone information to design
a (single-channel) signal subspace post-filter, following a
delay-and-sum beamformer. However, these techniques cannot
be considered integrated multimicrophone subspace-based
speech enhancement techniques. Dologlouet al. [20] have used
subspace-based ideas for processing (multichannel) images,
but their procedure does not allow the exploitation of the spatial
information present in the multi-microphone signals. Asano

et al. [21] have designed a minimum-variance beamformer
in the signal-plus-noise subspace, which is constructed using
the coherent subspace method. By splitting the problem into
different frequency bands, only spatial information is used in
each frequency band.

This paper discusses a class of multimicrophone speech
enhancement techniques that are based on the signal subspace
method and combine the spatio-temporal information of the
speech and noise sources. The paper is organized as follows.
In Section II, the optimal filtering technique for enhancing
multimicrophone noisy speech signals is described. The MSE
estimator, as well as a more general class of estimators, is
discussed. Section III discusses the practical computation using
a generalized singular value decomposition (GSVD), and it
is shown that the optimal filter matrix can be written as a
function of the generalized singular vectors and singular values
of a so-called speech and noise data matrix. In Section IV, a
number of symmetry properties are derived for the single-mi-
crophone and multimicrophone optimal filter, which are valid
for the white noise case as well as for the colored noise case.
In addition, the averaging step of some single-microphone
signal subspace-based algorithms is examined, leading to the
conclusion that this averaging operation is unnecessary and
even suboptimal. Section V compares the performance of the
multimicrophone GSVD-based optimal filtering technique
with standard fixed and adaptive beamforming techniques. It
is shown that for simple situations, the GSVD-based optimal
filtering technique exhibits the spatial directivity pattern of a
beamformer. It will also be shown that the GSVD-based optimal
filtering technique has a better noise reduction performance
than standard fixed and adaptive beamforming techniques
(delay-and-sum beamformer, Generalized Sidelobe Canceller)
for all reverberation times. This section also discusses the ro-
bustness of the GSVD-based optimal filtering technique, which
is an important issue when, e.g., the position of the speech
source is incorrectly estimated or when using uncalibrated
microphone arrays. Section VI discusses the computational
complexity of the GSVD-based optimal filtering technique,
showing that the complexity can be drastically reduced using
recursive GSVD-updating techniques and subsampling.

II. OPTIMAL FILTERING FORMULTIPLE MICROPHONES

In this section, the GSVD-based optimal filtering technique
for multimicrophone speech enhancement is discussed. First,
the general problem is stated, and some notational conventions
are given. Then, the optimal filter matrix is derived as a func-
tion of the generalized eigenvalues and eigenvectors of a speech
and noise correlation matrix, and the link with the different
single-microphone signal subspace-based estimators is further
explored.

A. Problem Formulation and Notation

Consider microphones, where each microphone signal
, , at time , consists of a filtered version

of the clean speech signal and additive noise (see Fig. 1)

(1)
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Fig. 1. Typical speech communication environment with desired speech source and undesired noise sources recorded with a microphone array.

Fig. 2. Multimicrophone filtering for speech enhancement.

where
and speech and noise component received at

the th microphone, respectively;
acoustic room impulse response between
the speech source and theth microphone;
convolution.

The additive noise can be colored and is assumed to be uncorre-
lated with the clean speech signal. In single-microphone speech
enhancement, the number of microphones is such that
the model (1) simplifies to

(2)

The goal of multimicrophone speech enhancement is to com-
pute the filters , (see Fig. 2) such that
the speech signal or one of the received speech components

is recovered. A generalized sidelobe canceller (GSC) [22]
attempts to recover the speech signal by constraining the
array response to unity in the direction of the speech source and
by minimizing the energy coming from all other directions. The
GSVD-based optimal filtering technique estimates the speech
components in an optimal way, using all the microphone
signals .

Let the filters have length

(3)

and consider the -dimensional data vectors , the -di-
mensional stacked filter (with ), and the -di-
mensional stacked data vector , defined as

(4)

(5)

(6)

such that the output signal can be written as

(7)

In Section II-B, a method will be described for computing the
stacked filter such that is an optimal estimate for one
of the speech components . The same method can be used
for single-microphone speech enhancement, by taking
in all obtained formulas.

B. Optimal Filtering

Consider the filtering problem in Fig. 3. is the -dimen-
sional filter input vector, and is the filter output
vector, where is an filter matrix. The -dimen-
sional vector is the desired response vector, and is
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Fig. 3. Optimal filtering problem with unknown desired response vectord.

the -dimensional error vector. The MSE (mean square error)
cost function for optimal filtering is

(8)

where is the expected value operator. The optimal filter matrix
is readily found by setting the derivative to
zero. The optimal filter is the well-known multidimen-
sional Wiener filter

(9)

where is the correlation matrix of the
input signal, and is the cross-correla-
tion matrix of the input signal and the desired signal [23]. If both
matrices and are known, the problem is solved con-
ceptually. Note that for multiple microphones, both the corre-
lation and the cross-correlation matrix contain spatio-temporal
information.

When considering multimicrophone noisy speech signals, the
input vector consists of a speech component and an
additive noise component

(10)

with defined in (6) and and similarly defined. If
we use a robust voice activity detection (VAD) algorithm [24],
[25], noise-only observations can be made during speech pauses
(time ), where . This allows the estimation of the
spatio-temporal correlation properties of the noise signal. The
goal is to reconstruct the speech signal from during
speech-and-noise periods by means of the linear filter matrix

. In the optimal filtering context, this means that the desired
signal is equal to the signal of interest , but this also
implies that the desired signal is in fact an unobservable
signal.

We now make two assumptions: short-term stationarity of the
noise

(11)
and statistical independence of the speech and noise signals

(12)

The first assumption allows to estimate the noise correlation
matrix during speech pauses. From the second assump-
tion, it is easily verified that and

such that theoptimal filter matrix can be
written as

(13)

where, again, is estimated during
speech-and-noise periods, and is es-
timated during noise-only periods.

By using the joint diagonalization of the symmetric block-
Toeplitz correlation matrices and in the calcula-
tion of the optimal filter , the low-rank model of the clean
speech signal can be taken into account (cfr. Section II-C).
The joint diagonalization of and is defined as
(we assume full-rank matrices)

diag
diag

(14)

where is an invertible, but not necessarily orthogonal, matrix
[26]. Substituting (14) into (13) gives an expression for the op-
timal filter matrix

diag (15)

In the spatio-temporalwhite noise case, the noise correlation
matrix is , where is the noise power. The
matrix then reduces to an orthogonal matri such that
is a symmetric matrix

diag (16)

The enhanced speech vector is obtained as
. The -dimensional vector contains an

estimate for all the speech samples , ,
.

The estimation error is defined as
such that the error covariance matrix

can be written as

(17)

The elements , on the main diagonal of
the error covariance matrix indicate how well theth component
of , i.e., a delayed speech sample in a certain microphone
signal, is estimated. The smallest element on the diagonal, say,
element , therefore corresponds to the best estimator, namely,
the column of .

C. Low-Rank Modeling of Speech

If we model the acoustic room impulse response with an FIR-
filter of length

(18)
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then the speech component can be written as

(19)

The data vector and stacked data vector , which are
similarly defined as in (6), can be written as

...

...

...
(20)

...
(21)

where is an matrix, and is an
matrix (with typically ).

If the clean speech signal can be modeled with a low-rank
model of rank [15], [16] with , then the signal
vector can be written as a linear combination oflinear
independent basis vectors

(22)

Since the correlation matrix is then
a rank- matrix, the correlation matrix , which can be
written as

(23)

is also a rank- matrix (if and is assumed to be
of full row rank). The generalized eigenvalue decomposition of

and is then given by

(24)

where and are diagonal matrices, and is an
diagonal matrix. Since and

can be assumed positive (semi-)definite matrices, all diagonal

elements are positive. The correlation matrix can now
be written as

(25)
Comparing this equation with (14), we see that

(26)

This implies that the diagonal matrix in (15) haspositive
nonzero elements. Even if the signal cannot be modeled with
a low-rank model, i.e., , none of the diagonal elements
can ever become negative. This fact will be used in the practical
computation of the optimal filter matrix (cfr. Section III).

In the spatio-temporalwhite noise case, all ,
are equal to such that the noise power can be estimated
from the smallest eigenvalues of if the speech compo-
nents can be modeled with a low-rank model. This also implies
that in this case, no voice activity detection is required.

D. General Class of Estimators

The filter matrix in fact belongs to a more general class
of estimators, which can be represented as

diag (27)

where is a function of the generalized eigenvalues,
depending on the specific cost criterion being optimized. This
formula can be interpreted as an analysis filterbank that
performs a transformation from the time domain to a signal-de-
pendent transform domain, a gain function that modi-
fies the transform domain parameters, and a synthesis filterbank

that performs a transformation back to the time domain [18].
If the MSE criterion is optimized, the filter is equal

to (15). If the SNR is optimized and a least-squares (LS)
estimate of rank 1 is made, only the principal generalized
eigenvector should be considered, such that the gain function
is . This will, however, introduce
a significant amount of signal distortion. In [11], two percep-
tually relevant cost criteria that minimize the signal distortion
while keeping the residual noise energy below some given
threshold have been presented. In fact, the estimation error
is the sum of a term representing signal distortion and a
term representing the residual noise

(28)
If we want to minimize the energy of the signal distortion

under the constraint that the residual
noise energy is kept below some given
threshold

subject to (29)

we can easily prove that the filter is equal to

(30)

(31)
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diag (32)

with the Lagrange-multiplier related to as

tr

tr diag (33)

In fact, a similar expression can be obtained when the residual
noise energy is minimized while keeping the signal dis-
tortion below a given threshold. If , then the MSE
criterion is minimized, and is equal to (15). If , the
residual noise level will be lower, at the expense of increased
signal distortion. Taking reduces the signal distortion
at the expense of decreased noise reduction (if , then

). In the rest of the paper, we will assume MSE es-
timation .

In all subspace-based single-microphone speech enhance-
ment techniques [7]–[9], [11]–[14], the resulting filter matrix
can be written as in (27). In Section IV, we will prove symmetry
properties for this filter matrix.

III. PRACTICAL COMPUTATION USING GSVD

In practice, the matrix and the diagonal elements and
are estimated by means of a generalized singular value decom-
position (GSVD) [26], [27] of a speech data matrix
containing speech data vectors recorded during speech-and-
noise periods and a noise data matrix containing

noise data vectors recorded during noise-only periods (with
and typically larger than )

...
...

(34)
For the sake of a simple interpretation, we assume here that
the time indices in and are consecutive. These time
indices do not need to be consecutive, as long as contains
speech data vectors and contains noise data vectors.

Both the speech and the noise data matrix are block-Toeplitz
(and Toeplitz in the single-microphone case). The correlation
matrices and can be approximated by the em-
pirical correlation matrices and
(which is an approximation because of the finite lengthsand
). The GSVD of the data matrices and is defined as

(35)

where diag , diag , and are
orthogonal matrices, is an invertible but not necessarily or-
thogonal matrix containing the generalized singular vectors, and

are the generalized singular values. Substituting these for-
mulas into (13) gives an estimate for the optimal filter matrix

diag (36)

showing that the optimal filter matrix estimate is a function
of the generalized singular vectors and singular values of the
speech and noise data matrices.

Because, in practice, the generalized singular values are es-
timated from the empirical correlation matrices, it occurs that
(26) is no longer satisfied, and hence, some diagonal elements
in (36) may become negative. In [11], it has already been noted
that these negative values will always be obtained when an un-
biased nonperfect estimator is used. Therefore, these negative
values, which are in fact zero estimates, will be put to zero.

Using the speech data matrix and the optimal filter ma-
trix , an estimate can be obtained for the clean
speech data matrix , which is defined similarly to (34) as

...
...

(37)

Using a more explicit notation, we can rewrite the sub-
matrix as, (38), shown at the bottom of the page, where

is the estimate for the speech component in
the th microphone signal at time, which is obtained as a
linear combination of the noisy microphone samples

, . As can be easily seen
from this matrix, several different estimates are available for the
same speech sample, e.g.,different estimates are available for

. If we subdivide theth column of
into the -dimensional filters , , which is
similar to (5)

(39)

then the different estimates for can be explicitly
written as (40), shown at the bottom of the next page, where

is the filter matrix used for estimating speech components
in the th microphone signal. The question now arises as to
which of the available estimates in theth microphone signal
is the best estimate. In addition, we have to decide from which
of the microphone signals we are going to use the speech
estimates, which in fact leads to possibilities. As already

...

...
...

...
(38)
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indicated in Section II-B, the answer is given by the error co-
variance matrix . The th diagonal element of this ma-
trix indicates how well theth component of is estimated.
The smallest element on the diagonal, say, element, therefore
corresponds to the best estimator, namely, the column of

. The enhanced speech signal can now
be computed as

... (41)

where

div (42)

rem (43)

In the single-microphone case, some procedures [7]–[10]
use an additional averaging step, thereby averaging out over
all available speech estimates. However, it will be shown
in Section IV-B that this averaging step is unnecessary and
even suboptimal. Other procedures [11], [12], which are
block-based, use an overlap-add procedure on the last row of

, whereas the adaptive procedure in [14] only retains the
first element of this row at each time step, thereby implicitly
using the first column of .

The optimal procedure for minimizing the MSE thus consists
of computing at each time step and choosing the column
corresponding to its smallest diagonal element. However, this is
a computationally very demanding procedure. Simulations indi-
cate that taking a fixed value , i.e., using the optimal es-
timate of the delayed speech component in the first microphone
signal , instead of the optimal value does not
decrease the noise reduction performance and the speech intel-
ligibility considerably [28].

IV. SYMMETRY PROPERTIES ANDAVERAGING OPERATION

A. Single-Microphone Case

In the single-microphone case, the correlation matrices
and are symmetric Toeplitz matrices. These

matrices belong to the class of double symmetric matrices,
which are symmetric with respect to both the main and the
secondary diagonal and whose eigenvectors have special
symmetry properties [29], i.e., every eigenvector is either
symmetric or skew-symmetric.

Theorem 1: If is constructed according to (27), then
satisfies

(44)

where is the reverse identity matrix. These
properties hold in the white noise case as well as in the colored
noise case for any function .

Proof: Considering the joint diagonalization of
and in (14), one can easily verify that

diag (45)

is an eigenvalue decomposition. Because and are
double-symmetric matrices

(46)

such that

(47)

Therefore, the eigenvectors, which are the columns of ,
satisfy the property [29]

diag (48)

... ... . . .

...

...

...

(40)
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such that

diag (49)

diag (50)

These symmetry properties imply that theth row/column of
is equal to the th row/column in reversed order.

For odd, the middle column in is symmetric and, hence,
represents alinear phase filter. This linear phase property is
an extension of the zero phase property that has already been
attributed to SVD and rank truncation based estimators for the
white noise case if an additional averaging step is included [30]
(cfr. Section IV-B). However, the above linear phase property
is also valid for the colored noise case as well as for a general
function .

B. Averaging Operation

As already indicated in Section III, some single-microphone
procedures [7]–[10] use an averaging step for obtaining a final
estimate from the different available estimates for .
In the single-microphone case, (40) reduces to (51), shown at the
bottom of the page. From , with

(52)

it immediately follows that

(53)

The averaging operation can now be written as

...
(54)

...
(55)

where the averaged value is estimated from
together with past samples and

future samples. The -dimensional filter is obtained
by averaging out over the available-dimensional filters ,

. From the symmetry property of , it is readily
seen that represents azero phase filter. The question now
is whether has a better performance than the individual fil-
ters from which it is computed. Specifically, should
be compared with the symmetric middle row of (if is
odd), which represents a linear phase filter that uses
past samples and future samples.

First, it can be verified that is not the -dimensional
optimal filter, i.e.,

(56)

since is obtained by averaging out over a col-
lection of -dimensional optimal filters, whereas

is obtained by applying the optimal filter formulas to a
-dimensional vector .

Second, simulations indicate that the obtained error variance
for the -dimensional filter is always larger than the
error variance for the best-dimensional filter , which is
obtained by considering the smallest diagonal element of the
error covariance matrix .

Consider the following simulation example: The input signal
is constructed as the sum of two (stationary) unit-variance

white noise signals and

(57)

Both the optimal filter matrix , which consists of -di-
mensional filters , , and the -dimen-
sional filter are computed from these signals. In addition, the
enhanced signals and are computed using the filters

and . The error variances , , and are
defined as

(58)

(59)

For , , and , the error variances ,
, and are compared in Fig. 4. As can be seen

from Fig. 4, the performance of the -dimensional filter
is not always better than the individual-dimensional filters

from which it is computed. Moreover, there always seems
to exist an -dimensional filter that gives rise to a lower
error variance.

... ...
...

(51)
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Fig. 4. Error variance comparison between(2L�1)-dimensional filter~w and
L-dimensional filtersw , i = 1; . . . ; L.

Hence, averaging does not seem to be a well-founded op-
eration, whereas on the other hand, it increases computational
complexity since it requires -taps filtering instead of

-taps filtering. If minimal error variance is sought, we suggest
the use of the -dimensional filter corresponding to the smallest
diagonal element in the error covariance matrix. However, as al-
ready indicated in Section III, this is a computationally very de-
manding procedure since in each time step, the error covariance
matrix needs to be computed. Therefore, in practice, we
suggest the use of the-dimensional filter given by the middle
column of , which provides both low error variance (al-
beit mostly not the lowest attainable error variance) and linear
phase. It is unpredictable whether this filter or the averaged filter
yields the lowest error variance.

C. Multimicrophone Case

In the multichannel case, similar and additional symmetry
properties can be derived, depending on the assumptions we
make for the spatio-temporal correlation matrices and

.
In the following, we will assume . However, the sym-

metry properties can easily be extended to the case of more than
two microphones. We will subdivide the symmetric
correlation matrices as

(60)

where , , , and are double-sym-
metric matrices, , and .
We will also subdivide the filter matrix as

(61)

Fig. 5. Simulation environment.

If we assume that the speech and noise correlation matrices for
both microphones are equal ( and

) and that and are Toeplitz matrices, then

(62)

such that the same symmetry properties as for the single-channel
case apply. Moreover, if and are symmetric
Toeplitz matrices, then in addition

(63)

where is the reverse block-identity matrix, i.e.,

(64)

A matrix satisfying is called a double block-
symmetric matrix. Using the same arguments as in [29], it can
be proven that any eigenvectorof a double block-symmetric
matrix is either block symmetric or block skew-symmetric, i.e.,

. Using this symmetry property, it is easy to prove
that the filter matrix , which is constructed according to (27),
satisfies the additional symmetry property

(65)

such that

(66)

In this case, the middle columns (forodd) of and
are again two linear phase filters.

The same properties hold when the two noise com-
ponents and are uncorrelated because then,

. In the case of spatio-temporal white
noise, the noise correlation matrix reduces to

(67)

and the filter matrix has the additional property of being
symmetric such that

(68)

V. PERFORMANCE OFGSVD-BASED OPTIMAL FILTERING

This section discusses the performance of the GSVD-based
optimal filtering technique for noise reduction in multimicro-
phone speech signals. First, the used simulation environment is
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Fig. 6. (a) Speech componentx [k] and voice activity detection. (b) Noisy microphone signaly [k] (SNR= 0 dB). (c) Enhanced signalz[k] (N = 4,L = 80,
T = 130 ms).

described, and some implementation details are given. Then, the
spatial directivity pattern, noise reduction performance (for sta-
tionary and nonstationary noise sources), and robustness of the
GSVD-based optimal filtering technique is discussed and com-
pared with standard beamforming techniques.

A. Simulation Environment

The simulation room is depicted in Fig. 5 and has dimensions
6 m 3 m 2.5 m. It consists of a microphone array, a speech
source , and a noise source . In our simulations, we have
used a linear equispaced microphone array with micro-
phones, and the nominal distancebetween two adjacent micro-
phones is 5 cm. The speech source is located 0.6 m from the mi-
crophone array. Broadside direction is represented as ,
whereas endfire direction is represented as . The used
signals are an 8 kHz clean speech signal and stationary tempo-
rally white noise (in Section V-E, a nonstationary noise source
will be used). The speech and noise components received at the

th microphone are filtered versions of the clean speech and
noise signals with simulated acoustic room impulse responses.

The acoustic room impulse responses are calculated using the
image method [31], [32], with a filter length of 1500 taps and
for different reverberation times . The reverberation time
can be expressed as a function of the reflection coefficientof
the walls, according to Eyring’s formula [33]

V
(69)

where is the volume of the room, andis the total surface of
the room.

Since we are using simulations, we can easily compare the
performance for different reverberation times and since the

speech and noise components of all signals are at hand, the un-
biased SNR of a signal can be computed as

SNR (70)

where and are the speech and noise component of the
considered signal .

In our simulations, we have constructed the noisy mi-
crophone signals such that the unbiased SNR of the first
microphone signal is 0 dB. Fig. 6(a) and (b) depicts the
speech component and the noisy microphone signal
for reverberation time ms.

B. Implementation Details

First, the speech and noise data matrices and
are constructed from the noisy microphone signals ,

. In order to construct these data matrices, a voice
activity detection (VAD) algorithm needs to determine when
speech is present [24], [25]. Fig. 6(a) shows the output of such
an algorithm on the speech component of the first microphone
signal (which is, of course, not available in practice). In our
simulations, we have constructed the speech data matrix
using all available speech samples and the noise data matrix

using all available noise samples. As already indicated
in Section III, the time indices in the data matrices do not need
to be consecutive.

From the GSVD of the speech and noise data matrices,
cfr. (35), the optimal filter matrix is computed using
(36), where all negative diagonal elements are put to zero. The
stacked filter is
determined as theth column of , using the fixed
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Fig. 7. Spatial directivity patternjH(f; �)j for (a) spatio-temporal white noise and speech source at� = 45 (N = 4,L = 10, SNR= 0 dB) and (b) localized
white noise sources at� = 60 and� = 150 and speech source at� = 90 (N = 4, L = 20, and SNR= 0 dB).

value (cfr. Section III). The enhanced signal is
obtained by filtering the microphone signals with the filters

, . Hence, in our simulations, the
enhanced signal is the optimal estimate for the delayed speech
component in the first microphone . Fig. 6(c)
shows the enhanced signal for filter length .

In this paper, we will only discuss the noise reduction
performance of the batch version of the GSVD-based signal
enhancement technique, where the data matrices and the
optimal filter are computed using all available data during
speech-and-noise periods and noise-only periods. Some issues
regarding computational complexity reduction are briefly
discussed in Section VI.

C. Spatial Directivity Pattern

When considering localized sources and no multipath propa-
gation, it can be shown that the GSVD-based optimal filtering
technique exhibits a beamforming behavior. The spatial direc-
tivity pattern of the filter is defined as

(71)

where
spatial directivity pattern (function of frequency
and angle );
frequency response of the filter ;
distance between adjacent microphones;
speed of sound wave propagation m/s .

First, we consider spatio-temporal white noise, i.e., the noise
component present in every microphone signal is
temporally white and is uncorrelated with the noise components
in the other microphone signals (e.g., sensor noise). We consider
the situation where the speech source impinges on the micro-
phone array at an angle . Fig. 7(a) shows the spatial di-
rectivity pattern for the frequencies , .
For most frequencies, the directivity gain is maximal for the di-
rection , which implies that the GSVD-based optimal

filtering technique automatically finds the direction of the de-
sired speech source. However, for low frequencies, the spatial
selectivity is rather poor.

Second, we consider two localized white noise sources that
impinge on the microphone array at angles and

. The speech source is located in front of the microphone
array . Fig. 7(b) shows the directivity pattern for the
frequencies , . As can be seen, for
all frequencies, the directivity gain is approximately zero for

and , i.e., the directions of the two noise
sources. Although difficult to see on this figure, the directivity
gain in the direction of the speech source is not equal
to unity, as is the case for a GSC, but depends on the frequency
content of the speech and noise signals.

We can conclude that the GSVD-based optimal filtering tech-
nique has the desired beamforming behavior for both simple
scenarios. For more realistic reverberant situations, it is rather
difficult to interpret the spatial directivity plots since the GSVD-
based filtering technique computes an optimal estimate for the
speech component of one microphone signal, thereby reducing
the additive noise but not the reverberation of the speech signal.

D. Noise-Reduction Performance

In this section, the noise-reduction performance of the
GSVD-based optimal filtering technique is compared for dif-
ferent filter lengths and for different reverberation times .
Low reverberation corresponds to highly correlated signals,
whereas high reverberation corresponds to highly uncorrelated
(diffuse) signals. The noise reduction performance is also
compared with standard fixed and adaptive beamforming
techniques, i.e., delay-and-sum beamformer and generalized
sidelobe canceller [22].

In a delay-and-sum beamformer, the different microphone
signals are spatially aligned to an angle(e.g., the direction of
the speech source) by delaying each microphone signal,

, with

(72)
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Fig. 8. Generalized sidelobe canceller (GSC).

However, the position of the speech source needs to be deter-
mined beforehand, e.g., using some generalized cross-correla-
tion method. A delay-and-sum beamformer offers limited spa-
tial selectivity, especially in the low-frequency region. In our
simulations, the speech source is at broadside such
that the output of the delay-and-sum beamformer is simply ob-
tained by summing the microphone signals.

The GSC, which is an adaptive beamformer, is depicted in
Fig. 8 and consists of three parts:

1) a fixed delay-and-sum beamformer, which spatially
aligns the microphone signals to the direction of the
speech source and which creates a so-called speech
reference;

2) a blocking matrix , which creates so-called noise ref-
erences by blocking the direction of the speech source
( independent noise references can be created);

3) a standard multichannel adaptive filter, using the noise
reference as input signal and the speech reference as de-
sired signal [34] (to allow some acausal taps, the speech
reference is delayed).

If the noise components in the different microphone signals are
correlated and the speech component is assumed to be uncorre-
lated with the noise components, then the adaptive filter reduces
a considerable amount of noise from the speech reference. A
GSC will therefore perform considerably better for highly cor-
related noise than for uncorrelated noise [35]. A problem arises
when the noise references also contain part of the speech signal:
so-called signal leakage. In that case, the adaptive filter will also
remove part of the speech signal from the speech reference. In
order to avoid this signal cancellation and distortion, no filter
adaptation is allowed during speech-and-noise periods [36]. In
our simulations, we have used an NLMS-procedure (step size

) for updating an adaptive filter of length 800.
Fig. 9 compares the unbiased SNR of the enhanced signal

for reverberation times up to 1500 ms. The unbiased SNR is
plotted for the original microphone signalSNR dB , the
delay-and-sum beamformer, the GSC, and the GSVD-based op-
timal filtering technique (with filter lengths 5, 20, 50, 80).
As expected, for small , the GSC performs much better than
for high . Unlike the GSC, the GSVD-based optimal filtering
technique still performs well for high . As can be seen, for
all reverberation times, the GSVD-based optimal filtering tech-

Fig. 9. Comparison of unbiased SNR for delay-and-sum, GSC, and
GSVD-based optimal filter (N = 4, SNR= 0 dB).

nique performs better than the GSC if the filter lengthis large
enough.

E. Nonstationary Noise Source

In this section, we discuss simulations with a temporally non-
stationary noise source, i.e., a noise source at a fixed position
with a changing frequency spectrum. It will be demonstrated
that the noise reduction performance of the GSVD-based
optimal filtering technique is mainly dependent on the spatial
characteristics of the noise source and not on the temporal
characteristics.

The nonstationary noise source has been created by filtering
a white noise source with a time-varying FIR-filter, which is
represented by the ten-dimensional vector . The filter
varies between a lowpass filter (with cut-off frequency
2400 Hz) and a highpass filter (with cut-off frequency
1600 Hz) at different rates

(73)

where is a time-varying parameter determining
how fast the filter varies in time. The frequency response
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Fig. 10. Frequency responses of time-varying FIR filterg[k].

Fig. 11. Comparison of unbiased SNR for nonstationary noise source (N = 4,
SNR = 0 dB, T = 300 ms).

of , , and a number of intermediate filters is plotted
in Fig. 10. The nonstationary noise source is filtered with the
(simulated) acoustic room impulse responses between the noise
source position and the microphone array. In our simulations,
we have used a reverberation time ms and SNR

dB. A nonstationarity factor indicates how many times the
filter varies between the lowpass and the highpass filter
(and back) over the total signal (20 s).

Fig. 11 compares the unbiased SNR of the enhanced signal
for different filter lengths 5, 20, 50, and 80 at different
levels of nonstationarity. As can be seen, the noise-reduction
performance of the GSVD-based optimal filtering technique is
practically independent of the nonstationarity factor. Therefore,
we can conclude that the noise-reduction procedure mainly ex-
ploits the spatial characteristics of the noise source, rather than
its spectral characteristics.

F. Robustness Issues

Many multimicrophone noise-reduction techniques, e.g.,
GSC, rely ona priori assumptions about the position of the

Fig. 12. Unbiased SNR-difference between GSVD-based optimal filtering and
GSC (N = 4,L = 80, SNR= 0 dB) for different microphone positionsp .

speech source and the microphone array configuration. These
techniques therefore tend to be rather sensitive to deviations
from the nominal situation, as, e.g., encountered when incor-
rectly estimating the position of the speech source or when
using uncalibrated microphone arrays. The GSVD-based
optimal filtering technique does not rely on any assumptions of
this kind. Therefore, we can expect the GSVD-based optimal
filtering technique to be less sensitive to deviations from the
nominal situation.

In [37], we have compared the robustness of the GSVD-based
optimal filtering technique with the GSC for three kinds of de-
viations from the nominal situation:

a) incorrect estimation of the position of the speech source;
b) microphone displacement;
c) different microphone amplification.

It has been shown that for all three deviations, the GSVD-based
optimal filtering technique is more robust than the GSC.

Fig. 12 shows the difference in noise-reduction performance
(unbiased SNR) between the GSVD-based optimal filtering
technique and the GSC for a different position of the
second microphone. Because the difference in performance
increases the more the microphone positiondeviates from
the nominal position m, we can conclude that the
GSVD-based optimal filtering technique is more robust than
the GSC for microphone displacement.

Fig. 13 shows the difference in noise-reduction performance
(unbiased SNR) for different amplifications of the second
microphone. For most reverberation times (especially higher re-
verberation), the difference in performance increases the more
the amplification deviates from the nominal amplification

. Therefore, we can conclude that the GSVD-based
optimal filtering technique is more robust than the GSC for dif-
ferent microphone amplifications. It can, in fact, be proven that
the noise-reduction performance of the GSVD-based optimal
filtering technique is insensitive to variations in the amplifica-
tion and phase difference of the microphones.
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Fig. 13. Unbiased SNR-difference between GSVD-based optimal filtering and
GSC (N = 4, L = 80, SNR= 0 dB) for different microphone amplification
g .

VI. COMPUTATIONAL COMPLEXITY

The VAD should be tuned such that speech-and-noise periods
are always correctly classified. When speech-and-noise periods
are wrongly classified, speech vectors are added to the noise
data matrix, resulting in signal cancellation and signal distor-
tion, which is equivalent to signal leakage in the noise refer-
ences of a GSC. This can be seen from (15), where the diagonal
elements decrease. On the other hand, adding
noise vectors to the speech data matrix is less harmful since this
only gives rise to less noise reduction but no signal cancella-
tion. This can be seen from (15), where the diagonal elements

increase.
In a real-time implementation, the data matrices and the op-

timal filter need to be updated at every time step. Depending
on whether the VAD classifies the samples at time as
speech or noise, the stacked data vector is added to
either the speech or the noise data matrix. If, e.g., the sample at
time is classified as speech, then the updated speech data
matrix is equal to

...

(74)
depending on whether a fixed length data window or exponential
weighting is used.

From the GSVD of the updated data matrices and
, the optimal filter matrix and the enhanced

signal can be computed. Calculating the GSVD of
two matrices using Jacobi-rotations typically requires

operations (additions and multiplications) [27],
which is clearly too high for real-time operation (see Table I).
Instead of recomputing the GSVD from scratch for each time
step, recursive GSVD-updating algorithms are able to compute
the GSVD at time using the decomposition at time. In
[38] and [39], a Jacobi-type (G)SVD-updating algorithm is de-
scribed, reducing the computational complexity to (and

TABLE I
COMPUTATIONAL COMPLEXITY OF GSVD-BASED OPTIMAL FILTERING

TECHNIQUE (N = 4,L = 20, p = 4000, f = 8 kHz)

using a square-root free implementation). The compu-
tational complexity of computing one column of is .
For stationary acoustic environments, the computational com-
plexity can be further reduced by using subsampling techniques
without any loss in performance [40], [41]. In this context, sub-
sampling means that the GSVD and the filter are only
updated every samples. The total computational complexity
for the nonrecursive and the recursive algorithms is summarized
in Table I, showing that, e.g., for and , the com-
plexity can be reduced from 684 Gflops to 55 Mflops, practi-
cally without any reduction in noise reduction performance. Al-
though the complexity of the recursive GSVD-updating algo-
rithms is still quite high, suffice it to say that we have succeeded
in implementing this GSVD-based multimicrophone speech en-
hancement algorithm in real time on a Pentium-III 450 MHz
PC. Recently, a subband implementation of this GSVD-based
optimal filtering technique has been described in [42], showing
an improved performance at a further reduced computational
complexity.

VII. CONCLUSION

In this paper, a class of optimal multimicrophone signal
enhancement techniques has been described, which are
based on the generalized singular value decomposition. The
GSVD-based optimal filtering technique can be considered
to be an extension of the signal subspace algorithms for
enhancing single-microphone noisy speech signals. A number
of symmetry properties have been derived for the optimal filter
matrix, and the averaging step of some single-microphone
signal subspace algorithms has been examined. When com-
paring the noise-reduction performance in multimicrophone
speech signals, simulations show that the GSVD-based optimal
filtering technique has a better noise-reduction performance
than standard beamforming techniques for all reverberation
times and that it is more robust to deviations from the nominal
situation.
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