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Abstract

This paper discusses two novel non-iterative design procedures based on eigen"lters for designing broadband beamform-
ers with an arbitrary spatial directivity pattern for an arbitrary microphone con"guration. In the conventional eigen"lter
technique a reference frequency-angle point is required, whereas in the eigen"lter technique based on a TLS (total least
squares) error criterion, no reference point is required. It is shown how to design broadband beamformers in the far-"eld,
near-"eld and mixed near-"eld far-"eld of the microphone array. Both eigen"lter techniques are compared with other
broadband beamformer design procedures (least-squares, maximum energy array, non-linear criterion). It will be shown
by simulations that among the considered non-iterative design procedures the TLS eigen"lter technique has the best
performance, i.e. best resembling the performance of the non-linear design procedure but having a signi"cantly lower
computational complexity.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many speech communication applications, such as hands-free mobile telephony, hearing aids and voice-
controlled systems, the recorded microphone signals are corrupted by acoustic background noise and reverber-
ation. Background noise and reverberation cause a signal degradation which can lead to total unintelligibility
of the speech and which decreases the performance of speech recognition and coding systems. Therefore
e;cient signal enhancement algorithms are required.
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Nomenclature

N number of microphones
L length of the FIR "lter wn

M dimension of the stacked "lter vector w (M = LN )
K number of linear constraints
c speed of sound (c = 340 m=s)
fs sampling frequency
r distance of the speech source to the centre of the microphone array
! normalised frequency
� angle
dn distance between the nth microphone and the centre of the microphone array
an(�; r) attenuation for the nth microphone
�n(�); �n(�; r) delay for the nth microphone
D(!; �); D(!; �; r) desired spatial directivity pattern
F(!; �); F(!; �; r) weighting function
H (!; �); H (!; �; r) spatial directivity pattern
Yn(!; �); Yn(!; �; r) nth microphone signal
g(!; �); g(!; �; r) steering vector
G(!; �);G(!; �; r) steering matrix
wn "lter on the nth microphone
w stacked "lter vector
C; b linear constraint matrix/vector
IL L× L-dimensional identity matrix
JL L× L-dimensional reverse identity matrix

Well-known multi-microphone signal enhancement techniques are "xed and adaptive beamforming [36],
which have already been successfully applied in hands-free communication [9] and hearing aids [14,19].
Fixed beamformers (with a "xed spatial directivity pattern) try to obtain spatial focusing on the speech source,
thereby reducing reverberation and suppressing background noise not coming from the same direction as the
speech source. In general, "xed beamformers have the advantage of having a low computational complexity,
not requiring a control algorithm and being more robust than adaptive beamformers, although they are not able
to adapt to changing acoustic environments and therefore usually have a lower noise reduction performance.
Nevertheless, "xed beamformers are frequently used in highly reverberant environments, in applications where
the position of the speech source is assumed to be known (e.g. hearing aids [18,32,33] and car applications)
and for creating multiple beams [20,35]. Furthermore, "xed beamformers are used for creating the speech
and the noise reference signals in a generalised sidelobe canceller (GSC) [13,15,16], a well-known adaptive
beamforming technique. In a GSC it is very important that the "xed beamformers have the desired frequency
and spatial "ltering behaviour, in order to limit signal leakage into the noise references and hence signal
distortion and signal cancellation [28].

This paper discusses the design of far-"eld and near-"eld broadband beamformers with a given arbitrary
spatial directivity pattern for a given arbitrary microphone array con4guration, using an FIR 4lter-and-sum
beamformer structure. In speech communication applications, broadband design implies a design over sev-
eral octaves (e.g. 300–3500 Hz with sampling frequency fs = 8 kHz). Using well-known types of "xed
beamformers, such as delay-and-sum beamforming, weighted-sum beamforming [8], diLerential microphone
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arrays [10], superdirective microphone arrays [2,6,18] and frequency-invariant beamforming [38,39], it is not
possible to design arbitrary spatial directivity patterns for arbitrary microphone array con"gurations. For
example, diLerential microphones require a small-size microphone array, superdirective microphone arrays
are designed using an assumption about the noise "eld, and for frequency-invariant beamformers the desired
spatial directivity pattern is equal for all frequencies.

For designing broadband beamformers with an arbitrary spatial directivity pattern, several design proce-
dures exist, which are e.g. based on least-squares (LS) "lter design [25], a maximum energy array [22] or
non-linear optimisation techniques [17,23,24,27]. Although in general we would like to use the non-linear
design procedure, this procedure gives rise to a high computational complexity, since it requires an iterative
optimisation technique. In this paper two novel non-iterative design procedures are presented, which are based
on eigen"lters. In the conventional eigen"lter technique, a reference point is required, whereas in the eigen-
"lter technique based on a TLS error criterion, no reference point is required. Eigen"lters have already been
used for designing 1-D linear-phase FIR "lters [30,34] and for designing 2-D and spatial "lters [4,29,30]. In
this paper we extend their usage to the design of far-"eld, near-"eld and mixed near-"eld far-"eld broadband
beamformers. It will be shown by simulations that the TLS eigen"lter technique has a better performance
than the LS, the maximum energy array and the conventional eigen"lter technique.

Many broadband beamformer design procedures either perform the design individually for separate frequen-
cies or approximate the double integrals that arise in the design by a "nite sum over a grid of frequencies
and angles. However, in this paper we will always calculate such integrals exactly over the frequency-angle
plane and hence perform a true broadband design.

When the speech source is close to the microphone array, it is said to be in the near-"eld and the
far-"eld assumptions are no longer valid [26]. Superdirective and frequency-invariant beamformers, e.g. have
been designed for the near-"eld case in [21,31]. In this paper we will discuss the design of near-"eld
broadband beamformers with an arbitrary spatial directivity pattern, and beamformers that operate both
in the near-"eld and the far-"eld of the microphone array. It will be shown that for near-"eld design
and for mixed near-"eld far-"eld design, the same cost functions as for the far-"eld case can
be used.

This paper is organised as follows. In Section 2 the far-"eld broadband beamforming problem is introduced
and some de"nitions and notational conventions are given. Section 3 discusses several cost functions that
can be used for designing far-"eld and near-"eld broadband beamformers. In general, we would like to
use the non-linear cost function, minimising the error between the amplitudes of the actual and the desired
spatial directivity pattern. However, for this cost function no closed-form solution is available and an iterative
non-linear optimisation procedure is required, giving rise to a high computational complexity. Hence, we will
also consider other cost functions with a lower computational complexity that can be solved using non-iterative
optimisation techniques, such as the least-squares and the maximum energy array cost function. For all cost
functions, it will be shown how linear constraints can be imposed on the "lter coe;cients. Section 4 describes
two novel non-iterative eigen"lter-based procedures for designing broadband beamformers. In Section 4.1 the
conventional eigen"lter (with reference point) is discussed, whereas Section 4.2 discusses the eigen"lter based
on a TLS error criterion. It is shown how both cost functions can be optimised with=without imposing linear
constraints. Section 5 discusses the design of near-"eld broadband beamformers for a prede"ned distance
from the microphone array. It is shown that the same design procedures and cost functions as for the far-"eld
case can be used; the only diLerence lies in the calculation of the double integrals involved. This section
also discusses design procedures for broadband beamformers that operate at several distances. Although this
extension is straightforward for most cost functions, for the TLS eigen"lter and for the maximum energy array
cost function this extension leads to a signi"cantly diLerent optimisation problem, for which no closed-form
solution is available. Section 6 discusses simulation results for the diLerent cost functions and design cases. It
is shown that among the considered non-iterative design procedures the TLS eigen"lter technique has the best
performance, i.e. best resembling the performance of the non-linear design procedure but having a signi"cantly
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Fig. 1. Linear microphone array con"guration (far-"eld).

lower computational complexity and that mixed near-"eld far-"eld design provides a trade-oL between the
near-"eld and the far-"eld performance.

2. Far-�eld broadband beamforming: con�guration

Consider the linear microphone array depicted in Fig. 1, with N microphones and dn the distance between
the nth microphone and the centre of the microphone array. The spatial directivity pattern H (!; �) for a
source S(!) with normalised frequency ! at an angle � from the microphone array is de"ned as

H (!; �) =
Z(!; �)
MY (!; �)

=
∑N−1

n=0 Wn(!)Yn(!; �)
MY (!; �)

; (1)

with MY (!; �) the signal received at the centre of the microphone array and Wn(!) the frequency response of
the real-valued L-dimensional FIR "lter wn,

Wn(!) =
L−1∑
l=0

wn;le−jl! = wT
n e(!); (2)

with

wn =




wn;0

wn;1

...

wn;L−1


 ; e(!) =




1

e−j!

...

e−j(L−1)!


 : (3)

When the signal source is far enough from the microphone array (cf. Section 5), the far-"eld assumptions
are valid, i.e. the wavefronts can be assumed to be planar and all microphone signals can be assumed to be
equally attenuated. The microphone signals Yn(!; �); n = 0 : : : N − 1, then diLer by a phase factor from the
signal MY (!; �), i.e. Yn(!; �) = MY (!; �)e−j!�n(�), −�6!6 �; −�6 �6 �, with the delay �n(�) in number of
samples equal to

�n(�) =
dn cos �

c
fs; (4)
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with c the speed of sound (c = 340 m=s) and fs the sampling frequency. Combining (1) and (4), the spatial
directivity pattern H (!; �) can be written as

H (!; �) =
N−1∑
n=0

Wn(!)e−j!�n(�) =
N−1∑
n=0

wT
n e(!)e−j!�n(�) = wTg(!; �) (5)

with the M -dimensional stacked "lter vector w and the steering vector g(!; �), with M = LN , equal to

w=




w0

w1

...

wN−1


 ; g(!; �) =




e(!)e−j!�0(�)

e(!)e−j!�1(�)

...

e(!)e−j!�N−1(�)


 : (6)

The steering vector g(!; �) can be decomposed into a real and an imaginary part, g(!; �)=gR(!; �)+jgI(!; �).
The ith element of gR(!; �) is equal to

giR(!; �) = cos
[
!
(
k +

dn cos �
c

fs

)]
; i = 1 : : : M; (7)

with k =mod(i− 1; L) and n= �(i− 1)=L�, where �(i− 1)=L� denotes the largest integer smaller than or equal
to (i − 1)=L, and mod(i − 1; L) is the remainder of the division.

Using (5), the spatial directivity spectrum |H (!; �)|2 can be written as

|H (!; �)|2 = H (!; �)H∗(!; �) = wTG(!; �)w; (8)

with G(!; �) = g(!; �)gH (!; �). The steering matrix G(!; �) can be decomposed into a real and an imagi-
nary part, G(!; �) = GR(!; �) + jGI(!; �). Since GI(!; �) is anti-symmetric, the spatial directivity spectrum
|H (!; �)|2 is equal to

|H (!; �)|2 = wTGR(!; �)w : (9)

The (i; j)th element of the real part GR(!; �) is equal to

Gij
R(!; �) = cos

[
!
(

(k − l) +
(dn − dm) cos �

c
fs

)]
; (10)

with k = mod(i − 1; L); l = mod(j − 1; L); n = �(i − 1)=L� and m = �(j − 1)=L�.

3. Broadband beamforming procedures

3.1. Overview

The design of a broadband beamformer consists of the calculation of the "lter w, such that H (!; �) optimally
"ts a desired spatial directivity pattern D(!; �), where D(!; �) is an arbitrary two-dimensional function in !
and �. Several design procedures exist, depending on the speci"c cost function which is optimised. In this
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section three diLerent cost functions will be considered:

• a least-squares (LS) cost function JLS, minimising the least-squares error between the actual and the desired
spatial directivity pattern, which can be written as a quadratic function (cf. Section 3.2);

• a maximum energy array cost function JME, maximising the energy ratio between the passband and the
stopband region. Maximising this cost function leads to a generalised eigenvalue problem (cf. Section 3.3);

• a non-linear cost function JNL, minimising the error between the amplitudes of the actual and the desired
spatial directivity pattern, not taking into account the phase of the spatial directivity patterns. Minimising
this cost function leads to a non-linear optimisation problem, which needs to be solved using iterative
optimisation techniques (cf. Section 3.4).

In general we would like to use the non-linear cost function JNL. However, since optimising this cost function
requires an iterative non-linear optimisation technique (cf. Section 3.4.3), giving rise to a large computational
complexity, we will also consider non-iterative design procedures (least-squares, maximum energy array) with
a lower computational complexity. In addition, in Section 4 two non-iterative eigen"lter-based cost functions
will be de"ned and in Section 6 the performance of all considered non-iterative design procedures will be
compared with the non-linear design procedure.

We will consider the design of broadband beamformers over the total frequency-angle plane of interest, i.e.
we will not split up the fullband problem into separate smallband problems for diLerent frequencies. Moreover,
we will not approximate the double integrals over the frequency-angle plane by a "nite Riemann-sum over
a grid of frequencies and angles, as e.g has been done in [17] for the non-linear cost function. For all cost
functions, we will "rst discuss the general design procedure for an arbitrary function D(!; �), and we will
then focus on the speci"c design case of a broadband beamformer having a desired response D(!; �) = 0 in
the stopband region (!s; "s) and D(!; �) = 1 in the passband region (!p; "p). For the speci"c design case,
the weighting function F(!; �) = 1 in the passband and F(!; �) = # in the stopband. We will also discuss
how linear constraints of the form Cw= b can be imposed on the "lter w (cf. Section 3.5).

3.2. Least-squares design procedure

The least-squares (LS) cost function is a well-known cost function from literature, which can for example
be used for designing FIR "lters [25], 2D-"lters [29] and broadband beamformers.

3.2.1. General design
Considering the LS error |H (!; �) − D(!; �)|2, the LS cost function is de"ned as

JLS(w) =
∫
"

∫
!
F(!; �)|H (!; �) − D(!; �)|2 d! d�; (11)

where both the phase and the amplitude of H (!; �) are taken into account. F(!; �) is a positive real weighting
function, assigning more or less importance to certain frequencies or angles. Using F(!; �) it is for example
possible to use a speech-intelligibility motivated frequency weighting [1]. The LS cost function can be written
as

JLS(w) =
∫
"

∫
!
F(!; �)|H (!; �)|2 d! d� +

∫
"

∫
!
F(!; �)|D(!; �)|2 d! d�

−2
∫
"

∫
!
F(!; �)Re{D(!; �)H∗(!; �)}: (12)
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Using (9) and the fact that

Re{D(!; �)H∗(!; �)} = wT[DR(!; �)gR(!; �) + DI(!; �)gI(!; �)]; (13)

this cost function can be rewritten as the quadratic function

JLS(w) = wTQLSw− 2wTa + dLS (14)

with

QLS =
∫
"

∫
!
F(!; �)GR(!; �) d! d�; (15)

a =
∫
"

∫
!
F(!; �)[DR(!; �)gR(!; �) + DI(!; �)gI(!; �)] d! d�; (16)

dLS =
∫
"

∫
!
F(!; �)|D(!; �)|2 d! d�: (17)

The LS cost function JLS(w) is minimised by setting the derivative @JLS(w)=@w equal to 0, such that the
solution wLS is given by

wLS =Q−1
LS a : (18)

3.2.2. Speci4c design case
For the speci"c design case where D(!; �) = 1 and F(!; �) = 1 in the passband and D(!; �) = 0 and

F(!; �) = # in the stopband, Eqs. (15)–(17) can be written as

QLS =
∫
"p

∫
!p

GR(!; �) d! d�︸ ︷︷ ︸
Qp

e

+ #
∫
"s

∫
!s

GR(!; �) d! d�︸ ︷︷ ︸
Qs

e

; (19)

a =
∫
"p

∫
!p

gR(!; �) d! d�; dLS =
∫
"p

∫
!p

1 d! d�: (20)

The quantity wTQp
ew is equal to the energy in the passband, whereas wTQs

ew is equal to the energy in the
stopband. Using (7) and (10), the ith element of a and the (i; j)th element of Qe (i.e. Qp

e or Qs
e) are equal

to

ai =
∫
"p

∫
!p

giR(!; �) d! d� =
∫
"p

∫
!p

cos
[
!
(
k +

dn cos �
c

fs

)]
d! d�;

Qij
e =

∫
"

∫
!
Gij

R(!; �) d! d� =
∫
"

∫
!

cos
[
!
(

(k − l) +
(dn − dm) cos �

c
fs

)]
d! d�; (21)
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with k=mod(i−1; L); l=mod(j−1; L); n=�(i−1)=L� and m=�(j−1)=L�. These integrals can be considered
to be special cases of the integral∫ �2

�1

∫ !2

!1

cos[!(# + % cos �) + &] d! d�; (22)

of which the computation is discussed in Appendix A.

3.2.3. Linear constraints
DiLerent linear constraints of the form Cw=b, with C a K×M -dimensional matrix and b a K-dimensional

vector, will be discussed in Section 3.5. When imposing linear constraints on the LS criterion, the constrained
optimisation problem has the form

min
w
wTQLSw− 2wTa + dLS subject to Cw= b : (23)

This constrained minimisation problem can be transformed into an unconstrained minimisation problem (sim-
ilar to the derivation of the Generalised Sidelobe Canceller [3,13]) and the solution wc

LS of the constrained
minimisation problem is equal to

wc
LS =Q−1

LSC
T(CQ−1

LSC
T)−1(b− CQ−1

LS a) +Q−1
LS a : (24)

3.3. Maximum energy array

In [22] a so-called maximum energy array cost function has been de"ned. Since in the design of a maximum
energy array broadband beamformer it is assumed that a passband region and a stopband region are present,
we can only consider the speci"c design case for the maximum energy array cost function.

3.3.1. Speci4c design case
The maximum energy array cost function JME(w) is de"ned as the ratio of the energy in one frequency-angle

region (passband) and the energy in another frequency-angle region (stopband), i.e.

JME(w) =

∫
"p

∫
!p

|H (!; �)|2 d! d�∫
"s

∫
!s
|H (!; �)|2 d! d�

: (25)

Maximising this ratio can actually be considered as a broadband generalisation of the (smallband) superdirec-
tive beamformer formulation [2]. Using (19), this cost function can be written as

JME(w) =
wTQp

ew
wTQs

ew
: (26)

The "lter wME which maximises JME(w) is equal to the generalised eigenvector corresponding to the maximum
generalised eigenvalue in the generalised eigenvalue decomposition (GEVD) of Qp

e and Qs
e. However, as will

be shown in the simulations, the spatial directivity pattern corresponding to this "lter mainly ampli"es the
high frequencies, since it is easier to obtain a large directivity for high frequencies than for low frequencies
(cf. delay-and-sum beamformer). Hence, a frequency-dependent angle integration interval has to be used with
a larger integration interval at low frequencies [22], or alternatively, linear constraints have to be imposed.
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3.3.2. Linear constraints
When imposing linear constraints of the form Cw= b, the constrained optimisation problem can be written

as

max
w

wTQp
ew

wTQs
ew

subject to Cw= b (27)

with b generally not equal to 0. 1 This constrained ratio maximisation problem can be rewritten as the extended
constrained ratio maximisation problem

max
ŵ

ŵTQ̂p
eŵ

ŵTQ̂s
eŵ

subject to Ĉŵ= 0; (28)

with the extended vector ŵ and matrices Ĉ, Q̂p
e and Q̂s

e de"ned as

ŵ=

[
w

−1

]
; Ĉ= [C b ]; Q̂p

e =

[
Qp

e 0

0T 0

]
; Q̂s

e =

[
Qs

e 0

0T 0

]
: (29)

The constrained optimisation problem (28) can be transformed into the unconstrained optimisation problem

max
w̃

w̃TBQ̂p
eBTw̃

w̃TBQ̂s
eBTw̃

; (30)

with ŵ=BTw̃ and B the (M +1−K)×(M +1)-dimensional null space of Ĉ and w̃ an (M +1−K)-dimensional
vector. The solution w̃ME of the unconstrained optimisation problem is the generalised eigenvector of BQ̂p

eBT

and BQ̂s
eB

T, corresponding to the maximum generalised eigenvalue, such that the solution ŵc
ME of the con-

strained optimisation problem is equal to

ŵc
ME = BTw̃ME: (31)

After scaling the last element of ŵc
ME to −1, the actual solution wc

ME of (27) is obtained as the "rst M
elements of ŵc

ME. The fact that the matrices Q̂p
e and Q̂s

e are singular does not give rise to problems, since the
matrices BQ̂p

eBT and BQ̂s
eB

T are in general not singular.

3.4. Non-linear criterion

DiLerent non-linear cost functions for broadband beamforming have been proposed in literature, leading
to a minimax problem [23,27] or requiring iterative optimisation techniques [17,24]. In this section we will
slightly modify the non-linear cost function presented in [17], such that the double integrals arising in the
optimisation problem only need to be computed once.

3.4.1. General design
Instead of minimising the LS error |H (!; �) − D(!; �)|2, it is also possible to minimise the error between

the amplitudes |H (!; �)| − |D(!; �)|, because in general the phase of the spatial directivity pattern is of no
relevance. This problem formulation leads to the cost function [17]

MJNL(w) =
∫
"

∫
!
F(!; �)[|H (!; �)| − |D(!; �)|]2 d! d�; (32)

1 If b = 0, this optimisation problem reduces to the problem formulation in (28).
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which can be rewritten as

MJNL(w) =
∫
"

∫
!
F(!; �)|H (!; �)|2 d! d� +

∫
"

∫
!
F(!; �)|D(!; �)|2 d! d�

−2
∫
"

∫
!
F(!; �)|D(!; �)‖H (!; �)| d! d� (33)

= wTQLSw+ dLS − 2
∫
"

∫
!
F(!; �)|D(!; �)‖H (!; �)| d! d�︸ ︷︷ ︸;

Jabs(w)

(34)

with QLS and dLS de"ned respectively in (15) and (17). Minimising MJNL(w) leads to a non-linear optimi-
sation problem, which can be solved using iterative optimisation techniques. These optimisation techniques
generally involve several evaluations of MJNL(w) in each iteration step. A complexity problem now arises in
the computation of Jabs(w). Without loss of generality, assume that F(!; �) = 1 and |D(!; �)| = 1 over some
frequency-angle region ("p; !p) and that D(!; �) = 0 elsewhere. Jabs(w) can then be written using (9) as

Jabs(w) = 2
∫
"p

∫
!p

|H (!; �)| d! d� = 2
∫
"p

∫
!p

√
wTGR(!; �)w d! d�: (35)

Because of the square root, the "lter coe;cients cannot be extracted from the double integral, and for every w
the double integrals need to be recomputed numerically, which is a computationally very demanding proce-
dure. However, by slightly modifying the non-linear cost function, it is possible to overcome this computational
problem.

Instead of minimising the error between the amplitudes |H (!; �)| and |D(!; �)|, we propose a novel
non-linear criterion which minimises the error between the square of the amplitudes |H (!; �)|2 and
|D(!; �)|2, i.e.

JNL(w) =
∫

"

∫
!
F(!; �)[|H (!; �)|2 − |D(!; �)|2]2 d! d� (36)

which is also independent of the phase of the spatial directivity patterns. The cost function JNL(w) can be
written (without square-roots) as

JNL(w) =
∫
"

∫
!
F(!; �)(wTG(!; �)w)2 d! d� +

∫
"

∫
!
F(!; �)|D(!; �)|4 d! d�

− 2
∫
"

∫
!
F(!; �)|D(!; �)|2(wTGR(!; �)w) d! d� (37)

= Jsum(w) + dNL − 2wTQNLw; (38)

with

Jsum(w) =
∫
"

∫
!
F(!; �)(wTG(!; �)w)2 d! d� (39)

dNL =
∫
"

∫
!
F(!; �)|D(!; �)|4 d! d� (40)

QNL =
∫
"

∫
!
F(!; �)|D(!; �)|2GR(!; �) d! d�: (41)
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3.4.2. Speci4c design case
For the speci"c design case where F(!; �) = 1 and D(!; �) = 1 in the passband and D(!; �) = 0 and

F(!; �) = # in the stopband, Eqs. (39)–(41) can be written as

Jsum(w) =
∫
"p

∫
!p

(wTG(!; �)w)2 d! d�︸ ︷︷ ︸
J p
sum(w)

+ #
∫
"s

∫
!s

(wTG(!; �)w)2 d! d�︸ ︷︷ ︸
J s
sum(w)

;

dNL =
∫
"p

∫
!p

1 d! d� = dLS QNL =
∫
"p

∫
!p

GR(!; �) d! d� =Qp
e : (42)

Using (8), the expression |H (!; �)|4, required in the computation of Jsum(w), can be written as

|H (!; �)|4 = (wTG(!; �)w)(wTG(!; �)w) (43)

=


 M∑

i=1

M∑
j=1

w(i)w(j)Gij(!; �)


(

M∑
k=1

M∑
l=1

w(k)w(l)Gkl(!; �)

)
(44)

=
M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

w(i)w(j)w(k)w(l) e−j!(#ijkl+%ijkl cos �); (45)

with

#ijkl = mod(i − 1; L) − mod(j − 1; L) + mod(k − 1; L) − mod(l− 1; L)

%ijkl =
fs

c
(d�(i−1)=L� − d�( j−1)=L� + d�(k−1)=L� − d�(l−1)=L�) (46)

Since |H (!; �)|4 is real (and the "lter coe;cients are real), only the real part of the exponential function
has to be considered, such that

|H (!; �)|4 =
M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

w(i)w(j)w(k)w(l) cos[!(#ijkl + %ijkl cos �)]; (47)

and Jsum(w) can be written as

Jsum(w) =
∫

"

∫
!
|H (!; �)|4 d! d� =

M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

w(i)w(j)w(k)w(l)'ijkl (48)

with

'ijkl =
∫
"

∫
!

cos[!(#ijkl + %ijkl cos �)] d! d�: (49)

These integrals are discussed in Appendix A and only need to be computed once (since 'ijkl is independent
of w). Therefore the function Jsum(w), and hence the total cost function JNL(w), can be evaluated without
having to calculate double integrals for every w.
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3.4.3. Non-linear optimisation technique
Minimising JNL(w) requires an iterative non-linear optimisation technique, for which we have for example

used a medium-scale quasi-Newton method with cubic polynomial line search or a large-scale subspace trust
region method [5,12]. In order to improve the numerical robustness and the convergence speed, both the
gradient and the Hessian

@JNL(w)
@w

=
@Jsum(w)

@w
− 4QNLw; (50)

HNL(w) =
@2JNL(w)

@2w
=

@2Jsum(w)
@2w

− 4QNL; (51)

can be supplied analytically. It can be shown (for details, we refer to [7]) that

@Jsum(w)
@w

= 4Qsum(w) · w (52)

with the (m; n)th element of Qsum(w) and @2Jsum(w)=@2w equal to

Qmn
sum(w) =

M∑
i=1

M∑
j=1

w(i)w(j)'ijmn; (53)

@2Jsum(w)
@w(m)@w(n)

= 4
M∑
i=1

M∑
j=1

w(i)w(j)(2'ijmn + 'imjn): (54)

Hence, stationary points ws, i.e. "lter coe;cients w for which the gradient @JNL(w)=@w is 0, satisfy

(Qsum(ws) −QNL)ws = 0 (55)

This implies that for a stationary point, either ws = 0, or Qsum(ws) =QNL, or that ws lies in the null space
of the matrix Qsum(ws) − QNL. Simulations indicate that several stationary points exist and that the latter
condition is prevalent. In addition, it can be proved that the quadratic form wTHNL(w)w in a stationary point
ws is equal to

wT
sHNL(ws)ws = 12wT

sQsum(ws)ws − 4wT
sQNLws = 8wT

sQNLws: (56)

Since in general the matrix QNL, de"ned in (41), is positive de"nite (only in very special cases QNL is singular
and hence positive semi-de"nite), the quadratic form wT

sHNL(ws)ws is strictly positive in all stationary points
except for ws = 0, where it is equal to zero. Hence, all stationary points are either local minima or saddle
points. For ws = 0, the Hessian HNL(0) = −4QNL is negative de"nite, such that ws = 0 is the only local
maximum.

Simulations have indicated that for each design problem a number of local minima exist, which are related to
the symmetry present in the considered problem. For example, if wm is a local minimum, then −wm is a local
minimum and for a symmetric linear array JMwm also is a local minimum, with JM the M ×M -dimensional
reverse identity matrix. In these local minima the cost function has the same value, since (for a symmetric
linear array)

dNL − wT
mQNLwm = dNL − (−wT

m)QNL(−wm) = dNL − wT
mJMQNLJMwm:

Simulations have also shown that other local minima exist, which appear not to be (easily) related to wm.
However, the cost function in all local minima seems to be approximately equal, such that any of these local
minima can be used as the "nal solution for the broadband beamformer.
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3.5. Linear constraints

In this section several types of linear constraints are discussed, which can be imposed on the "lter w. These
linear constraints can be written in the form

Cw= b (57)

with C a K ×M -dimensional matrix (with the number of constraints K6M) and b a K-dimensional vector.

3.5.1. Point constraints
Point constraints can be used for constraining the spatial directivity pattern H (!; �) to some prede"ned

value at a speci"c frequency-angle point. The absolute point constraint H (!f; �f) = b, with b = bR + jbI a
complex scalar, corresponds to two real-valued constraints,[

gT
R(!f; �f)

gT
I (!f; �f)

]
w=

[
bR

bI

]
; (58)

whereas the relative point constraint H (!f1 ; �f1 ) = bH (!f2 ; �f2 ) can be written as[
gT

R(!f1 ; �f1 ) − bRgT
R(!f2 ; �f2 ) + bIgT

I (!f2 ; �f2 )

gT
I (!f1 ; �f1 ) − bIgT

R(!f2 ; �f2 ) − bRgT
I (!f2 ; �f2 )

]
w=

[
0

0

]
: (59)

3.5.2. Line constraint
Constraining H (!; �) at the angle �f to a prede"ned frequency response B(!) =

∑L−1
l=0 ble−jl! = bTe(!),

with b de"ned similarly as wn in (3), corresponds to

H (!; �f) =
N−1∑
n=0

Wn(!) e−j!�n(�f) =
L−1∑
l=0

(
N−1∑
n=0

wn;le−j!�n(�f)

)
e−jl! (60)

, B(!) =
L−1∑
l=0

ble−jl!: (61)

Obviously, this can be done by putting

N−1∑
n=0

wn;le−j!�n(�f) = bl; l = 0 : : : L− 1; (62)

which corresponds to 2L real-valued constraints (assuming that the "lter coe;cients bl are real), i.e.[
cos(!�0(�f))IL cos(!�1(�f))IL · · · cos(!�N−1(�f))IL

sin(!�0(�f))IL sin(!�1(�f))IL · · · sin(!�N−1(�f))IL

]
w=

[
b

0

]
; (63)

with IL the L×L-dimensional identity matrix. This equation has to hold for all !. However, since K=2L6M ,
in general these constraints can be satis"ed maximally for N=2 frequency points. An exception exists for
the angle �f = �=2 (i.e. broadside direction), since in this case �n(�f) = 0; n = 0 : : : N − 1, such that (63)
reduces to

[IL IL · · · IL]w= b: (64)
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3.5.3. Derivative constraints
In order to smoothen H (!; �), we can introduce derivative constraints, e.g. Pattening the spatial directivity

pattern at certain frequencies and angles by putting the frequency and/or angle derivatives to 0 [11], i.e.

@H (!; �)
@�

∣∣∣∣ !=!f
�=�f

= 0;
@H (!; �)

@!

∣∣∣∣ !=!f
�=�f

= 0: (65)

Since H (!; �) = wTg(!; �), these derivatives are equal to

@H (!; �)
@�

= wT @g(!; �)
@�︸ ︷︷ ︸

g′�(!;�)

;
@H (!; �)

@!
= wT @g(!; �)

@!︸ ︷︷ ︸
g′!(!;�)

: (66)

Using (6), it can be shown that g′�(!; �) = j!fs=c sin �%�g(!; �), with %� an M × M -dimensional diagonal
matrix, containing the microphone distances,

%� =




d0IL

d1IL

. . .

dN−1IL


 ; (67)

such that @H (!; �)=@�| !=!f
�=�f

= 0 corresponds to two real-valued linear constraints,[
gT

R(!f; �f)

gT
I (!f; �f)

]
%�w=

[
0

0

]
: (68)

4. Eigen�lter design procedures

In this section we present two novel non-iterative design procedures for broadband beamformers, which are
based on eigen"lters. Eigen"lters have been introduced for designing one-dimensional linear phase FIR "lters
[34]. Their main advantage is the fact that no matrix inversion is required (as in LS "lter design) and that
time-domain and frequency-domain constraints are easily incorporated. Eigen"lter techniques have also been
applied for designing two-dimensional FIR and spatial "lters [4,29]. In this section, we extend the application
domain of eigen"lters to the design of broadband beamformers.

In this section two eigen"lter-based cost functions will be considered:

• the conventional eigen"lter cost function Jeig, minimising the error between the spatial directivity patterns
D(!; �)H (!c; �c)=D(!c; �c) and H (!; �). Note that a reference frequency-angle point (!c; �c) is required
for this technique. Minimising this cost function with/without additional constraints leads to a (generalised)
eigenvalue problem (cf. Section 4.1);

• the TLS eigen"lter cost function JTLS, minimising the total least squares (TLS) error between the actual
and the desired spatial directivity pattern. This cost function does not require a reference point and also
leads to a generalised eigenvalue problem (cf. Section 4.2).
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4.1. Conventional eigen4lter technique

4.1.1. General design
In the conventional eigen"lter technique a reference frequency-angle point (!c; �c) is chosen and the "lter w

is calculated such that the error between the spatial directivity patterns H (!; �) and D(!; �)H (!c; �c)=D(!c; �c)
is minimised. Note that we do not specify the exact value of H (!c; �c). The conventional eigen"lter cost
function is de"ned as

Jeig(w) =
∫
"

∫
!
F(!; �)

∣∣∣∣ D(!; �)
D(!c; �c)

H (!c; �c) − H (!; �)
∣∣∣∣2 d! d�: (69)

Using (5) it can be shown that Jeig(w) is equal to the quadratic form

Jeig(w) = wTQeigw (70)

with Qeig equal to∫
"

∫
!
F(!; �) Re

{[
D(!; �)
D(!c; �c)

g(!c; �c) − g(!; �)
]
·
[

D(!; �)
D(!c; �c)

g(!c; �c) − g(!; �)
]H

}
d! d�: (71)

When minimising the cost function Jeig(w), an additional constraint is required in order to avoid the trivial
solution w= 0. Both a quadratic (energy) constraint and a linear constraint are possible and are discussed in
Sections 4.1.3 and 4.1.4.

4.1.2. Speci4c design case
For the speci"c design case, assuming that the reference point (!c; �c) does not belong to the stopband

region ("s; !s), the cost function Jeig(w) in (69) can be written as

Jeig(w) =
∫
"p

∫
!p

|H (!c; �c) − H (!; �)|2 d! d� + #
∫
"s

∫
!s

|H (!; �)|2 d! d�; (72)

such that the matrix Qeig is equal to

Qeig =
∫
"p

∫
!p

Re{[g(!c; �c) − g(!; �)][g(!c; �c) − g(!; �)]H} d! d�︸ ︷︷ ︸
Qp

+ #
∫
"s

∫
!s

GR(!; �) d! d�︸ ︷︷ ︸
Qs

e

: (73)

The quantity wTQpw is equal to the error in the passband, whereas wTQs
ew is equal to the energy (=error)

in the stopband, such that

Jeig(w) = wT(Qp + #Qs
e)︸ ︷︷ ︸

Qeig

w (74)

is a weighted error function over passband and stopband. The calculation of Qs
e has been discussed in

Section 3.2.2. If we de"ne G̃(!1; �1; !2; �2) as

G̃(!1; �1; !2; �2) = g(!1; �1)gH (!2; �2); (75)
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then the expression [g(!c; �c) − g(!; �)][g(!c; �c) − g(!; �)]H can be written as

Ĝ(!; �; !c; �c) =G(!c; �c) − G̃(!; �; !c; �c) − G̃(!c; �c; !; �) +G(!; �); (76)

which can be decomposed into a real and an imaginary part. Since the imaginary part ĜI(!c; �c; !; �) is
anti-symmetric, the integrand |H (!c; �c) − H (!; �)|2 in (72) is equal to

|H (!c; �c) − H (!; �)|2 = wTĜR(!c; �c; !; �)w; (77)

such that the (i; j)th element of Qp is equal to

Qij
p =

∫
"p

∫
!p

Ĝij
R(!c; �c; !; �) d! d� (78)

=
∫
"p

∫
!p

cos
[
!c

(
(k − l) +

(dn − dm) cos �c

c
fs

)]
d! d�

−
∫
"p

∫
!p

cos
[
!
(
k +

dn cos �
c

fs

)
− !c

(
l +

dm cos �c

c
fs

)]
d! d�

−
∫
"p

∫
!p

cos
[
!
(
l +

dm cos �
c

fs

)
− !c

(
k +

dn cos �c

c
fs

)]
d! d�

+
∫
"p

∫
!p

cos
[
!c

(
(k − l) +

(dn − dm) cos �
c

fs

)]
d! d�; (79)

with k = mod(i− 1; L); l= mod(j− 1; L); n= �(i− 1)=L� and m= �(j− 1)=L�. All these integrals can again
be considered to be special cases of the integral∫ �2

�1

∫ !2

!1

cos[!(# + % cos �) + &] d! d�; (80)

of which the computation is discussed in Appendix A.

4.1.3. Quadratic energy constraint
The most common constraint on the "lter w is the unit-norm (quadratic) constraint wTw = 1, which leads

to the following eigenvalue problem:

min
w
wTQeigw subject to wTw= 1 (81)

of which the solution is the eigenvector corresponding to the smallest eigenvalue of Qeig (hence the name
eigen"lters).

In the one-dimensional FIR "lter design case [34], this unit-norm constraint corresponds to the total area
under the frequency response |W (!)|2 being equal to 1, since using Parseval’s theorem we can write∫ �

0
|W (!)|2 d!

�
= wTw: (82)

In broadband beamformer design, a unit-norm constraint apparently does not have a physical meaning any
more. Hence, we have modi"ed this quadratic constraint by constraining the total area under the
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spatial directivity spectrum |H (!; �)|2 to be equal to 1, i.e.∫ �

0

∫ �

0
|H (!; �)|2 d! d� = wTQtot

e w= 1; (83)

with

Qtot
e =

∫ �

0

∫ �

0
GR(!; �) d! d�: (84)

This constraint gives rise to the following constrained optimisation problem:

min
w
wTQeigw subject to wTQtot

e w= 1 (85)

of which the solution weig is the generalised eigenvector, corresponding to the minimum generalised eigenvalue
in the GEVD of Qeig and Qtot

e .

4.1.4. Linear constraints
Instead of imposing a quadratic constraint, it is also possible to impose linear constraints Cw= b in order

to avoid the trivial solution w= 0. We then have to solve the constrained optimisation problem

min
w
wTQeigw subject to Cw= b; (86)

which is the same optimisation problem as (23) with a = 0 and dLS = 0, such that solution (24) becomes

wc
eig =Q−1

eigC
T(CQ−1

eigC
T)−1b: (87)

4.2. Eigen4lter based on TLS error

4.2.1. General design
Recently, an eigen"lter based on a TLS error criterion has been described in [30] for designing two-

dimensional FIR "lters. The advantage of this eigen"lter is that no reference point is required. We have
extended this TLS eigen"lter technique to the design of broadband beamformers. Instead of minimising the
LS error (cf. Section 3.2), the TLS error

|D(!; �) − H (!; �)|2
wTw+ 1

(88)

is used and the cost function to be minimised can be written as

MJ TLS(w) =
∫
"

∫
!

F(!; �)
|D(!; �) − H (!; �)|2

wTw+ 1
d! d�: (89)

As in the conventional eigen"lter technique (cf. Section 4.1.3), we replace wTw with wTQtot
e w, which has

a physical meaning, and instead minimise the cost function

JTLS(w) =
∫
"

∫
!

F(!; �)
|D(!; �) − H (!; �)|2

wTQtot
e w+ 1

d! d�; (90)
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which can be written as

JTLS(w) =
ŵTQ̂TLSŵ

ŵTQ̂tot
e ŵ

(91)

with the extended vector ŵ and matrices Q̂TLS and Q̂tot
e de"ned as

ŵ=

[
w

−1

]
; Q̂TLS =

[
QLS a

aT dLS

]
; Q̂tot

e =

[
Qtot

e 0

0T 1

]
: (92)

The de"nitions of QLS, a and dLS are given in Sections 3.2.1 and 3.2.2, while the de"nition of Qtot
e is

given in Section 4.1.3. The "lter ŵTLS minimising JTLS(w) is the generalised eigenvector of Q̂TLS and Q̂tot
e ,

corresponding to the smallest generalised eigenvalue. After scaling the last element of ŵTLS to −1, the actual
solution wTLS is obtained as the "rst M elements of ŵTLS.

4.2.2. Linear constraints
In [30] it is shown that linear constraints Cw= b can be easily rewritten as

Ĉŵ= 0; Ĉ= [C b] ; (93)

such that the constrained optimisation problem can be rewritten as

min
ŵ

ŵTQ̂TLSŵ

ŵTQ̂tot
e ŵ

subject to Ĉŵ= 0 (94)

which is similar to (28) in Section 3.3.2. The solution w̃TLS of the unconstrained optimisation problem is
given by the generalised eigenvector corresponding to the minimum generalised eigenvalue of BQ̂TLSBT and
BQ̂tot

e B
T (with B the null space of Ĉ), such that the solution ŵc

TLS of the constrained optimisation problem
(94) is equal to

ŵc
TLS = BTw̃TLS: (95)

After scaling the last element of ŵc
TLS to −1, the actual solution wc

TLS is obtained as the "rst M elements of
ŵc

TLS.

5. Near-�eld broadband beamformers

When the speech source is close to the microphone array, the far-"eld assumptions are no longer valid and
spherical wavefronts (instead of planar wavefronts) and signal attenuation have to be taken into account. The
typical rule of thumb is that the far-"eld assumptions are no longer valid when

r ¡
d2

totfs

c
; (96)

with r the distance of the signal source to the centre of the microphone array, dtot =dN−1−d0 the total length
of the (linear) microphone array, fs the sampling frequency and c the speed of sound [26]. For example, for
dtot = 0:2 m and fs = 8 kHz, the minimum distance for the far-"eld assumptions to be valid is r = 0:94 m.
In this section it will be shown that the design of near-4eld broadband beamformers is very similar to the
design of far-4eld broadband beamformers (which are actually a special case for r → ∞). All the cost
functions from Sections 3 and 4 remain valid, whereas only the steering vector g(!; �) in (6) and all related
quantities are de4ned di<erently for the near-4eld case.
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Fig. 2. Linear microphone array con"guration (near-"eld).

5.1. Con4guration

Consider the linear microphone array depicted in Fig. 2, where the speech source S(!) is located at a
distance r from the centre of the microphone array and with the angle � as de"ned in the "gure. Using
simple geometrical relationships, the distance rn(�; r) from the source to the nth microphone is equal to

rn(�; r) =
√

(r sin �)2 + (dn + r cos �)2 =
√

r2 + d2
n + 2dn r cos �: (97)

Taking into account spherical wavefronts and signal attenuation, the microphone signals Yn(!; �; r) are phase-
shifted and attenuated versions of the signal MY (!; �; r) at the centre of the microphone array, Yn(!; �; r) =
an(�; r)e−j!�n(�; r) MY (!; �; r), with the attenuation an(�; r) and the delay �n(�; r) equal to

an(�; r) =
r

rn(�; r)
; �n(�; r) =

rn(�; r) − r
c

fs : (98)

The spatial directivity pattern H (!; �; r) is de"ned as

H (!; �; r) =
Z(!; �; r)
MY (!; �; r)

=
∑N−1

n=0 Wn(!)Yn(!; �; r)
MY (!; �; r)

: (99)

Using (98), the spatial directivity pattern H (!; �; r) can be written as

H (!; �; r) =
N−1∑
n=0

an(�; r)Wn(!)e−j!�n(�; r) = wTg(!; �; r) (100)

with the M -dimensional steering vector g(!; �; r) now dependent of r,

g(!; �; r) =




a0(�; r)e(!)e−j!�0(�; r)

a1(�; r)e(!)e−j!�1(�; r)

...

aN−1(�; r)e(!)e−j!�N−1(�; r)


 : (101)
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As in the far-"eld case, the steering vector g(!; �; r) can be decomposed into a real part gR(!; �; r) and an
imaginary part gI (!; �; r). The ith element of the real part gR(!; �; r) is equal to

giR(!; �; r) =
r cos

[
!
(
k +

√
(r2 + d2

n + 2dn r cos �− r)fs=c
)]

√
r2 + d2

n + 2dn r cos �
; i = 1 : : : M; (102)

with k = mod(i − 1; L) and n = [(i − 1)=L]. The spatial directivity spectrum |H (!; �; r)|2 can be written as

|H (!; �; r)|2 = H (!; �; r)H∗(!; �; r) = wTG(!; �; r)w; (103)

with G(!; �; r) = g(!; �; r)gH (!; �; r), which can also be decomposed into a real part GR(!; �; r) and an
imaginary part GI(!; �; r). Since GI(!; �; r) is anti-symmetric, the spatial directivity spectrum |H (!; �; r)|2 is
equal to

|H (!; �; r)|2 = wTGR(!; �; r)w (104)

with the (i; j)th element of the real part GR(!; �; r) equal to

Gij
R(!; �; r) =

r2 cos[!((k − l) + (rn(�; r) − rm(�; r))fs=c)]
rn(�; r)rm(�; r)

: (105)

The ultimate goal of broadband beamformer design is to design a beamformer such that the spatial directivity
pattern H (!; �; r) optimally "ts a desired spatial directivity pattern D(!; �; r) for all distances r, i.e.

min
w

∫
R

∫
"

∫
!

F(!; �; r)|H (!; �; r) − D(!; �; r)|2 d! d� dr: (106)

However, since this is quite a di;cult task, near-"eld broadband beamformers are generally designed for one
or a limited number of prede"ned distances, i.e. the outer integral in (106) is approximated by a "nite sum.

5.2. Design for one distance

If the near-"eld broadband beamformer design is performed for one 4xed distance r, the cost functions and
derivations in Sections 3 and 4 remain valid, but the following substitutions have to be made:

H (!; �); g(!; �);G(!; �) → H (!; �; r); g(!; �; r);G(!; �; r): (107)

The only diLerence lies in the calculation of the double integrals. For details regarding this integral calcu-
lation, we refer to [7].

5.3. Mixed near-4eld far-4eld broadband beamforming

The spatial directivity pattern of a near-"eld broadband beamformer designed for one speci"c distance can
be quite unsatisfactory at other distances (cf. simulations in Section 6). If the broadband beamformer should
be able to operate at several distances—possibly having a diLerent desired spatial directivity pattern D(!; �; r)
at these distances—we can de"ne the total cost function

Jtot(w) =
R∑

r=1
#rJr(w) (108)
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with #r a positive weighting factor, assigning more or less importance to the cost function Jr(w). This cost
function can be any of the cost functions from Sections 3 and 4, de"ned at distance r. If one of the considered
distances is r = ∞, this is called mixed near-"eld far-"eld beamforming. For most design procedures (LS,
non-linear criterion, conventional eigen"lter), this extension is straightforward. For example, in [37] mixed
near-"eld far-"eld beamforming has been discussed for the LS cost function. However, for the TLS eigen"lter
and the maximum energy array cost functions this extension gives rise to a signi"cantly diLerent optimisation
problem, for which no closed-form solution is available.

5.3.1. TLS eigen4lter
The TLS eigen"lter cost function is equal to (cf. Section 4.2.1)

J tot
TLS(w) =

R∑
r=1

#rJTLS; r(w) =
R∑

r=1

#r
ŵTQ̂TLS; rŵ

ŵTQ̂tot
e; rŵ

; (109)

with

ŵ=

[
w

−1

]
; Q̂TLS; r =

[
QLS; r ar

aT
r dLS; r

]
; Q̂tot

e; r =

[
Qtot

e; r 0

0T 1

]
; (110)

and Q̂LS; r , ar , dLS; r and Q̂tot
e; r de"ned at distance r.

The TLS eigen"lter cost function with linear constraints Cw= b can be transformed into the unconstrained
cost function (cf. Section 4.2.2)

R∑
r=1

#r
w̃TBQ̂TLS; rBTw̃

w̃TBQ̂tot
e; rBTw̃

: (111)

Both minimising (109) and (111) can be considered to be special cases of minimising the cost function

Jm(w) =
R∑

r=1

wTArw
wTBrw

(112)

with Ar and Br symmetric positive-de"nite matrices. When Br = B, r = 1 : : : R, this problem is a generalised
eigenvalue problem and the solution is given by the generalised eigenvector, corresponding to the mini-
mum generalised eigenvalue of

∑R
r=1 Ar and B. In general however, minimising Jm(w) apparently cannot be

transformed into a generalised eigenvalue problem. Hence, we have used an iterative non-linear optimisation
technique for minimising this cost function. In order to improve the numerical robustness and the convergence
speed of the optimisation technique, both the gradient

@Jm(w)
@w

= 2
R∑

r=1

(wTBrw)Ar − (wTArw)Br

(wTBrw)2 w (113)

and the Hessian

@2Jm(w)
@2w

= 2
R∑

r=1

(wTBrw)Ar − (wTArw)Br + 2(ArwwTBr − BrwwTAr)
(wTBrw)2

− 4
[Arw(wTBrw) − Brw(wTArw)]wTBr

(wTBrw)3 (114)

can be provided analytically. Although we have not been able to prove that this optimisation procedure
converges to the global minimum, no problems with local minima have occurred during simulations.
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5.3.2. Maximum energy array
The maximum energy array cost function is equal to (cf. Section 3.3.1)

J tot
ME(w) =

R∑
r=1

#rJME; r(w) =
R∑

r=1

#r
wTQp

e; rw
wTQs

e; rw
; (115)

with Qp
e; r and Qs

e; r de"ned at distance r. The maximum energy array cost function with linear constraints
Cw= b can be transformed into the unconstrained cost function (cf. Section 3.3.2)

R∑
r=1

#r
w̃TBQ̂p

e; rBTw̃

w̃TBQ̂s
e; rBTw̃

: (116)

Both maximising (115) and (116) can be considered to be a special case of maximising the cost function
Jm(w) in (112).

5.4. Linear constraints

Linear constraints of the form Cw = b have been de"ned in Section 3.5 for the far-"eld case. For the
near-"eld case, point constraints and derivative constraints can be de"ned similarly as for the far-"eld (for
details we refer to [7]). However, a line constraint of the form (64) cannot be imposed for the near-"eld
case, since for �f = �=2 and r 
= ∞, the delays �n(�f; r) 
= 0.

6. Simulations

In this section, simulation results for far-"eld and near-"eld broadband beamformer design are discussed
for the speci"c design case with D(!; �) = 1 in the passband and D(!; �) = 0 in the stopband. We have
performed simulations using a linear uniform microphone array with N =5 microphones, an inter-microphone
distance d= 4 cm and sampling frequency fs = 8 kHz. Two speci"cations for the passband and the stopband
have been considered:

• speci"cation 1: passband (!p; "p) = (300–4000 Hz, 70–110◦) and stopband (!s; "s) = (300–4000 Hz,
0–60◦ + 120–180◦)

• speci"cation 2: passband (!p; "p) = (300–4000 Hz, 40–80◦) and stopband (!s; "s) = (300–4000 Hz,
0–30◦ + 90–180◦).

For the "rst speci"cation, we have performed simulations without linear constraints and with a line constraint
at 90◦, whereas for the second speci"cation, we have only performed simulations without linear constraints. For
the conventional eigen"lter technique, the reference point for the "rst speci"cation (!c; �c) = (1500 Hz; 90◦)
and for the second speci"cation (!c; �c) = (1500 Hz; 60◦). Both for the conventional eigen"lter technique
and for the TLS eigen"lter technique, the matrix Qtot

e is computed with frequency and angle speci"cations
(!;") = (300–4000 Hz, 0–180◦).

All broadband beamformers have been designed using the following parameters: "lter length L = 20 and
stopband weight # = 0:1; 1; 10. For all beamformers we have computed the diLerent cost functions 2 JLS, Jeig,
JTLS, JME and JNL, which have been de"ned in Sections 3 and 4. We will plot the total spatial directivity
pattern H (!; �) in the frequency-angle region (!;") = (300–3500 Hz, 0–180◦) and the angular pattern for
the speci"c frequencies (500; 1000; 1500; 2000; 2500; 3500) Hz.

2 Recall that the objective is to minimise JLS, Jeig, JTLS and JNL, whereas the objective is to maximise JME.
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Table 1
DiLerent cost functions for design speci"cation 1 without linear constraints

Design # JLS Jeig JTLS JME JNL

LS 0.1 0:07015 0.02688 0.01803 3.87628 0.07734
EIG 0.1 0.08169 0:02179 0.02008 4.02636 0.06917
TLS 0.1 0.07234 0.02593 0:01752 3.51239 0.06759
ME 0.1 2824.61 0.92219 0.92061 130:189 5:10 107

NL 0.1 0.63243 0.15624 0.14475 2.97090 0:02540

LS 1 0:32012 0.12644 0.10712 7.82490 0.24624
EIG 1 0.44332 0:10786 0.12097 10.9793 0.29769
TLS 1 0.34927 0.12651 0:09851 7.72356 0.18891
ME 1 2844.15 0.92856 0.92698 130:189 5:10 107

NL 1 0.84110 0.24517 0.22330 5.24686 0:10301

LS 10 1:00743 0.58272 0.56422 17.83966 0.97683
EIG 10 2.10339 0:44667 0.51747 35.37774 2.52124
TLS 10 1.35343 0.54114 0:44637 22.22030 0.37251
ME 10 3039.51 0.99225 0.99065 130:1890 5:10 107

NL 10 4.08658 1.61600 1.29464 18.66897 0:21410

6.1. Far-4eld design

Considering the 4rst design speci4cation without linear constraints, the diLerent cost functions for the
diLerent beamformer design procedures are summarised in Table 1. Obviously, the design procedure optimising
a speci"c cost function gives rise to the best value for this particular cost function (bold values). We will
now compare the performance of the non-iterative design procedures (LS, EIG, TLS, ME) with the non-linear
design procedure (NL) and determine which non-iterative design procedure has the best performance, using the
non-linear cost function JNL as a performance criterion. The maximum energy array technique has quite a poor
performance (this can also be seen from the spatial directivity pattern in Fig. 6). In addition, the TLS eigen"lter
technique always has a better performance than the LS technique (this is also true for other "lter lengths and
number of microphones). For small stopband weights #, the conventional eigen"lter technique also gives rise
to a better performance than the LS technique, but this is not true any more for large stopband weights.
Therefore, the TLS eigen4lter technique appears to be the preferred non-iterative design procedure, best
resembling the performance of the non-linear design procedure but having a signi"cantly lower computational
complexity.

Figs. 3–7 show the spatial directivity patterns for all design procedures with #=1. Fig. 8 shows the spatial
directivity pattern for the TLS eigen"lter technique with # = 10.

When a line constraint at 90◦ is imposed, one can see by comparing Tables 1 and 2 that the cost functions
with a line constraint are worse than the cost functions without constraint, but that all design procedures
now give rise to quite similar results (also the maximum energy array technique). Again, the TLS eigen"lter
technique has a better performance, i.e. non-linear cost function JNL, than the LS, the maximum energy
array and the conventional eigen"lter technique, such that it appears to be the preferred non-iterative design
procedure. Fig. 9 shows the spatial directivity pattern for the TLS eigen"lter technique with # = 10.

Considering the second design speci4cation without linear constraints, the diLerent cost functions for the
diLerent beamformer design procedures are summarised in Table 3 (# = 1). Again, the maximum energy
array technique has quite a poor performance. In addition, the TLS eigen"lter technique again has a better
performance, i.e. non-linear cost function JNL, than the LS, the maximum energy array and the conventional
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Fig. 3. LS technique (design speci"cation 1, no linear constraints, # = 1; N = 5; L = 20).

Fig. 4. Conventional eigen"lter technique (design speci"cation 1, no linear constraints, # = 1; N = 5; L = 20).

eigen"lter technique and therefore appears to be the preferred non-iterative design procedure. Figs. 10 and 11
show the spatial directivity patterns for the TLS eigen"lter technique and the non-linear criterion with # = 1.

6.2. Mixed near-4eld far-4eld design

We have performed a mixed near-"eld far-"eld broadband beamformer design for r = 0:2 m (near-"eld)
and r = ∞ (far-"eld) using the LS technique, the TLS eigen"lter technique and the non-linear criterion. The
near-"eld weighting factor in (108) is #r = 0:4. We will only present results for the "rst design speci"cation
without linear constraints.
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Fig. 5. TLS eigen"lter technique (design speci"cation 1, no linear constraints, # = 1; N = 5; L = 20).

Fig. 6. Maximum energy array technique (design speci"cation 1, no linear constraints, # = 1; N = 5; L = 20).

Table 4 summarises the diLerent cost functions (far-"eld, near-"eld, total) for the diLerent design procedures
(LS, TLS eigen"lter and non-linear design procedure for far-"eld, near-"eld and mixed near-"eld far-"eld)
and for # = 1. As can be seen, the far-"eld design yields the best far-"eld cost function, but gives rise to
a poor near-"eld response. On the contrary, the near-"eld design yields the best near-"eld cost function, but
gives rise to a poor far-"eld response. The mixed near-"eld far-"eld design provides a trade-oL between the
near-"eld and the far-"eld performance.

Fig. 12 shows the far-"eld and the near-"eld spatial directivity patterns for the TLS eigen"lter technique
designed for the far-"eld (with #= 1; N = 5; L= 20). As can be seen from this "gure, the near-"eld response
is quite unsatisfactory. Fig. 13 shows the far-"eld and the near-"eld spatial directivity patterns for the TLS
eigen"lter technique designed for the near-"eld (with # = 1; N = 5; L = 20). As can be seen from this
"gure, the far-"eld response now is quite unsatisfactory. Providing a trade-oL between far-"eld and near-"eld
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Fig. 7. Non-linear criterion (design speci"cation 1, no linear constraints, # = 1; N = 5; L = 20).

Fig. 8. TLS eigen"lter technique (design speci"cation 1, no linear constraints, # = 10; N = 5; L = 20).

Table 2
DiLerent cost functions for design speci"cation 1 with line constraint

Design # JLS Jeig JTLS JME JNL

LS 10 3:96204 1.74435 1.21113 4.05166 1.85361
EIG 10 3.96204 1:74435 1.21113 4.05166 1.85361
TLS 10 3.99103 1.72361 1:20375 4.06720 1.83286
ME 10 3.97901 1.72672 1.20416 4:06885 1.84120
NL 10 5.01514 2.09900 1.47970 3.19583 1:29136
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Fig. 9. TLS eigen"lter technique (design speci"cation 1, line constraint, # = 10; N = 5; L = 20).

Table 3
DiLerent cost functions for design speci"cation 2 without linear constraints

Design # JLS Jeig JTLS JME JNL

LS 1 0:50350 0.24804 0.18191 4.62621 0.40657
EIG 1 3.54617 0:15078 0.94322 8.06733 0.29521
TLS 1 0.58258 0.24821 0:15872 4.58828 0.25312
ME 1 287.043 0.89290 0.87877 38:9523 252775
NL 1 1.98809 0.86805 0.54727 6.58217 0:10891

Fig. 10. TLS eigen"lter technique (design speci"cation 2, no linear constraints, # = 1; N = 5; L = 20).
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Fig. 11. Non-linear criterion (design speci"cation 2, no linear constraints, # = 1; N = 5; L = 20).

Table 4
Near-"eld, far-"eld and total cost function for diLerent design procedures

Design # J∞ (Far-"eld) Jr (Near-"eld) Jtot (Mixed)

LS Far-"eld 1 0:32012 1.68710 0.99496
LS Near-"eld 1 0.97135 0:14284 1.02849
LS Mixed 1 0.42277 0.45489 0:60472

TLS Far-"eld 1 0:09851 0.40205 0.25933
TLS Near-"eld 1 0.28515 0:04309 0.30239
TLS Mixed 1 0.12873 0.14564 0:18698

NL Far-"eld 1 0:10301 3.50694 1.50578
NL Near-"eld 1 0.45379 0:08441 0.48756
NL Mixed 1 0.15304 0.16557 0:21926

Fig. 12. Far-"eld and near-"eld spatial directivity pattern for TLS eigen"lter far-"eld design (design speci"cation 1,
r = 0:2 m; # = 1; N = 5; L = 20).
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Fig. 13. Far-"eld and near-"eld spatial directivity pattern for TLS eigen"lter near-"eld design (design speci"cation
1; r = 0:2 m; # = 1; N = 5; L = 20).

Fig. 14. Far-"eld and near-"eld spatial directivity pattern for TLS eigen"lter mixed near-"eld far-"eld design (design speci"cation
1; r = 0:2 m; # = 1; N = 5; L = 20).

performance, Fig. 14 shows the far-"eld and the near-"eld spatial directivity patterns for the TLS eigen"lter
technique that has been designed both for far-"eld and near-"eld (with # = 1; N = 5; L = 20). Figs. 15–17
show similar results when the broadband beamformers are designed using the non-linear criterion.

7. Conclusion

In this paper we have described several design procedures for designing broadband beamformers with an
arbitrary spatial directivity pattern using an arbitrary microphone con"guration and an FIR "lter-and-sum
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Fig. 15. Far-"eld and near-"eld spatial directivity pattern for non-linear far-"eld design (design speci"cation
1; r = 0:2 m; # = 1; N = 5; L = 20).

Fig. 16. Far-"eld and near-"eld spatial directivity pattern for non-linear near-"eld design (design speci"cation
1; r = 0:2 m; # = 1; N = 5; L = 20).

structure. Several cost functions have been discussed: a LS cost function, a maximum energy array cost
function, a non-linear criterion, and two novel non-iterative design procedures that are based on eigen"lters.
In the conventional eigen"lter technique a reference frequency-angle point is required, whereas this reference
point is not required in the TLS eigen"lter technique, minimising the TLS error between the actual and the
desired spatial directivity pattern. We have shown that using these design procedures, broadband beamformers
can be designed in the far-"eld, near-"eld and mixed near-"eld far-"eld. DiLerent simulations have shown that
among all considered non-iterative design procedures the TLS eigen"lter technique has the best performance,
i.e. non-linear cost function JNL, best resembling the performance of the non-linear design procedure but
having a signi"cantly lower computational complexity.
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Fig. 17. Far-"eld and near-"eld spatial directivity pattern for non-linear mixed near-"eld far-"eld design (design speci"cation
1; r = 0:2 m; # = 1; N = 5; L = 20).

Appendix A. Calculation of double integral for far-�eld design

The integral

I =
∫ �2

�1

∫ !2

!1

cos[!(# + % cos �) + &] d! d� (A.1)

is equal to∫ �2

�1

sin[!2(# + % cos �) + &]
# + % cos �

d�−
∫ �2

�1

sin[!1(# + % cos �) + &]
# + % cos �

d�; (A.2)

such that in fact we need to compute integrals of the type (A.2),

I�(!) =
∫ �2

�1

f(!; �) d�; (A.3)

with

f(!; �) =
sin[!(# + % cos �) + &]

# + % cos �
: (A.4)

Normally, this integral can be computed numerically without any problem, but a special case occurs when
|#|6 |%|, because then a singularity �n occurs in the denominator, with

cos �n = −#
%
; (A.5)

such that numerically computing the integral I�(!) gives rise to numerical problems when & 
= 0. By using
the Taylor-expansion of cos � around �n, we can de"ne the function g(�),

g(�) = − sin &

%
√

1 − (#2=%2)(�− �n)
; (A.6)
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which is a good approximation for f(!; �) around �n and which is independent of !. If we now de"ne
the function Mf(!; �) = f(!; �) − g(�), we can prove (by applying L’Hôpital’s rule twice) that for any
&; lim�→�n

Mf(!; �) is "nite and is equal to

lim
�→�n

Mf(!; �) = ! cos & +
# sin &

2(#2 − %2)
: (A.7)

For details, we refer to [7]. Hence, the function Mf(!; �) can be integrated numerically without any problem.
In fact, the total integral I in (A.1) can be written as

I = I�(!2) − I�(!1) =
∫ �2

�1

f(!2; �) d�−
∫ �2

�1

f(!1; �) d� (A.8)

=
∫ �2

�1

Mf(!2; �) d�−
∫ �2

�1

Mf(!1; �) d�: (A.9)
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