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Abstract

Recently, a generalized multi-microphone noise reduction scheme, referred to as the spatially pre-processed speech distortion
weighted multichannel Wiener filter (SP-SDW-MWF), has been presented. This scheme consists of a fixed spatial pre-processor and a
multichannel adaptive noise canceler (ANC) optimizing the SDW-MWF cost function. By taking speech distortion explicitly into
account in the design criterion of the multichannel ANC, the SP-SDW-MWF adds robustness to the standard generalized sidelobe
canceler (GSC). In this paper, we present a multichannel frequency-domain criterion for the SDW-MWF, from which several – existing
and novel – adaptive frequency-domain algorithms can be derived. The main difference between these adaptive algorithms consists in the
calculation of the step size matrix (constrained vs. unconstrained, block-structured vs. diagonal) used in the update formula for the
multichannel adaptive filter. We investigate the noise reduction performance, the robustness and the tracking performance of these adap-
tive algorithms, using a perfect voice activity detection (VAD) mechanism and using an energy-based VAD. Using experimental results
with a small-sized microphone array in a hearing aid, it is shown that the SP-SDW-MWF is more robust against signal model errors than
the GSC, and that the block-structured step size matrix gives rise to a faster convergence and a better tracking performance than the
diagonal step size matrix, only at a slightly higher computational cost.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many speech communication applications, such as
hands-free mobile telephony, hearing aids and voice-con-
trolled systems, the recorded speech signals are corrupted
by acoustic background noise. Generally speaking, back-
ground noise is broadband and non-stationary, and the
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signal-to-noise ratio (SNR) may be quite low. Background
noise causes a signal degradation that can lead to total
unintelligibility of the speech signal and that substantially
decreases the performance of speech coding and speech rec-
ognition systems. Therefore efficient speech enhancement
techniques are called for.

Since the desired speech signal and the undesired noise
signal usually occupy overlapping frequency bands, sin-
gle-microphone speech enhancement techniques, such as
spectral subtraction, Kalman filtering, and signal sub-
space-based techniques, often fail to reduce the back-
ground noise without introducing artifacts (e.g. musical
noise) or speech distortion. However, when the speech
and noise sources are physically located at different
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positions, it is possible to exploit this spatial diversity by
using a microphone array, such that both the spectral
and the spatial characteristics of the sources can be used.

Well-known multi-microphone speech enhancement
techniques are fixed and adaptive beamforming (Van Veen
and Buckley, 1988). In a minimum variance distortionless
response (MVDR) beamformer (Frost, 1972), the energy
of the output signal is minimized under the constraint that
signals arriving from the look direction, i.e. the assumed
direction of the speech source, are processed without dis-
tortion. A widely studied adaptive implementation of this
beamformer is the generalized sidelobe canceler (GSC)
(Griffiths and Jim, 1982), which consists of a fixed spatial
pre-processor, i.e. a fixed beamformer and a blocking
matrix, combined with a multichannel adaptive noise can-
celer (ANC). The fixed beamformer creates a so-called
speech reference, the blocking matrix creates so-called
noise references, and the multichannel ANC eliminates
the noise components in the speech reference that are cor-
related with the noise references.

Due to room reverberation, microphone mismatch, look
direction error and spatially distributed sources, speech
components may however leak into the noise references
of the standard GSC, giving rise to speech distortion and
possibly signal cancelation. Several techniques have been
proposed to limit the speech distortion resulting from this
speech leakage, e.g.

• reducing the speech leakage components in the noise refer-

ences, e.g. using a more robust fixed blocking matrix
design (Nordholm et al., 1993; Claesson and Nordholm,
1992; Nordebo et al., 1994; Doclo and Moonen, 2003);
using an adaptive blocking matrix (Van Compernolle
et al., 1990; Hoshuyama et al., 1999; Herbordt and Kel-
lermann, 2003); or by constructing a blocking matrix
based on estimating the ratios of the acoustic transfer
functions from the speech source to the microphone
array (Gannot et al., 2001);

• limiting the distorting effect of the remaining speech leak-

age components by

– updating the multichannel ANC only during periods
(and for frequencies) where the noise component is
dominant, i.e. where the SNR is low (Nordholm
et al., 1993; Van Compernolle et al., 1990; Hoshuy-
ama et al., 1999; Herbordt and Kellermann, 2003;
Gannot et al., 2001; Greenberg and Zurek, 1992;
Vanden Berghe and Wouters, 1998; Herbordt et al.,
2003; Hoshuyama et al., 2001); and

– constraining the update formula for the multichannel
adaptive filter, e.g. by imposing a quadratic inequal-
ity constraint (QIC) (Hoshuyama et al., 1999; Jablon,
1986; Cox et al., 1987; Hoffman and Buckley, 1995);
by using the leaky least mean square (LMS) algo-
rithm (Claesson and Nordholm, 1992; Nordebo
et al., 1994); or by taking speech distortion due to
speech leakage into account using the so-called
speech distortion weighted multichannel Wiener filter
(SDW-MWF) (Spriet et al., 2004; Spriet et al., 2005;
Doclo et al., 2004).
In this paper, we will focus on implementation aspects of
the SDW-MWF. In Doclo and Moonen (2001), Doclo
and Moonen (2002) and Rombouts and Moonen (2003),
recursive matrix-decomposition-based implementations
for the SDW-MWF have been presented, which are com-
putationally quite expensive. In Spriet et al. (2005) cheaper
(time-domain and frequency-domain) stochastic gradient
algorithms have been proposed. These algorithms however
require large circular data buffers, resulting in a large mem-
ory requirement. In Doclo et al. (2004), adaptive fre-
quency-domain algorithms for the SDW-MWF have been
presented using frequency-domain correlation matrices,
reducing the memory requirement and the computational
complexity.

Recently, a generalized multichannel frequency-domain
filtering framework has been proposed, which takes into
account both the autocorrelation of the individual channels
as well as the cross-correlation between the different channels
(Benesty et al., 2001; Buchner et al., 2005). Using this frame-
work, several adaptive algorithms can be derived, which
have been applied to e.g. multichannel acoustic echo cancel-
ation and the GSC. In this paper, we will use this framework
to formulate a frequency-domain criterion for the SDW-
MWF, trading off noise reduction and speech distortion.
From the proposed criterion several adaptive frequency-

domain algorithms for the SDW-MWF can be derived. The
main difference between these algorithms consists in the
calculation of the step size matrix in the update formula
for the multichannel adaptive filter and in the calculation
of a particular regularization term (cf. Sections 3 and 4).

The paper is organized as follows. In Section 2, the GSC
and the spatially pre-processed SDW-MWF are briefly
reviewed. In Section 3, the frequency-domain criterion for
the SDW-MWF is presented. A recursive (RLS-type) algo-
rithm is derived from this criterion and it is shown how this
algorithm can be implemented in practice. In Section 4,
several approximations are proposed for reducing the com-
putational complexity, leading to adaptive (LMS-type)
frequency-domain algorithms, some of which have already
been presented in the literature (Doclo et al., 2004). Section
5 discusses the computational complexity of the different
adaptive algorithms. In Section 6, the noise reduction per-
formance, the robustness against signal model errors, and
the tracking performance of the proposed algorithms are
illustrated using experimental results for a small-sized
microphone array in a hearing aid. In addition, the impact
of using a non-perfect VAD on the performance is analyzed.

2. GSC and spatially pre-processed SDW-MWF

2.1. Notation and general structure

Consider a microphone array with M microphones,
where each microphone signal ui[k], i = 1, . . . ,M, at time
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k, consists of a filtered version of the clean speech signal
s[k] and additive noise, i.e.

ui½k� ¼ hi½k� � s½k� þ uv
i ½k�; i ¼ 1; . . . ;M ; ð1Þ

where hi[k] represents the acoustic impulse response
between the speech source and the ith microphone and *
denotes convolution. The additive noise uv

i ½k� can be col-
ored and is assumed to be uncorrelated with the clean
speech signal.

The spatially pre-processed speech distortion weighted
multichannel Wiener Filter (SP-SDW-MWF) (Spriet
et al., 2004) is depicted in Fig. 1. It consists of a fixed
spatial pre-processor, i.e. a fixed beamformer and a block-
ing matrix, and a multichannel ANC. Note that the struc-
ture of the SP-SDW-MWF strongly resembles the standard
GSC, but the difference lies in the fact that the SDW-MWF
cost function is used in the multichannel ANC and that it is
possible to include an extra filter w0 on the speech
reference.

The fixed beamformer creates a so-called speech
reference

y0½k� ¼ x0½k� þ v0½k�; ð2Þ

with x0[k] and v0[k] respectively the speech and the noise
component of the speech reference, by steering a beam to-
wards the assumed direction of the speaker. The fixed
beamformer should be designed such that the distortion
of the speech component x0[k], due to possible errors in
the assumed signal model (e.g. look direction error, micro-
phone mismatch) is small. A delay-and-sum beamformer,
which time-aligns the microphone signals, offers sufficient
robustness against signal model errors since it minimizes
the noise sensitivity. However, in order to achieve a better
spatial selectivity while still preserving robustness, the fixed
beamformer can be optimized, e.g. by using statistical
knowledge about the signal model errors that occur in
practice (Doclo and Moonen, 2003).

The blocking matrix creates M � 1 so-called noise
references

yn½k� ¼ xn½k� þ vn½k�; n ¼ 1; . . . ;M � 1; ð3Þ
Blocking
Matrix

Fixed

Beamformer

Noise references

Speech reference

(speech distortion weighted)
spatial preprocessing

Fig. 1. Structure of the spatially pre-processed speech distortion weighted
multichannel Wiener filter (SP-SDW-MWF).
by steering zeroes towards the assumed direction of the
speaker. A simple technique to create the noise references
consists of pair-wisely subtracting the time-aligned micro-
phone signals. Under ideal conditions (i.e. no reverbera-
tion, point speech source, no look direction error, no
microphone mismatch), the noise references only contain
noise components vn[k]. Since these conditions are never
fulfilled in practice, undesired speech components xn[k],
i.e. so-called speech leakage components, are present in
the noise references. Although several techniques have been
proposed for reducing the speech leakage components in
the noise references (Nordholm et al., 1993; Claesson and
Nordholm, 1992; Nordebo et al., 1994; Doclo and Moo-
nen, 2003; Van Compernolle et al., 1990; Hoshuyama
et al., 1999; Herbordt and Kellermann, 2003; Gannot
et al., 2001), speech leakage can never be completely
avoided in practice.

During speech periods, the speech and the noise refer-
ences consist of speech and noise components, i.e.
yn[k] = xn[k] + vn[k], whereas during noise-only periods

(speech pauses), only the noise components vn[k] are
observed. We assume that the second-order statistics of
the noise are sufficiently stationary such that they can be
estimated during noise-only periods and used during subse-
quent speech periods. This requires the use of a voice activ-
ity detection (VAD) mechanism (Van Gerven et al., 1997;
Sohn et al., 1999) or an on-line SNR estimation procedure
(Herbordt et al., 2003).

The goal of the multichannel ANC is to estimate the
noise component v0[k] in the speech reference and to sub-
tract this noise estimate from the speech reference in order
to obtain an enhanced output signal z[k]. Let N be the
number of input channels to the multichannel filter
(N = M if the filter w0 on the speech reference is present,
N = M � 1 otherwise). Let the FIR filters wn[k], n =
M � N, . . . ,M � 1, have filter length L, and consider the
L-dimensional data vectors yn[k], the NL-dimensional
stacked data vector y[k], and the NL-dimensional stacked
filter w[k], defined as

yn½k� ¼ yn½k� yn½k � 1� � � � yn½k � Lþ 1�½ �T;
n ¼ M � N ; . . . ;M � 1; ð4Þ

y½k� ¼ yT
M�N ½k� yT

M�Nþ1½k� � � � yT
M�1½k�

� �T
; ð5Þ

w½k� ¼ wT
M�N ½k� wT

M�Nþ1½k� � � � wT
M�1½k�

� �T
; ð6Þ
where T denotes transpose of a vector or a matrix. The
stacked data vector can be decomposed into a speech and
a noise component, i.e. y[k] = x[k] + v[k], where x[k] and
v[k] are defined similarly as in (4) and (5). The goal of
the filter w[k] is to estimate the delayed noise component
v0[k � D] in the speech reference.1 This noise estimate is
1 The delay D is applied to the speech reference in order to allow for
non-causal filter taps. This delay is usually set equal to dL/2e, where dxe
denotes the smallest integer larger than or equal to x.
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then subtracted from the speech reference in order to ob-
tain the enhanced output signal z[k], i.e.

z½k� ¼ y0½k � D� � wT½k�y½k� ð7Þ
¼ x0½k � D� þ ðv0½k � D� � wT½k�v½k�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ev½k�

�wT½k�x½k�|fflfflfflfflffl{zfflfflfflfflffl}
ex ½k�

: ð8Þ

Hence, the output signal z[k] consists of three terms: the de-
layed speech component x0[k � D] in the speech reference,
residual noise ev[k], and (linear) speech distortion ex[k]. The
goal of any speech enhancement algorithm is to reduce the
residual noise as much as possible, while simultaneously
limiting the speech distortion. The speech distortion can
e.g. be limited by reducing the speech leakage components
x[k] and/or by constraining the filter w[k].

In this paper we will assume a fixed blocking matrix,
such that speech leakage components are always present,
especially when microphone mismatch occurs. We will
not consider techniques here that aim to minimize the
speech leakage components by using an adaptive blocking
matrix (ABM) (Van Compernolle et al., 1990; Hoshuyama
et al., 1999; Herbordt and Kellermann, 2003; Gannot et al.,
2001). One should however realize that these ABM-tech-
niques may be used as an alternative or even in combina-
tion with the SDW-MWF.
2.2. Generalized sidelobe canceler (GSC)

The standard GSC aims to minimize the residual noise
energy e2

v ½k� without taking into account speech distortion,
i.e.

J GSCðw½k�Þ ¼ e2
v ½k� ¼ E jv0½k � D� � wT½k�v½k�j2

n o
; ð9Þ

where E denotes the expected value operator. The filter
w[k] minimizing this cost function is equal to

w½k� ¼ Efv½k�vT½k�g�1Efv½k�v0½k � D�g; ð10Þ

where the noise correlation matrix E{v[k]vT[k]} and the
noise cross-correlation vector E{v[k]v0[k � D]} are esti-
mated during noise-only periods. Hence, in a typical adap-
tive implementation, the filter w[k] is allowed to be updated
only during noise-only periods (Nordholm et al., 1993; Van
Compernolle et al., 1990; Hoshuyama et al., 1999;
Herbordt and Kellermann, 2003; Gannot et al., 2001;
Greenberg and Zurek, 1992; Vanden Berghe and Wouters,
1998; Herbordt et al., 2003; Hoshuyama et al., 2001), since
adaptation during speech periods would lead to an incor-
rect solution and possibly signal cancelation. Note however
that signal distortion due to speech leakage still occurs even
when the adaptive filter is updated only during noise-only
periods, since the speech distortion term ex[k] is still present
in the output signal z[k].

A commonly used approach to increase the robustness
against signal model errors is to apply a quadratic inequal-
ity constraint (QIC) (Jablon, 1986; Cox et al., 1987; Hoff-
man and Buckley, 1995), i.e.
wT½k�w½k� 6 b2: ð11Þ

The QIC avoids excessive growth of the filter coefficients
w[k], and hence limits speech distortion wT[k]x[k] due to
speech leakage.

In the GSC the number of input channels to the adap-
tive filter is typically equal to N = M � 1. It is however
not possible to include the filter w0 on the speech reference,
since in this case the filter w[k] in (10) would be equal to

w0½k� ¼ uDþ1; wn½k� ¼ 0; n ¼ 1; . . . ;M � 1; ð12Þ

with ul the lth canonical L-dimensional vector, i.e. a vector
of which the lth element is equal to 1 and all other elements
are equal to 0, such that the output signal z[k] = 0.

2.3. Speech distortion weighted multichannel Wiener

filter (SDW-MWF)

The SDW-MWF takes speech distortion due to speech
leakage explicitly into account in the design criterion of
the filter w[k] and aims to minimize a weighted sum of
the residual noise energy e2

v ½k� and the speech distortion
energy e2

x ½k�, i.e.

J SDW-MWFðw½k�Þ ¼ e2
v ½k� þ 1

l e2
x ½k� ¼ E jv0½k�D� �wT½k�v½k�j2

n o
þ 1

l EfjwT½k�x½k�j2g;

ð13Þ

where the parameter l 2 [0,1] provides a trade-off
between noise reduction and speech distortion (Spriet
et al., 2004; Doclo and Moonen, 2002; Ephraim and Van
Trees, 1995). If l = 1, the minimum mean square error
(MMSE) criterion is obtained. If l < 1, speech distortion
is reduced at the expense of increased residual noise energy.
On the other hand, if l > 1, residual noise is reduced at the
expense of increased speech distortion.

The filter w[k] minimizing the cost function in (13) is
equal to

w½k� ¼ Efv½k�vT½k�g þ 1

l
Efx½k�xT½k�g

� ��1

Efv½k�v0½k � D�g;

ð14Þ

where, using the independence assumption between speech
and noise, the speech correlation matrix E{x[k]xT[k]} can
be computed as

Efx½k�xT½k�g ¼ Efy½k�yT½k�g � Efv½k�vT½k�g: ð15Þ

The correlation matrix E{y[k]yT[k]} is estimated during
speech periods and the noise correlation matrix E{v[k]vT[k]}
is estimated during noise-only periods. As already men-
tioned, we assume that the spectral and/or spatial charac-
teristics of the noise are sufficiently stationary.

Since the SDW-MWF takes speech distortion explicitly
into account in its optimization criterion, it is now possible
to include an extra filter w0 on the speech reference.
Depending on the setting of the parameter l and the



640 S. Doclo et al. / Speech Communication 49 (2007) 636–656
presence/absence of the filter w0, different algorithms are
obtained:

• Without a filter w0 (N = M � 1), we obtain the speech

distortion regularized GSC (SDR-GSC), where the stan-
dard optimization criterion of the GSC in (9) is supple-
mented with a regularization term 1=le2

x . For l =1,
speech distortion is completely ignored, which corre-
sponds to the standard GSC. For l = 0, all emphasis
is put on speech distortion, such that w[k] = 0 and the
output signal z[k] is equal to the delayed speech refer-
ence y0[k � D]. Compared to the QIC-GSC, the SDR-
GSC is less conservative, since the regularization term
is proportional to the actual amount of speech leakage
in the noise references. In Spriet et al. (2004) it has been
shown that in comparison with the QIC-GSC, the SDR-
GSC obtains a better noise reduction for small model
errors, while guaranteeing robustness against large
model errors.

• With a filter w0 (N = M), we obtain the spatially pre-pro-

cessed speech distortion weighted multichannel Wiener fil-

ter (SP-SDW-MWF). For l = 1, the output signal z[k] is
the MMSE estimate of the delayed speech component
x0[k � D] in the speech reference. In Spriet et al. (2004)
it has been shown that, for infinite filter lengths, the per-
formance of the SP-SDW-MWF is not affected by
microphone mismatch. Hence, the extra filter on the
speech reference further improves the performance.

In Doclo and Moonen (2001), Doclo and Moonen
(2002), Rombouts and Moonen (2003), recursive matrix-
decomposition-based implementations have been pre-
sented, which are computationally quite expensive. Starting
from the cost function in (13), a cheaper time-domain sto-
chastic gradient algorithm has been derived. To speed up
convergence and reduce the computational complexity, this
algorithm has been implemented in the frequency-domain
(Spriet et al., 2005). It has been shown that for highly
non-stationary noise, this stochastic gradient algorithm
suffers from a large excess error, which can be reduced by
low-pass filtering a particular regularization term, i.e. the
part of the gradient estimate that limits speech distortion.
concatenate
two blocks

concatenate
two blocks

concatenate
two blocks

FFT

update filter coefficients

FFT

FFT

processing
block

Fig. 2. General block diagram of the frequency-domain
The computation of this regularization term however
requires the storage of circular data buffers, giving rise to
a large memory requirement. In Doclo et al. (2004), the
regularization term has been approximated in the fre-
quency-domain, using (diagonal) speech and noise correla-
tion matrices in the frequency-domain. This approximation
leads to a drastic decrease in memory requirement and also
further reduces the computational complexity.

In the following section, a novel frequency-domain crite-

rion for the SDW-MWF is presented, which is similar to
the cost function in (13). This frequency-domain criterion
is an extension of the criterion used in Benesty et al.
(2001), Buchner et al. (2005) for multichannel echo cancel-
ation. Furthermore, it provides a way for linking existing
adaptive frequency-domain algorithms for the SDW-
MWF (Doclo et al., 2004) and for deriving novel adaptive
algorithms, as will be shown in Section 4.
3. Frequency-domain criterion for the SDW-MWF

We first define block signals for the residual noise and
the speech distortion, which can be computed using fre-
quency-domain operations. Using these block signals, we
define a frequency-domain cost function for the SDW-
MWF. By setting the derivative of this cost function to
zero, we obtain the normal equations, from which a recur-
sive (RLS-type) algorithm can be derived. Next, we discuss
some practical implementation issues, i.e. adaptation
during noise-only periods and computation of the regular-
ization term. The general block diagram of the frequency-
domain implementation of the SDW-MWF is depicted in
Fig. 2.
3.1. Frequency-domain notation

We define the L-dimensional block signals ev[m] and
ex[m] as

ev½m� ¼ ev½mL� ev½mLþ 1� � � � ev½mLþ L� 1�½ �T; ð16Þ
ex½m� ¼ ex½mL� ex½mLþ 1� � � � ex½mLþ L� 1�½ �T; ð17Þ
add
zero block

IFFT

FFT

last block
save

implementation of the SDW-MWF (all algorithms).
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with m the block time index. Using (8), the block signal
ev[m], representing the residual noise, can be computed
using frequency-domain operations as (Benesty et al.,
2001; Buchner et al., 2005; Shynk, 1992)

ev½m� ¼ d½m� � 0L IL½ �F�1
2L

XM�1

n¼M�N

Dv;n½m�F2L
IL

0L

� �
wn;

ð18Þ
with

d½m� ¼ v0½mL� D� v0½mL� Dþ 1� � � � v0½mL� Dþ L� 1�½ �T:
ð19Þ

0L represents the L · L-dimensional zero matrix, IL repre-
sents the L · L-dimensional identity matrix, F2L is the
2L · 2L-dimensional discrete Fourier transform matrix
and Dv,n[m] is a 2L · 2L-dimensional diagonal matrix
whose elements are the discrete Fourier transform of the
2L-dimensional vector

vn½mL� L� � � � vn½mL� 1� vn½mL� � � � vn½mLþ L� 1�½ �T:
ð20Þ

The block signal ev[m] can also be written as

ev½m� ¼ d½m� � 0L IL½ �F�1
2L Uv½m�w; ð21Þ

with the 2L · NL-dimensional matrix Uv[m] defined as

Uv½m� ¼ Dv;M�N ½m�F2L
IL

0L

� �
� � � Dv;M�1½m�F2L

IL

0L

� �� �
ð22Þ

¼ Dv½m�F10
2NL�NL ð23Þ

and the 2L · 2NL-dimensional matrix Dv[m] and the
2NL · NL-dimensional block diagonal matrix F10

2NL�NL

equal to

Dv½m� ¼ Dv;M�N ½m� � � � Dv;M�1½m�½ �; ð24Þ

F10
2NL�NL ¼ diag F2L

IL

0L

" #
� � � F2L

IL

0L

" #" #
: ð25Þ

Similarly, the block signal ex[m], representing the speech
distortion, can be computed as

ex½m� ¼ 0L IL½ �F�1
2L Ux½m�w ¼ 0L IL½ �F�1

2L Dx½m�F10
2NL�NLw;

ð26Þ
where Ux[m] and Dx[m] are defined similarly as Uv[m] and
Dv[m] for the speech component instead of the noise
component.

If we multiply the block signals in (21) and (26) with the
L · L-dimensional discrete Fourier transform matrix FL,
we obtain the error signals in the frequency-domain
(denoted by underbars), i.e.

ev½m� ¼ FLev½m� ¼ d½m� � G01
L�2LUv½m�w; ð27Þ

ex½m� ¼ FLex½m� ¼ G01
L�2LUx½m�w; ð28Þ

with d½m� ¼ FLd½m� and G01
L�2L ¼ FL½ 0L IL �F�1

2L .
Using these frequency-domain signals, we now define a
frequency-domain criterion for the SDW-MWF, minimizing
the weighted sum of the residual noise energy and the
speech distortion energy, i.e.

J f ½m� ¼ ð1� kvÞ
Pm
i¼0

km�i
v eH

v ½i�ev½i� þ 1
l ð1� kxÞ

Pm
i¼0

km�i
x eH

x ½i�ex½i�;

ð29Þ

where H denotes complex conjugate of a vector or a matrix,
kv and kx are exponential forgetting factors respectively for
noise and speech (0 < kv < 1, 0 < kx < 1), and 1/l is the
trade-off parameter between noise reduction and speech
distortion. Note that typically quite large values are used
for the exponential forgetting factors (cf. Section 6.2),
implying that mainly the long-term spatial and spectral
characteristics of the speech and the noise sources are used.
3.2. Normal equations

The cost function Jf[m] can be minimized by setting its
derivative with respect to the (time-domain) filter coeffi-
cients w[m] equal to zero. Using (27) and (28), the deriva-
tive is equal to

oJ f ½m�
ow½m� ¼ ð1� kvÞ

Xm

i¼0

km�i
v UH

v ½i�G
01
2L�2LUv½i�w½m��UH

v ½i�d2L½i�
� �

þ 1

l
ð1� kxÞ

Xm

i¼0

km�i
x UH

x ½i�G
01
2L�2LUx½i�w½m�; ð30Þ

with

d2L½m� ¼ 2ðG01
L�2LÞ

H
d½m� ¼ F2L

0L

IL

� �
d½m� ð31Þ

G01
2L�2L ¼ 2ðG01

L�2LÞ
H

G01
L�2L;¼ F2L

0L 0L

0L IL

� �
F�1

2L : ð32Þ

Hence, the normal equations can be written as

Sv½m� þ 1
l Sx½m�

h i
w½m� ¼ s½m�; ð33Þ

with the NL · NL-dimensional correlation matrices Sv[m]
and Sx[m], and the NL-dimensional cross-correlation vec-
tor s[m] defined as

Sv½m� ¼ ð1� kvÞ
Xm

i¼0

km�i
v UH

v ½i�G
01
2L�2LUv½i� ð34Þ

¼ kvSv½m� 1� þ ð1� kvÞUH
v ½m�G

01
2L�2LUv½m�; ð35Þ

Sx½m� ¼ ð1� kxÞ
Xm

i¼0

km�i
x UH

x ½i�G
01
2L�2LUx½i� ð36Þ

¼ kxSx½m� 1� þ ð1� kxÞUH
x ½m�G

01
2L�2LUx½m�; ð37Þ

s½m� ¼ ð1� kvÞ
Xm

i¼0

km�i
v UH

v ½i�d2L½i� ð38Þ

¼ kvs½m� 1� þ ð1� kvÞUH
v ½m�d2L½m�: ð39Þ
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3.3. Recursive algorithm

A recursive (RLS-type) algorithm for updating w[m] can
be found by enforcing the normal Eq. (33) at block time m

and m � 1, i.e.

Sv½m� þ
1

l
Sx½m�

� �
w½m� ¼ kvs½m� 1� þ ð1� kvÞUH

v ½m�d2L½m�

¼ kv Sv½m� 1� þ 1

l
Sx½m� 1�

� �
w½m� 1�

þ ð1� kvÞUH
v ½m�d2L½m�

¼
�

Sv½m� � ð1� kvÞUH
v ½m�G

01
2L�2LUv½m�

þ1

l
kv

kx
ðSx½m� � ð1� kxÞUH

x ½m�G
01
2L�2LUx½m�Þ

�
� w½m� 1� þ ð1� kvÞUH

v ½m�d2L½m�;

such that the recursive update formula for w[m] can be
written as

w½m� ¼ Sv½m� þ
1

l
Sx½m�

� ��1

Sv½m� þ
1

l
kv

kx
Sx½m�

� �
w½m� 1�

	
þð1� kvÞUH

v ½m�ev;2L½m� �
1

l
kv

kx
ð1� kxÞUH

x ½m�ex;2L½m�


;

ð40Þ

ev;2L½m� ¼ F2L
0L

IL

� �
ev½m� ¼ d2L½m� � G01

2L�2LUv½m�w½m� 1�;

ð41Þ

ex;2L½m� ¼ F2L
0L

IL

� �
ex½m� ¼ G01

2L�2LUx½m�w½m� 1�: ð42Þ

For convenience, we now define the 2NL · 2NL-dimen-
sional correlation matrices Qv[m] and Qx[m] as

Sv½m� ¼ ðF10
2NL�NLÞ

H
Qv½m�F10

2NL�NL; ð43Þ
Sx½m� ¼ ðF10

2NL�NLÞ
H

Qx½m�F10
2NL�NL; ð44Þ

such that

Qv½m� ¼ kvQv½m� 1� þ ð1� kvÞDH
v ½m�G

01
2L�2LDv½m�; ð45Þ

Qx½m� ¼ kxQx½m� 1� þ ð1� kxÞDH
x ½m�G

01
2L�2LDx½m�: ð46Þ

In addition, we define the 2NL-dimensional frequency-
domain filter w2NL½m� as

w2NL½m� ¼ F10
2NL�NLw½m� ¼ wT

M�N ;2L½m� . . . wT
M�1;2L½m�

� �T
;

ð47Þ
with

wn;2L½m� ¼ F2L
IL

0L

� �
wn½m�: ð48Þ

By pre-multiplying both sides of (40) with F10
2NL�NL, and by

using (43) and (44), we obtain

w2NL½m� ¼ F10
2NL�NL Sv½m� þ

1

l
Sx½m�

� ��1

ðF10
2NL�NLÞ

H

� Qv½m� þ
1

l
kv

kx
Qx½m�

� �
w2NL½m� 1� þ ð1� kvÞDH

v ½m�ev;2L½m�
	
� 1

l
kv

kx
ð1� kxÞDH

x ½m�ex;2L½m�


; ð49Þ
ev;2L½m� ¼ d2L½m� � G01
2L�2LDv½m�w2NL½m� 1�; ð50Þ

ex;2L½m� ¼ G01
2L�2LDx½m�w2NL½m� 1�: ð51Þ

In Benesty et al. (2001), it has been shown that

F10
2NL�NLS�1

v ½m�ðF
10
2NL�NLÞ

H ¼ G10
2NL�2NLQ�1

v ½m�; ð52Þ

with the 2NL · 2NL-dimensional block diagonal matrix
G10

2NL�2NL defined as

G10
2NL�2NL ¼ diag G10

2L�2L . . . G10
2L�2L

� �
; ð53Þ

with

G10
2L�2L ¼ F2L

IL 0L

0L 0L

� �
F�1

2L ; ð54Þ

such that (49) can be written as

w2NL½m� ¼ G10
2NL�2NL Qv½m� þ

1

l
Qx½m�

� ��1

� Qv½m� þ
1

l
kv

kx
Qx½m�

� �
w2NL½m� 1�

	
þ ð1� kvÞDH

v ½m�ev;2L½m��
1

l
kv

kx
ð1� kxÞDH

x ½m�ex;2L½m�


:

ð55Þ

In the sequel, we will assume equal exponential forgetting
factors for speech and noise, i.e. kx = kv = k, such that
using G10

2NL�2NLw2NL½m� 1� ¼ w2NL½m� 1�, (55) reduces to

w2NL½m� ¼ w2NL½m� 1� þ ð1� kÞG10
2NL�2NL½Qv½m� þ 1

l Qx½m��
�1

� DH
v ½m�ev;2L½m� � 1

l DH
x ½m�ex;2L½m�

n o
:

ð56Þ

When the trade-off parameter 1/l = 0, this algorithm is
equal to the multichannel frequency-domain adaptive
filtering algorithm derived in Benesty et al. (2001) and
Buchner et al. (2005), applied to the GSC. For 1/l > 0,
the 2NL-dimensional additional regularization term

r2NL½m� ¼
1

l
DH

x ½m�ex;2L½m�

¼ 1

l
DH

x ½m�G
01
2L�2LDx½m�w2NL½m� 1� ð57Þ

limits speech distortion due to speech leakage components
in the noise references.

3.4. Practical implementation

If we take a closer look at (56), we notice that Dv[m] and
ev;2L½m� can be computed only during noise-only periods,
whereas Dx[m] and ex;2L½m� can be computed only during
speech periods. We will now take a similar approach as
in the standard GSC, i.e. we will update the filter coefficients

only during noise-only periods. Since during noise-only peri-
ods the (instantaneous) correlation matrix DH

x ½m�G
01
2L�2L

Dx½m� of the clean speech signal, required in the



Table 1
Algorithmic description of recursive frequency-domain implementation of SDW-WF

Matrix definitions:

F2L = 2L · 2L-dimensional DFT matrix
0L = L · L-dimensional zero matrix, IL = L · L-dimensional identity matrix

G01
2L�2L ¼ F2L

0L 0L

0L IL

� �
F�1

2L ; G10
2L�2L ¼ F2L

IL 0L

0L 0L

� �
F�1

2L

G10
2NL�2NL ¼ diag G10

2L�2L � � � G10
2L�2L

� �
For each new block of L samples:

d½m� ¼ ½ y0½mL� D� y0½mL� Dþ 1� � � � y0½mL� Dþ L� 1� �T

Dy;n½m� ¼ diagfF2L½ yn½mL� L� � � � yn½mLþ L� 1� �Tg; n ¼ M � N ; . . . ;M � 1

Dy ½m� ¼ ½Dy;M�N ½m� � � � Dy;M�1½m� �

Output signal:

e½m� ¼ d½m� � 0L IL½ �F�1
2L Dy ½m�w2NL½m� 1�

If speech detected:

Qy ½m� ¼ kQy ½m� 1� þ ð1� kÞDH
y ½m�G01

2L�2LDy ½m�; Qv½m� ¼ Qv½m� 1�
w2NL½m� ¼ w2NL½m� 1�

If noise detected: Dv[m] = Dy[m]

Qv½m� ¼ kQv½m� 1� þ ð1� kÞDH
v ½m�G01

2L�2LDv½m�; Qy ½m� ¼ Qy ½m� 1�
Qx[m] = Qy[m] � Qv[m]

r2NL½m� ¼ 1
l Qx½m�w2NL½m� 1�

ev;2L½m� ¼ F2L
0L

IL

� �
e½m�

w2NL½m� ¼ w2NL½m� 1� þ ð1� kÞG10
2NL�2NL½Qv½m� þ 1

l Qx½m��
�1 � DH

v ½m�ev;2L½m� � r2NL½m�
� �
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computation of the regularization term r2NL½m�, is not avail-
able, we will approximate this term by the (average) corre-
lation matrix Qx[m]2, i.e. the regularization term will be
computed as

r2NL½m� �
1

l
Qx½m�w2NL½m� 1�: ð59Þ

In fact, using the correlation matrix Qx[m] instead of
DH

x ½m�G
01
2L�2LDx½m� is quite similar to low-pass filtering a

similar time-domain regularization term, which has been
proposed in Spriet et al. (2005) to improve the performance
in highly non-stationary noise. Using the assumption that
speech and noise components are uncorrelated, the speech
correlation matrix will be computed in practice as

Qx½m� � Qy ½m� �Qv½m�; ð60Þ

where Qy[m] is the 2NL · 2NL-dimensional correlation
matrix updated during speech periods, i.e.

Qy ½m� ¼ kQy ½m� 1� þ ð1� kÞDH
y ½m�G

01
2L�2LDy ½m�; ð61Þ

where Dy[m] is defined similarly as Dx[m]. The complete
recursive frequency-domain algorithm for updating the fil-
ter w2NL½m� is summarized in Table 1.
2 Note that a similar reasoning for computing the term DH
v ½m�ev;2L½m�

during speech periods is not possible, since

DH
v ½m�ev;2L½m� ¼ DH

v ½m�d2L½m� �DH
v ½m�G

01
2L�2LDv½m�w2NL½m� 1� ð58Þ

cannot easily be approximated, because of the term DH
v ½m�d2L½m�.
4. Frequency-domain adaptive algorithms

The algorithm in Table 1 constitutes a general frame-
work from which different adaptive algorithms can be
derived by introducing different types of approximations.
Some of these algorithms have already been presented in
the literature (Doclo et al., 2004), whereas other algorithms
represent novel techniques for implementing the SDW-
MWF cost function in the frequency-domain. Fig. 3
depicts the block diagram of the algorithms for updating
the filter coefficients that will be discussed in this section.
The difference between these algorithms consists of whether
block-structured or diagonal correlation matrices are used
(cf. Sections 4.1 and 4.2) and whether the update formula is
constrained or unconstrained (cf. Section 4.3).

4.1. Block-structured correlation matrices (Algo 1)

Since the correlation matrices Qv[m] and Qy[m] do not
have a special structure, both updating these correlation
matrices according to (45) and (61), and the matrix inver-
sion in (56) are computationally expensive operations
[O((NL)3)], such that in fact the algorithm in Table 1 is
not very useful in practice. However, in Benesty et al.
(2001) and Buchner et al. (2005) it has been shown that
the matrix G01

2L�2L may be well approximated by I2L/2,
because – for large L – the off-diagonal elements of
G01

2L�2L are small compared to the diagonal elements.
Using this approximation, we obtain the following

update formula for the block-structured correlation matri-
ces eQv½m� and eQy ½m�,
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approx.
diagonal

inverse

Delay

Delay

matrix

Delay

positive
definite

Fig. 3. Block diagram of the filter update procedure using block-structured and diagonal correlation matrices.
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eQv½m� ¼ k eQv½m� 1� þ ð1� kÞDH
v ½m�Dv½m�=2; ð62ÞeQy ½m� ¼ k eQy ½m� 1� þ ð1� kÞDH
y ½m�Dy ½m�=2; ð63Þ
which are N · N block matrices with 2L · 2L-dimen-
sional diagonal blocks eQv;np½m� and eQy;np½m�,
n = M � N, . . . ,M � 1, p = M � N, . . . ,M � 1. Hence, we
obtain the following update formula for the filter
coefficients:
w2NL½m� ¼ w2NL½m� 1� þ qð1� kÞG10
2NL�2NL½ eQv½m� þ 1

l
eQx½m���1

� DH
v ½m�ev;2L½m� � r2NL½m�

� �
;

ð64Þ
where q is a step size parameter and the regularization term
now is defined as

r2NL½m� ¼
1

l
eQx½m�w2NL½m� 1�; ð65Þ
with eQx½m� ¼ eQy ½m� � eQv½m�. This update formula will be
referred to as Algo 1.

The update formula in (64) involves computing the
inverse of the matrix eQv½m� þ 1=l eQx½m�. It is well known
that the inverse of an N · N block matrix Q with
2L · 2L-dimensional diagonal blocks Qnp, i.e.
Q ¼

QM�N ;M�N � � � QM�N ;M�1

..

. ..
.

QM�1;M�N � � � QM�1;M�1

2664
3775 ð66Þ

is again a block matrix with diagonal blocks. Computing
the inverse corresponds to inverting 2L N · N-dimensional
matrices, which is attractive from a computational com-
plexity point of view. More in particular, the block matrix
Q can be permuted into the block diagonal matrix Q,

Q ¼ diag Q0 � � � Q2L�1

� �
; ð67Þ

with N · N-dimensional sub-matrices Ql; l ¼ 0; . . . ; 2L� 1,
on its diagonal, by means of row and column permuta-
tions, i.e.

Q ¼ ATQA: ð68Þ

The matrix A is a 2NL · 2NL-dimensional column permu-
tation matrix (and hence AT is a row permutation matrix),
consisting of 2NL 2L · N-dimensional sub-matrices Anl,
n = M � N, . . . ,M � 1, l = 0, . . . , 2L � 1, where the (l,n)th
element of Anl is equal to 1. It readily follows that

Q�1 ¼ AQ�1AT; ð69Þ

where Q�1 can be computed by inverting the N · N-dimen-
sional sub-matrices Ql on its diagonal, i.e.

Q�1 ¼ diag �Q�1
0 � � � Q�1

2L�1

� �
: ð70Þ
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In addition, one should make sure that the matrixeQv½m� þ 1=l eQx½m� in (64) is positive definite. When this
matrix is not positive definite, this actually has the same ef-
fect as a negative step size q, i.e. leading to divergence of
the filter coefficients. The noise correlation matrix eQv½m�
is always positive definite, but the speech correlation ma-
trix eQx½m� may not always be positive definite (especially
for non-stationary signals), since it is computed aseQx½m� ¼ eQy ½m� � eQv½m�, where eQy ½m� and eQv½m� are esti-
mated during (different) speech periods and noise-only
periods. Checking the positive definiteness of a matrix
comes down to computing its eigenvalues. By using (68)
and the fact that AAT = I2NL and det(A) = ±1, it readily
follows that

detðQ � cI2NLÞ ¼ detðAðQ � cI2NLÞATÞ ¼ detðQ � cI2NLÞ;
ð71Þ

such that the eigenvalues c of the block matrix Q are equal
to the set of eigenvalues of its N · N-dimensional sub-
matrices Ql; l ¼ 0; . . . ; 2L� 1.

Hence, instead of directly computing the inverse of the
matrix eQv½m� þ 1=l eQx½m� in (64), we first compute the
eigenvalues of the matrix eQx½m�, and then use the inverse
of the positive definite matrix

eQv½m� þ
1

l
eQx½m� �minðcmin; 0ÞI 2NL

h i
þ dI 2NL ð72Þ

in (64), with cmin the smallest eigenvalue of eQx½m� and d a
small positive regularization factor (a typical value is
d = 1e � 6). Whereas in general computing the smallest
eigenvalue of an N · N-dimensional Hermitian matrix is
computationally quite complex, for N = 2 (e.g. in a two-
or a three-microphone application) the smallest eigenvalue
cl,min of the sub-matrix

Ql ¼
�ql;11 �ql;12

�q�l;12 �ql;22

" #
; ð73Þ

with �ql;11 and �ql;22 real-valued, is equal to

cl;min ¼
ð�ql;11 þ �ql;22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ql;11 � �ql;22Þ2 þ 4j�ql;12j2

q
2

: ð74Þ
3 Note that we still use the off-diagonal elements of eQx½m� for computing
the regularization term r2NL½m�, i.e. (65).
4.2. Diagonal correlation matrices (Algo 2 and 3)

In a further approximation, we can decouple the
updates for the N filters wn;2L½m� in (64) by neglecting the
off-diagonal elements of the matrix eQv½m� þ 1=l eQx½m�,
which represent the inter-channel correlation. Hence, the
update formula for the filter coefficients wn;2L½m�; n ¼
M � N ; . . . ;M � 1 becomes

wn;2L½m� ¼ wn;2L½m� 1� þ qð1� kÞG10
2L�2L½ eQv;nn½m� þ 1

l
eQx;nn½m���1

�fDH
v;n½m�ev;2L½m� � rn;2L½m�g;

ð75Þ
with eQv;nn½m� and eQx;nn½m� the 2L · 2L-dimensional diago-
nal sub-matrices on the diagonal of eQv½m� and eQx½m�,
and rn;2L½m� a 2L-dimensional sub-vector of r2NL½m�.3 This
update formula will be referred to as Algo 2.

Ensuring the positive definiteness of eQx;nn½m� now is
straightforward, since the eigenvalues of eQx;nn½m� are equal
to the diagonal elements. As will be shown in the experi-
mental results in Section 6, updating the filter coefficients
using block-structured correlation matrices gives rise to a
faster convergence than using diagonal correlation matri-
ces, since the inter-channel correlation is taken into
account. This has also been observed in Buchner et al.
(2005) when applying this algorithm to the GSC, i.e. for
N = 2 and 1/l = 0.

Where in (75) a different step size matrix eQv;nn½m�þ
1=l eQx;nn½m� is used for each channel n, it is also possible
to use a common step size matrix eQc, e.g. the sum or the
average over all channels, i.e.

wn;2L½m� ¼ wn;2L½m� 1� þ qð1� kÞG10
2L�2L

eQ�1
c ½m�

�fDH
v;n½m�ev;2L½m� � rn;2L½m�g;

eQc½m� ¼ 1
N

� � PM�1

n¼M�N

eQv;nn½m� þ 1
l
eQx;nn½m�:

ð76Þ

This update formula will be referred to as Algo 3. In fact,
this algorithm is very similar to the algorithm already
presented in Doclo et al. (2004). Note however that the
algorithm in Doclo et al. (2004) has been derived as a
frequency-domain implementation of a time-domain
stochastic gradient algorithm for minimizing the (time-
domain) cost function in (13).
4.3. Unconstrained algorithms

In Section 4.1 the term G01
2L�2L in the calculation of the

correlation matrices has been approximated by I2L/2. It is
also possible to use the same approximation for the term
G10

2L�2L and hence approximate G10
2NL�2NL in the update for-

mula for the filter coefficients in (56) by

G10
2NL�2NL � diag I2L=2 � � � I2L=2½ � ¼ I2NL=2; ð77Þ

resulting in the following so-called unconstrained update
formula, i.e.

w2NL½m� ¼ w2NL½m� 1� þ ð1�kÞ
2
½Qv½m� þ 1

l Qx½m��
�1

� DH
v ½m�ev;2L½m� � r2NL½m�

� �
:

ð78Þ

This update formula gives rise to a lower computational
complexity, since it requires 2N less FFT operations, cf.
Section 5. However, when using this update formula one
cannot guarantee that the second half of F�1

2L wn;2L½m�; n ¼
M � N ; . . . ;M � 1, is equal to zero, cf. (48). In addition,
for the unconstrained algorithms one can also approximate



Table 2
Step size matrix K[m] for different adaptive frequency-domain algorithms

Algorithm Step size matrix

Algo 1 –
constrained (64)

G10
2NL�2NL½ eQv½m� þ 1

l
eQx½m���1

Algo 1 –
unconstrained

1
2 ½ eQv½m� þ 1

l
eQx½m���1

Algo 2 –
constrained (75)

G10
2NL�2NLdiag ½ eQv;nn½m� þ 1

l
eQx;nn½m���1

n o
Algo 2 –

unconstrained

1
2 diag ½ eQv;nn½m� þ 1

l
eQx;nn½m���1

n o
Algo 3 –

constrained (76)
G10

2NL�2NLdiag
n
½ð1=NÞ

PM�1
n¼M�N

eQv;nn½m�

þ 1
l
eQx;nn½m���1

o
Algo 3 –

unconstrained

1
2 diag ð1=NÞ

PM�1
n¼M�N

eQv;nn½m� þ 1
l
eQx;nn½m�

h i�1
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the correlation matrices Qv[m] and Qx[m] by block-struc-
tured or diagonal matrices.
4.4. Summary

Summarizing all presented algorithms in Section 4, the
update formula for the filter coefficients w2NL½m� can be
written as

w2NL½m� ¼ w2NL½m� 1� þ qð1� kÞK½m� DH
v ½m�ev;2L½m� � r2NL½m�

� �
;

r2NL½m� ¼ 1
l
eQx½m�w2NL½m� 1�;

ð79Þ

where the 2NL · 2NL-dimensional step size matrix K[m] is
summarized in Table 2. For all algorithms, the matrixeQx½m� needs to be regularized in order to make sure that
it is positive definite. The algorithm already presented in
Doclo et al. (2004) corresponds to the constrained version
of Algo 3. Fig. 3 depicts the block diagram of these algo-
rithms for updating the filter coefficients.
5. Computational complexity

Table 3 summarizes the computational complexity of
several frequency-domain adaptive algorithms for robust
multi-microphone noise reduction: the QIC-GSC using
the Scaled Projection Algorithm (SPA) (Cox et al.,
1987), the stochastic gradient buffer-based implementa-
Table 3
Computational complexity for frequency-domain adaptive algorithms (M = 3

Algorithm Co

QIC-GSC-SPA (constrained) (Cox et al., 1987) (3M

SDW-MWF (buffer – constrained) (Spriet et al., 2005) (3N

SDW-MWF (Algo 1 – constrained, N = 2) (3N

SDW-MWF (Algo 1 – unconstrained, N = 2) (N
SDW-MWF (Algo 2 – constrained) (3N

SDW-MWF (Algo 2 – unconstrained) (N
SDW-MWF (Algo 3 – constrained) (3N

SDW-MWF (Algo 3 – unconstrained) (N
tion of the SDW-MWF (Spriet et al., 2005), and the dif-
ferent adaptive algorithms implementing the frequency-
domain criterion for the SDW-MWF, which have been
discussed in this paper. The computational complexity
is expressed as the number of operations, i.e. real multi-
plications and additions (MAC), per second. We assume
that one complex multiplication is equivalent to 4 real
multiplications and 2 real additions and that a 2L-point
FFT of a real input vector requires 2L log22L real MACs
(using the radix-2 FFT algorithm). For Algo 1 the cost
of ensuring the positive definiteness of the block-struc-
tured step size matrix, and hence calculating the smallest
eigenvalue of ~Qx½m�, has been included in the computa-
tional complexity. Therefore the computational complex-
ity for Algo 1 in Table 3 is only valid for N = 2, i.e.
when a closed-form expression is available for calculating
the smallest eigenvalue, cf. (74). The computational com-
plexity has been explicitly calculated for the parameter
values used in the simulations in Section 6, i.e. M = 3,
L = 128, sampling frequency fs = 16 kHz, and either
N = M � 1 or N = M input channels to the multichannel
adaptive filter.

From this table we can draw the following conclusions:

• The complexity of all SDW-MWF algorithms (con-
strained version) is higher than the complexity of the
QIC-GSC. However, as has been shown in Spriet et al.
(2004), the SDW-MWF obtains a better noise reduction
than the QIC-GSC for small model errors, while guaran-
teeing robustness against large model errors.

• The complexity of the adaptive algorithms implement-
ing the frequency-domain criterion for the SDW-
MWF is lower than the stochastic gradient buffer-based
implementation of the SDW-MWF (Spriet et al., 2005).
However, this only remains true for a small number of
input channels, since the complexity of these fre-
quency-domain algorithms contains a quadratic term
O(N2).

• The complexity of the algorithms using a diagonal step
size matrix (Algo 2 and Algo 3) is smaller than the com-
plexity of Algo 1 using a block-structured step size
matrix. As will be shown, these algorithms however give
rise to a slower convergence behavior.

• The unconstrained algorithms require 2N less FFT oper-
ations than the constrained algorithms.
, L = 128, fs = 16 kHz, (a) N = M � 1, (b) N = M)

mputational complexity 106 MAC

� 1)FFT + 16M � 9 2.67
+ 5)FFT + 30N + 10 3.94(a), 5.18(b)

+ 2)FFT + 14N2 + 10N + 12 3.46(a)

+ 2)FFT + 14N2 + 12N + 12 2.50(a)

+ 2)FFT + 8N2 + 13N 2.98(a), 4.59(b)

+ 2)FFT + 8N2 + 15N 2.02(a), 3.15(b)

+ 2)FFT + 8N2 + 12N 2.94(a), 4.54(b)

+ 2)FFT + 8N2 + 14N 1.98(a), 3.10(b)
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6. Experimental results

In this section, experimental results are presented for a
hearing aid application. For small-sized microphone
arrays as typically used in hearing aids, robustness is very
important, since these microphone arrays exhibit a large
sensitivity to signal model errors (Spriet et al., 2005). Sec-
tion 6.1 describes the setup and defines the performance
measures used here. In Section 6.2 the performance, i.e.
SNR improvement and speech distortion, and the conver-
gence behavior of different adaptive algorithms is ana-
lyzed, and the effect of different parameter settings (i.e.
filter w0 and 1/l) on the performance and the robustness
against signal model errors is evaluated. In Section 6.3
the performance difference between using a perfect voice
activity detection (VAD) mechanism and using a non-per-
fect VAD is investigated for different input SNRs. In
Section 6.4 the tracking performance is analyzed for a
time-varying scenario.
6.1. Setup and performance measures

A hearing aid with M = 3 omni-directional microphones
(Knowles FG-3452) in an end-fire configuration has been
mounted on the right ear of a dummy head in an office
room. The distance between the first and the second micro-
phone is about 1 cm and the distance between the second
and the third microphone is about 1.5 cm. The reverbera-
tion time T60 of the room is approximately 700 ms. The
speech and the noise sources are positioned at a distance
of 1 m from the head: the speech source in front of the head
(0�), and the noise sources at an angle h with respect to the
speech source. The recording environment is depicted in
Fig. 4. Both the speech and the noise signal have a level
of 70 dB at the center of the head. For evaluation purposes,
the speech and the noise signal are recorded separately. The
sampling frequency is equal to 16 kHz.

The microphone signals are pre-whitened prior to pro-
cessing in order to improve the intelligibility, and the out-
put signal z[k] is de-whitened accordingly (Link and
θ

Fig. 4. Recording environment consisting of a speech source and one or
more noise sources.
Buckley, 1993). The microphones are calibrated using
anechoic recordings of a speech-weighted noise signal at
0� with the microphone array mounted on the head. A
delay-and-sum beamformer is used for the fixed beam-
former, since – in the case of small microphone distances
– this beamformer is quite robust against signal model
errors. The blocking matrix pair-wisely subtracts the
time-aligned calibrated microphone signals to generate
the noise references.

To assess the performance of the different algorithms,
the broadband intelligibility weighted signal-to-noise ratio
improvement DSNRintellig is used, which is defined as
(Greenberg et al., 1993)

DSNRintellig ¼
X

i

I iðSNRi;out � SNRi;inÞ; ð80Þ

where the band importance function Ii expresses the impor-
tance of the ith one-third octave band with center
frequency f c

i for intelligibility, and where SNRi,out and
SNRi,in represent respectively the output SNR and the in-
put SNR (in dB) in this band. The center frequencies f c

i

and the values Ii are defined in Acoustical Society of Amer-
ica (1997). The intelligibility weighted SNR improvement
reflects how much the speech intelligibility is improved by
the noise reduction algorithms, but does not take into
account speech distortion.

In order to measure the amount of (linear) speech
distortion, we similarly define an intelligibility weighted
spectral distortion measure SDintellig,

SDintellig ¼
X

i

I iSDi; ð81Þ

with SDi the average spectral distortion (dB) in the ith one-
third octave band,

SDi ¼
1

21=6 � 2�1=6
� �

f c
i

Z 21=6f c
i

2�1=6f c
i

10log10Gxðf Þj jdf ; ð82Þ

with Gx(f) the power transfer function for the speech com-
ponent from the input to the output of the noise reduction
algorithm.

In order to exclude the effect of the spatial pre-proces-
sor, the performance measures (80) and (81) are calculated
with respect to the output of the fixed beamformer, i.e. the
speech reference y0[k]. In some experiments, a microphone
gain mismatch of 4 dB is applied to the second microphone
in order to illustrate the sensitivity to signal model errors.
Among the different possible signal model errors, micro-
phone mismatch has been found to be quite harmful to
the performance of the GSC in a hearing aid application
(Spriet et al., 2005). In hearing aids, microphones are rarely
matched in gain and phase, with typical gain and phase
differences of up to 6 dB and 10� (Jensen, 2004).

All algorithms are evaluated with a filter length L = 128.
In Sections 6.2 and 6.4, the input SNR of the microphone
signals is equal to 0 dB, whereas in Section 6.3 different
input SNRs, ranging from �10 dB to 5 dB, are used. In
Section 6.2 a (non-perfect) energy-based VAD (Van
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Gerven et al., 1997) is used, whereas in Section 6.4 a perfect
VAD is used, i.e. the speech periods and the noise-only
periods have been marked manually. In Section 6.3 the per-
formance difference between using a perfect and a non-per-
fect VAD is investigated.
6.2. SNR improvement and robustness against microphone

mismatch

For the experiments in this section, the desired speech
source at 0� consists of sentences from the HINT-database
(Nilsson et al., 1994) spoken by a male speaker, and a com-
plex noise scenario consisting of five spectrally non-station-
ary multi-talker babble noise sources at 75�, 120�, 180�,
240� and 285�, is used. The input SNR of the microphone
signals is equal to 0 dB and an energy-based VAD (Van
Gerven et al., 1997) is used. As will be seen in Section
6.3, the effect of using an energy-based VAD instead of a
perfect VAD is quite small for SNR = 0 dB.

Fig. 5 plots the convergence of the SNR improvement
for different adaptive algorithms (constrained vs. uncon-
strained, block-structured vs. diagonal step size matrix)
for different values of the step size parameter q and the
exponential forgetting factor k. Instead of k we use the cor-
responding time Tk, i.e. the factor k corresponds to an aver-
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aging of the correlation matrices over approximately
1/(1 � k) blocks of L samples, such that

T k ¼
1

1� k
L
fs

: ð83Þ

Hence, for L = 128, Tk = 0.8 s corresponds to k = 0.99,
Tk = 1.6 s corresponds to k = 0.995, and Tk = 3.2 s corre-
sponds to k = 0.9975. Typically, quite large values are used
for the exponential forgetting factor, implying that mainly
the long-term spatial and spectral characteristics of the
speech and the noise sources are used. In this experiment,
we have used the SDR-GSC (N = 2) with trade-off param-
eter 1/l = 0.5 and with no microphone mismatch present.
Obviously, similar plots can be obtained for the SP-
SDW-MWF (N = 3), for different values of the trade-off
parameter and when microphone mismatch is present.
From Fig. 5 it can be seen that a block-structured step size
matrix gives rise to a substantially faster convergence than
a diagonal step size matrix, which can be explained by the
fact that a block-structured step size matrix takes into ac-
count the inter-channel correlation. Hence, the observa-
tions in Buchner et al. (2005) for the GSC are also valid
for the SDR-GSC and the SP-SDW-MWF. In addition,
the main factor affecting the convergence speed is
q(1 � k), i.e. the larger q, the faster the convergence and
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the larger k, the slower the convergence. However, the
SNR improvement at convergence will be worse for larger
q(1 � k) because of the larger misadjustment of the adap-
tive filter coefficients (taking q(1 � k) too large obviously
even leads to divergence). The SNR improvement at con-
vergence is slightly better for larger k, because a better esti-
mate of the regularization term is obtained (for spectrally
and/or spatially stationary sources). Taking k too small re-
sults in a highly time-varying regularization term, which is
undesirable. Moreover, for this scenario, the performance
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difference between the constrained and the unconstrained
update formula is quite small. For the subsequent experi-
mental results in this section and in Section 6.3 we will
use q = 2 and Tk = 1.6 s.

Fig. 6 plots the SNR improvement and the speech dis-
tortion at convergence for the SDR-GSC (N = 2) and for
the SP-SDW-MWF (N = 3) as a function of the trade-off
parameter 1/l, using the unconstrained update formula
with block-structured step size matrix. This figure also
depicts the effect of a gain mismatch of 4 dB at the second
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microphone. Similar conclusions as in Spriet et al. (2004),
Spriet et al. (2005) can be drawn:

• SDR-GSC (N = 2): In the absence of microphone mis-
match, the amount of speech leakage into the noise ref-
erences is limited, such that the speech distortion is small
for all 1/l. However, since there is some speech leakage
present due to reverberation, the SNR improvement
Fig. 8. Spectrogram of the microphone signal u1[k], the speech reference signal
and SP-SDW-MWF (1/l = 0.1,0.5), with and without mismatch (unconstraine
VAD).
decreases for increasing 1/l. In the presence of micro-
phone mismatch, the amount of speech leakage into
the noise references grows. For the standard GSC, i.e.
1/l = 0, significant speech distortion now occurs and
the SNR improvement is seriously degraded. Setting
1/l > 0 improves the performance of the GSC in the
presence of signal model errors, i.e. the speech distortion
decreases and the SNR degradation becomes smaller.
y0[k], and the output signal z[k] for GSC (1/l = 0), SDR-GSC (1/l = 0.5)
d update, block-structured step size matrix, q = 2, Tk = 1.6 s, energy-based



0 2 4 6 8 10 12 14 16 18 20
−1

0

1
P

er
fe

ct
 V

A
D

Speech component x
0
[k] and perfect VAD

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

S
N

R
=

 −
10

dB

Speech detected as noise = 93%, Noise detected as speech = 3%

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

S
N

R
=

 −
5d

B

Speech detected as noise = 67%, Noise detected as speech = 3%

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

S
N

R
=

0d
B

Speech detected as noise = 19%, Noise detected as speech = 5%

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

S
N

R
=

5d
B

Speech detected as noise = 2%, Noise detected as speech = 21%

Time [s]

Fig. 9. VAD performance for different input SNRs, ranging from �10 dB to 5 dB. For each input SNR the percentage of speech frames classified as noise
and noise frames classified as speech is indicated.

S. Doclo et al. / Speech Communication 49 (2007) 636–656 651
• SP-SDW-MWF (N = 3): The SNR improvement and
the speech distortion also decrease for increasing 1/l.
Compared to the SDR-GSC, the speech distortion how-
ever is larger4, but both the SNR improvement and the
speech distortion are hardly affected by microphone
mismatch.

Fig. 8 shows the spectrograms of the microphone signal
u1[k], the speech reference signal y0[k], and the output sig-
nal z[k] for the GSC (1/l = 0), the SDR-GSC (1/l = 0.5)
and the SP-SDW-MWF (1/l = 0.1,0.5), with and without
mismatch. As can be observed from this figure, in the pres-
ence of mismatch significant speech distortion occurs for
the GSC, whereas less distortion occurs for the SDR-
GSC (1/l = 0.5). Although the SP-SDW-MWF seems to
reduce substantially more noise than the SDR-GSC, also
more spectral distortion occurs. However, the performance
difference for the SP-SDW-MWF with and without mis-
match is hardly noticeable.

Fig. 7 depicts the SNR improvement and the speech dis-
tortion of the QIC-GSC as a function of the constraint
value b2, with and without microphone mismatch. Like
4 In Spriet et al. (2004), it has been shown that the SP-SDW-MWF can
be interpreted as an SDR-GSC with a single-channel post-filter in the
absence of speech leakage.
the SDR-GSC, the QIC-GSC increases the robustness of
the GSC: in the presence of mismatch, the speech distortion
decreases for decreasing b2 (but also the SNR improvement
decreases). The constraint value b2 should be chosen such
that the maximum allowable speech distortion level is not
exceeded for the largest possible model errors. E.g. a max-
imum allowable speech distortion level of 4 dB for a gain
mismatch of 4 dB, corresponding to b2 = 0.3, results in
an SNR improvement of 4.8 dB with mismatch and
5.0 dB without mismatch. On the other hand, for the
SDR-GSC the emphasis on speech distortion is only
increased when the amount of speech leakage grows. As
a result, a better SNR improvement is obtained without
mismatch (6.8 dB for 1/l = 0.9), while guaranteeing suffi-
cient robustness when mismatch occurs (4.8 dB). The
SP-SDW-MWF even further improves the performance
in the presence of mismatch (6.3 dB).
6.3. Impact of energy-based VAD

In this section, we compare the performance, i.e. the
SNR improvement and the speech distortion, between
using a perfect VAD and using an energy-based VAD
(Van Gerven et al., 1997). This comparison is performed
for different input SNRs, ranging from �10 dB to 5 dB,
which is an important range for hearing aid applications.
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We have used the same speech and noise scenario as in Sec-
tion 6.2.

Fig. 9 depicts the speech component x0[k] in the speech
reference, together with the perfect VAD and the output of
the energy-based VAD for different input SNRs. For each
input SNR, the percentage of speech frames classified as
noise and noise frames classified as speech is indicated.
As can be seen, the percentage of speech frames classified
as noise decreases as the input SNR grows, whereas the
percentage of noise frames classified as speech increases
as the input SNR grows. However, wrongly classified
speech frames have a larger impact on the performance
than wrongly classified noise frames, as already shown in
Spriet et al. (2005). Hence, we expect the performance dif-
ference between using a perfect and an energy-based VAD
to be larger for low input SNRs.

Fig. 10 plots the SNR improvement and the speech dis-
tortion at convergence for the GSC (1/l = 0) and the SDR-
GSC (1/l = 0.5) as a function of the input SNR, when
using a perfect VAD and when using the energy-based
VAD, with and without microphone mismatch. We have
used the unconstrained update formula with block-struc-
tured step size matrix. For all input SNRs, the conclusions
from Section 6.2 still hold, i.e. in comparison with the GSC
the SDR-GSC gives rise to an improved robustness (lower
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Fig. 10. Effect of energy-based VAD on SNR improvement and speech distorti
with and without microphone mismatch (unconstrained update, block-structu
speech distortion and smaller SNR degradation) when
microphone mismatch occurs. These effects are more pro-
nounced for high SNRs, presumably due to the fact that
relatively more speech leakage components are present in
the noise references. Compared to the perfect VAD, the
energy-based VAD gives rise to a degraded performance,
i.e. lower SNR improvement and slightly higher speech dis-
tortion. This effect is more pronounced for low SNRs, since
at low SNRs the energy-based VAD generates more speech
detection errors.

Fig. 11 plots the SNR improvement and the speech
distortion at convergence for the SP-SDW-MWF (1/l =
0.1,0.5) as a function of the input SNR, when using a per-
fect VAD and when using the energy-based VAD, with and
without microphone mismatch. It can be observed that the
trade-off parameter 1/l mainly has an influence on the
speech distortion and to a smaller extent on the SNR
improvement. Moreover, for all conditions the perfor-
mance measures are hardly affected by microphone mis-
match. However, it can be observed that compared to the
perfect VAD, the energy-based VAD gives rise to a
degraded performance, especially for low SNRs. In gen-
eral, the performance of the SP-SDW-MWF is better than
the SDR-GSC when microphone mismatch occurs, also
when using the energy-based VAD.
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6.4. Tracking performance

To investigate the tracking performance of the fre-
quency-domain adaptive algorithms, we consider a noise
scenario consisting of five multi-talker babble noise sources
at 75�, 120�, 180�, 240� and 285�, and a switching speech
scenario with a speech source at 0� (scenario 1) and 45�
(scenario 2). Every 20 s, the speech scenario suddenly
changes between scenarios 1 and 2. We have used a station-
ary speech-weighted noise signal both for the speech source
and for the noise sources. The speech component consists
of alternating segments of signal and silence, each with a
length of 1600 samples. The input SNR of the microphone
signals is equal to 0 dB and we have used a perfect VAD.

In addition to the SNR improvement and the speech dis-
tortion, we also compare the filter convergence, defined as

Dw½m� ¼ kw½m� � woptk
kwoptk

; ð84Þ

where for each of the two noise scenarios the ‘‘optimal’’ fil-
ter wopt is calculated using (14) and where the correlation
matrices in (14) are constructed using all available speech
and noise samples.

Fig. 12 plots the filter convergence Dw[m] for the SDR-
GSC (N = 2), using the unconstrained update formula
(block-structured vs. diagonal step size matrix), for differ-
ent values of q and Tk. The trade-off parameter 1/l = 0.5
and a microphone mismatch of 4 dB is present. For the
switching scenario, similar results as in Fig. 5 are
obtained: the block-structured step size matrix gives rise
to a substantially faster convergence than the diagonal
step size matrix and the main factor affecting the conver-
gence speed is q(1 � k), i.e. the larger q, the faster the con-
vergence and the larger k, the slower the convergence. For
equal q(1 � k), the convergence behavior is smoother for
larger k.

Fig. 13 plots the SNR improvement, the speech distor-
tion and the filter convergence for the GSC (1/l = 0) and
the SDR-GSC (1/l = 0.5), both using the unconstrained
update formula with block-structured step size matrix, with
and without mismatch. The step size parameter q = 2 and
Tk = 0.8 s. Again, this figure shows that when microphone
mismatch is present, the noise reduction performance of
the GSC decreases (quite substantially for scenario 2) and
the speech distortion substantially increases (more for sce-
nario 2 than for scenario 1). Compared to the GSC, the
SDR-GSC (1/l = 0.5) gives rise to considerably less speech
distortion when microphone mismatch is present, whereas
the SNR improvement for both scenarios only slightly
decreases.
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Fig. 12. Filter convergence Dw[m] of SDR-GSC for a switching speech scenario (unconstrained update, 1/l = 0.5, mismatch, perfect VAD).
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7. Conclusion

In this paper, we have presented a novel frequency-
domain criterion for the SDW-MWF cost function, trading
off noise reduction and speech distortion. From this fre-
quency-domain criterion several adaptive algorithms have
been derived for implementing the SDW-MWF. The main
difference between these algorithms consists in the calcula-
tion of the step size matrix (constrained vs. unconstrained,
block-structured vs. diagonal) used in the update formula
for the multichannel adaptive filter. The computational
complexity for all adaptive algorithms is quite similar,
where the complexity for the unconstrained algorithms is
smaller than the constrained algorithms and the complexity
for the diagonal step size matrix is smaller than the block-
structured step size matrix. Experimental results with a
small-sized microphone array in a hearing aid show that
the SDR-GSC and the SP-SDW-MWF are more robust
against signal model errors than the GSC, both in station-
ary and in time-varying scenarios. The main factor affecting
the convergence speed is q(1 � k), and the block-structured
step size matrix gives rise to a substantially faster conver-
gence than the diagonal step size matrix, only at a slightly
higher computational cost. Compared to a perfect VAD,
an energy-based VAD generally gives rise to a degraded
performance, especially at low input SNRs (<0 dB), since
at these SNRs an energy-based VAD generates more detec-
tion errors.
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