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ABSTRACT

This paper discusses an SVD-based signal enhancement proce-
dure, applied to noise reduction in multi-microphone speech sig-
nals. The SVD-based signal enhancement procedure amounts to
a specific optimal filtering problem when the so-called ‘desired
response’ signal cannot be observed. The optimal filter can then
be written as a function of the generalized singular vectors and sin-
gular values of a speech and noise data matrix.
It is shown that the SNR improvement provided by the SVD-based
optimal filtering technique is better than the improvement obtained
with standard beamforming techniques. Moreover most beam-
forming techniques assume the position of the speech source and
the microphone array configuration to be known. Therefore the
performance of these techniques is rather sensitive to deviations
from these assumptions, i.e. incorrect estimation of the position of
the speech source and uncalibrated microphone arrays. It is shown
that the SVD-based optimal filtering technique is more robust to
such deviations than standard beamforming techniques.

1. INTRODUCTION

In many speech communication applications, like hands-free mo-
bile telephony and audio-conferencing, the recorded speech sig-
nals contain a considerable amount of acoustic noise. This is mainly
due to the fact that the speaker is located at a certain distance
from the microphones, which allows the microphones to record
the noise sources too. Background noise causes a signal degrada-
tion which can lead to total unintelligibility of the speech.
Some techniques for noise reduction in speech have been proposed
which are based on the singular value decomposition (SVD) [1][2].
Most of these techniques deal with the single microphone case and
rely only on signal specific characteristics.
When using a microphone array, the spatial configuration of the
speech and noise sources and the microphone array itself consti-
tute an important aspect which should be incorporated into the
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signal enhancement procedure. Therefore multi-microphone algo-
rithms should exploit the characteristics of the channel between
the sources and the microphone array. The SVD-based multi-
microphone extensions proposed so far [3] do not exploit these
channel characteristics.
Here, an optimal filtering approach is applied for the derivation of
the SVD-based procedure. In section 2 the SVD-based optimal
filtering technique is described and a number of simple symmetry
properties of the optimal filter are derived. When the optimal fil-
tering technique is applied to noise reduction in multi-microphone
speech signals, it is shown that for simple scenarios this technique
exhibits some kind of beamforming behavior. Section 3 compares
the SNR improvement of this technique with standard beamform-
ing techniques, showing improved performance. Section 4 finally
compares the robustness of the SVD-based optimal filtering tech-
nique and standard beamforming techniques. Robustness is com-
pared for incorrect estimation of the position of the speech source
and for deviations in the configuration and characteristics of the
microphone array.

2. SVD-BASED OPTIMAL FILTERING

2.1. Preliminaries

Consider the following optimal filtering problem (figure 1) : uk ∈
R

N is the filter input vector at time k, yk is the filter output,
yk = uT

k W, with W ∈ R
N×N the optimal filter. The vector

dk ∈ R
N is the desired response vector and ek = dk − yk is

the error vector. The MSE (mean square error) cost function for
optimal filtering is
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The optimal filter WWF is the well-known Wiener filter,
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Figure 1: Optimal filtering problem with desired response dk



In the following, we consider problems where only observations
of uk are available, and the observed signal uk contains a signal-
of-interest sk (e.g. a speech signal) plus additive noise nk,

uk = sk + nk. (3)

If we consider speech applications and use a robust speech/noise
detection algorithm [4], noise-only observations can be made dur-
ing speech pauses (time k′), uk′ = nk′ , which allows to estimate
the spatial and temporal color of the noise. Our goal is to recon-
struct the signal-of-interest sk from uk by means of a linear filter
W. In the optimal filtering context this means that the desired sig-
nal is in fact equal to the signal-of-interest, dk = sk, but that now
the desired signal dk is an unobservable signal.
We make two assumptions : short-term stationarity of the noise,
E

{
nk · nT

k

}
= E

{
nk′ · nT

k′

}
, and statistical independence of the

speech and noise signals, E
{
sk · nT

k

}
= 0. Using these assump-

tions the optimal filter WWF becomes
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An interesting simplification is derived from the joint diagonaliza-
tion [5] of the symmetric correlation matrices E

{
uk · uT

k

}
and
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}
,

{
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In practice, X , σ2
i and η2

i are estimated by means of a generalized
singular value decomposition (GSVD) of the speech data matrix
Uk ∈ R

p×N and the noise data matrix Nk ∈ R
q×N (with p and

q typically larger than N ),
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such that E
{
uk · uT

k

}
' UT

k ·Uk and E
{
nk · nT

k

}
' NT

k ·Nk.
The GSVD of the matrices Uk and Nk is defined as

{
Uk = U · diag{σ̃i} · X̃

T

Nk = V · diag{η̃i} · X̃
T ,

(7)

with U and V orthogonal matrices, X̃ an invertible (but not neces-
sarily orthogonal) matrix and σ̃i

η̃i

the generalized singular values.
By substituting these formulas into (4), one obtains

WWF = X̃
−T · diag{

σ̃2
i − η̃2

i

σ̃2
i

} · X̃T
. (8)

In fact, the filter WWF belongs to a more general class of estima-
tors, which can be described by

W = X̃
−T · diag{f(σ̃2

i , η̃
2
i )} · X̃T

. (9)

The estimation error ek is defined as ek = sk − yk = sk −
WT

WF uk, such that error covariance matrix can be written as

E
{
ek · eT

k

}
= E

{
nk · nT

k

}
· WWF . (10)

In particular, we are interested in the diagonal elements of the ma-
trix {E

{
nk · nT

k

}
· WWF }ii, since these elements indicate how

well {sk}i (the ith component of sk) is estimated in the time se-
ries filtering context (see section 2.2). The smallest element on
the main diagonal of the error covariance matrix corresponds to
the best estimator. The best estimator, which is the correspond-
ing column of WWF , will be denoted as wmin

WF ∈ R
N , and the

corresponding column index will be denoted by imin.

2.2. Time series filtering

When applying the optimal filtering technique to single micro-
phone noise reduction, the vector uk is taken from a time series
u(k), i.e.

uk =
[

u(k) u(k − 1) u(k − 2) . . . u(k − N + 1)
]T

.
(11)

The vectors sk and nk are similarly defined. The data matrices
Uk and Nk, as defined in equation (6), now are Toeplitz matri-
ces and the correlation matrices E

{
uk · uT

k

}
and E

{
sk · sT

k

}
are

symmetric Toeplitz matrices. Symmetric Toeplitz matrices belong
to the class of double symmetric matrices, which are symmetric
about both the main diagonal and the secondary diagonal. The
eigenvectors of such matrices are known to have special symmetry
properties [6]. Using these properties, one can prove the following
symmetry property for the optimal filter WWF [7].

Theorem 1 If WWF is constructed according to equation (9),
then WWF satisfies the symmetry properties

WWF = J · WWF · J (12)
W

T
WF = J · WT

WF · J, (13)

with J the reverse identity matrix. These properties hold in the
white noise case as well as in the colored noise case.

2.3. Multi-channel filtering and beamforming behavior

Consider M microphones where each microphone signal mj(k),
j = 1 . . . M , consists of a filtered version of the desired signal
s(k) and an additive noise term, mj(k) = hj(k)⊗ s(k) + nj(k).
The vector uk ∈ R

MN now takes the form

uk =
[

mT
1k mT

2k . . . mT
Mk

]T
, (14)

mjk =
[

mj(k) mj(k − 1) . . . mj(k − N + 1)
]T

.
(15)

Using the same formulas as for the single channel case, the opti-
mal filter WWF and the best (MN)-taps estimator wmin

WF can be
computed. The enhanced signal ŝ(k) can be computed as

ŝ(k) =
[

ŝ(k) ŝ(k + 1) . . . ŝ(k + p − 1)
]T

= Uk ·w
min
WF ,
(16)

where ŝ(k) is an estimate for himin
(k) ⊗ s(k). This operation

can be considered as multi-channel filtering (see figure 2), where
each of the M channels is filtered with an N -taps filter Aj , with
wmin

WF =
[

AT
1 AT

2 . . . AT
M

]T .
In [7] the frequency and spatial filtering properties of the SVD-
based optimal filtering technique are discussed, showing that this
technique exhibits the desired beamforming behavior when we
consider localized sources and no multi-path propagation.
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Figure 2: Multi-channel filtering

3. COMPARISON WITH STANDARD BEAMFORMING

In this section we compare the performance (SNR of the enhanced
signal ŝ(k)) of the SVD-based optimal filtering technique and stan-
dard beamforming techniques (delay-and-sum beamforming and
Generalized Sidelobe Canceler (GSC)) [8]. The simulated room
configuration is depicted in figure 3, with dimensions 7m×3.5m×
3m. It consists of a microphone array, a speech source and a
noise source. The linear equi-spaced microphone array has 5 mi-
crophones and the distance between two adjacent microphones is
5cm. The speech source is located in front of the microphone
array. The signals used are an 8 kHz clean speech signal and a
temporally white noise source.

Desired signal

Microphone
array

Noise

����

Figure 3: Room configuration

The comparison in SNR improvement is done for different rever-
beration times T60 of the room. Low reverberation times corre-
spond to highly correlated noise, while high reverberation times
correspond to highly uncorrelated (diffuse) noise. The reverbera-
tion time T60 can be expressed as a function of the reflection coef-
ficient α of the walls, according to Eyring’s formula,

T60 =
0.163V

−S log(1 − α)
, (17)

with V the volume of the room and S the total surface of the room.
The reflection coefficient is a necessary parameter for calculating
the impulse response through the image method described in [9].
Figure 4 compares the performance of the delay-and-sum beam-
former and the GSC-beamformer with the SVD-based optimal fil-
tering technique (filterlength N = 10, 20, 50). As can be seen,
for small T60 the GSC-beamformer performs much better than
for high T60. This is obvious because the GSC-beamformer is
designed for correlated noise, not for diffuse noise. Unlike the
GSC-beamformer, the SVD-based optimal filtering technique still
performs well for high T60. As can be seen, for all reverberation
times, the SVD-based optimal filtering technique performs better
than the GSC-beamformer, if the filterlength N is large enough.
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Figure 4: SNR of noisy signal m1(k) and SNR of enhanced signal
ŝ(k) for delay-and-sum beamformer, GSC beamformer and SVD-
based optimal filtering technique (N = 10, 20, 50)

4. ROBUSTNESS ISSUES

Using the same room configuration, we compare the sensitivity of
the optimal filtering technique and the GSC-beamformer for devia-
tions from the nominal situation. In this case the nominal situation
can be described as follows :

• speech source located in front of microphone array
• linear equi-spaced microphone array
• all microphones have the same characteristics (gain, spatial

directivity, frequency behavior, . . . )

The GSC-beamformer starts from the a priori assumption that the
position of the speech source and the microphone array config-
uration are known. The SVD-based optimal filtering technique
does not make any assumptions of this kind. Therefore we can
already expect the GSC-beamformer to be more sensitive to devi-
ations from the nominal situation. We will compare the robustness
for three kinds of deviations :

1. incorrect estimation of the position of the speech source (we
assume that the speech source is located at θnom = 90◦,
while in fact it is located at a different angle θ)

2. microphone displacement (we assume a linear equi-spaced
microphone array, while in fact the second microphone is
not at its nominal position xnom

mic2 = 2.05)
3. microphone gain (we assume that all microphones have the

same gain γnom = 1, while in fact the second microphone
has a different gain γ)

4.1. Incorrect estimation of the position of the speech source

Figure 5 shows the difference in performance between the SVD-
based optimal filtering technique and the GSC-beamformer for dif-
ferent angles θ . The SVD-based optimal filtering technique is
more robust than the GSC-beamformer if the difference in perfor-
mance increases the more the actual situation deviates from the
nominal situation. In figure 5 it can be observed that the difference
in performance increases the more the angle θ deviates from the
nominal angle θnom = 90◦.

4.2. Microphone displacement

Figure 6 shows the difference in performance between the SVD-
based optimal filtering technique and the GSC-beamformer for dif-



ferent microphone positions xmic2. Because the difference in per-
formance increases the more the microphone position xmic2 de-
viates from the nominal position xnom

mic2 = 2.05, we can conclude
that for microphone displacement, the SVD-based optimal filtering
technique is more robust than the GSC-beamformer.

4.3. Microphone gain

Figure 7 shows the difference in performance between the SVD-
based optimal filtering technique and the GSC-beamformer for a
different gain γ of the second microphone. Because the difference
in performance increases the more the gain γ deviates from the
nominal gain γnom = 1, we can conclude that for this kind of de-
viation, the SVD-based optimal filtering technique is more robust
than the GSC-beamformer. Theoretically it can be proven that the
SVD-based optimal filtering technique is in fact independent of
different gains for the different microphones.

5. CONCLUSION

In this paper we have shown that the described SVD-based optimal
filtering technique outperforms the standard GSC-beamformer. For
all reverberation times the SVD-based optimal filtering technique
results in a larger SNR improvement than the GSC-beamformer.
Since in practice a combination of all three described deviations
from the nominal situation occur, we can expect the SVD-based
filtering technique to be considerably less sensitive than the GSC-
beamformer.
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Figure 5: SNR-difference between SVD-based optimal filtering
and GSC-beamformer for different angles θ of the speech source
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