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ABSTRACT

In this paper a general cost function for adaptive multi-
microphone noise reduction is proposed. From this cost-func
tion, many existing adaptive multi-microphone noise reitunc
techniques can be derived, such as linearly constraineidmin
variance (LCMV) beamforming, transfer-function LCMV, sof
constrained beamforming and speech-distortion weightdt-m
channel Wiener filtering as well as combined approaches.

1. INTRODUCTION

In speech communication applications, such as telecandarg,
hearing aids, handsfree telephony, the presence of bagkgro
noise may seriously degrade the quality and intelligipitit the
speech signal. To enhance the speech recordings, sevepal ad
tive multi-microphone noise reduction techniques havalipee-
posed in the literature. Two categories of adaptive teakesq
can be distinguished: adaptive beamforming and multi-ocekan
Wiener filtering based techniques.

Adaptive beamforming techniques typically solve a lingarl
constrained minimum variance (LCMV) optimization critamj
minimizing the output power subject to the (hard) constrtiat
signals coming from a certain region or direction (i.e. itiethe
direction of the desired speech source) are preserved.[Th2]
classical LCMV beamformer assumes free-field propagation.
improve performance in the presence of reverberation, Bmex
sion to the classical LCMV beamformer that incorporates-arb
trary transfer functions, referred to as transfer functi@MVv
(TF-LCMV), has been suggested [3]. An efficient realizatbdn
the LCMV is the Generalized Sidelobe Canceller (GSC) [1, 2].
A second category are multi-channel Wiener filtering (MWF)
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and/or online estimated speech model and the use of a soft or
hard constraint on the amount of speech distortion.

2. GENERAL COST FUNCTION

2.1. Signal model

Let X;(f), i =1,..., M denote the frequency-domain micro-
phone signals

Xi(f) = X3 () + Xi'(f)

and letX(f) € CM*! be defined as the stacked vector

)

X(f) [ Xi(f) Xa(f) xu(f)]" @

XA () +X(f) ®)

Defining H; ( f) as the acoustic transfer function from the speech
sourceS(f) to thei-th microphone X°( f) can be written as

X*(f) = H°(f)S(f) = H*(f) X7 (f),

with H*(f) the vector with transfer function ratios relative to
the first microphone

“

B () =B (f)/Hi()=[1 BY . D] )

To simplify notation, we define the power spectral densityy

of the speech and the noise in théh microphone signal as
Px,(f) X7 (X7 (N (6)
PL(f) = elXMHXI()) )

based techniques such as the speech-distortion weighteB MW |n addition, we define the noise and speech correlation ratri

(SDW-MWF) [4] and the soft-constrained beamforming tech-
nigques [5]. In contrast to adaptive beamforming technigues
these techniques exploit both spectral and spatial differe be-
tween the speech and the noise sources, so that inevitably so
speech distortion will be introduced.

In this paper, we show that the above mentioned adaptive nois

as:

R"(f)=e{X" (/)X ()}, ©)
R°(f) =e{X°(/)X>(f)} =Px, (HHE(HE>T(f).(9)

reduction techniques as well as some combinations can be de2.2. Free-field propagation model

rived from one general cost function, trading off betweetpat
noise power and a speech distortion. Basically, the nothecre
tion techniques differ from each other in the use of an arprio
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Single point source

Assuming free-field propagation, the contributi&i( f, p) of a
point sourceS( f, p) at locationp in thei-th microphone signal
(with coordinateg;) equals

Xi(f,p) Ai(f,p)ai(p)e > TP S(f,p), (10)

1in the sequel, the superscriptandn are used to refer to the speech
and noise contribution of a signal.
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where A;(f, p) represents the characteristic of théh micro-
phone,a;(p) is the attenuation of the point souré f, p) at
the position of the-th microphone (near-field effect) and

_ |Ip—pil
)_ C

7i(p (11)

e and/or based on a prior knowled@®,, (f) of the noise
correlation matrix, which is constructed through calibra-
tion measurements or mathematical models.

In this paper, we focus on an online estimated noise model.
For extensions with a pre-defined noise model (includingdfixe
beamformers), we refer to [6].

with ¢ the speed of sound (340 m/s), is the propagation delay The last two terms inJ(W) denote the distortion energy

from the point sourcé&( f, p) to thei-th microphone. Defining
the first microphone signal; (f, p) as reference signal,

X(f,p) = d(f,p)X1(f,p) (12)
whered(f, p) is the steering vector
1
ﬁzE;,pi a2Ep; e—J2mf (m2(P)—71(P))
~ 1(/,P) a1(pP
d(f,p) = (13)

Anm (f.P) an(P) 6*}2Wf(TNI(P)*Tl(P))
A1(f,p) a1(p)

Multiple point sources
If several point source§(f, p) at positionsp € P are active,
the microphone signalX( f) can be modeled as:

X(f) = / _dUpxi(p) (14)

with X (f, p) defined by (10). For uncorrelated point sources

e{ X1 (f, pe) X1 (f.p1)} = Px, (f, Pr) 0wt (15)

2.3. Multi-microphone noise reduction

In a multi-microphone noise reduction system, the micragho
signals X; (f) are filtered by (adaptive or fixed) filtedd’; (f)

between the output speech compon&®™ (f)X*(f) (or
WHT(f)Xs,(f)) and a reference speech signa¥(f) (or
D, (f)). Again, the output speech distortion energy may be

e estimated  online (i.e., as {(D°(f) -
WH(HX (D (f) = WEHX ()T

e and/or based on prior knowledgeX;, (f) for
the microphone signals (i.e., as{(D;.(f) -
WHHXL (D) = WIHXL())T)D.

Again, this model can be constructed based on calibration
data or based on mathematical models.

Parameterg., 2 trade off between speech distortion and noise
reduction: the largep: or uo, the more emphasis is put on
speech distortion. Depending on the use of prior knowledge o
the speech correlation matrix and the use of a hard constrain
on the speech distortion term (i.@u1,2 = 00 Of 1,2 # 00),
different adaptive multi-microphone noise reduction téghes

can be obtained, as indicated in Table 1. When using a hard
constraint (i.ey1 = oo Or ue = o©0), NOISe suppression is
only achieved in the subspace orthogonal to the defined or ac-
tual speech subspace. Signals in the (defined or actualitspee
subspace are passed through undistorted by the noiseimduct
algorithm. The use of a soft-constraint;(# oo Or u2 # )
typically results in a spectral filtering of the desired sgeeom-
ponentD?(f) since the speech and noise subspace are gener-
ally not orthogonal (often, the noise subspace spans thpleten
space).

In the next sections, the different techniques are expthine

and combined in order to obtain an enhanced speech signalygre detail.

Z(f). Define

W(f)=[ Walf) Walf) war(f) 17,

then the outpu( f) of the multi-channel noise reduction algo-
rithm is

Z(f) =

(16)

WH(F) X5(f) + W (HX™(f).
Zs(f)

7

Zn(f)

The goal of the filterW () is to minimize the output noise
power as much as possible without severely distorting teedp
signal. The amount of speech distortion is measured wifrects
to a reference speech sigraf (/). This reference signal can be
the speech compone#t; (f) in the first microphone, the speech
source signal(f) or the speech component in the output of a
fixed beamformer (e.g., the speech reference in the sygpiat
processed SDW-MWH]).

2.4. General cost function

A general cost functiod (W (f)) for the filterW ( f) is (18) on
the following page. The first two terms il(W (f)) correspond
to the output noise energy. This output noise energy can be:

e estimated online (i.e., the terfWWV " R" (f)W(f))

3. A-PRIORI SPEECH MODEL ( 1 = 0)

The classical LCMV beamformer [1, 2] and the soft-conseéin
beamformer [5] exploit a-priori knowledge about the speech
statistics. Assumptions are made about the microphones (mi
crophone characteristics, positions), the location ofdésired
speaker and the room acoustics (e.g., no reverberatiorgserh
assumptions are often violated in practice so that the perfo
mance may be suboptimal.

3.1. Hard constraint (12 = 00): LCMV

The LCMV beamformer [1, 2] minimizes the output noise power
subject to the constraint that signals coming from a cettaia-

tion or region of interest are preserved. This correspoodkée
cost function (18) withpie = oo and i = 0. Typically, the
free-field propagation model (12)-(13) is assumed for tleesp
signal: B

wherep;, refers to the position of the speech source. The refer-
ence signabD;, (f) equalsX,, 1(f).

The filterW(f) equals

(R () + 2P, (HAQT) ™ 1P, (DA (,p%). (20)
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J(W(f)) =
me{(D°(f) =W (£)X(f))(D

(1= NWT(HR(HIW(f) + AW ()R (HW(f) +
“(F)=WH(HX ()T + pae{(D5, (f) =W ()X (1)) (D () =W ()X, ()7} (18)

[ Speech model Hard/Soft constraint on speech distortipn Technique |
A-priori =0 2 = 00 LCMV
(Section 3) w1 =0 2 # 00 Soft-constrained beamforming
Online H1 = 00 p2 =0 TF-LCMV
(Section4) | p1 # oo p2 =0 SDW-MWF
Combination | u1 # oo 2 = 00 SDR-GSC
(Section5) | u1 # oo 2 # 00 Combination SDW-MWF/soft-constrained

Table 1: Classification of adaptive multi-microphone noisguction techniques.

Applying the matrix inversion lemma
(R () + 1P, (DA (£,p)3 (1) =R"" (1)

R (P, (NA(Fp)A (1 PR ()

3 —1 3 b (21)
L+ paPg (f)d>H (f, p* )R (f)d*(f, p*)
and settinguz = oo, results in
W(f) = — R (NP 22)

©dsH(f,ps)R T (f)ds(f,pe)

3.2. Soft constraint (u2
former

# o0): soft-constrained beam-

In [5], MWF techniques are proposed that use a (partiallg} pr
computed speech correlation matrix. These techniquekgdcal
soft-constrained beamforming, minimize the output noseer
with a soft constraint on a (partially) modelled speechattsin
term. This corresponds to (18) wiflx # oo andpu; = 0. A
fixed model is used for the spatial characterisity( f) of the
speech while the speech P, (f) is estimated online. The
speech source is modeled as an infinite number of (uncaeddlat
point sources with true PSPx, (f) clustered closely in space
within a pre-defined areR:

X5.(f) = X5 (f,p)d(f,p)dp  (23)
peP
DL(f) = / X1 (f.p)dp (24)
peP
with
(X (PR X (. DO} = P, (/)60 Ypr pi€P. (25)

To separate the estimation of the spectral and spatial cieara
istics, the technique is implemented in the frequency-doma
The filterW(f) equals

W(f) = (n2Ro (/)+R"(f)) " p2e{X5 () D" ()}

Assuming uncorrelated point sources,R;,(f)
e{X5.(f)D;.(f)} in (26) can be computed as:

R:, ()= / & (£, p)AH (1, )e(Xo0n (£, D) X5 (f. D),
P

cP

(26)
and

— P4, (f) / @ (£p)a (1. p)p. (27)
peE

XL (NDL) = P / e @9

whereP5, (f) is estimated online.
Instead of using a mathematical speech model, the speech
correlation matrix R;,(f) and the cross-correlation
e{X5.(f)Dyi*(f)} can also be computed based on cali-
bration data [7].

4. ONLINE SPEECH MODEL ( yi2 = 0)

In this section, techniques that use an online estimate &f th
speech statistics are discussed, i.e., the TF-LCMV [3] d&ed t
SDW-MWEF [4]. Since the source signél f) is unknown, these
technigues estimate the speech component in one of the-micro
phones (e.g., the first microphone), i.&7(f) = Xi(f) (or

in the output of a fixed beamformer). These techniques typi-
cally exploit a voice activity detection (VAD) mechanismdan
assume the noise statistics to be more stationary than ¢éeelsp
statistics. Hence, VAD errors or highly non-stationaryseainay
affect the performance.

4.1. Hard constraint (i1 = oo): TF-LCMV

The TF-LCMV beamformer [3] minimizes the output noise
power subject to the constraint that the speech compongin¢in
first microphone signal is preserved, i.e.,

WX (f) = X{(f)or WIH () =1,  (29)
with H*(f) is the relative transfer function ratio vector defined
in (5). This corresponds to (18) withy = oo, p2 = 0 and
D*(f) = X{(f), resulting in (cf. the derivation in Section 3.1)

wi) =  RWEW)
e ()R (f)E(f)

To impose the hard constraint (29), the relative transfection
ratiosH®( f) need to be identified. In [3], an unbiased estimate
of ﬂs(f) is computed during speech periods by exploiting the
nonstationarity of the desired signal and the stationanftthe
noise.

Remark: The GSC with switching adaptive filters [8] and the
GSC with adaptive blocking matrix [9, 10] also belong to this
class. Here H®(f) is estimated throug a least-squares match

(30)
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between the microphone signals and the first microphoneakign
[8] or the output of a fixed beamformg, 10]. Due to the pres-
ence of noise, this estimate is biased.

4.2. Soft constraint(u, # co): SDW-MWF

The SDW-MWF [4] minimizes the output noise power subject to
a soft constraint on the speech distortion, correspondir{@&)
with p1 # co andD*(f) = X7 (f), resulting in

W(f)=R"(f) + mR*(f) ' me{X°(H) X7 (£} (31)

1
The speech correlation mati*( f) is estimated by exploiting
stationarity of the noise and a VAD mechanism.
Assuming thatR*(f) is rank-oneW (f) can be decomposed
into a TF-LCMV with a single-channel SDW postfilter [4]

R" (f)H(f) Pk, (f)
He(f)R"' (/) H=(f) \ mP%, (f) +
TF-LCMV
Hence, the soft constraint on the speech distortion terno-int
duces spectral filtering of the speech compon&it f) (un-

1
HeH (f)RTVHS(f)

postfilter

less the speech and the noise subspace are orthogonal atich th 2]

—l =

B R TR)

5. COMBINATION OF AN ONLINE AND A-PRIORI
SPEECH MODEL

So far, either an a-priori speech model or an online estithate
speech model was used in (18). However, also a combination
of a-priori knowledge and online estimation (based on inogm
data) can be used. This approach allows for a (partial) epafat
the speech model while it is expected to increase robustoess
an erroneous estimation of the speech model (e.g., due to VAD
failures).

5.1. Hard constraint on a-priori model (12 = oo, p1 # oc0):
speech distortion regularized GSC (SDR-GSC)

In the SDR-GSC [4], the LCMV beamformer is combined with
the SDW-MWEF. A hard constraint is imposed on an a-priori
speech model (i.ey2 = o), e.g.,

X5 (f) a*(f,p) X (), (32)
Dy (f) m1(f)- (33)
The hard constraint is imposed through a GSC-structure with

a fixed beamformeW,(f) (e.g., W (f) = % )and a
blocking matrixB( f) with B (f)W,(f) = 0, i.e.,

W(f) = Wo(f) + B HWa(f),

with W, (f) the adaptive noise canceller.

In addition to the hard constraint, a soft constrajnt ¢ o) is
imposed on the online estimated speech distortion betwesn t
speech component in the speech referdditef) = W/ X*(f)
and the speech component in the output, N7 (£)X(f).
Using (34), the online estimated speech distortion terml8) (
equals:

AW (HBT(HX(HXT(H)B(HWa(f)},  (35)

which corresponds to the regularization term in the SDR-GSC
Using (35) in (18), results in the SDR-GSC cost functiotdih

(34)

5.2. Soft constraint on a-priori model (41 # 0o, p2 # 00,):
combination soft constrained/SDW-MWF

Settingu1 # oo andue # oo in (18), results in a combina-
tion of the SDW-MWF (cf. Section 4.2) and the soft constrdine
beamformer (cf. Section 3.2). The speech model is thergtlgirti
updated based on incoming data and partially computedoai-pri
using (23)-(24) or calibration data [7]. The filt8/ (/) equals

W(f) (R (f) + 2R, (f) + R™(f) !
(mae{XE (YD ()} + pae{X5. () D5 (f)}) (36)

with R;, (f) ande{X;,(f)D;;"(f)} computed as (27)-(28) or
computed based on calibration data.

In the future, this combined approach will be compared with
the SDW-MWF and the soft constrained beamformer in terms
of performance and robustness.
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