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ABSTRACT

In this paper a frequency-domain technique is described
for estimating the acoustic transfer functions, when rever-
berated speech signals are corrupted by spatially coloured
noise. This technique is an extension of the frequency-
domain procedure of [1], which is only optimal in the case of
spatially white noise. Using the estimated acoustic transfer
functions, dereverberation can be performed with a matched
filtering approach.
Also a GSVD-based noise reduction technique is discussed,
which computes an optimal (MMSE) estimate of the speech
components in each frequency bin. It is shown that the op-
timal estimate of the clean dereverberated speech signal is
obtained by dereverberating the optimal estimate of these
speech components. Since the same decomposition is re-
quired for dereverberation and noise reduction, both proce-
dures can easily be combined.

1. INTRODUCTION

In many speech communication applications, like hands-
free mobile telephony, hearing aids and voice-controlled sys-
tems, the recorded speech signals are of poor quality, be-
cause of background noise and reverberation (e.g. reflec-
tions against walls). Background noise and reverberation
cause a signal degradation which can lead to total unintel-
ligibility of the speech and which decrease the performance
of speech recognition systems. Therefore efficient noise re-
duction and dereverberation algorithms are called for.
The objective of these algorithms can be either dereverber-
ation (not caring about residual noise), noise reduction (not
caring about residual reverberation), or combined derever-
beration and noise reduction. This problem formulation is
elaborated in section 2.
Section 3 describes a frequency-domain technique for esti-
mating the transfer functions of noisy reverberated speech
signals using a Generalised Singular Value Decomposition
(GSVD). Using the estimated transfer functions, the dere-
verberated clean speech signal is computed with a matched
filtering approach. This algorithm is in fact an extension of
the technique presented in [1].
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In section 4 a frequency-domain noise reduction algorithm
is described which computes an optimal MMSE estimate of
the speech components of the microphone signals in each
frequency bin. This algorithm is a frequency-domain ver-
sion of the GSVD-based noise reduction algorithm of [2].
A combined dereverberation and noise reduction technique
is presented in section 5. It is shown that the optimal esti-
mate of the dereverberated clean speech signal is obtained
by dereverberating the optimal estimate of the speech com-
ponents. Since the same decomposition is required for both
algorithms, they can easily be combined.
Section 6 discusses some practical implementation issues.
Since essentially a fast convolution in the frequency-domain
is performed, the time-domain filters need to be constrained
in order to avoid circular convolutions [3].
Section 7 describes the simulation results, showing that the
GSVD-based noise reduction technique produces the best
signal-to-noise ratio (SNR), the GSVD-based dereverbera-
tion algorithm has the best dereverberation performance,
while the combined noise reduction and dereverberation al-
gorithm provides a trade-off between both objectives.

2. PROBLEM FORMULATION

Figure 1 depicts a microphone array with M microphones
which records a desired speech source s[k] and an unde-
sired background noise source v[k]. Each microphone sig-
nal ym[k], m = 0 . . . M − 1, therefore consists of a filtered
version of the clean speech signal and additive noise,

ym[k] = xm[k] + vm[k] = gm[k] ⊗ s[k] + vm[k] , (1)

with gm[k] the (unknown) impulse response of length K
between the speech source and the mth microphone. The
objective of dereverberation is to undo the filtering by the
acoustic impulse responses and to compute dereverberation
filters fm[k], m = 0 . . . M−1, of length N such that the total
transfer function h[k] between s[k] and the output z[k],

z[k] =

M−1X

m=0

(fm[k] ⊗ gm[k])
| {z }

h[k]

⊗s[k] +

M−1X

m=0

fm[k] ⊗ vm[k]

| {z }

rv [k]

is equal to 1 (or more realistically a delay), i.e.

h[k] =

M−1X

m=0

fm[k] ⊗ gm[k] = δ(k − ∆) . (2)

The residual noise rv[k] is not constrained in any way, such
that the noise can even be amplified by the filters fm[k].
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Figure 1: Problem formulation for dereverberation and
noise reduction

The goal of combined dereverberation and noise reduction
is to compute filters fm[k] such that the output z[k] is an
optimal estimate for the clean speech signal s[k], thereby
both reducing reverberation effects and background noise.

3. SPEECH DEREVERBERATION

Different methods for multi-microphone speech dereverber-
ation have been proposed, e.g. in the time-domain [4], in
the frequency-domain [1] or using cepstral processing.
In the frequency-domain the signal model (1) for each fre-
quency f = 0 . . . N − 1 and frame n becomes
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(3)

= Gn(f)Sn(f) + Vn(f) = Xn(f) + Vn(f) ,

with e.g.

Sn(f) =

N−1X

l=0

s[nN + l] e−
j2πlf

N , (4)

for the time being considering no overlap between frames
(see section 6). We will assume slow time-variations of the
transfer functions Gm(f), such that Gn(f) ' G(f).
The objective of dereverberation is to compute filters F(f)
such that H(f) = FH(f)G(f) = 1. The matched filter
F(f) = G(f)/‖G(f)‖2 clearly is a solution to this equation.
The M × M noisy (spatial) correlation matrix Ryy(f) is

Ryy(f) = E{Yn(f)YH
n (f)} (5)

= G(f)E{|Sn(f)|2}GH(f)
| {z }

Rxx(f)

+ E{Vn(f)VH
n (f)}

| {z }

Rvv(f)

,

assuming that the speech and noise components Xn
m(f) and

V n
m(f) are uncorrelated. The speech correlation matrix

Rxx(f) is a rank-1 matrix. The noise correlation matrix
Rvv(f) can be measured during speech pauses and reduces
to σ2

v(f)IM for spatially white noise.
The transfer function vector G(f) can be estimated using
the Generalised Eigenvalue Decomposition (GEVD) of the
correlation matrices Ryy(f) and Rvv(f) [5],


Ryy(f) = Q(f)Σy(f)QH(f)
Rvv(f) = Q(f)Σv(f)QH(f) ,

(6)

with Q(f) and invertible, but not necessarily orthogonal
matrix. Since the speech correlation matrix

Rxx(f) = Ryy(f)−Rvv(f) = Q(f)
`
Σy(f)−Σv(f)

´
Q

H(f)

has rank 1, it is equal to Rxx(f) = σ2
x(f)q1(f)qH

1 (f), with
q1(f) the M -dimensional principal generalised eigenvector,
corresponding to the largest generalised eigenvalue. Since

Rxx(f) = σ2
x(f)q1(f)qH

1 (f) = E{|Sn(f)|2}G(f)GH(f) ,

G(f) can be estimated up to a phase shift ejα(f) as

q1(f) =
‖q1(f)‖

‖G(f)‖
G(f)ejα(f) . (7)

We will assume that the human auditory system is not very
sensitive to this phase shift. The dereverberated speech
signal S̃n(f) can now be computed using the matched filter

F(f) =
G(f)

‖G(f)‖2
=

q1(f)

‖q1(f)‖‖G(f)‖
, (8)

such that

S̃n(f) = F
H(f)Yn(f) = Sn(f) +

qH
1 (f)

‖q1(f)‖‖G(f)‖
Vn(f) .

which corresponds to the time-domain signal s̃[k].
In practice, the transfer function vector G(f) is estimated
using the Generalised Singular Value Decomposition (GSVD)
of the speech and noise data matrices Y(f) and V(f),

Y(f) =
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. (9)

As can be seen from (8), the norm ‖G(f)‖ needs to be
known for computing F(f). As indicated in [1], ‖G(f)‖ is
less affected by small speaker movements than the individ-
ual transfer functions and will be assumed to be known,
which is a disadvantage of this dereverberation algorithm.
In [1] the transfer function vector G(f) is calculated using
an adaptive subspace tracking procedure, which estimates
the principal singular vector of Y(f). However, this pro-
cedure is only optimal for spatially white noise, while for
spatially coloured noise the principal generalised singular
vector has to be computed. Using recursive algorithms it is
also possible to update the GSVD [6].

4. NOISE REDUCTION

In [2] a GSVD-based optimal filtering technique has been
described in the time-domain for noise reduction in multi-
microphone speech signals. This technique produces an op-
timal MMSE estimate of the speech components in all mi-
crophone signals (but achieves no dereverberation at all).
When translating this technique to the frequency-domain,
the objective is to compute an M ×M filter matrix W(f),
such that the enhanced speech vector

X̂n(f) = W(f)Yn(f) (10)

is the optimal MMSE estimate of the (reverberated) speech
component Xn(f) in the microphone signals. The optimal
filter matrix is the multi-dimensional Wiener filter WWF (f),

WWF (f) = Rxy(f)R−1
yy (f) = Rxx(f)R−1

yy (f) (11)

=
`
Ryy(f) − Rvv(f)

´
R

−1
yy (f) . (12)

Using the rank-1 definition of Rxx(f) in (5),

X̂n(f) = G(f)E{|Sn(f)|2}GH(f)R−1
yy (f)Yn(f) , (13)

which corresponds to the time-domain signals x̂m[k].
The filter matrix WWF (f) can be computed using the GEVD
of Ryy(f) and Rvv(f) or the GSVD of Y(f) and V(f) as

WWF (f) = Q(f)
`
Σy(f) − Σv(f)

´
Σ

−1
y (f)Q−1(f)

=
σ2

x(f)

σ2
y1(f)

q1(f)q̄H
1 (f) , (14)

with σ2
y1(f) the principal generalised eigenvalue and q̄H

1 (f)
the corresponding row of Q−1(f).



5. COMBINED DEREVERBERATION AND

NOISE REDUCTION

The objective of combined dereverberation and noise reduc-
tion is to compute filters C(f) such that

Ŝn(f) = C
H(f)Yn(f) (15)

is the optimal MMSE estimate of the clean speech signal
Sn(f), thereby taking into account both dereverberation
and noise reduction. The optimal filter C(f) is equal to

C(f) = R
−1
yy (f)rys(f) , (16)

such that the optimal MMSE estimate is

Ŝn(f) = E{|Sn(f)|2}GH(f)R−1
yy (f)Yn(f) , (17)

which corresponds to the time-domain signal ŝ[k].
Comparing (13) and (17), we notice that

X̂n(f) = G(f)Ŝn(f) , (18)

which implies that the optimal estimate Ŝn(f) of the clean
speech signal can be obtained by performing the derever-
beration technique of section 3 to the optimal estimate of
the speech components X̂n(f). Since the same decomposi-
tion is used for both dereverberation and noise reduction,
the two procedures can easily be combined.
Using (8) and (14), the filter CH(f) can be written as

C
H(f) = F

H(f)WWF (f) (19)

=
qH

1 (f)

‖q1(f)‖‖G(f)‖

σ2
x(f)

σ2
y1(f)

q1(f)q̄H
1 (f) (20)

=
‖q1(f)‖

‖G(f)‖

σ2
x(f)

σ2
y1(f)

q̄
H
1 (f) (21)

In the case of spatially white noise, the EVD of Ryy(f) is
used and the matrix Q(f) is orthogonal, such that

C
H
w (f) =

σ2
x(f)

σ2
y1(f)

qH
1 (f)

‖G(f)‖
, (22)

which is equal to the spatially white dereverberation filter
FH

w (f), up to the spectral weighting term σ2
x(f)/σ2

y1(f).

6. PRACTICAL IMPLEMENTATION

In (4) we have assumed non-overlapping frames. However,
in practice we will use frames of length N with an overlap
of N −L samples for computing the filters and for filtering
the microphone signals. For this block-processing scheme
it is well known that the underlying fast convolution in
the frequency-domain should be constrained to be linear.
Therefore, in order to avoid circular convolutions, we put
the last L − 1 taps of the time-domain filters to zero and
only keep the last L samples of the time-domain filtered
microphone signals in an overlap-save procedure [3].
E.g., for combined dereverberation and noise reduction, the
microphone signals Yn(f) in the frequency-domain are com-
puted as the FFT of

ˆ
ym[nL] . . . ym[nL + N − 1]

˜
, m =

0 . . . M − 1 . The M -dimensional frequency-domain filters
C(f), f = 0 . . . N − 1, are computed using (21). The N -
dimensional time-domain filters Cm[k], m = 0 . . . M−1, are
obtained as the IFFT of C(f). These time-domain filters
are constrained by putting the last L − 1 taps to zero and
are transformed to the constrained frequency-domain filters
C̄(f), f = 0 . . . N − 1. The enhanced speech signal is com-

puted as Ŝn(f) = C̄H(f)Yn(f). From the IFFT of Ŝn(f)
the last L samples

ˆ
ŝ[(n − 1)L + N ] . . . ŝ[nL + N − 1]

˜

are kept in an overlap-save procedure.

7. SIMULATIONS

In our simulations we have filtered a 16kHz speech signal
and a white noise signal with two room impulse responses
(K = 1000), constructed with the image method [9]. The
room dimensions are 3m × 3 m × 4 m, the speech source po-
sition is

ˆ
1 2 2

˜
and the noise source position is

ˆ
0.5 1 1

˜
.

We have used an array of M = 4 omni-directional mi-
crophones and the distance between adjacent microphones
is 2 cm. The positions of the microphones are

ˆ
1 1 1

˜
,

ˆ
1.02 1 1

˜
,

ˆ
1.04 1 1

˜
, and

ˆ
1.06 1 1

˜
. The reverbera-

tion time T60 of the room is 400msec. The smaller the mi-
crophone distance and the smaller the reverberation time,
the more the frequency-domain signals are spatially cor-
related. The unbiased SNR of the noisy first microphone
signal y0[k] is 0 dB. In all the algorithms we have used a
frame length (FFT-size) N = 1024 and overlap L = 16.
As objective measures for the noise reduction performance
we use the unbiased signal-to-noise ratio SNRu,

SNRu = 10 log10

P
x̄2[k]

P
v̄2[k]

, (23)

with x̄[k] and v̄[k] the speech and noise component of the
considered signal, the frequency weighted signal-to-noise ra-
tio SNRw [7] and the speech intelligibility index (SII) [8],
which are both weighted subband SNRs. As an objective
measure for dereverberation we use a dereverberation index
(DI), which is defined as the standard deviation of the am-
plitude response of the total filter h[k] between s[k] and the
speech component in the output signal z[k].
Table 1 gives an overview of the objective dereverberation
and noise reduction performance measures for the differ-
ent algorithms. Figure 2 plots the noisy microphone signal
y0[k] and the enhanced microphone signal x̂0[k] using the
GSVD-based noise reduction technique. As can be seen in
table 1, this technique produces the highest SNRw and SII,
but does not achieve any dereverberation, since the DI of
x̂0[k] and y0[k] are almost equal (DI ' 4.7).
Figures 3a and 3b show the amplitude responses of the total
transfer function H(f) between s[k] and the speech compo-
nent in the output signal for 2 dereverberation algorithms.
Figures 4a and 4b depict the time-domain output signals
s̃w[k] and s̃[k] for these algorithms. As can be seen, the fil-
ter F(f) computed using the GEVD of Ryy[k] and Rvv[k]
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Figure 2: (a) Noisy microphone signal y0[k], (b) Enhanced
microphone signal x̂0[k] with GSVD-based noise reduction
technique (N = 1024, L = 16)



SNRu (dB) SNRw (dB) SII DI (dB)

Noisy microphone signal y0[k] 0 2.88 0.55 4.74
GSVD-based noise reduction x̂0[k] 17.81 16.82 0.94 4.73
SVD-based dereverberation s̃w[k] 11.99 -0.30 0.46 1.86
GSVD-based dereverberation s̃[k] 15.10 2.30 0.54 0.86

Dereverberation and noise reduction ŝ[k] 20.15 10.12 0.79 1.35

Table 1: Dereverberation and noise reduction performance measures for the different algorithms (N = 1024, L = 16)
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Figure 3: Total transfer function computed with (a) SVD-
based dereverberation technique, (b) GSVD-based derever-
beration technique, (c) combined noise reduction and dere-
verberation technique (N = 1024, L = 16)

produces the flattest amplitude response (DI = 0.86), while
the filter Fw(f) computed using the EVD of Ryy[k] (as in
[1]) has a worse dereverberation performance (DI = 1.86).
However, as can be seen in table 1, the noise reduction per-
formance of both algorithms is quite bad, since the SNRw

and SII are smaller than for the noisy microphone signal.
Figures 3c and 4c show the amplitude response of the total
transfer function H(f) and the time-domain output signal
ŝ[k] for the combined dereverberation and noise reduction
technique. From table 1 it can be seen that its dereverber-
ation performance is not as good as for the GSVD-based
dereverberation technique (but it has better SNR values),
while its noise reduction performance is not as good as for
the GSVD-based noise reduction algorithm (but is has a
better DI). It is therefore clear that the combined tech-
nique makes a trade-off between optimal dereverberation
and noise reduction.

8. CONCLUSION

In this paper we have presented GSVD-based frequency-
domain signal enhancement techniques for noise reduction
and dereverberation. It has been shown that the optimal
MMSE estimate of the clean speech signal can be obtained
by dereverberating the optimal estimate of the speech com-
ponents in the microphone signals. By simulations it has
been shown that the combined algorithm makes a trade-off
between the dereverberation and noise reduction objectives.
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