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ABSTRACT

Fixed broadband beamformers for speech applications using small-
sized microphone arrays are known to be highly sensitive to er-
rors in the microphone array characteristics. This paper describes
two procedures for designing broadband beamformers with an ar-
bitrary spatial directivity pattern, which are robust against gain and
phase errors. The first design procedure optimises the mean per-
formance of the broadband beamformer and requires knowledge
of the gain and phase probability density functions, whereas the
second design procedure optimises the worst-case performance by
using a minimax criterion. Simulations with a small-sized micro-
phone array show the performance improvement that can be ob-
tained by using a robust broadband beamformer design procedure.

1. INTRODUCTION

In many speech communication applications, such as hands-free
telephony, hearing aids and voice-controlled systems, the micro-
phone signals are corrupted by background noise and reverber-
ation. Fixed and adaptive beamforming are well-known multi-
microphone signal enhancement techniques for noise reduction
and dereverberation [1]. Fixed beamformers are frequently used
for creating the speech reference signal in a Generalised Sidelobe
Canceller, for creating multiple beams [2], in highly reverberant
acoustic environments and in applications where the position of
the speech source is approximately known, e.g. hearing aids [3].

In [4][5] several procedures are presented for designing broad-
band beamformers with an arbitrary spatial directivity pattern us-
ing an FIR filter-and-sum structure. Several cost functions can be
used, leading to e.g. weighted least-squares (LS) filter design, non-
linear optimisation [6], a maximum energy array or eigenfilters.
Whatever design procedure is used, fixed beamformers are known
to be highly sensitive to errors in the microphone array charac-
teristics (gain, phase, position), especially when using small-sized
microphone arrays. The robustness against random errors can be
improved by limiting the white noise gain [7] or by performing a
calibration procedure with the used microphone array [8].

This paper discusses the design of broadband beamformers
that are robust against unknown gain and phase errors in the micro-
phone characteristics. In Section 2 the far-field broadband beam-
forming problem is introduced. Section 3 discusses the weighted
LS cost function, which can be used for broadband beamformer
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design when the microphone characteristics are exactly known.
Section 4 describes two procedures for designing robust broadband
beamformers, without a need for calibration or measurement. The
first procedure optimises the mean performance, whereas the sec-
ond procedure optimises the worst-case performance. In Section 5
simulation results are presented and it is shown that robust broad-
band beamformer design gives rise to a significant performance
improvement when gain and phase errors occur.

2. BROADBAND BEAMFORMING: CONFIGURATION

Consider the linear microphone array depicted in Fig. 1, with N
microphones, N L-taps FIR filters wn (with real coefficients) and
dn the distance between the nth microphone and the centre of the
array. The characteristics of the nth microphone are described by

An(ω, θ) = an(ω, θ)e−jγn(ω,θ), n = 0 . . . N − 1 , (1)

where both the gain an(ω, θ) and the phase γn(ω, θ) can be fre-
quency and angle-dependent. Assuming far-field conditions, the
spatial directivity pattern H(ω, θ) for a source S(ω) with fre-
quency ω at an angle θ from the microphone array is defined as

H(ω, θ) = wT ḡ(ω, θ) , (2)

with w the real-valued M -dimensional vector (M = LN ) of fil-
ter coefficients, w=

[
wT

0 . . . wT
N−1

]T
, and the steering vector

ḡ(ω, θ) equal to

ḡ(ω, θ) = A(ω, θ) · g(ω, θ) . (3)

A(ω, θ) is an M × M diagonal matrix consisting of the micro-
phone characteristics and g(ω, θ) is the steering vector assuming
omni-directional microphones with a flat frequency response,

A(ω, θ) =




A0(ω, θ)IL
A1(ω, θ)IL

. . .
AN−1(ω, θ)IL


(4)

g(ω, θ) =
[
eT (ω)e−jωτ0(θ) . . . eT (ω)e−jωτN−1(θ)

]T
, (5)

with e(ω) =
[

1 e−jω . . . e−j(L−1)ω
]T

and IL the L×L
identity matrix. The delay τn(θ) is equal to

τn(θ) =
dn cos θ

c
fs , (6)

with c the speed of sound (c = 340m
s

) and fs the sampling fre-
quency. The steering vector ḡ(ω, θ) can be decomposed into a real
and an imaginary part, ḡ(ω, θ) = ḡR(ω, θ) + jḡI(ω, θ), where

ḡR(ω, θ) = AR(ω, θ)gR(ω, θ) − AI(ω, θ)gI(ω, θ) , (7)

with AR(ω, θ) and AI(ω, θ) the real and imaginary part of A(ω, θ)
and gR(ω, θ) and gI(ω, θ) the real and imaginary part of g(ω, θ).
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Fig. 1. Microphone array configuration (far-field assumption)

Using (2), the spatial directivity spectrum |H(ω, θ)|2 is equal to

|H(ω, θ)|2 = H(ω, θ)H∗(ω, θ) = wT Ḡ(ω, θ)w , (8)

with Ḡ(ω, θ) = ḡ(ω, θ)ḡH(ω, θ), which can be written as

Ḡ(ω, θ) = A(ω, θ) · G(ω, θ) · AH(ω, θ) , (9)

with G(ω, θ) = g(ω, θ)gH(ω, θ). The matrix Ḡ(ω, θ) can be de-
composed into a real and an imaginary part ḠR(ω, θ) and ḠI(ω, θ).
Since ḠI(ω, θ) is anti-symmetric, |H(ω, θ)|2 is equal to

|H(ω, θ)|2 = wT ḠR(ω, θ)w , (10)

where the real part ḠR(ω, θ) can be written as

AR(ω, θ)GR(ω, θ)AR(ω, θ)+AI(ω, θ)GR(ω, θ)AI(ω, θ) −
AI(ω, θ)GI(ω, θ)AR(ω, θ)+AR(ω, θ)GI(ω, θ)AI(ω, θ), (11)

with GR(ω, θ) and GI(ω, θ) the real and imaginary part of G(ω, θ).

3. WEIGHTED LEAST-SQUARES COST FUNCTION

The design of a broadband beamformer consists of calculating the
filter w, such that H(ω, θ) optimally fits the desired spatial direc-
tivity pattern D(ω, θ), where D(ω, θ) is an arbitrary 2-dimensional
function. Several design procedures exist, depending on the spe-
cific cost function which is optimised. In this paper, we will only
consider the weighted least-squares cost function. In [4][5], also
eigenfilter-based and non-linear cost functions are discussed.

Considering the least-squares (LS) error |H(ω, θ)−D(ω, θ)|2,
the weighted LS cost function is defined as

JLS(w) =

∫
Θ

∫
Ω

F (ω, θ)
[
H(ω, θ) − D(ω, θ)

]2
dωdθ , (12)

where F (ω, θ) is a positive real weighting function, assigning more
or less importance to certain frequencies and angles. This cost
function can be written as the quadratic function

JLS(w) = wT Q̄LSw − 2wT ā + dLS , (13)

with (assuming D(ω, θ) to be real-valued)

Q̄LS =

∫
Θ

∫
Ω

F (ω, θ)ḠR(ω, θ)dωdθ (14)

ā =

∫
Θ

∫
Ω

F (ω, θ)D(ω, θ)ḡR(ω, θ)dωdθ (15)

dLS =

∫
Θ

∫
Ω

F (ω, θ)D2(ω, θ)dωdθ . (16)

The filter wLS , minimising the weighted LS cost function, is

wLS = Q̄−1
LS ā . (17)

When the microphone characteristics are independent of ω and
θ (i.e. for omni-directional, frequency-flat microphones), ā and
Q̄LS are equal to

ā=AR a − AI a◦ (18)

Q̄LS =ARQLSAR + AIQLSAI − AIQ
◦
LSAR + ARQ◦

LSAI

with

a =

∫
Θ

∫
Ω

F (ω, θ)D(ω, θ)gR(ω, θ)dωdθ (19)

a◦ =

∫
Θ

∫
Ω

F (ω, θ)D(ω, θ)gI(ω, θ)dωdθ (20)

QLS =

∫
Θ

∫
Ω

F (ω, θ)GR(ω, θ)dωdθ (21)

Q◦
LS =

∫
Θ

∫
Ω

F (ω, θ)GI(ω, θ)dωdθ . (22)

The ith element of ā and the (i, j)-th element of Q̄LS are equal to

āi = an
(
cos γn ai + sin γn a◦,i) (23)

Q̄ij
LS = anam

(
cos

(
γn−γm

)
Qij

LS+sin
(
γn−γm

)
Q◦,ij

LS

)
, (24)

with n = � i−1
L

� and m = � j−1
L

�.

4. ROBUST BROADBAND BEAMFORMING

Using the cost function in Section 3, it is possible to design beam-
formers when the microphone characteristics are exactly known.
However, small deviations from the assumed microphone charac-
teristics can lead to large deviations from the desired spatial direc-
tivity pattern [7][9]. Since in practice it is difficult to manufacture
microphones with the same nominal characteristics, a measure-
ment or calibration procedure is required in order to obtain the true
microphone characteristics. However, after calibration the micro-
phone characteristics can still drift over time. Instead of measuring
or calibrating every individual microphone array, it is better to con-
sider all feasible microphone characteristics and to either optimise:

• the mean performance, i.e. the weighted sum of the cost
functions, using the probability of the microphone charac-
teristics as weights (cfr. Section 4.1).

• the worst-case performance, i.e. the maximum cost func-
tion, leading to a minimax criterion (cfr. Section 4.2).

The same problem of gain and phase errors has been studied in [9].
However, in [9] only the narrowband case for a specific directivity
pattern and a uniform pdf has been considered. The approach pre-
sented here is more general because we consider broadband beam-
formers with an arbitrary spatial directivity pattern, arbitrary prob-
ability density functions and several cost functions [4]. However,
in this paper we will only use the weighted LS cost function. We
refer to [4] for robust design based on other cost functions.

4.1. Weighted sum using probability density functions

The total cost function J tot
LS (w) is defined as the weighted sum of

the cost functions for all feasible microphone characteristics, using
the probability of the microphone characteristics as weights, i.e.

J tot
LS (w) =

∫
A0

. . .

∫
AN−1

JLS(w) fA(A0) . . . fA(AN−1)

dA0 . . . dAN−1 , (25)
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with fA(A) the pdf of the stochastic variable A = ae−jγ , i.e. the
joint pdf of the stochastic variables a (gain) and γ (phase). We
assume that fA(A) is independent of frequency and angle, or that
fA(A) is available for different frequency-angle regions. Without
loss of generality, we also assume that all microphone character-
istics are described by the same pdf fA(A). Furthermore, we as-
sume that a and γ are independent variables, such that the joint
pdf is separable, i.e. fA(A) = fα(a)fG(γ), with fα(a) the pdf
of the gain a and fG(γ) the pdf of the phase γ. These pdfs are
normalised such that

∫
a

fα(a) da = 1 and
∫
γ

fG(γ) dγ = 1.
By combining (13) and (25), the total cost function is equal to

J tot
LS (w) = wT Q̄totw − 2wT ātot + dLS , (26)

which has the same form as (13), with

ātot =

∫
A0

. . .

∫
AN−1

ā fA(A0) . . . fA(AN−1) dA0 . . . dAN−1

Q̄tot =

∫
A0

. . .

∫
AN−1

Q̄LS fA(A0) . . . fA(AN−1) dA0 . . . dAN−1 .

Using (23), the ith element of ātot is equal to

āitot=

∫
an

∫
γn

an
(
cos γn ai+sin γn a◦,i)fα(an)fG(γn)dandγn,

such that
ātot = µaµ

c
γ a + µaµ

s
γ a◦ , (27)

with µa the mean of the gain pdf, µa =
∫
a

afα(a)da, and µc
γ and

µs
γ equal to

µc
γ =

∫
γ

cos γfG(γ)dγ, µs
γ =

∫
γ

sin γfG(γ)dγ . (28)

Using (24), the (i, j)-th element of Q̄tot is equal to∫
an

∫
am

∫
γn

∫
γm

anam
(
cos

(
γn−γm

)
Qij

LS+sin
(
γn−γm

)
Q◦,ij

LS

)

fα(an)fα(am)fG(γn)fG(γm)dandamdγndγm . (29)

If n = m, Q̄ij
tot is equal to

Q̄ij
tot =

∫
an

a2
nfα(an)dan Qij

LS = σ2
a Qij

LS , (30)

with σ2
a the variance of the gain pdf, i.e. σ2

a =
∫
a

a2fα(a)da.
If n �= m, Q̄ij

tot is equal to

Q̄ij
tot = µ2

a

[
σc
γQ

ij
LS + σs

γQ
◦,ij
LS

]
, (31)

with

σc
γ =

∫
γ1

∫
γ2

cos
(
γ1 − γ2

)
fG(γ1)fG(γ2)dγ1dγ2 (32)

σs
γ =

∫
γ1

∫
γ2

sin
(
γ1 − γ2

)
fG(γ1)fG(γ2)dγ1dγ2 , (33)

such that

σc
γ =

(
µc
γ

)2
+

(
µs
γ

)2
, σs

γ = µs
γµc

γ − µc
γµs

γ = 0 . (34)

The matrix Q̄tot can now be computed as

Q̄tot =




σ2
a 1L µ2

aσ
c
γ 1L . . . µ2

aσ
c
γ 1L

µ2
aσ

c
γ 1L σ2

a1L . . . µ2
aσ

c
γ 1L

...
...

...
µ2
aσ

c
γ 1L µ2

aσ
c
γ . . . σ2

a 1L


 	 QLS ,

where 1L is an L × L-matrix with all elements equal to 1 and 	
denoting element-wise multiplication. As can be seen, we only
need the mean and the variance of the gain pdf fα(a), whereas in
general complete knowledge of the phase pdf fG(γ) is required.

When optimising the mean performance, it is however still
possible - although typically with a low probability - that for some
specific gain/phase combination, the cost function is quite high.
If this is considered to be a problem, the worst-case performance
should be optimised (cfr. Section 4.2).

4.2. Minimax criterion

For the minimax criterion, we first have to define a (finite) set of
microphone characteristics (Ka gain values and Kγ phase values),

{amin=a1, . . . , aKa =amax}, {γmin=γ1, . . . , γKγ =γmax},
as an approximation for the continuum of feasible microphone
characteristics, and use this set of gain and phase values to con-
struct the (KaKγ)

N -dimensional vector F(w),

F(w) =
[

F1(w) F2(w) . . . F(KaKγ)N (w)
]T

, (35)

which consists of the used cost function (weighted LS or any other
cost function) at each possible combination of gain and phase val-
ues. The goal then is to minimise the L∞-norm of F(w), i.e. the
maximum value of the elements Fk(w),

min
w

‖F(w)‖∞ = min
w

max
k

Fk(w) , (36)

which can be done using a sequential quadratic programming (SQP)
method [10]. In order to improve the numerical robustness and the
convergence speed, the gradient

[
∂F1(w)
∂w

∂F2(w)
∂w

. . .
∂F(KaKγ )N (w)

∂w

]
, (37)

which is an M × (KaKγ)
N -dimensional matrix, can be supplied

analytically. As can be seen, the larger Ka and Kγ , the denser
the grid of feasible microphone characteristics, and the higher the
computational complexity for solving the minimax problem.

When only considering gain errors and using the weighted LS
cost function, it can be proven that for any w, the maximum value
of F(w) occurs on a boundary point of an N -dimensional hyper-
cube [4], i.e. an = amin or an = amax, n = 0 . . . N − 1. This
implies that Ka = 2 suffices and F(w) consists of 2N elements.

5. SIMULATIONS

We have performed simulations using a small-sized non-uniform
linear microphone array consisting of N = 3 microphones at posi-
tions

[−0.01 0 0.015
]

m. We have designed an end-fire beam-
former with passband specifications (Ωp, Θp) = (300–4000 Hz,
0◦–60◦) and stopband specifications (Ωs, Θs) = (300–4000 Hz,
80◦–180◦) and fs = 8 kHz. The filter length L = 20 and the
weighting function F (ω, θ) = 1. We have designed several types
of broadband beamformers using the weighted LS cost function:

1. a non-robust beamformer (i.e. assuming an = 1, γn = 0◦)
2. a robust beamformer using a uniform gain pdf (0.85, 1.15)
3. a robust beamformer using a uniform phase pdf (−5◦,10◦)
4. a robust beamformer using a uniform gain/phase pdf
5. a robust beamformer using the minimax criterion (only gain

errors, amin = 0.85, amax = 1.15, Ka = 2)
For all beamformers, we have computed the following cost functions:

1. the cost function J without phase and gain errors (An = 1)
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2. the cost function Jdev for microphone gains [ 0.9 1.1 1.05 ]

3. the mean cost function J tot
a for the uniform gain pdf

4. the mean cost function J tot
γ for the uniform phase pdf

5. the mean cost function J tot
A for the uniform gain/phase pdf

6. the maximum cost function Jmax when the gain varies be-
tween amin = 0.85 and amax = 1.15

Table 1 summarises the different cost functions. Obviously, the de-
sign procedure optimising a specific cost function leads to the best
value for this cost function (bold values). This implies that when
no errors occur, the robust design procedures give rise to a higher
cost function J than the non-robust design procedure. However,
when gain and/or phase errors occur, the non-robust design proce-
dure produces very bad results (e.g. compare Jmax for all design
procedures and see Figure 3), whereas all robust design procedures
produce satisfactory results.

Figure 2 shows the spatial directivity plots of the non-robust,
the gain/phase-robust and the minimax beamformer for several fre-
quencies, when no gain and phase errors occur. As can be seen, the
performance of the non-robust beamformer is the best, but the per-
formance of the robust beamformers is certainly acceptable.

Figure 3 shows the spatial directivity plots in case of (small)
gain and phase errors (microphone gains = [ 0.9 1.1 1.05 ] and
phases = [ 5◦ −2◦ 5◦ ]). As can be seen, the performance of the
non-robust beamformer deteriorates considerably. Certainly for
the low frequencies, the spatial directivity pattern is almost omni-
directional and the amplification is very high. On the other hand,
the robust beamformers retain the desired spatial directivity pat-
tern, even when gain and phase errors occur.

6. CONCLUSION

In this paper we have described two procedures for designing broad-
band speech beamformers that are robust against gain and phase
errors. The first design procedure optimises the mean performance
using gain and phase pdfs, whereas the second design procedure
optimises the worst-case performance using a minimax criterion.
Simulations for both design procedures show the performance im-
provement that is obtained when gain and/or phase errors occur.
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