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ABSTRACT
A stochastic gradient implementation of a generalised multi-
microphone noise reduction scheme, called the Spatially Pre-
processed Speech Distortion Weighted Multi-channel Wiener Fil-
ter (SP-SDW-MWF), has recently been proposed in [1]. In or-
der to compute a regularisation term in the filter update formulas,
data buffers are required in this implementation, resulting in a large
memory usage. This paper shows that by approximating this regu-
larisation term in the frequency-domain the memory usage (and the
computational complexity) can be reduced drastically. Experimen-
tal results demonstrate that this approximation only gives rise to a
limited performance difference and that hence the proposed algo-
rithm preserves the robustness benefit of the SP-SDW-MWF over
the GSC (with Quadratic Inequality Constraint).

1. INTRODUCTION

Noise reduction algorithms in hearing aids and cochlear implants
are crucial for hearing impaired persons to improve speech intelligi-
bility in background noise. Multi-microphone systems exploit spa-
tial in addition to temporal and spectral information of the desired
and noise signals and are hence preferred to single-microphone
systems. For small-sized arrays such as in hearing instruments,
multi-microphone noise reduction however goes together with an
increased sensitivity to errors in the assumed signal model such as
microphone mismatch, reverberation, etc.

In [2] a generalised noise reduction scheme, called the Spatially
Pre-processed Speech Distortion Weighted Multi-channel Wiener
Filter (SP-SDW-MWF), has been proposed (cf. Section 2). It en-
compasses both the Generalised Sidelobe Canceller (GSC) and the
MWF [3, 4] as extreme cases and allows for in-between solutions
such as the Speech Distortion Regularised GSC (SDR-GSC). By
taking speech distortion explicitly into account in the design crite-
rion of the adaptive stage, the SP-SDW-MWF (and the SDR-GSC)
add robustness against model errors to the GSC. Compared to the
widely studied GSC with Quadratic Inequality Constraint (QIC) [5],
the SP-SDW-MWF achieves a better noise reduction performance
for a given maximum speech distortion level.

In [1] cheap (time-domain and frequency-domain) stochastic
gradient algorithms for implementing the SDW-MWF have been
presented. These algorithms however require large data buffers for
calculating a regularisation term required in the filter update formu-
las (cf. Section 3). By approximating this regularisation term in
the frequency-domain, (diagonal) speech and noise correlation ma-
trices need to be stored, such that the memory usage is decreased
drastically, while also the computational complexity is further re-
duced. Experimental results using a hearing aid demonstrate that
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this approximation results in a small - positive or negative - perfor-
mance difference, such that the proposed algorithm preserves the
robustness benefit of the SP-SDW-MWF over the QIC-GSC, while
its computational complexity and memory usage are comparable to
the NLMS-based algorithm for QIC-GSC.

2. SPATIALLY PRE-PROCESSED SDW-MWF

The SP-SDW-MWF, depicted in Figure 1, consists of a fixed spatial
pre-processor, i.e. a fixed beamformer A(z) and a blocking matrix
B(z), and an adaptive Speech Distortion Weighted Multi-channel
Wiener Filter (SDW-MWF) [2]. Note that this structure strongly
resembles the GSC [5, 6, 7], where the standard adaptive filter has
been replaced by an adaptive SDW-MWF.

The desired speaker is assumed to be in front of the micro-
phone array (having M microphones), and an endfire array is used.
The fixed beamformer creates a so-called speech reference y0[k] =
x0[k] + v0[k] (with x0[k] and v0[k] respectively the speech and the
noise component of y0[k]) by steering a beam towards the front,
whereas the blocking matrix creates M − 1 so-called noise refer-
ences yi[k] = xi[k] + vi[k], i = 1 . . . M − 1, by steering zeroes to-
wards the front. During speech-periods these references consist of
speech+noise, i.e. yi[k] = xi[k] + vi[k], whereas during noise-only-
periods the noise components vi[k] are observed. We assume that
the second-order statistics of the noise are sufficiently stationary
such that they can be estimated during noise-only-periods and used
during subsequent speech-periods. This requires the use of a voice
activity detection (VAD) mechanism.

Let N be the number of input channels to the multi-channel
Wiener filter in Figure 1 (N = M if w0 is present, N = M − 1 oth-
erwise). Let the FIR filters wi[k] have length L, and consider the
L-dimensional data vectors yi[k], the NL-dimensional stacked filter
w[k] and the NL-dimensional stacked data vector y[k], defined as

yi[k] = [ yi[k] yi[k−1] . . . yi[k−L+1] ]T , (1)

w[k] =
[

wT
M−N [k] wT

M−N+1[k] . . . wT
M−1[k]

]T
, (2)

y[k] =
[

yT
M−N [k] yT

M−N+1[k] . . . yT
M−1[k]

]T
, (3)
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Figure 1: Spatially Pre-processed SDW-MWF
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with T denoting transpose. The data vector y[k] can be decomposed
into a speech component and a noise component, i.e. y[k] = x[k]+
v[k], with x[k] and v[k] defined similarly as in (3).

The goal of the SDW-MWF is to provide an estimate of the
noise component v0[k−∆] in the speech reference by minimising
the cost function [2]

J(w[k]) =
1
µ

E

{∣
∣
∣w

T [k]x[k]
∣
∣
∣

2
}

︸ ︷︷ ︸

ε2
x

+E

{∣
∣
∣v0[k−∆]−wT [k]v[k]

∣
∣
∣

2
}

︸ ︷︷ ︸

ε2
v

(4)
where ε2

x represents the speech distortion energy, ε2
v represents the

residual noise energy and the parameter µ ∈ [0,∞) provides a trade-
off between noise reduction and speech distortion [3]. As depicted
in Figure 1, the noise estimate wT [k]y[k] is then subtracted from
the speech reference in order to obtain the enhanced output signal
z[k]. Depending on the setting of µ and the presence/absence of the
filter w0 on the speech reference, different algorithms are obtained:
• Without w0, we obtain the Speech Distortion Regularised GSC

(SDR-GSC), where the standard ANC design criterion (i.e. min-
imising the residual noise energy ε2

v ) is supplemented with a
regularisation term 1

µ ε2
x that takes into account speech distor-

tion due to signal model errors. For µ = ∞, the standard GSC is
obtained. In [2] it has been shown that in comparison with the
QIC-GSC, the SDR-GSC obtains a better noise reduction for
small model errors, while guaranteeing robustness against large
model errors.

• With w0, we obtain the SP-SDW-MWF (for µ = 1, we obtain
an MWF, where the output signal z[k] is the MMSE estimate
of the speech component x0[k−∆] in the speech reference). In
[2] it has been shown that in comparison with the SDR-GSC,
the performance of the SP-SDW-MWF is even less affected by
signal model errors.

Different implementations exist for computing and updating the fil-
ter w[k]. In [3, 4] recursive matrix-based implementations (using
GSVD and QRD) have been proposed, while in [1] cheap stochas-
tic gradient implementations have been developed.

3. STOCHASTIC GRADIENT ALGORITHM (SG)

3.1 Time-Domain (TD) implementation

In [1] a stochastic gradient algorithm in the time-domain has been
developed for minimising the cost function J(w[k]) in (4), i.e.

w[k +1] = w[k]+ρ
[

v[k](v0[k−∆]−vT [k]w[k])−r[k]
]

(5)

r[k] =
1
µ

x[k]xT [k]w[k] (6)

ρ =
ρ ′

vT [k]v[k]+ 1
µ xT [k]x[k]+δ

, (7)

with ρ the normalised step size of the adaptive algorithm, δ a small
positive constant, and w[k], v[k], x[k] and r[k] NL-dimensional vec-
tors. For 1/µ = 0 and no filter w0 present, (5) reduces to an NLMS-
type update formula often used in GSC, operated during noise-only-
periods [6, 7]. For 1/µ 6= 0, the additional regularisation term r[k]
limits speech distortion due to signal model errors.

In order to compute (6), knowledge about the (instantaneous)
correlation matrix x[k]xT [k] of the clean speech signal is required,
which is obviously not available. In order to avoid the need for cal-
ibration, it is suggested in [1] to store L-dimensional speech+noise-
vectors yi[k], i = M −N . . . M − 1 during speech-periods in a cir-
cular speech+noise-buffer By ∈ R

NL×Ly (similar as in [8])1 and to

1In [1] it has been shown that storing noise-only-vectors vi[k], i =
M −N . . . M − 1 during noise-only-periods in a circular noise-buffer Bv ∈
R

ML×Lv additionally allows adaptation during speech+noise-periods.

adapt the filter w[k] using (5) during noise-only-periods, based on
approximating the regularisation term in (6) by

r[k] =
1
µ

[

yBy [k]y
T
By

[k]−v[k]vT [k]
]

w[k] , (8)

with yBy [k] a vector from the circular speech+noise-buffer By.
However, this estimate of r[k] is quite bad, resulting in a large ex-
cess error, especially for small µ and large ρ ′. Hence, it has been
suggested to use an estimate of the average clean speech correlation
matrix E {x[k]xT [k]} in (6), such that r[k] can be computed as

r[k] =
1
µ

(1− λ̄ )
k

∑
l=0

λ̄ k−l
[

yBy [l]y
T
By

[l]−v[l]vT [l]
]

·w[k] , (9)

with λ̄ an exponential weighting factor and the step size ρ in (7)
now equal to

ρ =
ρ ′

vT [k]v[k]+ 1
µ (1− λ̄ )∑k

l=0 λ̄ k−l
∣
∣
∣yT

By
[l]yBy [l]−vT [l]v[l]

∣
∣
∣+δ

.

For stationary noise a small λ̄ , i.e. 1/(1 − λ̄ ) ∼ NL, suffices.
However, in practice the speech and the noise signals are often
spectrally highly non-stationary (e.g. multi-talker babble noise),
whereas their long-term spectral and spatial characteristics usually
vary more slowly in time. Spectrally highly non-stationary noise
can still be spatially suppressed by using an estimate of the long-
term correlation matrix in r[k], i.e. 1/(1− λ̄) ≫ NL.

In order to avoid expensive matrix operations for computing (9),
it is assumed in [1] that w[k] varies slowly in time, i.e. w[k]≈w[l],
such that (9) can be approximated without matrix operations as

r[k] = λ̄r[k−1]+ (1− λ̄)
1
µ

[

yBy [k]y
T
By

[k]−v[k]vT [k]
]

w[k] .

(10)
However, as will be shown in the next paragraph, this assumption is
actually not required in a frequency-domain implementation.

3.2 Efficient Frequency-Domain (FD) implementation

In [1] the SG-TD algorithm has been converted to a frequency-
domain implementation by using a block-formulation and overlap-
save procedures (similar to standard FD adaptive filtering tech-
niques [9]). However, the SG-FD algorithm in [1] (Algorithm 1)
requires the storage of large data buffers (with typical buffer lengths
Ly = 10000 . . . 20000). A substantial memory (and computational
complexity) reduction can be achieved by the following two steps:
• When using (9) instead of (10) for calculating the regularisa-

tion term, correlation matrices instead of data buffers need to
be stored. The FD implementation of the total algorithm is
then summarised in Algorithm 2, where 2L× 2L-dimensional
speech and noise correlation matrices S

i j
y [k] and S

i j
v [k], i, j =

M−N . . . M−1 are used for calculating the regularisation term
Ri[k] and (part of) the step size Λ[k]. These correlation matrices
are updated respectively during speech-periods and noise-only-
periods2. However, this first step does not necessarily reduce the
memory usage (NLy for data buffers vs. 2(NL)2 for correlation
matrices) and will even increase the computational complexity,
since the correlation matrices are not diagonal.

• The correlation matrices in the frequency-domain can be ap-
proximated by diagonal matrices, since FkT kF−1 in Algorithm
2 can be well approximated by I2L/2 [10]. Hence, the speech
and the noise correlation matrices are updated as

S
i j
y [k] = λS

i j
y [k−1]+ (1−λ )YH

i [k]Y j[k]/2 , (11)

S
i j
v [k] = λS

i j
v [k−1]+ (1−λ )VH

i [k]V j[k]/2 , (12)

2When using correlation matrices, filter adaptation can only take place
during noise-only-periods, since during speech-periods the desired signal
d[k] cannot be constructed from the noise-buffer Bv any more.
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Algorithm 2 FD implementation (without approximation)
Initialisation and matrix definitions:

Wi[0] = [ 0 · · · 0 ]T , i = M−N . . . M−1
Pm[0] = δm, m = 0 . . . 2L−1
F = 2L×2L-dimensional DFT matrix

g =

[

IL 0L
0L 0L

]

, k = [ 0L IL ]

0L = L×L matrix with zeros, IL = L×L identity matrix

For each new block of L samples (per channel):

d[k] = [ y0[kL−∆] · · · y0[kL−∆+L−1] ]T

Yi[k] = diag
{

F [ yi[kL−L] · · · yi[kL+L−1] ]T
}

Output signal:

e[k] = d[k]−kF−1
M−1

∑
j=M−N

Y j [k]W j[k], E[k] = FkT e[k]

If speech detected:

S
i j
y [k] = (1−λ )

k

∑
l=0

λ k−lYH
i [l]FkTkF−1Y j[l]

If noise detected: Vi[k] = Yi[k]

S
i j
v [k] = (1−λ )

k

∑
l=0

λ k−lVH
i [l]FkTkF−1V j[l]

Update formula (only during noise-only-periods):

Ri[k] =
1
µ

M−1

∑
j=M−N

[

S
i j
y [k]−S

i j
v [k]

]

W j[k]

Wi[k +1] = Wi[k]+FgF−1Λ[k]
{

VH
i [k]E[k]−Ri[k]

}

with

Λ[k]=
2ρ ′

L
diag

{

P−1
0 [k], . . . , P−1

2L−1[k]
}

Pm[k]= γPm[k−1]+ (1− γ)(Pv,m[k]+Px,m[k])

Pv,m[k]=
M−1

∑
j=M−N

∣
∣V j,m[k]

∣
∣2 , Px,m[k] =

1
µ

∣
∣
∣
∣
∣

M−1

∑
j=M−N

S j j
y,m[k]−S j j

v,m[k]

∣
∣
∣
∣
∣

leading to a significant reduction in memory usage (and com-
putational complexity), cf. Section 4, while having a minimal
impact on the performance and the robustness, cf. Section 5.
We will refer to this algorithm as Algorithm 3. This algorithm
is in fact quite similar to [11], which is derived directly from a
frequency-domain cost function. Some major differences how-
ever exist, e.g. in [11] the regularisation term Ri[k] is absent,
the term FgF−1 is also approximated by I2L/2 and the speech
and the noise correlation matrices are block-diagonal.

4. MEMORY AND COMPUTATIONAL COMPLEXITY

Table 1 summarises the computational complexity and the memory
usage for the FD implementation of the QIC-GSC (computed using
the NLMS-based Scaled Projection Algorithm (SPA)3 [5]) and the
SDW-MWF (Algorithm 1 and 3). The computational complexity
is expressed as the number of operations (i.e. real multiplications
and additions (MAC) per second) in MIPS and the memory usage is
expressed in kWords. We assume that one complex multiplication
is equivalent to 4 real multiplications and 2 real additions and that a
2L-point FFT of a real input vector requires 2L log2 2L real MACs

3The complexity of the FD GSC-SPA also represents the complexity
when the adaptive filter is only updated during noise-only-periods.

Algorithm Complexity MIPS
GSC-SPA (3M−1)FFT+14M−12 2.02
MWF (Algo1) (3N +5)FFT+28N +6 3.10(a), 4.13(b)

MWF (Algo3) (3N +2)FFT+8N2 +14N +3 2.54(a), 3.98(b)

Memory kWords
GSC-SPA 4(M−1)L+6L 0.45
MWF (Algo1) 2NLy +6LN +7L 40.61(a), 60.80(b)

MWF (Algo3) 4LN2 +6LN +7L 1.12(a), 1.95(b)

Table 1: Computational complexity and memory usage for M = 3,
L = 32, fs = 16 kHz, Ly = 10000, (a) N = M−1, (b) N = M

(assuming the radix-2 FFT algorithm). From this table we can draw
the following conclusions:
• The computational complexity of the SDW-MWF (Algorithm

1) with filter w0 is about twice the complexity of the GSC-SPA
(and even less without w0). The approximation in the SDW-
MWF (Algorithm 3) further reduces the complexity. However,
this only remains true for a small number of input channels,
since the approximation introduces a quadratic term O(N2).

• Due to the storage of the speech+noise-buffer, the memory us-
age of the SDW-MWF (Algorithm 1) is quite high in compari-
son with the GSC-SPA (depending on the size of the data buffer
Ly of course). By using the approximation in the SDW-MWF
(Algorithm 3), the memory usage can be drastically reduced.
Note however that also for the memory usage a quadratic term
O(N2) is introduced.

5. EXPERIMENTAL RESULTS

In this paragraph it is shown that practically no performance differ-
ence exists between implementing the SDW-MWF using Algorithm
1 or 3, such that the SDW-MWF using the proposed implementation
preserves its robustness benefit over the GSC (and the QIC-GSC).

5.1 Set-up and performance measures

A 3-microphone BTE has been mounted on a dummy head in an of-
fice room. The desired source is positioned in front of the head (at
0◦) and consists of English sentences. The noise scenario consists of
three multi-talker babble noise sources, positioned at 75◦, 180◦ and
240◦. The desired signal and the total noise signal both have a level
of 70 dB SPL at the centre of the head. For evaluation purposes,
the speech and the noise signal have been recorded separately. In
the experiments, the microphones have been calibrated in an ane-
choic room with the BTE mounted on the head. A delay-and-sum
beamformer is used as fixed beamformer A(z). The blocking ma-
trix B(z) pairwise subtracts the time-aligned calibrated microphone
signals. The filter length L = 32, the step size ρ ′ = 0.8, γ = 0.95
and λ = 0.999.

To assess the performance, the intelligibility weighted signal-
to-noise ratio improvement ∆SNRintellig is used, defined as

∆SNRintellig = ∑
i

Ii(SNRi,out −SNRi,in), (13)

where Ii expresses the importance for intelligibility of the i-th one-
third octave band with centre frequency f c

i [12], and where SNRi,out
and SNRi,in are respectively the output and the input SNR (in dB)
in this band. Similarly, we define an intelligibility weighted spectral
distortion measure, called SDintellig, of the desired signal as

SDintellig = ∑
i

IiSDi (14)

with SDi the average spectral distortion (dB) in the i-th one-third
band, calculated as

SDi =
1

(
21/6 −2−1/6

)
f c
i

∫ 21/6 f c
i

2−1/6 f c
i

|10log10 Gx( f )|d f , (15)
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Figure 2: SNR improvement of FD SP-SDW-MWF (with and with-
out approximation) in a multiple noise source scenario

with Gx( f ) the power transfer function of speech from the input to
the output of the noise reduction algorithm. To exclude the effect of
the spatial pre-processor, the performance measures are calculated
w.r.t. the output of the fixed beamformer, i.e. the speech reference.

5.2 Experimental results

Figures 2 and 3 depict the SNR improvement and the speech distor-
tion of the SP-SDW-MWF (with w0) and the SDR-GSC (without
w0) as a function of the trade-off parameter 1/µ , for Algorithm 1
(no approx) and Algorithm 3 (approx). These figures also depict
the effect of a gain mismatch ν2 = 4 dB at the second microphone.
From these figures it can be observed that approximating the reg-
ularisation term results in a small performance difference (smaller
than 0.5 dB). For some scenarios the performance is even better for
Algorithm 3 than for Algorithm 1, probably since in Algorithm 1 it
is assumed that the filter w[k] varies slowly in time.

Hence, also when implementing the SDW-MWF using Algo-
rithm 3, it still preserves its robustness benefit over the GSC (and
the QIC-GSC). E.g. it can be observed that the GSC (i.e. SDR-
GSC with 1/µ = 0) will result in a large speech distortion (and
a smaller SNR improvement) when microphone mismatch occurs.
Both the SDR-GSC and the SDW-MWF add robustness to the GSC,
i.e. distortion increases for increasing 1/µ . The performance of the
SDW-MWF is even hardly effected by microphone mismatch.

6. CONCLUSION

In this paper we have shown that the memory usage (and the compu-
tational complexity) of the SDW-MWF can be reduced drastically
by approximating the regularisation term in the frequency-domain,
i.e. by computing the regularisation term using (diagonal) FD cor-
relation matrices instead of TD data buffers. It has been shown that
approximating the regularisation term only results in a small per-
formance difference, such that the robustness benefit of the SDW-
MWF is preserved at a smaller computational cost, which is com-
parable to the NLMS-based implementation for QIC-GSC.
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