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Abstract—The steered response power (SRP) method is one of
the most popular approaches for acoustic source localization with
microphone arrays. It is often based on simplifying acoustic as-
sumptions, such as an omnidirectional sound source in the far field
of the microphone array(s), free field propagation, and spatially
uncorrelated noise. In reality, however, there are many acoustic sce-
narios where such assumptions are violated. This paper proposes a
generalization of the conventional SRP method that allows to apply
generic acoustic models for localization with arbitrary microphone
constellations. These models may consider, for instance, level dif-
ferences in distributed microphones, the directivity of sources and
receivers, or acoustic shadowing effects. Moreover, also measured
acoustic transfer functions may be applied as acoustic model. We
show that the delay-and-sum beamforming of the conventional SRP
is not optimal for localization with generic acoustic models. To this
end, we propose a generalized SRP beamforming criterion that
considers generic acoustic models and spatially correlated noise,
and derive an optimal SRP beamformer. Furthermore, we propose
and analyze appropriate frequency weightings. Unlike the conven-
tional SRP, the proposed method can jointly exploit observed level
and time differences between the microphone signals to infer the
source location. Realistic simulations of three different microphone
setups with speech under various noise conditions indicate that the
proposed method can significantly reduce the mean localization
error compared to the conventional SRP and, in particular, a
reduction of more than 60% can be archived in noisy conditions.

Index Terms—Beamforming, microphone arrays, distributed
microphones, source localization, steered response power (SRP).

I. INTRODUCTION

ACOUSTIC sound source localization is a frequently re-
quired task. Beyond source location estimation itself, it is

fundamental for various applications, such as teleconferencing,
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adaptive beamforming, speaker separation, autonomous driving,
or robotics. The steered response power (SRP) method is one of
the most commonly used methods for source localization with
microphone arrays. Its conceptual idea is to use a steered beam-
former in order to scan the space for a sound source by observing
the steering direction (or position) with maximum beamformer
output power. In the 1990 s, Omologo and Svaizer observed that
using the phase information of microphone cross power spectra
is a useful strategy for time-difference-of-arrival-based source
localization [1], [2]. This idea of exploiting microphone cross
power spectral densities by means of a steered delay-and-sum
beamformer further evolved to the SRP method in its current
form as a source localization standard [3], [4]. In particular,
the variant applying the phase transform (PHAT) [5] in order
to use the cross power spectrum phase asserted itself as the
popular SRP-PHAT that is known for its robustness against
reverberation [3], [6], [7]. We refer to the standard SRP (in-
cluding SRP-PHAT) as conventional SRP (CSRP). An exten-
sive literature study reviewing its background and presenting
various extensions has been published recently [8]. The CSRP
is based on ideal, simplifying acoustic assumptions, namely an
omnidirectional point source in the far field of the microphones,
free-field propagation and spatially uncorrelated noise [4]. In
practice, these assumptions are usually not met [9]. Neverthe-
less, SRP-PHAT usually performs well with microphone arrays
in the far field of a source. Hence, the CSRP is typically used
with microphone arrays whose aperture is much smaller than
the distance to the sound source – either with a single array
for direction-of-arrival (DOA) estimation, or with multiple dis-
tributed microphone arrays for source position estimation. In the
latter case, the CSRP is often processed for each array individu-
ally and weighted and summed up afterwards, or triangulation is
used to infer the source location [10], [11], [12]. In various other
setups, however, the simple acoustic assumptions are violated
to a greater extent. Typical examples are setups with distributed
microphones in the near field of a source including the emerging
field of wireless acoustic sensor networks, or setups involving
directional microphones or sources. Another common applica-
tion is binaural source localization, for instance with hearing
aid devices, where the acoustic head shadow causes frequency-
dependent interaural level and time differences that significantly
deviate from free-field propagation [13], [14]. In such scenarios,
not only phase differences between microphone power spectra
can be used to determine the source location but also the power
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Fig. 1. Exemplary microphone setups for source localization. Unlike in (a),
the microphone level differences in (b) contain relevant source position cues.

differences carry relevant source location cues. However, power
differences are not exploited by the CSRP (see Fig. 1).

Various approaches have been proposed to improve the lo-
calization performance of SRP-PHAT, for instance, with setups
involving distributed microphones or sensor networks [15], [16],
[17], [18], [19], by alternative prewhitening [20], [21], or by
exploiting an auxiliary microphone [22]. Other recent contri-
butions focus on the problem of SRP localization of multiple
sound sources [23], [24], [25]. Furthermore, several extension
or alternative grid search methods have been proposed to reduce
the computational complexity [26], [27], [28], [29], [30]. There
are also approaches using measured head-related transfer func-
tions or head models for binaural steered-beamforming localiza-
tion [13], [31]. Alternative SRP approaches or extensions involv-
ing machine learning are proposed, for instance, in [32], [33],
[34], [35], [36] to improve localization performance under real-
istic acoustic conditions. However, to the best of our knowledge
there is no signal-processing-based work addressing generic
acoustic conditions in general by involving more complex acous-
tic propagation models and noise characteristics for SRP-based
localization with arbitrary microphone constellations.

In this paper, we propose a generalization of the conventional
frequency-domain SRP method with regard to the just men-
tioned aspects: The presented method allows to apply advanced,
setup-specific acoustic propagation models. We show that this
enables a joint exploitation of phase and level information
for localization. Moreover, arbitrary noise characteristics can
be taken into account to improve robustness against spatially
correlated or inhomogeneous noise. In particular, it is shown
that simply replacing the free far-field model of the CSRP
by other acoustic models is not optimal with standard SRP
beamformers. In order to overcome this limitation, we propose
a generalized steered response power (GSRP) beamformer de-
sign under consideration of generic acoustic models and noise
fields and derive corresponding GSRP beamformers. Moreover,
we propose and analyze frequency weightings of the GSRP

beamformer output as potential alternatives to the PHAT weight-
ing. The presented methods are evaluated in realistic simulations
of different scenarios.

The paper is structured as follows: In Section II, we review
the generic mathematical SRP framework and the conventional
SRP with its typical applications. Section III introduces the idea
behind the generalization of the conventional SRP and shows
limitations of standard SRP beamformers in combination with
generic acoustic models. The GSRP beamformer design, the re-
sulting beamformers, and frequency weightings are presented in
Section IV. The proposed methods are evaluated in comparison
to the conventional SRP in Section V.

II. THE STEERED RESPONSE POWER METHOD

This section introduces the signal model and reviews the
generic mathematical framework of the SRP method for acoustic
source localization1 as well as its most common variant which
we refer to as conventional SRP (CSRP).

A. Signal Model in the Frequency Domain

Throughout this work, we assume that there is only one
active target sound source at position ps∈R3. The noisy sound
is recorded by M microphones at different microphone po-
sitions pm, m∈{1, . . . ,M}. The microphone signals in the
frequency domain at angular frequency ω = 2πf are given by

y(ω) = x(ω) + v(ω) = hs(ω) s(ω) + v(ω) , (1)

where the vector y(ω) = [y1(ω), . . ., yM (ω)]T comprises the
M complex-valued microphone signals which consist of the
noise-free microphone signals x(ω) and the noises v(ω). Fur-
thermore, hs(ω) = h(ω,ps) = [h1(ω,ps), . . ., hM (ω,ps)]

T is
the vector of acoustic transfer functions (ATFs) from the source
position ps to the microphone positions p1, . . .,pM , and s(ω)
is the clean source signal. The ATFs hs(ω) explicitly include all
effects of sound propagation, such as reverberation, the distance-
dependent attenuation, shadowing effects and the directivity of
the source or the microphones. Additionally, we assume that the
source signal and noise signals are independent with zero mean
and thus the signal covariance matrix2 (SCM)

Φyy(ω) = E{y(ω)yH(ω)} = Φxx(ω) +Φvv(ω) , (2)

can be expressed as the sum of the noise-free SCM

Φxx(ω) = E{x(ω)xH(ω)} = Φss(ω)hs(ω)h
H
s (ω) (3)

and noise covariance matrix (NCM) Φvv(ω) = E{v(ω)vH(ω)},
where E{·} is the expectation operator, {·}H denotes the Hermi-
tian conjugate, and Φss(ω) = E{|s(ω)|2} is the power spectral
density (PSD) of the source signal. The noise-free SCM in (3) is
a rank-one matrix when there is a single sound source. Besides,
we assume that Φvv(ω) is always invertible.

1Note that in this work, source localization explicitly refers to both the DOA
estimation and the source position estimation. Throughout this work, we use
the more general source position ps as the quantity to estimate from which the
source DOA θs can be derived.

2Often also called spatial covariance matrix or spatial correlation matrix.
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Fig. 2. Structure of the generic steered response power framework.

B. Generic SRP Framework and Conventional SRP

The structure of the generic mathematical SRP framework
is shown in Fig. 2. In SRP, a beamformer is steered towards
multiple candidate points to scan the space for a sound source.
The beamformer output for point p is

z(ω,p) = wH(ω,p) y(ω) (4)

with beamformer weights w(ω,p) = [w1(ω,p), . . ., wM

(ω,p)]T. The typical beamformer in the CSRP is a delay-and-
sum (DS) beamformer [3], [4] with3

wDS(ω,p) = dff(ω,p) =
[
e−jωT1(p), . . . , e−jωTM (p)

]T
,

(5)

where dff(ω,p) is the acoustic free far-field model that models
the time of flight Tm(p) of the actual, unknown ATF h(ω,p)
from a position p to each microphone position pm. However,
there are also publications proposing other beamformer ap-
proaches for SRP, such as the minimum power distortionless
response4 (MPDR) beamformer [32], [38], target beamforming
or null-steering beamforming [31]. The PSD of the SRP beam-
former output (i.e., the steered response power) is

P (ω,p) = E{|z(ω,p)|2} = wH(ω,p)Φyy(ω)w(ω,p) . (6)

In addition, various contributions, e.g., [3], [6], [39], [40], [41],
[42], propose a weighting of the SCM Φyy(ω). The most com-
mon weighting in the CSRP is the phase transform (PHAT)
weighting [5] which scales each element of the SCM to mag-
nitude one. In combination with the DS beamforming, this
weighting yields the popular SRP-PHAT which is known for its
robustness against reverberation [3], [6], [7], [43]. A broadband
SRP value is determined by integrating the SRP beamformer

3In some publications, e.g., in [37], the DS beamformer weights are scaled
by 1/M . This, however, does not affect the SRP localization result.

4Note that the authors of [32], [38] refer to it as minimum variance distortion-
less response (MVDR) beamformer. However, we use the denotation MPDR to
distinguish from MVDR as also done, for instance, in [37].

PSDs P (ω,p) over all frequencies:

SRP(p) =
1

2π

∫ ∞

−∞
ζ2(ω) P (ω,p) dω , (7)

where ζ2(ω) is a generic, real-valued, positive frequency weight-
ing factor. Finally, the SRP is computed at a grid of possible
source locations (which we call SRP map) and the source posi-
tion estimate is the position with maximum SRP output (7), i.e.,

p̂s = argmax
p

SRP(p) . (8)

III. SRP WITH GENERIC ACOUSTIC MODELS

The CSRP is not capable of exploiting microphone signal
level differences for localization and extracts all source posi-
tion cues purely from the observed TDOAs between the mi-
crophones. This is mainly because the CSRP is based on the
acoustic free far-field model of (5) which purely models delays.
But also the PHAT weighting removes level information of the
microphone covariances so that only phase differences remain
to determine the source location. While this is suitable in typical
CSRP applications with microphone arrays in the far field of
the sound source, exploiting level differences might be highly
desirable in generic microphone setups (cf. Fig. 1). This can be
achieved by considering both level and phase information in the
acoustic model. For instance, for sound source localization with
distributed microphones, the acoustic free near-field model [44]
can be beneficial. It is given by

dnf(ω,p) =

[
1

4πr1(p)
e−jωT1(p), . . . ,

1

4πrM(p)
e−jωTM(p)

]T
(9)

with Tm(p) = rm(p)/c, where rm(p) = ‖p− pm‖ is the dis-
tance between p and microphone m, and c is the speed of
sound. It exploits that the signals in microphones in the vicinity
of the sound source have a significantly higher level than in
distant microphones. Moreover, one can reduce the mismatch
between the acoustic model and the actual acoustical conditions
by using generic acoustic models for SRP. For example, for
binaural source localization with hearing aid microphones, using
measured or modeled head-related transfer functions (HRTFs)
as acoustic model is preferable over a free-field model. This is
because by using HRTFs the acoustic shadowing effect of the
head is taken into account which causes frequency-dependent
interaural level and time differences that significantly differ from
free-field assumptions, especially for lateral sound sources [13],
[14]. However, considering generic acoustic models for SRP is
not straightforward, as is shown with the following example.

Let us consider a simple simulated scenario with four dis-
tributed microphones in the free field (no reverberation). An
omnidirectional sound source in the middle of the four micro-
phones emits white noise (desired signal). In order to consider
near-field effects, it would be intuitive to simply apply the
free near-field model of (9) instead of the free far-field model
of (5) in the conventional DS beamforming formulation of (5),
i.e., wDS,nf(ω,p) = dnf(ω,p). However, we can see that the
magnitude ofdnf(ω,p) in (9) goes to infinity ifp approaches one
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Fig. 3. SRP maps when employing the acoustic free near-field model of (9)
with a DS (5) or MVDR (13) beamformer. The simulated sound source (red
cross) is located between four distributed microphones (gray circles). In this
exemplary scenario, SRP localization with a DS or MVDR beamformer fails.

of the microphone positionspm, since rm(p) in the denominator
of the m-th element of the vector in (9) goes to zero and thus

lim
p→pm

‖dnf(ω,p)‖ = ∞ ∀ m ∈ {1, . . . ,M} . (10)

Conversely, we can see that the magnitude of dnf(ω,p) dimin-
ishes for an increasing distance rm(p)→∞ between p and all
microphone positions pm:

lim
rm(p)→∞

‖dnf(ω,p)‖ = 0 ∀ m ∈ {1, . . . ,M} . (11)

With (6), we see that the near-field DS beamformer output power
PDS,nf(ω,p) = dH

nf(ω,p)Φyy(ω)dnf(ω,p) also goes to infinity
if p gets close to a microphone position pm, and to zero for
very distant positions, respectively. This behavior is visualized
in Fig. 3(a) (in logarithmic scale).

Hence, it becomes obvious that the DS beamformer would
require an appropriate normalization. Let us therefore consider
an SRP beamformer with a distortionless response constraint,
such as MVDR or MPDR, which normalizes the beamformer
output PSD so that it equals the source PSD [37]. Under the
assumption of spatially uncorrelated and homogeneous noise,
the NCM and its inverse are diagonal matrices with

Φvv(ω) = σ2
v(ω) I , and Φ−1

vv (ω) =
1

σ2
v(ω)

I , (12)

where σ2
v(ω) is the noise power and I is the identity matrix. With

this, the MVDR beamformer simplifies to

wMVDR(ω,p) =
Φ−1

vv (ω)d(ω,p)

dH(ω,p)Φ−1
vv (ω)d(ω,p)

(12)
=

d(ω,p)

‖d(ω,p)‖2 ,

(13)

which can be interpreted as a normalized DS beamformer.
With (10) and (11), we can see that the MVDR beamformer
weights of (13) behave in the opposite way to the previous DS
example: The magnitude of the MVDR weights (and thus also
its output PSD) goes to zero if p approaches a microphone
position pm, while it goes to infinity for increasingly distant
positions. It can be shown that this also holds for MPDR and
for MVDR with arbitrary (invertible) NCMs. This behavior is
visualized in Fig. 3(b).

This simple example shows that a correct SRP localiza-
tion with DS or a distortionless response beamformer, such as

MVDR, is not guaranteed with a near-field model – even in the
noise-free case with no mismatch between the acoustic model
and the simulated ATFs, i.e., d(ω,p) = h(ω,p). In fact, this
is not an exclusive problem of the near-field model but rather
it affects any acoustic model that incorporates source-position-
dependent level information and not purely phase information.
Moreover, also with a far-field model that ignores level infor-
mation, the influence of noise on the localization result cannot
be controlled with the conventional SRP. For these reasons, we
propose a novel beamforming method for SRP in the following
section that addresses the above mentioned problems.

IV. GENERALIZED STEERED RESPONSE POWER METHOD

In this section, a generalized steered response power (GSRP)
method for sound source localization is introduced. It general-
izes the conventional SRP (see Section II-B) in the sense that it
allows for using generic acoustic models by means of a specific
beamformer design to avoid the effects shown in the previous
section (see Fig. 3). Furthermore, generic inhomogeneous noise
characteristics are taken into account. In addition, we propose
appropriate frequency weightings and briefly address some prac-
tical aspects of GSRP.

A. GSRP Beamformer Design Criteria

In order to deduce an appropriate GSRP beamformer design,
we start from the following obvious SRP localization objective:
The SRP map SRP(p) must have a unique global maximum at
the source positionps so that argmaxp SRP(p) = ps. With (7),
this objective can be translated into a narrowband equivalent:
The SRP beamformer output PSD P (ω,p) shall have a global
maximum at the source position p = ps at each frequency ω,
i.e.,

P (ω,ps) ≥ P (ω,p) ∀ ps, p, ω . (14)

Note that we accept that the global maximum might not be
unique in each frequency ω which can be, for instance, due to
spatial aliasing. However, if multiple global maxima of P (ω,p)
exist, their respective locations are frequency-dependent and
thus vary over frequencies except for the commonly required,
frequency-independent maximum at ps. Therefore, integrating
over all frequencies in (7) usually leads to a unique global SRP
maximum at ps.

Under the assumption of statistically independent source and
noise signals (cf. (2)), we can split the beamformer output PSD
of (6) into two PSD terms P (x)(ω,p) and P (v)(ω,p), which
we refer to as source response and noise response, respectively:

P (ω,p)

= wH(ω,p)Φxx(ω)w(ω,p)︸ ︷︷ ︸
source response P (x)(ω,p)

+ wH(ω,p)Φvv(ω)w(ω,p)︸ ︷︷ ︸
noise response P (v)(ω,p)

.

(15)

We treat these two terms separately in the following GSRP
beamformer design. Let us first consider the noise-free case, i.e.,
we only consider the source responseP (x)(ω,p). The condition
of (14) then requires that the source response P (x)(ω,p) has a
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global maximum at p = ps at each frequency. This defines a
first GSRP beamformer design criterion as

CriterionNo1
max. source response

P (x)(ω,ps) ≥ P (x)(ω,p)
∀p, ps, with Φss(ω)>0 .

(16)

We refer to this as the maximum source response criterion,
whereΦss(ω)>0 is to avoid the trivial solution ofP (x)(ω,ps) =
P (x)(ω,p) = 0.

Now we take into account the noise response P (v)(ω,p)
in (15). We propose a second beamformer design criterion that
requires that the noise response is constant for all p:

CriterionNo2
constant noise response

P (v)(ω,p) = C ∀ p ,
∀ invertible Φvv(ω) ,

(17)

where C is a positive, real-valued constant. This constant noise
response criterion implies that the SRP map in the noise-only
case shall be flat. It is intuitive that the condition of (14) is
fulfilled if both GSRP beamformer design criteria (16) and (17)
are met because the maximum source response criterion ensures
a global maximum of P (x)(ω,p) at position ps and the constant
noise response criterion yields a position-independent, constant
offset of the beamformer output PSD in (15).

B. GSRP Beamformer Derivation: The MVCNR Beamformer

We consider the following generic linear beamformer formu-
lation as approach for the GSRP beamformer derivation:

w(ω,p) = α(ω,p)Ah(ω,p) , (18)

whereA is a complex-valued Hermitian, positive-definite matrix
andα(ω,p) is a complex-valued scaling factor. Specifically, (18)
is a generalized formulation of optimum beamformers including
maximum signal-to-noise ratio (max-SNR), minimum mean-
square error (MMSE), MVDR and MPDR beamformers [37],
[45], but it also includes general data-independent beamform-
ers [45] such as DS beamformers. We choose this approach from
the family of optimum beamformers because the beamformers
that are commonly used in the SRP context (cf. Section II-B)
can also be assigned to this family. Hence, the beamformer
of (18) can be interpreted as a generalization of existing SRP
beamformers.

Criterion No 1: First, we consider the maximum source
response criterion of (16). WithΦxx(ω) = Φss(ω)hs(ω)h

H
s (ω)

of (3), the source response in (15) becomes

P (x)(ω,p) = Φss(ω)
∣∣wH(ω,p)hs(ω)

∣∣2 . (19)

By inserting the previous equation into (16), dividing both sides
of the inequality by Φss(ω) and taking the square root, we can
reformulate the maximum source response criterion as

CriterionNo1
(equivalent)

∣∣wH(ω,ps)hs(ω)
∣∣ ≥ ∣∣wH(ω,p)hs(ω)

∣∣
(20)

for allp andps. In fact, this formulation shows that the maximum
source response criterion is independent of the source signal.

Now we can insert the general beamformer formulation of (18)
into the maximum source response criterion of (20):∣∣α(ω,ps)

∣∣∣∣hH
s (ω)Ahs(ω)

∣∣ ≥ ∣∣α(ω,p)∣∣∣∣hH(ω,p)Ahs(ω)
∣∣ .

(21)

In the Appendix, it is shown that (21) – and thus the maximum
source response criterion – is satisfied for every p by choosing

α(ω,p) =
ζ(ω)√

hH(ω,p)Ah(ω,p)
, (22)

where ζ(ω) is any positive, real-valued scalar. With this, the
general beamformer formulation of (18) results as

w(ω,p) = ζ(ω)
Ah(ω,p)√

hH(ω,p)Ah(ω,p)
. (23)

This beamformer fulfills the maximum source response criterion
of (16) for any Hermitian, positive-definite A.

Criterion No 2: In the next step, we must ensure that
the constant noise response criterion of (17) is fulfilled. To
this end, we insert (23) into the noise response P (v)(ω,p) =
wH(ω,p)Φvv(ω)w(ω,p), and substitute it into (17). Thus,

P (v)(ω,p) = ζ2(ω)
hH(ω,p)AH Φvv(ω)Ah(ω,p)

hH(ω,p)Ah(ω,p)
= C

(24)

must hold for all p. It can be seen that this criterion is met by
choosing A = Φ−1

vv (ω) as (24) then reduces to

P (v)(ω,p) = ζ2(ω) . (25)

The resulting beamformer thus has a constant noise response
over all p. With this, we have derived a GSRP beamformer
which fulfills both beamformer criteria (16) and (17) for generic
ATFs h(ω,p) and generic invertible NCMs Φvv(ω):

wMVCNR(ω,p) = ζ(ω)
Φ−1

vv (ω)h(ω,p)√
hH(ω,p)Φ−1

vv (ω)h(ω,p)
.

(26)

We call this beamformer minimum variance constant noise
response (MVCNR) beamformer, where the naming is explained
in the following section.

C. Discussion of the MVCNR Beamformer

The MVCNR beamformer resembles the MVDR beam-
former, however, with the main difference of the square root in
the denominator in (26). In this section, we will briefly identify
the relation between MVCNR and MVDR.

When we steer the MVCNR beamformer towards the source
position ps, its source response according to (19) is

P
(x)
MVCNR(ω,ps) = Φss(ω) ζ

2(ω)hH
s (ω)Φ

−1
vv (ω)hs(ω) . (27)

From a comparison of (19) and (27) we can infer that

wH
MVCNR(ω,ps)hs(ω) = ζ(ω)

√
hH

s (ω)Φ
−1
vv (ω)hs(ω) .

(28)
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This reveals a relevant difference from MVDR, which is based
on the distortionless response constraint wH(ω,ps)hs(ω) = 1.
Hence, MVCNR is not distortionless but its output PSD is scaled
to ensure that it reaches a global maximum atps according to (16)
and (17).5 In turn, MVCNR is not scaling-invariant with regard
to the noise power (in contrast to MVDR). These aspects also
become visible when rewriting (26) as

wMVCNR(ω,p)

= ζ(ω)
√
hH(ω,p)Φ−1

vv (ω)h(ω,p)
Φ−1

vv(ω)h(ω,p)

hH(ω,p)Φ−1
vv(ω)h(ω,p)︸ ︷︷ ︸

wMVDR(ω,p)

.

(29)

It is noteworthy that the MVCNR beamformer of (26) can also
be derived via minimum variance optimization using Lagrange
multipliers (similar to the derivation of the MVDR beamformer,
e.g., in [37]) with (28) as linear constraint, i.e.,

min
w(ω,p)

wH(ω,p)Φvv(ω)w(ω,p)

subject to wH(ω,p)h(ω) = ζ(ω)
√

hH(ω)Φ−1
vv (ω)h(ω) .

(30)

Due to this similarity to MVDR, however with a constant noise
response instead of a distortionless signal response, we call
it minimum variance constant noise response. Its output PSD
according to (6) is

P (ω,p) = ζ2(ω)
hH(ω,p)Φ−1

vv (ω)Φyy(ω)Φ
−1
vv (ω)h(ω,p)

hH(ω,p)Φ−1
vv (ω)h(ω,p)

.

(31)

Interestingly, a similar term was derived independently from
this work via a deterministic maximum likelihood approach for
binaural DOA estimation with hearing aids in [31].

D. Simplification for Uncorrelated and Homogeneous Noise

Under the assumption of spatially uncorrelated and homo-
geneous noise with Φvv(ω) = σ2

v(ω) I according to (12), the
MVCNR beamformer weights of (26) simplify to

wNMF(ω,p) =
ζ(ω)

σv(ω)

h(ω,p)

‖h(ω,p)‖ . (32)

We can recognize this as a unit-length normalized matched filter
(NMF) [46] that is scaled by the positive, real-valued factor
ζ(ω)/σv(ω). In [31], an un-scaled version of this beamformer
is proposed as target beamformer amongst others in the context
of binaural DOA estimation. Its output PSD is

PNMF(ω,p) =
ζ2(ω)

σ2
v(ω)

hH(ω,p)Φyy(ω)h(ω,p)

hH(ω,p)h(ω,p)
. (33)

5Note that in special cases, other SRP beamformers might also satisfy the
GSRP beamformer criteria of (16) and (17). For instance, one can show that
MVDR and also DS fulfills the criterion No 1 (16) in the acoustic far field,
and criterion No 2 (17) if, in addition, the noise is spatially uncorrelated and
homogeneous. However, in general, this is not the case.

Fig. 4. SRP maps when employing the acoustic free near-field model of (9)
with the proposed MVCNR (a) or MPCNR (b) beamformer. The simulated
signals equal those used in Fig. 3. In contrast to DS or MVDR, the maximum
of the SRP maps with MVCNR or MPCNR coincide with the source position.

E. GSRP Beamformer Derivation Continued: The MPCNR

The MVCNR beamformer is not a unique solution for the
GSRP beamformer design problem described in Section IV-A.
In order to show this, we refer to the fact that MVDR and MPDR
theoretically coincide wMVDR(ω,ps) = wMPDR(ω,ps) without
model errors, i.e., d(ω,ps) = h(ω,ps), when they are steered
towards ps [37], [47]. This property can be used to derive the
minimum power pendant of the MVCNR beamformer. Specifi-
cally, the respective beamformer weights can be determined by
replacing the MVDR weights wMVDR(ω,p) in (29) by those of
an MPDR beamformer, i.e.,

wMPCNR(ω,p)

= ζ(ω)
√

hH(ω,p)Φ−1
vv (ω)h(ω,p)

Φ−1
yy (ω)h(ω,p)

hH(ω,p)Φ−1
yy (ω)h(ω,p)︸ ︷︷ ︸

wMPDR(ω,p)

.

(34)

In accordance with MVCNR, we call this beamformer minimum
power constant noise response (MPCNR). Similar as in (30),
this solution can also be derived via minimum power optimiza-
tion with minw(ω,p) w

H(ω,p)Φyy(ω)w(ω,p) subject to (28).
Moreover, one can show that the MPCNR beamformer also
fulfills the GSRP beamformer condition of (14).6 However,
preliminary results showed that localization with MPCNR in
practice is highly prone to model errors. This also relates to the
fact that MPDR is known to be less robust against versatile per-
turbations such as model mismatches compared to MVDR [37],
[47]. For this reason, we refrain from a systematic analysis of
the MPCNR beamformer in the remainder of this paper to focus
on the more robust variants MVCNR and NMF.

For comparison, Fig. 4 shows the SRP maps of the same
simulated scenario as in Fig. 3 using MVCNR and MPCNR
(with ζ(ω) = 1) with the acoustic near-field model of (9). Unlike
with DS or MVDR, the SRP maps with MVCNR or MPCNR
have a global maximum an the true source position.

6The (not straightforward) proof is omitted here because this work focuses
on the more practical MVCNR and NMF beamformers.
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F. Frequency Weighting

Whereas the previous sections dealt with the GSRP design
of (14) at each frequency ω independently, this section proposes
and analyzes frequency weightings for the presented GSRP
beamformers. In the generic SRP framework (see Fig. 2), the
frequency weighting is introduced as positive, real-valued factor
ζ2(ω) in (7). We can also recognize this scaling factor in the
output PSDs of the GSRP beamformers in (31) and (33). Hence,
ζ2(ω) can be used to scale the contribution of each frequency
to the broadband SRP result. Below, we propose frequency
weightings specifically for MVCNR which, however, apply in
the same way for the simplified NMF.

With (25) and (27), the output PSD of the MVCNR beam-
former in (15), when steered towards ps, yields

PMVCNR(ω,ps) = ζ2(ω)
[
Φss(ω) h

H
s (ω)Φ

−1
vv (ω)hs(ω) + 1

]
.

(35)

This can be rewritten with the trace operator tr(·) and (3) as

PMVCNR(ω,ps) = ζ2(ω)
[
tr
(
Φ−1

vv (ω)Φxx(ω)
)
+ 1

]
, (36)

which is due to the circular shift invariance of the trace operator,
i.e., hH

s (ω)Φ
−1
vv (ω)hs(ω) = tr(Φ−1

vv (ω)h
H
s (ω)hs(ω)).

1) SNR Weighting: Let us first consider a fixed, signal- and
frequency-independent weight such as ζ2SNR(ω) = 1/M , where
the subscript refers to the signal-to-noise ratio (SNR). Inserting
into (36) yields

PMVCNR-SNR(ω,ps) =
1

M
tr
(
Φ−1

vv (ω)Φxx(ω)
)
+

1

M
. (37)

This term can be interpreted as a lower-limited, narrowband-
SNR-dependent weighting since the scaling depends on the
noise-free SCM Φxx(ω) and the inverse NCM Φ−1

vv (ω). In par-
ticular, when assuming spatially uncorrelated and homogeneous
noise according to (12), equation (37) simplifies to

PMVCNR-SNR(ω,ps)
(12)
=

tr(Φxx(ω))

tr(Φvv(ω))
+

1

M
= SNR(ω)+

1

M
,

(38)

where tr(Φvv(ω)) = M σ2
v and the narrowband SNR is

SNR(ω) =
E{xH(ω)x(ω)}
E{vH(ω)v(ω)} =

tr(Φxx(ω))

tr(Φvv(ω))
. (39)

The contribution of each frequency thus is directly related to
its narrowband SNR. This is also visualized in Fig. 5 where
PMVCNR-SNR(ω,ps) of (38) is plotted (dotted line) for spatially
uncorrelated and homogeneous noise with various SNRs.

2) Spectral Flattening: The signal or noise PSD levels can
vary highly over frequencies, for instance, because of the fre-
quency sparsity of speech or due to colored noise. As a conse-
quence, the SNR weighting might induce a highly non-uniform
contribution of different frequencies where only a few single
frequencies with highest narrowband SNR predominate the SRP
result. In order to prevent this, we propose a spectral flattening
that equalizes the contribution of each frequency to the broad-
band SRP result. This can be achieved, for instance, by enforcing
PMVCNR(ω,ps) = 1 for all ω regardless of the narrowband SNR

Fig. 5. Comparison of the GSRP beamformer output PSD PMVCNR(ω,ps)
of (36) for all presented frequency weightings as a function of the narrowband
SNR of (39) with spatially uncorrelated and homogeneous noise. Simulation
details: Φxx(ω) is a randomly generated M×M Hermitian rank-one matrix
with M = 6; Φvv(ω) as in (12) and scaled according to SNR(ω).

(see Fig. 5, dashed line). With (36), this directly yields the
weighting

ζ2flat(ω) =
(
tr
(
Φ−1

vv (ω)Φxx(ω)
)
+1

)−1
. (40)

3) Frobenius Norm Weighting: We propose the following
weighting as practical simplification of the spectral flattening:

ζ2frob(ω) =
σ2
v (ω)

‖Φyy(ω)‖F
, (41)

where σ2
v (ω) = E{vH(ω)v(ω)}/M = tr(Φvv(ω))/M is the

average noise power and ‖A‖F =
√∑M

m=1

∑N
n=1 |amn|2 de-

notes the Frobenius norm of an M×N matrix A with elements
amn. For spatially uncorrelated, homogeneous noise according
to (12), it can be shown that ζ2frob(ω) ≈ ζ2flat(ω) ifSNR(ω)>0dB,
while ζ2frob(ω) asymptotically approaches ζ2flat(ω)/

√
M at noise-

dominated frequencies. In other words, each frequency has the
same contribution at high SNR while highly noisy frequencies
are attenuated up to a factor of

√
M . This also becomes visible

in Fig. 5 (solid line).
Note that when applying the Frobenius norm weighting to the

NMF beamformer, its output PSD (33) simplifies to

PNMF-frob(ω,p) =
hH(ω,p)

‖h(ω,p)‖
Φyy(ω)

‖Φyy(ω)‖F
h(ω,p)

‖h(ω,p)‖ , (42)

which does not require a noise power estimate anymore. One
might observe a similarity between the Frobenius norm weight in
the previous equation and the element-wise PHAT weighting [5]
used in SRP-PHAT. In fact, the Frobenius norm weighting in (42)
can be interpreted as a power-difference-preserving counterpart
of the PHAT weighting, which yields an equalization of the
SCM Frobenius norm over all frequencies while preserving the
power differences of the microphone PSDs in the SCM. As a
consequence, the Frobenius norm weight coincides with the
PHAT weighting (except for a scaling by 1/M ) if no power
differences are observed between the microphones (e.g., in a
compact microphone array in the free far-field of the source).
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TABLE I
OVERVIEW OF THE PROPOSED GENERALIZED SRP BEAMFORMERS

TABLE II
PROPOSED FREQUENCY WEIGHTINGS FOR THE GENERALIZED SRP

G. GSRP Beamforming in Practice

This section briefly discusses relevant aspects of the practical
application of the above-presented GSRP method for acoustic
source localization.

Acoustic Models: In practice, the ATFs h(ω,p) in the pro-
posed beamformers are unknown and thus are replaced by an
acoustic model d(ω,p). The respective beamformer weights
and output PSDs are listed in Table I. Moreover, it is worth
mentioning that the output PSDs of the GSRP beamformers
are invariant with regard to a (frequency-dependent) complex-
valued scaling of d(ω,p). As a consequence, the beamformer
output PSD is identical regardless of whether applying ATFs
or relative transfer functions (RTFs) as acoustic model d(ω,p)
since RTFs are scaled ATFs.

Frequency Weightings: In (40), we introduced the spectral
flattening which depends on the inverse NCM and the noise-
free SCM. While the NCM can be estimated directly, e.g.,
during pauses of the desired signal, the unknown noise-free
SCM can not be estimated directly. We propose to approx-
imate Φxx(ω) = Φyy(ω)−Φvv(ω) using (2), which allows us
to rewrite tr(Φ−1

vv (ω)Φxx(ω)) as tr(Φ−1
vv (ω)Φyy(ω))−M . The

resulting frequency weight is listed in Table II.
SNR-Dependent NCM Regularization: The proposed

MVCNR beamformer (Table II) indicates a noise-dependent
linear transformation of the acoustic model vector d(ω,p) in
the term Φ−1

vv (ω)d(ω,p). In practice, this can be unfavorable
in the low-noise case as Φ−1

vv (ω) might induce a considerable
transformation of the model d(ω,p) even though the noise
component in the signals actually is negligible. To this end,
we propose a simple regularization of the NCM by means of
adding a scaled identity matrix:

Φvv,reg(ω) = Φvv(ω) + εreg σ
2
y (ω) I , (43)

where εreg is a small, positive, real-valued regularization factor
and σ2

y(ω) = tr(Φyy(ω))/M is the average microphone signal

power. For low noise with σ2
v (ω)
σ2

y (ω), the regularized NCM
approaches a scaled identity matrix (i.e., only a scaling and
no transformation of d(ω,p)) whereas the NCM is virtually
unmodified in the high-noise case.

Spatial Aliasing, Spatial Sampling and Signal Bandwidth:
Spatial aliasing is a common problem of beamformer-based
localization [48]. It becomes especially severe with distributed
microphone setups as the aliasing frequency reduces with in-
creasing microphone distance. However, not only spatial alias-
ing needs to be considered but there is also a relation between
the signal bandwidth and the spatial SRP resolution, i.e., the
spatial resolution of the SRP grid search in (8): A lower spatial
SRP resolution reduces the upper frequency of the usable signal
bandwidth [49]. Considering these effects might be crucial in
practice, especially for setups involving larger microphone dis-
tances. However, a detailed analysis of these aspects is beyond
the scope of this paper.

V. EVALUATIONS

A. Simulation Setups

The proposed generalized SRP beamforming approaches are
evaluated in comparison to the conventional SRP method in three
scenarios with different microphone constellations with speech
as source signal.

1) Car Setup – Speaker Position Estimation With Distributed
Microphones in a Car: The first scenario uses six distributed
omnidirectional microphones in the car roof in a minivan (three
seat rows with two distributed microphones per row) with rever-
beration time T60 ≈ 90 ms. We evaluated five different speaker
positions with frontal head orientation. The microphones are
elevated 30 cm above the mouth of the speaker. The geometry
of the setup is plotted in Fig. 6(1). For each speaker position, we
generated six-seconds-long microphone signals (three seconds
of stationary noise followed by three seconds of noisy speech) of
two female and two male speakers with driving noise at different
speeds. The noise-free speech signals are simulated using clean
speech snippets of the Clarity Speech Corpus [50], which are
convolved with measured in-car room impulse responses (RIRs)
from [51]. The RIRs were captured using a mouth simulator with
frontal orientation. The used dataset also contains multichannel
driving noise recordings at stationary speeds between 0 km/h
and 150 km/h [51].

2) HA Setup – DOA Estimation With Binaural Hearing Aid
Microphone Arrays in an Office: The second scenario uses two
binaural behind-the-ear hearing aid (HA) devices mounted on
a head and torso simulator (HATS) in an office room with



4012 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 33, 2025

Fig. 6. Geometry of the three evaluation setups.

reverberation time T60 ≈ 0.4 s. Each HA device comprises
three microphones with a distance of approximately 8 mm
(cf. [52] for further details). We evaluated 19 different speaker
DOAs (elevation 0◦) between an azimuth of 90◦ (left) and
0◦ (front) in steps of 5◦ (see Fig. 6(2)). For each speaker
DOA, we generated six-seconds-long microphone signals (three
seconds noise only plus three seconds noisy speech) of two
female and two male speakers with multi-talker babble noise
at different SNRs. The noise-free speech signals are simulated
using the same clean speech snippets as in the previous car
setup, which are convolved with measured binaural room im-
pulse responses (BRIRs) from [52] (office I). Stationary, diffuse
babble noise was simulated according to [53] with the NCM
Φvv, diff(k) =

∑
θ∈[0...360◦] hHRTF(k, θ)h

H
HRTF(k, θ) , where k is

the discrete Fourier transform frequency index and hHRTF(k, θ)
are the Fourier-transformed anechoic HRIRs of [52] with DOA
azimuth θ (in steps of 5◦).

3) UCA Setup – DOA Estimation With a Uniform Circular
Array (UCA) in a Simulated Room: The third scenario uses a
5-microphone UCA with 5 cm diameter involving (a) omnidi-
rectional microphones and (b) outward-oriented cardioid micro-
phones in a simulated room with reverberation time T60 = 0.6 s.
This simulated setup was added in order to evaluate the appli-
cability of the proposed GSRP methods in a (a) typical setup
of the conventional SRP (i.e., source in far field of the array
without relevant source-position-dependent level differences),
and in comparison to a (b) setup involving an array of direc-
tional microphones (source in far field of the array, but relevant
source-position-dependent level differences appear due to the
microphone directivities). We evaluated 50 randomly chosen

speaker positions in the room (see Fig. 6(3)). For each speaker
position, we generated six-seconds-long microphone signals
(three seconds noise only plus three seconds noisy speech) of
two female and two male speakers in an isotropic noise field
(pink noise) at different SNRs. The noise-free speech signals
are simulated using the same clean speech snippets as in the car
setup, which are convolved with simulated RIRs using [54],
[55]. Stationary, diffuse pink noise was simulated with [53]
where the spatial coherence function of the microphone array
was computed according to [56] incorporating the different
microphone directivities of setups (a) and (b).

B. SRP Evaluation Method

We compared the performance of the proposed GSRP beam-
forming approaches against the conventional SRP by means of
time-averaged SRP maps and the mean localization error. In
the car setup, the absolute localization error is the distance of
the source position estimate p̂s from the true source position ps,
i.e., Epos = ‖ p̂s−ps ‖. The absolute localization error in the HA
setup and the UCA setup is the angular deviationEang = |θ̂s−θs|
between the surce DOA estimate θ̂s and the ground truth θs. The
mean localization error is computed by averaging the absolute
localization error over time and over multiple speakers.

1) Evaluated SRP Algorithms: As baseline, we considered
the conventional SRP-PHAT and the CSRP without PHAT
weighting (cf. Section II-B). We compared the baseline against
the proposed GSRP algorithms (cf. Table I). In particular, we
considered MVCNR in combination with the proposed frequency
weightings SNR, flat, frob (cf. Table II), and the simpler NMF
(cf. Table I) in combination with the SNR and frob weighting.
The flat weighting was not considered in combination with the
NMF. This is because the practical benefit of NMF over MVCNR
is that no NCM estimate is required which, however, is required
by the flat weighting.

2) Applied Acoustic Models: As discussed in Section II-B,
the baseline approaches SRP-PHAT and CSRP are based on
the free far-field (FF) model of (5). By contrast, GSRP can
employ arbitrary acoustic models. For the car setup with dis-
tributed microphones, we considered the free near-field (NF)
model dnf(k,p) of (9). In addition, we took into account the
source directivity by exploiting knowledge of the frontal ori-
entation of the speakers in the car. The directivity of human
speech can be modeled [57]. However, we used a dataset of
measured, average speech directivities [58], [59]. The respective
acoustic model for the GSRP methods in the car setup thus is
determined as dGSRP(k,p) = dnf(k,p)� dsd(k,p, 0

◦), where
dsd(k,p, 0

◦) is the frequency-dependent average speech direc-
tivity of a speaker at positionpwith orientation 0◦ (frontal orien-
tation) towards all microphones and� denotes the element-wise
Hadamard product. In the car setup, the acoustic models used
for CSRP and GSRP thus have the same phase terms (cf. (5)
and (9)) but differ in the level.

In the HA setup, we used measured anechoic HRTFs of [52]
as acoustic model for the evaluated GSRP methods, i.e.,
dGSRP(k, θ) = hHRTF(k, θ). As discussed in Section III, the
HRTFs comprise frequency-dependent interaural level and time
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TABLE III
SRP IMPLEMENTATION DETAILS OF THE EVALUATION SETUPS

differences that are caused by the acoustic head shadow. There-
fore, the HRTFs differ from the CSRP free-field model of (5)
in terms of both phase and level. As an intermediate approach,
we thus evaluated an additional, phase-corrected SRP-PHAT
method. It uses the phase of the HRTFs as acoustic model
dHRTF-PHAT,m(k, θ) = hHRTF,m(k, θ)/|hHRTF,m(k, θ)| instead of
the free field model phase as proposed in [13].

In the UCA(a) setup involving omnidirectional microphone,
we used the acoustic free far-field model dff(ω, θ) of (5) for
both the conventional SRP methods and the GSRP methods. In
the UCA(b) setup involving cardioid microphones, we consid-
ered the microphone directivities (MD) in addition to the far-
field model for GSRP, i.e., dGSRP(ω, θ) = dff(ω, θ)� dMD(θ).
The directivity pattern of a cardioid microphone is given by
dMD,m(θ) = 0.5 (1+ cos∠(φm, θ)) [56], where φm reflects the
orientation of microphone m, and ∠(φm, θ) denotes the inter-
mediate angle between φm and θ.

3) SRP Implementation Details: We implemented the SRP
localization in the short-time Fourier transform (STFT) domain
using Matlab. All relevant implementation parameters can be
found in Table III. The NCM was estimated by averaging over
all instantaneous SCM estimates of the noise-only signal part
(first three seconds) with Φ̂vv(k) = 1/Ln

∑Ln
l=1 y(k, l)y

H(k, l)
where y(k, l) are the STFT signals of frequency bin k and
time frame l, and Ln is the number of frames of the noise-only
signal part. During the second, speech-plus-noise signal part,
the SCM Φ̂yy(k, l) was estimated in each frame by recursive
smoothing over instantaneous SCM estimates with smoothing
time constant τsm =75 ms (corresponding to smoothing factor
αsm = 0.2). The SRP map of (7) and the localization error was
computed in each frame with speech activity. Only frequencies
above 100 Hz were taken into account (by setting ζ2(ω) = 0
in (7) for frequencies below 100 Hz) since no relevant speech
energy can be expected below. Furthermore, frequencies in the
car setup were upper limited to 4 kHz because incorporating
higher frequencies drastically increases the localization error of
all evaluated SRP methods. This is due to aliasing effects that
mutually limit the usable signal bandwidth with a given spatial
SRP map resolution as described in [49], especially if the source
is close to the microphones. As a consequence, we must limit
the bandwidth to reduce undersampling of the SRP map.

C. Computational Complexity

The computational complexity of the evaluated SRP meth-
ods differs in terms of the SRP beamforming method and the
frequency weighting. Table IV gives an overview of the most
relevant computational differences between the beamforming

TABLE IV
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF THE PRESENTED

SRP BEAMFORMERS

TABLE V
PROCESSING TIME OF MATLAB IMPLEMENTATION (CAR SETUP)

methods CSRP (including SRP-PHAT), NMF and MVCNR.
While NMF-SNR requires a noise power estimate which scales
the beamformer weights of (32), the MVCNR method requires
the estimation and inversion of the full NCM. These differences
in computational complexity are particularly evident in real-time
processing where the beamformer weights can be offline pre-
computed for CSRP and NMF (except for a scalar multiplication
for NMF-SNR). By contrast, the MVCNR beamformer weights
need to be updated in real time once a new NCM estimate is
available. Table V shows a comparison of the average processing
time per STFT frame (the frame time period is 160 μs) and the
processing time factor relative to the CSRP method of our Matlab
implementation of the car setup.

D. Results

1) Car Setup: Fig. 7 shows time-averaged SRP heatmaps
(i.e., the frame-wise SRP maps SRP(p) of (7) are averaged over
three seconds of noisy speech) of a speaker at the driver position
at driving speed 120 km/h for the conventional SRP-PHAT and
the GSRP methods MVCNR-frob and NMF-frob. The x- and
y-axes indicate the Cartesian x and y coordinates of point p. For
better visualization, the SRP heatmaps are normalized to a value
of one at the SRP maximum (square marker). The SRP-PHAT
map is very rough and has multiple sharp peaks. Its maximum
(square marker) does not coincide with the true source position.
By contrast, in the MVCNR-frob and NMF-frob maps, a larger
area around the source position is elevated whereas areas in the
SRP map which are distant from the source are consistently
suppressed. The MVCNR-frob map shows a better suppression
of the region on the right-hand side of the source position (i.e.,
the front passenger seat in the car) compared to NMF-frob. The
maximum of both GSRP maps coincides with the source position
whereas, in general, the peaks are less sharp than those in the
SRP-PHAT map.

For a more systematic evaluation of all SRP variants, we
computed the mean localization error (MLE). To this end, the
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Fig. 7. Car setup: Time-averaged SRP maps over 3 s speech from the driver
position at 120 km/h driving speed (equivalent to −4 dB SNR averaged over
all microphones and 4 dB SNR in the closest microphone, respectively). The
acoustic model used in each evaluated SRP method is indicated in parentheses.
(FF: free far-field model; NF: free near-field model.).

Fig. 8. Car setup: Mean localization error of all evaluated SRP methods over
the microphone-averaged SNR. The respective driving speed is specified on the
top axis. The acoustic model used in each evaluated SRP method is indicated in
parentheses.

absolute localization error Epos = ‖ p̂s−ps ‖ was computed at
each time frame with active speech and averaged over all frames,
source positions and speakers. In Fig. 8, the MLE (in meters)
is plotted as a function of the driving speed and the respec-
tive average SNR over all microphones for all evaluated SRP
methods. At SNRs greater than 10 dB, the MLE is low for all
evaluated SRP methods. At increasing speed (decreasing SNR),
the performance between the different methods is increasingly
diverging and the proposed GSRP approaches MVCNR and
NMF in combination with any frequency weighting distinctly
outperform the conventional methods SRP-PHAT and CSRP.
The MLE of MVCNR and NMF is comparable at positive SNRs
whereas MVCNR, which includes a NCM estimate, outperforms
NMF at negative SNRs and shows the best overall performance.
The flat and frob weighting with MVCNR perform similarly. By
contrast, the SNR weighting consistently performs worse at high
SNRs whereas it is comparable or even preferable over flat and
frob at negative SNRs. At 150 km/h, the MLE is reduced by a
factor of five with MVCNR-frob compared to SRP-PHAT.

In addition to Fig. 8, the upper and lower localization er-
ror quartiles are shown in comparison to the MLE for three
different driving speeds in Fig. 9 (note the different scaling of the

Fig. 9. Car setup: Mean localization error (wide bars) and upper and lower
localization error quartiles at different driving speeds (different SNRs).

y-axis for 120 km/h). This plot enables a better differentiability
of the performance especially at low speed (high SNR) and,
furthermore, it allows to assess the fluctuation of the localization
error. The CSRP method, which has the greatest overall MLE,
is omitted for the purpose of better scaling. At 30 km/h, the
MLE and the error quartiles of SRP-PHAT are comparable
with those of MVCNR and NMF in combination with the flat
and frob weighting. However, at higher speeds, SRP-PHAT is
clearly worse than the proposed GSRP methods. In particular,
the span of the error quartiles of SRP-PHAT is considerably
higher which indicates a stronger fluctuation of the localization
error. A comparison of the proposed frequency weightings of
the GSRP methods shows that the SNR weighting generates a
greater MLE and error quartile span at high SNRs, whereas it is
comparable at 120 km/h with negative SNR.

2) HA Setup: In the second evaluated setup, the source DOA
is estimated. This yields a one-dimensional SRP map over the
azimuth θ, which we call DOA map to distinguish from the
two-dimensional SRP map of the previous evaluation setup. We
computed frame-wise DOA maps of 3 s speech snippets at 5 dB
SNR for several source directions between θs = 90◦ and 0◦ with
the conventional SRP-PHAT using a free far-field model (FF),
the modified SRP-PHAT method using the phase-transformed
HRTF HRTF-PHAT, and the GSRP methods MVCNR-frob and
NMF-frob using HRTFs as acoustic model. In Fig. 10, the
frame-wise DOA maps of each source direction were averaged
over time and stacked on top of each other, which generates
a two-dimensional DOA heatmap over several source direc-
tions θs. The DOA map maximum of each source direction
is marked by a black dot. The gray line indicates the actual
source DOA (ground truth). While the SRP-PHAT (FF) map
shows rather good results for frontal source DOAs between
45◦ and 0◦, the lateral DOAs are mislocalized. By contrast, the
SRP-PHAT using the HRTF phase is better able to resolve lateral
source DOAs. However, the localization of DOAs between 80◦

and 90◦ is still inaccurate. The plotted GSRP maps show good
localization performance over all evaluated DOAs as the SRP
map maxima mostly coincide with the source DOAs (gray line).
However, the peaks of MVCNR-frob and especially NMF-frob
are broader compared to SRP-PHAT whereas the GSRP meth-
ods, in particular MVCNR-frob, suppress the SRP map regions
apart from the main peak to a greater extent. This also reduces
the front-back confusion compared to the SRP-PHAT maps.
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Fig. 10. HA setup: Time-averaged, stacked DOA maps (one-dimensional
DOA maps of several source directions θs are stacked on top of each other)
of 3 s speech snippets at 5 dB SNR. Black dots denote the SRP maximum of
each evaluated source DOA θs. The acoustic model used in each SRP method
is indicated in parentheses. (FF: free far-field model; HRTF: measured HRTFs;
HRTF-PHAT: phase-transformed HRTF.)

Fig. 11. HA setup: Mean localization error of all evaluated SRP methods over
the SNR. The acoustic model used in each evaluated SRP method is indicated
in parentheses.

Fig. 11 shows the MLE (in degree) of each evaluated SRP
method, i.e., the average of the absolute angular deviation
Eang = |θ̂s−θs| over all frames with active speech and all source
DOAs. The baseline SRP-PHAT and CSRP with the conventional
free field model (FF) have a significantly higher MLE than all
other methods already at high SNRs. By contrast, the SRP-PHAT
method involving the HRTF phase restores the localization
capabilities and performs comparable to the proposed GSRP
methods MVCNR and NMF at SNRs greater than 5 dB. At low
SNR, the performance of MVCNR is clearly better compared
to its simplified counterpart NMF which suffers from dominant
noise. The SRP-PHAT with HRTF phase is slightly worse than
MVCNR at low SNRs. In this setup, no significant differences
can be seen between the proposed frequency weightings for

Fig. 12. UCA setup: Time-averaged, stacked DOA maps (one-dimensional
DOA maps of several source directions θs are stacked on top of each other)
of 3 s speech snippets at 5 dB SNR. Black dots denote the SRP maximum of
each evaluated source DOA θs. The acoustic model used in each SRP method is
indicated in parentheses. (FF: free far-field model; FF+MD: free far-field model
+ cardioid microphone directivities.)

MVCNR. However, for the NMF, the SNR weighting is advan-
tageous over the frob weighting at low SNRs. The proposed
MVCNR reduces the MLE by 25◦ to 30◦ compared to SRP-PHAT
(FF) at all SNRs.

3) UCA Setup: In the third evaluation setup, we computed
the time-averaged DOA maps of 3 s speech snippets at 5 dB SNR
for all simulated source positions of the conventional SRP-PHAT
and the GSRP methods MVCNR-frob and NMF-frob. Fig. 12
shows the stacked DOA maps of all evaluated source directions
of the UCA(a) setup with omnidirectional microphones (left) in
comparison to the UCA(b) setup with directional microphones
(right). The SRP maximum of each source DOA is marked by a
black dot. The gray line indicates the actual source DOA (ground
truth). In the UCA(a) setup, the SRP maps of all methods show
comparably good results. It is noticeable that the SRP-PHAT
and NMF-frob map look almost identical and show slight DOA
deviations at certain angles (e.g., close to θs = 0◦ or θs = 90◦).
The MVCNR-frob map shows good localization accuracy over
all evaluated DOAs and regions apart from the source DOA are
suppressed more consistently. In the UCA(a) setup involving
cardioid microphones, the performance of SRP-PHAT decreases
significantly. One can observe clear sidelobes in the DOA maps,



4016 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 33, 2025

Fig. 13. UCA setup: Mean localization error of all evaluated SRP methods over
the SNR. The acoustic model used in each evaluated SRP method is indicated
in parentheses.

e.g., around θ = 165◦ or θ = 350◦, which cause many DOA
mislocalizations. By contrast, the MVCNR-frob and NMF-frob
DOA maps of the UCA(b) setup show similar or even slightly
better accuracy compared to those of the UCA(a) setup.

Fig. 13 shows the MLE (in degree) averaged over all source
DOAs of each evaluated SRP method for the UCA(a) setup (left)
and UCA(b) setup (right) over various SNRs. In the UCA(a)
setup with omnidirectional microphones, all evaluated methods
perform good at high SNR. In particular, SRP-PHAT, MVCNR
with flat and frob weighting, and NMF-frob show identical high
accuracy for SNR greater than 10 dB. Whereas no relevant
differences are observable between SRP-PHAT and NMF-frob
at any SNR, the MVCNR methods clearly outperform SRP-
PHAT and the NMF methods at SNRs lower than 5 dB. In the
UCA(b) setup involving directional microphones, remarkable
differences in the performance can be observed between the
conventional methods CSRP and SRP-PHAT and the proposed
GSRP methods. The CSRP has extremely poor accuracy even
at high SNR. The MLE of SRP-PHAT at 20 dB SNR is only
slightly higher compared to the GSRP methods but increases
significantly with lower SNR. The performance of the GSRP
methods is comparable, where MVCNR-frob shows a slightly
lower MLE for positive SNRs and the methods involving the
SNR weighting are preferable at negative SNR. Compared to
the UCA(a) setup, the performance of the MVCNR methods is
similar whereas the NMF methods even perform better in the
UCA(b) setup involving cardioid microphones.

E. Discussion of Results

The results show that the proposed generalized SRP methods
MVCNR and NMF consistently outperform the conventional
SRP baseline methods SRP-PHAT and CSRP in the presented
evaluation setups. In the car setup, the relevant difference be-
tween the conventional SRP methods and the proposed GSRP
methods is that the latter exploits observed level differences in
addition to TDOAs (acoustic free near-field model) whereas the
conventional SRP methods only use TDOA information (free

far-field model). Especially at low SNRs, this exploitation of
level information with GSRP significantly reduces the localiza-
tion error in this setup. In the HA setup, the proposed GSRP
methods also use both microphone level and phase information
for localization. However, in this setup, the relevant improve-
ment of GSRP over the conventional SRP, which uses the free
far-field model, is the reduced TDOA mismatch between the
acoustic model and the observed TDOAs by using measured
HRTFs (or the HRTF phase) as acoustic model. These HRTFs
implicitly incorporate the shadowing effect of the head which
causes significant deviations from the conventional free-field
propagation, especially at lateral DOAs. The UCA setup helps to
further understand the benefit of the GSRP over the conventional
SRP methods. The UCA(a) setup with an array of omnidirec-
tional microphones is a typical use case of the conventional
SRP. In this setup, the same acoustic model is applied to the
GSRP methods as to the conventional SRP, which allows to
asses the influence of the proposed GSRP frequency weightings
and of incorporating the NCM estimate in the MVCNR method
independently from the acoustic model. As can be expected, the
performance of SRP-PHAT and NMF-frob is almost identical
in this scenario since no relevant microphone level differences
are observable (cf. Section IV-F3 for more details). By con-
trast, the MVCNR beamformer is able to clearly improve the
localization performance at low SNR. The UCA(b) setup with
an array of five directional microphones significantly impairs
the localization performance of the conventional SRP method.
These results indicate that the phase information are less reliable
in this setup with directional microphones. A likely explanation
for this is that phase differences of a microphone pair cannot
be assessed if the source DOA is contrary to the orientation
of one of the cardioid microphones. For other source DOAs,
phase information might be available at high SNR but they are
prawn to phase distortions at lower SNR. However, the results
show that the GSRP method can compensate for these effects
and restores or even slightly improves localization accuracy
in the scenario involving directional microphones compared to
the UCA(a) setup. This is because considering the microphone
directivity patterns in the acoustic model of the GSRP methods
allows to additionally exploit the source-DOA-dependent level
information of the directional microphones for localization.

In all simulated scenarios, MVCNR and NMF have similar
performance at high SNR while MVCNR outperforms NMF
at lower SNR. This is intuitive since NMF is a simplification
of MVCNR assuming spatially uncorrelated and homogeneous
noise – and this assumption is increasingly violated with increas-
ing noise which, in fact, is not perfectly spatially uncorrelated
and homogeneous. Compared to SRP-PHAT and CSRP, the
proposed GSRP methods not only have a lower MLE but also
the fluctuation of the localization error is considerably lower
especially at low SNR. This is because the GSRP methods are
less prone to TDOA estimation errors as they can additionally
exploit level information which might indicate the (coarse)
source position even with a noisy TDOA estimate. Furthermore,
the results compare the proposed GSRP frequency weightings
SNR, flat and frob. The SNR weighting scales each frequency
depending on its respective narrowband SNR, which might cause
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a few single frequency bands with highest SNR to dominate the
SRP result. This property seems beneficial in the high-noise
case with an SNR close to 0 dB or lower, whereas the flat
and the simpler frob weighting, which equalize the spectral
contribution of each frequency, have a better performance at
positive SNRs.

VI. CONCLUSION

In this paper, we have presented a generalization of the
conventional SRP method that allows to exploit generic acous-
tic models and noise characteristics for acoustic sound source
localization: the generalized steered response power (GSRP)
method. By using an appropriate acoustic model (including
ATF or RTF measurements) for a given microphone setup,
the proposed approach can jointly exploit the observed micro-
phone level and phase differences to improve the localization
performance compared to the conventional SRP which only
assesses phase differences. It has been shown that simply re-
placing the acoustic free far-field model of the conventional SRP
method by other acoustic models is not optimal with known
SRP beamformer methods, such as delay-and-sum or MVDR.
To this end, we propose a novel SRP beamforming design for
localization using generic acoustic transfer functions and noise
covariance matrices. Based on this GSRP beamforming design,
we have derived the minimum variance constant noise response
(MVCNR) beamformer and its simplification for spatially uncor-
related and homogeneous noise – the normalized matched filter
(NMF). Furthermore, different frequency weightings for the
presented beamformers have been proposed and analyzed. These
frequency weightings are suitable alternatives of the commonly
used PHAT weighting for SRP as they, unlike PHAT, preserve the
inter-microphone level differences that can be exploited by the
GSRP method. Realistic simulations of three different scenar-
ios involving distributed microphones, hearing aid microphone
arrays, and arrays with directional microphones under various
noise conditions have shown that the mean localization error can
be significantly reduced with the proposed methods compared
to the conventional SRP. In particular, MVCNR consistently
performs well in all evaluated scenarios, whereas NMF suffers
under highly noisy conditions. The proposed SRP generaliza-
tion is especially beneficial for setups where the conventional
free far-field assumptions are violated to a greater extent and,
moreover, the microphone level differences may contain relevant
source location cues. For instance, this is the case in setups with
distributed microphones in the near field of the source, or setups
involving acoustically shadowed or directional microphones.
However, also in a typical scenario of the conventional SRP
with a speaker in the far field of a compact circular microphone
array, the proposed GSRP methods were able to outperform the
SRP-PHAT baseline.

APPENDIX

Derivation ofα(ω,p) of (22) based on the GSRP beamformer
design criterion No 1 (20): The matrix A in (21) is a Hermitian,
positive-definite matrix and therefore can be decomposed with
the Cholesky decomposition into A = LLH, where L is a

triangular matrix. With this, (21) becomes∣∣α(ω,ps)h
H
s (ω)LL

Hhs(ω)
∣∣≥∣∣α(ω,p)hH(ω,p)LLHhs(ω)

∣∣.
(44)

Substituting h′(ω,ps) = LH hs(ω) and h′(ω,p) = LH h(ω,p)
into (44) yields∣∣α(ω,ps)h

′H(ω,ps)h
′(ω,ps)︸ ︷︷ ︸

‖h′(ω,ps)‖2

∣∣≥∣∣α(ω,p)h′H(ω,p)h′(ω,ps)
∣∣.

(45)

Now, we search for anα(ω,p) andα(ω,ps), respectively, which
ensure that this inequality is true for all p and ps. To this
end, we can use the Hermitian angle between two complex
column vectors a and b, i.e., cosH(a,b) = |aH b|/(‖a‖ ‖b‖)
with cosH(a,b)∈[0, 1], to rewrite (45) as∣∣α(ω,ps)

∣∣ ‖h′(ω,ps)‖2

≥ ∣∣α(ω,p)∣∣ cosH (h′(ω,p),h′(ω,ps)) ‖h′(ω,p)‖‖h′(ω,ps)‖.
(46)

When dividing both sides of (46) by ‖h′(ω,ps)‖, we can see that
the inequality holds for

α(ω,p) =
ζ(ω)

‖h′(ω,p)‖ , and α(ω,ps) =
ζ(ω)

‖h′(ω,ps)‖ , (47)

respectively, because (46) reduces with (47) to

1 ≥ cosH (h′(ω,p), h′(ω,ps)) , (48)

which is true for all p. In (47), ζ(ω) is a positive, real-valued
scalar. Finally, when substituting h′(ω,p) = LH h(ω,p), the
found solution for α(ω,p) in (47) becomes

α(ω,p) =
ζ(ω)∥∥LH h(ω,p)

∥∥ =
ζ(ω)√

hH(ω,p)LLH h(ω,p)
,

(49)

which can be rewritten by re-composing LLH = A as

α(ω,p) =
ζ(ω)√

hH(ω,p)Ah(ω,p)
. (50)
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