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Abstract—Hearable devices, equipped with one or more mi-
crophones, are commonly used for speech communication. Here,
we consider the scenario where a hearable is used to capture
the user’s own voice in a noisy environment. In this scenario,
own voice reconstruction (OVR) is essential for enhancing the
quality and intelligibility of the recorded noisy own voice signals
for telephony applications. In previous work, we developed a
deep learning-based OVR system, aiming to reduce the amount
of device-specific recorded signals for training by using data aug-
mentation with phoneme-dependent models of own voice trans-
fer characteristics. Given the limited computational resources
available on hearables, in this paper we propose low-complexity
variants of an OVR system based on the frequency and time
joint non-linear filter (FT-JNF) architecture and investigate the
required amount of device-specific recorded signals for effective
data augmentation and fine-tuning. Simulation results show that
the proposed OVR system considerably improves speech quality,
even under constraints of low complexity and a limited amount
of device-specific recorded signals.

Index Terms—own voice reconstruction, hearables, speech
enhancement, low-complexity, data augmentation

I. INTRODUCTION

Speech communication is often impaired in noisy environ-
ments. In-the-ear hearable devices, i.e., smart earpieces with
a loudspeaker and one or more microphones, can be used
to improve communication in such environments. Here, we
consider the scenario where a hearable with an outer and an
in-ear microphone aims to capture the user’s own voice, e.g.,
to be transmitted via a wireless link to another hearable or a
mobile phone. The outer microphone captures environmental
noise along with recording the own voice. While the in-ear mi-
crophone benefits from the attenuation of environmental noise
due to ear canal occlusion, the recorded own voice suffers
from low-frequency amplification (below ca. 1kHz), band-
limitation (above ca. 2kHz), and body-produced noise [1].
The goal of own voice reconstruction (OVR) is to estimate
clean broadband own voice signals from the outer and/or in-
ear microphone signals.
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Several OVR approaches have been proposed which extend
the bandwidth of the in-ear microphone signal [2]-[7]'. How-
ever, it has been shown in [8]-[12] that speech quality can
be further improved by using outer microphones in addition
to in-ear microphones. Although previously proposed deep
learning-based OVR systems often have high computational
complexity and millions of parameters, it is crucial that OVR
systems for hearables have low complexity and few parameters
to meet hardware requirements. In addition, training an OVR
system typically requires a large amount of device-specific
own voice signals. Whereas some OVR approaches only use
device-specific recorded own voice signals directly as training
data, e.g., [10], [13], other approaches perform training with
augmented own voice data generated from a small amount
of device-specific recorded signals and then perform fine-
tuning with the recorded own voice signals [2], [4], [5], [12].
For single-channel speech enhancement systems, the amount
of required training data tends to decrease as complexity
decreases [14]. However, it is unclear if this relationship
also applies to training low-complexity OVR systems with
augmented own voice data and fine-tuning using only few
device-specific own voice recorded signals.

In this paper, we propose low-complexity variants of an
OVR system based on the frequency and time joint non-
linear filter (FT-JNF) architecture [15]. We train the OVR
system variants using a phoneme-dependent own voice data
augmentation method proposed in [12]. We compare the OVR
performance of the proposed system variants, differing in
size and computational complexity, with baseline systems. In
addition, we investigate the influence of the amount of device-
specific recorded own voice signals used for data augmentation
and fine-tuning on the OVR performance. Experimental results
show that the proposed system outperforms baseline systems
at a comparable complexity, even when only a small amount
of device specific recorded signals is available.

II. SIGNAL MODEL

We consider a hearable device equipped with an outer mi-
crophone and an in-ear microphone, as depicted in Fig. 1. The
signals are denoted by subscripts o for the outer microphone
and ¢ for the in-ear microphone. In the short-time Fourier

! Although some of these approaches have been proposed and validated for
body-conduction microphones, they can also be applied to in-ear microphones.
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Figure 1. Block diagram of own voice reconstruction using an outer and an
in-ear microphone of a hearable.

transform (STFT) domain, S, (k, ) and S;(k, ) denote the own
voice signals of the user at both microphones, where k and
[ denote the frequency index and the frame index. The outer
and in-ear microphone signals are given by

Yo (k1) =S,(k,1) + Vo (k, 1), (1)

where the noise components are denoted by V,(k,l) and
Vi(k,1). We assume the noise components mainly consist of
environmental noise at both microphones, but also microphone
self-noise with a much lower level at both microphones and
body-produced noise at the in-ear microphone.

III. OWN VOICE RECONSTRUCTION SYSTEM

The goal of own voice reconstruction is to estimate the own
voice signal S,(k,l) from the outer and in-ear microphone
signals. It is assumed here that this signal is spectrally similar
to the own voice at the talker’s mouth. In [11], [12] an
OVR system based on the FT-JNF architecture [15] has been
proposed, see Fig. 2. This system takes the complex-valued
outer and in-ear microphone STFT coefficients as input, split
into real and imaginary parts Y°(k,l) and Y ™(k,[) for the
outer microphone and Y;®(k,l) and Y;™(k,[) for the in-ear
microphone. The input is processed by a frequency-direction
LSTM (F-LSTM) with H hidden units, followed by a time-
direction LSTM (T-LSTM) with H; hidden units. The output
of the T-LSTM layer is then processed by a dense layer and a
tanh activation function to obtain the real and imaginary parts
of the complex-valued STFT masks M, (k,!) and M;(k,!) for
the outer and in-ear microphones. The tanh activation function
constrains the real and imaginary parts of the masks to the
range [—1, 1]. To compute the own voice estimate S, (k, 1),
noisy STFT coefficients of both microphones are multiplied
with the corresponding masks and added, i.e.,

So(k, 1) = My (k,1) - Y (K, 1). 3)

me{o,i}

In this paper we consider several variants of this OVR system,
which differ in size and computational complexity. We vary
the size by changing the number of hidden units Hy and Hy,
see numbers in Fig. 2 for the extra-large (XL), large (L),
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Figure 2. Architecture of the OVR system, estimating complex-valued masks
for the outer and in-ear microphones. The number of hidden units, H I and
Hy, is different for each proposed variant.

medium (M), small (S) and extra-small (XS) variants. In this
paper, we do not consider further complexity reduction, e.g.,
by quantization or pruning [16].

IV. PHONEME-DEPENDENT OWN VOICE AUGMENTATION

Training an OVR system using both an outer and an in-
ear microphone requires a device-specific dataset of own
voice signals. Recording a dataset sufficiently large for direct
training requires considerable effort. However, it is more
feasible to record only a small dataset with a limited number of
talkers or utterances per talker. In [17], a method was proposed
to simulate in-ear own voice signals from outer microphone
signals (for talkers and utterances not included in the small
recorded dataset). From the small recorded dataset, phoneme-
specific relative transfer functions (RTFs) between the outer
and the in-ear microphone are estimated for each recorded
talker, over all time frames in which a specific phoneme p
occurs. The estimated phoneme-specific RTFs are denoted by
H, (k). For RTF estimation, it is assumed here that there is
no environmental noise in the small recorded dataset, and that
the sensor noise is negligible compared to the own voice in
both microphone signals.

For simulation, an outer microphone signal S,(k,l) of a
random different talker is phoneme-annotated to obtain the
phoneme annotation sequence p,(l). The simulated in-ear
signal S;(k,1) is then obtained as

Si(k, 1) = Hy,, q)(k) - So(k,1). (G))
Additionally, to avoid artifacts during phoneme transitions,
temporal smoothing of pro(l)(k) is carried out (see [17]
for details). Instead of assuming recorded outer microphone
signals are available, it was proposed in [12] to use clean
speech signals from standard datasets instead. Since standard
datasets are readily available, this method allows for the
simulation of a large amount of simulated in-ear own voice
signals. An OVR system can then be trained with augmented
own voice signals, consisting of clean speech signals used as
the outer microphone own voice signal and the corresponding
simulated in-ear own voice signal. In [12] it was shown
that when a small dataset of device-specific recorded signals



is available, this data augmentation method can improve
OVR performance compared to only using the device-specific
recorded signals directly as training data. After training an
OVR system with augmented own voice signals, the recorded
own voice signals can be used to fine-tune the system, further
improving performance.

V. EXPERIMENTAL SETUP

To evaluate the proposed FT-JNF variants and several base-
line systems (see Section V-D) for own voice reconstruction,
we conduct an experimental evaluation. In this section, we
describe the experimental setup for the evaluation.

A. Datasets

The evaluation uses clean recorded own voice signals made
with the Hearpiece hearable prototype [18]. A dataset of
German own voice signals of 18 talkers with 306 utterances
each is split into training, validation, and test sets with 12, 2,
and 4 talkers, respectively. All OVR systems are first trained on
augmented own voice signals and then fine-tuned on recorded
own voice signals. The augmented own voice signals are
obtained by augmenting 10% of the German portion of the
CommonVoice dataset [19] (v11.0), corresponding to 115.7
hours, as described in Section IV. The full augmented training
and fine-tuning of the proposed variants and the baseline sys-
tems uses recorded signals from 12 talkers with 306 utterances
each. Reduced amounts are considered in Section VI-B. It
should be noted that independent of the amount of used device-
specific recorded signals, all systems were trained with the
same amount of augmented data (115.7 hours).

The noise signals at both microphones used for training
and testing are a spatialized version of the fifth DNS chal-
lenge [20], obtained following the procedure in [11] using
individually matched, measured transfer functions for the same
users as in the dataset of recorded own voice signals’. Mea-
surements from 8 horizontal directions in 45°-steps with 1.5m
distance are used to compute either point source signals (single
direction) or pseudo-diffuse noise signals (8 directions).

B. Training details

The experiments are conducted at a sampling rate of 16 kHz,
using an STFT framework with a frame length of 32 ms and a
frame shift of 16 ms, where a square-root Hann window is used
both in analysis and synthesis. Own voice and noise signals
are mixed at a random signal-to-noise ratio (SNR) between -10
and 25 dB, defined at the outer microphone. Training is carried
out with four examples per batch and an example length of
3's, using the combined L, loss between the target clean own
voice signal at the outer microphone and the estimated own
voice signal in the time domain and the STFT domain (after
re-analysis) [21]. The ADAM optimizer [22] is used with an
initial learning rate of 10~*, which is halved after three epochs
without improvement of the validation loss, and training is

2German own voice dataset [online]: https://doi.org/10.5281/zenodo.
10844599, individual transfer function measurements [online]: https://doi.org/
10.5281/zenodo.11196867

stopped after six epochs without improvement. The initial
learning rate for fine-tuning is 10~°.

C. Evaluation metrics

OVR performance is evaluated using wideband PESQ [23],
extended short-time objective intelligibility (ESTOI) [24], and
log-spectral distance (LSD) [25]. For all three metrics, the
clean own voice signal at the outer microphone is chosen
as the reference signal. Higher PESQ and ESTOI values are
better, while lower LSD values are better. During testing, OVR
performance is evaluated at SNRs of -10, -5, 0, 5, and 10dB.
The results are averaged over the test set and over SNR.
System complexity is reported in terms of number of param-
eters, number of multiply-accumulate operations per second
(MACs/s), and real-time factor (RF). MACs are computed
using the thop Python package. The RF is computed on an
Intel Core i7-10850H CPU (2.7 GHz).

D. Baseline systems

The baseline systems include three systems that only use
the in-ear microphone (IM) signal, and one system that uses
both the outer and in-ear microphone signals. All baseline
systems were retrained using the same setup as described in
Section V-B for the proposed FT-JNF variants:

o UNet [2], [26]: Time-domain system performing recon-

struction of the in-ear own voice signal.

o Extreme Bandwidth Extension Network (EBEN) [3]:
Time-domain system, originally proposed for bandwidth
extension of body-conducted speech. The generator was
retrained by replacing the generative adversarial network-
based training with the loss function from [21], as used
for all other systems.

o FT-JNF XL (IM): The proposed FT-JNF XL using only
the in-ear microphone signal. Due to the activation func-
tion and only estimating masks (see Section III), this
system is unable to perform bandwidth extension.

e Group Communication Binaural Filter and Sum Net-
work (GCBFSNet) [27]: Unilateral version of the low-
complexity GCBFSNet (8 groups, 32 hidden units, with
post-filter, 2ms frames, 1 ms frame shift), retrained for
OVR using both the outer and in-ear microphone signals.

VI. RESULTS

In this section, the results of the experimental evaluation
are presented. In Section VI-A, the proposed FT-JNF variants
are compared to the baseline systems. In Section VI-B, the
influence of the amount of device-specific recorded own voice
signals for data augmentation and fine-tuning is investigated.
Audio examples from the evaluation are available online?.

A. Comparison to baseline systems

Table I compares the performance, size and complexity of
the proposed FT-JNF variants and the baseline systems. First,
it can be observed that all OVR variants achieve considerable

3 Audio examples [online]: https://m-ohlenbusch.github.io/low_complexity_
ovr_examples/



Table 1
PERFORMANCE, SIZE AND COMPLEXITY OF THE BASELINE SYSTEMS AND
THE PROPOSED FT-JNF VARIANTS (XL, L, M, S, XS). "M’ INDICATES
MILLIONS, G’ INDICATES BILLIONS. ROWS WITH A GRAY BACKGROUND
INDICATE SYSTEMS USING ONLY THE IN-EAR MICROPHONE.

Intrusive metrics Size and complexity
System PESQ ESTOI LSD Param. MACs/s RF
Unprocessed 1.25 0.51 2.46 - - -
UNet (IM) [2] 1.85 0.65 130 | 10.278M 6.03G 0.157
EBEN (IM) [3] 1.51 0.57 1.64 1.946 M 1.02G  0.034
FT-INF XL (IM) 1.47 0.61 1.73 1.390M  2238G  0.387
GCBFSNet [27] 1.93 0.68 1.36 0.100M 031G 0.303
FT-JNF XL 2.58 0.78  1.08 1.390M  2245G  0.392
FT-INF L 2.50 077 1.10 0.466 M 755G 0.173
FT-INF M 222 072 127 0.118M 193G 0.071
FT-JNF S 2.18 072 1.28 0.031M 050G 0.029
FT-JNF XS 1.95 0.68  1.40 0.013M 023G 0.011
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A GCBFSNet 12 talkers, 25 utterances
° FT-JNF 3 talkers, 306 utterances

improvements in all metrics

compared to the unprocessed

(noisy outer microphone) signals. Not surprisingly, systems
using both the outer microphone and the in-ear microphone
(GCBFSNet and FT-JNF variants) generally outperform sys-
tems using only the in-ear microphone (UNet, EBEN, FT-
JNF XL (IM)). Among the systems using only the in-ear
microphone, UNet achieves the best scores but also has the
most parameters. While EBEN and FT-JNF XL (IM) have
a similar amount of parameters and performance, FT-JNF XL
(IM) has a much higher complexity (MACs/s and RF). Among
the systems using both the outer and the in-ear microphone,
GCBFSNet has a slightly lower RF than the FT-JNF XL
variant, but higher than the L, M, S, XS variants. Although
GCBFSNet has fewer MACs/s than FT-JNF S, FT-JNF S has
about three times fewer parameters and achieves better scores
in all metrics. FT-JNF XS performs comparable to GCBFSNet
with fewer MACs/s and at a much lower RF.

FT-INF XL performs much better than IM-FT-JNF XL,
while the complexity of FT-JNF XL is only marginally higher.
This indicates a substantial performance gain from using the
outer microphone. Due to performing masking in a constrained
value range, FT-JNF XL (IM) is unable to reconstruct speech
in high frequency regions, whereas FT-JNF XL can use high
frequency content from the outer microphone.

While FT-JNF XL consists of 1.39 million parameters, it
requires a high number of computations due to the F-LSTM
iterating over all frequencies for each time frame. When the
model complexity is decreased to L, the MACs/s and RF also
decrease, while the performance only slightly decreases. Even
though the performance of the smaller variants (M, S and XS)
is lower compared to FT-JNF XL and L, their performance
is still better than the baseline systems. It should be noted
that FT-JNF S and XS require approximately 44 and 97 times
fewer MACs/s than FT-INF XL, respectively.

B. Influence of amount of device-specific recorded signals

To investigate the relationship between system complexity
and amount of device-specific recorded signals, the baseline
systems and the proposed FT-JNF variants were retrained
using different amounts of device-specific recorded signals for

Figure 3. PESQ improvement of the baseline systems and the proposed FT-
JNF variants for different amounts of device-specific recorded signals (talkers,
utterances). Different systems are distinguished by different symbols, while
different amounts of recorded signals are represented by different colors.

augmented training and fine-tuning. We investigated both the
influence of reducing the number of talkers from 12 to 3 (with
306 utterances) and reducing the number of utterances from
306 to 25 (for 12 talkers). Fig. 3 shows the results in terms of
PESQ improvement (APESQ) compared to the unprocessed
noisy outer microphone signals. When the number of talkers
is reduced, the performance of baselines with low complexity
(GCBFSNet, EBEN) only slightly decreases while for UNet
and FT-JNF XL (IM) there is a larger decrease. For the pro-
posed variants, a large performance decrease from a reduced
number of talkers is observed for the XL and L variants,
while the performance only slightly decreases for the M, S,
and XS variants. When the number of recorded utterances per
talker is reduced, for the baselines the performance decrease
is larger than when reducing the number of talkers, but it is
smaller for the proposed variants. The results indicate that
low-complexity OVR systems require fewer device-specific
recorded signals for augmented training and fine-tuning than
systems with higher computational complexity.

VII. CONCLUSION

In this paper, we proposed variants of the FT-JNF ar-
chitecture with low computational complexity for OVR. We
investigated the influence of the amount of device-specific
recorded signals used for data augmentation and fine-tuning on
the OVR performance. Experimental results demonstrate that
the proposed variants outperform baseline systems at a com-
parable complexity. Even under constraints of low complexity
and a limited amount of device-specific recorded signals
available for training, considerable quality improvements can
be achieved by the proposed system.
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