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ABSTRACT

Studies have shown that in noisy acoustic environments, providing
binaural signals to the user of an assistive listening device may improve
speech intelligibility and spatial awareness. This paper presents a binaural
speech enhancement method using a complex convolutional neural
network with an encoder-decoder architecture and a complex multi-head
attention transformer. The model is trained to estimate individual complex
ratio masks in the time-frequency domain for the left and right-ear
channels of binaural hearing devices. The model is trained using a novel
loss function that incorporates the preservation of spatial information
along with speech intelligibility improvement and noise reduction.
Simulation results for acoustic scenarios with a single target speaker and
isotropic noise of various types show that the proposed method improves
the estimated binaural speech intelligibility and preserves the binaural
cues better in comparison with several baseline algorithms.

Index Terms— Binaural speech enhancement, complex convolu-
tional neural networks, hearing assistive devices, interaural cues, noise
reduction.

1. INTRODUCTION

Binaural speech enhancement has been established in recent years
as the state-of-the-art approach for enhancement in hearing aids and
augmented/virtual reality devices [1,2]. Binaural signals contain the
spatial characteristics of sounds, which carry the necessary information
for accurate sound source localization [3]. Moreover, binaural unmasking
effects have been found to increase speech intelligibility therefore
accentuating the importance of preservation of interaural cues for
binaural signals along with noise reduction [4]. Interaural Level Differ-
ences (ILD), and Interaural Time Differences (ITD) or Interaural Phase
Differences (IPD) are the primary cues helpful in localizing and boosting
the perceived loudness of sounds, and improving speech intelligibility [S].
Binaural speech enhancement using multichannel Wiener filters [6, 7],
beamforming [1], and mask-based enhancement methods [8, 9] has
been previously proposed. In [10], a time domain Convolutional
Encoder-Decoder (CED) model for binaural speech separation was
proposed and achieved state-of-the-art performance. In contrast to
binaural methods, monaural speech enhancement approaches operating
on each binaural channel independently enhance the signals but at the cost
of damaging vital binaural cues. Monaural speech enhancement methods
using deep learning techniques have shown significant results in both
the time domain [11, 12] and the Time-Frequency (TF) domain [13, 14].
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In the TF domain, spectrograms are used as the input to the network
[8,14,15]. Most of the TF domain methods rely only on magnitude-based
enhancement, and the noisy TF phase is used in the reconstruction of the
enhanced speech signal [8,16]. One of the ways to address the issue of op-
timal phase estimation for signal reconstruction is to jointly estimate the
TF phase and magnitude, which can be achieved by using complex-valued
spectrograms. Monaural speech enhancement methods using complex-
valued networks have shown promising results and have outperformed
real-valued networks [15, 16]. The Convolutional Recurrrent Network
(CRN) introduced in [13] employed a Convolutional Encoder-Decoder
(CED) architecture with Long short-term memory (LSTM) blocks placed
in between the encoder and decoder. Moreover, Attention-based Trans-
former Neural Networks (TNN) have shown state-of-the-art performance
on Natural Language Processing (NLP) problems compared to other
Deep Neural Network (DNN) models [17]. Speech enhancement using
attention models has been demonstrated in [16] with promising results.

In [15], a deep complex CRN was trained to optimize the Scale
Invariant SNR (SI-SNR) for monaural speech signals. However, using
a similar approach for binaural signals could be damaging to the
interaural cues. More specifically, for the case of binaural signals, phase
information is vital for preserving the IPD values and the enhanced
signals should retain level differences as the original signal to have the
same ILD. Even if the model achieves significant noise reduction and
improves speech intelligibility, altering the level and phase information
would modify the spatial information of the target and therefore
compromise the localization and spatial awareness of the listener [4, 5].

In this paper, we propose a method that uses a complex-valued
Convolutional Encoder-Decoder (CED) based transformer network
which enables phase-aware training [15, 18] for binaural speech and
introduces terms in the loss function to simultaneously improve speech
intelligibility and preserve the interaural cues of the speech signal.

2. MODEL ARCHITECTURE

The proposed Binaural Complex Convolutional Transformer Net-
work (BCCTN) model uses a Convolutional Encoder-Decoder (CED)
structure with a transformer block between the encoder and decoder
and is trained to estimate an individual Complex Ratio Mask (CRM)
for each channel. The block diagram of the architecture is shown in
Fig. 1a. A CED architecture for monaural speech enhancement has
been previously introduced in [11, 13, 15]. The proposed Multiple Input
Multiple Output (MIMO) architecture uses a similar structure that has
in this work newly modified to work with binaural signals by using
individual encoder and decoder blocks for each channel. The Short
Time Fourier Transform (STFT) blocks transform the signals into the
TF domain. The encoder block is made of 6 complex convolutional
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Fig. 1: Architecture of (a) the proposed model and (b) the complex transformer block which implements (1) and (2).

layers with Parametric Rectified Linear Unit (PReLU) activation and
employs batch normalization. The convolutional encoder blocks help in
identifying the local patterns in the input spectrogram [11, 15]. Individual
encoder blocks are used for the left and right-ear channels as the network
needs to estimate two individual CRMs. The encoded information
from both channels is concatenated and supplied as the input to the
transformer. The transformer block consists of multi-head attention
layers based on the architecture proposed in [17]. The structure of the
complex transformer is shown in Fig. 1b. The real and imaginary output
of the transformer H,, 1 for the (n+1)*" hidden state are given by

Hy o =(H,®H,)—(H,®H,), (1)
H, . =(H,®H,)+(H,®H,), )

where HY, and H}, are the real and imaginary parts of the encoder output
H,,. The multi-head attention operation is denoted by ®. The transformer
block focuses on identifying relationships within the encoded information
from both channels [16, 17]. The convolutional decoder consists of 6
transposed complex convolutional blocks which are symmetric in design
to the convolutional layers of the encoder to reconstruct the signal to its
original size using the processed feature information from the transformer.
Skip connections are placed between each encoder and decoder layer
based on the CRN architecture [13] which concatenates the output of
each encoder block to the decoder layer. This improves the information
flow and facilitates network optimization [13]. The left and right channel
decoders output individual CRMs that are applied to the noisy binaural
signal for enhancement. The Inverse STFT (ISTFT) blocks in Fig. 1a
transform the enhanced TF domain signal back into the time domain.
Implementation code is available online .

3. SIGNAL MODEL AND LOSS FUNCTION
For the left channel, the noisy time-domain input signal v, is given by
yr(t)=sc(t)+vr(t), 3

where sz, is the anechoic clean speech signal, vy, is the noise and ¢ is the
discrete-time index. The STFT is used to transform the signals into the TF
domain and the respective TF representations are Y7, (k,¢), St (k,£) and
Vi (k,£) with k and £ being the frequency and time frame indices respec-
tively. During training, the network learns to estimate a CRM, M (k,¢)
which is applied to the noisy signal Y7, to obtain the enhanced speech
signal Sy, for the left ear. The right channel is described similarly with a
R subscript. For clarity, the L and R indices are omitted for the remainder
of this paper. The enhanced speech is obtained for each channel by ap-
plying the estimated complex mask (M,-+jM;) to the complex-valued

"https://github.com/VikasTokala/BCCTN
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noisy signal (Y, +3Y;) in the TF domain (omitting & and £ indices),

where r and ¢ indicate the real and imaginary parts. The computed
CRM [19] is given by

. 5,438 V.S +YiSi V.S —YiS,
M,.~+iM; = — = 5
Sy T vy vy @

3.1. Loss Function

The proposed loss function for model training contains four terms and
optimizes the network for noise reduction, intelligibility improvement,
and interaural cue preservation. The proposed loss function L is given by

L=aolsnr+BLsTor+vLrirp+KLiPD, ©)

where Lsnr is the Signal-to-Noise Ratio (SNR) loss, Lsror is the
Short-Time Objective Intelligibility (STOI) [20] loss, and Lr7,p and
Lipp are the proposed ILD and IPD error losses which are functions of
both 51, and Sk. The parameters «, (3, 7, and  are the weights applied
to each term.

The SNR of the enhanced signal, §, is defined as

2
SNR(s,$) =10log, <ﬂ> , @)

. 2
||enozse||

where €p0ise =8 —s with s and § being the clean and enhanced signal
vectors respectively and ||.|| is the L2 norm. We define Lsn g to be the
mean of the left and right-ear channel values and append a negative sign
to maximize the SNR value, such that Lsyr=—(SNRz+SNRR)/2.

While Lsnr optimizes the network for noise reduction, Lsror
is designed for intelligibility improvement. Similar to Lsyr we
optimize the network to maximize intelligibility and Lstor [20] is
computed for the left and right channels individually and averaged so
that LsTor = — (STOIL +STOIR)/2 [21].

As the network is trained to compute two individual CRMs for
binaural speech, it has to be forced to preserve the interaural cues of
the target speech while enhancing the noisy signal. To optimize the
network for cue preservation, ILD and IPD errors of the target speech
are computed for the enhanced speech signal. The ILD and IPD for the
clean speech signal are given by

_ 1SL(k,0)|
ILDs(k,0)=20log,, ( Se oD ) , ®)
IPDs (k) :arctan( gzg:g ) ©9)
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Fig. 2: Spectrograms of the left and right-ear clean speech signals and
the corresponding IBM computed for interaural cue error masking.

The ILD and IPD for the enhanced speech are calculated similarly to
(8) and (9). The L;1.p and L;pp terms are given by,

1
LiLp= N;M(k,ﬂ)(ﬂLDs(k,é) —ILDg(k0))),  (10)

1
Lipp= N;M(k,E)HPDS(k,E) —IPDy(k0)| (1)

where N=3", , M(k,() is the total number of speech-active frequency
and time bins determined from the mask. To compute the ILD and IPD
errors only in the speech-active regions, an Ideal Binary Mask (IBM) [22]
M is computed by choosing the TF bins which have energy above a
threshold. The energy E(k,¢) of the clean signal is given by

E(k,0)=10log,,|S (k,¢)[>. (12)
The IBM M (k,£) that defines the speech active TF tiles is then defined

& 1 E(k0)>max(E(kL)—T
¢ (13)
0 otherwise.

M(k,0) = {

max; (E(k,f)) is the maximum energy computed for each frequency k.
Individual IBMs, M, and M g are computed for the left and right-ear
channels. The final mask M is obtained by choosing the bins that have
energy above the threshold, max, (E(k,¢)) — T, in both channels and
is given by

Mk ) =Mr (k) OMr(k,L), (14)
where ® denotes the Hadamard product. For training and evaluation,
T =20 dB was used [22]. As an example, Figure 2 shows the spectro-
grams of the clean speech signal and the corresponding target speech-
based binary mask. Using the target speech-based mask guides the
optimization of the network to focus on the preservation of the interaural
cues of the target speech. The ILD and IPD errors are computed in the TF
domain and the SNR and STOI losses are computed in the time domain
by synthesizing the waveform using the ISTFT.

4. EXPERIMENTS

4.1. Datasets

To generate binaural speech data, monaural clean speech signals were
taken from the CSTR VCTK corpus [24] and were spatialized using
the measured Head Related Impulse Response (HRIRs) from [25]. The
speech corpus [24] has around 13 hours of speech data uttered by 110
English speakers with various accents that were used to generate 2-second
speech utterances and spatialized to have the left and right-ear channels.
The dataset was made of 20000 speech utterances which were split into
training, validation, and testing sets. Unseen speech data from the TIMIT
corpus [26] were also used for testing. Noise signals from the NOISEX-
92 database [27] were used to generate diffuse isotropic noise. Isotropic
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noise was generated using uncorrelated noise sources uniformly spaced
every 5° in the azimuthal plane [9] using HRIRS from [25]. Binaural
signals were generated with the target speech placed at a random azimuth
in the frontal plane (—90° to +90°), using the HRIRs from [25] recorded
using a Head and Torso Simulator (HATS). For training, isotropic noise
was added to the VCTK corpus [24] so that (SNRr + SNRg)/2
lies between -7 dB and 16 dB. The noise types used for training are
White Gaussian Noise (WGN), Speech Shaped Noise (SSN), factory
noise, and office noise and, for evaluation, an additional car engine noise
was included. The datasets were generated in the anechoic condition
for training. The evaluation set consists of speech signals from the
VCTK corpus [24] (i.e, “matched” condition) and the TIMIT [26] (i.e,
“unmatched condition”) with random target azimuth and isotropic noise
added at a random SNR between -6 dB and 15 dB. The speaker was
placed at 0° elevation and at a distance of either 80 cm or 300 cm chosen
randomly for each signal. Reverberant speech signals for evaluation were
generated using Binaural Room Impulse Responses (BRIR)s from [25]
and were placed in isotropic noise fields for the anechoic signals. Rooms
with Tgo varying from 0.3 to 1.2 s were used.

4.2. Training setup and baselines

For the STFT computation, an FFT length of 512, a window length
of 25 ms, and a hop length of 6.25 ms were used. A sampling rate of
16 kHz was used for all signals. The following methods were used for the
evaluation and comparison to the proposed binaural enhancement model.

BCCTN: This is our proposed method. The number of channels
used in the MIMO model’s convolutional layers for the encoder and
decoder blocks layers are {16,32,64,128,256,256}, with a stride of 2 in
the frequency and 1 in the time dimension with a kernel size of (5,1) and
all the convolutions in these layers are causal. The Multihead attention
block has an embedded dimension of 512 for real and imaginary blocks
shown in Fig. 1b, a hidden size of 128, and 32 heads. The model was
implemented with Pytorch which provides native complex data support
for most of the functions. The linear layer placed after the transformer
block has an input and output feature size of 1024. The Pytorch model
was trained using the Adam optimizer, an initial learning rate of 0.001,
and a multi-step learning rate scheduler to modify the learning rate with
the validation loss. The model has around 10 million parameters and
was trained for 100 epochs with an additional early stopping condition
of no improvement in the validation loss for three consecutive epochs.
The loss functions weights «, 3,7, k, in (6), were set to {1,10,1,10}
respectively. These weights were chosen to equalize the difference in
the scale of the respective units of the individual loss function terms
where SNR and ILD are computed in dB, IPD is computed in radians
and STOI is a bounded score between 0 and 1. The model was trained
with the proposed loss function described in (6) and, for comparison, the
model was also trained to maximize the SNR from (7).

Binaural STOI-Optimal Masking (BSOBM): A binaural speech
enhancement method using STOI-optimal masks proposed in [8]. Here
a feed-forward DNN was trained to estimate a STOI-optimal continuous-
valued mask to enhance binaural signals using dynamically programmed
High-resolution Stochastic WSTOI-optimal Binary Mask (HSWOBM)
as the training target [8]. To preserve the ILDs, a better-ear mask was
computed by choosing the maximum of the two masks. The mask is used
to supply Speech Presence Probability (SPP) to an Optimally-modified
Log Spectral Amplitude (OM-LSA) enhancer. The model was trained
and evaluated on the same dataset as the proposed model.

Binaural TasNet (BiTasNet): A time-domain MIMO CED-based
network for binaural speech separation which was introduced in [10].
The best-performing version of the model, the parallel encoder with
mask and sum, was modified and retrained for single-speaker binaural
speech enhancement. The network was trained to maximize SNR [10].



Input SNR -6 dB -3dB 0dB 3dB
Method MBSTOI | ASegSNR | L;1.p | Lipp | MBSTOI | ASegSNR | L;p | Lipp | MBSTOI | ASegSNR | Li1p | Lipp | MBSTOI | ASegSNR | Li1p | Lipp
Noisy signal 0.61 0 - - 0.69 0 - - 0.78 0 - - 0.8 0 - -
BSOBM [8] 0.63 43 0.94 11 0.7 6.8 1.27 10 0.76 6.5 1.05 11 0.78 6.9 1.08 13
BiTasNet [10] 0.69 14.5 0.86 12 0.76 13.1 0.79 9 0.82 12.8 0.74 10 0.86 11.6 0.67 9
BCCTN-SNR (7) 0.63 132 0.74 11 0.71 11.9 0.95 11 0.77 12.1 0.6 10 0.83 11 0.86 11
BCCTN-Proposed Loss (6) 0.73 143 0.61 8 0.79 12.7 0.62 7 0.85 12.7 0.4 5 0.87 11.5 0.36 4
Input SNR 6dB 9dB 12dB 15dB
Method MBSTOI | ASegSNR | L;1p | Lipp | MBSTOI | ASegSNR | Lip | Lipp | MBSTOI | ASegSNR | Lirp | Lipp | MBSTOI | ASegSNR | Li1p | Lipp
Noisy signal 0.88 0 - - 0.92 0 - - 0.95 0 - 0.95 - - -
BSOBM [8] 0.82 5.6 1.14 13 0.84 3.6 1.03 12 0.84 1.3 1.6 12 0.82 -1.1 1.54 8
BiTasNet [10] 0.89 9.9 0.63 7 0.92 8.6 0.55 6 0.93 72 0.35 8 0.93 5.6 0.46 7
BCCTN-SNR (7) 0.87 9.2 0.82 11 0.9 7.6 0.66 8 0.93 6.3 0.8 9 0.92 4.8 0.87 8
BCCTN-Proposed Loss (6) 0.91 9.7 0.34 3 0.94 84 0.2 2 0.96 7 0.19 2 0.96 54 0.19 2

Table 1: Results for anechoic speech signals with isotropic noise averaged over all frames, frequency bins and utterances. A SegSNR [23] and L;1.p
(10) are in dB, L£;pp (11) are in degrees.

Input SNR -6 dB -3dB 0dB 3dB
Method MBSTOI ASegSNR EJLD EIPD MBSTOI ASegSNR LILD Ejp[; MBSTOI ASegSNR L[L[) ﬁ[p[) MBSTOI ASegSNR EILD l:]pD
Noisy signal 0.59 0 - - 0.68 0 - - 0.76 0 - - 0.79 0 - -
BSOBM [8] 0.62 29 1.27 17 0.69 4.8 1.45 18 0.76 39 1.25 13 0.77 3.8 1.22 12
BiTasNet [10] 0.58 10.1 1.1 14 0.66 9.2 0.97 12 0.74 8.8 0.92 11 0.78 7.7 0.87 10
BCCTN-SNR (7) 043 9.6 1.43 16 0.52 8.9 1.18 13 0.57 8.2 0.91 12 0.62 6.8 0.9 11
BCCTN-Proposed Loss (6) 0.66 10.3 112 | 12 0.74 9 072 | 10 0.8 84 0.62 8 0.83 7.1 045 5
Input SNR 6dB 9dB 12dB 15 dB
Method MBSTOI ASegSNR [:ILD E]p[) MBSTOI ASegSNR l:ILD ﬁ]p[) MBSTOI ASegSNR LILD LIPD MBSTOI ASegSNR EILD l:]pD
Noisy signal 0.87 0 - - 0.92 0 - - 0.95 0 - - 0.95 0 - -
BSOBM [8] 0.81 2.6 1.19 12 0.84 0.2 1.7 16 0.85 2.2 1.9 12 0.83 4.8 2.1 13
BiTasNet [10] 0.85 6.9 0.81 8 0.9 58 0.59 7 0.93 438 0.53 8 0.92 3.7 0.59 7
BCCTN-SNR (7) 0.73 55 1.26 12 0.81 42 0.88 11 0.9 2.8 0.73 10 0.88 1.5 0.91 9
BCCTN-Proposed Loss (6) 0.89 6.1 0.38 5 0.93 5 0.29 3 0.96 4.6 0.21 3 0.96 33 0.2 2

Table 2: Results for reverberant speech signals with isotropic noise and are averaged over all frames, frequency bins and utterances. A SegSNR [23]

and Lrr.p (10) are in dB, Lrpp (11) are in degrees.

The encoder and decoders in the model had a size of 128, a feature
dimension of 128, kernel size of 3 and 12 layers. All other parameters
were adapted from the original article and the model has a size of 9.7
million parameters. The model was trained and evaluated on the same
dataset used for the proposed method.

5. RESULTS AND DISCUSSION

The model was evaluated using 750 speech utterances from both datasets
for each noisy input SNR. In total, the model was evaluated on 6000 noisy
speech utterances. Improvement in the frequency weighted Segmental
SNR (SegSNR) [23] was used to show the noise reduction performance
of the methods. The Modified Binaural STOI (MBSTOI) [28] score
was computed to measure the objective binaural speech intelligibility
of the enhanced signals. The error in ILD and IPD after processing
were computed using equations (8) and (9) respectively to evaluate
the preservation of interaural cues. Tables 1 and 2 show the results
tabulated for multiple SNRs for anechoic and reverberant speech signals
respectively. For noise reduction measured by the improvement (A) in
frequency weighted SegSNR [23], BiTasNet has the best performance
with SegSNR for almost all SNRs. However, the proposed method shows
comparable performance to BiTasNet on the noise reduction task for both
SNR-optimization and the proposed loss function. The proposed loss
function had better noise reduction performance compared to the model
with the SNR loss function. A possible explanation is that the addition of
intelligibility and masked interaural cue terms in the loss function enables
the network to better identify the active speech regions which results in
better noise reduction performance. A maximum of 14 dB of SegSNR
can be observed when the signal is very noisy at -6 dB SNR. Even
though the BiTasNet has better noise reduction performance, it exhibits
a lower MBSTOI binaural intelligibility score. Informal listening tests
revealed that the BiTasNet produced more artefacts. Audio examples

of all the methods can be found online 2. The model provides an average
of 0.15 to 0.25 improvement in MBSTOI scores over the noisy speech
when the SNR is below 6 dB. As the input signal’s SNR improves,
the noisy signals inherently have a higher MBSTOIL, and the proposed
model provides a lower improvement. In cases with high input SNR, the
BSOBM, BiTasNet and BCCTN-SNR methods degrade the MBSTOI
score due to processing but the proposed method and loss function do
not reduce the score or deteriorate the signal at high SNRs. The proposed
model and loss function have the lowest ILD and IPD error for all SNRs.
The proposed model with SNR loss function performs similarly to the
proposed loss function in noise reduction but does not focus on retaining
the interaural differences and the additional terms in the loss function
help the network in the preservation of interaural cues better. From Table
2, similar performance trends for reverberant signals can be observed
from all the methods. A maximum of 10 dB of SegSNR can be observed
when the signal is very noisy and up to a maximum of 0.15 improvement
in MBSTOI score. The ILD and IPD errors are slightly higher than the
anechoic condition which could be due to the effects of reverberation [10].

6. CONCLUSION

In this paper, we have presented a MIMO complex-valued convolutional
transformer network for binaural speech enhancement. A novel loss func-
tion that optimizes the network for noise reduction, speech intelligibility
enhancement, and interaural cue preservation is proposed. Experimental
results show that the proposed method was able to significantly reduce
noise and has the ability to preserve ILD and IPD information in the
enhanced output. Furthermore, the proposed method outperforms the
baselines in terms of estimated binaural speech intelligibility. Future
works include adapting the model to include a remote microphone and
a distributed microphone network for binaural speech enhancement.

Ihttps://vikastokala.github.io/bse_dcctn/
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