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ABSTRACT

In many multi-microphone algorithms for noise reduction, an esti-
mate of the relative transfer function (RTF) vector of the target speaker
is required. The state-of-the-art covariance whitening (CW) method esti-
mates the RTF vector as the principal eigenvector of the whitened noisy
covariance matrix, where whitening is performed using an estimate of
the noise covariance matrix. In this paper, we consider an acoustic sensor
network consisting of multiple microphone nodes. Assuming uncorre-
lated noise between the nodes but not within the nodes, we propose two
RTF vector estimation methods that leverage the block-diagonal struc-
ture of the noise covariance matrix. The first method modifies the CW
method by considering only the diagonal blocks of the estimated noise
covariance matrix. In contrast, the second method only considers the
off-diagonal blocks of the noisy covariance matrix, but cannot be solved
using a simple eigenvalue decomposition. When applying the estimated
RTF vector in a minimum variance distortionless response beamformer,
simulation results for real-world recordings in a reverberant environment
with multiple noise sources show that the modified CW method performs
slightly better than the CW method in terms of SNR improvement, while
the off-diagonal selection method outperforms a biased RTF vector esti-
mate obtained as the principal eigenvector of the noisy covariance matrix.

Index Terms— Acoustic sensor networks, relative transfer function
vector, beamforming, covariance whitening

1. INTRODUCTION

Acoustic sensor networks (ASNs) with multiple spatially distributed
microphone nodes are of rising interest for speech communication ap-
plications due to their ability to capture spatially diverse information [1].
This allows ASNs to be deployed, e.g., for speech enhancement [2–7],
and sound source localization [8], in applications such as smart
speakers or hearing aids connected with external microphones. In these
applications the desired speech signal is often corrupted by background
noise. To achieve noise reduction, multi-microphone algorithms like the
minimum variance distortionless response (MVDR) beamformer can
be used [2,6,9–11], requiring an estimate of the noise covariance matrix
and the relative transfer function (RTF) vector of the target speaker.

In this paper, we consider an ASN where the noise component be-
tween all nodes is assumed to be uncorrelated, which is for example the
case in a diffuse noise field when the distance between the nodes is large
or when different nodes capture different noise sources. This results in a
block-diagonal structure of the noise covariance matrix. Exploiting this
covariance matrix structure, we propose two methods to estimate the RTF
vector of the target speaker in an ASN with at least three nodes. The first
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method involves a modification of the state-of-the-art covariance whiten-
ing (CW) method [12–14]. Instead of using the entire estimated noise
covariance matrix for whitening, the proposed CW-D method considers
only the diagonal blocks, which allows for efficient inversion and square-
root decomposition. The CW and CW-D methods both estimate the RTF
vector as the best rank-1 approximation of the whitened noisy covariance
matrix, which can be achieved via an eigenvalue decomposition (EVD).

The second method only requires the noisy covariance matrix and
no estimate of the noise covariance matrix. Assuming uncorrelated
noise between nodes, all information required for RTF vector estimation
is contained in the off-diagonal blocks of the noisy covariance matrix.
In the off-diagonal selection (ODS) method, an optimization problem
is formulated to estimate the entire RTF vector using only the internode
correlations of the noisy covariance matrix. Contrary to the first method,
the solution of this optimization problem cannot be computed via an
EVD, and we propose to use an iterative optimization procedure.

In the experimental evaluation with reverberant real-world
recordings and multiple noise sources, the performance is evaluated
in terms of RTF vector estimation accuracy and signal-to-noise ratio
(SNR) improvement when applying the RTF vector estimates in an
MVDR beamformer. The results show that the proposed CW-D method
performs slightly better than the CW method. In addition, the proposed
ODS method outperforms a biased estimator using the EVD of the
entire noisy covariance matrix, especially at low input SNRs where the
influence of noise on the diagonal blocks is most severe.

2. SIGNAL MODEL AND NOTATION

We consider an ASN with N spatially distributed nodes, where node
n∈{1,...,N} contains Mn microphones, i.e., in total M=

∑N
n=1Mn

microphones. The considered acoustic scene consists of a single target
speaker and undesired ambient noise. The noisy m-th microphone
signal of the n-th node can be written in the short-time Fourier transform
(STFT) domain as

Yn,m(k,l)=Xn,m(k,l)+Vn,m(k,l), (1)

where k is the frequency bin index and l is the frame index, which - for
the sake of brevity - are omitted in the remainder of this paper wherever
possible. The speech and noise signal components are denoted by Xn,m

and Vn,m, respectively. The Mn-dimensional signal vector for the n-th
node is defined as

yn=[Yn,1,Yn,2, ... ,Yn,Mn ]
T , (2)

where {·}T denotes the transpose operator. By stacking all node-wise
signal vectors, the M-dimensional signal vector y, containing all
microphone signals in the ASN, is defined as

y=[yT
1 ,y

T
2 , ... ,y

T
N ]T . (3)
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The speech vectors xn and x and the noise vectors vn and v are defined
similarly to (2) and (3), respectively. For the speech component, we
assume a multiplicative transfer function model [15], allowing the
speech vector to be written as

x=hXref , (4)

where h ∈ CM is the target RTF vector, which relates the speech
component in the reference microphone Xref to the speech component
in all other microphones. Hence, the entry of h corresponding to the
reference microphone is equal to 1. It should be noted that the reference
microphone is chosen for the entire ASN and not per node. The RTF vec-
tor for node n is defined as hn∈CMn , such that h=[hT

1 ,h
T
2 ,...,h

T
N ]T ,

where all hn are normalized to the same reference.
Assuming that the speech and noise signals are mutually uncorre-

lated, the noisy covariance matrix Ry can be written in terms of the
speech covariance matrix Rx and the noise covariance matrix Rv as

Ry=E{yyH}=Rx+Rv, (5)

where E{·} denotes the expectation operator and {·}H denotes the
Hermitian transpose operator. The node-wise covariance matrices for
the n-th node, Ry,n, Rx,n and Rv,n, are defined similarly to (5), using
the node-wise vectors yn, xn and vn, respectively. Using (4), the
speech covariance matrix Rx can be written as a rank-1 matrix spanned
by the RTF vector h, i.e.,

Rx=ϕxhh
H, (6)

where ϕx = E{|Xref |2} denotes the speech power spectral density
(PSD) in the reference microphone.

In this paper, we make the central assumption that the noise
component is uncorrelated between different nodes. This assumption
is realistic, e.g., for a diffuse noise field when the distance between
the nodes is large enough [6, 7, 16] or when nodes capture different
noise sources. For the noise correlation between different microphones
within each node, no assumption is made, implying that within each
node the noise component may be partially correlated. The node-wise
noise covariance matrices Rv,n are assumed to be full-rank. Figure 1
schematically depicts the structure of the entire noise covariance matrix
Rv, where yellow indicates high correlation (within each node), and
white indicates low correlation (between the nodes). To visualize the
influence of such a block-diagonal noise covariance matrix on the noisy
covariance matrix, Figure 1 also depicts the rank-1 speech covariance
matrix Rx and the resulting noisy covariance matrix Ry. It can clearly
be seen that Ry only contains information about the target RTF vector
in its off-diagonal blocks (orange and green), as they are unaffected by
the noise. Note that for N=2 nodes, the off-diagonal block of Ry only
contains information about scaled versions of h1 and h2, which cannot
be unified into the vector h= [hT

1 ,h
T
2 ]

T , as the speech PSD ϕx (see
(6)) evokes a scaling ambiguity for the RTF vector part that does not
contain the reference microphone. This scaling ambiguity, however, can
be lifted when N≥3, since direct information about the relative scaling
of the different parts is contained in adjacent off-diagonal blocks.

To achieve noise reduction, we consider the MVDR beamformer,
which requires an estimate of the noise covariance matrix R̂v and
an estimate of the RTF vector ĥ. The filter vector w of the MVDR
beamformer is given by [9,10]

w=
R̂−1

v ĥ

ĥHR̂−1
v ĥ

, (7)

yielding the output signal Z=wHy when applied to the noisy input
signals. The filtered speech and noise components are defined as
Zx=wHx and Zv=wHv, respectively.

Figure 1: Visualization of the influence of noise on the noisy covariance
matrix for N = 3 nodes (with ϕx = 1). Left: Speech covariance matrix
spanned by the target RTF vector. Middle: Noise covariance matrix,
uncorrelated between nodes. Right: Noisy covariance matrix, containing
only information about the target RTF vector on its off-diagonal blocks.

3. RTF VECTOR ESTIMATION METHODS

In this section, we present different RTF vector estimation methods,
where we first discuss the general idea of the rank-1 approximation
(Section 3.1), which is the basis for the biased estimator and the
state-of-the-art CW method (Section 3.2). In Section 3.3, we propose
a modification of the CW method by exploiting the assumed block-
diagonal structure of the noise covariance matrix. In Section 3.4, a novel
cost function is proposed, where only the off-diagonal blocks of the noisy
covariance matrix are selected to compute the best fitting RTF vector.

3.1. Rank-1 Approximation and Biased Estimator

To motivate the RTF vector estimation methods in the following sections,
we first consider the case where an estimate of the speech covariance
matrix R̂x is available. In practice, the rank-1 model in (6) does not
perfectly hold, e.g., due to an insufficient frame length. Hence, the RTF
vector ĥ is often estimated as the best rank-1 approximation of R̂x [13],
i.e., the vector solving the optimization problem

min
ĥ′

∥R̂x−ĥ′ĥ′H∥2F︸ ︷︷ ︸
J(ĥ′)

, (8)

where ĥ′ is a scaled (non-normalized) version of ĥ and ∥·∥F denotes
the Frobenius norm. Considering the gradient of the cost function J(ĥ′)
in (8), i.e.,

∇J(ĥ′)=−2
(
R̂x−ĥ′ĥ′H

)
ĥ′, (9)

and setting it to zero, the solutions can be found by solving the
eigenvalue problem

R̂xĥ
′=ĥ′(ĥ′Hĥ′). (10)

Hence, the best rank-1 approximation of R̂x is a scaled version of the
principal eigenvector vmax, corresponding to the maximum eigenvalue
σmax. The RTF vector estimate can then be obtained as

ĥ=
vmax

eTrefvmax
, (11)

where eref is a selection vector containing all zeros except for the entry
corresponding to the reference microphone, which equals 1.

If only the noisy covariance matrix R̂y is available, a biased
estimate may be obtained as the best rank-1 approximation of R̂y, i.e.,

min
ĥ′

∥R̂y−ĥ′ĥ′H∥2F , (12)

where the bias obviously is larger for lower SNR. The biased RTF
vector estimate ĥB is obtained as in (11), where vmax is the principal
eigenvector of R̂y.
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3.2. Covariance Whitening (CW)

To compensate for the influence of the ambient noise on the RTF vector
estimate, a frequently used approach is to perform whitening of the
noisy covariance matrix using an estimate of the noise covariance matrix,
i.e., R̂w

y =R̂
−1/2
v R̂yR̂

−H/2
v , where R̂v=R̂

1/2
v R̂

H/2
v corresponds to

a square-root decomposition, e.g., the Cholesky decomposition [12–14].
Similarly to (8), the optimization problem in the whitened domain

is given by
min
ĥ′

∥R̂w
y −R̂−1/2

v ĥ′ĥ′HR̂−H/2
v ∥2F , (13)

i.e., the principal eigenvector vmax of the whitened noisy covariance
matrix R̂w

y corresponds to a scaled version of the whitened RTF vector
estimate. By de-whitening and normalizing vmax, the CW RTF vector
estimate is obtained as

ĥCW=
R̂

1/2
v vmax

eTrefR̂
1/2
v vmax

. (14)

3.3. Covariance Whitening Using Diagonal Blocks (CW-D)

To leverage the assumed block-diagonal structure of the noise covariance
matrix (see Figure 1), we propose to only consider the diagonal blocks
of R̂v in the CW method. The modified noise covariance matrix R̂v

is constructed as a block-diagonal matrix containing the node-wise
noise covariance matrices R̂v,n on its diagonal blocks (and all zeros
in the off-diagonal blocks). For a block-diagonal matrix, the inverse
and the square-root decomposition can be performed efficiently on the
separate diagonal blocks, such that the matrix required for the whitening
operation in (13) is given by

R̂
−1/2

v =


R̂

−1/2
v,1 0M1×M2 ... 0M1×MN

0M2×M1 R
−1/2
v,2 ...

...
...

...
. . .

...
0MN×M1 ... ... R̂

−1/2
v,N

. (15)

The whitened RTF vector estimate is obtained as the principal eigen-
vector of R̂

−1/2

v R̂yR̂
−H/2

v , where de-whitening and normalization

is performed similarly to (14) using R̂
1/2

v to obtain the RTF vector
estimate ĥCW9D.

3.4. Off-Diagonal Selection (ODS)

In the optimization problem for the biased estimator in (12), it can
directly be seen that biased information is used, as the diagonal blocks of
R̂y contains both speech and noise information. To avoid this problem
without compensating for the noise directly (as in the CW and CW-D
methods), we propose the following optimization problem

min
ĥ′

∥S⊙
(
R̂y−ĥ′ĥ′H

)
∥2F︸ ︷︷ ︸

J(ĥ′)

, (16)

where we only select the off-diagonal blocks of R̂y (see Figure 1)
and its respective rank-1 approximation by means of the selection
matrix S and ⊙ denotes the Hadamard product, i.e., the element-wise
multiplication of matrices. The selection matrix is defined as

S=


0M1×M1 1M1×M2 ... 1M1×MN

1M2×M1 0M2×M2 ...
...

...
...

. . .
...

1MN×M1 ... ... 0MN×MN

, (17)

containing all ones except for the diagonal blocks, which contain zeros.
Similarly to (9), the gradient of the cost functionJ(ĥ′) in (16) is given by

∇J(ĥ′)=−2
(
S⊙

(
R̂y−ĥ′ĥ′H

))
ĥ′. (18)

Setting the gradient equal to zero yields

(S⊙R̂y)ĥ
′=(S⊙(ĥ′ĥ′H))ĥ′. (19)

In contrast to (10), this does not correspond to an eigenvalue problem,
since the Hadamard product does not allow for further simplification.
To the best of our knowledge, there is no closed-form solution or
well-defined operation like the (generalized) EVD to solve (19).
Nevertheless, iterative optimization procedures like gradient-descent
or the quasi-Newton method can be used [17]. After solving the
unconstrained optimization problem in (16), the RTF vector estimate
ĥODS is obtained by normalizing the solution to the reference entry.

In general, it should be noted that the optimization problems for
the ODS method in (16) and the biased estimator in (12) only require
the noisy covariance matrix R̂y, whereas the optimization problem for
the CW and CW-D methods in (13) also require an estimate of the noise
covariance matrix R̂v.

4. EVALUATION

In this section, we evaluate the performance of the presented RTF
vector estimation methods using real-world recordings. The considered
performance measures are the Hermitian angle between the ground truth
RTF vector and the estimated RTF vector, and the intelligibility-weighted
SNR improvement of the MVDR beamformer using the respective RTF
vector estimates.

4.1. Setup and Implementation

Figure 2 depicts the considered acoustic scene for the evaluation,
consisting of a target speaker in an acoustically treated laboratory with
dimensions 7×6×2.7 m3 and a reverberation time T60≈ 500 ms. As
speech material, four different talkers (two male and two female) from
the EBU SQAM CD [18] and the VCTK corpus [19] were used. All
utterances had a duration of 20 s. The ambient noise was generated
by four loudspeakers in the corners of the room. Different versions of
multi-talker babble noise were played back at approximately the same
level by the four loudspeakers.

The acoustic sensor network for the evaluation consisted of four
nodes with uniform linear arrays, placed at about 0.5 m distance from
the noise loudspeakers. Nodes 1-3 contained four microphones each,
while node 4 contained three microphones, giving a total of M=15
microphones. For all arrays, two different microphone spacings of 1 cm
and 3 cm were considered. The first microphone of node 1 was chosen
as the reference microphone. The speech and noise components were
recorded separately at a sampling rate of 16 kHz and mixed subsequently
at an SNR of SNRin={−5,0,5} dB in the reference microphone.

For the implementation of the algorithms, an STFT framework
with a frame length of 512 samples (corresponding to 32 ms), a frame
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Figure 2: Schematic setup of acoustic scene with four different speaker
target positions, four microphone nodes and four distinct noise sources.

overlap of 50%, and a square-root-Hann window for analysis and
synthesis was used. The covariance matrices were estimated in batch,
where for each frequency bin R̂y was estimated during speech activity
and R̂v was estimated during speech pauses. For each frequency bin,
speech-plus-noise and noise-only frames were determined by means of a
speech presence probability (SPP) estimator [20], which was computed
on one microphone per node and subsequently averaged.

The MVDR beamformer was computed according to (7), where
the estimated noise covariance matrix was used in conjunction with one
of the four presented RTF vector estimates:

• CW: EVD of R̂y whitened with R̂v.

• CW-D: CW using block-diagonal noise covariance matrix R̂v.

• Biased estimator: EVD of R̂y.
• ODS: Iterative optimization method using only off-diagonal blocks

of R̂y. Optimized using MATLAB’s fminunc function [21]
supplied with the gradient and initialized on a random vector.

As a measure of RTF vector estimation accuracy, we use the Hermi-
tian angle [22] between the ground truth RTF vector h and the estimated
RTF vector ĥ, i.e., θ=arccos

(
|hHĥ|

∥h∥2∥ĥ∥2

)
, averaged over all frequency

bins. For each target position, the ground truth RTF vector was computed
via the EVD of the oracle speech covariance matrix, obtained using the
measured room impulse response convolved with white Gaussian noise.
The second performance measure is the intelligibility-weighted SNR im-
provement [23]∆SNR=SNRout−SNRin,max, where the output SNR
SNRout is computed using the filtered speech and noise signal compo-
nents and SNRin,max is the highest input SNR among all microphones.

4.2. Results and Discussion

For different input SNRs, Figure 3 depicts the Hermitian angle and the
SNR improvement for the considered RTF vector estimation methods,
where the bars represent the mean over 32 conditions (four target
speaker positions, four speakers, two microphone spacings) and the
error bars depict the standard deviation. First, it can be observed that
in general the Hermitian angle in the upper panel of Figure 3 decreases
with increasing input SNR, implying more accurate estimation at higher
SNRs. Although at low SNRs the CW and CW-D methods achieve a
lower Hermitian angle than the biased estimator and ODS method, these
differences become negligible at higher input SNRs.

Second, it can be observed that in terms of SNR improvement the dif-
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Figure 3: Hermitian angle between ground truth RTF vector and
different RTF vector estimates (upper panel) and SNR improvement
(lower panel) for different input SNRs.

ferences between the methods are more noticeable than in terms of Her-
mitian angle. At all input SNRs, the CW and CW-D methods consistently
achieve around 12 dB of SNR improvement and outperform the biased
estimator and the ODS method. This indicates a clear benefit of compen-
sating for the noise using the estimated noise covariance matrix R̂v in-
stead of using biased or selected information from the covariance matrix
R̂y. The performance of the CW and CW-D methods is similar, although
the CW-D method attains a slightly higher SNR improvement, partic-
ularly at higher input SNRs. These results indicate a good validity of the
block-diagonal model for the noise covariance matrix for the considered
scenario. Hence, inverting only the diagonal blocks, cf. (15), seems to be
sufficient or even beneficial, as it may reduce estimation errors of R̂v.

Comparing the SNR improvement of the biased estimator with the
ODS method, it can be observed that at an input SNR of -5 dB, the ODS
method significantly outperforms the biased estimator (by about 1.5
dB). At higher input SNRs, the advantage of using only the off-diagonal
blocks vanishes, and it seems more beneficial to use all information as
the influence of noise diminishes. This indicates a higher robustness
of the EVD of the full covariance matrix towards deviations from the
rank-1 speech model compared to selecting only the off-diagonal blocks.
At low SNRs, however, it seems more advantageous to exclude biased
information and use only the off-diagonal blocks, which are affected
less by noise, leading to a better performance of the ODS method
compared to the biased estimator.

5. CONCLUSION

In this paper, we presented and compared different RTF vector
estimation methods leveraging the assumed block-diagonal structure of
the noise covariance matrix in an acoustic sensor network with multiple
nodes. In an evaluation with real-world recordings, the modified
CW method, which only considers the diagonal blocks of the noise
covariance matrix, showed equal or even slightly better results than the
original CW method at a lower complexity. Furthermore, we proposed
a novel optimization problem for RTF vector estimation by selecting
only the off-diagonal blocks of the noisy covariance matrix which are
assumed not to be affected by noise. The evaluation results showed that
the ODS method clearly outperforms a biased estimator in terms of SNR
improvement, especially at low SNRs, showing that the selection of
only unbiased information is beneficial if the influence of noise is large.
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