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Imposing Correlation Structures for Deep Binaural
Spatio-Temporal Wiener Filtering

Marvin Tammen , Graduate Student Member, IEEE, and Simon Doclo , Senior Member, IEEE

Abstract—To improve speech quality and intelligibility in en-
vironments with noise and interfering sounds, binaural speech
enhancement algorithms use the microphone signals from both
the left and the right hearing device to generate an enhanced
output signal for each ear. As a multi-frame extension of the
binaural multi-channel Wiener filter, in this paper we consider
the binaural spatio-temporal Wiener filter (STWF) in the short-
time Fourier transform domain, which requires estimates of the
highly time-varying spatio-temporal correlations of the speech and
interference components. To this end, the binaural STWF is em-
bedded into an end-to-end supervised learning framework, where
temporal convolutional networks estimate the required quanti-
ties, i.e., the inverse spatio-temporal correlation matrices of the
interference component and the spatio-temporal correlation vec-
tors and power spectral densities of the speech components. In
this paper, we impose spatio-temporal correlation structure on
these quantities and relate them between the left and the right
hearing device, aiming to reduce computational complexity while
maintaining speech enhancement and interaural cue preservation
performance. Assuming that the spatial correlation of the speech
component is stationary over a small number of frames, we pro-
pose to decompose the spatio-temporal correlation vectors as the
Kronecker product of a relative transfer function vector and a
temporal correlation vector, either considering a global reference
microphone or a reference microphone for each hearing device.
In addition, we consider a deep bilateral STWF by neglecting
the spatio-temporal correlations of the speech and interference
components between both devices. The imposed spatio-temporal
correlation structures greatly differ in the number of parameters
that need to be estimated. The performance of causal versions of the
deep binaural and bilateral STWF algorithms is evaluated based
on both simulated and measured binaural room impulse responses
(BRIRs) as well as diverse speech and noise sources. The simulation
results demonstrate that the proposed spatio-temporal correlation
structures significantly reduce the computational complexity of
the binaural STWF while yielding a similar speech enhancement
and interaural cue preservation performance compared to not
imposing any spatio-temporal correlation structure. Furthermore,
the results confirm that the deep binaural STWF outperforms
the binaural Conv-TasNet algorithm as well as an algorithm that
directly estimates the binaural multi-frame filter coefficients, while
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approaching the performance of the non-causal binaural complex
convolutional transformer network (BCCTN) algorithm.

Index Terms—Multi-channel wiener filter, multi-frame filtering,
spatio-temporal correlation structure, supervised learning,
binaural speech enhancement.

I. INTRODUCTION

IN many everyday speech communication scenarios, we are
confronted with undesired noise and interfering sounds,

reducing speech quality and speech intelligibility. Hence, al-
gorithms for hearing devices are required to extract the target
speaker and reduce noise and interference from the recorded
microphone signals. In principle, using hearing devices on both
ears can generate an important advantage, both from a signal
processing perspective, since all microphone signals from both
devices can be used, as well as from a perceptual perspec-
tive, since interaural cues can be exploited by the auditory
system [1], [2]. An important distinction exists between bilat-
eral systems, where both devices operate independently, and
binaural systems, where microphone signals from both devices
are processed and combined in each device. Several binaural
speech enhancement algorithms have been proposed, which can
be broadly categorized into statistical model-based approaches
(e.g., [2], [3], [4], [5], [6], [7]) and supervised learning-based
approaches (e.g., [8], [9], [10], [11], [12], [13], [14], [15]). Most
approaches estimate a clean speech signal for the left and the
right hearing device by applying a mask or filter to the noisy
microphone signals in a transform domain, e.g., the short-time
Fourier transform (STFT) domain or a learned transform do-
main. In general, supervised learning-based approaches tend
to outperform statistical model-based approaches, especially in
reducing non-stationary interference.

In this paper, we will focus on supervised learning-based algo-
rithms in the STFT domain. Aiming at exploiting temporal corre-
lations across successive STFT frames, multi-frame algorithms
for both single- and multi-microphone speech enhancement have
recently gained popularity [15], [16], [17], [18], [19], [20], [21],
[22], [23]. Instead of directly estimating the multi-frame filter
coefficients using a deep neural network (DNN) as in [16],
[17], several procedures have been proposed to impose a certain
structure on the multi-frame filter. For single-microphone speech
enhancement, a frequently used filter structure is the multi-frame
minimum variance distortionless response (MVDR) filter [23],
[24], [25]. In each STFT bin, the multi-frame MVDR filter
estimates the target speech STFT coefficient by minimizing
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the output interference power spectral density (PSD) while
preserving the temporal correlation of the speech component,
thereby requiring estimates of the highly time-varying speech
temporal correlation vector and the inverse interference temporal
correlation matrix.1 For multi-microphone speech enhancement,
frequently used filter structures include the spatio-temporal
MVDR filter and the STWF [20], [22]. These spatio-temporal
filters require estimates of spatio-temporal covariance matrices
(STCMs) and the speech spatio-temporal correlation vector
(STCV). On the one hand, estimation approaches have been
proposed where the spatio-temporal MVDR filter or the STWF
are decoupled from the training of the DNN. For example,
in [22] a DNN first estimates the target speech component at
a reference microphone, which is subsequently used to compute
the STWF. On the other hand, approaches have been proposed
where the spatio-temporal MVDR filter or the STWF are fully
integrated into the training of the DNN [15], [20], [21]. For
example, in [20] a DNN estimates the speech STCV and the
inverse interference STCM required by the spatio-temporal
MVDR filter. In [15], [23], [26] it was shown that imposing
a Hermitian positive-definite structure on the (inverse) STCMs,
e.g., using a Cholesky decomposition, improves the performance
in terms of objective speech enhancement metrics. This was
shown for the speech and interference spatial covariance ma-
trices in the single-frame multi-microphone MVDR filter [26],
the noisy and interference temporal covariance matrices in the
multi-frame single-microphone MVDR filter [23], as well as
the inverse interference STCM in a binaural extension of the
spatio-temporal MVDR filter [15]. It should be noted that none
of the aforementioned approaches imposed a specific structure
on the speech STCV.

In this paper, we focus on a causal binaural extension of
the STWF, which estimates the target speech component in a
reference microphone at the left and the right hearing device
by filtering all available microphone signals from both devices.
To reduce computational complexity while maintaining speech
enhancement and interaural cue preservation performance, we
propose to impose various spatio-temporal correlation structures
on the required quantities during the estimation process. Specifi-
cally, we consider the decomposition of the binaural STWF into
a binaural spatio-temporal MVDR filter and a spectral postfilter,
hence requiring estimates of the speech STCVs, the speech
PSDs, and the inverse interference STCMs. Please note that
in principle these quantities need to be estimated both for the
filter estimating the target speech component at the left device
as well as for the filter estimating the target speech component
at the right device. The binaural STWF is embedded into an
end-to-end supervised learning framework, where all quantities
are estimated using temporal convolutional networks (TCNs). In
addition to imposing a Hermitian positive-definite structure on
the inverse interference STCMs, the main objective of this paper
is to investigate the potential of imposing spatio-temporal corre-
lation structure on the speech STCVs and the inverse interference

1In multi-frame MVDR filtering, the interference component is typically
defined to include both noise components and speech components that are
uncorrelated with the current target speech STFT coefficient [24], [25].

STCMs. We propose several procedures which mainly differ
in terms of the relation between the microphones, particularly
between the left and the right hearing device, and the number
of parameters that need to be estimated. First, assuming that
the spatial correlation of the speech component is stationary
over the length of the multi-frame filter, the speech STCVs can
be decomposed as the Kronecker product of a relative transfer
function vector and a temporal correlation vector. We either
consider a single “global” reference microphone, requiring the
speech temporal correlation vector to be estimated only for
this microphone, or a reference microphone for each hearing
device, requiring (left and right) speech temporal correlation
vectors to be estimated for both reference microphones. The
STCV structure considering two reference microphones in-
volves more parameters than the STCV structure considering
a single reference microphone, but it allows for more degrees
of freedom. Second, we propose to replace the left and right
interference STCMs by a common interference STCM, as the
difference between both STCMs can be assumed to be negli-
gible. In addition, we consider a bilateral STWF by assuming
no spatio-temporal correlation between both hearing devices,
both for the speech STCVs and for the interference STCM.
To train and evaluate the deep bilateral STWF and the deep
binaural STWF using the proposed spatio-temporal correlation
structures, we constructed matched datasets using diverse speech
and noise sources from the DNS 1 and DNS 2 challenges [27],
[28] as well as simulated binaural room impulse responses from
the Clarity Enhancement Challenge (CEC) 1 [29]. In addition,
to evaluate the generalization capabilities of the considered
algorithms, we considered a mismatched evaluation dataset from
CEC 3 that comprises noise backgrounds and room impulse
responses (RIRs) recorded in complex environments as well as
simulated head rotation. Simulation results show that the bin-
aural STWF using a combination of the speech STCV structure
considering two reference microphones and a common interfer-
ence STCM significantly reduces the computational complexity
while yielding a similar speech enhancement and interaural
cue preservation performance compared to not imposing any
spatio-temporal correlation structure. Furthermore, simulation
results demonstrate that this deep binaural STWF outperforms
the deep bilateral STWF as well as two state-of-the-art binaural
speech enhancement algorithms, namely the deep filtering al-
gorithm [16] (which directly estimates the binaural multi-frame
filter coefficients) and the binaural Conv-TasNet algorithm [9],
while approaching the performance of the non-causal BCCTN
algorithm [14].

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the signal model and introduce the binau-
ral STWF. In Section III, we propose several spatio-temporal
correlation structures for the speech STCVs and the inverse
interference STCMs. In Section IV, we describe the supervised
learning-based approach to estimate the required quantities,
taking into account these correlation structures. The simulation
setup, the approach to validate the proposed correlation struc-
tures, and the simulation results for the proposed deep binaural
and bilateral STWFs as well as for several baseline algorithms
are presented and discussed in Sections V, VI, and VII.
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Fig. 1. Acoustic scenario with a target speech source and noise as well as
binaural processing scheme, estimating the target speech component at the left
and the right hearing device by filtering all available microphone signals.

II. SPATIO-TEMPORAL WIENER FILTER FOR BINAURAL SPEECH

ENHANCEMENT

A. Signal Model

We consider an acoustic scenario with a single speech source
and background noise in a reverberant room, recorded by
binaural hearing devices with M microphones each, i.e., a total
of 2M microphones (see Fig. 1). We assume that all microphone
signals are synchronized and transmitted (e.g., via a wireless
link) between the hearing devices without transmission delay
and quantization errors. In the STFT domain, the m-th noisy
microphone signal yf,t,m at frequency bin f and time frame t is
given by

yf,t,m = xf,t,m + nf,t,m, m ∈ {1, . . . , 2M}, (1)

where xf,t,m and nf,t,m denote the (reverberant) target speech
component and the noise component, respectively. Multi-frame
speech enhancement algorithms [15], [16], [17], [18], [19], [20],
[21], [22], [23] use the noisy multi-frame vector yf,t, where N
denotes the multi-frame filter length, defined as

yf,t =
[
ȳTf,t,1 . . . ȳTf,t,2M

]
T ∈ C

2MN , (2)

with ·T denoting the transpose operator and

ȳf,t,m =
[
yf,t,m . . . yf,t−N+1,m

]
T. (3)

Since each frequency bin is processed independently, the index
f will be omitted in the remainder of this paper. Using (1), the
multi-frame vector in (2) can be written as

yt = xt + nt, (4)

wherext andnt are defined similarly as in (2). The target speech
components x̂t,L and x̂t,R at both hearing devices are defined
(without loss of generality) at reference microphones L = 1
and R = M + 1 (see Fig. 1). The target speech components are
estimated by processing all available microphone signals with
the binaural spatio-temporal filters wL

t ∈ C
2MN (for the left

device) and wR
t ∈ C

2MN (for the right device), i.e.,

x̂t,L = wL,H
t yt, x̂t,R = wR,H

t yt, (5)

where the binaural spatio-temporal filters are defined similarly as
in (2), and ·H denotes the complex conjugate transpose operator.

Assuming that the speech and noise components are spatio-
temporally uncorrelated, the noisy STCM Φy,t = E{yty

H
t } ∈

C
2MN×2MN , with E{·} the expectation operator, can be written

as

Φy,t = Φx,t +Φn,t, (6)

whereΦx,t = E{xtx
H
t } andΦn,t = E{ntn

H
t }. The matrixΦy,t

can be partitioned as

Φy,t =

[
Φ̃LL

y,t Φ̃LR
y,t

Φ̃LR,H
y,t Φ̃RR

y,t

]
, (7)

where the submatrix Φ̃LL
y,t contains only spatio-temporal corre-

lations of the microphones at the left hearing device, the sub-
matrix Φ̃RR

y,t contains only spatio-temporal correlations of the

microphones at the right hearing device, and the submatrix Φ̃LR
y,t

contains spatio-temporal correlations between the contralateral
microphones.

In order to exploit speech correlations across successive time
frames, it was proposed in [24], [25] to decompose the (single-
microphone) multi-frame speech vector into a temporally cor-
related component and a temporally uncorrelated component.
Similarly, the (multi-microphone) multi-frame speech vector xt

can be decomposed into a spatio-temporally correlated compo-
nent and a spatio-temporally uncorrelated componentx′

t,m w.r.t.
the speech STFT coefficient xt,m at the m-th microphone, i.e.,

xt = γm
t xt,m︸ ︷︷ ︸

correlated

+ x′
t,m,︸ ︷︷ ︸

uncorrelated

(8)

where the speech STCV γm
t describes the correlation between

the N most recent speech STFT coefficients at each microphone
and the current speech STFT coefficient at them-th microphone.
The speech STCV is defined as

γm
t =

E {xtx
∗
t,m

}
E {|xt,m|2} =

Φx,tem

φm
t

∈ C
2MN (9)

where ·∗ denotes the complex conjugate operator, em denotes a
selection vector with the element corresponding to the current
frame at the m-th microphone equal to 1 and the other elements
equal to 0, and φm

t = eTmΦx,tem denotes the speech PSD at the
m-th microphone. It can be easily shown that the element of the
speech STCV corresponding to the current frame at the m-th
microphone is equal to 1, i.e.,

eTmγm
t = 1. (10)

It should be noted that the speech STCV depends both on
the temporal correlation of the speech component, which is
highly time-varying, and on the spatial correlation, which can be
assumed to be less time-varying than the temporal correlation.
The decomposition in (8) can be carried out for both reference
microphones, i.e.,

xt = γL
t xt,L + x′

t,L = γR
t xt,R + x′

t,R (11)

where γL
t denotes the left speech STCV and γR

t denotes the
right speech STCV.
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Substituting (11) into (4), the noisy multi-frame vector can be
written as

yt = γν
t xt,ν + x′

t,ν + nt︸ ︷︷ ︸
=:it,ν

, ν ∈ {L,R}, (12)

where it,ν denotes the interference vector, containing both the
uncorrelated speech component x′

t,ν and the noise component
nt. Using (12), the noisy STCM in (6) can be written as

Φy,t = φν
t γ

ν
t γ

ν,H
t +Φν

x′,t +Φn,t︸ ︷︷ ︸
=Φν

i,t

, ν ∈ {L,R} (13)

where Φν
x′,t = E{x′

t,νx
′H
t,ν} and Φν

i,t = E{it,ν iHt,ν} denote the
uncorrelated speech STCM and the interference STCM, respec-
tively. It should be noted that, in general, the speech PSDs φν

t ,
the speech STCVs γν

t , the uncorrelated speech STCMs Φν
x′,t,

and the interference STCMsΦν
i,t are different for the left hearing

device (ν = L) and the right hearing device (ν = R).

B. Binaural Spatio-Temporal Wiener Filter

In [4], [30] the binaural multi-channel Wiener filter was pro-
posed, which aims at minimizing the mean square error between
the binaural output signals and the target speech components at
both reference microphones, only considering spatial correla-
tions. In this paper, we consider a multi-frame extension of the
binaural multi-channel Wiener filter, termed binaural STWF,
which considers both spatial as well as temporal correlations.
The binaural STWF can also be considered as a binaural exten-
sion of the STWF proposed in [24]. The binaural spatio-temporal
filterswL

t andwR
t are computed by minimizing the cost function

J(wL
t ,w

R
t ) = E

{∥∥∥∥xt,L −wL,H
t yt

xt,R −wR,H
t yt

∥∥∥∥2
2

}
, (14)

yielding

wν
t = Φ−1

y,tΦx,teν , ν ∈ {L,R}. (15)

Using (13) and the fact that Φν
x′,teν = 0, it can be easily shown

that both STWF vectors in (15) can be decomposed as a spatio-
temporal MVDR filter [20] and a real-valued scalar postfilter,
i.e.,

wν
t =

(
Φν

i,t

)−1
γν
t

γν,H
t

(
Φν

i,t

)−1
γν
t︸ ︷︷ ︸

spatio-temporal MVDR

φν
t

φν
t + γν,H

t

(
Φν

i,t

)−1
γν
t︸ ︷︷ ︸

postfilter

(16)

with ν ∈ {L,R}. The spatio-temporal MVDR filter minimizes
the interference power while preserving the spatio-temporal cor-
relation of the speech component, with the postfilter providing
additional noise reduction at the cost of allowing for some speech
distortion. The performance of the binaural STWF strongly
depends on how well the required quantities, i.e., the left and
right inverse interference STCMs (ΦL

i,t)
−1 and (ΦR

i,t)
−1, the

left and right speech STCVs γL
t and γR

t , as well as the left and
right speech PSDsφL

t andφR
t are estimated from the noisy STFT

coefficients. Similarly as in [15], [20], [23], [26], in this paper we
embed the binaural STWF in a supervised learning framework,

estimating the required quantities with DNNs (see Section IV).
In addition, we investigate imposing different spatio-temporal
structures on the speech STCVs and the interference STCMs, as
described in the following section.

III. SPATIO-TEMPORAL CORRELATION STRUCTURES

The quantities required by the binaural STWF are determined
by both temporal and spatial correlations. On the one hand, the
temporal correlations of the speech and interference components
can vary drastically across a small number of time frames.
On the other hand, the spatial correlations of the speech and
interference components mainly depend on the acoustic scene,
i.e., the positions of the listener and the speech and noise sources,
which can be assumed to be stationary across a small number of
time frames. In this section, we propose several spatio-temporal
structures for the speech STCVs and the interference STCMs,
relating these quantities between the left and the right hearing
device. First, assuming spatial stationarity of the speech com-
ponent over a small number of time frames, in Section III-A
we impose spatial structure on the speech STCVs. Second,
assuming that the uncorrelated speech components are negli-
gible, in Section III-B we set the left and the right interference
STCM equal to each other. Third, in Section III-C we assume
no correlation between the left and right hearing devices for
both the speech and interference components. The considered
structures greatly differ in the number of parameters that need to
be estimated. As will be demonstrated by the simulation results
in Section VII, imposing structure on the speech STCVs and
the interference STCMs is beneficial in terms of computational
complexity.

A. Speech Correlation Vectors

In many multi-microphone speech enhancement algorithms,
multiplicative relative transfer functions (RTFs) have been uti-
lized to model the relationship between the speech STFT co-
efficients at all microphones [3]. Assuming the microphone
with index ν as the reference microphone, the (single-frame)
multi-microphone speech vector can be written as⎡⎢⎢⎢⎢⎣

xt,1

xt,2

...

xt,2M

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
hν
t,1

hν
t,2

...

hν
t,2M

⎤⎥⎥⎥⎥⎦xt,ν , (17)

with hν
t,m denoting the RTF between the m-th microphone and

the reference microphone, defined as

hν
t,m =

E{xt,mx∗
t,ν}

E{|xt,ν |2} =
eTmΦx,teν

φν
t

, (18)

such that hν
t,ν = 1. Similarly, the multi-frame speech vector at

the m-th microphone can be written as

x̄t,m =

⎡⎢⎢⎢⎢⎣
xt,m

xt−1,m

...

xt−N+1,m

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
hν
t,mxt,ν

hν
t−1,mxt−1,ν

...

hν
t−N+1,mxt−N+1,ν

⎤⎥⎥⎥⎥⎦ . (19)
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Assuming that the RTFs are constant over N frames (i.e.,
hν
t,m, hν

t−1,m, . . . , hν
t−N+1,m are equal), the multi-frame speech

vector in (19) can be written as [31]

x̄t,m = hν
t,mx̄t,ν . (20)

In the following, we will either consider a single “global”
reference microphone for both hearing devices or a reference
microphone for each hearing device.

1) Global Relative Transfer Function: Without loss of gen-
erality, we choose the reference microphone on the left hearing
device (with index L = 1) as the global reference microphone.
Using (20), the multi-microphone multi-frame speech vector in
(4) can then be modeled as

xt =

⎡⎢⎢⎢⎢⎣
x̄t,1

x̄t,2

...

x̄t,2M

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x̄t,1

h1
t,2x̄t,1

...

h1
t,2M x̄t,1

⎤⎥⎥⎥⎥⎦ = ht,glob ⊗ x̄t,1, (21)

where the global RTF vector ht,glob contains the RTFs between
all microphones and the global reference microphone, i.e.,

ht,glob =
[
1 h1

t,2 . . . h1
t,2M

]
T ∈ C

2M , (22)

and ⊗ denotes the Kronecker product. Using (21), the left and
right speech STCVs in (9) can be written as

γν
t,glob =

E {ht,glob ⊗ x̄t,1x
∗
t,ν

}
φν
t

= ht,glob ⊗ γ̄ν
t,1, (23)

with ν ∈ {L,R}, and where the speech temporal correlation
vector γ̄ν

t,1 describes the correlation between the N most recent
speech STFT coefficients at the global reference microphone
(with index L = 1) and the current target speech STFT coeffi-
cient (xt,L or xt,R), i.e.,

γ̄ν
t,1 =

E {x̄t,1x
∗
t,ν

}
φν
t

∈ C
N , ν ∈ {L,R}. (24)

When imposing the global RTF structure on the speech STCVs
in (23), the speech STCVs can be interpreted as being decom-
posed into a spatial factor (ht,glob) and a temporal factor (γ̄ν

t,1).
Furthermore, for two of the quantities to be estimated, the global
RTF structure yields an explicit relation between the left and the
right hearing device: First, since the reference microphones on
both hearing devices are related as xt,R = h1

t,Rxt,L, the left and
right speech PSDs are related as

φR
t,glob = |h1

t,R|2φL
t,glob, (25)

where the global RTF h1
t,R is an element of ht,glob in (22).

Second, the left and right speech STCVs in (23) are related as

γR
t,glob =

E {xtx
∗
t,R

}
E {|xt,R|2} =

1

h1
t,R

E {xtx
∗
t,L

}
E {|xt,L|2} =

1

h1
t,R

γL
t,glob,

(26)

i.e., the left and right speech STCVs are related by a complex-
valued scalar (so they are parallel). It should be realized that—
although both vectors may differ in amplitude and phase—the
relation between microphones is the same for both hearing

devices. The global RTF structure is visualized in Fig. 2(b),
assuming M = 2 microphones per hearing device.

The model in (21) assumes fully correlated speech compo-
nents between the global reference microphone and all micro-
phones of both hearing devices, which is a common assumption
in binaural speech enhancement algorithms [3], [4]. However,
depending on the STFT frame length, this assumption may
be violated in practice due to large inter-microphone distances
and reverberation, especially when considering the correlation
between the global reference microphone and the contralateral
microphones. This motivates the investigation of an alternative
structure in the next section.

2) Ipsilateral Relative Transfer Function: As a less restric-
tive alternative to the global RTF structure in (21), we propose
to use this model for each hearing device independently, i.e.,
using the microphone with index L as the reference for the
microphones of the left hearing device and the microphone with
indexR as the reference for the microphones of the right hearing
device. The multi-microphone multi-frame speech vector can
then be modeled as

xt =

[
hL
t,ipsi ⊗ x̄t,L

hR
t,ipsi ⊗ x̄t,R

]
, (27)

where the ipsilateral RTF vectors, defined as

hL
t,ipsi =

[
1 hL

t,2 . . . hL
t,M

]
T ∈ C

M (28)

hR
t,ipsi =

[
1 hR

t,M+2 . . . hR
t,2M

]
T ∈ C

M , (29)

relate the speech component at the microphones of the left
hearing device to the left reference microphone and the speech
component at the microphones of the right hearing device to the
right reference microphone. Using (27) in (9), the left and right
speech STCVs can be written as

γν
t,ipsi =

1

φν
t

E
{[

hL
t,ipsi ⊗ x̄t,L

hR
t,ipsi ⊗ x̄t,R

]
x∗
t,ν

}
=

[
hL
t,ipsi ⊗ γ̄ν

t,L

hR
t,ipsi ⊗ γ̄ν

t,R

]
,

(30)

with ν ∈ {L,R}, and where the speech temporal correlation
vectors γ̄ν

t,L and γ̄ν
t,R are defined similarly as in (24), i.e.,

γ̄ν
t,L =

E {x̄t,Lx
∗
t,ν

}
φν
t

, γ̄ν
t,R =

E {x̄t,Rx
∗
t,ν

}
φν
t

. (31)

It should be noted that the ipsilateral RTF structure comprises
four speech temporal correlation vectors, whereas the global
RTF structure only comprises one speech temporal correlation
vector in (24). The ipsilateral RTF structure is visualized in
Fig. 2(c).

B. Interference Covariance Matrices

The left and right interference STCMs are defined as

Φν
i,t = Φν

x′,t +Φn,t, ν ∈ {L,R}. (32)

Assuming the uncorrelated speech STCMsΦν
x′,t to be negligible

compared to the noise STCMΦn,t, the left and right interference
STCMsΦL

i,t andΦR
i,t can be replaced by a common STCMΦi,t,
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Fig. 2. Illustration of the proposed spatial structures imposed on the speech STCVs, assuming M = 2 microphones per hearing device (L = 1, R = 3). The
parameters to be estimated are highlighted in blue once per structure in order to emphasize the parameter reuse achieved by the global RTF structure and the
ipsilateral RTF structure.

i.e.,

ΦL
i,t = ΦR

i,t =: Φi,t. (33)

This assumption is generally more valid at lower signal-to-
noise-ratios (SNRs), where the noise STCM becomes more
dominant relative to the uncorrelated speech STCMs. As will be
demonstrated in Section VI, this assumption holds quite well in
practice. It should be noted that when combining this assumption
with the global RTF structure—where the left and right speech
STCVs are parallel—the resulting binaural STWF filter vectors
are parallel as well.

C. Bilateral Correlation

The binaural STWF using the proposed speech STCV and
interference STCM structures in Sections III-A and III-B ex-
ploits spatio-temporal correlation between both hearing devices,
requiring the microphone signals to be transmitted between
the left and right hearing devices. In order to investigate the
performance benefit achieved by binaural processing, we will
also consider bilateral processing, where both hearing devices
operate independently. This corresponds to assuming no corre-
lation between the left and right hearing devices for both the
speech and the interference components such that the left and
right speech STCVs can be modeled using a non-zero subvector
for ipsilateral correlations and a zero subvector for contralateral
correlations, i.e.,

γL
t,bil =

⎡⎢⎢⎢⎣
γ̄L
t,1
...

γ̄L
t,M

0MN×1

⎤⎥⎥⎥⎦ , γR
t,bil =

⎡⎢⎢⎢⎣
0MN×1

γ̄R
t,M+1

...
γ̄R
t,2M

⎤⎥⎥⎥⎦ , (34)

and, similarly, the common interference STCM in (33) can be
modeled using non-zero submatrices for ipsilateral correlations
and zero submatrices for the contralateral correlations, i.e.,

Φi,t,bil =

[
Φ̃LL

i,t 0MN×MN

0MN×MN Φ̃RR
i,t

]
. (35)

Since

Φ−1
i,t,bilγ

L
t,bil =

⎡⎣(Φ̃LL
i,t

)−1

[γL
t ]1:MN

0MN×1

⎤⎦ (36)

Φ−1
i,t,bilγ

R
t,bil =

⎡⎣ 0MN×1(
Φ̃RR

i,t

)−1

[γR
t ]MN+1:2MN

⎤⎦ , (37)

the binaural STWF in (16) reduces to a set of bilateral filters,
i.e.,

wL
t,bilat =

[
[wL

t ]1:MN

0MN×1

]
, wR

t,bilat =

[
0MN×1

[wR
t ]MN+1:2MN

]
,

(38)

where wL
t,bilat only depends on quantities related to the left

hearing device and wR
t,bilat only depends on quantities related

to the right hearing device.
For the bilateral STWF, it is also possible to consider the

ipsilateral RTF structure for the speech STCV in (34), i.e.,

γL
t,bil,ipsi =

[
hL
t,ipsi ⊗ γ̄L

t,L

0MN×1

]
, γR

t,bil,ipsi =

[
0MN×1

hR
t,ipsi ⊗ γ̄R

t,L

]
,

(39)

with hL
t,ipsi and hR

t,ipsi defined in (28) and (29). As will be
demonstrated in Section VI, these bilateral structures introduce
relatively large estimation errors in practice, suggesting that the
correlation between the left and right hearing devices for both
the speech and the interference components is quite relevant.

IV. DEEP BINAURAL SPATIO-TEMPORAL WIENER FILTER

To estimate all required quantities, the binaural STWF is
embedded into a supervised learning framework (see Fig. 3).
Specifically, the speech STCVs γL

t and γR
t , the speech PSDs φL

t

and φR
t , as well as the inverse STCMs (ΦL

i,t)
−1 and (ΦR

i,t)
−1 are

estimated using TCNs. Separate TCNs are used for the quantities
related to the speech component (i.e., STCVs and PSDs) and
for the quantities related to the interference component (i.e.,
inverse STCMs), where both TCNs are jointly trained using a
loss function that compares the ground-truth binaural speech
components to the estimated components obtained at the output
of the deep binaural STWF. As input features, we utilized a
concatenation of the logarithmic magnitude, as well as the cosine
and sine of the phase, of the noisy STFT coefficients at all
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Fig. 3. Block diagram of the proposed deep binaural STWF and the baseline deep filtering algorithm, assuming M = 2 microphones per hearing device.

TABLE I
THE NUMBER OF REQUIRED PARAMETERS PER FREQUENCY BIN TO ESTIMATE THE SPEECH STCVS AND THE INVERSE INTERFERENCE STCMS FOR THE PROPOSED

SPATIO-TEMPORAL CORRELATION STRUCTURES (ASSUMING N = 5 AND M = 2; ν ∈ {l,R}), AS WELL AS THE MODEL MISMATCH ON THE EVALUATION

DATASET IN TERMS OF THE MEAN RELATIVE �2 NORM ε�2 , THE MEAN HERMITIAN ANGLE εθ , THE MEAN RELATIVE FROBENIUS NORM εFRO, AND THE MEAN

CORRELATION MATRIX DISTANCE εCMD IN (56)

microphones2, i.e.,

ft,m =
[
log10(|yt,m|) cos(∠yt,m) sin(∠yt,m)

]
T (40)

ft =
[
fTt,1 . . . fTt,2M

]
T, (41)

where ∠· denotes the phase. We chose both the cosine and the
sine of the phase to obtain an unambiguous and smooth phase
representation [32]. For more details about the TCNs and the
loss function, we refer to Section V-C. For the spatio-temporal
correlation structures proposed in Section III, in the following
we explain in more detail the parameters that are estimated
by the TCNs. Table I provides an overview of the number of
parameters per frequency bin for the speech STCVs and the
inverse interference STCMs, which greatly differ between the
different structures.

2In preliminary experiments, this feature choice outperformed the use of the
real and imaginary parts of the noisy STFT coefficients as input features.

A. Speech Correlation Vectors and Power Spectral Densities

a) No Structure: When not imposing any structure on the
speech STCVs, estimates of both complex-valued vectors γL

t

and γR
t and both PSDs φL

t and φR
t are required. Since one

element of each speech STCV is equal to 1 (cf. (10)) each speech
STCV is determined by 2(2MN − 1) real-valued parameters.
Similarly to [33], the speech PSDs are estimated by applying
real-valued masks ât,L and ât,R to the noisy STFT coefficients
at the reference microphones, i.e.,

φ̂ν
t = |ât,νyt,ν |2, ât,ν ∈ [0, 1], ν ∈ {L,R}, (42)

with each mask determined by a single real-valued parameter,
ensuring the range [0, 1] with a sigmoid activation function.
A single TCN uses the features in (40) at all microphones to
estimate the undetermined parameters of the speech STCVs and
the PSD masks.
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b) Global RTF Structure: When imposing the global RTF
structure on the speech STCVs, estimates of the global RTF
vector ht,glob in (22) and the speech temporal correlation vector
γ̄L
t,1 in (24) are required, separating the estimation process into

a spatial factor and a temporal factor. The global RTF vector
is determined by 2(2M − 1) real-valued parameters, while the
speech temporal correlation vector is determined by 2(N − 1)
real-valued parameters. Since the left and right speech PSDs are
directly related by the squared magnitude of the global RTF (cf.
(25)), only one PSD mask needs to be estimated for the global
reference microphone. A single TCN uses the features in (40) at
all microphones to estimate the undetermined parameters of the
global RTF vector, the speech temporal correlation vector, and
the PSD mask.

c) Ipsilateral RTF Structure: When imposing the ipsilateral
RTF structure on the speech STCVs, estimates of the ipsilateral
RTF vectors hipsi

t,L and hipsi
t,R in (28) and (29) as well as the speech

temporal correlation vectors γ̄L
t,L, γ̄R

t,R, γ̄R
t,L and γ̄L

t,R in (31)
are required. The ipsilateral RTF vectors are determined by
2(M − 1) real-valued parameters each, the vectors γ̄L

t,L and
γ̄R
t,R are determined by 2(N − 1) real-valued parameters each,

and the vectors γ̄R
t,L and γ̄L

t,R are determined by 2N real-valued
parameters each (since none of the elements needs to be equal
to 1). The ipsilateral RTF structure does not impose an explicit
relationship between the left and right PSDs. A single TCN
uses the features in (40) at all microphones to estimate the
undetermined parameters of the ipsilateral RTF vectors, the
speech temporal correlation vectors, and the PSD masks.

B. Interference Covariance Matrices

a) No Structure: We assume that the interference STCMs are
full-rank, such that they are positive-definite, i.e., all eigenvalues
are real-valued and larger than zero. Hence, the inverse interfer-
ence STCMs are also positive-definite and can be decomposed
using the Cholesky decomposition [15], [23], [26], [34] as

(
Φν

i,t

)−1
= Lν

i,tL
ν,H
i,t , ν ∈ {L,R}, (43)

where the Cholesky factor Lν
i,t ∈ C

2MN×2MN is a lower-
triangular matrix with real-valued and positive diagonal ele-
ments, determined by (2MN)2 real-valued parameters. A single
TCN uses the features in (40) at all microphones to estimate
these parameters. Similarly as in [15], [23], we then construct the
Cholesky factors L̂ν

i,t by using disjoint subsets of the parameters
for the real strictly lower triangular part, the imaginary strictly
lower triangular part, and the real positive diagonal part, ensuring
positivity of the diagonal part with a softplus activation function.
Finally, we construct the inverse interference STCMs as in (43),
i.e., without explicitly computing a matrix inverse.

b) Common Interference Covariance Matrix: When assuming
the left and right interference STCMs to be equal, a single
Cholesky factor and inverse interference STCM is estimated
using the procedure described above, reducing the number of
parameters by half to (2MN)2.

C. Bilateral Correlation

When imposing a bilateral structure on the speech STCVs
and the interference STCMs, only the ipsilateral correlations
need to be estimated. The ipsilateral speech STCVs in (34) are
determined by 2(MN − 1) real-valued parameters each. When
additionally imposing the ipsilateral RTF structure, the speech
STCVs in (39) are determined by 2(M − 1) real-valued param-
eters for each of the ipsilateral RTF vectors hL

t,ipsi and hR
t,ipsi as

well as 2(N − 1) real-valued parameters for each of the speech
temporal correlation vectors γ̄L

t,L and γ̄R
t,R. The Cholesky fac-

tor of the inverse submatrices (Φ̃LL
i,t )

−1 and (Φ̃RR
i,t )−1 in (36)

and (37) is determined by (MN)2 real-valued parameters each.
In contrast to the estimation procedures for the binaural STWF,
separate TCNs are used for the left and right filters of the bilateral
STWF. More specifically, one TCN uses the features in (40)
at the microphones of the left hearing device to estimate the
undetermined parameters of the left ipsilateral speech STCV
and the left PSD mask, while another TCN uses the features
at the microphones of the right hearing device to estimate the
undetermined parameters of the right ipsilateral speech STCV
and the right PSD mask. Similarly, two separate TCNs are used
to estimate the undetermined parameters of the left and right
inverse interference STCMs.

V. SIMULATION SETUP

In this section, we present our simulation setup, consisting
of the used datasets (Section V-A), the baseline binaural speech
enhancement algorithms (Section V-B), and the settings of all
algorithms (Section V-C).

A. Datasets

To train, validate, and evaluate all supervised learning-
based binaural speech enhancement algorithms, we constructed
datasets using diverse speech and noise source material from the
DNS 1 and DNS 2 challenge datasets [27], [28] and simulated
BRIRs from the CEC 1 dataset [29]. In addition, to test the
generalization capabilities of the considered algorithms in more
realistic scenarios, we considered the CEC 3 dataset (Task 3)3.
All datasets were used at a sampling rate of 16 kHz.

1) Training and Validation: For the training and validation
datasets, we used the speech and noise source material from the
DNS 2 challenge dataset, consisting of English sentences from
11350 speakers and 600 noise classes. We chose not to use the
speech and noise source material from the CEC 1 dataset in order
to increase speaker and noise diversity. For the BRIRs, we used
the CEC 1 training dataset, consisting of 6000 different room
configurations. These BRIRs were simulated for a randomly
positioned directional speech source and a randomly positioned
omnidirectional noise source captured by binaural behind-the-
ear hearing aids mounted on an artificial head in randomly sized
rooms with reverberation time T60 ranging from 0.2 s to 0.4 s
(i.e., low to moderate reverberation). The hearing aids consisted

3https://claritychallenge.org/docs/cec3/task_3/cec3_task3_overview

https://claritychallenge.org/docs/cec3/task_3/cec3_task3_overview
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of three microphones each (front, mid, and rear), with a micro-
phone spacing of about 7.6mm. The front and mid microphones
were chosen for all simulations, i.e., M = 2 microphones were
used per hearing device. The speech source was located at an
angle within +− 30 ◦ w.r.t. the listener, while the noise source
could be positioned anywhere in the room except for less than
1m from the walls or the listener. Surface absorption coefficients
were varied to simulate various room characteristics such as
doors, windows, curtains, rugs, or furniture. Random speech
and noise sources were convolved with BRIRs corresponding
to a randomly chosen room configuration before being mixed
at better-ear SNRs ranging from 0 dB to 15 dB (considering
the reference microphones at both hearing aids). In total, the
training and validation datasets have a length of 80 h and 20 h,
respectively, with each utterance of length 4 s.

2) Evaluation: For evaluation, we considered a matched
dataset resembling the training dataset and a mismatched dataset
designed to test generalization capabilities. For the matched
evaluation dataset, we used speech and noise source material
from the DNS 1 challenge evaluation dataset and BRIRs from
the CEC 1 validation dataset. Random speech and noise sources
were convolved with BRIRs corresponding to a randomly cho-
sen room configuration before being mixed at better-ear SNRs
from −5 dB to 20 dB in steps of 5 dB. The training/validation
and matched evaluation datasets were disjoint in terms of speak-
ers, noise sources, and BRIRs. In total, 100 utterances were
considered per SNR, with each utterance of length 10 s.

For the mismatched evaluation dataset, we used a subset
of the CEC 3 development dataset (Task 3), comprising real
noise backgrounds and higher-order ambisonic RIRs recorded
in complex environments (busy roads, railway platforms, and
social gatherings) as well as simulated head rotation. Note that
we omitted the social gatherings environment, which would have
required a target speech extraction approach and is thus incom-
patible with the approach in this paper. Random speech sources
were convolved with higher-order ambisonic RIRs, rotated to
simulate head movement, and binauralized with measured head-
related transfer functions. The resulting speech components
were mixed with real noise backgrounds at better-ear SNRs
from −5 dB to 6 dB. This SNR range represents a subset of
the full −12 dB to 6 dB range, chosen to provide a reasonable
mismatch with our training dataset (which contained the range
from 0 dB to 15 dB). The considered evaluation dataset presents
mismatches in terms of speakers, noise types, noise spatial co-
herence, acoustic conditions (as reflected in the recorded RIRs),
and the dynamic aspect of head rotation. In total, 997 utterances
were selected, with each utterance lasting about 5 s.

B. Baseline Algorithms

We consider three baseline binaural speech enhancement
algorithms, where two algorithms are causal and one algorithm
is non-causal. The first baseline algorithm is causal and directly
estimates the binaural multi-frame filter coefficients in the STFT
domain (see Fig. 3), which can be viewed as a binaural extension
of the deep filtering (DF) algorithm proposed in [16]. More
specifically, rather than estimating the speech STCVs, speech

PSDs, and inverse interference STCMs to compute the binaural
STWF vectors using (16), the DF algorithm directly estimates
the binaural spatio-temporal filter vectorswL

t andwR
t ∈ C

2MN ,
each determined by4MN real-valued parameters. A single TCN
uses the features in (40) at all microphones to estimate these
parameters, ensuring the range [−1, 1]with a hyperbolic tangent
activation function as proposed in [16].

As second state-of-the-art baseline algorithm, we consider the
causal binaural Conv-TasNet algorithm, which uses a learned
transform instead of the STFT and a TCN-based separator
that estimates real-valued masks employed in a mask-and-sum
approach [9].

As third state-of-the-art baseline algorithm, we use the non-
causal BCCTN algorithm [14], which uses a complex-valued
convolutional transformer network that estimates complex-
valued time-frequency masks for the left and right reference
channels. Note that the BCCTN algorithm uses a non-causal
multi-head attention implementation and is thus not suitable
for real-time processing—in contrast to all other considered
algorithms.

C. Algorithmic Settings

We used the same STFT framework and input features for
the STWF algorithms and the DF algorithm. To increase speech
correlation across successive STFT frames, we used a high tem-
poral resolution, i.e., a frame length of 8ms and 75% overlap,
resulting in a low input-output latency. We used a square-root
Hann window as analysis and synthesis window. As multi-frame
filter length, the STWF algorithms and the DF algorithm used
N = 5 frames, such that temporal correlations within 16ms
could be exploited. This choice represents a trade-off between
capturing sufficient temporal context to exploit speech correla-
tions and maintaining reasonable computational complexity. To
limit speech distortion, a minimum gain of gmin = −20 dB was
applied to the binaural output signals of the STWF algorithms
and the DF algorithm during evaluation. The final estimated
binaural target speech components were thus obtained as

x̂t,ν =

{
gminyt,ν , if |wν,H

t yt| < |gminyt,ν |
wν,H

t yt, else
. (44)

To train all algorithms except the BCCTN algorithm, we used
the following STFT-domain loss function proposed in [35]:

Lb
f,t,ν = β

∣∣xb
f,t,ν − x̂b

f,t,ν

∣∣+ (1− β)
∣∣|xb

f,t,ν | − |x̂b
f,t,ν |

∣∣
L =

1

2BFT

B∑
b=1

F∑
f=1

T∑
t=1

∑
ν∈{L,R}

Lb
f,t,ν , (45)

whereB = 4 denotes the batch size, b denotes the batch element,
F and T denote the numbers of frequency bins and frames in an
utterance, and β = 0.4 is a hyperparameter chosen as in [35].
The magnitude term helps preserve spectral shape and formant
structure, while the complex-valued difference term helps pre-
serve phase relationships. Note that this loss was computed after
the estimated binaural target speech components in (5) were
transformed back to the time domain using an inverse STFT (see
Fig. 3), followed by an additional transformation to the STFT
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domain with a frame length of 32ms and 50% overlap. For
the BCCTN algorithm, we used the STFT framework and loss
function proposed in [14], which incorporates terms reflecting
noise reduction, intelligibility improvement, and interaural cue
preservation.

We used TCNs as the DNN architecture for the STWF algo-
rithms and the DF algorithm, implemented based on the official
(monaural) Conv-TasNet implementation.4 We fixed the number
of stacks to two, the number of layers to six, the kernel size to
three, and the bottleneck size to 32, yielding a temporal receptive
field size of 512ms. All STWF algorithms (imposing different
correlation structures) and the DF algorithm were trained sepa-
rately, with the TCN architecture remaining identical and only
adapting its final layer to match the required parameter count for
each algorithm (presented in Table I for the STWF algorithms).

For both the binaural Conv-TasNet algorithm and the BCCTN
algorithm, we used the code provided by the authors and the
DNN hyperparameters proposed in [9] and [14], respectively.

All algorithms were trained for a maximum of 100 epochs
with early stopping using the AdamW optimizer [36] and with
gradient �2 norms clipped to 5. The learning rate was initialized
at 10−3 and halved after three epochs without validation loss
improvement. Early stopping was applied after ten epochs with-
out validation loss improvement. For the STWF algorithms and
the DF algorithm, complex-valued numbers were constructed
from the (real-valued) TCN outputs by assigning separate output
elements for the real and imaginary parts. The simulations were
implemented using PyTorch 2.0.1 [37] and executed on NVIDIA
GeForce RTX A5000 graphics cards.

VI. VALIDITY OF SPATIO-TEMPORAL CORRELATION

STRUCTURES

In this section, we describe an approach to validate the
proposed spatio-temporal correlation structures for the speech
STCVs and interference STCMs in Section III. We first dis-
cuss how to compute ground-truth STCVs and STCMs, impose
spatio-temporal structure on these quantities, introduce several
metrics to evaluate the incurred model mismatch, and finally
present the validation results.

A. Ground-Truth STCVs and STCMs

To compute the ground-truth speech STCVs and interference
STCMs, we first apply recursive smoothing on the instantaneous
oracle speech and noise STCMs, i.e.,

Φx,t = αΦx,t−1 + (1− α)xtx
H
t (46)

Φn,t = αΦn,t−1 + (1− α)ntn
H
t . (47)

To track rapidly varying speech and noise statistics, we set the
smoothing constant α to match the frame shift of the employed
STFT (equal to 2ms), using the relation α = exp(−Ts/τ),
where Ts = 2ms denotes the frame shift and τ = 2ms denotes
the smoothing time constant. Using (46), the left and right speech

4https://github.com/naplab/Conv-TasNet

STCVs and PSDs are computed using (9), i.e.,

γt,ν =
Φx,teν

φν
t

, ν ∈ {L,R} (48)

φν
t = eTνΦx,teν , ν ∈ {L,R}. (49)

The left and right interference STCMs are computed using (13),
i.e.,

Φν
i,t = Φx,t − φν

t γ
ν
t γ

ν,H
t +Φn,t, ν ∈ {L,R}. (50)

B. Spatio-Temporal Structures

To impose the global RTF structure or the ipsilateral RTF
structure (see Section III-A) on the ground-truth speech STCVs,
the ground-truth RTFs are first computed according to (18) using
the oracle speech STCM (46) and the oracle speech PSDs (49).
For the global RTF structure, the speech STCVs are constructed
using (23) and (26), where the global RTF vector ht,glob in (22)
is constructed using the ground-truth RTFs and the speech tem-
poral correlation vector γ̄L

t,1 is extracted from the speech STCV
in (48). Similarly, for the ipsilateral RTF structure, the speech
STCVs are constructed using (30), where the ipsilateral RTF
vectorshL

t,ipsi andhR
t,ipsi in (28) and (29) are constructed using the

ground-truth RTFs, and the speech temporal correlation vectors
γ̄ν
t,L and γ̄ν

t,R are extracted from the speech STCV in (48).
The common interference STCM (see Section III-B) is con-

structed as the matrix minimizing the squared Frobenius norm
of the difference with the ground-truth interference STCMsΦL

i,t

and ΦR
i,t in (50), i.e.,

Φ̃i,t = argminΦ

(∥∥Φ −ΦL
i,t

∥∥2
F
+
∥∥Φ −ΦR

i,t

∥∥2
F

)
(51)

=
1

2

(
ΦL

i,t +ΦR
i,t

)
. (52)

For the bilateral correlation structures (see Section III-C), the
coefficients of the speech STCVs and the interference STCMs
corresponding to the contralateral correlations are simply set to
zero.

C. Results

We evaluate the model mismatch incurred by imposing spatio-
temporal correlation structures on the ground-truth speech
STCVs and interference STCMs in terms of several metrics
on the evaluation dataset. To evaluate model mismatch for the
speech STCVs, we consider the mean relative �2 norm and the
mean Hermitian angle, defined as

ε�2 =
1

2FT

F∑
f=1

T∑
t=1

∑
ν∈{L,R}

∥∥∥γ̃ν
f,t − γν

f,t

∥∥∥
2∥∥∥γν

f,t

∥∥∥
2

(53)

εθ =
1

2FT

F∑
f=1

T∑
t=1

∑
ν∈{L,R}

arccos

⎛⎝ |γ̃ν,H
f,t γ

ν
f,t|∥∥γ̃ν

f,t

∥∥
2

∥∥∥γν
f,t

∥∥∥
2

⎞⎠ ,

(54)

https://github.com/naplab/Conv-TasNet
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where γν
f,t corresponds to the ground-truth speech STCVs in

(48) and γ̃ν
f,t corresponds to the speech STCVs with imposed

structure.
To evaluate model mismatch for the interference STCMs,

we consider the mean relative Frobenius norm and the mean
correlation matrix distance [38], defined as

εFro =
1

2FT

F∑
f=1

T∑
t=1

∑
ν∈{L,R}

∥∥∥Φ̃i,f,t −Φν
i,f,t

∥∥∥
F∥∥Φν

i,f,t

∥∥
F

(55)

εCMD =
1

2FT

F∑
f=1

T∑
t=1

∑
ν∈{L,R}

(
1− trace{Φ̃i,f,tΦ

ν,H
i,f,t}

‖Φ̃i,f,t‖F ‖Φν
i,f,t‖F

)
,

(56)

where Φν
i,f,t corresponds to the ground-truth interference

STCMs in (50) and Φ̃i,f,t corresponds to the common inter-
ference STCM in (51). The correlation matrix distance εCMD

can be interpreted as the angle between the vectorized STCMs
Φ̃i,f,t andΦi,f,t in (2MN)2-dimensional space, yielding values
between 0 and 1, where smaller values denote higher similarity.

For all considered spatio-temporal correlation structures,
Table I shows the number of required parameters to estimate the
speech STCVs and the interference STCMs, both as a function
of the number of microphones M and the multi-frame filter
length N as well as specifically for M = 2 and N = 5 (used in
the simulations). It also shows the model mismatch by impos-
ing spatio-temporal correlation structures on the ground-truth
speech STCVs and interference STCMs in terms of the metrics
introduced in the previous subsection.

For the speech STCVs, it can be observed on the one hand that
all spatio-temporal correlation structures significantly reduce
the number of required parameters. The global RTF structure
yields the largest reduction (factor 5.4), while the ipsilateral
RTF structure yields the smallest reduction (factor 1.9). On
the other hand, both the global RTF structure and the bilateral
structures incur a relatively large model mismatch in terms of
both metrics. Although the global RTF structure is commonly
used in single-frame algorithms (typically utilizing longer STFT
frames), the global RTF structure may be less suitable for the
considered multi-frame algorithms, which rely on short STFT
frames to exploit the temporal correlations of speech signals.
In addition, due to the relatively large distance between the
microphones on the left and right hearing devices, the speech
STFT coefficients of the global reference microphone (on the
left hearing device) may not be fully correlated with the speech
STFT coefficients of the contralateral microphones (on the right
hearing device). In contrast, the ipsilateral RTF structure incurs a
smaller model mismatch while reducing the number of required
parameters with a similar factor as the bilateral RTF structure.

For the interference STCMs, it can be observed on the one
hand that assuming a common STCM reduces the number of
required parameters by a factor 2, while the bilateral structure
further reduces the number of required parameters by an addi-
tional factor 2. In absolute numbers, the parameter reductions for
the interference STCMs are much larger than the reductions for
the speech STCVs. On the other hand, the bilateral interference

correlation structure incurs a relatively large model mismatch in
terms of both metrics, consistent with the model mismatch for
the bilateral speech correlation structure. In contrast, assuming a
common interference STCM incurs a smaller model mismatch.
The observations in terms of model mismatch for the considered
spatio-temporal correlation structures will be confirmed by the
simulation results in the next section.

VII. SIMULATION RESULTS

In this section, we investigate the speech enhancement perfor-
mance and the computational complexity of the deep binaural
STWF and the deep bilateral STWF using the proposed corre-
lation structures. Furthermore, we compare their performance
with three baseline algorithms, i.e., the binaural DF algorithm,
the binaural Conv-TasNet algorithm, and the BCCTN algo-
rithm. As mentioned before, all considered algorithms except
the BCCTN algorithm are causal. To evaluate computational
complexity, we consider the RF, defined as processing duration
vs. utterance duration using a single thread on an AMD EPYC
7443P CPU, as well as the number of MACS (determined using
the PyTorch profiler) and the number of trainable weights. To
evaluate speech enhancement performance, we consider the
wideband perceptual evaluation of speech quality (PESQ) [39]
metric and the hearing aid speech quality index (HASQI) [40]
as objective metrics of speech quality, as well as the hearing aid
speech perception index (HASPI) [41] as an objective metric
of speech intelligibility. To evaluate interaural cue preservation,
we consider the interaural level difference (ILD) and interaural
phase difference (IPD) errors between the output signals and the
target speech components of the input signals. We use the ILD
and IPD errors defined in [14], where both errors are computed
only in STFT bins with active speech. The ILD error is defined
as

ΔILD =
1

A

F∑
f=1

T∑
t=1

Mf,t|ILDout
f,t − ILDin

f,t|, (57)

where Mf,t denotes an ideal binary mask indicating STFT bins
with active speech computed from the target speech components
(see [14] for more details), and A =

∑F
f

∑T
t Mf,t denotes the

number of STFT bins with active speech. The ILDs between
the output signals and the ILDs between the target speech
components of the input signals are defined as

ILDout
f,t =

|x̂f,t,L|2
|x̂f,t,R|2 , ILDin

f,t =
|xf,t,L|2
|xf,t,R|2 . (58)

Similarly, the IPD error is defined as

ΔIPD =
1

A

F∑
f=1

T∑
t=1

Mf,t|IPDout
f,t − IPDin

f,t|, (59)

where the IPDs between the output signals and the IPDs between
the target speech components of the input signals are defined as

IPDout
f,t = ∠

(
x̂f,t,L

x̂f,t,R

)
, IPDin

f,t = ∠
(
xf,t,L

xf,t,R

)
. (60)
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TABLE II
COMPUTATIONAL COMPLEXITY IN TERMS OF THE AVERAGE REAL-TIME FACTOR (RF), THE NUMBER OF MULTIPLY-ACCUMULATE OPERATIONS PER SECOND

(MACS), AND THE NUMBER OF TRAINABLE WEIGHTS FOR THE DEEP BINAURAL STWF AND THE DEEP BILATERAL STWF (IMPOSING DIFFERENT CORRELATION

STRUCTURES) AS WELL AS THE BINAURAL DF ALGORITHM, THE BINAURAL CONV-TASNET ALGORITHM, AND THE NON-CAUSAL BCCTN ALGORITHM

TABLE III
SPEECH ENHANCEMENT PERFORMANCE IN TERMS OF AVERAGE PESQ, HASQI, AND HASPI VALUES AND INTERAURAL CUE PRESERVATION IN TERMS OF

AVERAGE ILD AND IPD ERRORS FOR THE DEEP BINAURAL STWF AND THE DEEP BILATERAL STWF (IMPOSING DIFFERENT CORRELATION STRUCTURES) AS

WELL AS THE BINAURAL DF ALGORITHM, THE BINAURAL CONV-TASNET ALGORITHM, AND THE NON-CAUSAL BCCTN ALGORITHM ON THE MATCHED

EVALUATION DATASET

For all speech enhancement and interaural cue preservation
metrics, we used the left and right reverberant speech signals at
the reference microphones as the reference signals. For PESQ,
we averaged the values across the left and right output signals,
whereas HASQI and HASPI inherently consider only the better
ear. For HASQI and HASPI, we assumed normal hearing (i.e.,
a flat hearing loss of 0 dB). Audio demos for matched and
mismatched conditions (including a condition with a moving
source entirely mismatched from the training dataset) can be
found online.5

A. Computational Complexity

Table II shows the computational complexity for all consid-
ered binaural speech enhancement algorithms, where all metrics
were averaged across all utterances and SNRs of the matched
evaluation dataset. The DF algorithm achieves the lowest com-
putational complexity, with an RF of 4.8%, 6 M MACS, and
0.34 M trainable weights. In contrast, the non-causal BCCTN
algorithm shows the highest computational complexity with
5730 M MACS and 11.09 M trainable weights, highlighting
its substantial computational demand. The deep binaural STWF
not imposing any correlation structure results in an RF of 54.6%,
539 M MACS, and 2.10 M trainable weights. Imposing a com-
mon interference STCM reduces the RF to 36.2%, while also

5https://uol.de/en/sigproc/research/audio-demos/binaural-noise-reduction/
stwf

decreasing the MACS to 287 M and the trainable weights to
1.30 M. Imposing the global RTF structure further reduces the
RF to 25.1%, the MACS to 273 M, and the trainable weights
to 1.19 M. In contrast, imposing the ipsilateral RTF structure
yields only minimal additional computational savings over the
common interference STCM. Compared to the deep binaural
STWF algorithms, the deep bilateral STWF algorithms result in
lower computational complexity, with RFs around 12%, 76 M
MACS, and between 0.41 M and 0.42 M trainable weights.

B. Matched Evaluation Dataset

For the matched evaluation dataset, Table III shows the speech
enhancement and interaural cue preservation performance for all
considered binaural speech enhancement algorithms, averaged
across all utterances and SNRs. First, it can be observed that all
algorithms yield improvements in terms of all considered speech
enhancement metrics. The deep binaural STWF not imposing
any correlation structure achieves a high PESQ value (2.40)
and the highest HASQI and HASPI values (0.50 and 0.95,
respectively), while the non-causal BCCTN algorithm achieves
the highest PESQ value (2.48), but only moderate HASQI and
HASPI values (0.48, and 0.91). Compared to the unstructured
variant, imposing a common interference STCM results in only
minor PESQ reductions (2.38) while achieving the same HASQI
and HASPI values. Further imposing the global RTF structure
slightly reduces speech enhancement performance (PESQ of

https://uol.de/en/sigproc/research/audio-demos/binaural-noise-reduction/stwf
https://uol.de/en/sigproc/research/audio-demos/binaural-noise-reduction/stwf
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TABLE IV
SPEECH ENHANCEMENT PERFORMANCE IN TERMS OF AVERAGE PESQ, HASQI, AND HASPI VALUES AND INTERAURAL CUE PRESERVATION IN TERMS OF

AVERAGE ILD AND IPD ERRORS FOR THE DEEP BINAURAL STWF AND THE DEEP BILATERAL STWF (IMPOSING DIFFERENT CORRELATION STRUCTURES) AS

WELL AS THE BINAURAL DF ALGORITHM, THE BINAURAL CONV-TASNET ALGORITHM, AND THE NON-CAUSAL BCCTN ALGORITHM ON THE MISMATCHED

EVALUATION DATASET

2.34). In contrast, imposing the ipsilateral RTF structure pre-
serves the speech enhancement performance of the unstructured
variant (PESQ of2.39). The deep bilateral STWF algorithms, the
binaural DF algorithm, and the binaural Conv-TasNet algorithm
result in lower speech enhancement performance (PESQ around
2.20). The lower performance of the deep bilateral STWF algo-
rithms is presumably caused by the lack of information exchange
between the left and right hearing devices, which limits both the
spatial diversity the TCNs can exploit as well as the number of
microphones available for filtering.

In terms of interaural cue preservation, it can be observed
that the non-causal BCCTN algorithm achieves the best perfor-
mance, while the deep bilateral STWF algorithms and the deep
binaural STWF algorithm imposing the global RTF structure
exhibit the worst performance. Notably, imposing the ipsilateral
RTF structure preserves interaural cues as effectively as the
unstructured variant. The good interaural cue preservation of the
BCCTN algorithm is presumably caused by the inclusion of loss
terms that penalize interaural cue distortion. However, it should
be noted that, from a perceptual perspective, all algorithms
except the deep bilateral STWF algorithms preserve the binaural
localization cues quite well.

C. Mismatched Evaluation Dataset

For the mismatched evaluation dataset, Table IV shows the
speech enhancement and interaural cue preservation perfor-
mance for all considered binaural speech enhancement algo-
rithms, averaged across all utterances. Compared to the matched
evaluation dataset, the speech enhancement performance of all
algorithms is reduced, which is expected due to the strong mis-
match between training and evaluation conditions. Nevertheless,
all algorithms still yield improvements in terms of all considered
speech enhancement metrics (except for the BCCTN algorithm
in terms of HASPI). The speech enhancement and interaural
cue preservation tendencies across algorithms are similar to
those observed on the matched evaluation dataset, however with
smaller differences between algorithms.

To experimentally evaluate the robustness of the considered
binaural speech enhancement algorithms, we have also included
an audio example of an acoustic scene that is entirely mis-
matched from the training dataset (featuring a moving target

speaker in an unseen room, with unseen quasi-diffuse noise,
and a hearing aid configuration with unseen inter-microphone
spacings) on the webpage.5

D. Summary

Overall, the simulation results show that imposing spatio-
temporal correlation structure on the speech STCVs and the
interference STCMs reduces computational complexity in terms
of the RF, MACS, and the number of trainable weights, while
hardly affecting speech enhancement performance. Among the
binaural STWF algorithms, the variant assuming a common
interference STCM and the ipsilateral RTF structure offers the
best trade-off in terms of computational complexity, speech
enhancement performance, and interaural cue preservation.

VIII. CONCLUSIONS

In this paper, we proposed several procedures to impose
spatio-temporal correlation structures on the speech STCVs and
interference STCMs, required to implement the binaural STWF.
These procedures mainly differ in terms of the relation between
the microphones, particularly between the left and the right
hearing device, as well as the number of parameters to be esti-
mated. First, assuming that the spatial correlation of the speech
component is stationary over the length of the multi-frame filter,
we proposed to decompose the speech STCV as the Kronecker
product of a spatial RTF vector and a temporal correlation vector.
We either considered a single global reference microphone or
a reference microphone for each hearing device. Second, we
proposed to replace the left and right interference STCMs by
a common interference STCM. In addition, we considered a
bilateral STWF by neglecting all spatio-temporal correlations
between both hearing devices. All required parameters were
estimated by embedding the binaural STWF into a supervised
learning framework.

Simulation results using both simulated and measured BRIRs
as well as diverse speech and noise sources demonstrate that
the combination of the speech STCV structure considering two
reference microphones and a common interference STCM yields
the best overall performance, reducing the real-time factor by
around 36% while maintaining speech enhancement and inter-
aural cue preservation performance compared to not imposing
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any spatio-temporal correlation structure. These results are con-
sistent with a validation based on ground-truth quantities. Fur-
thermore, the best deep binaural STWF algorithm outperforms
two state-of-the-art binaural speech enhancement algorithms
based on supervised learning, namely the deep filtering algo-
rithm and the binaural Conv-TasNet algorithm, while approach-
ing the performance of the (non-causal) BCCTN algorithm.
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