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Abstract
This study investigates the performance of speaker-
conditioned target speaker extraction algorithms. While
previous studies mostly focused on instrumental measures,
this paper employs three different subjective performance
measurement methods for two algorithms, namely:
paired comparison, speech intelligibility measurement,
and categorically scaled listening effort. The subjective
evaluations with 15 normal-hearing subjects for different
mixtures show a clear benefit of the time-domain-based
algorithm compared to the magnitude-based algorithm
and the unprocessed mixtures, i.e., it is clearly preferred
in direct comparisons and produces significantly lower
listening effort and better intelligibility. The time-domain-
based algorithm also improves SRTs compared to the
unprocessed mixtures even though unprocessed reference
SRTs were very low. In contrast, the magnitude-based
algorithm shows no improvement over the unprocessed
mixtures in any evaluation method.

1 Introduction

The goal of speaker extraction is to extract a target
speaker from a complex acoustic mixture consisting of
multiple sounds, such as the mixture of overlapping
speech from multiple speakers and background noise [1].
This is highly relevant for several real-world applications
including teleconferencing, voice-enabled devices, and
hearing aid devices. In principle, target speaker extraction
can be achieved by utilizing blind source separation [2–4]
to extract all sources from the mixture and select the
source corresponding to the target speaker. Alternatively,
speaker-conditioned target speaker extraction algorithms
[5–12] directly estimate the target speaker from the
mixture by exploiting auxiliary information about the
target speaker. Different types of auxiliary information
were proposed, such as reference speech [5–10], visual
information [11], and spatial information [12].
Several single-channel target speaker extraction algo-
rithms [5–10] have been proposed and have shown
impressive results when their performance is assessed in
terms of speech quality and intelligibility [13–16] using
various instrumental measures. Although these measures
are commonly used due to their fast computation and low
cost, none of them can fully reflect the human perception
of speech quality and intelligibility, which is why formal
listening tests remain the gold standard for algorithm
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evaluations. To the best of our knowledge, no previous
study has evaluated the performance of target speaker
extraction employing different methods of formal listening
tests. Thus, it is unknown which experimental method
is best suited for this task, especially since different
methods differ with respect to the applicable range of
signal-to-noise ratios (SNRs).
This study focuses on the subjective performance eval-
uation of speaker-conditioned target speaker extraction
algorithms for normal-hearing listeners employing 3
different methods, i.e., paired comparisons of differently
processed stimuli at a fixed SNR of 0 dB [17], adaptive
measurements of speech recognition thresholds (SRTs),
i.e., SNRs corresponding to 50% speech intelligibility
which typically result in very low (negative) SNRs [18],
and categorically scaled perceived listening effort, which
can be measured across a broad range of SNRs [19].
In this study, we consider 2 different single-channel
speaker-conditioned target speaker extraction algorithms.
The potential for enhancing the perception of the tar-
get speaker’s voice was measured for both considered
algorithms over a broad range of SNRs using three
experimental methods for different acoustic conditions
consisting of either one or two interfering speakers, with
or without sex differences to the target speaker.

2 Target Speaker Extraction
A speaker-conditioned target speaker extraction algorithm
consists of an embedder network and a separator network.
The embedder network generates an embedding from the
reference speech of the target speaker, which is used to
guide the separator network to discriminate between the
target speaker and interfering speakers present in the mix-
ture. The embedder and separator networks can be opti-
mized either separately [5] or jointly [6–9] to perform the
speaker extraction in the spectral domain [5] or in the time-
domain [7, 9].
Consider a time-domain signal y(n) consisting of a mix-
ture of the target speaker xt(n) and I interfering speakers,
i.e.,

y(n) = xt(n)+
I

∑
i=1

xi(n), (1)

where xi(n) denotes the speech signal of the i-th interfer-
ing speaker and n denotes the discrete-time index. The
goal is to extract the target speaker by exploiting the ref-
erence speech rt(n). This is achieved by first computing
a speaker embedding from rt(n) using the embedder net-
work, and then utilizing it to guide the separator network
towards estimating the target speaker from the mixture,
i.e.,

x̂j(n) = ϕsep(y(n),ϕemb(rt(n))), (2)
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where ϕemb and ϕsep denote the functional model of the
embedder network and the separator network, respectively.
Among the considered 2 target speaker extraction algo-
rithms, the first algorithm is inspired by [5] (magnitude-
based) which performs the extraction in the spectral
domain by computing the real-valued mask and separately
optimizes the embedder and the separator network.
Whereas the second algorithm [9] (time-domain-based)
performs the speaker extraction in the time domain and
jointly optimizes the embedder and separator networks.
Both algorithms were trained for mixtures of 2 speakers,
mixtures of 3 speakers, and noisy mixtures of 2 speakers
together on the same dataset generated using the WSJ0
[20] and the WHAM [21] corpora as in [9]. Based
on instrumental evaluations (SI-SDR (in dB) [15]) we
expected the time-domain-based algorithm to perform
better than the magnitude-based algorithm. One goal of
this study was to see if and which subjective methods
confirmed this result.

2.1 Magnitude-based algorithm
We utilized a pre-trained LSTM-based embedder network
[22] and a separator network containing a combination of
ResNet and gated recurrent units (GRUs). The embedder
network was pre-trained on the Voxceleb dataset [23]
to generate a 256-dimensional speaker embedding. The
separator network architecture was inspired by [5], where
instead of utilizing convolution neural networks (CNNs)
with LSTMs, we utilized a ResNet with GRU layers to
estimate a soft mask for target speaker extraction. The
separator network consists of 2 ResNet layers, 2 uni-
directional GRU layers, and 2 fully connected (FC) layers.
Each ResNet layer consists of 2 basic blocks of 2 CNN
layers, each followed by batch normalization and ReLU
activation. The last ResNet layer is average pooling. The
number of nodes utilized for the GRU layers and the first
FC layer is fixed to 256, while the last FC layer consists
of 257 nodes with a sigmoid activation function. As input,
the separator network uses the magnitude of the STFT
coefficients of the mixture y(n) computed using a square
root Hann window with a frame length of 512 samples and
a shift of 256 samples at a sampling frequency of 16 kHz.
The separator network was trained using the SI-SNR loss
function [3] using the ADAM optimizer with a learning
rate of 0.0002 for 150 epochs utilizing the early stopping
criteria. The separator network has 3.8 M parameters,
while the embedder network has 12.1 M parameters.

2.2 Time-domain-based algorithm
We utilized a recently proposed target speaker extraction
system as in [9], which consists of a ResNet-based
embedder network and a TCN-Conformer-based sep-
arator network. The embedder network generates a
256-dimensional speaker embedding. The separator
network consists of a multi-scale speech encoder, 4 stacks
of TCN and conformer blocks, and a multi-scale speech
decoder. The input and convolutional size of each TCN
block are fixed to 512, and the kernel size is fixed to 3.
Each conformer block utilizes 8-head attention with a
convolutional kernel size of 31. The output size of the
feed-forward layer of each conformer block is 4 times
the input size. The feed-forward layer is followed by
a swish activation and a dropout layer. The algorithm
was trained using a weighted combination of multi-scale

SI-SNR loss for the separator network and cross-entropy
loss for the embedder network using the ADAM optimizer
with a learning rate of 0.001 for 150 epochs utilizing the
early stopping criteria. The algorithm has a total 12.8 M
parameters.

3 Subjective evaluation
3.1 Methods
3.1.1 Participants and stimuli

15 native German-speaking subjects between 19 and 32
years participated in the listening tests. All had normal
hearing according to clinical audiometry.
The target speaker stimuli consisted of German matrix sen-
tences uttered by a fixed male speaker from the Oldenburg
sentence test [18]. These sentences always contain 5 words
in the fixed order name verb numeral adjective object (e.g.,
Peter has eight big chairs). For each word, ten alternatives
are available which can be randomly combined to produce
syntactically correct, but semantically unpredictable sen-
tences. The speaker embeddings are obtained from 10 s of
reference speech of the target speaker chosen from the Ger-
man Göttingen sentence test [24]. Interfering speech also
consisted of matrix sentences uttered by either one or two
different speakers. Interferer signals were generated by
concatenating several sentences, starting at a random po-
sition for each presentation. The interfering speakers were
either male (same as the target) or female. The relative
level of the target speaker and the interfering speaker(s)
was varied to produce different SNRs. To familiarize the
participants with the target speaker, participants listened to
an example of about 60 s consisting of concatenated target
sentences. The sentences were superimposed by interfer-
ing speakers as in the experiments, but the SNR was such
that target speaker was clearly louder than the interfering
speakers to make participants aware of target speaker. Dur-
ing the experiments, stimuli were presented via Sennheiser
HD650 headphones in sound-attenuated booths.

3.1.2 Procedures

3 different methods were utilized to assess the performance
of both considered algorithms. The methods differ with re-
spect to the outcome measure and the SNR range to which
they are applicable.
Paired comparisons were measured for stimuli in which
the target speaker was masked by either one or two inter-
fering speakers. The signals were scaled such that the tar-
get speaker had the same level (70 dB SPL) as the single
or the combined interferers. In each trial, participants lis-
tened to two versions of the same stimulus visually marked
as intervals A and B. By clicking the intervals they could
toggle between the two versions as long as they liked (the
stimuli were played back in a loop) and decide in which
interval the target speaker was more intelligible [25]. The
rating was made on a six-point scale on which either in-
terval could be marked as much easier (A+++ / B+++),
clearly easier (A++ / B++), or easier (A+ / B+). There
was no middle category (equally easy), i.e., participants
had to decide for one interval in each trial. All three ver-
sions (unprocessed, magnitude-based, time-domain-based)
were compared with each other, and the assignment to in-
tervals A and B was randomized in each trial. For each
comparison, 3 repetitions with different target and inter-
ferer sentences were made. The data were analyzed with
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respect to the percentage of wins.
Speech intelligibility was measured in terms of SRTs for
stimuli in which the target speaker was masked by two in-
terfering speakers because for a single interfering speaker
SRTs are known to be extremely low (e.g., −14 dB SNR in
[26]), i.e., they would have been expected to be in an SNR
region where we did not expect the algorithms to work
properly nor where typical listening conditions would oc-
cur. SRTs were measured using a list of 20 sentences. In
each trial, one mix of target speaker and interfering speak-
ers (processed or unprocessed) was presented once. The
participants then marked the recognized words on a screen,
before proceeding to the next trial. The level of the com-
bined interfering speakers was fixed at 70 dB SPL, while
the level of the target speaker was adjusted adaptively de-
pending on the participants’ responses in the previous trial.
If the participants correctly recognized three or more of the
five words, the SNR was decreased, otherwise, the SNR
was increased [27]. The adaptive procedure converged to
the SRT. Each condition (unprocessed, magnitude-based,
time-domain-based) was measured with its own list of 20
sentences and in random order. Before conducting the ac-
tual SRT measurements, two training lists of 20 target sen-
tences in stationary noise were measured to reduce training
effects [18].
The perceived listening effort was measured using a cat-
egorical scaling procedure with fixed SNRs [19]. In each
trial, participants heard a mix of target speaker and interfer-
ing speaker(s) (processed or unprocessed) and had to rate
the perceived effort it took them to understand the target
speaker. The rating was made on a 13-point scale ranging
from “no effort” (1 effort scaling categorical unit, ESCU,
see Fig. 1 in [28]) to “extreme effort” (13 ESCU). A four-
teenth category “only interfering speakers” was provided
for trials in which participants could not hear the target
speaker at all (and hence an assessment of the effort re-
lated to listening to this speaker could not be reasonably
made). In each trial, the stimulus was played in a loop
until participants made their rating, which triggered the
next trial. All SNRs and all processing conditions were
presented together in random order. Target and interfering
speakers were mixed at SNRs between −10 and 15 dB in
steps of 5 dB. To avoid large differences in loudness be-
tween trials, the overall level of the stimulus was always
fixed at 70 dB SPL. Listening effort was measured for stim-
uli in which the target speaker was masked by either one or
two interfering speakers. Each combination of SNR, pro-
cessing condition, and interferer condition was measured 3
times using different sentences. The median across these
repetitions was used as the estimate of each individual’s
perceived listening effort for that combination.

3.2 Results
3.2.1 Paired comparisons

Figure 1 shows the percentage of wins of paired compar-
isons between unprocessed stimuli and stimuli processed
by each algorithm (top panels), and the direct compari-
son between both algorithms (bottom panel). The data
reveals a very clear preference for the time-domain-based
algorithm: In comparison to unprocessed stimuli, 100%
of all comparisons favored processed stimuli for a single
interferer. For two interferers, the percentage of wins was
about 96% (female) and 98% (male). The distribution of
ratings indicates that in most cases the processed stimuli

Figure 1: Percentage of wins in the paired comparisons
for each pair of the three processing conditions for either
a single male or female interferer (F/M) or two interferers
(FF/MM).

were perceived as “clearly easier” to understand (P++)
than the unprocessed stimuli.
In contrast, the magnitude-based algorithm did not provide
a consistent advantage over unprocessed stimuli. Most
ratings were given to the middle categories of the rating
scale, indicating that listeners were uncertain whether
unprocessed or processed stimuli were easier to under-
stand. Consistently, the time-domain-based algorithm was
strongly preferred over the magnitude-based algorithm.

3.2.2 Speech intelligibility

Figure 2 shows measured SRTs averaged across par-
ticipants for 3 processing conditions, where error bars
represent standard errors. Statistical significance was
tested using a two-way analysis of variance for repeated
measures, followed by Bonferroni-corrected t-tests as
post-hoc tests. In general, SRTs were negative for all
processing conditions (indicating that listeners were
able to understand 50% of the target when the energy
of the interferers exceeded the energy of the target)
and significantly lower for female interferers than for
male interferers (F(1,14)=203.259, p<0.001). The factor
processing condition (F(2,28)=18.833, p<0.001) as well
as the interaction between processing condition and in-
terferer sex (F(2,28)=41.003, p<0.001) also significantly
affected the performance. For male interferers, the highest
mean SRT achieved by the magnitude-based algorithm
was −3.6 dB, while the time-domain-based algorithm
improved SRTs (−7.9 dB) compared to unprocessed
stimuli (−5.0 dB). For female interferers, the lowest SRT
for unprocessed stimuli was −13 dB, while SRTs for pro-
cessed stimuli were about 3 dB higher for both processed
conditions (−9.9 and −10.3 dB for magnitude-based and
time-domain-based, respectively).

3.2.3 Perceived listening effort

The top panels of Figure 3 show median listening effort
ratings across participants as a function of SNR for one
interferer (left) and two interferers (right). Different line
styles represent 3 processing conditions (error bars are
not shown to increase readability). The bottom panels
show the corresponding benefit in listening effort due
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Figure 2: Mean SRTs across participants for the three pro-
cessing conditions for two interferes (MM, FF). Error bars
represent standard errors.

to algorithms relative to the unprocessed condition. For
unprocessed stimuli, perceived listening effort decreased
systematically with increasing SNR. At the two lowest
SNRs, listening effort was higher for two interferers
than for one interferer. For magnitude-based, perceived
effort was similar to the unprocessed condition for lower
SNRs, and considerably higher at high SNRs. In contrast,
the time-domain-based algorithm showed a consistent
decrease in listening effort compared to the unprocessed
condition at all SNRs for both interferer sexes except
at −10 dB. The mean benefit due to processing (bottom
panels) was the largest at intermediate SNRs and reached
more than 4 categories on the 13-point scale for a single
interferer. For two interferers, the benefit had a similar
pattern but was slightly smaller than for a single interferer.
This was confirmed by single-sample t-tests conducted
to test if the mean benefits differed significantly from 0.
Even at a conservatively corrected significance level of
0.05/24 (there were 24 tests for each interferer condition),
the t-tests revealed statistically significant increases in
listening effort for the magnitude-based algorithm at SNRs
of 10 dB for a single male interferer, and at 10 and 15 dB
for a single female interferer. For time-domain-based
algorithm, there was a statistically significant reduction
in listening effort for SNRs from −5 to 10 dB for both
interferer sexes. For two interferers, magnitude-based
algorithm significantly increased listening effort at +15 dB
(male) and 5 dB (female), while time-domain-based
algorithm significantly improved listening effort at 0 and
10 dB (male), and at −5, 0, and 10 dB (female).

4 Discussion
In line with instrumental evaluations, the present data
revealed a consistent performance ranking of both
considered target speaker extraction algorithms across
experimental methods, in that the magnitude-based algo-
rithm did not produce a measurable improvement over
the unprocessed condition, while the time-domain-based
algorithm showed considerable improvements. The benefit
of the time-domain-based algorithm was found both at an
SNR of 0 dB (see paired comparisons and listening effort
ratings), which is often used in instrumental evaluations
of speaker extraction algorithms, as well as at lower and
higher SNRs (see listening effort ratings). Strikingly,
the SRT measurements revealed that an improvement is
even possible with this algorithm for male (i.e., same-sex)
interferers, despite the fact that SRTs in the unprocessed
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Figure 3: Perceived listening effort (top) and benefit in lis-
tening effort relative to unprocessed stimuli (bottom) as a
function of SNR for a single interferer (left) and two inter-
ferers (right).

condition were as low as −5 dB SNR. Such low SRTs
for unprocessed stimuli were also reported in [29, 30] for
very similar stimuli and methods. Similarly, these studies
also found the effect of sex differences between target and
interfering speakers, which is in line with the presented
data (SRT decrease by about 8 dB). SRTs in the processed
conditions showed that the algorithms did not provide an
advantage over unprocessed speech for female interferer,
presumably because the SNR was too low (−13 dB) to
effectively extract the target voice. The same observation
was made for listening effort ratings, which showed a
benefit for the time-domain-based algorithm across a large
range of SNRs (except for −10 dB for two interferers).
It can be observed that the performance of the considered
algorithms does not generalize well when the test SNR
conditions deviate from the SNR conditions during
training (between 0 and 5 dB). For example, the perfor-
mance of the time-domain-based algorithm considerably
degrades at −10 dB. In addition, especially at high SNRs
(10 and 15 dB), the magnitude-based algorithm showed
a large increase in listening effort. One possible reason
for such poor performance is distortions introduced by the
algorithm in the estimated spectra of the target speaker,
which makes the extracted signal less intelligible than the
unprocessed mixture.

5 Conclusions
We investigated the performance of two different speaker-
conditioned target speaker extraction algorithms. All
employed subjective measures agreed that a large im-
provement of target speaker perception can be obtained
by the time-domain-based algorithm compared to the
unprocessed mixture, even down to low SNRs. In contrast,
the magnitude-based algorithm showed no improvement
over the unprocessed mixture indicating that the subjective
measures replicate the instrumental evaluation results.
The measurement methods investigated in this study seem
suitable for evaluating speaker extraction algorithms and
can be selected according to the SNR range of interest.
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